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Abstract

A fundamental problem in robotics is the generation of motion for a task.
How to translate a task to a set of movements is a non-trivial problem.
The complexity of the task, the capabilities of the robot, and the desired
performance, affect all aspects of the trajectory; the sequence of movements,
the path, and the course of motion as a function of time.

This thesis is about trajectory generation and advances the state of
the art in several directions; special attention to trajectories in constrained
situations when interaction forces are involved is paid; we bring a control
perspective to trajectory generation and propose novel solutions for online
trajectory generation with a quick response to sensor inputs; we formulate
and find optimal trajectories for various problems, closing the gap between
path planning and trajectory generation; the inverse problem of finding the
control signal corresponding to a desired trajectory is investigated and we
extend the applicability of an existing algorithm to a wider range.

Designing trajectories for tasks involving force interaction is difficult,
since both the knowledge of the task and the dynamics of the robot are
necessary. Alternatively, we can acquire human-generated trajectory. In
this thesis, an immersive interface for task demonstration is proposed,
where the operator can sense and act through the robot. This is achieved by
coupling two robotic systems on a dynamical level. Limitations caused by
the singular configurations or the reach of either of the robots are naturally
reflected to the other as haptic feedback.

We consider a closed-loop approach to trajectory generation for fixed-time
problems, where a desired target state (possibly time varying) is achieved
by acting upon the feedback from the actual state of a robot. Using the
Hamilton-Jacobi-Bellman equation, we derive an optimal controller for the
fixed-time trajectory-generation problem with a minimum-jerk cost func-
tional. The controller instantaneously updates the trajectory as a result of
changes in the reference signal and/or the robot states. Moreover, a smooth
transition between the finite-horizon and an infinite-horizon problem is de-
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veloped. This enables switching smoothly to a tracking mode when a moving
target is reached.

An analytic solution to the problem of fixed-time trajectory generation
with a quadratic cost function under velocity and acceleration constraints is
derived. This problem has a wide range of applications in motion planning.
The advantage of the analytic solution compared to numerical optimization
of the discretized problem is the unlimited resolution of the solution and the
efficiency of the calculation, allowing sensor-based replanning and on-line
trajectory generation.

To extend the idea of closed-loop trajectory generation, by accommo-
dating a more generic form of system dynamics and constraints, we adopt
the Model Predictive Control (MPC) framework. We give the interpreta-
tion that in the tracking problem the desired output at every sample is
specified, while in point-to-point trajectory planning, it is limited to certain
samples. This view unifies tracking and point-to-point trajectory genera-
tion problems, hence eliminating the need of a separate layer for reference
generation. We discuss various choices of models, objective functions, and
constraints for generating trajectories to transfer the state of the robot while
respecting physical limitations on the motion as well as fulfilling compu-
tational real-time requirements. Experiments on an industrial robot in a
ball-catching task show the effectiveness of the approach also in demanding
scenarios.

A rigid-body model of a finger interacting with a trackball is consid-
ered. The proposed system and its extension with more fingers are suitable
candidates for studying trajectory generation where interaction plays an
important role, such as in assembly and manipulation tasks. The trajectory
generation algorithm has to handle a number of important features such
as unilateral and non-holonomic constraints. Additionally, in this problem
task planning, path planning, and trajectory generation are strongly inter-
related, which makes using an integrated approach to trajectory generation
inevitable. We derive a hybrid, high-index differential-algebraic equation
for modeling the system dynamics, which is used for both simulation and
finding optimal trajectories.

Iterative Learning Control (ILC) fits into the picture of trajectory gener-
ation considering the fact that it finds a proper control signal for obtaining
a desired trajectory. We focus on a specific regime of convergence of an
ILC algorithm, which is traditionally ignored. We derive frequency-domain
criteria for the convergence of linear iterative learning control (ILC) on
finite-time intervals that are less restrictive than existing ones in the liter-
ature. Additionally, using an example we put forward an idea of how ILC
can be adapted for point-to-point trajectory planning.
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1
Introduction

1.1 Background and Motivation

Trajectory generation is an inherent problem in motion control for robotic
systems, such as industrial manipulators and mobile platforms. This is
commonly considered as a sub-problem in motion planning, wherein the
ultimate goal is to find fully automated procedures to generate a sequence
of movements to perform a task [Nottensteiner et al., 2016; Thomas et al.,
2015]. Typically, a task requires to bring about a certain state in the world.
Hence, the aim of the motion is to transfer the system from one initial state
to another desired state [Kröger and Wahl, 2010].

A common strategy to motion planning is the decoupled approach
[LaValle, 2006; Verscheure et al., 2009], since it reduces the complexity
of the complete motion-planning problem. This approach is such that a
path is first determined, taking into account the geometry of the task and
the environment, e.g., obstacles or other robots in a shared workspace. Sub-
sequently, trajectory planning is performed in order to achieve tracking of
the a priori planned geometric path.

Various modeling assumptions have to be made. A major consideration
is whether to use a pure kinematic model or to model the complete linear
or nonlinear dynamics of the system. Obviously, the latter is more complex
and the computations can be more time consuming. In general, a dynamic
model is required to guarantee satisfaction of the physical constraints such
as limitations in actuators. This can limit the performance of the decoupled
approach or even give rise to infeasible trajectories for a certain path.

A prerequisite for modern robot control is the sensor measurements
of both internal robot quantities (typically by joint encoders/resolvers in
manipulators and wheel encoders on mobile platforms) and external sensors
providing information about the state of the workspace (such as vision
and force/torque sensors) [Kröger and Wahl, 2010]. Consequently, another
desired characteristic of the motion planning in uncertain or unstructured
environments is the ability to react to sensor inputs. In practice, this means
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Chapter 1. Introduction

that the path as well as the corresponding trajectory need to be recomputed
online with real-time constraints.

In many applications, the trajectory is desired to either minimize the
time for executing a task or the energy consumed during the motion. Hence,
motion-planning problems are often formulated as optimal-control prob-
lems. The cost functional can couple the different degrees-of-freedom (DOF)
of the system and result in a coordination between them.

As an alternative to the decoupled approach, in cases where only the
initial and final states are of interest, a direct integrated approach to motion
planning can be pursued. Ultimately, this leads to a motion planning where
the full potential of the system is utilized, since the geometric, kinematic,
and dynamic constraints can be considered directly when computing an
optimal motion plan [Choset, 2005]. The usage of this approach, though, has
been limited because of the time required for computing solutions online for
complex dynamic systems such as industrial robots with multiple DOF.

In the context of industrial manipulators, algorithms and methods to
perform offline trajectory generation for time-optimal path tracking were
already developed in the 1980s [Bobrow et al., 1985; Shin and McKay,
1985]. An overview of trajectory-generation methods for robots is provided
in [Kröger, 2010]. Most of the previously suggested methods for online
trajectory generation for mechanical systems were based on a library of an-
alytic expressions, parametrized in the initial and final states of the desired
motion and in certain constraints [Kröger and Wahl, 2010; Kröger, 2011a].
Efficient algorithms and data structures for online trajectory generation
based on this method were implemented and distributed as part of the
Reflexxes motion library [Kröger, 2011b]. Other approaches to online tra-
jectory generation based on parametrized motion patterns were considered
in [Castain and Paul, 1984], [Macfarlane and Croft, 2003], and [Haschke
et al., 2008].

The major advantage of the existing analytic solutions is that they can be
computed extremely fast. Nevertheless, they typically address time-optimal
problems and are limited in the constraints that can be handled in the
motion planning. Alternatively, in [Verscheure et al., 2009] it was shown
how the time-optimal path-tracking problem can be solved using convex
optimization techniques under certain assumptions on the robot model.

While the minimum-time trajectories are of interest for defining an up-
per bound for productivity of a robotic system, they put the system under
maximal stress. In practice, (e.g., in a production line) several components
are involved and there is a sequence of dependent operations that deter-
mines the time allocated to a job. Hence, the solution to fixed-time problems
can prove valuable by naturally leading to coordination while reducing wear
and tear of the robotic system. A sub-optimal solution to fixed-time trajec-
tory planning for robot manipulators was proposed by [Dulęba, 1997]. In an-
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1.2 Contributions

other approach, the fixed-time optimal solution in the space of parametrized
trajectories were found [Yang et al., 2012].

In this thesis, some new ideas for trajectory generation are explored.
Initially, we investigate a robotic setup for acquiring trajectories from hu-
man demonstration as faithfully as possible. Fast algorithms for obtaining
solutions to fixed-time point-to-point trajectory generation is a major theme
in this work. The motivation is the necessity to regenerate or adjust trajec-
tories in dynamic environments as soon as new sensor information becomes
available. We propose a closed-loop approach as well as various optimal
strategies to this problem. For tracking a trajectory, obtaining the required
control signal is important. This leads us to iterative learning control and
its convergence issues.

1.2 Contributions

The major contributions of this thesis are:

• A control law for dual-arm lead-through programming system;

• A closed-loop minimum-jerk trajectory generation algorithm;

• An analytic solution for point-to-point fixed-time trajectory planning
under maximum velocity and maximum acceleration constraints;

• Adapting the Model Predictive Control framework to fixed-time point-
to-point trajectory generation;

• Modeling of a ball-and-finger system for studying optimal trajectories
under varying contacts and dynamics;

• A less conservative stability criterion for Iterative Learning Control.

1.3 Publications

Preliminary versions of parts of the research presented in this thesis have
been published in the licentiate thesis by the author [Ghazaei Ardakani,
2015]. The current thesis is mainly based on the papers and submitted
manuscripts as detailed below:

Ghazaei Ardakani, M. M. and K. Nilsson (2016). “Haptic interface for task
demonstration”. Unpublished Manuscript.

In the above publication, the idea of using a second arm of a dual-arm
robot as a haptic interface is attributed to both authors. The control design
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Chapter 1. Introduction

and the results are entirely due to the first author. The second author has
also contributed in structuring of the manuscript and improving the text.
Chapter 2 is derived, in part, from this manuscript.

Ghazaei Ardakani, M. M., A. Robertsson, and R. Johansson (2015). “Online
minimum-jerk trajectory generation”. In: Proc. IMA Conf. Mathematics
of Robotics. Oxford, UK.

The above publication is based on the results of the first author presented
earlier in the licentiate thesis by the first author, with proof-reading and
improvements suggested by the second and the third co-authors. Chapter 3
is based, in part, on this article.

Ghazaei Ardakani, M. M., M. Stemmann, A. Robertsson, and R. Johans-
son (2015). “An analytic solution to fixed-time point-to-point trajectory
planning”. In: Proc. IEEE Conf. Control Applications (CCA). Sydney,
Australia, pp. 306–311.

The derivation of the analytic solution to the fixed-time trajectory plan-
ning was done together with Meike Stemmann. The first author has com-
pleted the solution and provided numerical results. The third and the fourth
co-authors provided constructive feedback on the manuscript. Chapter 5 is
based, in part, on this article.

Ghazaei Ardakani, M. M., B. Olofsson, A. Robertsson, and R. Johansson
(2015). “Real-time trajectory generation using model predictive control”.
In: Proc. IEEE Int. Conf. Automation Science and Engineering (CASE).
Gothenburg, Sweden, pp. 942–948.

Ghazaei Ardakani, M. M., B. Olofsson, A. Robertsson, and R. Johansson
(2016). “Real-time trajectory generation using model predictive control”.
IEEE Trans. Automation Science and Engineering (T-ASE). Submitted
Manuscript.

The problem formulation in the above publications is due to the first
author. The verification of the ideas and the implementation of algorithms
were done together with the second author. The first two authors were
responsible for extending the first paper into the second manuscript, while
the ideas and some preliminary results had already been reported in the
licentiate thesis by the first author. The manuscripts were prepared by the
first and the second author, while proof-reading and improvements of the
texts were suggested by the third and the fourth co-authors. Chapter 6 is
based on these articles.
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1.3 Publications

Ghazaei Ardakani, M. M. and F. Magnusson (2016). “Ball and finger system:
Modeling and optimal trajectories”. Autonomous Robots. In Submission.

The research idea of the publication above is due to the first author of the
paper. The mathematical modeling and simulations were done by the first
author, while an equal division of the work for the optimization part of the
research between both authors is asserted. The contribution of the second
author in discussing all aspects of the research is also acknowledged. The
manuscript was collaboratively prepared. Chapter 7 is derived, in parts, on
this manuscript.

Ghazaei Ardakani, M. M., S. Z. Kong, and B. Bernhardsson (2016). “On
the convergence of iterative learning control”. Automatica. Accepted for
publication.

The non-monotone convergence phenomena in ILC were observed by the
third author and proposed as a research problem. The analysis and further
examples are due to the author of this thesis. The second and the third
authors contributed by improving the rigorousness of the arguments and
proofs. Chapter 8 is based, in part, on this article.

Other publications:
The following list of publications and manuscripts, in which the author has
contributed, were decided not to be a part of this thesis.

Capurso, M., M. M. Ghazaei Ardakani, R. Johansson, A. Robertsson, and
P. Rocco (2017). “Sensorless kinesthetic teaching of robotic manipulators
assisted by an observer-based force control”. In: Proc. IEEE Int. Conf.
Robotics and Automation (ICRA). Singapore. Submitted Manuscript.

From, P. J., J. H. Cho, A. Robertsson, T. Nakano, M. Ghazaei, and R. Jo-
hansson (2014). “Hybrid stiff/compliant workspace control for robotized
minimally invasive surgery”. In: Proc. 5th IEEE RAS EMBS Int. Conf.
Biomedical Robotics and Biomechatronics (BioRob). São Paulo, Brazil,
pp. 345–351.

Ghazaei Ardakani, M. M., J. H. Cho, R. Johansson, and A. Robertsson
(2014). “Trajectory generation for assembly tasks via bilateral teleoper-
ation”. In: Proc. 19th IFAC World Congress. Vol. 19. 1. Cape Town, South
Africa, pp. 10230–10235.

Ghazaei Ardakani, M. M. and R. Johansson (2016). Recovery of Uniform
Samples and Spectrum of Band-limited Irregularly Sampled Signals.
Technical Report TFRT--7647--SE. Dept. Automatic Control, Lund Uni-
versity, Sweden.
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Chapter 1. Introduction

Ghazaei Ardakani, M. M., H. Jörntell, and R. Johansson (2011). “ORF-
MOSAIC for adaptive control of a biomimetic arm”. In: Proc. IEEE Int.
Conf. Robotics and Biomimetics (ROBIO). Phucket, Thailand, pp. 1273–
1278.

Stolt, A., F. B. Carlson, M. M. Ghazaei Ardakani, I. Lundberg, A. Roberts-
son, and R. Johansson (2015). “Sensorless friction-compensated passive
lead-through programming for industrial robots”. In: Proc. IEEE/RSJ
Int. Conf. Intelligent Robots and Systems (IROS). Hamburg, Germany,
pp. 3530–3537.

1.4 Thesis Outline

The thesis is organized as follows. In Chapter 2, we present methods to ac-
quire human-generated trajectories as faithfully as possible. The proposed
setup is especially useful when force interaction with the environment is
required. Chapter 3 presents methods for extending a trajectory to a larger
workspace and a closed-loop perspective on trajectory generation. A number
of different optimization-based approaches to trajectory generation are pre-
sented in Chapter 4. We study the applicability of simple kinematic models
compared to dynamic models. In Chapter 5, an analytic solution to fixed-
time trajectory planning with state constraints is derived. We adapt Model
Predictive Control (MPC) for point-to-point trajectory generation in Chap-
ter 6. Chapter 7 deals with modeling and optimal control of a hybrid system.
We propose a ball-and-finger system for studying optimal trajectories where
interaction with the environment is required. Iterative Learning Control
(ILC) provides a method to obtain the required control signal in order to
achieve a desired trajectory. In Chapter 8, we look into the convergence of
ILC. We also demonstrate how ILC can be applied to point-to-point trajec-
tory planning, where the desired trajectory is not fully specified. Finally,
conclusions are drawn in Chapter 9, where also ideas for future research
are presented.
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2
Human-Generated
Trajectories via Haptic
Interface

2.1 Introduction

Robots have been used for decades to conduct repetitive tasks, e.g., assembly
and pick-and-place operations, to assist human workers with difficult and
monotonous tasks. Numerous industrial environments have utilized robotic
systems to increase the production, improve the efficiency of processes, and
to improve the work environment for human workers by delegating the
monotonous tasks to robots. A new generation of robots, such as the ABB
YuMi [ABB Robotics, 2015; Kock et al., 2011] shown in Fig. 2.1, has been
built to work side-by-side with human workers, hence requiring a more
intuitive way of programming and interaction with humans. The program-
ming of robot systems for complex tasks involving force interaction is still a
difficult problem. There are numerous suggested solutions in the literature
and many of them rely on trajectory programming prior to operation.

Robotic motions can be generated based on teaching via some human–
robot interface (HRI) or 3D simulation programming environments. The
manipulation of the robotic systems is possible not only with the use of a
teach pendant but also with direct physical manipulation (so called lead-
through programming). The direct manipulation of robots is much more
intuitive than the conventional text-based programming or even graphical
simulation, since trajectories are generated via human demonstration.

Many tasks are still carried out manually, since it is overly difficult to
program a robot to achieve a similar performance. Typically, these tasks
involve interaction with an object or the environment, where the success
of the task largely relies on the skills of the human. To program a robot,
these skills need to be transferred to the robot. The most natural way for
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Chapter 2. Human-Generated Trajectories via Haptic Interface

Figure 2.1 A prototype of ABB YuMi Robot [ABB Robotics, 2015; Kock
et al., 2011]. Early experiments for lead-through programming were carried
out with this robot.

a human to do this is via demonstration. For teaching by demonstration, if
the robot does not have a similar kinematic structure to the operator doing
the demonstration, the mapping between robot motion and human motion
will not be trivial. By using the robot as part of the demonstration of a
task, this problem could be entirely avoided [Billard et al., 2008]. Therefore,
this approach has been widely used in human skill acquisitions, [Argall
et al., 2009; Lee et al., 2015]. Despite this, the interface between humans
and robots can be inconvenient and difficult for accurately transferring
motions because of mechanical properties of robots such as inertia and
friction. Although compliant motion control could be employed to reduce
inertial/friction forces, direct teaching of industrial robots is still limited.
Moreover, the mechanical coupling between the operator, the robot, and the
workpiece makes it impossible to record faithfully the required force values
for a task. Hence, an interface for demonstrating a task can contribute
by allowing the operator to perceive the differences and limitations of the
robotic system.

Using haptic feedback in teleoperation of robots [Hokayem and Spong,
2006] and in virtual reality [Constantinescu, 2008] has been the subject
of research for many years. Teleoperation with haptic feedback provides a
suitable framework for immersive demonstration of a task. Utilizing both
visual and haptic feedback from a robot or a model of it, an operator can
ideally feel and perceive a task from the robot’s perspective, hence enabling
accurate demonstration including force specification.

Four-channel haptic systems are the most general form of haptic devices
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where position and interaction forces are measured from both sides [Aliaga
et al., 2004]. With the improved techniques to estimate joint forces and
TCP wrenches [Wahrburg et al., 2014; Stolt et al., 2015b; Linderoth et al.,
2013], many of the existing robot manipulators can be used as haptic devices
without additional cost. Moreover, as dual-arm robots become popular, the
idea in this chapter is that one of the arms can be utilized as a convenient
interface for demonstrating poses, trajectories, and forces.

Several factors limit the transparency of a teleoperation system. In the
one-dimensional linearized case, it is shown that the transparency and sta-
bility are conflicting requirements [Lawrence, 1993]. Delays are detrimental
to both transparency and stability and have been studied widely [Anderson
and Spong, 1989; Lee and Spong, 2006; Hatanaka et al., 2015]. However, in
teaching or virtual reality scenarios, delays can be avoided since a central-
ized implementation is possible. The transparency is further limited by the
structures of the master or the slave devices. When two robotic systems are
employed in a master-slave configuration, their workspace is limited to the
points reachable by both systems simultaneously. This defines a common
workspace for the robots. At the boundary of this common workspace, one
or both of the systems are typically in a singular configuration with reduced
manipulability.

Allowing the arms to have different configurations, substantially in-
creases the flexibility in demonstration. For example, the demonstration of
a task can be performed in a part of the workspace that is more convenient
for the operator. Additionally, since we considered using robots that are not
specifically designed as haptic devices, further theoretical developments to
build a generic control approach toward an immersive user experience were
demanded.

In this chapter, three approaches to dual arm lead-through demonstra-
tion are presented. Firstly in Sec. 2.2, the required constraint between
two arms is formalized. Thereafter, in order to achieve the motion con-
straint we explain Cartesian-space and joint-space approaches as well as a
more sophisticated approach using virtual constraints. For the Cartesian-
space approach in Sec. 2.3, wrist-mounted force/torque sensors are ideally
required. For the joint-space approach in Sec. 2.4, we make use of the es-
timated torques at each joint. Section 2.5 treats the complete dynamics
of manipulators and the method can be used with or without force/torque
sensors. The first two approaches have been implemented and tested on
the YuMi prototype robot Frida1, whereas the third one is investigated in
simulations.

1The results are not included in the thesis.
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Previous Research
Currently, several approaches to mapping between a slave and a master
device exist. A point-to-point kinematic mapping to maximize the common
workspace and to reduce the effect of the deficient subspace has been pro-
posed in [Chen et al., 2007]. The problem of geometric correspondence has
been solved by adding proper offsets and scaling [Rebelo and Schiele, 2012],
wherein the placement of the slave has been optimized to maximize the
manipulability and redundant degrees of freedom (DOF) were mapped us-
ing arm angles. In another approach, the mapping has been done using
closed-form inverse kinematics and a measure of anthropomorphism based
on the distance between the elbows [Liarokapis et al., 2012]. Redundancy
has been utilized to avoid singularity. In [Salvietti et al., 2013] the kine-
matics have been abstracted away by considering the effect of interacting
with a virtual object. They used forward mapping for the geometry and
backward mapping concerning the forces (impedance type haptic device). To
map a small workspace to a large one, scaling and drifting methods have
been used [Chotiprayanakul and Liu, 2009].

2.2 Motion Constraint

Assume that the system has in total n = n1 + n2 degrees of freedom,
where n1 is the DOF of the first arm and n2 the second arm. Let us
denote the generalized coordinates for both arms by q ∈ Rn and split it
into the coordinates related to the first and the second arm according to
qT := (qT1 , qT2 ). The geometrical constraints between the two end-effectors
can be expressed as

p2 − p1 = ∆p, (2.1a)
RT

1 R2 = ∆R. (2.1b)

Here, the variables with subscripts 1 and 2 concern the first and the second
arm, respectively. The position of the end-effectors are denoted by p ∈ R3,
and R ∈ SO(3) denotes the orientation, ∆p and ∆R are offsets in the
position and the orientation, respectively.

Multiplying (2.1b) by R1 from the left results in R2 = R1∆R. Now, by
differentiating both sides w.r.t. time, we find

S(ω2)R2 = S(ω1)R1∆R + 0 = S(ω1)R2. (2.2)

Hence,
S(ω2 −ω1)R2 = 0. (2.3)
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2.3 Cartesian-Space Approach

Here S(ω) is the skew-symmetric matrix corresponding to the vector prod-
uct by the angular velocity ω . Therefore, fixed relative positions and orien-
tations imply the following kinematical constraints

v2 − v1 = 0,
ω2 −ω1 = 0,

(2.4)

where vi = dpi/ dt. By expressing these equations in the generalized coor-
dinates, we find the differential kinematics relationships

J2P(q2)q̇2 − J1P(q1)q̇1 = 0,
J2O(q2)q̇2 − J1O(q1)q̇1 = 0.

(2.5)

Here JiP(.) and JiO(.) are the translational and rotational geometrical
Jacobians w.r.t. the end-effectors.

Hence, by differentiating the geometrical constraints with respect to
time, we have found a kinematical constraint such that

Gq̇+ �0 = 0, (2.6)

where G ∈ R6$n is

G =
[
−J1P(q1) J2P(q2)
−J1O(q1) J2O(q2)

]
= [−J1, J2] , (2.7)

and �0 = 0 ∈ Rn$1. Here we have defined J1 and J2 by stacking together
the translational and rotational Jacobians.

2.3 Cartesian-Space Approach

In this approach, the end-effectors of both arms represent the same entity,
although there might exist an arbitrary, yet fixed, amount of offset in their
positions and orientations. In other words, if the initial offset is removed,
we can assume that the manipulators interact with the same object at the
same point simultaneously. Accordingly, the forces F and torques τ on this
virtual object is the sum of the interaction forces from each arm

F = F1 + F2,
τ = τ1 + τ2,

(2.8)

where indices refer to the arms.
Assuming the virtual object is solid, the motion of the object is governed

by
F = mv̇− Dv,
τ = Iω̇ − Doω.

(2.9)
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Here m is the mass, D is the viscous friction, I is the inertia tensor, Do is
the rotational damping, v is velocity, and ω is angular velocity.

For each arm, the resulting joint motion in the joint-space is obtained
by

q̇i = J†
i (qi)

(
v
ω

)
, (2.10)

qi =
∫ t

0
q̇i dt+ ci, (2.11)

where ci is the initial joint value, J†(qi) denotes the pseudo-inverse of the
Jacobian at given joint angles. The joint angles and velocities are fed to the
internal robot controller.

2.4 Joint-Space Approach

In the Cartesian-space approach, no attention to internal dynamics has
been paid. For example, for redundant robots, it may not be possible to
achieve a desired configuration for an arm just by interacting with the
end-effector. Thus, in this section we look into a joint-space approach for
fulfilling the motion constraint. Additionally, in this approach, estimation
of the torques in each joint can be directly used when there is no wrist-
mounted force/torque sensor.

Denoting the estimated torque by τ̂ , an admittance control law for the
robot is described as below

Mq̈a = τ̂ − Dq̇a. (2.12)

Here qa is the reference joint angle due to the admittance law, M is the
desired mass matrix and D corresponds to the desired damping.

The motion of the arms in Cartesian space must be equal. According to
Sec. 2.2, it means that

J1q̇1 = J2q̇2. (2.13)

We can assume the motion of each arm consists of a contribution from
the local admittance regulator q̇ai and the motion induced by the other arm
q̇ j→i. Therefore, we can write,

q̇1 = q̇2→1 + q̇a1
q̇2 = q̇1→2 + q̇a2

(2.14)

Substituting (2.14) into (2.13), we find

J1q̇2→1 + J1q̇a1 = J2q̇1→2 + J2q̇a2 (2.15)
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A choice which makes this equality true is

q̇1→2 = J†
2J1q̇a1

q̇2→1 = J†
1J2q̇a2 .

(2.16)

Another possible choice is to find q̇1→2 and q̇2→1 that minimize qq̇1→2q +
qq̇2→1q for some norm.

Since these relations are on the velocity level, a drift in the relative
position and orientation might occur. Assuming one robot is the master and
the other one is the slave, this can be corrected by closing the loop for the
position and orientation of the slave.

Another possibility is to mirror the motion of the arms. This implies
v1,y = −v2,y, ω1,y = −ω2,y, ω1,z = −ω2,z where indices refer to arms and
the components of translational velocities, v, and angular velocities, ω .
Applying these changes to (2.13), we obtain

J1q̇1 = SJ2q̇2, (2.17)

where the matrix S is defined as

S := diag(1,−1, 1, 1,−1,−1). (2.18)

A possible solution for the induced velocities in this case is

q̇1→2 = J†
2SJ1q̇a1

q̇2→1 = J†
1SJ2q̇a2 .

(2.19)

2.5 Dynamic Coupling

In many approaches, no attempt has been made to couple dissimilar robotic
manipulators with arbitrary configurations in a master-slave setup. Instead,
the placement or configurations of master and slave manipulators are op-
timized in order to mitigate the problems due to mismatch between the
workspace of the robots. In virtual reality applications, the direct approach
to tackle issues related to dissimilar kinematics of the master and slave
devices has been to employ virtual spring-damper elements to penalize user
motion along the direction resisted by the virtual mechanism [Constanti-
nescu et al., 2006; Constantinescu, 2008]. However, this approach cannot
guarantee perfect tracking and is not easily extendable to arbitrary struc-
tures.

The methods discussed in the previous sections couple the manipula-
tors on the kinematic level. These methods are also prone to issues with
singularity since the effect of the coupling on the overall motion has been

25



Chapter 2. Human-Generated Trajectories via Haptic Interface

ignored. In this section, we consider a generic approach to mapping between
a master and a slave device, which allows integration of the multibody dy-
namics of the manipulators into the control design. The key idea is to derive
forces and torques that are required to enforce desired virtual kinematic
constraints. Controller synthesis via virtual constraints offers a great tool
for control of various mechanical structures; see, e.g., [Freidovich et al.,
2008; Shiriaev et al., 2007; Westervelt et al., 2007].

The approach in this section is well-suited for kinesthetic teaching. More
specifically, it relies on coupling between two serial arms on a dynamical
level. This approach results in a mapping between two, not necessarily
similar, arms, yet allowing a theoretically perfect position tracking during
free motion and perfect tracking of forces in hard contact tasks of the end-
effectors, when there is no kienematic singularity. Especially, it allows to
use any 6-DOF or redundant robotic arm, mounted on any surface, and
with any initial position in a dual-arm haptic setup. Either of the arms
can pass through singular configurations while the haptic feedback is being
adjusted, complying with restricted directions. Additionally, if there is a
possibility to estimate/measure external forces at the joint level, any point
of the mechanisms can behave as a haptic interface.

Tool Analogy
Transparency with respect to the environment is at odds with the desire
to provide feedback concerning the limitations of a teleoperation system to
the operator. The operator often expects haptic feedback associated with the
presence of the robotic system as long as it is not disrupting the task. The
need for reflecting the physical limitations of the teleoperation system to the
operator becomes of major importance in several cases, e.g., when arbitrary
robots are employed as haptic devices, the kinematics of master and slave
robots are dissimilar, or similar master and slave devices are employed in
different configurations.

In this section we suggest a tool analogy, in order to find a principled
way to map between a master and a slave device. This means that the
teleoperation system behaves as a physical tool utilized by the operator to
interact with the environment. Figure 2.2 illustrates this idea. The motion
of the tool is uniquely determined by knowing the physical properties of the
tool, interaction forces by the environment Fe and the force exerted by the
human Fh. In this model, the transparency of the teleoperation system is
determined by the extent that we can reduce the mass and the friction of
the tool. There is also no distinction between the functionality of the master
and slave devices, e.g., the arms of a dual-arm robot, as both sides can be
regarded as either master or slave. However, for the sake of naming we
refer to the side arranged to interact with a workpiece as slave and the side
interacting with the operator as master.
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Fh

Fe

Figure 2.2 Tool Analogy: the pulley is used as a tool for interacting with
the mass. The geometrical and physical properties of the string and pulley
affect how the user perceives the environment. The force exerted by the
human Fh is affected by the mass of the rope and the friction in the pulley,
hence in general differs from the force interacting with the environment Fe.
“M” and “S” denote the master and slave sides, respectively. The illustration
is adapted from [Privat Deschanel, 1884].

Control Principle
Let us consider the nonlinear system

ẋ = f (x) + �(x)u(x),
y = h(x),

(2.20)

where x, u, y denote the state vector, control signals, and outputs, respec-
tively. We would like to find u(x) that results in y identically equal to zero
and to find the zero dynamics of the system [Isidori, 1995]. We define y as
the deviation of the relative translation and orientation between a frame
on the slave arm and the master arm from a desired offset. Without loss of
generality, we choose these frames to be located at the end-effectors of the
arms. By zeroing the output, i.e., imposing the virtual constraint, we make
sure that the end-effectors maintain the fixed offset. We use the motion
constraint introduced in Sec. 2.2 as a virtual constraint.
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Dynamics
To derive the dynamics of the system, we start off from the kinetic energy

T =
∑

i

1
2miq̇T(JiP)TJiP q̇+

∑

i

1
2 q̇

T(J j
O)

TR{i IiRT
{iJ

i
Oq̇, (2.21)

where mi and Ii denote the mass and inertia matrix of link i, respectively,
JiP and JiO denote partial Jacobians up to link i and R{i is the rotation
matrix from the world coordinate to link i. Since we aim to compensate the
gravitational force, we do not include the potential energy in the Lagrangian
L. Hence, we have

L = T . (2.22)
Assuming only viscous friction with coefficient µv, the equations of mo-

tion for the constrained system according to the Lagrange–d’Alembert the-
orem [Bloch, 2003] can be derived as

M(q)q̈+ C(q, q̇)q̇ = Qe + Qkc − µvq̇,
Gq̇+ �0 = 0,

(2.23)

where M(q) is the mass matrix, C(q, q̇)q̇ denotes the total effect of cen-
tripetal and Coriolis forces. The generalized external forces and the gener-
alized forces due to the kinematical constraints are denoted by Qe and Qkc,
respectively and fulfill the relations

Qe = τ + JThe, (2.24)
Qkc = GTλ, (2.25)

where τ is the vector of external torques applied at the joints, he is the
vector of forces and torques exerted on the end-effector, and λ(t, q, q̇) ∈ R6

are Lagrange multipliers.
By introducing subscripts 1 and 2 for the parameters and variables, we

find

M(q) := blkdiag (B1(q1), B2(q2)) , (2.26)
J(q) := blkdiag(J1(q1), J2(q2)), (2.27)

C(q, q̇) := blkdiag (C1(q1, q̇1), C2(q2, q̇2)) , (2.28)

he :=
[
he1
he2

]
, Qkc :=

[
Qkc

1
Qkc

2

]
, (2.29)

where blkdiag(·) denotes the block diagonal concatenation operator and the
equation of motion for each individual arm is

Bi(qi)q̈i + Ci(qi, q̇i)q̇i = τi + JTi (qi)hei + Qkc
i − µvq̇i. (2.30)
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Therefore, the control law for each arm to maintain the constraint is equal
to the constraint force and is derived as

Qkc
1 = −JT1 (q1)λ,

Qkc
2 = JT2 (q2)λ.

(2.31)

By introducing xT =
(
qT , q̇T

)
and substituting λ with u, we can

write (2.23) as follows:

ẋ =
[

q
M−1(q)

(
−C(q, q̇)q̇− µvq̇+ Qe + GT(q)u

)] =: f (x) + �(x)u,

ẏ = G(q)q̇ =: �h
�x ẋ,

(2.32)

where M−1 = blkdiag
(
B−1

1 (q1), B−1
2 (q2)

)
. The system 2.32 is in the stan-

dard form (2.20), except that the output equation has been replaced with
its derivative. Equations (2.23)–(2.25) define a system of index-2 Differen-
tial Algebraic Equations (DAEs), which can be solved numerically. From a
control-design perspective, the solution is the zero dynamics of system (2.32)
with relative degree two.

Let us define Γ := GM−1GT . The Lagrange multipliers, λ, can be calcu-
lated by considering the general results given in [Isidori, 1995]

λ = u∗(x) = − (L�L f h(x))−1 L2
f h(x)

= Γ−1

(
GM−1 (Cq̇− τ − JThe + µvq̇

)
−

n∑

k=1
(
�G
�qk q̇

k)q̇
)
, (2.33)

where L f h(x) denotes the Lie derivative of h(x) with respect to f and the
superscript in qk denotes the kth DOF. Substituting λ given in (2.33) back
into (2.32) results in ÿ = 0 and the zero dynamics are given by

M(q)q̈+ R
(
C(q, q̇)q̇− τ − JThe + µvq̇

)
+GTΓ−1

2n∑

k=1
(
�G
�qk q̇

k)q̇ = 0, (2.34)

where R = In$n − P, and P = GTΓ−1GM−1.
By substituting (2.33) into (2.31), we observe how the nonlinear feedback

from both arms contributes to the control law. Assuming an accurate model
of the arm and after gravity compensation of the arms, these control laws
are applicable. However, in order to achieve a different behavior for a robot
than the stipulated one by its mechanical properties, we can solve (2.34)
numerically and set the reference of each joint controller to the solution
obtained in a cascaded control architecture.

29



Chapter 2. Human-Generated Trajectories via Haptic Interface

Note that it is possible to calculate the motion, even when Γ is ill-
conditioned, which is a consequence of G being rank deficient. We take the
derivative of the constraint conditions (2.6) to obtain

Gq̈+
n∑

k=1
(
�G
�qk q̇

k)q̇ = 0. (2.35)

The relation (2.35) defines an underdetermined system of equations. In
general, it has either no solution or infinitely many solutions. By using a
pseudo-inverse when G loses rank, we can find a solution of the form

q̈ = Ks+ q̈0, (2.36)

where K is an n$ (n− rank(G)) matrix expanding the nullspace of G, i.e.,
GK = 0, s is a vector of n− rank(G) unknowns, and q̈0 is any regularized
least-squares solution to (2.35). Substituting this expression for q̈ into (2.23),
and premultiplying both sides of the first equation by KT to eliminate λ,
produces

KTMKs = KT(τ + JThe − C(q, q̇)q̇− µvq̇− Mq̈0). (2.37)

In (2.37), KTMK is full rank. Thus, we can solve for s. Substituting s back
into (2.36) gives the value of q̈.

By substituting the constraint forces (2.31) into the equation of the
motion of the corresponding arm (2.30), it becomes clear that λ plays the
same role as the external wrenches hei . Moreover, we conclude that λ can
be interpreted as the cut forces as if the two arms were attached at the
end-effectors. This allows an alternative implementation of these virtual
constraints using the Newton-Euler formulation, where dynamics of the
resulting closed chain is derived by considering interaction forces between
links.

If the arms are standing still, i.e., all the time derivatives are equal to
zero, and either of the arms is impacted by an external wrench opposite
to the other one (he2 = −he1), it is easy to verify that λ = he1 is a solution
to (2.23). This guarantees a perfect transfer of forces at the end-effector
to the other arm in the steady state when there is a hard contact and no
singular configuration. When Ji loses rank, the equilibrium can be reached
not only by equal and opposite forces but also by

he2 ∈ {−he + n p n ∈ N (JT2 )},
he1 ∈ {he + n p n ∈ N (JT1 )},

(2.38)

where he ∈ R6 is an arbitrary wrench and N (·) denotes the null space.
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2.6 Extensions

In this section, we consider three typical scenarios encountered in the ap-
plications, which can be handled by the method developed in Sec. 2.5.

Similar Arms
As a special case, assume that the arms are similar and that the only
difference is the mounting plane and the joint values. Let q ∈ Rn/2 represent
the generalized coordinates of an arm and R0 denote the rotation of the
mounting plane of arm 2 with respect to arm 1. By expressing Jacobians
and moments of inertia in the rotated frame, we find

B2(q) =

n2∑

i=1

(
miJ

(i)T
2P J(i)2P + J(i)T2O R{i IiRT

{iJ
(i)
2O

)

=

n2∑

i=1

(
miJ

(i)T
1P RT

0 R0J
(i)
1P + J(i)T1O RT

0
(
R0R{i IiRT

{iR
T
0
)
R0J

(i)
1O

)

=

n1∑

i=1

(
miJ

(i)T
1P J1P + J(i)T1O R{i IiRT

{iJ
(i)
1O

)
, (2.39)

This proves that B̃(q) := B1(q) = B2(q), hence C̃(q, q̇) := C1(q, q̇) =
C2(q, q̇). Since no conservative forces (e.g., gravity) is included, we arrive at
the conclusion that the dynamics of the arms are identical in q coordinates.

Redundant Robots
To extend the approach to redundant robots, additional virtual constraints
may be added. This allows impacting all the DOF from either side, not only
those required for maintaining the offset between the end-effectors. In this
subsection, we show specifically how constraints in the joint space as well
as on relative distances can be introduced.

Assume Hi is a matrix, where each row has exactly one non-zero element
corresponding to a redundant joint. Consequently, we write a constraint in
the joint space as

H2q2 − H1q1 = ∆q, (2.40)
where ∆q is a constant vector. By taking the derivative of (2.40) w.r.t. time,
we conclude

H2q̇2 − H1q̇1 = 0. (2.41)

Now, augmenting this constraint to (2.7) results in

G =
[
−J1 J2
−H1 H2

]
, (2.42)
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and the rest of the calculations remain the same as before.
In the case of human-like robots, another approach can be to maintain

the distance between the elbows. Assume ∆r := r2 − r1 where ri is the
position vector of the elbow of the ith arm. Therefore, the constraint can
be expressed using the 2-norm as q∆rq = d ∈ R. By differentiation with
respect to time, we find

q∆rq2 = d2 [ ∆r · ∆v = 0, (2.43)

where ∆v is the relative velocity of the elbows. Rewriting (2.43) in terms of
generalized coordinates, results in

∆r · ∆v = ∆rT(J(e)2P q̇2 − J(e)1P q̇1) = ∆rT
[
−J(e)1P J(e)2P

]
q̇ = 0, (2.44)

where J(e)iP denotes the translational Jacobian w.r.t. the ith elbow. Therefore,
the matrix G should be augmented according to

G =
[

−J1 J2

−∆rTJ(e)1P ∆rTJ(e)2P ,

]
. (2.45)

Joint Limits
Joint limits can be handled by adding repulsive forces close to the limits.
A physically motivated model for this purpose is the Hunt and Crossley
model [Hunt and Crossley, 1975]

L(q, q̇) = Kδα(q)
(

1+ 3
2 cδ̇ (q, q̇)

)
, (2.46)

where δ is the amount of compression, K is the force stiffness, the exponent
α depends on the local geometry around the contact area, and c denotes the
force damping weight. However, such models may lead to very stiff problems.
Consequently, if the joint is pushed toward the direction of the joint limit
despite the repulsive force, numerical issues might arise. Therefore, as soon
as a joint reaches zero velocity by the repulsive forces, if δ > 0, we can add
a zero velocity constraint to the joint. This constraint is relaxed when the
constraint force is in the direction toward the joint limit.

For each active constraint, a row with one in the column where the joint
has reached its limit and zeros elsewhere is augmented to G, i.e.,

Gci, j =

{
1, if j = i
0, otherwise,

(2.47)

where i is the joint that has hit its limit and ci denotes the row number
associated with this constraint.
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Using reinitialization of the states, it is possible to bring the reference
velocities of the joints to zero immediately. Therefore, repulsive forces are
not required at all, if the states are reinitialized as soon as a joint limit is
reached.

2.7 Simulations and Results

Modern simulation environments are able to perform automatic differen-
tiation [Griewank and Walther, 2008] and to solve differential algebraic
equations. Specifically, the solver of Dymola [Dymola, 2016] is able to derive
an index-1 DAE by the dummy variable method [Mattsson and Söderlind,
1993; Mattsson et al., 2000], such that the original geometrical constraints
are retained and the required derivatives are calculated automatically. Al-
though the closed-loop system using (2.31) without a stabilizing term is
prone to numerical drift in the geometrical constraints, the index-1 DAE
obtained by the dummy variable method does not suffer from accumulating
errors.

To implement the algorithms, we have developed a software in Maple to
calculate the equations for an arbitrary serial manipulator specified by DH
parameters [Denavit and Hartenberg, 1955], mass, inertia tensor and center
of gravity of each link. The resulting equations were manually imported to
Dymola for simulation. We have also used the Newton-Euler formulation
based on the Modelical Multibody Library [Otter et al., 2003], which allows
us to build a robot from its components. The advantage of this method is
that no explicit calculation of the Jacobians for the end-effectors is required.

In the following, we report the simulation results of two types of manip-
ulators; two 6-DOF Robots and ABB YuMi [ABB Robotics, 2015].

6-DOF Robot
For the simulated example, we have used the same DH parameters specified
in Table 2.1 for both arms. The center of mass of each link was considered
to be in its middle. The inertia tensors were assumed diagonal Ixx = Iyy =
0.005, Izz = 0.001 kg m2. The masses were equal to 1 kg. The viscous friction
coefficient was µv = 5 N m s rad−1.

The end-effector of arm 1 was pushed in the x direction with 10 N at
t = 1 s. After one second, arm 2 was pushed in the opposite direction with
the same amount of force. At the same time, arm 1 was pushed downwards
and again after a second, arm 2 was pushed in the opposite direction with
the same amount of force. Figure 2.3 shows the external forces at the end-
effectors. The resulting movements of the end-effectors and joint angles are
shown in Figs. 2.4 and 2.5, respectively. Note that since after a while the
forces on arm 1 and arm 2 are opposite each other, the motion is stopped.
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Table 2.1 DH parameters for an anthropomorphic arm with a spherical
wrist.

Link ai αi di θi
1 0 π/2 0 θ1
2 0.6 0 0 θ2
3 0 π/2 0 θ3
4 0 −π/2 0.5 θ4
5 0 π/2 0 θ5
6 0 0 0.5 θ6
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Figure 2.3 External forces applied at the end-effectors of the arms.

Figure 2.6 illustrates the constraint forces at the joints required to maintain
the relative position. Moreover, we see in Fig. 2.7 that the relative position
and orientation are constant.
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Figure 2.4 Positions of the end-effectors. The movement stops quickly as
the forces at the end-effectors become opposite to each other.
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Figure 2.5 Joint angles of each arm as a result of the external forces
shown in Fig. 2.3.
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Figure 2.6 Constraint torques required to maintain the fixed offset be-
tween the end-effectors.
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ABB YuMi
A rigid body model of the mechanical structure of the YuMi was built
based on publicly available CAD files of the robot. Information about joint
limits was extracted from the datasheet of the robot [ABB Robotics, 2015].
Additionally, viscous friction with µv = 0.1 N m s rad−1, representing the
desired damping, was included in all the joints.

In the first simulation experiment, we considered using the right arm
to interact with a spring in parallel to a damper attached to the left arm.
The spring and damping constants were c = 50 N m−1 and d = 30 N s m−1,
respectively. A constraint was also included to keep the initial distance
between the elbows constant. The spring was initially compressed and as a
result it exerted some force on the right arm. After being decompressed, an
external force was applied to the left arm in the x-direction. After 6 s, the
force was increased to 20 N. Hence, the spring was further stretched in the
same direction. Figure 2.8 illustrates the robot in the initial, right before
increasing the force, and the final configurations. The paths obtained by
the end-effectors are shown in blue. In Fig. 2.9, the offsets in the position
and the distance between the elbows are displayed. As it can be seen, the
position tracking is perfect within the accuracy of the solver which was
10−6. The same holds for the orientation of the end-effectors, which had the
relative rotation of 180° around the local x-axis.

Figure 2.10 shows the force tracking of the end-effectors. After approxi-
mately 2 s and 5 s, respectively, when the system approached an equilibrium,
we observe good force tracking. However, by increasing the force on the mas-
ter side the robot reaches a singular configuration, where higher forces than

(a) (b) (c)

y
x

z

Figure 2.8 The graphical representation of the ABB YuMi robot in the
first simulation experiment; (a) shows the initial condition, (b) right be-
fore increasing the force, and (c) the final configuration. The paths in blue
correspond to the synchronized movement of the end-effectors where the
end-effectors have the same position and orientation disregarding the fixed
initial offset. The spring exemplifies the interaction with the environment.
The green arrows illustrate the amount of forces at the interaction points.
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Figure 2.9 The position offset between end-effectors and the distance be-
tween the elbows are constant with the resolution of 10−8.

the forces applied to the slave side can be resisted. This is the reason for
poor force tracking toward the end of the trajectory. However, at the same
time this implies that the operator is able to perceive a haptic feedback
because of the limitations of the mechanism.

In the second simulation experiment, free motion was considered and
force interaction with a point different from the typical end-effectors. In
contrast to the previous simulation, no constraint between the elbows was
included. From 0.5 s on, a constant force of 3 N, always perpendicular to
the elbow of the left arm was applied to the elbow. This made the elbow
rotate clockwise until almost 3 s when joint 3 reached its lower limit and
afterwards the direction of rotation reversed. The joint angles are shown in
Fig. 2.11. We see that the joint constraint was released after almost a second
as soon as the required constraint torque (given in the same direction as
the axis of the joint) became negative.

2.8 Discussion

The proposed model for task demonstration solves the problem of capturing
the interaction forces in addition to solving the problem of correspondence
between a human and a robot simultaneously. Thanks to the separation of
the operator–robot interface from the robot–workpiece interface, the dual-
arm lead-through programming (LTP) interface is more operator-friendly
and less prone to unwanted demonstration side-effects compared to single-
arm setups [Ghazaei Ardakani, 2015; Stolt et al., 2015a]. Since the initial
orientation and positions of the arms are free to be chosen, the operator
has large flexibility for demonstration of a task from a convenient location
with respect to the workpiece.

A major difficulty in using dissimilar robots for teleoperation is singular-
ity avoidance. When a robot reaches a singular configuration, its controlla-
bility becomes limited. Consequently, one of or both the arms fail to follow a

38



2.8 Discussion

0 2 4 6 8 10
−10

0

10

20

F
(N

)

Force Tracking

L.Fx

R.Fx

R.Fy

R.Fz

0 2 4 6 8 10
−0.2

0

0.2

0.4

v
(m

/
s)

Velocity of End-effectors

vx
vy
vz

0 2 4 6 8 10

0

50

100

Time (s)

ω
(d

eg
/s
)

Angular Velocity of End-effectors

ωx
ωy
ωw

Figure 2.10 Comparison of the forces at the slave (right R) and the master
(left L) arm of YuMi. The forces at the end-effectors of the master and slave
robots track each other. When one of or both the arms become singular,
additional haptic forces can be perceived by the operator.

desired motion in Cartesian space. Using approaches such as iTaSC [Borgh-
esan et al., 2012a; Borghesan et al., 2012b] for defining purely kinematic
constraints might lead to infeasible Cartesian motion due to the limitations
of one or both robots. A standard approach to deal with the calculation
of velocities at singular configurations is to use a damped pseudo-inverse.
However, that will eventually result in losing the constant relative orien-
tation and position. In unfortunate scenarios, this can even lead to getting
stuck in a singular configuration. This is the case for the approaches in
Secs. 2.3 and 2.4.
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Figure 2.11 Above the joint angles of the left arm as the left elbow was
pushed with a force of 3 N perpendicular to it. The dashed line represents
the lower bound on the angle of the 3rd joint. Below, we see the constraint
torque due to the joint limit of the 3rd joint.

While the detection of a singularity and the axes affected are straight-
forward, e.g., based on manipulability ellipsoids [Spong et al., 2006], these
methods cannot be used to distinguish between the direction towards the
singularity or away from it. Thus, it might be required to determine all
singular configurations in advance in order to be able to provide a mean-
ingful haptic feedback to the operator. On the other hand, using the virtual
constraint approach in Sec. 2.5, kinematic constraints in singular configu-
rations influence both arms via a dynamic coupling. As long as G in (2.7)
does not lose rank, Γ in (2.33) is non-singular since the mass matrix B is
positive definite, and a solution can be obtained. Even when G loses rank,
it is still possible to find a unique solution to the motion according to (2.37)
and (2.36), although it may lead to a temporary relaxation of the constraint.

By including the dynamics according to Sec. 2.5, the motion will comply
with the kinematic constraints as long as the constraint forces remain
bounded. This way the kinematic constraints are naturally integrated into
the calculation of the motion. Moreover, in addition to detecting those states
where constraints cannot be satisfied, we can quantify the feasibility of
constraints based on the amount of force required to maintain them. It is
important to note that any dynamical properties within the limitations of
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the actuators may be assigned to the robots. Thus, the values of the actual
physical properties are not required.

At the geometrical level, several choices for constraining the orientation
of the end-effectors are possible, including the three outer diagonal elements
of the rotation matrix of the residues, Euler angles, and three out of four
elements of a unit quaternion corresponding to (2.1b). It is required to
investigate which geometrical constraint formulation for rotation offers a
numerically more stable solution. On the other hand, if no such constraint is
used, there is no need for solving explicitly the inverse kinematics problem,
which is typically a difficult nonlinear problem. This comes certainly at the
cost of possible drifts.

Note that the control law (2.31) results in ÿ = 0, i.e., the 2nd derivative
of the constraint equals to zero. A control approach to ensure no drifts is to
add a stabilizing term. This can for instance be accomplished by summing
up a control signal to the slave side using Cartesian-space position control
to converge exponentially to the position and orientation of the master plus
the desired offset.

The aim of this chapter was to formulate a proper model for dual-arm
LTP interface rather than suggesting a new approach for solving constrained
dynamics. Therefore, to solve the resulting DAE the general approaches
for constrained [Laulusa and Bauchau, 2008; Bauchau and Laulusa, 2008;
Cuadrado et al., 1997; Arabyan and Wu, 1998] and over-constrained sys-
tems, e.g., by introducing elasticity [Zahariev and Cuadrado, 2011] and
elimination of redundant constraints [Müller, 2014] may be applied.

If we consider two 6-DOF serial robots and G being rank deficient, the
resulting mechanism is most likely unmovable provided that the configura-
tions of the robots are not identical. The reachability of such states has to be
investigated. However, assuming those states are reachable, reinitialization
of the velocities will not be sufficient and the constraint must be relaxed
temporarily to resume the motion as suggested earlier.

For dual-arm humanoid robots, the redundant degrees of freedom be-
tween master and slave arms can be mapped by coupling the swivel angles
of the arms [Tolani et al., 2000]. Constraints of such type can be directly
implemented into a DAE solver. Also, including a small gravity load at the
end-effectors can be useful, since it encourages the operator to grasp at least
one of the end-effectors when the system is activated, similarly to holding
a tool.

The same technique as described in Sec. 2.5 can be used to derive task
related forces such as those required to limit the motion to a certain plane
or along a certain line. Coupling between other points than the actual end-
effectors, locking certain joint angles or Cartesian directions, and scaling
can also be introduced to create a variety of motion.

The first two approaches, described in Secs. 2.3 and 2.4, were imple-
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mented and tested in the lab on the Frida robot. As a future work, we
consider the implementation of the approach introduced in Sec. 2.5 on an
ABB YuMi robot. This requires stepping forward the DAE solver in each
sampling time based on the current state of the robot and the new estimates
of external forces and consequently updating the reference trajectories to
the robot.

2.9 Conclusion

In this chapter, the problem of a suitable interface for task demonstration
involving force interaction has been addressed. The dual-arm model was
proposed for instructing robots in an immersive way in order to collect
human-generated trajectories. This model can solve the problem of captur-
ing the interaction forces in addition to the problem of mapping between a
human demonstration and a robot simultaneously. Thanks to separation of
the operator–robot interface from the robot–workpiece interface, dual-arm
demonstration is more operator-friendly and offers less unwanted demon-
stration side-effects compared to single-arm lead-through. Since the initial
orientation and positions of the arms are free to be chosen, the operator
has large flexibility for demonstration of a task from a convenient location
with respect to the workpiece.

We presented Cartesian-space and joint-space strategies as well as an
approach based on virtual constraints. A tool analogy for designing a haptic
interface was proposed, where restrictions in the mechanism are naturally
reflected to the operator as haptic feedback. Specifically, we derived a control
law coupling the motion of two robotic arms based on introducing virtual
constraints between the multi-body models of the arms. Using this formal-
ism, robots with different kinematics can be employed while they can pass
through singular configurations. Additionally, any point on the the master or
slave arms behaves as a haptic interface, given that force measurement/es-
timation at joints is available. Our approach leads to an immersive haptic
interface, which allows the operator to generate trajectories reproducible by
the robot in an intuitive way.

The developed approaches in this chapter aimed for collecting both po-
sition and force data. The data can be used for example for providing the
parameters of a guarded motion. Furthermore, we can imagine process-
ing the data for learning purposes. The force/torque measurement provides
valuable information for triggering segmentation and defining tolerances.
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3
Instantaneous Trajectory
Generation Based on a
Motion Template

3.1 Introduction

Consider a robot assignment to pick various objects from a conveyor belt.
The best gripping is achieved when the gripper has a relative velocity of
zero with respect to the object. However, the speed of the conveyor belt
can vary due to varying loads. The current estimates of the position and
velocity as well as an estimate of the arrival of the object at a proper
pick-up point are provided by a camera system. Moreover, to increase the
service life of the robot and not to excite its vibration modes, the motion
has to follow a predefined trajectory profile. As another example, consider
a quadcopter task which is to follow/catch flying objects as soon as one
crosses a border. A camera system detects the object and provides estimates
of its current position, velocity, and acceleration as well as an estimate of
its arrival time at the border. We choose a minimum-jerk trajectory profile
to generate smooth motion. These applications fall under the fixed-time
trajectory planning problems. Moreover, the trajectory has to be re-planned
online, i.e., as soon as new estimates are obtained.

The main motivation for this chapter is to provide answers to the follow-
ing questions: how to update trajectories immediately as a result of changes
in the (moving) target while ensuring the continuity of the position, velocity
and acceleration of the trajectory and how to ensure that there is a smooth
transition between trajectory planning and tracking modes.

A generic way to deal with online trajectory generation is to buffer each
segment of the trajectory (or its parameters) and implement switching be-
tween the pieces. However, this approach becomes inefficient if the update
rate of the trajectory is high. The questions lead us to the reformulation of

43



Chapter 3. Instantaneous Trajectory Generation . . .

Trajectory
Generator
Controller

Robot
r̂

Θ

u y

Figure 3.1 Block diagram of trajectory generation.

the trajectory generation as a dynamical system with a trajectory-generation
controller. This allows for a fully reactive trajectory-generation method with
continuous reactions to the changes in the target. In contrast to a math-
ematically designed or an optimal trajectory as solely a function of time,
we regard a trajectory as an output of a dynamical system. The exogenous
input signal defines the set-point for the trajectory generator.

For time-optimal problems, there exist fast open-loop control algo-
rithms [Kröger, 2011b], which might even be used for closing the loop in
the trajectory generation. In this chapter, we propose a complete closed-loop
solution for a fixed-time problem. The fixed-time problems are of importance
when a less aggressive strategy than a minimum-time solution is sufficient.
Moreover, fixed-time motions lend themselves to the time coordination be-
tween several degrees of freedom or entities.

Assume that the motion of a robot is described by

ẋ = f (t, x, r̂), x(0) = x0

y = �(t, x)
(3.1)

where y represents the position of the robot, x denotes the states of the
system, and t is the time. Given the structure depicted in Fig. 3.1, we wish
to generate a control signal

u = k(r̂, x, t,Θ), (3.2)

which results in the desired motion. In the control law, Θ denotes a set
of parameters and r̂, the exogenous input signal, corresponds to a high-
level reference signal. The high-level reference signal is typically a set-point
related to the future value of the target. For example, the current desired
reference can be the position of an object on the conveyor belt in d seconds
ahead in time. If r(t) denotes the current position, we have

r̂(t) = r(t+ d). (3.3)

In general, the motion patterns can be acquired via human demon-
stration [Khansari-Zadeh and Billard, 2011] or designed by a mathematical
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Figure 3.2 Motion template (3.4): The position, velocity, and acceleration
vs. time are illustrated. The initial time, t0, and the initial position, y0, are
set to zero.

formula [Paul, 1979; Taylor, 1979]. We call these patterns motion templates.
For trajectory generation, polynomials play an important role [Paul, 1972;
Paul, 1979; Lin et al., 1983; Taylor, 1979]. They show up for example as
partial solutions to the minimum-time problems or they are used as basis
functions. Specifically, we focus on the one-dimensional problem and study a
fifth-order polynomial template, i.e., a trajectory generated by a fifth-order
polynomial traveling one unit of distance in one unit of time. The template
can mathematically be expressed as

y = y0 + (y0 − 1)(−10(t− t0)3 + 15(t− t0)4 − 6(t− t0)5), (3.4)

where y0 and t0 denote the initial position and initial time, respectively.
Figure 3.2 illustrates the motion template.

The main focus in this chapter is to present a closed-loop solution to
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trajectory generation. For this purpose, the template has to be generalized
in order to give a complete description of the desired movements in all
possible situations. Simple operations such as time and coordinate scaling
are introduced. We use these techniques later to extend our template to the
entire workspace while respecting certain constraints. As a generalization
of the template (3.4), we consider a class of trajectories that are obtained
by a minimum-jerk model.

Since having hard constraints on the final time poses certain robustness
issues when there is a disturbance, we propose three methods to relax
this constraint. In the first method, a smooth transition between a finite-
horizon problem and an infinite horizon problem is suggested after reaching
a certain remaining time. In the second method, the remaining time is reset
whenever it is impossible to meet the deadline given the constraints. In the
third method, the explicit dependency on time and the duration is removed.
Instead, a new set of parameters is derived, based on the scaling techniques
introduced in Sec. 3.2. Irrespective of the method used for relaxing the final
time constraint, all of the methods can reproduce an approximation of the
template.

3.2 Basic Operations on Trajectories

Trajectories can be generalized by applying a set of operations. The simplest
one is translation, which implies adding an offset to each coordinate. In the
planar or three-dimensional case, it is possible to consider rotation [Paul,
1979]. In this section, we consider three operations, time scaling, coordinate
scaling, and a coordinate transformation.

that allow us to extend a trajectory to a larger workspace while preserv-
ing some desired properties of the original trajectory, such as the average
velocity.

The scaling operations allow us to generalize the motion trajectories gen-
erated by a dynamical system to different distance and timing requirements.
We will take advantage of this in Sec. 3.7 to provide a new parametrization
for the trajectory generation. The coordinate transformation makes it pos-
sible to use the current value of the reference signal instead of its predicted
value.

Time Scaling
Here, we consider the change of the system (3.1) under scaling of time. Dy-
namic scaling [Hollerbach, 1984; Dahl and Nielsen, 1990] can be considered
as a special case, when time scaling is applied to the dynamic equations of
a robot. Let us introduce a new variable for time, denoted by t̃, which is an
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increasing and differentiable function of time
t̃ := α(t) [ t = α−1(t̃). (3.5)

The impact of this change of variable on the output and its derivatives is
as follows,

ỹ(t̃) = y(t)

ỹ′(t̃) = ẏ(t)
α̇(t)

ỹ′′(t̃) = ÿ(t)
α̇2(t) −

α̈(t)
α̇3(t) ẏ(t)

ỹ′′′(t̃) =
...y (t)
α̇3(t) − 3 α̈(t)

α̇4(t) ÿ(t) +
(

3 α̈
2(t)

α̇5(t) −
...α(t)
α̇4(t)

)
ẏ(t)

(3.6)

where {·}′ := d{·}/dt̃ and ˙{·} := d{·}/dt.
As an example, we can choose α(t) = αt to be a linear function, where

α is constant. Then, t̃ = αt and

ỹ(t̃) = y
(
t̃
α

)

ỹ′(t̃) = α−1 ẏ
(
t̃
α

)

ỹ′′(t̃) = α−2 ÿ
(
t̃
α

)

ỹ′′′(t̃) = α−3...y
(
t̃
α

)
,

(3.7)

Coordinate Scaling
Now consider the scaled output ỹ. The impact of this change of variable on
the output ỹ := β(y) is as follows

ỹ = β(y)
˙̃y = β ′(y)ẏ
¨̃y = β ′′(y)ẏ2 + β ′(y)ÿ
...
ỹ = β ′′′(y)ẏ3 + 3β ′′(y)ÿẏ+ β ′(y)

...y .

(3.8)

Similar to the time scaling, we can choose β(y) = β y to be a linear
function, where β is constant. Then,

ỹ(t) = β y(t)
˙̃y(t) = β ẏ(t)
¨̃y(t) = β ÿ(t)
...
ỹ (t) = β

...y (t).

(3.9)
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Figure 3.3 Modified block diagram of trajectory generation.

By combining the coordinate scaling and time scaling operations, it is
possible to parametrize the classes of position-, velocity-, and acceleration-
preserving transformations. Considering (3.9) and (3.7), which correspond
to the constant scaling factors, we can choose β = α, β = α2, or β = α3 to
achieve average velocity-, average acceleration-, or average jerk-preserving
transformations, respectively. Note that in these cases, it is possible to
reach all the positions in the one-dimensional workspace by changing only
one parameter.

Coordinate Transformation
Assume that we are given an autonomous dynamical system whose states
go from any initial condition to zero. Considering the servo problem to
follow an arbitrary reference [Glad and Ljung, 2000], it is possible to use
the transformation e(t) = r(t)− y(t) where r(t) denotes the target position.
Now, if e evolves according to the dynamics of the autonomous system, y
will eventually track r. This can alternatively be interpreted as a movement
composed of a tracking term r(t) plus a non-linear shaping function e(t).
To clarify this point, rewrite the transformation as

y(t) = r(t) − e(t), (3.10)

The shaping function satisfies

e(t0) = r(t0) − y(t0)
e(t f ) = 0.

(3.11)

Note that (3.10) does not necessarily specify a causal relation between e(t)
and y(t). Thus, both of these signals could be caused by r(t) as in Fig. 3.3.
Additionally, in this setup we make use of the current value of r(t) instead
of r̂(t) = r(t+d), which is an estimated value in the future. The underlying
assumption for the modified model in Fig. 3.3 compared to Fig. 3.1 is that
the generated trajectory depends only on r(t) − y(t).

As an example, assume that the robot is supposed to reach position
yf , velocity v f , and acceleration a f from y0, v0, and a0 within duration
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d. Firstly, note that the continuity of higher derivatives is of no concern
since no explicit constraint is given for them. Secondly, from the previous
discussion, we can equivalently describe the problem as reaching a target
that has a constant acceleration a f and reaches yf with velocity v f in d
seconds. The target motion can be described by the following equations

r1(t) = yf + v f (t− d) + 1
2a f (t− d)2

r2(t) = v f + a f (t− d)
r3(t) = a f .

(3.12)

On the other hand, the motion of the robot can be derived from (3.10) to be

y(t) = yf + v f (t− d) + 1
2a f (t− d)2 − e1(t)

v(t) = v f + a f (t− d) − e2(t)
a(t) = a f − e3(t).

(3.13)

By setting t = 0 and t = d in (3.13), we obtain the following relationships

e1(0) = yf − v f d+
1
2a f d

2 − y0 = ytarget0 − yrobot0

e2(0) = v f − a f d− v0 = vtarget0 − vrobot0

e3(0) = a f − a0 = atarget0 − arobot0

e1(d) = 0
e2(d) = 0
e3(d) = 0.

(3.14)

3.3 Minimum-Jerk Model

In [Flash and Hogan, 1985], a minimum-jerk model has been proposed,
which provides a kinematic description of the voluntary motion of the hu-
man hand in planar scenarios. The model is able to predict the bell-shaped
velocity profiles of the hand in point-to-point movements as well as the
characteristics of the curvature in via-point movements. According to this
model, the cost functional to be minimized is:

C = 1
2

d0∫
0

(...
X

2
+

...
Y

2) dt, (3.15)

where X and Y represent the coordinates and d0 the duration of the move-
ment. Assuming that the X and the Y coordinates are decoupled, it is
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possible to divide (3.15) into two one-dimensional optimization problems.
Using the variational principle, the solution was shown to be a fifth-order
polynomial [Flash and Hogan, 1985; Shadmehr, 2005], hence being able to
reproduce our template (3.4). Here, we adopt the control-problem formula-
tion in order to derive the result. This formulation gives us new insights for
trajectory generation.

To minimize the jerk, each decoupled degree of freedom can be repre-
sented by a triple integrator. Let u denote the jerk and y(t) the trajectory,
then 


ẋ1
ẋ2
ẋ3


 =




0 1 0
0 0 1
0 0 0





x1
x2
x3


+




0
0
1


u

y = x1

(3.16)

or equivalently,

ẋ =
(
x2 x3 u

)T
=: f (t, x, u). (3.17)

We define the reference signal r(t) ∈ R3 such that r1(t), r2(t), r3(t) denote
the current position, velocity and acceleration of the target, respectively.
Given the reference signal r(t) and the desired time t f , we wish to design
u(x, r, t) that produces the solution to

minimize
u

∫ t f

t0
u2 dt

subject to (3.16)
x(t0) = x0,
x(t) = r(t) for t ≥ t f .

(3.18)

According to the Pontryagin maximum principle [Pontryagin et al., 1962;
Liberzon, 2011],

ẋ∗ = Hp(x∗, u∗, p, p0)

ṗ = −Hx(x∗, u∗, p, p0)

x∗(t0) = x0, x∗(t f ) = r(t f )
(3.19)

Here, H denotes the Hamiltonian, the subscripts denote partial derivatives
with respect to the given variable, x and p are the states and the costates,
respectively, t0 and t f denote the initial and final time, respectively, and
variables with star correspond to the optimal solution. The optimal control
maximizes the Hamiltonian, that is

H(x∗(t), u∗(t), p(t), p0) ≥ H(x∗(t), u, p(t), p0) (3.20)
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3.3 Minimum-Jerk Model

Denoting the running cost for problem (3.18) by L(x, u), the Hamiltonian is

H(x, u, p, p0) = 〈p, f (x, u)〉 + p0L(x, u)

=
(
p1 p2 p3

)x2
x3
u


+ p0u2. (3.21)

By the partial differentiation of H with respect to u, we find the extremum
to be

�H
�u = 2p0u+ p3 = 0 [ u∗ = − p3

2p0
. (3.22)

Consequently, the Hamiltonian along the optimal trajectory is

H(x∗, u∗, p, p0) = p1x∗2 + p2x∗3 −
p2

3
4p0

, (3.23)

where
ṗ1 = −Hx1 = 0
ṗ2 = −Hx2 = −p1

ṗ3 = −Hx3 = −p2.
(3.24)

These equations combined with (3.22) give us

u∗ = k1t2 + k2t+ k3, (3.25)

with coefficients k1, k2, and k3 to be determined. Integrating the control
signal three times results in x1, which is apparently a fifth-order polynomial.
For the sake of simplicity, we assume t0 = 0 and x(t f ) = 0. By matching
the initial and final conditions, we obtain

y = x∗1 = y0(1− 10t3n + 15t4n − 6t5n) + v0d0tn(1− 6t2n + 8t3n − 3t4n)

+
a0
2 d2

0t2n(1− 3tn + 3t2n − t3n)

ẏ = x∗2 =
y0
d0
(−30t2n + 60t3n − 30t4n) + v0(1− 18t2n + 32t3n − 15t4n)

+ a0d0tn(1−
9
2 tn + 6t2n −

5
2 t

3
n)

ÿ = x∗3 =
y0

d2
0
(−60tn + 180t2n − 120t3n) +

v0
d0
(−36tn + 96t2n − 60t3n)

+ a0(1− 9tn + 18t2n − 10t3n),

(3.26)

and the optimal control signal is
...y = u∗ = y0

d3
0
(−60+ 360tn − 360t2n) +

v0

d2
0
(−36+ 192tn − 180t2n)

+
a0
d0
(−9+ 36tn − 30t2n)

(3.27)
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where tn := (t − t0)/d0 is the normalized elapsed time with respect to the
duration d0 = t f − t0 and y0, v0, and a0 are initial position, velocity, and
acceleration, respectively.

Let us now consider the Hamilton-Jacobi-Bellman (HJB) equation [Bell-
man and Kalaba, 1965; Liberzon, 2011]

−Vt(t, x) = inf
u∈U
{L(t, x, u) + 〈Vx(t, x), f (t, x, u)〉}, (3.28)

with the cost function J and the value function V defined as

J(t, x, u) :=
∫ t f

t
L(s, x(s), u(s)) ds+ K(x(t f )) (3.29)

V(t, x) := inf
u[t,t f ]

J(t, x, u). (3.30)

Here, U ⊆ R defines the control set, L(·) and K(·) denote the running cost
and the terminal cost, respectively. For the minimum-jerk problem, we have

L(t, x, u) = u2, (3.31)
K(x(t f )) = 0, (3.32)
−Vt(t, x) = inf

u∈U
{u2 + 〈Vx(t, x), f (t, x, u)〉}

= min
u∈R

{u2 + Vx1 x2 + Vx2 x3 + Vx3u}. (3.33)

The optimum is achieved for

�(u2 + Vx1 x2 + Vx2 x3 + Vx3u)
�u = 0 [ u∗ = −Vx3

2 . (3.34)

Therefore,

−Vt(t, x) = −
V 2
x3

4 + Vx1 x2 + Vx2 x3. (3.35)

As a result of the application of the maximum principle, (3.27) gives
us an expression for

...y along the optimal path. Now, considering the value
function in (3.30), i.e., the cost to go, and using the definition of the cost
function in (3.29), we conclude

V(t, x) =
∫ t f

t

...y 2(s) ds. (3.36)

Note that to calculate (3.36), the initial state is the current state, the
duration d0 is equal to the remaining time t f − t, and the normalized
elapsed time tn is (s − t)/(t f − t). It is straightforward to verify that the
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3.4 Switching to Tracking

resulting value function satisfies the HJB equation. Accordingly, from (3.34)
we derive

u∗ = −Vx3

2 = −

(
60 x1
(t f − t)3 + 36 x2

(t f − t)2 + 9 x3
t f − t

)
. (3.37)

This reformulation gives us a control law for generating the minimum-jerk
trajectory. The feedback signal is linear in the states, but nonlinear with
respect to the time. Note that the same result can be obtained from (3.27).
Interpreting the current point as the new initial point, we can set tn = 0 to
obtain

u∗ =
...y = −

(
60 x1 − yf
(t f − t)3 +

36x2 + 24v f
(t f − t)2 +

9x3 − 3a f
t f − t

)
. (3.38)

Equation (3.38) gives us a solution for arbitrary initial and final points and
the final time t f .

3.4 Switching to Tracking

An obvious issue with (3.37) is that it is sensitive to the errors in the states
when the time approaches t f . Without loss of generality, assume there is
some noise ε(t) in the velocity measurement. Thus, the control signal (3.37)
is modified to

u = −
(

60 x1
(t f − t)3 + 36 x2 + ε(t)

(t f − t)2 + 9 x3
t f − t

)
. (3.39)

Substituting (3.39) into (3.16), we find that the closed-loop system obeys the
differential equation

...y = −
(

60 y
(t f − t)3 + 36 ẏ

(t f − t)2 + 9 ÿ
t f − t

)
− 36 ε(t)

(t f − t)2 . (3.40)

Thus, as t approaches t f , a very small noise level can blow up the control
signal. A remedy to this problem is to switch to an infinite-horizon problem
when the remaining time, d = t f − t, becomes small. In the following, we
show that this transition can be done smoothly by keeping d constant after
reaching a certain remaining time.

The plot of the closed-loop poles of the system for fixed values of d is
shown in Fig. 3.4. Considering (3.40), the characteristic equation of the
closed-loop system for a fixed remaining time d is

d3s3 + 9d2s2 + 36ds+ 60 = 0. (3.41)
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Figure 3.4 Closed-loop poles for various values of the remaining time
d = [1 : −0.05 : 0.05].

If p is a solution of (3.41) for d = 1, then p/d is a solution for any given
d. Thus, arg(p) is independent of the remaining time while the poles move
toward infinity as the remaining time approaches zero. Furthermore, we
can rewrite the characteristic equation as

(s+γω)(s2 + 2ζωs+ω2) = 0, (3.42)

where (ωd)2 = 12−2 3
√

32+6 3
√

3 ( 16.493, ζ = (6− 3
√

32+ 3
√

3)/2ωd ( 0.66,
and γ = (3 + 3

√
32 − 3

√
3)/ω ( 0.896d. Considering these values and the

knowledge of the noise in the system, it is possible to find a minimum
acceptable value for d. Accordingly, a smooth transition is achieved by
limiting d from below.

3.5 Generalization of Template

Consider the system obtained by normalizing time to 1 and the final state
to the origin

ẋ1 = x2

ẋ2 = x3

ẋ3 = −

(
60 x1
(1− t)3 + 36 x2

(1− t)2 + 9 x3
1− t

)
.

(3.43)
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3.5 Generalization of Template

The aim of this section is to generalize the motion trajectories generated by
this system to the whole workspace and to different timing requirements.
Although (3.38) is already in its general form, we consider using the coordi-
nate transformation introduced in Section 3.2. In doing so we have several
purposes. In the first place, the coordinate transformation allows us to use
the current value of the reference signal instead of its predicted value. Sec-
ondly, we can show how the scaling methods can be applied to a dynamical
system. We will take advantage of this in Sec. 3.7 where the scaling pro-
vides a new parametrization for the trajectory generation. Thirdly, we apply
the coordinate transformation to our solution of the HJB equation to show
that (3.38) indeed gives us the correct feedback law if r̂(t) is preferred.

First, we consider time scaling t̃ = αt. Let us define

x̃1(t̃) = α0x1(t)
x̃2(t̃) = α−1x2(t)
x̃3(t̃) = α−2x3(t).

(3.44)

This results in

x̃′1 = x̃2

x̃′2 = x̃3

x̃′3 = −α−3

(
60 x̃1(

1− t̃
α

)3 + 36 αx̃2(
1− t̃

α

)2 + 9 α
2 x̃3

1− t̃
α

)
.

(3.45)

The choice of new variables is done such that the first two differential
equations remain the same. Since the variable names do not matter, we can
rewrite the equations as below

ẋ1 = x2

ẋ2 = x3

ẋ3 = −

(
60 x1
(α − t)3 + 36 x2

(α − t)2 + 9 x3
α − t

)
.

(3.46)

In this case, it is obvious that α amounts to the total time. Note that the
new initial conditions are calculated according to (3.44).

Now, we consider coordinate scaling. We define

x̃1(t) = β x1(t)
x̃2(t) = β x2(t)
x̃3(t) = β x3(t).

(3.47)
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With these changes of variables,

˙̃x1 = x̃2
˙̃x2 = x̃3

˙̃x3 = −

(
60 x̃1
(α − t)3 + 36 x̃2

(α − t)2 + 9 x̃3
α − t

)
.

(3.48)

Note that all the equations remain unchanged and the only change is in
the initial conditions. This is not a surprise since the control law derived is
valid for any initial condition, i.e., any coordinate scaling. Thus, the control
signal considering the effect of both time and coordinate scaling is

u = −
(

60 x̃1
(α − t)3 + 36 x̃2

(α − t)2 + 9 x̃3
α − t

)
. (3.49)

Now, we show that (3.38) can be derived from (3.46). Note that the coor-
dinate transformation (3.13) does not affect jerk (its third time derivative is
equal to zero) and hence the cost functional in the special case of minimum-
jerk is invariant under this transformation. Therefore, the solution after
the transformation is optimal for the new initial and final states.

According to Fig. 3.3, the inputs to trajectory generator controller is e(t).
Therefore, from (3.46) we have

ė1 = e2

ė2 = e3

ė3 = −

(
60 e1
(α − t)3 + 36 e2

(α − t)2 + 9 e3
α − t

)
.

(3.50)

By renaming y(t), v(t), and a(t) in (3.13) to x1, x2, and x3, respectively, we
obtain

x1(t) = yf + v f (t−α) + 1
2a f (t−α)2 − e1(t)

x2(t) = v f + a f (t−α) − e2(t)
x3(t) = a f − e3(t).

(3.51)

The time derivatives of (3.51) are

ẋ1 = v f + a f (t−α) − ė1

ẋ2 = a f − ė2

ẋ3 = −ė3,
(3.52)
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respectively. These equations can be rewritten using (3.50) to get

ẋ1 = v f + a f (t−α) − e2 = x2

ẋ2 = a f − e3 = x3

ẋ3 = −

(
60 e1
(α − t)3 + 36 e2

(α − t)2 + 9 e3
α − t

)

= −

(
60 x1 − yf
(α − t)3 +

36x2 + 24v f
(α − t)2 +

9x3 − 3a f
α − t

)
.

(3.53)

The rightmost sides of the equations are derived by substituting e(t)
from (3.51). By changing α − t to t f − t, the proof of the validity of (3.38)
is completed.

3.6 Resetting Time

If a new target appears or there is a large variation in the previous target,
we might wish to reset the remaining time. A new d̃ can be calculated to
satisfy a set of constraints. For instance, it is possible to find the minimum
d such that the average velocity will be unchanged. This is readily possible
if the maximum of each state for d0 = 1 from any initial state is known.
Using the time scaling introduced in Section 3.2, we can make sure the
constraints are respected.

Generally speaking, resetting time can be triggered by detecting a large
change in the target point. In case of minimum-jerk trajectories, we can
make use of the fact that d5y/dt5 is a constant of motion, i.e., as long as the
optimal curve is traversed, this value is constant. By differentiating (3.27)
we obtain,

d4y
dt4 =

y0 − yf
d4

0
(360− 720tn) +

v0

d3
0
(192− 360tn) −

v f
d3

0
(−168+ 360tn)

+
a0

d2
0
(36− 60tn) −

a f
d2

0
(24− 60tn) (3.54)

d5y
dt5 =

y0 − yf
d5

0
(−720) + v0 + v f

d4
0

(−360) + a0 − a f
d3

0
(−60). (3.55)

Define c to be the constant value of a desired trajectory, such that
d5y/dt5 = c. We can use this value to detect deviations in the trajectory.
Consequently, a new d can be calculated to satisfy a desired property as de-
scribed earlier. For example, by solving the following fifth-order equation we
find a new d such that the value of d5y/dt5 is unchanged. Rewriting (3.55)
gives us a fifth-order equation to calculate d0,

cd5 + 60(a0 − a f )d2 + 360(v0 + v f )d+ 720(x0 − x f ) = 0.
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Figure 3.5 Curves starting from x0 = −1, v0 = {−2, 0, 2}, a0 = {−5, 0, 5}
with d5y/dt5 = 720. The final time is not fixed as expected.

Figure 3.5 illustrates curves with d5y/dt5 = 720. Note that there is an
intended drift in the final time for all the curves except the blue one, which
starts in x(0) = (−1, 0, 0)T . Figure 3.6 visualizes the remaining time d as
a function of the initial state given the assumption of d5y/dt5 = 720.

3.7 Time-Invariant Model

Time-invariant models, which typically arise in time-optimal or infinite time
solutions, do not suffer from some of the limitations imposed by the fixed-
time problems. This implies that the variations in the target automatically
reset the time. Hence, no signal indicating a new target needs to be cal-
culated. In this section, we examine an approximate time-invariant model.
The idea is to build an approximator of the remaining time from the states.
The approximator is not unique and its choice affects the generalization of
the template. Consider the following model

1− t (
∣∣∣∣k0 sgn(y) 3

√
pyp + k1 sgn(ẏ)

√
pẏp + k2 ÿ+ k3

∣∣∣∣ , (3.56)

where y denotes the position. In this example, we have taken a feature
selection approach. In other words, a linear combination of the powers of
the state variables are considered, such that it gives a low error for the
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3.8 Simulations

Figure 3.6 The remaining time as a function of the state for a fixed
d5y/dt5 = 720. In this example, the plot is given for a = 0.

estimation of the remaining time along the motion template in (3.4). We
use the least-squares method [Lawson and Hanson, 1995] to estimate the
coefficients of the model for the template. The mean-square-error (MSE)
for the motion template is 0.0365, see Fig. 3.7 for the impact of the initial
value on the quality of the approximation. According to Fig. 3.7, the re-
maining time is overestimated for negative initial velocities (moving away
from the target) and underestimated for positive velocities (moving toward
the target).

Using the generalization method discussed in Sec. 3.5, we can easily
extend the time-invariant model to different time and coordinate scales.

3.8 Simulations

In this section, we show simulation results of the closed-loop trajectory
generation. We assume that the states are measurable. Therefore, instead
of the output y in Fig. 3.3, the states x are used. To visualize the evolution
of the states, we use phase portraits.

The first simulation shows the result of the control law in (3.49) with
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Figure 3.7 The approximated remaining time versus the actual time for
x0 = −1, v0 = [−2 : 1 : 2], a0 = [−3 : 1.5 : 3]. The black line shows the ideal
case. The approximation when v0 = 0 and a0 = 0 coincides well with the
ideal case, MSE ( 0.0365.

the change of α − t to max(α − t, 0.06), i.e.,

u = −
(
60 e1
d3 + 36 e2

d2 + 9 e3
d

)
, d = max(α − t, 0.06). (3.57)

The reference is set to zero and the initial position is set to −1. The initial
velocity and the initial acceleration are varied. With α = 1 s, the control
law is expected to result in fifth-order polynomials with zero velocity and
acceleration at the origin in one unit of time. In Fig. 3.8, the solid blue
line in the middle corresponds to the template. Pay special attention to the
final state and the final time. For this control law, for a fixed α irrespective
of the initial state, the final state is equal to the reference signal and the
final time is equal to α. Figure 3.9 visualizes the evolution of the states in
a phase portrait. Note that the trajectories in the phase plane cross each
other since the state space has a higher dimension than two and the system
is time-varying.

The second simulation deals with the time-invariant model obtained by
approximating the remaining time along the template according to (3.56),
see Figs. 3.10 and 3.11. Similarly to the previous simulation, the solid blue
curve matches the template. Nevertheless, the fixed-time is not respected for
other initial conditions. The final position is reached later than 1 s for the
negative initial velocities and earlier for the positive initial velocities. This is
a result of the fact that the approximation depicted in Fig. 3.7 overestimates
the remaining time for negative initial velocities and underestimates it for
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positive initial velocities.
The third simulation illustrates the result of the closed-loop trajectory

generation for a moving target. Every second, a new target is activated. The
objective is to intercept the target in 0.8 s and to continue tracking it until a
new target is detected. In Fig. 3.12, the solid blue and dashed green curves
correspond to the robot and the active target, respectively. The trajectory
generator is the same as the one in the first simulation. As seen in the
figure, there is a smooth transition to a tracking mode when the target is
almost reached and the position, velocity, and acceleration of the generated
trajectory are continuous.

In Figs. 3.13 and 3.14, the simulation results of reaching the same target
with a shorter time interval of 0.4 s are shown. Changing the duration is
done by setting the parameter α. Note how the velocity, the acceleration,
and the jerk are scaled in these figures as compared to Fig. 3.12.

The fourth simulation investigates the effect of changing the parameters
α and β for the time-invariant model described in Sec. 3.7. We consider
the unit step response (i.e., a target 1 m away) and a step response with
amplitude 2 in Fig. 3.15. Note the following interpretation of the parameters:
starting from rest, a target which is located β m away is reached in α s. If
the target is closer than β , it is reached earlier than α and if it is further
away, it is reached later. Note also the effect of the scaling on different
quantities described by (3.7) and (3.9).

In the final simulation, we employ the resetting-time strategy according
to Sec. 3.6. Deviations in the trajectory due to disturbances are detected
by evaluating d5y/dt5 according to (3.55). The constraint pd5y/dt5p < 2500
is maintained by updating the remaining time, whenever the fifth time
derivative of y hits the threshold. In this simulation, the measured states
are affected by additive white Gaussian noise with a variance of 0.02. The
results are shown in Fig. 3.16.
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Figure 3.8 Simulation 1: Curves resulting from the control law (3.57),
starting from x0 = −1, v0 = {−2, 0, 2}, and a0 = {−5, 0, 5} with α = 1 s
and r(t) = 0.
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Figure 3.9 Simulation 1: Phase portrait for the trajectories in Fig. 3.8
starting from x0 = −1, v0 = {−2, 0, 2}, and a0 = {−5, 0, 5} with α = 1 s
and r(t) = 0.
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Figure 3.10 Simulation 2: Curves starting from x0 = −1, v0 = [−2 : 1 : 2],
a0 = [−5 : 2.5 : 5] for the time-invariant model using (3.56) and α = 1. For
the legends, see Fig. 3.11

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−2

−1

0

1

2

x (m)

v
(m

/s
)

v0

−3
−1.5
0
1.5
3

a0

−2
−1.0
0
1.0
2

Figure 3.11 Simulation 2: Phase portrait for the trajectories in Fig. 3.10
starting from x0 = −1, v0 = [−2 : 1 : 2], a0 = [−5 : 2.5 : 5] with an
approximation of d.
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Figure 3.12 Simulation 3: Intercepting a moving target in 0.8 s; positions,
velocities, acceleration, and jerk vs. time. The solid blue and the dashed green
curves correspond to the robot and the target, respectively. Every second,
a new target is activated. The trajectory generation softly switches to a
tracking mode before the deadline. As expected, x, v, and a are continuous.
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Figure 3.13 Simulation 3: Intercepting a moving target in 0.4 s; positions,
velocities, and the position error as a function of time. The solid blue and
the dashed green curves correspond to the robot and the target, respectively.
Every second, a new target is activated.

0 1 2 3 4 5
−50

0

50

a
(m
/s

2 )

0 1 2 3 4 5

−1,000
0

1,000
2,000

Time (s)

j(
m
/s

3 )

Figure 3.14 Simulation 3: Intercepting a moving target in 0.4 s; accelera-
tion and jerk as a function of time.
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Figure 3.15 Simulation 4: Effects of changing parameters for the time-
invariant model; α ∈ {0.5, 1, 1.5} corresponds to green, blue, and red, re-
spectively, and β ∈ {0.5, 1, 1.5} corresponds to dashed, solid, and dash-dot
line, respectively. On the left, the step response with magnitude 1 and on
the right, the step response with magnitude 2 are illustrated.
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Figure 3.16 Resetting-time strategy: Additive Gaussian noise with vari-
ance 0.02 affects the states. The remaining time d is reset such that the
condition pd5y/dt5p ≤ 2500 is maintained.
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3.9 Discussion

Considering the online trajectory generation for a moving target, there are
at least two strategies. One can estimate a time t̂ f and a desired future
value for the states r̂ f , such that the generated trajectory meets this target
state, i.e., x(t̂ f ) = r̂ f . The procedure is repeated as soon as a better esti-
mate is obtained. The other strategy is that the generated trajectory tracks
the current value of the target but additionally superimposes a motion that
eliminates the initial offset. These strategies do not necessarily lead to the
same solution. The first strategy works better if an accurate estimation of
the target’s final state is possible, while the second strategy naturally leads
to a smooth transition between trajectory planning and tracking modes.
Since the states in many physical systems cannot change discontinuously,
the second strategy is advantageous when the time horizon is short. This
justifies the modified model of the trajectory generation in Fig. 3.3, which
depends only on the error r(t) − y(t) in comparison to Fig. 3.1. More im-
portantly, in case of the minimum-jerk trajectories the second strategy does
not affect the optimality of the solution if at any time instant, r(t) and t f
provide the best estimate of the target state.

In its current form, the controller assumes full knowledge of the states
of the robot. Therefore, an observer will be required if the states are not
measurable. The benefit of an observer is that the trajectory generation
will be less sensitive to the measurement noise. With regard to this, we can
for example use an internal model together with the trajectory-generator
controller such that the actual feedback from the robot is only limited to
certain instances. The generated trajectory is then tracked by a common
feedback controller. The update of the state of the internal model is only
triggered when the deviation between the internal model and the robot is too
large [Thelander Andrén and Cervin, 2016]. This way, we have obtained a
two-degrees-of-freedom controller with different responses to measurement
noise and to changes in the reference signal.

Minimum-jerk trajectories can be time scaled to accommodate limita-
tions on the kinematic variables similarly to the approach by [Dahl and
Nielsen, 1990, Dahl and Nielsen (1990)]. If the constraints are constant,
the solution to the minimum-time problem provides the lowest allowable
t f [Hehn and D’Andrea, 2011], i.e., any trajectory generated with a larger
time interval than the minimum time satisfies the constraints.

In general, both finite-time and minimum-time controller models for
trajectory generation perform poorly for disturbance rejection close to the
target. The former eliminates the disturbances in the same fixed-time period
as it generates the trajectory. Thus, as time runs out, the controller needs
to increase its effort for compensation. On the other hand, the optimal-
time controller uses the maximum effort all the time. Therefore, when the
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current state is in the vicinity of the desired state, the noise can lead to
an aggressive control signal. One suggestion to mitigate this problem is to
relax the final constraint and instead introduce a cost for it. This can, for
example, be realized by introducing a time-dependent or state-dependent
cost for a Linear Quadratic Regulator (LQR) controller [Glad and Ljung,
2000].

If in a real setup the state feedback is going to be used, the robustness
of the closed-loop for a non-ideal robot model needs to be studied. Also, in
the approximation methods introduced in Sec. 3.7, an important aspect is
ensuring a global attractor for the approximated system, i.e., any initial
error should eventually be reduced to zero.

3.10 Conclusions

Time and coordinate scaling are powerful operators for extending trajecto-
ries to a wider workspace. The coordinate transformation in Sec. 3.2 made
it possible to generalize trajectories to follow an arbitrary reference sig-
nal. This transformation did not affect the optimality of the minimum-jerk
trajectories and laid the ground for closed-loop trajectory generation.

We proposed a controller model for trajectory generation with continu-
ous reactions to the changes in the target. The Hamilton-Jacobi-Bellman
equation was solved in order to find the optimal minimum-jerk controller.
The result is a time-varying linear feedback law, which produces fifth-order
polynomials for piece-wise constant target states. For this controller, we
showed that limiting the remaining time from below naturally leads to a
smooth transition between trajectory planning and tracking modes. Thus,
we have obtained a fully reactive trajectory-generation method for possibly
moving targets with the desirable properties of minimum-jerk trajectories.

The closed-loop system in our reformulation of the minimum-jerk model
generates trajectories which have a bell-shaped velocity profile. Therefore,
our results offer an alternative solution to some of the bio-inspired ap-
proaches; see for example [Degallier et al., 2011]. An extension of our work
can be the derivation of a controller for trajectory generation for more com-
plex dynamical models than a triple integrator.
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4
Optimization-Based
Trajectory Generation

4.1 Introduction

Trajectory generation is an inherent problem in motion control for robotic
systems, such as industrial manipulators and mobile platforms. The motion-
planning problem is to define the path, and the course of motion as a
function of time, namely the trajectory. In many applications, the trajec-
tory generation is desired to be performed such that the time for executing
a task, or the energy consumed during the motion is minimized. Hence,
motion-planning problems are often formulated as optimal control prob-
lems [LaValle, 2006]. For solving a trajectory-planning problem, it is in
many cases beneficial to solve the path-planning problem first and then find
a trajectory by assigning time to each point along the path [LaValle, 2006;
Verscheure et al., 2009]. Nevertheless, for the specification of the problem,
such separation is unnecessary in the optimization framework. Therefore,
as long as there is no computational constraint, both path planning and
trajectory planning can be solved in an integrated approach. Ultimately,
this leads to a motion planning where the full potential of the system is
utilized since the inherent interrelation between these problems is taken
into account.

In this chapter, we summarize the most common trajectory-generation
problems using the optimization framework. A number of examples and
numerical results are provided. The impact of model selection for optimal
control problems is briefly studied. Specifically, we compare a kinematic
model with a dynamic model.
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4.2 Optimal Trajectory Problems

Assume a system according to

ẋ = f (t, x, u), x(t0) = x0,
y = �(x, u),

(4.1)

where x ∈ X ⊂ Rn is the state, u ∈ U ⊂ Rm is the control signal, t ∈ R
denotes time, t0 is the initial time, x0 is the initial state, and y ∈ Rp denotes
the output signal.

An optimal control problem is usually characterized by a cost functional
to be minimized. A generic cost functional for a deterministic setting in the
Bolza form can be formulated as [Liberzon, 2011]

J(u) :=
∫ t f

t0
L(t, x(t), u(t)) dt+ K(t f , x f ). (4.2)

Here t f and x f := x(t f ) are the final (or terminal) time and state, respec-
tively,

L : R$ X $U → R
is the running cost, and

K : R$ X → R
is the terminal cost. In addition to constraints imposed on the input and
output signals by the dynamical system, other constraints corresponding to
the control setU, possible states X , initial and target sets can be considered.

We enumerate a few trajectory-planning problems in the following with
no intention to be comprehensive. For all the problems, a dynamical system
such as (4.1) is assumed. In the list, Q and R are appropriate weighting
matrices, F and G are constraint matrices for the states and the inputs,
respectively, �(·) and h(·) are two, possibly non-linear, functions defining
terminal constraints and path constraints, respectively, and r is the refer-
ence signal. The trajectory-planning problems are:

I. Tracking problem (variable end-point, fixed-time)

J(u) =
∫ t f

0

(
eTQe+ uTRu

)
dt, (4.3)

subject to Fx ≤ b, Gu ≤ a, where e = r− y.

II. Fixed-time point-to-point planning (fixed end-point, fixed-time)

J(u) =
∫ t f

0
(xTQx + uTRu) dt+ K(x(t f )), (4.4)

subject to Fx ≤ b, Gu ≤ a, and y(t f ) = yf .
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III. Hitting a (moving) target (fixed/variable end-point, free-time)

J(u, t f ) =
∫ t f

0
(xTQx + uTRu) dt+ K(x(t f )), (4.5)

subject to Fx ≤ b, Gu ≤ a, t f < Tf , and y(t f ) = �(t f ).

IV. Time-optimal point-to-point planning (fixed end-point, free-time)

J(u) =
∫ t f

0
dt, (4.6)

subject to Fx ≤ b, Gu ≤ a, and y(t f ) = yf .

V. Time-optimal point-to-point planning given a path (fixed end-point,
free-time)

J(u) =
∫ t f

0
dt, (4.7)

subject to Fx ≤ b, Gu ≤ a and y(t f ) = yf , and h(x(t)) = 0.

VI. Time-optimal point-to-point planning given an integral constraint
(fixed end-point, free-time),
subject to Fx ≤ b, Gu ≤ a, y(t f ) = yf and J̃(u, t f ) ≤ V(t f ), where

J̃(u, t) =
∫ t

0
(xTQx + uTRu) dt. (4.8)

Note that to be strictly correct, if y(t f ) does not fully constrain the states,
the problem is not called fixed end-point.

Problem I requires a known reference, which is typically the result
of another optimization problem. This type of problem is mainly used for
the online application of trajectory generation, e.g., in model predictive
control (MPC). Problem II is a point-to-point planning type with an explicit
constraint on time. If we do not limit ourselves to a quadratic cost functional,
Problem II can also be used to define a shortest traveled-distance problem.
For example, in two dimensions, the length of a curve is calculated according
to

length =
∫ t f

0

√
v2
x + v2

y dt (4.9)

where vx and vy denote the velocities in x and y directions, respectively.
Problem III can be used for the tasks requiring coordination between two
objects, for example catching a flying object.

The minimum-time problems are typically associated with Problems IV
and V. When the degrees of freedom are decoupled, Problem IV can be solved
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analytically. Efficient implementation of the solution is readily available for
CNC machines and industrial robots [Kröger, 2011b]. For Problem V, the
path is typically obtained from a path planner taking into account the
geometrical constraints. Thereafter, a trajectory is assigned to the path.
The advantage of this approach is that there exists a convex reformulation
of the trajectory generation [Verscheure et al., 2009].

In Problem VI, V(·) is a function defining the budget for the integrated
cost for a given time. An interesting feature of this problem is that although
it is time optimal, it does not necessarily lead to a bang-bang solution. The
reason is that whenever the integral constraint is active, the solution can be
obtained by minimizing (4.8) subject to the rest of the constraints, but given
a fixed final time. In other words, the problem is equivalent to minimizing an
integral cost while an optimal final time has to be simultaneously calculated.
Therefore, in many scenarios, the solution to this problem can be of more
relevance than time-optimal, fixed-time or time-energy optimal [Shiller,
1994b; Verscheure et al., 2008] problems. For example, defining

V(t) := min
u

J̃(u, t) (4.10)

results in minimum-time trajectories with predefined trajectory profiles. As
another example consider

V(t) := Ct. (4.11)

In this case, C has the interpretation of the maximum average rate of ex-
penditure. For mechanical systems, C can for example be used to introduce
a power limit. Let us consider a double-integrator system according to

ẋ1 = x2

ẋ2 = u,
(4.12)

where u ∈ R is the input signal interpreted as acceleration, x2 ∈ R and x1 ∈
R denote the velocity and position, respectively. We define V(t) according
to (4.11) and solve

minimize
u

t f

subject to (4.12),
˙̃J = x2

2 + wu2,
J̃ ≤ Ct f ,
x(0) = [0, 0]T,
x(t f ) = [yf , 0]T.

(4.13)

Figure 4.1 illustrates the numerical solution to (4.13) for C = 0.2, w = 0.5,
and yf ∈ {1/3, 1, 5/3}.
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Figure 4.1 Solution of (4.13) for various final positions yf ; the positions,
velocities, and accelerations are shown. The red, blue, and green curves
correspond to yf = 1/3, yf = 1, and yf = 5/3, respectively. The time-optimal
solution is not bang-bang. The final time varies as the final target is changed.

4.3 Simple Models

In this section, we present two simple models corresponding to a kinematic
model and a dynamic model, which are used later to find optimal trajectories
for robots. By kinematic models, we mean models involving only kinematic
variables, i.e., position, and its derivatives, while dynamic models include
the relation between kinematic variables and dynamic variables, e.g., forces.

Kinematic Model
Assume that we have a robot with two degrees of freedom. The motion of the
robot can be described by a two-dimensional double-integrator according to

ẋ = vx ,
ẏ = vy ,
v̇x = ux ,
v̇y = uy .

(4.14)

The coordinates x and y can be interpreted as generalized coordinates, i.e.,
depending on the structure of a robot, as either Cartesian coordinates or
joint values.
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Figure 4.2 Schematic of a two-link robot.

Dynamic Model
The equations of motion for a serial robot are usually derived using the
Lagrange method. These equations have a generic form of

M(q)q̈+ C(q, q̇)q̇+ G(q) = τ, (4.15)

where M(q) is a symmetric positive definite inertia matrix, C(q, q̇)q̇ the
vector of centripetal and Coriolis torques, and G(q) the term due to gravity,
q ∈ Rn denotes the vector of joint angles, and n denotes the number of
degrees of freedom. The system is driven by the torque vector τ ∈ Rn.

For the sake of simplicity, a two-link planar robot is considered (Fig. 4.2).
If we limit the motion to a horizontal plane, the effect of the gravity can be
ignored. In this case, the matrices corresponding to (4.15) are

M(q) =
(
a1 + 2a3 cos(q2) + a2 a3 cos(q2) + a2

a3 cos(q2) + a2 a2

)
(4.16)

C (q, q̇) =
(
−a3 sin(q2)q̇2 −a3 sin(q2)(q̇1 + q̇2)

a3 sin(q2)q̇1 0

)
(4.17)

where
a1 = m2L2

1 +m1r2
1 + I1 (4.18)

a2 = m2r2
2 + I2 (4.19)

a3 = m2L1r2. (4.20)

The subscripts of q indicate the elements of the vector. With indices corre-
sponding to the link number, m, L, r, and I denote link mass, link length,
the distance between the previous joint to the center of gravity of the link,
and moment of inertia around the center of mass, respectively. For our
numerical simulations, values are chosen according to Table 4.1.
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Table 4.1 Geometrical and dynamical parameters for the numerical simu-
lation

m L r I
(kg) (m) (m) (kg·m2)

Link 1 1.59 0.3 0.13 0.0216
Link 2 1.44 0.35 0.14 0.0089

4.4 Minimum-Time Point-to-Point Problems

In this section, we consider a number of different scenarios to evaluate the
choice of model and the constraints. The focus is the comparison of dynamic
versus kinematic models. The problems are instances of time-optimal point-
to-point trajectory planning, Problem IV and VI in Sec. 4.2, with various
constraints on the states or the input signals.

We choose z as the state variable for both models presented in Sec. 4.3.
The inputs are also denoted by u. Hence, we can rewrite the system (4.14)
as

ż = fk(z, u), (4.21)

where z = [x, y, vx, vy] and u = [ux, uy]. Similarly, the system (4.15) can be
rewritten as

ż = fd(z, u) (4.22)

where z = [q1, q2, q̇1, q̇2] and u = [τ1, τ2]. In both models, z is a purely
kinematic variable. For the kinematic model, u is, however, a kinematic
variable, while for the dynamic model u is a dynamic variable.

The time-optimal point-to-point problems considered have this common
structure

minimize
u

t f

subject to ż = f (z, u),
z(0) = z0,
z(t f ) = 0.

(4.23)

For the kinematic model, we use

z0 = [2, 1, 0, 0]T , (4.24)

and for the dynamic model, we use

z0 = [
π
4 ,

π
10 , 0, 0]T . (4.25)

For problem (4.23), additional constraints are considered according to one
of the following scenarios:
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1. Kinematic model f = fk, with inequality constraints purely on kine-
matic variables

pu1p ≤ 1, pu2p ≤ 1. (4.26)

2. Dynamic model f = fd, with inequality constraints purely on dynamic
variables

pu1p ≤ 1, pu2p ≤ 1. (4.27)

3. Dynamic model f = fd, with inequality constraints purely on kine-
matic variables

pż3p ≤ 2, pż4p ≤ 2. (4.28)

4. Dynamic model f = fd, with inequality constraints on both kinematic
and dynamic variables

pu1p ≤ 1, pu2p ≤ 1,
pż3p ≤ 10, pż4p ≤ 10.

(4.29)

5. Kinematic model f = fk, with inequality constraints on an integral
cost

˙̃J = z2
2 + z2

3 +γ (u2
1 + u2

2),
J̃ ≤ Ct f ,

(4.30)

where γ = 0.5 and C = 0.2.

6. Dynamic model f = fd, with inequality constraints on an integral cost

˙̃J = z2
2 + z2

3 +γ2(ż2
2 + ż2

3) +γ1(u2
1 + u2

2),
J̃ ≤ Ct f ,

(4.31)

where γ1 = 0.5, γ2 = 0.01, and C = 0.2.

4.5 Additional Constraints

The time-optimal control problem for systems with more than one degree of
freedom can be under-constrained. This can easily be understood when the
constraints in one dimension (in the first example x) determine the final
time. In such cases, various motions in other dimensions can meet the final
time without violating the constraints. In order to get a unique solution, it
is necessary to add penalties for the states and/or the input signals, e.g., in
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the same manner as for the time-energy optimal problems [Shiller, 1994a].
If the DOF can be decoupled, fixed trajectory profiles can also be assigned
to those DOF that have to be synchronized [Kröger, 2011a]. Furthermore,
without compromising the optimal time, we can solve a second optimization
problem. The new problem is fixed time. Hence, a combination of states and
input signals can be penalized. Given t f from the solution of the minimum-
time problem, we solve

minimize
u

∫ t f

0
z3

2 + z2
4 + w(u2

1 + u2
2) dt

subject to ż = f (z, u),
z(0) = z0,
z(t f ) = 0.

(4.32)

where w is a small weight. In the numerical examples, we set w = 0.001
for the kinematic model and to w = 0.02 for the dynamic model. Adding
penalties on the higher derivatives can also be beneficial for smoothing out
the signals.

Obstacle Avoidance
It is relevant to include some non-convex constraints. Such constraints
usually appear in obstacle-avoidance problems. We study the effect of a
constraint of the following form

(y− y0)
2 + (x− x0)

2 ≥ c2. (4.33)

This defines the area outside of a circle with the radius of c centered at
(x0, y0).

4.6 Simulation Results

The results concerning Scenarios 1–6 are presented in this section. The
optimization problems were solved by numerical methods based on direct
collocation [Biegler et al., 2002]. The implementation relied on the open-
source software platform JModelica.org [Åkesson et al., 2010; JModelica.org,
2015].

The resulting trajectory for Scenario 1 after the 2nd optimization is
depicted in Fig. 4.3. Figure 4.4 illustrates the solution of Scenario 1, in-
cluding obstacle avoidance. In this case the time-optimal problem does not
have extra degrees of freedom. Therefore, a second optimization was not
required.

Scenario 2 is addressed next. As we see in Fig. 4.5, one of the control
signals switches rapidly. This is because of the fact that there is no unique
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Figure 4.3 The trajectory for the kinematic model with only kinematic
inequality constraints (Scenario 1) after the 2nd optimization. The blue and
green curves correspond to motion along the x-axis and y-axis, respectively.
In the X–Y plot, the curve corresponds to the position in 2D.

solution to this time-optimal problem, which results in the strange behavior
of the solver. As shown in Fig. 4.6, this issue can be resolved by solving a
second optimization problem according to Sec. 4.5. In Fig. 4.7, the result for
the time-optimal point-to-point motion planning with the obstacle avoidance
using the dynamic model is given.

Figure 4.8 illustrates the result of Scenario 3. Comparing with Fig. 4.3,
it is evident that the complete dynamics of the system do not play a role
in the obtained trajectory because of the tight bounds on the kinematic
variables. This is, however, not the case when a mixed set of constraints are
active as seen in Fig. 4.9.

For the last two scenarios, where an integral inequality constraint has
been considered, there is no need to consider a second optimization.The
results for the kinematic and the dynamic models are shown in Figs. 4.10
and 4.11, respectively, which are qualitatively similar.

4.7 Conclusion

A number of optimization problems applicable to trajectory generation were
discussed. We also presented numerical examples for illustration. An im-
portant observation is that the time-optimal solution for a problem with
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Figure 4.4 The trajectory for Scenario 1 with obstacle avoidance (red circle
in the lower plot). The blue and green curves correspond to motion along
the x-axis and y-axis, respectively. In the X–Y plot, the curve corresponds
to the position in 2D.
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Figure 4.5 The trajectory of Scenario 2 without a 2nd optimization. The
blue and green curves correspond to joint one and two, respectively. For
joint two, the control signal and the acceleration switch rapidly without
much effect on the outputs. Compare with 4.6.
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Figure 4.6 The trajectory for the dynamic model with only dynamic in-
equality constraints (Scenario 2) after the 2nd optimization. The blue and
green curves correspond to joint one and two, respectively. In the X–Y plot,
the solid and the dashed line correspond to the position of the end-effector
and the 2nd joint, respectively.
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Figure 4.7 The trajectory of Scenario 2 with obstacle avoidance (red circle
in the lower plot). The blue and green curves correspond to joint one and
two, respectively.
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Figure 4.8 The dynamic model with only active kinematic constraints
(Scenario 3) after the 2nd optimization. Compare with Fig. 4.3.
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Figure 4.9 The dynamic model with both kinematic and dynamic con-
straints (Scenario 4) after the 2nd optimization. The blue and green curves
correspond to joint one and two, respectively. In the X–Y plot, the solid and
the dashed line correspond to the position of the end-effector and the 2nd
joint, respectively.
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Figure 4.10 The trajectory for the kinematic model with the integral con-
straint (Scenario 5). The blue and green curves correspond to motion along
the x-axis and y-axis, respectively. In the X–Y plot, the curve corresponds
to the position in 2D.
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Figure 4.11 The trajectory for the dynamic model with the integral con-
straint (Scenario 6). The blue and green curves correspond to joint one and
two, respectively. In the X–Y plot, the solid and the dashed line correspond
to the position of the end-effector and the 2nd joint, respectively.
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multiple degrees of freedom is typically non-unique. Given the minimum
time, we can solve a second optimization problem with penalties on the
states and/or the inputs. Moreover, we introduced a new time-optimal point-
to-point trajectory generation problem, by including an integral constraint.
We showed that as long as the constraint is tight, the solution behaves as
the fixed-time point-to-point problem with the same cost function as J̃.

In the case of holonomic dynamics, if no constraints on dynamic variables
are given or the constraints on kinematic variables are tight, the dynamic
model can be ignored and the system can be approximated by a double
integrator. This is because of the fact that the matrix M(q) is positive
definite and thus invertible [Siciliano et al., 2009]. Consequently, using the
inverse dynamics, it is always possible to compute the required τ within
the constraints to achieve the same solution as with the kinematic model.

In the motion-planning procedure, various modeling assumptions have
to be made. The major difference with respect to modeling is whether a
kinematic or a dynamic model is considered. Although dynamic models
are required for achieving the highest possible performance, a kinematic
model suffices in many applications, given conservative constraints on the
kinematic variables—i.e., on the position, the velocity, and the acceleration.
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5
An Analytic Solution to
Fixed-Time Trajectory
Planning

5.1 Introduction

A desired characteristic of motion planning in uncertain environments is the
ability to react to sensor inputs [Kröger and Wahl, 2010]. Motion replanning
based on sensor information requires algorithms that can quickly generate
a motion trajectory. The concept of online trajectory generation, i.e., gener-
ating trajectories within each control cycle, is discussed in [Kröger, 2010].
There are many methods for online trajectory generation with the objective
of time-optimality based on analytic expressions [Castain and Paul, 1984;
Macfarlane and Croft, 2003; Haschke et al., 2008; Kröger and Wahl, 2010].
The difference between these methods lies in their generality with regard
to the constraints and the initial and final states of the desired motion.

Using the existing analytic solutions, time-optimal or nearly time-
optimal trajectories can be computed extremely fast. While the minimum-
time trajectories are of interest for defining an upper bound for the produc-
tivity of a robotic system, they can maximize the wear of the system. In
practice, other factors such as coordination between different units often de-
termine the required time. Hence, the solution to fixed-time problems with
a cost function motivated by the application can prove valuable by reducing
the wear of the robotic system. A common approach to fixed-time problems
is fitting a piece-wise polynomial between the starting point and a final
point [Paul, 1972; Lin et al., 1983; Taylor, 1979] without considering an ex-
plicit cost function. Optimizing the energy or power consumption [Stryk and
Schlemmer, 1994] or the effort [Martin and Bobrow, 1997] was suggested
in other approaches. The solutions were obtained by numerical methods ei-
ther by discretization or optimizing parameters over a set of basis functions.
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A sub-optimal solution to the fixed-time trajectory planning considering a
more generic cost function was proposed in [Dulęba, 1997].

In this chapter, we consider the fixed-time trajectory-generation problem
with a quadratic cost under velocity and acceleration constraints. The re-
sulting trajectory can for example be used in pick-and-place tasks to transfer
the current state (position and velocity) of a manipulator to a new one in
a given time. The purpose is to find a computationally efficient solution,
such that a new trajectory can be computed quickly if it is called upon
by new sensor measurements. We cast this problem into the framework of
optimal control with state variable inequality constraints (SVIC). In order
to find a solution to the optimal control problem, we present two main the-
orems based on [Seierstad and Sydsæter, 1987; Hartl et al., 1995]. These
theorems are derived from the maximum principle [Pontryagin et al., 1962]
and concern direct and indirect adjoining approaches. Specifically, we use
the direct adjoining approach to find a solution to a fixed-time trajectory
planning problem. This leads to a system of equations that determines a set
of parameters for the analytic solution. The system of equations is solved
numerically and the resulting trajectories are compared with the numeri-
cal solution obtained by discretizing the model and using an interior-point
method [Boyd and Vandenberghe, 2004].

5.2 Problem Formulation

Since we are concerned with kinematic variables, specifically constraining
the velocity and acceleration, a double integrator is a sufficient model for
each degree of freedom (DOF). This implies that the acceleration of each
DOF can be independently controlled. The robotic system has an initial
error with respect to a desired final state (a certain position at rest), which
is supposed to become zero at a given fixed time. The error in the posi-
tion denoted by x1 is unconstrained, but there are constraints on both the
acceleration u and on the velocity x2. We assume a quadratic cost func-
tion specified by R > 0 and a diagonal matrix Q := diag(q1, q2) > 0. The
problem can be compactly written as:

minimize
u

∫ t f

0
xTQx+ uTRu dt (5.1a)

subject to ẋ(t) =
(

0 1
0 0

)
x(t) +

(
0
1

)
u(t) (5.1b)

pu(t)p ≤ 1 (5.1c)
px2(t)p ≤ c (5.1d)

x(0) =
(
x0, v0

)T , x(t f ) = 02$1 (5.1e)
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5.3 Preliminaries

Following the presentation of [Seierstad and Sydsæter, 1987; Hartl et al.,
1995], the control problem with SVIC is specified by an objective functional
J to be maximized subject to constraints on the states and the control
signal:

maximize
u

J(u) =
∫ t f

0
F(x(t), u(t), t)dt+ S(x(t f ), t f ) (5.2a)

subject to ẋ(t) = f (x(t), t), x(0) = xi (5.2b)
�(x(t), u(t), t) ≥ 0 (5.2c)
h(x(t), t) ≥ 0 (5.2d)
a(x(t f ), t f ) ≥ 0 (5.2e)
b(x(t f ), t f ) = 0, (5.2f )

where
h : Rn $ R→ Rq, � : Rn $ Rm $ R→ Rs

a : Rn $ R→ R{, b : Rn $ R→ R{′ .

General Definitions and Conditions
Following [Hartl et al., 1995], the order of pure state constraints as well as
junction times are defined here. Moreover, a constraint qualification con-
dition is presented. Note that when two symbols appear after each other,
depending on the dimensions, dot product or matrix multiplication is in-
tended.

Order of Pure State Constraints Consider the derivatives of the func-
tion h with respect to time

h0(x, u, t) = h = h(x, t)
h1(x, u, t) = ḣ = hx(x, t) f (x, u, t) + ht(x, t)

...

hp(x, u, t) = h(p) = hp−1
x (x, t) f (x, u, t) + hp−1

t (x, t).

The state constraint is of order p iff

hiu(x, u, t) = 0, for 0 ≤ i ≤ p− 1, hpu(x, u, t) ,= 0. (5.3)
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Junction Times With respect to the ith constraint, an interval [τ1,τ2]
is called a boundary interval if hi(x(t), t) = 0 for all t ∈ [τ1,τ2]. A subin-
terval (τ1,τ2) ⊂ [0, t f ] is called an interior interval of a trajectory x(·) if
hi(x(t), t) > 0 for all t ∈ (τ1,τ2). If an interior interval ends at τ1 and a
boundary interval starts at τ1, the instant τ1 is called an entry time. Corre-
spondingly, τ2 is called an exit time if there is a boundary interval ending at
t = τ2 and an interior interval starting at τ2. A contact time is the instant
that the trajectory just touches the boundary, i.e., h(x(τ),τ) = 0 and the
trajectory is in the interior just before and after τ . Entry, exit, and contact
times are called junction times.

Constraint Qualification The constraint qualification for terminal con-
straints requires

rank
[
�a/�x diag(a)
�b/�x 0

]
= { + {′, (5.4)

where { and {′ are the dimensions of the range of the functions a and b, re-
spectively. Additionally, for mixed constraints, i.e., the constraints involving
both states and input signals, we require

rank[��/�u diag(�)] = s, (5.5)

where s is the dimension of the range of the function �.

Direct Adjoining Approach
In this approach, the mixed constraints as well as the pure constraints
are directly adjoined to the Hamiltonian H to form the Lagrangian L. The
Hamiltonian and the so called D-form Lagrangian are defined as [Hartl
et al., 1995]

H(x, u, λ0, λ, t) = λ0F(x, u, t) + λf (x, u, t) (5.6)
L(x, u, λ0, λ, µ,ν, t) = H + µ�(x, u, t) + νh(x, u, t). (5.7)

The costate is a mapping λ(·) : [0, t f ] → Rn and multiplier functions µ(·)
and ν(·) are mappings from [0, t f ] into Rs and Rq, respectively. The control
region is defined as:

Ω(x, t) = {u ∈ Rm p �(x, u, t) ≥ 0} (5.8)

Theorem 1—Informal Theorem 4.1 from [Hartl et al., 1995]
Let {x∗(·), u∗(·)} be an optimal pair for problem (5.2) over [0, t f ] such that

• u∗(·) is right-continuous with left-hand limits,
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• the constraint qualification holds for every tripple {t, x∗(t), u} , t ∈
[0, t f ], u ∈ Ω(x∗(t), t);

• Assume x∗(t) has only finitely many junction times.

Then there exists

• a constant λ0 ≥ 0,

• a piecewise absolutely continuous costate trajectory λ(·) mapping
[0, t f ] into Rn,

• piecewise continuous multiplier functions µ(·) and ν(·)mapping [0, t f ]
into Rs and Rq, respectively,

• a vector η(τi) ∈ Rq for each point τi that is a discontinuity of λ(·),
• α ∈ R{ and β ∈ R{′ , γ ∈ Rq, not all zero,

such that the following conditions hold almost everywhere:
Hamiltonian maximization

u∗(t) = arg max
u∈Ω(x∗(t),t)

H(x∗(t), u, λ0, λ(t), t) (5.9)

and conditions on the optimal Hamiltonian and Lagrangian, costates and
multipliers

L∗
u [t] = H∗

u [t] + µ�∗u[t] = 0 (5.10)
λ̇(t) = −L∗

x [t] (5.11)
µ(t)�∗ [t] = 0, µ(t) ≥ 0 (5.12)
ν(t)h∗ [t] = 0, ν(t) ≥ 0 (5.13)

and

dH∗ [t] /dt = dL∗ [t] /dt = L∗
t [t] := �L∗[t]/�t; (5.14)

At the terminal time t f , the transversality conditions hold:

λ(t−f ) = λ0S∗
x [t f ] +αa∗x [t f ] + βb∗x [t f ] +γ h∗x [t f ] (5.15)

αa∗ [t f ] = γ h∗ [t f ] = 0, α ≥ 0, γ ≥ 0; (5.16)

For any time τ in the boundary interval and for any contact time τ , the
costate trajectory may have a discontinuity given by the following conditions

λ(τ−) = λ(τ+) + η(τ)h∗x [τ ] (5.17)
H∗ [τ−] = H∗ [τ+]− η(τ)h∗t [τ ] (5.18)

η(τ)h∗ [τ ] = 0, η(τ) ≥ 0. (5.19)
2
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Remark 1
If the control signal appears linearly, formal proofs for the necessity of the
conditions are available [Maurer, 1977]. 2

Indirect Adjoining Approach
To form the Lagrangian, first or higher-degree derivatives of the pure-state
constraints h(x(t), t) in (5.2), are adjoined to the Hamiltonian. Here we
present the theorem for first-order constraints. The Hamiltonian and the so
called P-form Lagrangian are defined as [Hartl et al., 1995]

H(x, u, λ0, λ, t) = λ0F(x, u, t) + λf (x, u, t) (5.20)
L(x, u, λ0, λ, µ,ν, t) = H(x, u, λ0, λ, t) + µ�(x, u, t) + νh1(x, u, t). (5.21)

The control region is defined as:

Ω(x, t) =
{
u ∈ Rm p �(x, u, t) ≥ 0, h1(x, u, t) ≥ 0 if h(x, t) = 0

}
(5.22)

Theorem 2—Informal Theorem 5.1 from [Hartl et al., 1995]
Let {x∗(·), u∗(·)} be an optimal pair for problem (5.2) such that

• x∗(·) has only finitely many junction times,

• strong constraint qualification (5.4) and (5.5) hold,

then there exist

• a constant λ0 ≥ 0,

• a piecewise absolutely continuous costate trajectory λ mapping [0, t f ]
into Rn,

• piecewise continuous multiplyer functions µ(·) and ν(·)mapping [0, t f ]
into Rs and Rq, respectively,

• a vector η(τi) ∈ Rq for each point τi that is a discontinuity of λ(·),
• α ∈ Rl and β ∈ Rl′ , not all zero,

such that the following conditions hold almost everywhere:
Hamiltonian maximization

u∗(t) = arg max
u∈Ω(x∗(t),t)

H(x∗(t), u, λ0, λ(t), t) (5.23)

and conditions on the optimal Hamiltonian and Lagrangian, costates and
multipliers

L∗
u [t] = 0 (5.24)
λ̇(t) = −L∗

x [t] (5.25)
µ(t)�∗ [t] = 0, µ(t) ≥ 0. (5.26)
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Here, ν i is nondecreasing on boundary intervals of hi, i = 1, 2, . . . , q, with

ν(t)h∗ [t] = 0, ν(t) ≥ 0, ν̇(t) ≤ 0 (5.27)

and

dH∗ [t] /dt = dL∗ [t] /dt = L∗
t [t] , (5.28)

whenever these derivatives exist. At the terminal time t f , the transversality
conditions

λ(t−f ) = λ0S∗
x [t f ] +αa∗x [t f ] + βb∗x [t f ] +γ h∗x [t f ] (5.29)

αa∗ [t f ] = γ h∗ [t f ] = 0, α ≥ 0, γ ≥ 0 (5.30)

hold. At each entry or contact time, the costate trajectory λ may have a
discontinuity of the form:

λ(τ−) = λ(τ+) + η(τ)h∗x [τ ] (5.31)
H∗ [τ−] = H∗ [τ+]− η(τ)h∗t [τ ] (5.32)

η(τ)h∗ [τ ] = 0, η(τ) ≥ 0 (5.33)

and for entry time τ1

η(τ1) ≥ ν(τ+1 ). (5.34)
2

5.4 Solution Based on Direct Adjoining Approach

In this section, we apply the direct adjoining approach to our problem.
Theorem 1 and 2 are under some technical assumptions equivalent and can
either be applied to our problem. In general, the Hamiltonian maximization
in the direct adjoining approach provides more information [Hartl et al.,
1995], while the indirect approach might lead to simpler equations because
of using h1 instead of h.

First, the variables and parameters are identified with the general prob-
lem (5.2). Then, we evaluate the different conditions imposed on the solution
by Theorem 1 one by one. From the Hamiltonian maximization, we find that
the solution is divided into several regions. The regions are determined by
active constraints. In each region, the conditions are evaluated and expres-
sions for the control signal, states, costates, and multipliers are derived.
Furthermore, the conditions at the boundaries and the continuity of the
control signal and states are considered.
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Depending on the problem, various scenarios may arise in which no
constraint, one of the constraints or all become active. In this thesis, we
present the scenario where both the constraints on the control signal and
the state become active. The solution to other scenarios can be derived
similarly.

Parameters, Hamiltonian and Lagrangian
By comparing (5.1) with (5.2), we identify

F (x(t), u(t), t) = −(xTQx+ uTRu) (5.35)
S(t f ) = 0 (5.36)

f1 (x(t), u(t), t) = x2(t) (5.37)
f2 (x(t), u(t), t) = u(t). (5.38)

In addition, from (5.6) and (5.7)

H = −λ0
(
q1x2

1(t) + q2x2
2(t) + ru2(t)

)
+ λ1(t)x2(t) + λ2(t)u(t) (5.39)

L = H + µ1(t)(1− u(t)) + µ2(t)(1+ u(t)) + ν1(t)(c− x2(t))
+ ν2(t)(c+ x2(t)). (5.40)

Constraints
Identifying the constraints with (5.2) results in

h(x(t)) =
(
c− x2(t)
c+ x2(t)

)
(5.41)

�(u(t)) =
(

1− u(t)
1+ u(t)

)
(5.42)

b(x(t)) =
(
x1(t)
x2(t)

)
. (5.43)

The order of the constraints is found to be p = 1 by the following
calculation

h0 =

(
c− x2
c+ x2

)
[ h0

u = 0 (5.44)

h1 =

(
−ẋ2(t)
ẋ2(t)

)
=

(
−u(t)
u(t)

)
[ h1

u =

(
−1
1

)
. (5.45)

The constraint qualification conditions (5.4)–(5.5) hold, since

rank
(

0 1
1 0

)
= 2 = {′ (5.46)

rank
(
−1 1− u 0
1 0 1+ u

)
= 2 = s ∀u (5.47)
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Hamiltonian Maximization
Without constraints, the Hamiltonian is maximized for

û(t) = 1
2

1
r
λ2(t)
λ0

. (5.48)

Considering the constraints, the optimal solution is

u∗(t) =





−1 if λ2(t)/λ0 < −2r

1
2r
λ2(t)
λ0

if − 2r ≤ λ2(t)/λ0 ≤ 2r

1 if λ2(t)/λ0 > 2r

(5.49)

Given the scenario that both the constraints on the control signal and
the state become active, we conclude the following time-dependent optimal
solution u∗ (see Fig. 5.1 for an illustration)

u∗(t) =





−1 for t < τ1

1
2r
λ2(t)
λ0

for τ1 ≤ t ≤ τ2

0 for τ2 < t < τ3

1
2r
λ2(t)
λ0

for τ3 ≤ t ≤ τ4

1 for τ4 < t

(5.50)

where τi, i ∈ {1, . . . , 4} are junction times.

The Conditions
We evaluate conditions (5.10)–(5.13) here:

L∗
u[t] = H∗

u [t] + µ�∗u[t] = 0
[− 2ru(t) + λ2(t) − µ1(t) + µ2(t) = 0 (5.51)

λ̇(t) = −L∗
x[t]

[

{
λ̇1(t) = 2λ0q1x1(t)
λ̇2(t) = 2λ0q2x2(t) − λ1(t) + ν1(t) − ν2(t)

(5.52)

µ(t) =
(
µ1(t) µ2(t)

)T
≥ 0, µ(t)�∗[t] = 0

[(µ1(t) + µ2(t)) − (µ1(t) − µ2(t))u∗(t) = 0 (5.53)

ν(t) =
(
ν1(t) ν2(t)

)T
≥ 0, ν̇(t) ≤ 0, ν(t)h∗(t) = 0

[(ν1(t) + ν2(t))c− (ν1(t) − ν2(t))x2(t) = 0 (5.54)
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Additionally, (5.14) results in

dH∗[t]
dt =

dL∗

dt = L∗
t [t] [

− 2q1x1(t)x2(t) − 2q2x2(t)u(t) − 2ru(t)u̇(t)
+ λ1(t)u(t) + λ̇1(t)x2(t) + λ2(t)u̇(t) + λ̇2(t)u(t) = 0 (5.55)
u̇(t)(µ1(t) − µ2(t)) + ( µ̇1(t) − µ̇2(t))u(t)

− ( µ̇1(t) + µ̇2(t)) + (ν1(t) − ν2(t))u(t)
+ (ν̇1(t) − ν̇2(t))x2(t) − c(ν̇1(t) + ν̇2(t)) = 0 (5.56)

Transversality Conditions
The relations (5.15)–(5.16) are evaluated as follows:

λ(t−f ) = βb∗x [t f ] +γ h∗x[t f ] [(
λ1[1−]
λ2[1−]

)
= I2$2

(
β1
β2

)
+

(
0 −1
0 1

)T (γ1
γ2

)
(5.57)

γ ≥ 0,γ h[t f ] = 0 [ (γ1 +γ2)c− (γ1 −γ2)x2(t f ) = 0 (5.58)

Since x2(t f ) = 0, we conclude that γ1 = γ2 = 0.

Regions
In view of (5.50), the solution is divided into different regions. We consider
each case separately and using the knowledge of u∗(t) in each specific region
and (5.51)–(5.56), expressions for the states, the costates, and the multiplier
functions are calculated. Hereafter, we set λ0 = 1.

Case 1, u∗(t) = −1, t < τ1 Assuming that x0 > 0

x1(t) = −
1
2 t

2 + v0t+ x0

x2(t) = −t+ v0

(5.59)

From (5.51), it follows that

2r+ λ2(t) − µ1(t) + µ2(t) = 0. (5.60)

From (5.53), it follows that

µ1(t) = 0, µ2(t) ≥ 0. (5.61)

From (5.54), it follows that

ν1(t) =
t− c
t+ cν2(t). (5.62)

94



5.4 Solution Based on Direct Adjoining Approach

From (5.56), it follows that

2 µ̇1 + (t+ c)ν̇1 − (t− c)ν̇2 + (ν1 − ν2) = 0. (5.63)

From (5.52), it follows that

λ̇1(t) = −q1t2 ++2q1v0t+ 2q1x0

λ̇2(t) = −2q2t+ 2q2v0 − λ1(t) + ν1(t) − ν2(t),
(5.64)

and combined with (5.55), we conclude that

ν1(t) = ν2(t). (5.65)

From (5.62) and (5.65), it follows that

ν1(t) = ν2(t) = 0.

From (5.64), it follows that

λ1(t) = −
1
3q1t3 + q1v0t2 + 2q1x0t+ K1

λ2(t) =
1
12q1t4 −

1
3q1v0t3 − (q1x0 + q2)t2 + (2q2v0− K1)t+ K2,

(5.66)

where K1 and K2 are appropriate constants of integration.
Case 2, u∗(t) = 0, τ2 < t < τ3

x1(t) = −ct+ K3

x2(t) = −c (5.67)

From (5.51), it follows that

λ2(t) − µ1(t) + µ2(t) = 0. (5.68)

From (5.53), it follows that

µ1(t) = µ2(t) = 0. (5.69)

From (5.54), it follows that

ν1(t) = 0, ν2(t) ≥ 0. (5.70)

From (5.52), it follows that

λ̇1(t) = −2q1ct+ 2q1K3

λ̇2(t) = −λ1(t) − 2q2c− ν2(t).
(5.71)

From (5.68) and (5.69), we conclude that λ2(t) = 0. Considering this, (5.71)
simplifies to

ν2(t) = −λ1(t) − 2q2c (5.72)
λ1(t) = −q1ct2 + 2q1K3t+ K4. (5.73)
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Case 3, u∗(t) = 1, t > τ4 By integrating the control signal, we obtain

x1(t) =
1
2 t

2 + K5t+ K6

x2(t) = t+ K5.
(5.74)

From (5.51), it follows that

−2r+ λ2(t) − µ1(t) + µ2(t) = 0. (5.75)

From (5.53), it follows that

µ1(t) ≥ 0, µ2(t) = 0. (5.76)

From (5.54), it follows that

(c− t)ν1(t) + (c+ t)ν2(t) − (ν1(t) − ν2(t))K5 = 0. (5.77)

From (5.56), it follows that

ν1(t) − ν2(t) + (ν̇1(t) − ν̇2(t))(t− c+ K5) = 0. (5.78)

From (5.52), it follows that

λ̇1(t) = 2q1(
1
2 t

2 + K5t+ K6)

λ̇2(t) = 2q2(t+ K5) − λ1(t) + ν1(t) − ν2(t),
(5.79)

and combined with (5.55), we conclude that

ν1(t) = ν2(t). (5.80)

From (5.77) and (5.80), it follows that ν1(t) = ν2(t) = 0. From (5.79), it
follows that

λ1(t) =
1
3q1t3 + q1K5t2 + 2q1K6t+ K7

λ2(t) = −
1
12q1t4 −

1
3q1K5t3 + (q2 − q1K6)t2

+ (2q2K5 − K7)t+ K8

(5.81)

Case 4, u∗(t) = 1
2rλ2(t), τ1 < t < τ2 or τ3 < t < τ4 From (5.51), it follows

that

u(t) = λ2(t) − µ1(t) + µ2(t)
2r [ µ1(t) = µ2(t). (5.82)
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From (5.53), it follows that

µ1(t) + µ2(t) = 0. (5.83)

Therefore, µ1(t) = µ2(t) = 0.
From (5.55), it follows that(

−2q2x2(t) + λ1(t) + λ̇2(t)
)
λ2(t) = 0. (5.84)

In this region, λ2(t) cannot be identically equal to zero. Thus,

−2q2x2(t) + λ1(t) + λ̇2(t) = 0. (5.85)

Comparing with (5.52) and using (5.54), we conclude that ν1(t) = ν2(t) = 0.
Using (5.85), the system equations (5.1b), and u∗(t) = 1

2rλ2(t), we conclude
that

λ(4)2 (t) =
1
r (q2λ̈2(t) − q1λ2(t)). (5.86)

From (5.86), it follows that

λ2(t) = C1e−σ1 t + C2eσ1 t + C3e−σ2 t + C4eσ2 t, (5.87)

where

σ1 :=

√
q2 +

√
q2

2 − 4rq1
2r , σ2 :=

√
q2 −

√
q2

2 − 4rq1
2r ,

and Ci are appropriate constants of integration.
Let us define

A(C, t) := C1

σ 2
1
e−σ1 t +

C2

σ 2
1
eσ1 t +

C3

σ 2
2
e−σ2 t +

C4

σ 2
2
eσ2 t

A′(C, t) = −C1
σ1

e−σ1 t +
C2
σ1

eσ1 t −
C3
σ2

e−σ2 t +
C4
σ2

eσ2 t

A′′(C, t) = C1e−σ1 t + C2eσ1 t + C3e−σ2 t + C4eσ2 t

B(C, t) := σ 2
2
σ1

(
C1e−σ1 t − C2eσ1 t

)
+
σ 2

1
σ2

(
C3e−σ2 t − C4eσ2 t

)
.

Thus, we can write
u(t) = 1

2r A
′′(C, t). (5.88)

From the system equations (5.1b), it follows that

ẋ2(t) = u(t) [ x2(t) =
1
2r A

′(C, t) + κ1 (5.89)

ẋ1(t) = x2(t) [ x1(t) =
1
2r A(C, t) + κ1t+ κ2, (5.90)
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where κ1 and κ2 are appropriate constants of integration. Considering
(5.85), it follows that

λ1(t) = −B(C, t) + 2q2κ1, (5.91)

where we have also used the fact

σ1 −
q2
σ1r

= −
σ 2

2
σ1
,

σ2 −
q2
σ2r

= −
σ 2

1
σ2
.

Moreover, substituting (5.90) and (5.91) into (5.52) results in(
q2 −

q1

σ 2
1
− rσ 2

1

) (
C1e−σ1 t + C2eσ1 t

)
+

(
q2 −

q1

σ 2
2
− rσ 2

2

) (
C3e−σ2 t + C4eσ2 t

)
= 2rq1 (κ1t+ κ2) . (5.92)

From the definition, we have

q2 −
q1

σ 2
2
− rσ 2

2 = 0,

q2 −
q1

σ 2
1
− rσ 2

1 = 0.

Now, using the assumption q1 ,= 0 and r ,= 0 we conclude

κ1t+ κ2 = 0. (5.93)

The equations derived in this part apply to two regions. For the first interval,
τ1 < t < τ2, we will use constants Ci, i ∈ {1, . . . , 4} and for the second
interval, τ3 < t < τ4, constants Di. Note that since it is assumed that the
junction times τi are distinct, (5.93) must hold in more than one point.
Accordingly,

κ1 = κ2 = 0. (5.94)

Initial and Final Conditions:
The initial condition on x has already been used in (5.59). Without loss of
generality, we normalize the final time to 1. Thus, the final conditions for x
are

x1(1) = 0, x2(1) = 0. (5.95)
Therefore, from (5.74), when u∗ = 1 it follows that

K5 = −1, K6 =
1
2 . (5.96)
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Continuity of u∗:
The Hamiltonian (5.39) is regular, i.e., the maximization of H w.r.t. u is
unique. Therefore, u∗ is continuous everywhere including the points on the
boundary according to Proposition 4.3 in [Hartl et al., 1995]. We evaluate
the control signal at junction times from below and above and equate the
expressions:

u∗(τ+1 ) = −1, u∗(τ−2 ) = 0, u∗(τ+3 ) = 0, u∗(τ−4 ) = 1 [

A′′(C,τ1) + 2r = 0 (5.97)
A′′(C,τ2) = 0 (5.98)
A′′(D,τ3) = 0 (5.99)
A′′(D,τ4) − 2r = 0 (5.100)

Continuity of x∗:
By integrating u∗, we arrive at the states. Hence, x∗ is continuous too. The
values of the states at junction times from below and above are equated:

x∗1 (τ−i ) = x∗1 (τ+i ), x∗2 (τ−i ) = x∗2 (τ+i ), i ∈ {1, . . . , 4} [

A(C,τ1) + r
(
τ 2

1 − v0τ1 − 2x0
)
= 0 (5.101)

A′(C,τ1) + 2r(τ1 − v0) = 0 (5.102)
A(C,τ2) + 2r (cτ2 − K3) = 0 (5.103)
A′(C,τ2) + 2rc = 0 (5.104)
A(D,τ3) + 2r (cτ3 − K3) = 0 (5.105)
A′(D,τ3) + 2rc = 0 (5.106)
A(D,τ4) − r (τ4 − 1)2 = 0 (5.107)
A′(D,τ4) − 2r (τ4 − 1) = 0 (5.108)

Continuity of λ:
The continuity of the adjoint function λ at junction times is guaranteed
since our problem fulfills the conditions of Proposition 4.2 in [Hartl et al.,
1995]. To show this, from the dimensions of the constraint functions h(·)
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and �(·), we have s = q = 2. The control signal u∗ is continuous and

rank
(
��∗[τ ]/�u diag(�∗[τ ]) 0
�h1∗[τ ]/�u 0 diag(h∗[τ ])

)

= rank




−1 1− u(τ) 0 0 0
1 0 1+ u(τ) 0 0
−1 0 0 c− x2(τ) 0
1 0 0 0 c+ x2(τ)




= 4 = s+ q. (5.109)

Now, we evaluate the costates at junction times from below and above and
equate the expressions:

λ1(τ−i ) = λ1(τ+i ), λ2(τ−i ) = λ2(τ+i ), i ∈ {1, . . . , 4} [

B(C,τ1) −
1
3q1τ 3

1 + q1v0τ 2
1 + 2q1x0τ1 + K1 = 0 (5.110)

1
12q1τ 4

1 −
1
3q1v0τ 3

1 − (q1x0 + q2)τ 2
1 + (2q2v0− K1)τ1

+ K2 + 2r = 0 (5.111)
B(C,τ2) − q1cτ 2

2 + 2q1K3τ2 + K4 = 0 (5.112)
B(D,τ3) − q1cτ 2

3 + 2q1K3τ3 + K4 = 0 (5.113)

B(D,τ4) +
1
3q1τ 3

4 − q1τ 2
4 + q1τ4 + K7 = 0 (5.114)

1
12q1τ 4

4 +
1
3q1τ 3

4 + (
1
2q1 − q2)τ 2

4 + (2q2 + K7)τ4 − K8 + 2r = 0 (5.115)

5.5 Results

The conditions of Theorem 1 lead to 24 unknowns (Ki, i ∈ {1, . . . , 8}, κi, i ∈
{1, . . . , 2} for two regions, Ci, Di, i ∈ {1, . . . , 4}, and τi, i ∈ {1, . . . , 4}) and
24 equations, (5.94) and (5.96)–(5.115). By solving these equations, the
junction times and the integration constants are determined, and hence
the solution to the optimal control problem. There are six trivial equations
corresponding to (5.94) and (5.96). The rest are nonlinear in τi, but linear
in the other parameters. Note that we have only presented the result of
the scenario where 0 ≤ τ1 < τ2 < τ3 < τ4 ≤ 1. If there is no solution
to the equations, other scenarios where no or only some of the state/input
constraints become active, must be considered. The problem is infeasible if
there is no solution to any of these scenarios.
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Figure 5.1 Comparison of the result of the interior-point method with 100
discretization points and the analytic solution to (5.1) with the parameters
given in (5.116). The smooth curves in the upper plot as well as the blue and
green pieces in the lower plot belong to the analytic solution.

Example
We report the results for the following example:

R = r = 0.1, Q =
(

1 0
0 10

)
c = 0.22, x0 = 0.17, v0 = 0, t f = 1.

(5.116)

The numerical solution obtained by the interior-point method and the an-
alytic solution are compared in Fig. 5.1. We ran ten experiments starting
from a random initial guess for the solution of the nonlinear equations.
The fsolve function in Matlab was able to find a solution on average in
0.0825 s on an Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz with 32GB
RAM running Fedora 20. The same problem was solved using the CVX
package [Grant and Boyd, 2014; Grant and Boyd, 2008] in Matlab, with
the sampling time of h = 1 ms. The interior-point method approach took
on average 14.232 s (and with the overheads included 53.753 s). The cost
obtained by the analytical approach was 385.352h, which was confirmed by
the numerical results. The effect on the control signal by varying Q and R
is shown in Fig. 5.2.
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Figure 5.2 An illustrative example for the effect of various cost functions
(q1, q2, r). The other parameters for the problem are according to (5.116).

5.6 Discussion

Since the Hamiltonian H in (5.39) is concave, we conclude that the solu-
tion to our example found by the direct approach is optimal according to
the Mangasarian-type sufficient condition [Mangasarian, 1966; Hartl et al.,
1995]. Note that, although we use a numerical approach to find the con-
stants, this approach is independent of the number of discretization points.
In other words, there is an analytic expression for the solution that is
parametrized by the unknowns.

The minimum-time solutions proposed in [Macfarlane and Croft, 2003;
Haschke et al., 2008; Kröger and Wahl, 2010] result in “bang-bang” solu-
tions. By including constraints on jerk or higher order derivatives of the
position, it is possible to make the transitions smoother. However, in contrast
to our approach no explicit cost on the states and control signal is taken
into account. Moreover, the time synchronization between different degrees
of freedom requires a special solution when the minimum-time problem
is individually solved for each degree of freedom [Kröger and Wahl, 2010]
while this synchronization comes for free in fixed-time problems. Compared
to the piece-wise polynomial approaches [Paul, 1972; Lin et al., 1983; Taylor,
1979], our solution takes into account a quadratic cost function as well as
the constraints on velocity and acceleration.

In many industrial manipulators, individual joint velocities and posi-
tions are used as reference inputs for each DOF. The required torque values
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can also be calculated if the inverse dynamics is available. Thus, our ap-
proach is applicable for a large class of robots. However, the assumption
of decoupled DOF does not hold in general when there are obstacles. In
such cases, via-points can be included or a multiple DOF problem with the
obstacles represented as state constraints needs to be solved. Finding an
analytic solution in the latter approach is challenging.

5.7 Conclusion

An analytic solution to the fixed-time optimal point-to-point trajectory plan-
ning problem with velocity and acceleration constraints was derived. The
benefit of the analytic solution is that its computation time is indepen-
dent of its resolution, while a numerical approach based on discretization
might fail for a high sampling rate. Since the solution can be computed effi-
ciently, there is an opportunity for online trajectory generation. Compared
to time-optimal solutions, the fixed-time problem solved here allows for an
application-specific cost function. Additionally, the synchronization between
several degrees of freedom is for free since all movements must follow the
same given fixed-time. For more complex dynamics, using the maximum
principle to derive analytic equations seems impractical. However, given
the benefits of an analytic solution, special software can be developed to
assist with this approach.
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6
Real-Time Trajectory
Generation using Model
Predictive Control

6.1 Introduction

A desired characteristic of the motion planning in uncertain environments
is the ability to react to sensor inputs [Kröger, 2010]. In this chapter, we
provide experimental results for a ball-catching robot [Linderoth, 2013],
where the estimates of the contact position of the ball are delivered online
from a vision system. As more vision data become available, the position
can be estimated with lower uncertainty. Thus, a new trajectory needs to
be computed when new estimates are delivered. Our approach to trajectory
generation is based on the receding-horizon principle offered by Model Pre-
dictive Control (MPC) [Mayne et al., 2000; Maciejowski, 1999]. By employing
a final-state constraint in the MPC formulation, it is possible to solve fixed-
time motion-planning problems where analytic solutions are not available.
In contrast to the typical application of MPC for reference-tracking prob-
lems, we adopt a trajectory-generation perspective. In our experiments, we
use the aforementioned strategy to compute reference values (joint position
and velocity reference values) for an underlying motion-control system.

Previous Research
Methods for trajectory generation based on polynomial functions of time
were already developed in the 1970s [Paul, 1979; Taylor, 1979]. Time-
optimal path tracking for industrial manipulators was suggested in the
1980s [Bobrow et al., 1985; Shin and McKay, 1985]. An overview of
trajectory-generation methods for robots is provided in [Kröger, 2010]. There
are many methods for online trajectory generation with the objective of time-
optimality based on analytic expressions, parametrized in the initial and
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final states of the desired motion and certain constraints [Castain and Paul,
1984; Macfarlane and Croft, 2003; Haschke et al., 2008; Kröger and Wahl,
2010]. The difference between these methods is in their generality with re-
spect to the initial and final states and constraints. A sub-optimal solution
to the fixed-time trajectory planning for robot manipulators was proposed
in [Dulęba, 1997]. In another approach, the fixed-time optimal solution in
the space of parametrized trajectories was found [Yang et al., 2012].

Trajectory generation based on optimization using a kinematic model
has been proposed in [Bauml et al., 2010] for ball-catching robotic sys-
tems. Methods for catching flying objects with robots were also considered
in [Linderoth et al., 2010; Lampariello et al., 2011]. In the latter, a dy-
namic model was employed and machine-learning algorithms were used in
the online execution. MPC has been proposed for control and path track-
ing for mobile robots; see, e.g., [Howard et al., 2010; Kanjanawanishkul
and Zell, 2009; Klančar and Škrjanc, 2007]. A two-layer architecture was
proposed in [Norén, 2013] with a generic optimal-control formulation at
the high-level and MPC at the low-level for tracking the solution gener-
ated by the high-level planner. Nonlinear optimization techniques to solve
finite-horizon MPC problems with complex dynamical models have been
proposed and used for controlling humanoids [Erez et al., 2013] and for
hand manipulation [Kumar et al., 2014].

Contributions
The major contribution of this chapter is a method for fast online motion
planning, given an initial state of a robot and a desired final state at
a given time. The approach does not rely on any predefined trajectory
or path. To this purpose, we have applied the MPC framework to fixed-
time point-to-point trajectory generation. In our approach, it is possible
to solve the trajectory-planning problem online with application-specific
cost functions and a broad class of constraints on inputs and states. The
algorithm relies on convex optimization, such that real-time computational
constraints for modern robotic control systems can be satisfied. Various
choices of models and constraints are illustrated with simulation results.
Further contributions of this chapter are a complete implementation of one
instance of the approach to motion planning and a subsequent experimental
evaluation in a challenging scenario of ball catching.

Outline
The structure of this chapter is as follows. A problem formulation is pro-
vided in Sec. 6.2, where a generic motion-planning problem using MPC is
defined. Following this section, the methods that lead to a concrete im-
plementation of a real-time trajectory generator are presented in Sec. 6.3.
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Extensive simulation results illustrating different aspects of the approach
are presented in Sec. 6.4. In Sec. 6.5, the experimental setup is detailed and
the implementation aspects are discussed. The results from evaluation ex-
periments as well as the execution of the proposed motion-planning method
on a robot in a demanding task of ball-catching are provided in Sec. 6.6.
Finally, the results of this chapter and the methods are discussed in Sec. 6.7
and conclusions are drawn in Sec. 6.8.

6.2 Problem Formulation

In many robotic applications, it is desirable to attain a certain state of the
robot at a given time. This will result in a reference-tracking problem if the
desired state is specified as a function of time during the whole execution.
On the other hand, if the desired state is unspecified during certain intervals
in time, we need to do planning between the points, i.e., transferring the
robot from an initial state to the next state in the given time. In either
case, the motion of the robot must fulfill predefined constraints. Moreover,
we wish to specify a desired behavior, which in this chapter is implicitly
characterized by the optimum of an objective function.

We develop an approach based on model prediction and receding horizon
to solve this type of problems. A central notion in MPC is the use of a model
to predict the behavior of a system. Accordingly, it is possible to optimize the
objective function over a receding horizon, considering the predicted states
and outputs. The optimization is usually carried out at each sample. Then,
only the first sample in the computed control inputs over the prediction
horizon is applied [Maciejowski, 1999; Mayne et al., 2000]. Figure 6.1 shows
a schematic of trajectory planning using MPC.

In the MPC framework, it is required to define a model of the system,
an objective function, state and input constraints, and a prediction horizon.
We consider linear models on the form

x(k+ 1) = Adx(k) + Bdu(k), (6.1)
y(k) = Cdx(k) + Ddu(k), (6.2)
z(k) = C̃x(k) + D̃u(k). (6.3)

Here, u(k), x(k), y(k), and z(k) denote the control signal, the states, the
measured outputs and the controlled variables, respectively [Maciejowski,
1999]. Denoting the the prediction horizon by N, let us define

UT =
[
uT(k), uT(k+ 1), . . . , uT(k+ N − 1)

]
. (6.4)
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Optimizer

Model

MPC

Robot +
r u y

w

Figure 6.1 Schematic description of trajectory generation using MPC; r is
the reference signal, u is the control signal, y is the output signal, and w
is the output disturbance. The feedback from the output to the MPC is not
present if an open-loop strategy is used.

We consider a quadratic cost at time k as

Vk(U) =
k+N∑

i=k+1
qz(i) − r(i)q2

Q(i) +
k+N−1∑

i=k
qu(i)q2

R(i) , (6.5)

where the norm is defined as qaq2
W = aTWa for a positive semidefinite

weight matrix W and the reference signal is denoted by r(i). Additionally,
Q and R are time-dependent weight matrices. Linear constraints on the
control and the states are assumed as follows

FU(k) ≤ f ,
GZ(k) ≤ �,

(6.6)

where F and G are matrices whose dimensions are determined by the
system dynamics (6.1)–(6.3), the number of constraints, and the prediction
horizon, and

ZT =
[
zT(k+ 1), zT(k+ 2), . . . , zT(k+ N)

]
. (6.7)

Given the initial state x(k) of the system, the following optimization
problem is solved at each sample k [Mayne et al., 2000]:

minimize
U

Vk(U)

subject to (6.1), (6.3), (6.6)
z(k+ N) = r f (k), (optional)

(6.8)

where r f (k) is the constraint on the controlled variable at the final time in
the prediction horizon.
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It is desirable to investigate how the MPC framework is applicable to
trajectory generation for point-to-point problems with a fixed final time.
Further, we wish to find a set of assumptions and methods that allow for
real-time solutions.

6.3 Methods

In this section, we specialize the general linear MPC framework in Sec. 6.2
to point-to-point trajectory generation. We also provide examples of models
and constraints, which are later used in our simulations and experiments
on a robotic setup.

Convexity and Optimality
In general, there might exist several local optima to the underlying opti-
mization problem. The global optimum may not be easy to find, even if the
problem is feasible. In case of multiple local optima, special care must be
taken to avoid jumping between different solutions, which may lead to diver-
gence. On the other hand, at the cost of limiting the scope of the problems,
choosing convex cost functions and convex and compact constraint sets, we
are assured that if a solution exists, it has to be globally optimal [Boyd and
Vandenberghe, 2004].

Point-to-Point Planning
In the general objective function (6.5), the desired controlled states do not
need to be specified at every sample. This is an important feature for point-
to-point trajectory generation. To clarify this point, assume that

Ψ(k) ⊂ {k+ 1, . . . , k+ N}, (6.9)

denotes the set of indices where there are desired values for the controlled
states z. By assuming that r(i) = 0 when i ,∈ Ψ(k), we can rewrite (6.5) as

Vk(U) =
∑

i∈Ψ(k)

qz(i) − r(i)q2
Q(i) +

k+N∑

i=k+1
qz(i)q2

Q̄(i) +
k+N−1∑

i=k
qu(i)q2

R(i) , (6.10)

where Q̄(i) = Q(i) if i /∈ Ψ(k) and Q̄(i) = 0 if i ∈ Ψ(k). For reference-
tracking problems, the first and the last terms are usually important. In
the point-to-point trajectory generation, provided that explicit constraints
for the desired controlled states are defined, the first term can be ignored.
Nevertheless, if soft constraints are preferred, then all of the terms might be
used. In this case, the benefit is immediate if the optimization problem with
explicit constraints on the controlled variables z(i), i ∈ Ψ(k), is infeasible.
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Since the optimization in general runs at every sampling instant, it is
possible to account for the updates in the target or deviations from the
planned trajectories of the robot. If good trajectory-tracking control of the
robot could be assumed, the feedback loop can be closed around the model
too, providing an open-loop control strategy (cf. Fig. 6.1).

Although it is possible to introduce constraints on the states at any
sampling instant, we limit ourselves to constraints on z(k+N). This strategy
is advantageous if no information about the variations in the target is
available ahead of time, or if we do not want this information to influence
the current decision. In such cases, we can successively reduce the sampling
period while keeping the number of discretization points constant—i.e., the
prediction horizon in discrete time remains constant while the prediction
horizon in continuous time gradually decreases. This allows for improving
the resolution of the solution as the system follows the computed trajectory
toward the target state.

Interpolation of Trajectories
It is required to have a valid trajectory in every moment because of the
real-time execution of the motion planning. This is obviously the case also
when the optimization algorithm fails, for example as a result of an infea-
sible problem specification. Thus, we consider piece-wise trajectories. The
previous trajectory is valid until the new one is ready to be switched to.
The robot is stopped in its final position if no other piece of trajectory for
the current time exists.

Since MPC is formulated for discrete-time systems, we need to inter-
polate between the computed trajectory points. The interpolation makes it
possible to have a lower sampling rate for the optimization in the trajectory
generation than for the controlled system. Assuming that T is a vector of
increasing time instants and U is a matrix of the corresponding inputs,

T =
[
t1, t2, . . . , tn

]
, (6.11)

UT =
[
uT(1), uT(2), . . . , uT(n)

]
, (6.12)

we consider a linear interpolation such that

u(t) = u(k) + u(k+ 1) − u(k)
tk+1 − tk

(t− tk), tk ≤ t < tk+1. (6.13)

Discretization
In the MPC framework, the dynamics of a system is described by difference
equations. Assuming the following continuous-time linear model

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

(6.14)
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the discrete-time system obtained using the predictive first-order-hold sam-
pling method [Åström and Wittenmark, 2011] with a sampling period h
is

x(k+ 1) = Φx(k) + 1
hΓ1u(k+ 1) + (Γ − 1

hΓ1)u(k),

y(k) = Cx(k),
(6.15)

where

[
Φ Γ Γ1

]
=

[
I 0 0

]
exp




A B 0

0 0 I
0 0 0


 h

 . (6.16)

Note that (6.15) can be rewritten in the standard form by changing to a new
state variable ζ according to

ζ (k+ 1) = Φζ (k) +
(

Γ+ 1
h(Φ − I)Γ1

)
u(k), (6.17)

y(k) = Cζ (k) + 1
hCΓ1u(k). (6.18)

This choice of discretization method is motivated by the linear interpolation
of the trajectories as defined in (6.13).

Models
The models for the trajectory planning are developed to approximate the
relation between the motion and the actuation. The motion can in principle
be specified in any set of generalized coordinates. However, choosing a
certain coordinate system can significantly simplify the equations. Also,
depending on the application, it is sometimes more natural to use Cartesian
coordinates in operational space rather than joint coordinates. Furthermore,
the motion can be specified in terms of position, velocity, or higher-order
time derivatives of the position. A control signal may be a dynamic quantity
such as force or torque. Typically, the dynamic equations of robotic systems
are highly non-linear. Therefore, without using any form of approximation,
this fact limits the usage of a linear MPC framework.

Here, we provide two examples of models for which the linear MPC
approach is applicable:

Chains of Integrators Assuming a good tracking performance for a
robot, a simple kinematic robot model using only the kinematic variables
can be constructed by multiple decoupled chains of integrators, see, e.g.,
[LaValle, 2006]. Since robots have various structures, we choose the gener-
alized coordinates q for the representation of the states. In this way, q may
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represent either the joint values or the Cartesian coordinates depending on
the application. We choose the state vector as

x =
[
q1, q̇1, q̈1, . . . , qd, q̇d, q̈d

]T ,
where d is the number of degrees of freedom.

The continuous-time model (6.14), where each DOF is assumed to be a
triple integrator, is specified by the matrices

A = blkdiag
(
[ Ã, . . . , Ã]

)
, B = blkdiag

(
[B̃, . . . , B̃]

)
,

and C = I3d, where I3d denotes an identity matrix in R3d$3d, blkdiag(·)
forms a block diagonal matrix from the given list of matrices, A ∈ R3d$3d,
B ∈ R3d$d, and

Ã =


0 1 0

0 0 1
0 0 0


 , B̃ =


0

0
1


 .

The matrices for the discretized model concerning the controlled states can
be calculated as below

Φ = blkdiag
(
[Φ̃, . . . , Φ̃]

)
, Γ1 = blkdiag

(
[Γ̃1, . . . , Γ̃1]

)
,

Γ = blkdiag
(
[Γ̃, . . . , Γ̃]

)
,

where Φ ∈ R3d$3d, Γ1, Γ ∈ R3d$d, and

Φ̃ =




1 h h2

2
0 1 h

0 0 1


 , 1

h Γ̃1 =




h3

24
h2

6
h
2



, Γ̃ =




h3

6
h2

2
h


 .

Linearized Model As another example, let us assume that we have iden-
tified a linear model from the joint reference velocities to the joint velocities
around a certain working point in the task space of the robot. As long as
the range of the movements is small, this model can be employed for the
purpose of trajectory generation. The benefits from such models are im-
mediate when the mechanism has certain resonant frequencies, resulting
from inherent flexibilities in the mechanical parts or coupling between the
DOF. Assume that for each pair of an input and a DOF, we have identified
a linear model such that

vi = Hi, jvrj ,
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where vr and v denote the velocity reference and the velocity along the
DOF, respectively. We can construct a complete model from the reference
acceleration ar to actual positions and velocities such that

x = H̃ar,

where x =
[
q1, q̇1, . . . , qd, q̇d

]T , ar = [
ar1, ar2, . . . , ard

]T , and

H̃ =




1
s2 H1,1

1
s2 H1,2 · · · 1

s2 H1,d

1
s H1,1

1
s H1,2 · · · 1

s H1,d

...
...

. . .
...

1
s2 Hd,1

1
s2 Hd,2 · · · 1

s2 Hd,d

1
s Hd,1

1
s Hd,2 · · · 1

s Hd,d




. (6.19)

Finally, we convert H̃ to a state-space model and compute its discrete-time
counterpart according to Sec. 6.3.

Cost Function
When choosing a cost function in the optimization, physical interpretations
are often beneficial but in general the cost does not need to have a physical
meaning. For trajectory generation, we might consider punishing high val-
ues of the acceleration or the velocity. We might also choose the cost Vk(U)
to model for instance the distance traveled by a robot or the mechanical en-
ergy. Let ∆X denote the changes in the vector of positions, then the length
is approximately proportional to

∑
q∆Xq. Also, introducing a cost on the

form
∑

Ẋ2 can lead to keeping the kinetic energy low. The MPC problem
for point-to-point trajectory generation can be formulated by assuming the
objective function (6.10) with Ψ(k) = ; and Q̄(k+ N) = 0, i.e., ignoring the
first term and the cost on the final state.

For the purpose of illustrating certain additional features of possible
cost functions, the remaining part of this subsection elaborates on the
basic formulation outlined in the previous paragraph. An abrupt brake
of the robot motion often leads to the excitation of vibration modes. To
avoid this problem, we can shape the control signal such that it smoothly
goes to zero toward the end of the motion. For example, an exponential
weighting function for the control signal can be applied from sample k′
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onward according to

R(i) =




c



i− k′ + 1
N + k− k′




R, if k′ ≤ i < N + k
R, if k ≤ i < k′

(6.20)

where c denotes the maximum weight at the end of the prediction horizon,
and R is a constant matrix. Similarly, the deviation of the states from r f
can be penalized more aggressively close to the end of the trajectory to
guarantee that the system remains in the vicinity of the desired final state.

Another possibility is to filter out undesired frequencies by introducing
a cost term in the frequency domain. This requires expressing the time
signals in the frequency domain using the Discrete Fourier Transform (DFT)
kernel [Sundararajan, 2001]. Let K denote the DFT kernel for a given
length and F be a discrete-time filter specifying the penalties on different
frequency components, then a cost in the frequency domain for signal a can
be formulated as qaq2

W . The weight matrix is defined as

W = real (K∗diag (F∗F) K) , (6.21)

where ∗ denotes the complex conjugate transpose and diag(A) is a diagonal
matrix composed of the diagonal elements in the matrix A.

Constraints
In addition to the constraints related to the final state or the states of the
via points, constraints on the physical variables can be included. Bounds on
the joint velocity, joint angles, and control signal can be expressed as state
or control constraints directly. Workspace and obstacles in Cartesian space
can also be considered. Specifically, a typical workspace can be expressed
as a set of linear equations

G
[
X(k)

1

]
≤ 0

where X is a subset of the Cartesian coordinates and G is a matrix. By in-
cluding velocities in X , it is possible to define velocity-dependent boundaries
as well.

It is straightforward to include constraints on linear combinations of the
kinematic variables. From a practical perspective, we may consider limiting
the coordinate positions, the velocities, the accelerations, and the jerks.
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Therefore, matrices F, G and vectors f , � in (6.6) can be formed such that

pu(i)p ≤
[
umax

1 , . . . , umax
d

]T , k ≤ i ≤ k+ N − 1
zmax
j =

[
qmax
j , vmax

j , amax
j

]
, 1 ≤ j ≤ d

pz(i)p ≤
[
zmax

1 , . . . , zmax
d

]T , k+ 1 ≤ i ≤ k+ N
z(k+ N) = r f (k),

where r f (k) is the desired final state according to (6.8). Note that if the
desired target state is a constraint on the final state, we can successively
reduce the sampling period, as described in the last paragraph in Sec. 6.3.

Constraints related to each joint of the robot, such as maximum angles
or angular velocities, are naturally expressed in the joint space. On the other
hand, constraints on the motion of the end-effector are more conveniently
expressed in the Cartesian space. Ideally, both joint-space and Cartesian-
space constraints could exist and the relation between the variables could
be established by forward or inverse kinematics. However, because of the
complexity of the forward and inverse kinematics, this might lead to difficult
nonlinear equations, or in general non-convex constraint sets, in one or the
other variable sets.

The full power of the linear MPC approach for planning a trajectory
is utilized when the workspace limits can be approximated by a convex
set in the joint space. Here, we consider an example to show that certain
geometrical constraints in the task space could be approximated by a convex
set in the joint space. However, such an approximation implies that we limit
the solution to one of several possible configurations for robots that are
redundant with respect to the task.

In this illustration of the method, we consider the kinematics of an ABB
IRB140 robot [ABB Robotics, 2014]. The end-effector is required to move
in a region defined by a thin volume located in front of the robot. We fix
joints 4, 5, and 6 to 0, 40, and 0 degs., respectively, and find the range of
values for the first three joints of the robot that projects the position of the
end-effector to the desired volume in the Cartesian space. In Fig. 6.2, an
ellipsoid is fitted to the allowed points in the joint space. In general, the
convex hull [Boyd and Vandenberghe, 2004] or the largest convex subset of
the acceptable points can be computed.

6.4 Simulation Results

Prior to executing experiments on the robotic setup with the developed
approach to trajectory generation, simulations were performed to validate
the method and investigate its characteristic features for different choices
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Figure 6.2 A Cartesian space volume defined in the task space (a) approx-
imated by a convex geometrical constraint in the joint space (b). Note that
a thin sphere cap in the Cartesian space is approximated by an ellipsoid in
the joint space.

of the cost function and the constraints, combined with the modeling ap-
proaches outlined in Sec. 6.3. Two main simulation results are presented
and evaluated in this section. The first simulation shows the computed op-
timal trajectories for a single target point with the approach outlined in
Sec. 6.3, employing a model based on chains of integrators. The second sim-
ulation concerns the approach to trajectory generation where a linearized
local dynamic model of the robot is employed and geometrical constraints
are enforced on the robot position as described in Sec. 6.3.

Single Target Point
In the first simulation, a single desired target state was provided to the tra-
jectory generator. The model with a chain of integrators defined in Sec. 6.3
was employed. For the cost function (6.10), we used the constant weighting
matrices Q = blkdiag ([0, 1, 1]) and R = 0.001. The prediction horizon was
set to 20 samples. Starting at rest at q = 0 rad, the desired state to reach
was q = 1 rad at time t = 1 s with velocity v = 0.5 rad/s and acceleration
a = 0 rad/s2. The constraints were chosen as qmax = 2 rad, vmax = 1.2 rad/s,
amax = 100 rad/s2, and umax = 250 rad/s3. The results of the simulation
are provided in Fig. 6.3, where the trajectories are visualized with black
lines and the sampling instants are indicated with +. Initially, a trajectory
with comparably low time-resolution was computed, as an approximation
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of the true trajectory for transferring the system from the initial state to
the final state. With a period of 200ms, the same target state was sent to
the trajectory generator. A new optimal trajectory was computed with the
initial state being the state at the current time obtained from the previ-
ously computed trajectory. This resulted in a new trajectory with increased
time-resolution. Considering that this procedure was repeated during the
execution, a sequential refinement of the trajectory was achieved as the
system moved closer to the target state where accuracy was required, see
Fig. 6.3.

Dynamic Model and Geometrical Constraints
Additional simulation experiments were performed in order to evaluate the
performance and behavior of the approach. More specifically, the algorithms
developed were evaluated with a more complex model comprising consider-
ation of the inherently flexible dynamics of a robot in place of the model
with decoupled chains of integrators. We also investigated the effect of ge-
ometric constraints in task space in this simulation. Considering that the
main objectives of these simulations are to visualize the effects of different
constraints and model choices, the trajectory generation is not applied in
receding horizon at each sample, but rather computed over the complete
time horizon directly. This approach does not imply any limitations in the
evaluation, since the methods could also be employed with the iterative
approach to trajectory generation in a receding-horizon fashion.

Dynamic Model A simulation of trajectory generation in joint space was
performed, where the approach defined in Sec. 6.3 with a linearized model
describing the flexible local dynamics of a robot with three joints was em-
ployed. The coupling dynamics—i.e., the transfer functions Hi, j in (6.19)—
were chosen in the form of

K w2
0

s2 + 2ζ0w0s+ w2
0
, (6.22)

where K is a coupling factor (which is equal to one for the diagonal terms
Hi,i), w0 is the natural frequency, and ζ0 is the damping. In the simulation,
the model parameters were chosen to match the typical dynamics exhibited
by a conventional industrial manipulator. The coupling dynamics between
the different actuation directions were symmetrically introduced for physical
reasons. A shaping function with exponential growth toward the end of the
motion was introduced in the cost function, see the relation in (6.20) in
Sec. 6.3. This function acted on the joint angles, the joint velocities, and the
inputs in the optimization. The intention, with such a choice, is to obtain
trajectories that smoothly approach the desired final state.
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Figure 6.3 Results from a simulation where the same target point was
sent repeatedly to the trajectory generator at the time instants indicated by
the vertical, dashed red lines. A clear increase in the time-resolution of the
trajectory is observed when moving closer to the target. Also, it is obvious
that the constraint on the velocity is active during a major part of the motion.
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Figure 6.4 Optimal trajectories obtained with the linearized model de-
scribing the local dynamics of a flexible 3-DoF robot in an area close to the
desired final point in the generated trajectories. The joints are denoted by Ji,
i ∈ {1, 2, 3}. Compare with Fig. 6.5, where the same point-to-point motion
planning task was considered but with an oversimplified model.

Figure 6.4 shows the trajectories obtained using the linearized model of
the robot dynamics in a point-to-point motion. The effects of the oscillatory
dynamics in the model are clearly visible. Geometrical constraints in task
space were also enforced so as to show that this kind of constraints could
be combined with a more complex model of the system to be controlled.

In order to highlight some of the differences between using the model
based on the chains of integrators and the more complex model comprising
oscillatory dynamics and coupling between the DOF, we performed another
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experiment, where we applied the input trajectories (i.e., the acceleration
references) computed in a trajectory generation with the simpler model
to the more complex linearized model. The resulting trajectories as well
as those computed based on a pure kinematic model with decoupled inte-
grators are compared in Fig. 6.5. There is a clear difference between the
trajectories in the two cases, which indicate that there is a possible major
benefit of using the more complex model when such model is available. It
could also be observed that using the inputs computed based on the double-
integrator model on a system described by the linearized model does not
guarantee that the final position constraints are fulfilled. This is clear from
the simulation results in Fig. 6.5. This effect, though, will be suppressed
if feedback controllers for the joint positions and velocities are used, which
is standard in conventional industrial robot control systems. However, com-
pared to using a more accurate model this strategy implies utilizing more
control authority.

Geometrical Constraints The optimal trajectories for a point-to-point
motion were computed based on the same model as used in the previous
subsection. The trajectory generation was performed on joint level employ-
ing the kinematics of the first three joints of a robot manipulator ABB
IRB140 [ABB Robotics, 2014]. Geometrical constraints were enforced in the
trajectory generation using the approach outlined in Sec. 6.3, with a con-
vex approximation of the allowed area in the task space (cf. Fig. 6.2). The
remaining constraints on the other kinematic joint variables were chosen
in the same way as in the previous simulation in this subsection. The sim-
ulation was performed both with and without the geometrical constraints
and the results are shown in Fig. 6.6. In the figure, the part where the
original path violates the geometric constraint is indicated in red and it can
be observed that the other path, resulting from the trajectory generation
with the additional geometrical constraint, is within the allowed area. It
is thus clear that such geometrical constraints could be handled efficiently
in the trajectory generation, if a suitable convex description of the area of
interest could be found.

6.5 Experimental Setup

The method based on a decoupled kinematic robot model using a chain of
integrators as described in Sec. 6.3 was implemented and experimentally
evaluated on an industrial robot system. The system consisted of an ABB
IRB140 industrial manipulator [ABB Robotics, 2014], combined with an
ABB IRC5 control cabinet. The control system was further equipped with
a research interface, ExtCtrl [Blomdell et al., 2010], in order to implement
the developed trajectory-generation method as an external controller. The
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Figure 6.5 Comparison of the optimal trajectories obtained with the
double-integrator model of the 3-DoF robot and the corresponding trajec-
tories obtained when the same input is applied to the linearized model. The
trajectories computed with the model based on decoupled double-integrators
are shown (solid) and the simulated trajectories when the same inputs are
applied to the linearized model are shown (dashed). The joints are denoted
by Ji, i ∈ {1, 2, 3}. Note that the target point is not achieved with the
oversimplified model in an open-loop strategy.
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Figure 6.6 Comparison of the paths from point A to point B obtained
with and without the geometrical constraint corresponding to an allowed
area in the task space in a point-to-point movement. The surface shows the
boundary of the geometrical constraint and the part of the original path that
violates the constraint is shown in red.

research interface permits low-level access to the joint position and velocity
controllers in the control cabinet at a sample period of 4ms. More specifi-
cally, reference values for the joint positions and velocities can be specified
and sent to the joint controllers, while the measured joint positions and
velocities and the corresponding reference joint torques were sent back to
the external controller from the main control cabinet with the same sample
period. The implementation of the trajectory generation was made in the
programming language Java and the communication with the external robot
controller was handled using the LabComm protocol [LabComm, 2015].

The inverse kinematics of the robot were required in order to transform
the desired target point in Cartesian space to joint-space coordinates that
can be used in the motion planning. The kinematics required were also
available in Java from a previous implementation [Linderoth, 2013]. For
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implementation of the solution of the MPC optimization problem, the CVX-
GEN code generator [Mattingley and Boyd, 2012; Boyd and Vandenberghe,
2004] was used. The generator produced C code, which subsequently was
integrated with the Java program using the Java Native interface. The
generated C code was by default optimized for performance in terms of
time complexity. It enabled solution of the required quadratic program in
the MPC within 0.5ms—i.e., each optimization cycle including overhead
required approximately 1–4ms (for the four DOF used in the considered
task and a prediction horizon of 20 samples) on a standard personal com-
puter with an Intel i7 processor with four cores. In order to preserve the
numerical robustness of the solver, scaling of the equations, the inputs, and
the state constraints was introduced in the optimization. This is important,
considering the fact that the matrices might be poorly conditioned in the
case of short sampling periods when close to the final time.

For evaluating the performance of the trajectory-generation method in a
challenging scenario, we considered the task of catching balls with the robot.
We employed the computer-vision algorithms and infrastructure developed
in [Linderoth et al., 2010; Linderoth, 2013] for detection of the balls thrown
and prediction of the target point. Two cameras detected the ball thrown
toward the robot, and the image-analysis algorithm estimated the position
and velocity, which provided the basis for the model-based prediction of the
target state. A photo of the experimental setup is shown in Fig. 6.7. A movie
showing the ball-catching experiment is available online [Ghazaei Ardakani
et al., 2015].

6.6 Experiments and Results

The approach to trajectory generation using chains of integrators in Sec. 6.3
was evaluated in two different experiments on the robot. The experiments
concerned trajectory generation in joint space. Both experiments were ex-
ecuted on the robot setup described in Sec. 6.5. In the experiments on the
robot, the open-loop strategy to trajectory generation was employed—i.e.,
no feedback from the robot measurements was used. The prediction horizon
was set to 20 samples. We assumed that the DOF can be independently
controlled. For each DOF, we employed the constant weighting matrices
Q = blkdiag ([0, 1, 1]) and R = 0.001. This means that we penalize a
quadratic function of velocity, acceleration, and jerk according to (6.10). In
contrast to the jerk, which is the input to the adopted model, we used the
computed joint velocity and position values as the reference inputs to the
robot.
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6.6 Experiments and Results

Figure 6.7 The experimental setup used for evaluation. The task is to
catch a ball in the box attached to the end-effector; two cameras (not visible
in the figure) were used for detection of the ball.

Sequence of Target Points
In the first experiment on the robot system, a sequence of different target
states 2 s apart from each other was provided to the trajectory generator.
The target points were located at the perimeter of a rectangle centered
at the home position of the robot end-effector in the task space. Thus,
these targets required motion along different Cartesian directions of the
robot. Each target state was desired to be reached after 200ms, with zero
velocity and acceleration. The constraints in the optimization were chosen
based on physical properties of the joints [ABB Robotics, 2014], with some
margin, according to qmax = 2 rad, vmax = π rad/s, amax = 45 rad/s2, and
umax = 1500 rad/s3 for all joints. Each target state was sent with a sample
period of 20ms, resulting in the successive refinement of the trajectory.
Once the robot reached the target state and paused there for 50ms, a new
trajectory for returning to the home position was computed and executed.
Figure 6.8 shows the trajectories for the angle, velocity, and acceleration of
joints 1 and 2.

In order to further evaluate the performance of the trajectory generator,
a detailed view of the position reference given by the optimal trajectory and
the corresponding measured position for joint 2 is illustrated in Fig. 6.9.
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Figure 6.8 Experimental results from joint 1 and 2 of the robot where
a sequence of four target states was sent to the trajectory generator, each
followed by a new target state coinciding with the home position of the
robot. The good tracking of the computed optimal trajectories is clear from
the experiments with a sequence of target states, corresponding to different
points in the robot task space.
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Figure 6.9 A detailed view of one of the motion segments for joint 2 in
Fig. 6.8. The time instants when the target state was sent to the trajectory
generator are indicated by the vertical, dashed red lines in the figure. The
delay between the reference and the actual trajectory is approximately 8ms.

The figure indicates the time instants at which the target state was sent
and consequently a new trajectory generation was performed. The compu-
tation time for each trajectory generation was below the sample period of
the robot controller, which meant that the optimal trajectory could be exe-
cuted immediately. Further analysis of the computation time is presented
in Sec. 6.6.

Ball-Catching Experiments
The most demanding evaluation of the method was the computations of
optimal trajectories for the robot to catch balls thrown toward it. The time
period from the release of the ball until it reached the robot was distributed
in the interval [200, 800]ms. Hence, the success rate of the task depended
on the satisfaction of the real-time constraints for computing a trajectory
for transferring the robot from the home position to the desired final state
at the predicted arrival time. As soon as new data from the vision sensors
and image-analysis algorithms were available, the estimated contact point
(and the corresponding arrival time) of the ball was updated, leading to
recomputations of the optimal trajectory. Since not all DOF of the robot
were required for the task, joints 4 and 6 were set to fixed values during
the experiments. The trajectories were generated such that the robot should
be at the target point with zero velocity and acceleration at the predicted
arrival time with a predefined margin. After reaching the final target, the
robot paused there shortly in order to catch the ball, and finally returned to
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the home position. In the case that the estimated arrival time was already
passed, no optimal trajectory was computed. If the robot, given the velocity,
acceleration, and jerk constraints, could not meet the arrival time—i.e.,
the optimization problem was infeasible—we still computed a trajectory
for the robot to reach the target position at an estimate of the minimum
required time. This improved the ball-catching performance since the initial
target-point estimates exhibited large uncertainty. By moving toward the
target point, there was a higher chance of catching the ball later when more
accurate estimates were obtained. The constraints were chosen in the same
way as for the experiment in Sec. 6.6.

Several experiments were performed with balls thrown with random
initial velocities and along different directions. The results with regard to
trajectory generation from one representative experiment are presented in
Fig. 6.10 for the joints that were active in the robot motion. It is clear that the
robot tracks the position references (computed by the trajectory generator)
closely. In the lower left plot in the figure, the time instants at which new
sensor data arrived are also indicated. During the motion of the ball toward
the robot, the computer-vision algorithm sent the current estimate of the
contact point and arrival time at an approximate sampling period of 4ms,
initiating a trajectory generation with a possibly updated target state. The
online replanning is also visible in the trajectory data shown in Fig. 6.10.
The figure also shows the time margin—i.e., the difference between the
estimated arrival time and the earliest possible time for reaching the ball,
given the constraints.

In order to verify that the real-time requirement of the trajectory-
generation method was satisfied in this task, the computation times for
all four DOF were measured for 100 cycles of optimization during a se-
quence of ball throwing. The histogram of the computation times is shown
in Fig. 6.11. It can be observed that all the computation times except one
are within the sampling period of the robot at 4ms, with the average and
standard deviation being 2.74 ± 0.26ms. According to the description of
Sec. 6.3, if the real-time deadline is missed, the robot continues using the
latest computed trajectory.

6.7 Discussion

We have proposed an approach based on Model Predictive Control for on-
line trajectory generation with real-time constraints for robots. The main
characteristic of this method is that it allows generation of trajectories that
are optimal with respect to a quadratic cost function (possibly extended
with additional terms), while satisfying a final-time constraint as well as
linear constraints on the input and state variables. Possible extensions
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Figure 6.10 Results from a ball-catching experiment. As the ball moved
toward the robot, new estimates of the contact position and the arrival time
were obtained and thus the trajectory was recomputed. A new estimate
was obtained on the edge of the signal shown in the lower left plot. The
lower right plot shows the margin of the current estimate of the arrival
time with respect to the minimum time required to arrive at the target (see
the definition in the text). The negative values imply that given the latest
estimate, the target cannot be met in time.
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Figure 6.11 The histogram of computation times for the trajectory genera-
tion during ball-catching experiments based on 100 different executions (four
joints were employed). The vertical, dashed red line represents the sampling
period of the robot system.

with respect to the cost function and convex constraints were discussed and
evaluated in simulations. The MPC solution considered is based on linear
systems and convex constraints. This implies that dynamical variables of
many manipulators such as forces and torques cannot be directly used in
the optimization, neither as part of the cost function nor constraints. How-
ever, no severe limitation is introduced unless extremely high performance,
i.e., working close to the physical limits, is demanded. On the other hand,
this restriction allows to obtain a convex problem, which does not suffer
from local optima and can be solved efficiently. This aspect was illustrated
in robot experiments in this paper using decoupled chains of integrators
as defined in Sec. 6.3 and linear constraints on the kinematic variables.
In addition, a more complex linear model, comprising oscillatory dynamics,
was considered and evaluated in simulations. Another interesting feature
for trajectory generation that was investigated in simulation was to enforce
explicit position constraints in task space by corresponding approximate
constraints in joint space.

In contrast to [Kröger and Wahl, 2010; Haschke et al., 2008], and [Mac-
farlane and Croft, 2003], our method gives the solution of the fixed-time
problem and adds more freedom in the formulation of the motion-planning
problem. Note that there is an important difference between our method and
methods based on a fixed trajectory profile [Paul, 1979; Taylor, 1979], such
as a fifth-order polynomial, or time scaling [Hollerbach, 1984] of minimum-
time solutions. With neither of these other methods, it is possible to guaran-
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tee that the solution will both fulfill the state, the input, and the final-time
constraints and result in the lowest possible value of an objective function
that is a function of the states and the control signals. To highlight the
characteristics of the solution computed with the developed trajectory gen-
erator, the trajectories shown in Fig. 6.3 in Sec. 6.4 for a single target point
were compared to the solutions obtained by minimizing the integral of the
jerk (blue curves) and by scaling the minimum-time solution (green curves)
in Fig. 6.12. These trajectories were computed based on the same kinematic
model using a chain of integrators as employed in the MPC approach. The
first alternative approach considered was to minimize the integral of the
squared jerk, while fulfilling the initial conditions and the end constraints at
the final time t f , see Sec. 6.4. Consequently, the cost function in continuous
time was

minimize
u

∫ t f

0
u(t)2dt. (6.23)

In this case, the solutions for the kinematic variables can be calculated
analytically and turn out to be polynomials, where the polynomial describing
the position is of fifth order, see [Ghazaei Ardakani, 2015]. With such an
approach, constraints on the kinematic variables—i.e., position, velocity,
acceleration, and jerk—obviously cannot be accounted for in the trajectory
generation. This is also clear when examining the computed velocity in
Fig. 6.12, see the blue line in the second upper plot. The second approach
considered in the comparison was to compute the time-optimal solution,
given the initial conditions, the final constraints, and the constraints on the
kinematic variables, see Sec. 6.4. The cost function in this case is

minimize
u

t f . (6.24)

The optimization problem was solved numerically using the JModelica.org
platform [Åkesson et al., 2010]. The solution was subsequently scaled in
time [Hollerbach, 1984] with a factor γ ≤ 1 in order to reach the final state
at the desired time t f . The solution is visualized in green in Fig. 6.12, where
the scaling factor γ = 0.93 has been applied. By definition, the scaling factor
is equal to or less than one, otherwise the original trajectory-generation
problem to be solved would not be feasible. It should also be noted that
the minimum and maximum constraints on the kinematic variables are
still satisfied, even though the state constraints are not necessarily active
during the motion as a result of the scaling. After the scaling process,
however, the non-zero final constraint on the velocity is not satisfied. This
is clear in Fig. 6.12 for the velocity, which is slightly lower than the desired
and hence does not fulfill the terminal constraint v(t f ) = 0.5 rad/s.

Another characteristic of our method is that it improves the accuracy of
the optimal trajectory as the system approaches the desired final state, by
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Figure 6.12 Comparison of the trajectories in Fig. 6.3 in Sec. 6.4 computed
with the MPC-based optimization approach (solid black) with the correspond-
ing trajectories obtained by minimizing the jerk (dashed blue) and by scaling
the minimum-time solution (dashed-dotted green).
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increasing the time-resolution. Hence, despite a small number of discretiza-
tion points in the initial trajectory generation, the trajectory is successively
being refined. This approach decreases the computational burden in the
optimization and thus enables computation of optimal trajectories with
real-time constraints.

We expect an improvement of the computation time with a more ef-
ficient implementation of the algorithms. Since the changes between two
consecutive samples can be very small, the convergence of the optimization
problem can be largely sped up by warm starting with the previous solu-
tion. In cases where each DOF can be independently controlled, such as
for the model with a chain of integrators discussed in Sec. 6.3, an efficient
way to reduce the time-complexity is to distribute the computation for each
DOF on a separate core of the CPU. This will allow scaling of the described
algorithm to a high number of DOF, since the major part of the computa-
tion time is spent on solving convex optimization problems. Reducing the
computation time allows an increased resolution of the discretization grid,
if prompted by the accuracy requirements of a task.

6.8 Conclusion

Model Predictive Control can offer a framework for generating trajectories,
which goes beyond tracking problems. A subset of MPC problems—e.g.,
with quadratic cost functions and linear constraints—has the potential of
being efficiently implemented. This fact allowed us to make a real-time im-
plementation of fixed-time point-to-point trajectory planning for the task
of ball-catching, with the feature of successive refinement of the planned
trajectory. In extensive experiments, the method was evaluated in the de-
manding and time-critical task of ball-catching with online updates of the
estimated target state from a vision system as the ball approached the
robot. Several additional convex constraints and adaptations of the cost
function that can be of interest in the trajectory generation using MPC
were investigated and evaluated in extensive simulations.
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7
Optimal Trajectories for Ball
and Finger System

7.1 Introduction

Model-based design is the prevailing approach in engineering. The au-
tomotive and aerospace industries make extensive use of modeling and
optimization tools to improve their products. Thanks to the increase of com-
putation power, model-based optimization to address control problems has
also gained popularity in recent years.

Practical systems often contain a combination of discrete and continuous
state variables. Accurate modeling of such systems requires the incorpora-
tion of hybrid dynamics. Hybrid models can also appear in the context of
processes with switched dynamics. For example in mechanics, establishing
or breaking a contact changes the behavior of the system. Modeling the rapid
changes in forces resulting from such phenomena leads to stiff differential
equations, causing trouble for numerical methods. An alternative approach
is to instead allow discontinuity in the state trajectories. The framework
of hybrid systems allows both switched dynamics and discontinuous state
variables.

Applying optimization techniques to hybrid models has resulted in the
solution of various practical problems. For example, hybrid dynamic op-
timization for making discrete decisions in power plants have been con-
sidered [Fouquet et al., 2014]. In the bipedal locomotion planning, there
are many examples where hybrid dynamic optimization methods have been
used. For example, in [Felis and Mombaur, 2016] the full dynamics of a
humanoid is considered to find a walking pattern.

A competing paradigm to the model-based approach is the model-free
approach. Using a variety of model-free techniques, remarkable results
for optimal control of robots interacting with the environment have been
reported [Kumar et al., 2016; Rombokas et al., 2013; Tassa et al., 2012].
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Despite the successful results, model-free approaches provide us with little
or no insight about fundamental issues in the control of such systems.

This chapter contributes by presenting a simple, yet realistic enough,
example system to capture the main issues arising in modeling and optimal
control of dynamics with varying contacts. We propose a ball and finger
system resembling a trackball interacted with by a human finger. Unilateral
and non-holonomic constraints play an important role in this system. In
order to derive analytic equations, simple 3D geometries are considered.
The model enjoys the following features:

• Analytic 3D models with contacts

• Rolling of finger against ball

• Dynamics and slippage

• Suitable for simulation as well as optimization

There are elaborate mathematical models for studying contact stability [Ya-
mada et al., 2012; Yamada and Yamamoto, 2013]. In contrast, the purpose
of the model developed in this chapter is to capture contact transitions and
to find optimal trajectories. The hybrid dynamic optimization required for
this purpose has been performed utilizing a multiphase approach, i.e., a
sequence of the mode changes of the system are mapped to phases.

The rest of the chapter is organized as follows. In Sec. 7.2, the mechanical
model of the process is developed. We turn the mechanical model into a
hybrid system in Sec. 7.3. This model is used for simulation as well as
optimization. Section 7.4 discusses the trajectory-planning problem and the
optimization approach to find optimal solutions. Various tools have been
used for simulation and optimization. The tool chain is detailed in Sec. 7.5.
We introduce instances of the trajectory-planning problems and give the
results of the optimization and simulation in Sec. 7.6. Section 7.8 discusses
various aspects of modeling and optimization. We draw conclusions and
propose future research in Sec. 7.9. Additionally, Appendix A.1 and A.2
provide the details of the mathematical expressions for the mechanical
models.

7.2 Mechanical Modeling

In this section, we build the mechanical model of the process shown in
Fig. 7.1. To produce analytic equations, we consider an idealized model,
which only admits contact between a sphere and a line segment. The fol-
lowing list summarizes, the modeling assumptions:

1. The finger is modeled as a rigid body with 3 degrees of freedom (DOF).
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Table 7.1 DH parameters of the finger

Link ai αi di θi
1 1 π/2 0 q1
2 1 0 0 q2
3 1 0 0 q3

2. The ball is a sphere with radius r and a spherical joint constraint.

3. The Coulomb friction model is considered with static (µs) and kinetic
(µk) friction constants.

4. There is viscous friction in the joints and the socket with friction
constants µv and D, respectively.

5. There is no torsional friction.

6. The restitution factor is equal to zero, i.e., when the finger collides
with the ball it will not bounce back.

7. The links are idealized line segments.

8. In case of contact, single point contact either at the end-effector or
along the last link is allowed. This is guaranteed by the choice of the
geometry.

9. The centers of gravity (COG) are located at the middle of each link
and inertia tensors are diagonal with respect to these points.

Geometry and Kinematics
Considering Fig. 7.1, the geometry of the system is described here. The ball
with radius r = 1 is assumed to be located at the origin oTb = [0, 0, 0].
The base of the finger is specified by the transformation consisting of a
rotation −90 degrees around the y-axis and a translation oTf = [2, 0, 0].
The kinematics of the finger is specified by the Denavit-Hartenberg (DH)
parameters [Denavit and Hartenberg, 1955] according to Table 7.1. We use
q ∈ R3 to denote the finger joint angles. Knowing the DH parameters and
the base transformation, the forward kinematics and the geometric Jacobian
with respect to the fingertip can be calculated. See Appendix A.1 for the
details.

Collision
To detect collision between the ball and the finger, the closest distance
between the ball and the last link is found. Define pm := pe + αêx3 as the
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y
x z

Figure 7.1 An illustration of the ball-and-finger system.

point on the line corresponding to the last link closest to the ball, where êx3

is the unit vector parallel to link 3, pe is the position of the fingertip, and
α determines how far pm lies from the fingertip. Then

(pm − ob) · êx3 = 0, (7.1)

which results in

α = (ob − pe) · êx3 . (7.2)

Define also the potential collision point, i.e., the point on link 3 closest to
the ball

pc := pe + sat0−a3
(α)êx3 , (7.3)

where satUL (x) denotes the saturation function with L as the lower limit
and U as the upper limit and a3 = 1 is the length of the third link. Hence,
the shortest distance of the third link to the ball is

h(q) := qrcq − r. (7.4)
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where rc := pc−ob is the vector to the closest point on the finger to the ball.
If the ball and the finger are impenetrable, it is required that h(q) > 0.

Therefore, the condition for collision can be stated as

h(q) ≤ 0. (7.5)

The velocity of the third link at the potential contact point denoted by
vc can be derived from the velocity of the end point ve using the velocity
relation of rigid motion [Meriam and Kraige, 2012] according to

vc := ve +ω3 $ (pc − pe)
= ve − sat0−a3

(α)êx3 $ω3

=
(
Jp − sat0−a3

(α)S(êx3)Jo
)
q̇

= Jcq̇, (7.6)

where ω3 is the angular velocity of the last link and S(·) denotes the
skew-symmetric operator performing the cross product. We also define

Jc := Jp − sat0−a3
(α)S(êx3)Jo, (7.7)

which is the Jacobian at the potential contact point. The expression for the
Jacobian Jc can also be obtained by substituting a3 with a3 + sat0−a3

(α) in
the Jacobian expression (A.4). Note that vc is the velocity of the link at the
contact point and not the velocity of the contact point itself, i.e., vc ,= ṙc.

Constrained Motion
When the finger is touching the ball, its motion is constrained to a manifold.
Using (7.4), the finger touches the ball when

h(q) = 0. (7.8)

This is equivalent to

qrcq2 − r2 = 0. (7.9)

Differentiating (7.9) w.r.t. time, results in

vc · rc = 0. (7.10)

This means that in the contact situation, the velocity of the contact point
remains tangential to the ball.

Depending on whether there is an interaction force between the objects,
the contact may be active or inactive. Let us denote the normal vector at
the contact point outwards w.r.t. the ball by

n := rc
qrcq

. (7.11)
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The normal component of the interaction force at the contact is then given
by

λn := λ · n, (7.12)

where λ denotes the contact force exerted on the finger. Using the Coulomb
friction model, interaction forces between two bodies are possible if and
only if there is a normal force between the contacting surfaces. Therefore,
an active contact implies λn > 0.

The relative velocity between the finger and the ball at the contact point
is

∆v := ω $ rc − vc. (7.13)

When two bodies are sticking, the relative velocity between them is zero,
i.e.,

∆v = 0. (7.14)

This constraint is maintained by the static friction fs. It is useful to define
v⊥ and vq for the perpendicular and tangential decomposition of the vector
v w.r.t. a plane with normal vector n, according to

v = vq + v⊥, (7.15a)
v⊥ = (v · n)n = (n⊗ n)v = Pnv, (7.15b)
vq = −n$ (n$ v) = v− v⊥ = (I − Pn)v = Tnv, (7.15c)

where ⊗ denotes the outer product and we have defined

Pn := (n⊗ n), (7.16)
Tn := I − Pn. (7.17)

Let us define

σ := µsλn −
∥∥λq
∥∥ . (7.18)

Hence, according to the Coulomb model the condition for the stiction can be
stated as

σ ≥ 0 \ q fsq ≤ µsλ · n. (7.19)

When the finger is slipping against the ball, the relative velocity ∆v is
not zero anymore and

λq = fk := µkλn
∆v
q∆vq , (7.20)
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where fk denotes the kinetic friction. The contact is inactive when λn ≤ 0.
Depending on the contact point between the finger and ball may arise

two types of contact: point and sphere or line and sphere. If the contact is
not slipping, for the first type of contact, (7.14) can be integrated to result
in a geometrical constraint, while the second type yields a rolling without
slipping constraint which is non-holonomic.

Dynamics
In this section, we derive the equations of motion for the ball and finger
system. The kinetic and potential energy of the finger can be described by

T f =
3∑

i=1

1
2miq̇T(JiP)TJiP q̇+

∑

i

1
2 q̇

T(JiO)TRi IiRT
i JiOq̇, (7.21a)

U f =
3∑

i=1
mi�

T
0 pi, (7.21b)

respectively. Here, mi and Ii denote the mass and inertia matrix of link
i, respectively, JiP and JiO denote partial Jacobians up to link i, Ri is the
rotation matrix from the world coordinate to link i, �0 =

[
0 0 −�

]T is the
gravity acceleration vector, and pi denotes the position vector to the center
of the gravity of link i. The Lagrangian of the finger is L f := T f − U f .
Accordingly, we derive the equations of motion

d
dt

(
�L f

�q̇

)
+
�L f

�q = Qe + Qc
f . (7.22)

The generalized external forces and the generalized forces due to the kine-
matical constraints are denoted by Qe and Qc

f , respectively. Substituting Qe

with the actuation torques, τ , minus the viscous friction, we obtain

M f (q)q̈+ C(q, q̇)q̇+ µvq̇+ �(q) = τ + Qc
f , (7.23)

where M f (q) is the mass matrix for the finger, C(q, q̇)q̇ denotes the con-
tribution of the centrifugal and Coriolis forces, µv is the viscous friction
coefficient, and �(q) is the gravitational force. The definitions of these func-
tions are given in Appendix A.2.

For the ball, using the Newton-Euler equations, we find

Ibω̇ +ω $ Ibω + Dω = Qc
f , (7.24)

where Ib = 2
5mr

21 is the inertial tensor for the ball and D denotes the
friction with the socket, and ω is the angular velocity of the ball.

In the rest of this section, we consider different regions depending on the
active constraints imposed by the contact. Finally, we describe the overall
system.
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Free Motion In case of no contact, we have Qc
f = 0. Hence,

M f (q)q̈+ C(q, q̇)q̇+ µvq̇+ �(q) = τ, (7.25a)
Ibω̇ +ω $ Ibω + Dω = 0. (7.25b)

Sticking The condition of no slipping (7.14) can be rewritten as

G
[
q̇
ω

]
= 0. (7.26)

where we have defined G := [Jc S(rc)] ∈ R3$6. The generalized forces due
to the constraints according to the Lagrange–d’Alembert theorem [Bloch,
2003] can be derived as [

Qc
f

Qc
b

]
= GTλ, (7.27)

where λ are the Lagrange multipliers corresponding to the interaction
forces. Therefore, (7.23) and (7.24) can be rewritten as

M f (q)q̈+ C(q, q̇)q̇+ µvq̇+ �(q) = τ + JTc λ, (7.28a)
Ibω̇ +ω $ Ibω + Dω = −rc $ λ. (7.28b)

Solving for Interaction Forces The interaction forces λ may be solved
for in order to reduce the DAE into an ODE. They could also be used to
evaluate whether in a certain state sticking is possible without switching
to new dynamics. The calculation may also be used to find out the direction
of kinetic friction at the onset of slipping. Let us define

M := blkdiag (M f (q), Ib) . (7.29)

We can rewrite (7.28) as

M
[
q̈
ω̇

]
+ f (q, q̇,ω,τ) = GTλ. (7.30)

where we have defined

f (q, q̇,ω,τ) :=
(
C(q, q̇)q̇+ µvq̇+ �(q) − τ

ω $ Ibω + Dω

)
. (7.31)

The Lagrange multipliers λ can be calculated by first taking the deriva-
tive of the constraints (7.26). Afterward, we multiply (7.30) by GM−1 from
the left and use the relation obtained from the derivative of the constraints.
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Let us define Γ := GM−1GT . Assuming Γ−1 exists, λ = λ(t, q, q̇,ω) can be
calculated according to

λ = Γ−1

(
GM−1 f (q, q̇,ω,τ) −

n∑

k=1

(
�G
�qk

q̇k
)[

q̇
ω

])

= Γ−1 (GM−1 f (q, q̇,ω,τ) +ω $ ṙc − J̇cq̇
)
. (7.32)

Note that the matrix M is always invertible with

M−1 = blkdiag
(
M−1

f (q), I−1
b

)
. (7.33)

Slipping In this case, the constraint only defines the normal part of the
interaction force, i.e., λn. By rewriting (7.10), we find

rc · Jcq̇ = 0. (7.34)

We normalize (7.34) by dividing by qrcq, to get

nTJcq̇ = 0. (7.35)

Now, from the Lagrange–d’Alembert theorem, it is clear that the contribu-
tion of the constraint force is Qc

f = JTc nλn. Including the kinetic friction
forces fk defined in (7.20), we conclude

M f (q)q̈+ C(q, q̇)q̇+ µvq̇+ �(q) = τ + JTc ( fk + nλn), (7.36a)
Ibω̇ +ω $ Ibω + Dω = −rc $ fk. (7.36b)

It is also possible to reformulate (7.36) using the total interaction force
λ := fk + nλn such that we obtain the same relations as (7.28). In this
case, (7.20) can be written as

λ · ∆v = q∆vq µk(λ · n), (7.37a)
(n$ ∆v) · λ = 0, (7.37b)

which additionally has no risk of division by zero as opposed to (7.20).

Impacts
Collisions give rise to rapid changes of the states. By allowing discontinuities
in the state trajectory, it is possible to model the effect of impacts right
after the collision without dealing with the actual process. In this case, new
values for post-impact quantities must be calculated. Since they can have
jumps, we use superscripts + and − to denote the right and left limits of
a quantity, respectively. Next, we consider various impact laws. Since after
collision the finger is neither allowed to penetrate the ball nor to bounce
off directly (restitution factor equal to zero), all the impact models ensure
(Jcq̇+)⊥ = n · Jcq̇+ = 0.
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Newton’s Impact Law If after impact the finger keeps its tangential
velocity intact and only loses its normal velocity, we get

Jcq̇+ = (Jcq̇)−q = TnJcq̇−. (7.38)

Accordingly, we can solve for the post-impact joint velocities. The impulse
in this case is perpendicular to the ball and cannot change the velocity of
the ball.

Sticking When sticking, the force impulse ι as a result of the impact
makes the post-collision relative velocity ∆v+ = 0. From the equations of
motion (7.28) and (7.13), we conclude

M f (q)(q̇+ − q̇−) = JTc ι, (7.39a)
Ib(ω+ −ω−) = −rc $ ι, (7.39b)
ω+ $ rc − Jcq̇+ = 0, (7.39c)

which can be solved for q̇+, ω+, and ι. By combining (7.39a)–(7.39c), we find

(
JcM−1

f JTc − S(rc)I−1
b S(rc)

)
ι = ω− $ rc − Jcq̇− = ∆v−. (7.40)

This shows that the impulse ι is a function of the contact point rc, the con-
figuration of the finger q, and the pre-impact relative velocity ∆v−, neither
the absolute velocity of the finger nor the ball.

Slipping Considering the maximum dissipation principle, an impact law
for this case can be formulated as minimizing the post-impact energy. The
optimization problem to be solved is

minimize 1
2ω

+T Ibω+ +
1
2 q̇

+TM(q)q̇+ (7.41a)

with respect to ι,ω+, q̇+

subject to M(q)(q̇+ − q̇−) = JTc ι, (7.41b)
Ib(ω+ −ω−) = −rc $ ι, (7.41c)
n · Jcq̇+ = 0, (7.41d)∥∥ιq
∥∥ ≤ µkι · n. (7.41e)

A heuristic way is to minimize the post-impact relative velocity. This allows
to make a quick transition to sticking. The corresponding optimization
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problem is

minimize
∥∥∆v+

∥∥ (7.42a)
with respect to µ, ι,ω+, q̇+

subject to M(q)(q̇+ − q̇−) = JTc ι, (7.42b)
Ib(ω+ −ω−) = −rc $ ι, (7.42c)
n · Jcq̇+ = 0, (7.42d)

ιq = µιn
∆v−q∥∥∥∆v−q

∥∥∥
(7.42e)

0 < µ ≤ µk, (7.42f )

where we have additionally assumed that the direction of the tangential
part of the impulse is aligned with the pre-impact relative velocity. An
analytic solution to problem (7.42) can be found. Subsequently, the equations
can be used in an optimal control problem.

From (7.13) and using (7.42b)–(7.42c), we conclude

∆v+ = ω+ $ rc − Jcq̇+

= ω− $ rc − Jcq̇− −
(
JcM−1

f JTc − S(rc)I−1
b S(rc)

)
ι

= ∆v− −
(
JcM−1

f JTc − S(rc)I−1
b S(rc)

)
ι. (7.43)

Multiplying (7.42b) by JcM−1 from the left and using (7.42d), we obtain

−n · Jcq̇− = n · JcM−1JTc ι. (7.44)

From (7.42e), it follows that ι lies in the subspace spanned by n and ∆v−.
Thus, we can write

ι = Cβ := [n, ∆v−]β (7.45)

where β ∈ R2 is an arbitrary vector. By substituting (7.45) back into (7.44)
and (7.43), we obtain an expression for the post-impact velocities in terms
of β as well as a constraint on β . Identifying β with x, we can rewrite the
problem of minimizing the post-impact velocities as

minimize qy− Axq (7.46a)
subject to Bx = z. (7.46b)

where

y = ∆v− (7.47a)
A =

(
JcM−1

f JTc − S(rc)I−1
b S(rc)

)
C (7.47b)

B = nTJcM−1JTc C (7.47c)
z = −n · Jcq̇− (7.47d)

142



7.2 Mechanical Modeling

There is a generic solution to problem (7.46). However, in our case, we
can simply solve for x1 or x2 from (7.46b) and substitute it into (7.46a) to
obtain a quadratic one-dimensional unconstrained minimization problem.
Consequently, the friction coefficient can be obtained from

µ = β2
β1
q∆v−q . (7.48)

If µ ≤ µk, this solution is valid for the problem (7.42). Hence, the impulse
and the post-impact relative velocity can be calculated from (7.44) and (7.43),
respectively. Otherwise, we set µ = µk. Then, from (7.42e) we conclude

ι = ιnn+ µkιn
∆v−q∥∥∥∆v−q

∥∥∥
. (7.49)

By substituting this into (7.44), we can solve for ιn and hence find ι. Finally,
∆v+ is obtained by using (7.43).

Overall System
The complete system has three discrete modes, corresponding to free
motion, sticking, and slipping. Let λ denote the interaction force and
xT :=

(
qT , dqT , ωT), where q̇ = dq. If for the moment we do not con-

sider the transition between modes, we can unify all the modes with the
first order differential equation

(
I 0
0 M(q)

)
ẋ+




0 −I 0
0 C(q, dq) + µv 0
0 0 S(ω)Ib + D


 x+




0
�(q)

0




=




0
τ
0


+




0
JTc (q)

−S(rc(q))


λ. (7.50)

The determination of λ is separate for each mode as follows.

• Free motion:

λ = 0. (7.51)

• Sticking (valid when
∥∥λq
∥∥ ≤ µsλn):

Jcq̇+ rc $ω = 0. (7.52)
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• Slipping (valid when ∆v ,= 0):

rc · Jcq̇ = 0, (7.53a)
λ · ∆v = q∆vq µkλn, (7.53b)

(n$ ∆v) · λ = 0. (7.53c)

Hence, we have a differential-algebraic equation (DAE) describing the dy-
namics in each mode, which is low index in the case of free motion and of
index 2 in the case of sticking and slipping.

7.3 System Modeling

The aim of this section is to transfer the mechanical system introduced in
Sec. 7.2 into a hybrid dynamical system. To find the solution to the overall
system, we must also consider an impact law and the so called Signorini’s
condition or corner law for λn (see [Brogliato, 2012]) :

h · λn = 0,
h ≥ 0, λn ≥ 0.

(7.54)

First, we discuss how these complementarity conditions lead to mode tran-
sitions. In the subsequent subsection, the complete hybrid system is pre-
sented.

Mode Transitions
The complementarity conditions (7.54) lead to mode transitions. Let us
partition the state space depending on whether there is an active contact
or not. The resulting binary partition is

λn = 0 ∧ (h > 0 ∨ h = 0 ∧ ḣ > 0 ∨ h = ḣ = 0 ∧ ḧ ≥ 0), (7.55a)
λn > 0 ∧ h = 0. (7.55b)

Note that those states where both λn and h are equal to zero, i.e., inactive
contacts, are included in the first partition. Also note that h = ḣ = 0 ∧
ḧ < 0 must be a transition point from the first partition since it leads to
penetration, but at the same time ∃λn > 0 such that it results in h = 0.

To fulfill the complementarity condition, transition happens from the
mode where λn = 0 to λn > 0 when

h < 0 ∨ (h = 0 ∧ ḣ < 0) ∨ (h = ḣ = 0 ∧ ḧ < 0). (7.56)

In the opposite direction, the transition happens when λn ≤ 0.
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Figure 7.2 illustrates the transition between these modes. Each mode
can have its own set of dynamical equations and the conditions for the
validity of a mode is given at the lowest part of the circle. The transition
conditions are shown close to the tail of the arrows and the reset maps close
to the arrowheads.

To account for switching to slipping and sticking and between them, we
should consider their region of validity. Both sticking and slipping account
for active contacts, i.e., λn > 0. The transition to them is however distin-
guished by the relative post-impact velocity ∆v+. If the static friction is
not able to maintain the sticking constraint, i.e, according to (7.19) when
σ < 0, the system makes a transition to slipping. In the opposite direction,
the transition depends on the relative velocity. However, according to the
Coulomb law the slipping region is not valid for zero relative velocity. This
implies that there is no ideal transition condition between the slipping and
sticking modes, although it is possible to calculate a continuous solution
for the velocities. This can be resolved by conditioning the transition on
q∆vq ≤ ε. The switching then happens arbitrarily close to the actual tran-
sition by tuning the value of ε. To avoid switching directly back we should
also make sure that d q∆vq / dt < 0.

Note that switching on ∆v larger than zero, implies that the transition
to the sticking mode is not possible. Similarly in the opposite direction, by
the end of the sticking mode, the relative velocity is still equal to zero and a
transition to slipping mode is not possible. A solution to these problems is
that to update q̇ and ω such that the required condition on ∆v+ is satisfied.

Since numerically it is impossible to detect exactly an equality, in the
implementation the equality conditions have to be replaced with inequality
conditions on the residual of the errors. We consider a constant ε > 0
defining the numerical tolerance, e.g., ∆v = 0 is implemented as q∆vq ≤ ε.
Note that for numerical reasons, we include negative values of h(q) in the
in-contact modes.

Hybrid Model
The transitions between the modes of (7.50)–(7.53c) happen according to
the discussion of Sec. 7.3. To avoid extra complexity, the contact types
(point and sphere or line and sphere) are treated in the same way and are
not distinguished through additional modes. The final model is a hybrid,
variable-index DAE system. Figure 7.3 illustrates the hybrid model. In
the figure, post-impact relative velocities are used in the conditions for
transition from the free motion mode. This is, however, just for saving
space. It can be assumed that (7.56) is the transition condition to an “Active
Contact” state where the impact law is applied. Consequently, depending
on q∆+q the transition to either sticking or slipping happens.
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λn = 0

System Eqs. I

h > 0 ∨
h = 0 ∧ ḣ > 0 ∨
h = ḣ = 0 ∧ ḧ ≥ 0

λn > 0

System Eqs. II

h = 0

(7.56) ḣ(q) := 0

λn ≤ 0

Figure 7.2 Hybrid system representation of the complementarity condi-
tion (7.54). For details of the notation, see [Lin and Antsaklis, 2014].

7.4 Optimization

In this section, we discuss how the hybrid DAE system in Fig. 7.3 can be
used to find trajectories for the system using optimal control. In the op-
timization, the slipping mode and its transitions are not considered, i.e.,
we only consider free motion and sticking, which correspond to the parts
in blue in Fig. 7.3. For many applications, this choice is motivated since
slippage implies energy loss, which is preferably avoided. This hybrid DAE
is ill-suited for straightforward application, due to the combination of non-
linear and hybrid dynamics. To deal with the hybrid dynamics, we use a
mixture of multiple phases and smooth approximations to obtain a system
model that is better suited for numerical optimization. The resulting equa-
tions are nonlinear and sufficiently differentiable to apply Newton-based
methods.

Optimal Control Problem
To investigate optimal trajectories, we use the optimal control problem
formulation

minimize φ(c(t f )), (7.57a)
with respect to x, y, u, t f , x0,
subject to dynamics of Fig. 7.3 in blue, (7.57b)

ċ = L(x, u), (7.57c)
x(0) = x0, c(0) = 0, (7.57d)
�(ẋ, x, y, u) ≤ 0, (7.57e)

where
x = (q, q̇,ω), y = (h, λ, λn, σ ), u = τ, (7.58)
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Slipping
(7.50), (7.53)

h(q) ≤ 0, λn > 0,
∆v ,= 0

Free Motion
(7.50), (7.51)
h(q) ≥ 0

Sticking
(7.50), (7.52)

h(q) ≤ 0, λn > 0,
σ ≥ 0

(7.56) ∧q∆v+q > 0

Impact law

λn ≤ 0

(7.56) ∧q∆v+q = 0

Impact law

λn ≤ 0

q∆vq ≤ ε ∧
d q∆vq / dt < 0

∆v+ = 0 σ < 0

∆v+ ,= 0

Figure 7.3 The hybrid system representing the ball and finger system.
Only the subsystem shown in blue is used for finding optimal trajectories,
limiting the possible solutions to free motion and sticking.

are the differential, algebraic, and control variables, respectively, c are
additional state variables that model the objective defined by φ and L, which
we describe further in Sec. 7.4, and � are path inequality constraints, which
are described in Sec. 7.4. For simplicity, we assume that at t = 0 the system
is in free motion, and so the initial state is determined by x0, which may be
chosen as an optimization variable. An arbitrary torque limit of 1 has been
imposed.

This general formulation can be used to, e.g., find optimal solutions to
the following problems:

• Reach the ball.

• Reorient the ball.
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• Rotate the ball with a reference velocity.

• Rotate the ball along different axes as fast as possible.

• Find a periodic solution to keep the ball rotating.

From Hybrid Dynamics to Multiple Phases
The optimization problem (7.57) is not compatible with conventional meth-
ods for numerically solving optimal control problems due to the hybrid dy-
namics. To accurately treat the switching dynamics discussed in Sec. 7.3 in
a differentiable way without making smooth approximations—which would
lead to unacceptable inaccuracy—we introduce multiple phases as described
in, e.g., [Betts, 2010; Becerra, 2010b]. The time horizon [0, t f ] is thus divided
into N phases [

t(1)0 , t(1)f
]
, . . . ,

[
t(N)0 , t(N)f

]
(7.59)

such that

t(1)0 = 0, t(N)f = t f , t(i+1)
0 = t(i)f , i = 1, . . . , N − 1. (7.60)

Within each phase only a single, prescribed mode is active, and the mode is
only allowed to switch at the phase boundaries.

For ease of notation, let

z(i) :=
[
ẋ(i) x(i) ċ(i) c(i) y(i) u(i)

]T . (7.61)

The dynamics within phase i are then described by the non-hybrid DAE

F(i)(z(i)) = 0 (7.62)

that corresponds to the mode that has been prescribed to the phase, that
is, (7.51) or (7.52) as well as (7.50) and (7.57c).

The phase boundaries t(i)0 and t(i)f are implicitly determined by event
constraints e(i), which correspond to the transition conditions of Fig. 7.3,
and are thus decision variables. The validity conditions are enforced by the
path constraint �(i). State and control inequality constraints can also be
incorporated into �(i). The system variables in the respective phases are
connected by linkage constraints ψ (i) corresponding to the reset maps of
Fig. 7.3.
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The hybrid dynamic optimization problem (7.57) is thus transformed
into the non-hybrid, multiple phase problem

minimize φ
(
c(N)(t f )

)
, (7.63a)

with respect to z(i), t(i)f , x
(i)
0 ,

subject to F(i)(z(i)) = 0, (7.63b)

e(i)L ≤ e(i)
(
z(i)(t(i)f )

)
≤ e(i)U , (7.63c)

ψ L ≤ ψ
(
z(1)(t(1)0 ), z(1)(t

(1)
f ),

...

z(N)(t(N)0 ), z(N)(t(N)f )
)
≤ ψU , (7.63d)

�(i)(z(i)) ≤ 0, (7.63e)
i = 1, . . . , N,

where the initial conditions (7.57d) have been incorporated into the linkage
constraints (7.63d).

Smooth Saturation
Although (7.63) is not hybrid, it is still not suitable for dynamic optimiza-
tion due to the non-differentiable equations resulting from the saturation
function in (7.3). While this can be handled by introducing further phase
changes for whenever a junction point of the saturation function is crossed—
i.e., when the potential contact point shifts between the fingertip to the side
of the finger—this approach is computationally expensive and also makes
it more difficult to determine the optimal phase sequence. We thus instead
opt to approximate satUL (x) by noting that

min(a, b) = 1
2(a+ b− pa− bp), (7.64)

max(a, b) = −min(−a,−b) = 1
2(a+ b+ pa− bp), (7.65)

satUL (x) := max(min(x,U), L)

=

∣∣∣∣
x+U − px−Up

4 −
L
2

∣∣∣∣+
x+U − px−Up

4 +
L
2 (7.66)

and then using the approximation

pxp (
√
x2 + ε2, (7.67)

where ε is a small number, which we set equal to 0.01. Figure 7.4 compares
the smooth approximation with the ideal saturation as well as the hyperbolic
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−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2

−0.4

−0.2

0

x

tanh
ε = 0.1
ε = 0.05
ε = 0.01
sat0

−1(x)

Figure 7.4 Approximation of the saturation function with the lower limit
of −1 and the upper limit of 0. The curves have point symmetry around
(0.5, 0.5). Hence, only the first quadrant is shown. The green curve approxi-
mates the saturation function by scaling and shifting tanh. We observe that
for ε = 0.01, the smooth approximation of the saturation function is hardly
distinguishable from it.

tangent function with an appropriate shifting and scaling. The hyperbolic
tangent function is another function commonly used to make smooth ap-
proximation. Note that a significantly better approximation by scaling the
hyperbolic tangent function is not possible since it requires changing either
the slope or saturation limits.

Objective
Out of the various archetype problems mentioned in Sec. 7.4, we will focus
on the final one of finding a periodic trajectory that achieves a certain
rotation of the ball. We use the objective function

φ(c(t f )) := c1(t f )
c2(t f )

, (7.68)

where we will consider two different ways of defining c1 and c2. The first is
cost of transport, which can be expressed by the two cost states

ċCOT
1 := quq2 , (7.69)

which quantifies the cost of control action, and a measure of the amount of
rotation in a desired direction

ċCOT
2 := −wCOT

∥∥∥ωref
∥∥∥

2
+ω · ω̂ref, (7.70)

where ω̂ref is a unit vector determining the desired direction of angular
velocity,

ωref := ω −
(
ω · ω̂ref) ω̂ref (7.71)
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is the component of the angular velocity perpendicular to the desired direc-
tion, and wCOT is used to weight the two quantities. The second objective
is a more conventional quadratic penalty on the input weighted by wL2 and
on the deviation from a reference rotational velocity, ωref, expressed by the
cost states

ċL2

1 := wL2
quq2 +

∥∥∥ω −ωref
∥∥∥

2
, (7.72)

and a state for calculating the total period

ċL2

2 := 1. (7.73)

The cost of transport defined here is motivated by the energy efficiency
of the rotation and is similar to the energy index used for comparing the
efficiency of various transport systems [Shi et al., 2008]. The average ro-
tational speed is thus determined by the optimization. On the other hand,
the quadratic objective function is intended for achieving a certain average
rotational speed while allowing some trade-off for the average power. The
fact that the quadratic cost function favors angular velocities close to the
constant reference velocity leads to short periods. This is understood by
noting that the speed of the ball cannot be influenced in the free motion
and drops rapidly.

Periodicity, i.e., x(1)0 = x(N)(t f ), is enforced via the linkage constraint ψ .

7.5 Implementation

The equations of Appendix A.1 and A.2 have been derived with the use of
Maple. The multiphase problem (7.63) is implemented in PSOPT [Becerra,
2010a]. The Legendre-Gauss pseudospectral collocation of PSOPT is used to
transcribe the problem into a (twice continuously differentiable) nonlinear
program (NLP) with 30 collocation points for each phase. The NLP is solved
with IPOPT [Wächter and Biegler, 2006] and the linear solver MA27 [HSL,
2016].

Simulation of the system including slipping is performed using Mod-
elica [Fritzson, 2015] and Dymola [Dymola, 2016]. Dymola does currently
not support hybrid systems with variable index, although there has been
recent work to resolve this [Mattsson et al., 2015]. One possible way to
manually resolve this is to index reduce the high-index modes, but this
is challenging for the considered system due to the impossibility of stat-
ically selecting suitable state variables. Hence, we instead adopt a more
cumbersome approach where three instances of the system are simulated
simultaneously, one low-index for free motion and two high-index (with dy-
namic state selection [Mattsson et al., 2000]) for modes in contact. A correct
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system model can thus be created by appropriate communication between
the three instances during mode switching.

The trajectories from both optimization and simulation are finally im-
ported into MATLAB for visualization. For 3D visualization of the finger
and its movements, Peter Corke’s robotic toolbox [Corke, 2011] is used.

7.6 Results

This section presents results for the problem of finding a periodic solution for
rotating the ball. We first present optimal trajectories obtained by neglecting
slipping, and then briefly show the solutions obtained by simulating the
system with the open-loop optimal inputs while taking into account slipping.

Optimal Control
We consider the two objectives discussed in Sec. 7.4. We divide each period
into three phases: free motion, sticking, and finally free motion again with
the constraint x(3)(t f ) = x(1)(0). The initial state as well as the terminal
and switching times t(i)f are free. We also impose the initial constraint
h(0) ≥ 1.3r for robustness, i.e., the finger should go sufficiently far away
from the ball before making a new contact. The weights wCOT and wL2

are optionally set to 10 and 1, respectively. As the desired direction of
angular velocity ω̂ref, we use 1/

√
2(1,−1, 0)T for cost of transport and we

use ωref = (0, 0, 2.2)T as the angular velocity reference for the quadratic
objective.

A simple initial guess is sufficient to numerically solve the problem. The
initial guess consists of a constant non-zero q " q0 and t(i)f = i, with all the
remaining variables being 0.

We present the result of three experiments. In the first two experiments,
we solve the problem of optimizing the COT. The difference between the
experiments is that in the first one we include no constraint on the joint
angles, while in the second one the constraint that qi ≥ 0 for i ∈ {2, 3} is
enforced in order to comply with the limitations of the human finger. Fig. 7.5
illustrates the optimal path obtained for the robotic finger. In Fig. 7.6, we
see the resulting optimal angular velocities of the ball and switching times.
The discontinuities at the impact point are visible.

The minimum distance h between the finger and the ball is shown in
Fig. 7.7. Moreover, the distance between the contact point and fingertip is
plotted. As we see, the contact point is somewhere on the link and shifts
slightly during the rotation. The required torques and interaction forces are
given in Figs. 7.8 and 7.9, respectively.

Figure 7.10 illustrates the human finger in its initial position. In this
case, the fingertip remains always the closest point to ball. The path ob-
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Figure 7.5 Visualization of the ball and finger system. The blue curve
shows the optimal path of pc for COT when there is no joint limit. The red
dashed curve corresponds the optimal path for the fingertip.
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Figure 7.6 The optimal solution for COT: the angular velocity of the ball
ω. The vertical lines show the switching time for the phases.
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Figure 7.7 The minimum distance to the ball, h, and the distance of the
contact point to the fingertip. The finger is in contact with the ball in the
interval between the vertical lines. The side of the finger is used for rotating
the ball and the contact point shifts slightly during rotation.
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Figure 7.8 The optimal control signal for minimizing COT: The vertical
lines show the switching time for the phases. Towards the end of the contact
phase, the bounds on the control signals are active.

tained from the movement of the closest point is shown in blue. The paths
of the closest points of the human finger as well as the robotic finger are
compared in Fig. 7.11.

Assuming the COT, the robotic finger can rotate the ball in the desired
direction more efficiently. It uses the side of the finger, while the human
finger contacts with the fingertip only.

Figure 7.12 shows the finger in its initial position and the path obtained
for rotating the ball around the z-axis using the quadratic objective function.
The angular velocity obtained is illustrated in Fig. 7.13. As we can see, the
average angular velocity matches the desiredω ref. The period of the solution
compared to Fig. 7.6 is shorter. The minimum distance as a function of time
and distance of the contact point to the fingertip is shown in Fig. 7.14. In this
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Figure 7.9 Interaction forces for COT: The tangential and normal compo-
nent of the interaction are shown. In this case, there is always some margin
to slipping.

Figure 7.10 Visualization of the ball and finger system. The blue curve
shows the optimal path of pc complying with human joint limits for COT.
The contact point is always the fingertip.
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Figure 7.11 The paths of pc obtained using the COT optimization crite-
rion. The red and blue curves correspond to human and robotic fingers,
respectively. The parts of the paths in contact with the ball are dashed.

solution, only the fingertip is used for rotating the ball. Finally, the torques
and interaction forces are depicted in Figs. 7.15 and 7.16, respectively. As
we see, the constraint on the friction cone is always active during contact.
Hence, the motion is always on the verge of slipping.

Open-Loop Simulation
We now use the open-loop optimal torques for the COT criterion without
non-negativity bounds on the joints from Fig. 7.8 to simulate the full system
in Fig. 7.3 in Dymola. The resulting angular velocities are shown in Fig. 7.17
and compared with the optimal angular velocities. We see that open-loop
angular velocities match well at the beginning, but drift from the optimum
as time passes. There is a short window of time immediately following
collision in which slipping occurs, which is almost always the case when
employing Newton’s impact law. The dynamics quickly switch to sticking
because of the high interaction forces. There is a jump in the post-impact
velocities in the optimization solution, while using the Newton’s impact law,
the velocities are continuous in the simulation result.

7.7 Extension to Multifinger Setup

The equations of motion for extra fingers can be added to the model. The
procedure is almost trivial by considering (7.50), i.e., for each finger, the
equations are repeated with new variables and all the interaction forces are
summed up to calculate the effect on the ball. Accordingly, the optimization
method described in Sec. 7.4 is still applicable. However, this approach
is limited by the fact that the order of phases is not known in advance.
As more fingers are added to the model, the combination of phases grows
exponentially. A solution to this problem is to use a hierarchical planning
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Figure 7.12 Visualization of the ball and finger system. The blue curve
shows the optimal path of pc for the quadratic cost. The objective is to rotate
the ball around the z-axis.
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Figure 7.13 The optimal solution to φ L2 : angular velocity of the ball ω
and the minimum distance to the last link h. The vertical lines show the
switching time for the phases.
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Figure 7.14 The minimum distance to the ball, h, and the distance of the
contact point to the fingertip. The finger is in contact with the ball in the
interval between the vertical lines. Only the fingertip is used for rotating
the ball.
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Figure 7.15 The optimal control signal for minimizing φ L2 : The vertical
lines show the switching time for the phases. Note that, the bounds on the
control signal are only active when making contact or breaking it.

scheme where in the highest level the finger gating and consequently the
phases are determined. For finger gating, often a more abstract and less
detailed model suffices [Saut et al., 2011].

In this section, we study the sequence of finger movements for a three-
finger gripper for rotating a ball without letting it fall. A reinforcement
learning (RL) type of algorithm [Sutton and Barto, 1998] is used to find
an optimal coordination between fingers to achieve the maximum average
velocity of the rotation of a ball in the counterclockwise direction. The
obtained sequence defines the required phases for finding trajectories for a
system with three fingers according to the method of Sec. 7.4.
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Figure 7.16 Interaction forces for the quadratic cost: The tangential and
normal component of the interaction are shown. In this case, there is no
margin to slipping.

Methods
An abstract model of the process is developed wherein the states and the
actions are high-level representations. There are several ways to obtain and
describe such models. Here, we use a discrete model which is based on the
high-level understanding of the significant events.

In every time step, each finger can independently perform an action. The
fingers have a limited reach and speed. The abstract actions are staying still,
closing (making contact) or opening (breaking contact), and moving left or
right with respect to the center of the ball. Denoting the action for finger i
by ui, the actions and their effects can be encoded as

ui Effect
0 Null
1 Close or Open
2 Left or Right

Given that there are three fingers, there are totally 33 = 27 possible actions.
We define the abstract state of each finger as its relative position to the

ball. For example, if r0 denotes the radius of the ball and φ0 the nominal
position of a finger, using the polar coordinate we can describe

Left Open = {(r,φ)pr > r0 ∧ 0 < φ − φ0 ≤ 15π/180}. (7.74)

Accordingly, for each finger we define the following states:

xi Definition
0 Right Open
1 Right Close
2 Left Open
3 Left Close
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Figure 7.17 The open-loop simulation of the complete system in Fig. 7.3
using the control signals in Fig. 7.8. The angular velocities of the ball (solid
blue curves) are compared with the optimization result (red dashed curves).
The vertical lines show the switching times obtained from the optimization.
The time regions corresponding to the slipping and sticking modes of the
simulated result are shaded in purple and gray, respectively. We see that
the contact times differ slightly. However, there is no difference in the time
that the finger leaves the ball.

The total number of states is 43 = 64.
Given the definitions of the states and the actions, the system dynamics

are nonlinear

x(k+ 1) = f (x(k), u(k)), (7.75)

where

fi = shl(XOR(shr(xi ∧ 102), shr(ui ∧ 102)))

∧ XOR(xi ∧ 012, ui ∧ 012). (7.76)

160



7.7 Extension to Multifinger Setup

Here ∧ denotes bitwise AND operator and XOR(·, ·) denotes exclusive OR
operation, shr and shl denote shift to right and shift to left operations,
respectively. The numbers with subscript 2 are given in the binary system.
The system dynamics can be understood by paying attention to how the
states and the actions are encoded. The lower bit of xi determines if the
finger is closed or open while the upper bit determines the position. The
Close or Open action, with lower bit set to one (1 = 012), therefore just flips
the lower bit of the state, while the Left or Right action, with higher bit set
to one (2 = 102), flips the higher bit of the state.

The ball falls if it is in contact with one or no fingers and it will rotate
in the direction determined by the closed fingers when no finger is resisting
the rotation or work against it. Otherwise, it remains still. The states of
the ball are encoded according to the following table:

xb Definition
0 Dropped
1 Rotating CW
2 Rotating CCW
3 Still

We would like to design a reward function r(x, u) that encourages coun-
terclockwise (ccw) and discourages clockwise (cw) rotations. Moreover, un-
necessary movements and dropping must be punished. Consequently, we
define:

r(x, u) =





1, ccw rotation
−1, cw rotation
−1, one or 2 closed fingers are still, while the rest are moving
−2, all closed fingers move but not all in the same direction
−10, unstable grip, i.e., less than 2 fingers in contact

(7.77)

For a given policy Π and an initial state xk, the objective is to maximize
the cumulative discounted reward according to

VΠ(xk) =
∞∑

m=k
γm−kr(xm, um), 0 < γ < 1. (7.78)

We use Q-learning to solve the problem with the following update equa-
tion [Watkins and Dayan, 1992]

Qi+1(xk, uk) = Qi(xk, uk) + η
[
r+γQi(xk+1,Π(xk+1)) − Qi(xk, uk)

]
(7.79)
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1 2 3 4

5 6 7 8

Figure 7.18 The optimal sequence with a duty cycle of 2/8: Two steps out
of eight cause a ccw rotation. White boxes represent the fingers and the
green circle in the middle corresponds to a ball. The yellow lines on the
ball are to make the rotation visible. The states right after a rotation are
highlighted in red.

The optimal policy is obtained by calculating

Π(x) = arg max
u

Q(x, u). (7.80)

In the learning phase, we use an ε-greedy policy. It means that with prob-
ability ε instead of

uk = Π(xk), (7.81)

a random action is taken.

Results
We chose the following parameters for the Q-learning algorithm

γ = 0.9, η = 0.3, ε = 0.01. (7.82)

After approximately 100, 000 iterations, the optimal sequence was found.
Figure 7.18 illustrates the sequence. Starting from xT0 = [0, 0, 0], i.e., all
fingers in the Right Open position, the optimal policy results in:
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k xTk uTk xTk+1 rk+1
0 [0, 0, 0] [1, 1, 2] → [1, 1, 2] 0
1 [1, 1, 2] [2, 2, 2] → [3, 3, 0] 1
2 [3, 3, 0] [1, 0, 1] → [2, 3, 1] 0
3 [2, 3, 1] [2, 0, 0] → [0, 3, 1] 0
4 [0, 3, 1] [1, 1, 0] → [1, 2, 1] 0
5 [1, 2, 1] [2, 2, 2] → [3, 0, 3] 1
6 [3, 0, 3] [1, 1, 0] → [2, 1, 3] 0
7 [2, 1, 3] [2, 0, 0] → [0, 1, 3] 0
8 [0, 1, 3] [1, 0, 1] → [1, 1, 2] 0

As can be observed, the optimal sequence has a duty cycle of 2/8, i.e., 2
rotations in a sequence of 8 actions.

Note that the period does not determine the average velocity and the duty
cycle is therefore the correct indicator. Figure 7.19 illustrates an example
of a non-optimal sequence with 1/6 duty cycle. Note that in this case the
period is 25% shorter but the cumulative reward is half compared to the
optimal sequence. Starting from xT0 = [0, 0, 0] and following the policy, the
state trajectory, the inputs, and the rewards are as follows:

k xTk uTk xTk+1 rk+1
0 [0, 0, 0] [2, 1, 1] → [2, 1, 1] 0
1 [2, 1, 1] [0, 2, 2] → [2, 3, 3] 1
2 [2, 3, 3] [1, 0, 1] → [3, 3, 2] 0
3 [3, 3, 2] [0, 0, 2] → [3, 3, 0] 0
4 [3, 3, 0] [0, 1, 1] → [3, 2, 1] 0
5 [3, 2, 1] [0, 2, 0] → [3, 0, 1] 0
6 [3, 0, 1] [1, 1, 0] → [2, 1, 1] 0

7.8 Discussion

The considered system in this chapter has several modes, each described
with a different set of equations. In contrast to some of the results for find-
ing optimal trajectories reported in the literature (see for example [Kumar
et al., 2014; Rombokas et al., 2013]), in our approach the connection be-
tween different modes happens through phases. Thus, it is not required to
compromise the optimal solution by biasing the cost function toward mak-
ing contact. On the other hand, we have fixed the order of the phases. This
can be relaxed by trying all the combinations. For more complex systems,
a hierarchical planning scheme similar to the one discussed in Sec. 7.7 can
be used in order to determine the phases.

There are several possible approaches to treating hybrid dynamics in
dynamic optimization other than the multiphase framework. A natural al-
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1 2 3

4 5 6

Figure 7.19 A non-optimal sequence with a duty cycle of 1/6: One steps
out of six cause a ccw rotation. White boxes represent the fingers and the
green circle in the middle corresponds to a ball. The yellow lines on the ball
are to make the rotation visible.

ternative in the considered case is the incorporation of the complementarity
constraints [Baumrucker and Biegler, 2009] in the optimization problem.
However, it is not always easy to rewrite the non-smooth behavior using
complementarity conditions, e.g., switching between slipping and sticking
when the friction coefficients are not the same. Other possible approaches
are mixed-integer nonlinear programming based on branch-and-bound [Be-
lotti et al., 2009] or sum-up-rounding [Kirches and Lenders, 2016] or widely
applicable derivative-free methods such as genetic algorithms [Thieriot et
al., 2011]. The various approaches each have their respective strengths and
weaknesses. The strength of the multiphase framework is the efficiency
of the required computations, which may enable online solution of these
problems. A significant drawback is that the phase sequence needs to be
determined a priori.

In optimization, it is not always suitable to neglect the slipping com-
pletely. Ignoring the slipping works well when the interaction forces are
high. However, when the slipping margin σ is small, it becomes more im-
portant to consider the effects of slipping. If slipping is neglected, it is also
important to ensure that the collision itself does not give rise to slipping.
When using the Newton’s impact law, this is possible by constraining the
relative tangential velocity at the collision point to be zero. This will guar-
antee a transition to the sticking mode upon collision, though it might not
be the optimal solution. Better solutions can however be obtained by con-
sidering a more sophisticated impact law than Newton’s, see Sec. 7.2, and
then constraining the resulting impulse ι so that the friction is sufficient to
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support the sticking mode.
Another option for handling impacts is to add flexible components such

as a non-rigid ball or a padded arm. This leads to a smooth approximation
of discontinuities. For example, the normal force can be considered propor-
tional to the depth of penetration of pc, i.e., λn = −kmin(h(q), 0)n could
be employed. At the same time, in order to get realistic behavior the model
tends to become stiff.

To account for the transient forces in the optimization, the resulting
impulse can be calculated. Furthermore, to avoid slipping right after colli-
sion, we have to constrain ι such that the friction is sufficient to support
the sticking mode. We could also make sure that the relative tangential
velocity at the collision point is zero by introducing a constraint on it. This
will guarantee a transition to the sticking mode upon collision.

Open-loop control is generally not satisfactory, even if slipping can be
neglected. Feedback is needed to handle model uncertainties, such as inac-
curate collision model, as well as discretization errors. Different controllers
depending on the mode of the system may be employed. Specifically, in
free motion, a position controller with feedforward torques can be used.
As soon as the finger comes into contact with the ball, the controller can
be switched to a hybrid position/force controller. To maintain the sticking
condition, the normal force should be regulated while the velocity in the
tangential direction is being tracked.

In simulation, inconsistent solutions due to the Painlevé para-
dox [Brogliato, 2012] may arise when the kinetic friction constant between
the ball and the finger is large. However, this will not be an issue in the
optimization because of the infeasibility of such solutions. The optimization
results presented in Sec. 7.6 were obtained using simple initial guesses.
However, warm starting the optimization from previous runs with simpli-
fied cost functions can often be beneficial. This way it is possible to direct
the solution gradually to the region of interest.

The path constraint related to the validity condition h ≥ 0 is diffi-
cult to treat numerically. In phase 1, the natural formulation is h(1) ≥ 0
and h(1)(t f ) = 0. However, such a formulation violates constraint qualifi-
cations, leading to unbounded dual variables [Nocedal and Wright, 2006].
Ideally, this would be handled by only enforcing h(1) ≥ 0 in all but the last
collocation point of phase 1, which instead is determined by the event
constraint h(1)(t(1)f ) = 0, but this is not readily supported by PSOPT.
Hence, we work around this issue by replacing the event constraint by
0 ≤ h(1)(t f ) ≤ ε := 10−4. Further problems related to this are encountered
in phase 3. In phase 2, ḣ = 0 is a solution invariant, which is however
not preserved during discretization. Numerical drift-off can thus lead to
h(2)(t f ) < 0 (enforcing h(2) ≥ 0 would once again lead to violation of con-
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straint qualifications). To circumvent this, we replace the validity condition
of phase 3 by h(3) ≥ −ε.

In Sec. 7.7, we could have defined actions and states differently to make
the notion of the state abstraction more clear (e.g., by thresholding the
actual inputs and states), which also results in simpler state transitions
(linear plus saturation). However, this adds unnecessary possibilities (e.g.,
trying to open a finger while it is open) hence increasing the dimension of
the Q-function without adding any benefit for finding the optimal solution.

The speed of convergence to the optimal solution depends on the choice
of the parameters and the realization of the ε-policy. In general, there is no
guarantee to converge to the optimal solution. In our problem, due to its
symmetry, the solution is not even unique. Therefore, different runs of the
algorithm might converge to different optimal solutions.

The proposed framework is not robust with respect to avoiding contact
in the free motion mode, as it allows for free motion arbitrarily close to
the ball. A simple remedy for the considered examples is to also enforce
ḣ ≤ −ε in the first phase and ḣ ≥ ε in the third phase, which however
may sacrifice optimality. Future work is to design a more sophisticated
solution by considering robust approaches such as those in [Ben-Tal et al.,
2009; Mordatch et al., 2015]. We also consider implementing a controller
and evaluating the optimal trajectories in the simulation with the complete
model.

7.9 Conclusion

In this chapter, we propose a ball-and-finger system as a realistic example to
study common robotic tasks involving interaction and varying dynamics. The
result of modeling is a hybrid, variable-index differential-algebraic equation
system. To find the optimal trajectories for performing a task, we took
the integrated approach, i.e., there is no separate process for finding the
required path. A multiphase formulation was used to handle changes in
the dynamics in each mode. The benefit of this approach is that there is no
need to compromise the desired objective function in order to make contact.

As the result of the optimization, we find not only the trajectory for
the motion but also the interaction forces. This is an important feature
considering the fact that robots are often employed for manipulation tasks,
which involves interaction with other objects. The extension of our model
with several fingers opens up the opportunity to perform automatic motion
planning for dexterous manipulation, e.g., for assembly tasks.
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8
Iterative Learning Control

8.1 Introduction

The main application of iterative learning control (ILC) is to improve the
reference tracking performance of a system. In order to reduce the tracking
error, the control signal to the system is adjusted in each iteration by
using feedback information from previous iterations. In effect, ILC finds an
approximate system inverse for a specific reference [Moore et al., 1989]. An
advantage of ILC is that it does not require an explicit model of the transfer
function or even linearity of the system for finding the inverse. Instead, it
often uses the actual system as a part of the algorithm. ILC has found
successful applications in many different fields [Ahn et al., 2007; Freeman
et al., 2012; Sörnmo et al., 2016], where accurate models of the system and
disturbances are difficult to obtain.

While the frequency domain is the preferred approach for filter design
and analysis of linear ILC [Wang et al., 2014], the widely used convergence
criterion, see (8.4) below, applies only to strictly monotone convergence of
the algorithm (the 2-norm of the error between the current control signal
and its final value strictly decreases in each iteration). Moreover, it is not
theoretically clear to what extent the frequency criterion is applicable to
a practical ILC system where each iteration runs only over a finite-time
interval and to ILC systems with non-causal filters. To motivate this study,
we demonstrate examples for which the ILC converges but the classical fre-
quency condition cannot provide any indication of the convergence property.
Our analysis gives an explanation for this mode of convergence.

We extend the work of [Norrlöf and Gunnarsson, 2002] by introducing
a less conservative criterion, hence reducing the gap between the existing
time-domain and frequency-domain criteria. We also provide an analysis
of the transient behavior of the algorithm, which proves useful when the
convergence is not monotone. The contributions of this chapter can be sum-
marized as follows:
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• Analysis of “convergence on finite-time interval” motivated by practical
ILC where the trial length is finite.

• A less conservative frequency domain convergence criterion than the
one by [Norrlöf and Gunnarsson, 2002] is derived (see Theorem 14)

inf
ρ>0

sup
ω

∣∣G(ρeiω)
∣∣ < 1.

The criterion is applicable to ILC systems with causal as well as non-
causal filters and includes the classical result of strictly monotone
convergence as a special case.

• The connection between time-domain and frequency-domain criteria
is established in a rigorous manner using Toeplitz operators.

• A frequency domain tool for understanding the transient behavior of
ILC—i.e., the wave of convergence/divergence—is introduced.

• A strategy to limit the growth of the transient errors when the con-
vergence is not monotone is proposed.

Previous Work
ILC is a two-dimensional process, in the sense that the dynamics are in-
dexed by both time and iteration variables [Kurek and Zaremba, 1993]. A
standard approach to analysis of linear and a certain class of nonlinear
ILC algorithms relies on the lifted-system framework, i.e., considering a
time series as a vector [Bristow et al., 2006]. [Norrlöf, 2000] has extensively
studied the theory and applications of linear ILC. Time-domain criteria as
well as a classical frequency-domain criterion for the convergence of the
linear ILC algorithm have been derived by [Norrlöf and Gunnarsson, 2002].

There have been many attempts to understand and improve the conver-
gence properties of the linear ILC. [Longman and Huang, 2002] have noted
that the algorithm might practically diverge after an initial substantial de-
cay of the tracking error. [Elci et al., 2002] have introduced a non-causal
filter, namely a zero-phase filter, in the algorithm to improve the transient
behavior. The transient properties of the convergence have been studied
in more detail by [Longman and Huang, 2002] and [Wang et al., 2014].
[Longman, 2000] and [Norrlöf and Gunnarsson, 2002] have commented on
the potential convergence of the algorithm despite a transient growth of the
norm of the error, i.e., when the classical frequency condition is not fulfilled.
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r̃ = (I − Tr)r

Figure 8.1 Block diagram of an iterative learning controller. Here, ỹ =
y− Trr.

Problem Description
A general form of the discrete linear first-order ILC algorithm is

yj = Trr+ Tuu j (8.1)
e j = r− yj (8.2)
u j = Q (u j−1 + Le j−1) ; (8.3)

see [Norrlöf, 2000]. Here j ∈ Z≥0 is a non-negative integer iteration index,
r, yj, and e j ∈ {2 are the reference, output, and tracking error signals,
respectively, u j ∈ {2 is the control signal. The stable systems from reference
to output and control signal to output are denoted by Tr and Tu, respectively,
and Q and L are filters to be designed. The choice of u0 is free. Figure 8.1
depicts the ILC algorithm. Note that in practice the trial length is finite,
i.e., the system is stopped after N samples and signal values at time n ∈
{0, . . . , N−1} are stored. The filters Q and L do not need to be causal since
they operate on the signals of the previous iteration.

Let us define G(eiω) := Q(eiω)(1−L(eiω)Tu(eiω)). The classical sufficient
condition for strictly monotone convergence of ILC requires that (see for
example [Norrlöf and Gunnarsson, 2002])

pG(eiω)p < 1, ∀ω ∈ [0, 2π), (8.4)

where L(eiω), Tu(eiω), and Q(eiω) are the frequency representations of the
respective filters.

Given the definition of the ILC algorithm in (8.1)–(8.3) and the fact that
each iteration runs only over a finite-time interval, n ∈ {0, . . . , N − 1},
our purpose is to find less restrictive conditions for G that guarantee the
convergence of the algorithm, i.e., that the limits u j → u∞ and e j → e∞
exist for the finite trial length.

The rest of this chapter is organized as follows: In Sec. 8.2, we present
a motivating example for which the ILC converges but the classical condi-
tion cannot provide any indication of the convergence property. Section 8.3
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clarifies the notation and summarizes the mathematical background. The
iteration-domain dynamics for ILC are derived in Sec. 8.4 before we delve
into the issue of convergence. Section 8.5 starts with a formal definition of
convergence for iterative procedures and states our convergence results. In
Sec. 8.6, practical aspects concerning the transient behavior of ILC when
the convergence is non-monotone is discussed. We propose qualitative mea-
sures that characterize the convergence, and discuss the gap between the
time- and frequency-domain criteria in Sec. 8.9. We draw conclusions in
Sec. 8.10.

8.2 Motivating Example

Let us consider the following transfer functions

Tu(s) =
1

(s+ 1)(s2 + 0.8s+ 16) , Tr(s) = 0, (8.5)

Q(s) = 10
s+ 10 , Ld(z) = 10k(1− 0.9z−1)za. (8.6)

We discretize (8.5) and filter Q(s) by the zero-order-hold (ZOH)
method [Åström and Wittenmark, 2011] with sampling time h = 0.1 s.
Figure 8.2 compares the time responses of the systems corresponding to
two ILC scenarios where in 1) k = 0.8, a = 5 (System I) and in scenario
2) k = 0.5, a = 8 (System II). After discretization, Q is implemented as a
zero-phase filter and hence we get

G(eiω) = Qd(eiω)Qd(e−iω)
(
1− Ld(eiω)Tud(eiω)

)
. (8.7)

In Fig. 8.3, the Bode plots for G(eiω) are illustrated. We see that in both sce-
narios the condition pG(eiω)p < 1 is violated. Nevertheless, System I appears
to converge, at least for the time region of interest, while System II does
not. The Bode diagrams corresponding to convergent and non-convergent
scenarios may seem counterintuitive at first glance since the one with the
highest peak in the gain pG(eiω)p corresponds to the convergent case.

Our result in Theorem 14 later in this chapter explains the situation
and says that if there exists a ρ > 0 such that supω pG(ρeiω)p < 1, then we
have convergence in the sense that u∞ and e∞ exist on the finite interval
[0, · · · , N). In Fig. 8.5, where supω pG(ρeiω)p is plotted against ρ, it can be
seen that the curve for System I goes below 1 for some ρ and thus the ILC
algorithm converges.
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Figure 8.2 The 4th, 12th, and 50th iterations for example (8.5)–(8.6): The
left column shows System I (blue curve in Fig. 8.3) and the right column
shows System II (green curve in Fig. 8.3). The black, green, blue, and red
curves correspond to the reference r, output y, control signal u, and error
e, respectively. In the left column, the error signal looks like a growing
wave which moves toward plus infinity as the iteration number increases.
However, in the right column the wave does not move and the signals grow
unbounded in the time region of the trial.

8.3 Background and Preliminaries

Some useful results from systems theory are presented in this section.
Familiar readers may skip to the end of the section, where a short summary
of the notations used in this chapter is given. We define

{p :=
{
f : Z→ R

∣∣∣ q f qp{p :=
∞∑

n=−∞
p f (n)pp < ∞

}
,
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Figure 8.3 Comparison of Bode diagrams for G(eiω): The frequency re-
sponse of System I (left column in Fig. 8.2) is in blue and System II in green
(right column in Fig. 8.2), respectively. Both systems violate (8.4).

where p·p denotes the absolute value. A linear operator G : {2 → {2 is said
to be bounded if

qGq{2→{2 := sup
qxq{2=1

qGxq{2 < ∞.

The product of x ∈ {2 and y ∈ {2 is defined as

(xy)[n] := x[n]y[n].

Given an x : Z→ R, denote the z-transform of x by

X(z) = Zx :=
∞∑

n=−∞
x[n]z−n,

and the inverse z-transform denoted by Z−1 satisfies x = Z−1X . The set
of values of z for which the z-transform converges absolutely is called the
region of convergence (ROC) of the z-transform.

Given a linear time-invariant (LTI) G : {2 → {2 that is possibly non-
causal, denote by � : Z → R the impulse response/convolution kernel of G.
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Figure 8.4 Comparison of Nyquist Diagrams for G(z): The blue and green
curves correspond to System I and System II, respectively. The unit circle is
shown in dashed red. The blue curve corresponding to the convergent system
makes a longer journey outside of the unit circle compared to the green one.

In particular, note that Gx = � ∗ x for any x ∈ {2, where ∗ denotes the
convolution operator defined as

(x ∗ y)[n] =
∞∑

m=−∞
x[m]y[n−m].

We define G(z) := Z�. If G is a bounded LTI operator, then

{pzp = 1} ⊂ ROC of G(z).

Define
L∞ :=

{
G(z)

∣∣∣ qG(z)q∞ := sup
ω∈[0,2π)

pG(eiω)p < ∞
}
.

Hereafter, we denote by G(z) the transfer function corresponding to a
bounded LTI operator, i.e., G(z) ∈ L∞.1

1 In this thesis, we do not explicitly specify the ROC for stable systems since it can unam-
biguously be determined.
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Figure 8.5 Comparison of qG(ρz)q∞ for 0.96 < ρ < 2.72: The blue and
green curves correspond to System I and System II, respectively. We prove
in Theorem 14 that if the plot of qG(ρz)q∞ vs. ρ > 0 goes below one, ILC
converges on finite time intervals.

Define G j as

G0 = I,
G j+1 = G ○ G j,

(8.8)

where I denotes the identity operator and ○ the composition of two opera-
tors.

Lemma 3— [Kreyszig, 1989]
Given a bounded linear time-invariant operator G : {2 → {2, it holds that

qGq{2→{2 = qG(z)q∞ . 2

Define the truncation operator as

(Πkx)[n] =
{
x[n], n < k
0, otherwise

(8.9)

Given the definition of the truncation operator (8.9), an operator is causal
if for all k ∈ Z,

ΠkG(I − Πk) = 0. (8.10)
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For an operator G : {2 → {2, we define the truncated operator

Ḡ := ΠN(I − Π0)GΠN(I − Π0), (8.11)

where ΠN(I − Π0) sets the values of a signal outside of {0, . . . , N − 1} to
zero and the finite Toeplitz matrix

TN {i, j}(�) = �[i− j], i, j = 1, . . . , N, (8.12)

where � is the impulse response of G.

Lemma 4
Given x ∈ {2 and Ḡ as defined in (8.11), if y = Ḡx then

y = TN(�)x, (8.13)

where x,y ∈ RN are the input and output signals converted into vectors,
e.g., x = {x[0], · · · , x[N − 1]}. 2

Proof Define x̄ := ΠN(I − Π0)x. For 0 ≤ i < N, we have

y[i] =
∞∑

j=−∞
�[i− j]x̄[ j] =

N−1∑

j=0
�[i− j]x[ j] =

N−1∑

j=0
TN {i, j}(�)x{ j}, (8.14)

which proves the result. 2

Note that the operator Ḡ can be represented by a matrix by converting the
input and output signals to vectors. In this case, Ḡ : {2 → {2 is a linear
time-varying system with a Toeplitz matrix representation TN(�) ∈ RN$N .
The infinite-dimensional Toeplitz matrix corresponding to the operator G
is denoted by T∞(�).

Lemma 5
If G is causal, then Ḡ j = ΠNG j(I − Π0). 2

Proof By setting k = 0 and k = N in (8.10), it follows that

(I − Π0)G(I − Π0) = G(I − Π0),
ΠNGΠN = ΠNG,

respectively. By multiple applications of these two rules to the expression
of Ḡ j obtained from (8.11) and noting that the order of truncation can be
interchanged, the result follows. 2
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The spectral radius and the largest singular value of T ∈ RN$N are
defined, respectively, as

rad(T) := max
i
pλi (T) p, (8.15)

σ̄ (T) :=
√

rad(TT∗). (8.16)

where λi(T) denotes an eigenvalue and T∗ the transpose of T.

Lemma 6—[Horn and Johnson, 2012, Sec. 5.6]
If T ∈ RN$N , then

qTq2 := sup
u ,=0

qTuq
quq = σ̄ (T) (8.17)

2

The set of strictly positive and non-negative integers are denoted by Z>0
and Z≥0, respectively.

Lemma 7—[Kreyszig, 1989, Theorem 7.5-2]
Given a matrix T ∈ RN$N ,

radT ≤ qTnq
1
n , ∀n ∈ Z>0 2

Lemma 8—[Horn and Johnson, 2012, Sec. 5.6]
Given a matrix T ∈ RN$N , if qTq2 < 1, then

lim
j→∞

j∑

n=0
Tn = (I − T)−1 . 2

Lemma 9—[Böttcher and Grudsky, 2005, p. 177]
For a transfer function G(z) and its corresponding Toeplitz matrix TN(�)
and for all n ∈ Z≥0, it holds

qTn
N(�)q2 ≤ qTN(�)q

n
2 ≤ qT∞(�)q

n
2 = qG(z)q

n
∞ . (8.18)

2

Lemma 10—[Böttcher and Grudsky, 2005, Theorem 8.1]
If � ∈ {1, then

lim
N→∞

qTn
N(�)q2 = qT∞(�)q

n
2 = qG(z)q

n
∞ . (8.19)

2
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For an arbitrary function f , by f [·] we denote a mapping Z→ R which
when evaluated at a point n ∈ Z results in f (n). For instance, ρ−[·] : Z→ R
evaluated at n is equal to ρ−n.

To summarize the notation, we use the symbols G, Ḡ, G(z), �, and
TN(�), which read as a bounded linear time-invariant operator {2 → {2,
a bounded linear time-varying operator {2 → {2 operating on signals with
a finite support n ∈ {0, . . . , N − 1}, the transfer function of a stable LTI
system, which gives us the frequency response when evaluated on the unit
circle z = eiω , the impulse response of G obtained by the inverse z-transform
of G(z), and the finite Toeplitz matrix corresponding to Ḡ, respectively. For
more detailed descriptions and some fundamental results, the readers are
advised to look at the background and preliminaries in Sec. 8.3.

8.4 Iteration-Domain Dynamics

In order to analyze the convergence of the ILC system (8.1)–(8.3), we derive
the dynamics of the system in the iteration domain. Furthermore, to take
into account the assumption of the finite-time intervals, we use the trun-
cated counterparts of the original operators as defined in (8.11). Using the
truncated operators, system equations (8.1)–(8.3) can be rewritten as

u j+1 = Ḡu j + H̄r̃ (8.20)
e j = −T̄uu j + r̃, (8.21)

where Ḡ := Q̄(I − L̄T̄u), H̄ := Q̄L̄ and r̃ := (I − T̄r)r, hence

u j =
j−1∑

i=0
Ḡi H̄r̃+ Ḡ ju0 (8.22)

e j = (I − T̄u
j−1∑

i=0
Ḡi H̄)r̃− T̄uḠ ju0, (8.23)

where Ḡ j denotes j times composition of Ḡ by itself defined in (8.8).
It is desired that the outcome of the algorithm be independent of the

choice of initial input u0. Therefore, as j tends to infinity, the response to
the initial conditions T̄uḠ ju0 must vanish. Additionally, the forced response
due to the reference signal (I − T̄u

∑ j−1
n=0 Ḡn H̄)r̃ should be bounded on the

desired interval.
Assuming qTN(�)q2 < 1, (8.22) and (8.23) converge respectively to

u∞ = (I − Ḡ)−1 H̄r̃ (8.24)
e∞ = (I − T̄u(I − Ḡ)−1 H̄)r̃, (8.25)
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where (I − Ḡ)−1 is the operator {2 → {2 corresponding to (I − TN(�))−1.
The result can be derived by using Lemmas 4 and 8. Generally, whether the
residual e∞ is acceptable or not depends on the length of the experiment,
the signal r̃, and the norm of the operator in (8.25).

Note that if T̄u is right invertible, we can express the error as

e∞ = T̄u(I − Ḡ)−1(I − Q̄)T̄−1
u r̃

Similarly, if L̄ is left invertible and Q̄ = q̄ I, we have

e∞ = L̄−1(I − Ḡ)−1(I − Q̄)L̄r̃

Therefore, Q̄ = I results in e∞ " 0. However, this choice may not fulfill
the convergence condition and degrades the robustness of ILC [Roover,
1996]. Hence, there is a trade-off between the convergence property and the
residual error.

8.5 Convergence of Iterative Procedures

Analysis of linear iterative procedures such as (8.20) can be well understood
using linear system theory [Norrlöf and Gunnarsson, 2002]. First, we for-
malize the notion of convergence analogously to linear systems. Thereafter,
we state time and frequency domain criteria for convergence.

Definition 1
We say an iterative procedure Ḡ, H̄ ,= 0

u j+1 = Ḡu j + H̄r j (8.26)

is convergent if and only if for all u0 ∈ {2 and iteration-independent inputs
r j " r ∈ {2, there exists an equilibrium signal ue such that for any given
ε > 0, there exists J = J(ε, u0, r) ∈ Z≥0 such that

∀ j > J [ qu j − ueq2 < ε. 2

Definition 2
We say the convergence is strictly monotone if in addition to Definition 1,

qu j+1 − ueq2 < qu j − ueq2 . (8.27)
2
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Remark 2
Definition 1 translates to uniform asymptotic stability of the lifted system
described by matrices G := TN(�) and H := TN(h),

u j+1 = Gu j +Hr, (8.28)

where TN(�) is defined in (8.12) and u, r ∈ RN are defined as

u := (u[0], · · · , u[N − 1])T ,
r := (r[0], · · · , r[N − 1])T .

Note that the time references of inputs and outputs are assumed to be
the same and do not change from one iteration to the next. Therefore, the
representation of the lifted system is independent of the relative degree of
the system. 2

Proposition 11
The iterative procedure (8.26) converges according to

Definition 1 Z[ rad G < 1 (8.29)
Definition 2 Z[ σ̄ (G) < 1 (8.30)

2

Proof The first statement is a well-known result for asymptotic stability of
linear systems (8.28); see [Rugh, 1996]. For the proof of sufficiency of the
second statements see [Norrlöf and Gunnarsson, 2002]. To show necessity,
suppose that (8.29) holds, i.e., u j in (8.28) converges to the limit ue satisfying
ue = Gue + Hr. Suppose to the contraposition that σ̄ (G) ≥ 1 and let
G = UΣVT be a singular decomposition, where V = [V1, . . . ,Vn], U =
[U1, . . . ,Un] and Σ = diag(σ1, . . . , σn) with σ1 ≥ . . . ≥ σn. By choosing
u0 = ue + V1, it follows that u1 = ue + σ1U1, whereby (8.27) is violated. 2

Lemma 12
Given x ∈ {2 and ρ ∈ R, if y = Ḡx , then

ρ−[·]y = Ḡρ(ρ−[·]x), (8.31)

where Ḡρ is the truncated operator corresponding to the system Gρ(z) :=
G(ρz) using the def. (8.11) and ρ−[·] : Z → R evaluated at n is equal to
ρ−n. 2

Proof Let us denote the impulse response of Gρ by �ρ . From defini-
tion (8.12), we conclude ∀i, j ∈ [1, N]

TN {i, j}(�ρ) = �ρ[i− j] = ρ−i+1�[i− j]ρ j−1.
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With P := diag(1, ρ, . . . , ρN−1), we get

TN(�ρ) = P−1TN(�)P. (8.32)

Using the matrix representation of y = Ḡx according to Lemma 4 and
multiplying both sides from the left by P−1, we obtain

P−1y = P−1TN(�)PP−1x = TN(�ρ)P−1x,

which is (8.31) in its lifted form. 2

Lemma 13
Assume G(z) is a (not necessarily causal) LTI system and there exists a
ρ > 0 such that {pzp = ρ} ⊂ ROC of G(z) and qG(ρz)q∞ < 1. Then

lim
j→∞

Ḡ ju0 = 0, ∀u0 ∈ {2. (8.33)
2

Proof We prove the result for the equivalent Toeplitz matrix representation
of the system Ḡ according to Lemma 4. Note that because of the similarity
transformation (8.32), TN(�) has the same spectrum as TN(�ρ). From
Lemmas 7 and 9, it follows

rad TN(�) = rad TN(�ρ) ≤
∥∥TN(�ρ)

∥∥
2 ≤ qG(ρz)q∞ < 1. (8.34)

The proof is completed by applying (8.29). 2

Remark 3
Considering Prop. 11 and Lemma 6, (8.34) guarantees strictly monotone con-
vergence for the truncated operators if qG(ρz)q∞ < 1 for ρ = 1. Therefore,
the standard result for the convergence of ILC [Norrlöf and Gunnarsson,
2002] for causal filters is also applicable to non-causal filters. 2

The following theorem establishes a frequency-domain criterion for the
convergence of the ILC scheme (8.1)–(8.3). It is more widely applicable than
the standard criterion in the literature (see for example [Bristow et al.,
2006; Norrlöf and Gunnarsson, 2002; Longman, 2000]) in the sense that it
is not an asymptotic result for the case of N → ∞, covers ILC with non-
causal filters, and applies to the convergence according to Definition 1 as
well as Definition 2 by setting ρ = 1.
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Theorem 14
Given an LTI system G(z) with the impulse response �, assume that there
exists a ρ > 0 such that {pzp = ρ} ⊂ ROC of G(z) and

qG(ρz)q∞ < 1. (8.35)

Then the following limits for ILC system (8.1)–(8.3) with interval length of
N hold:

lim
j→∞

u j = u∞ = (I − Ḡ)−1 H̄r̃

lim
j→∞

e j = e∞ = (I − T̄u(I − Ḡ)−1 H̄)r̃

where Ḡ := Q̄(I − L̄T̄u), H̄ := Q̄L̄ and r̃ =: (I − T̄r)r. 2

Proof The limits of (8.22) and (8.23) need to be calculated. For the proof,
we use the corresponding matrix representation of the truncated systems,
e.g., TN(�) instead of Ḡ according to Lemma 4. First note that

lim
j→∞

j−1∑

i=0
T i
N(�) = P−1

(
lim
j→∞

j−1∑

i=0

(
PTN(�)P−1)i) P

= P−1 (I − PTN(�)P−1)−1 P = (I − TN(�))−1 . (8.36)

To derive (8.36), we have used the fact that
∥∥PTN(�)P−1∥∥ ≤ qG(ρz)q∞ < 1,

and Lemma 8. Moreover, according to Lemma 13,

lim
j→∞

T j
N(�) = 0. (8.37)

Substituting (8.36) and (8.37) into the limits of (8.22) and (8.23) as j →∞
completes the proof. 2

A Special Case
As a special case, we consider causal and stable rational systems

G(z) =

∞∑

n=0
bnz−n

∞∑

n=0
anz−n

.

In this case, a milder condition than that of Theorem 14 is both sufficient and
necessary for convergence on finite intervals, only the direct term matters.
Notice that the causality condition on the filters is, however, quite restrictive
for the performance of the ILC algorithm.
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Theorem 15
Given a causal, stable, proper, and rational system G(z), the iterative pro-
cedure (8.26) is convergent as per Definition 1 if and only if the direct term
satisfies

�0 := lim
pzp→+∞

pG(z)p = b0/a0 < 1. (8.38)
2

Proof For sufficiency, due to the rationality of G(z) and (8.38), there exists
a sufficiently large ρ such that qG(ρz)q∞ < 1. Therefore, the iterative
procedure (8.20) is convergent according to Theorem 14.

For necessity, note that if (8.38) is violated we can write G(z) as

G(z) = �0 + z−1G1(z), (8.39)

where G1(z) is proper and p�0p ≥ 1. For any j ≥ 1 we get

G j(z) = � j0 + z−1P j(z), (8.40)

where P j(z) is proper. Since G is causal, by Lemma 5, Ḡ j = ΠNG j(I−Π0).
Having p�0p ≥ 1 would contradict p� j0p → 0, which is needed for convergence
with the initial signal x0 = δ [·]. 2

Corollary 16
An iterative procedure (8.20) corresponding to a causal and strictly proper
transfer function is convergent according to Definition 1, since �0 = 0 in
this case. 2

8.6 Practical Considerations

When qG(z)q∞ > 1, the ILC lacks the strictly monotone convergence prop-
erty. Hence, the norm of the signals may grow as iterations proceed. This
section provides some insights into this transient behavior and suggests a
solution to upper bound the growth of the error under a certain condition.

Theorem 17
Given G(z) with the impulse response �, let u j+1 = Ḡu j for some u0 and
j ∈ Z≥0. Then for every ρ ≥ 1 for which {pzp = ρ} ⊂ ROC of G(z), there
exists a C > 0 such that

∀n ∈ Z,∀ j ∈ Z≥0, qΠnu jq2 ≤ Cρn qG(ρz)q j∞ . (8.41)
2
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Proof We split ρ−[·]u j such that
∥∥∥ρ−[·]u j

∥∥∥
2
=
∥∥∥Πnρ−[·]u j

∥∥∥
2
+
∥∥∥(I − Πn)ρ−[·]u j

∥∥∥
2
. (8.42)

Furthermore, note that when ρ ≥ 1,

ρ−n qΠnu jq2 ≤
∥∥∥Πnρ−[·]u j

∥∥∥
2
. (8.43)

Combining (8.42) and (8.43) results in

ρ−n qΠnu jq2 ≤
∥∥∥ρ−[·]u j

∥∥∥
2
−
∥∥∥(I − Πn)ρ−[·]u j

∥∥∥
2
. (8.44)

Considering (8.44) and Lemma 12, we obtain

qΠnu jq2 ≤ ρn
∥∥∥ρ−[·]u j

∥∥∥
2
≤ ρn

∥∥TN(�ρ)
∥∥ j

2

∥∥∥ρ−[·]u0

∥∥∥
2
. (8.45)

Note that qρ−[·]u0q2 is constant. By considering Lemma 9, the final result
follows. 2

Remark 4
If for some ρ > 1, qG(ρz)q∞ < 1, Theorem 17 intuitively means that the
iteration operator Ḡ can shift the energy distribution of a signal only toward
plus infinity. Define ũ j := u j−ue, which results in ũ j+1 = Ḡũ j. By equating
the right hand side of (8.41) to ε, for a given n ∈ Z≥0 and ∀ε > 0, we can
find J such that qΠnũ jq2 ≤ ε for all j > J. For j > J′ > J, (8.41) implies
that n can be increased. Hence, the norm of a larger interval is guaranteed
to be less than ε. This resembles a wave traveling to the right. Assuming
qG(ρz)q∞ < 1 for 0 < ρ < 1, a similar relation to (8.41) can be derived for
q(I − Πn)ũ jq2, so the wave moves toward minus infinity. 2

With the result of Theorem 17 in mind, let us reexamine the example
in Sec. 8.2. In Fig. 8.2 for the convergent case, the growing wave is pushed
toward the right as the number of iterations increases while for the non-
convergent case the signals grow unbounded in the time region of the trial.

Assuming the conditions of Theorem 17 are fulfilled for ρ > 1, we can
employ a strategy to only feed “safe inputs” and set the remaining inputs to
a bounded signal. This way, a possibly growing tail of the control signal can
be truncated, since we know that its energy distribution can only be shifted
to plus infinity. Additionally, since we have assumed that (8.1) is stable,
setting the removed part of the signal to a bounded signal is harmless.
More specifically, a good choice is

u j[n] =
{
Q (u j−1 + Le j−1) [n], 0 ≤ n < jd̂
Tu(1)−1(1− Tr(1))r[n], jd̂ ≤ n < N,

(8.46)
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where the steady-state solution to (8.1) is used for the unsafe region.
To determine the range of safe inputs, consider the model G(z) = cz−d,

i.e., �[n] = cδ [n − d] where δ [·] is the Dirac delta function. According to
this model,

� j[n] = c jδ [n− jd]. (8.47)
Thus, the norm of the signal is multiplied by c and shifted d steps along
the time axis in each iteration. Obviously, after sufficiently many iterations,
the energy of the signal lies outside of the interval of n ∈ {0, . . . , N − 1}.
By setting the right hand side of (8.41) in Theorem 17 to less than or equal
to ε, we derive

n ≤ lnε − lnC
ln ρ − j ln qG(ρz)q∞ln ρ .

By comparison with model (8.47), we conclude that a good choice for d̂
in (8.46) is

d̂ = − ln qG(ρz)q∞
ln ρ . (8.48)

Therefore, a rule of thumb for calculating d̂ is obtained by substituting ρ
with ρ∗ := arg minρ qG(ρz)q∞ in (8.48).

Figure 8.6 shows an example of the application of the safe-feed strat-
egy (8.46). The filter Q(s) is the same as in (8.6), and the rest of the transfer
functions are

Tu(s) =
s− 5

(s+ 1)(s2 + 0.8s+ 16) , Tr(s) = 0,

Ld(z) = −61− 2.7z−1 + 2.5z−2 − 0.8z−3

1− 0.5z−1 − 0.3z−2 z5.
(8.49)

The Bode plots of Tu(s) after discretization is shown in Fig. 8.7. From the
phase plot, it is evident that the system is non-minimum phase. Figure 8.8
confirms that the system converges according to Theorem 14. Without the
safe-feed strategy, the amplitude of signals grows rapidly as shown in the
left pane of Fig. 8.6. However, by employing the safe-feed strategy the
transient behavior is kept under control.

Early termination schemes are also advisable since, as it has been
reported by other authors, divergence might appear after many itera-
tions [Longman and Huang, 2002]. In the case of qG(z)q∞ ≥ 1, more
precautions must be taken considering the inherent lack of robustness.

Robustness
Here we present an example that shows the lack of robustness of ILC when
qG(z)q∞ > 1 and N is large. According to (8.22), the control signal is
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Figure 8.6 Safe-feed strategy for non-minimum phase system (8.49): From
top to bottom, iterations 5, 10, and 100 are illustrated. The signals shown
are the reference (black), input (blue), output (green), and error (red). For
the right pane, the safe-feed strategy (8.46) is employed with d̂ = 5, while
for the left pane it is not.

comprised of two terms; one is the response to the initial control signal
Ḡ ju0 and the other is entirely due to the reference signal

∑ j−1
i=0 Ḡi H̄r̃. In

this example, we see while the term related to the initial control signal
vanishes, the geometric series resulting from the response to the reference
signal may not converge.

Consider

G(z) = 0.2z−3 − 0.6z−2 + 0.4z−1 − 0.1+ 0.1z+ 0.12z2. (8.50)

Figure 8.9 confirms that radTN(�) < 1 while qG(z)q∞ > 1. Figure 8.10
compares the impulse response of the infinite series

∑∞
i=0 Ḡi H̄r̃ calculated

iteratively and the closed-form solution (8.36). As seen, the responses match
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Figure 8.7 Example (8.49): Bode diagrams of Tud(eiω) shows that the sys-
tem is non-minimum phase.

in the beginning but the blue curve corresponding to the infinite series
diverges after a while.

To explain the issue, let us have a look at the numerical values of the
spectral radius and the norm of the infinite series for various N. The infi-
nite series is approximated by a finite series, but with a large number of
terms. In Fig. 8.11, we see that at approximately N = 246 the norm of the
approximation of the infinite series of the system starts to deviate quickly
from the closed-form solution (8.36). At the same N, we see that the nu-
merically computed spectral radius becomes larger than one. Nevertheless
irrespective of N, qTN(�)q > 1 and

∥∥T5000
N (�)

∥∥ u 0 within the machine
precision.

First of all, we observe that the closed-form solution for the calculation of
the infinite series does not hold for the numerical results when qG(z)q∞ > 1
and N is large. Additionally, from the comparison of the spectral radius of
TN(�) and PTN(�)P−1 we see that they diverge even earlier. In theory, we
do not expect that the eigenvalues of the similarity-transformed matrices of
finite size differ. However, in practice when N becomes large, they are not
the same because of numerical errors.

In conclusion, as the trial length N becomes large, the result of The-
orem 14 does not hold in practice. The issue must indeed be traced back
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Figure 8.8 Plot of qG(ρz)q∞ vs. ρ for the non-minimum phase sys-
tem (8.49).
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Figure 8.9 Plot of qG(ρz)q∞ for the example given in (8.50).

to (8.29), i.e., rad G < 1 is practically not sufficient for the convergence
according to Definition 1. This suggests using a more robust criterion such
as the pseudo-spectrum [Reichel and Trefethen, 1992] instead of (8.29).
Nevertheless, depending on the disturbance in the system we can observe
convergence for a short period even if each trial length is quite long. As
the vertical line in Fig. 8.10 indicates, we can expect a match between the
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Figure 8.10 Comparison of the impulse response of
∑
G j (blue line) and

the closed-form solution (8.36) (red line).
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Figure 8.11 The 2-norm of the series T0
N(�)+ · · ·+T5000

N (�) compared with
(I − TN(�))

−1 and the numerically calculated spectral radius of TN(�) com-
pared with PTN(�)P−1. Matrix P corresponds to ρ∗ u 1.764. For large time
interval N, the approximation of the infinite series diverges from its closed-
form solution. At the same interval length, we observe that the numerically
calculated radTN becomes larger than 1, despite the fact the spectral radius
of the its similarity-transformed matrix remains less than 1.
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Figure 8.12 Relation between ILC and repetitive control.

ideal case and the numerical result even for the non-truncated operator G
up to Kh, where K corresponds to the size of largest matrix such that the
numerical radTK(�) < 1.

8.7 Relation to the Repetitive Control

Consider the block diagram of ILC in Fig. 8.12a. Noting that the next
iteration can be started at an arbitrary reference time, it is possible to
add any amount of delay to the output of each stage. Specifically, if we
consider cyclic signals, adding any multiple of the period of the reference
signal will not affect r. Now, if we reuse the same structure and connect
delayed u j+1 to u j, we arrive at Fig. 8.12a. The familiar block diagram of the
repetitive control in Fig. 8.12c is obtained by changing the position of filter
L in the loop. This reveals the connection between repetitive control and
ILC algorithm. Namely, ILC is an unfolded version of the repetitive control
where each stage of the cascaded system has a similar initial condition.

Note that for repetitive control, we should examine the closed-loop prop-
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erty of G(z)z−N , where N is the period of the reference signal. Therefore,
the criterion for the stability of the repetitive control is more restrictive
than for the ILC.

8.8 Point-to-Point Trajectory Generation

For point-to-point trajectory generation, no explicit reference signal is de-
fined. Therefore, we have a valid solution as long as the start and the
end-point constraints are satisfied. We handle this case by setting the error
in the interval between these points to zero. Note that in the lifted form,
i.e., when considering TN(·), setting the error to zero at certain points is
equivalent of setting certain columns of TN(L) matrix to zero. Therefore,
the analysis presented in this chapter with the modified L is applicable.

Figure 8.13 illustrates an example for planning a one-dimensional point-
to-point movement. The reference signal (black line) is only valid before 7 s
and after 10 s. Hence, it is required to plan a movement between these
two points. The control signal (blue line) was initialized with the reference
signal. However, after a number of iterations it was updated to reduce the
error signal as it is seen in the lowest pane of the figure. As a preliminary
observation, the convergence of the algorithm is more difficult to be ensured,
but the residual error might be less than the case where the reference is
fully specified. Further study of the nature of the converged solution is
required.

8.9 Discussions

A number of qualitative measures for the convergence of (8.26) can be
deduced from the plot of qG(ρz)q∞ versus ρ. First of all, according to (8.34),
the value infρ>0 qG(ρz)q∞ is an upper bound for the spectral radius of the
finite Toeplitz matrix, indicating the exponential decay rate of the slowest
transient mode of ILC applied on a finite-time interval. Based on (8.48),
the larger ρ∗ or qG(ρ∗z)q the longer it would take for the growing wave to
disappear. We can also define

Ω := {ρp qG(ρz)q∞ < 1 ∧ pzp = ρ ⊂ ROC of G(z)},
ρ { := inf Ω, ρ h := sup Ω,

i.e., ρ { is the first crossing of 0 dB and ρ h is the last one. If the control
signal is weighted by an exponential function with rate ρ < ρ {, the weighted
signal appears to grow and shift toward plus infinity. On the other hand,
weighting by ρ > ρ h results in a growing signal that moves toward minus
infinity.
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Figure 8.13 Point-to-point planning using ILC: From top to bottom, itera-
tions 3, 50, and 300 are illustrated. The black dotted curve is the reference
signal. The input is in blue, the output is in green, and the error signal in
red. The reference signal in the region between the vertical dashed black
lines is not relevant and it is only used as the initial guess for the control
signal. ILC improves the control signal such that the output and the refer-
ence signal match closely at the dashed lines. I.e., a control signal has been
found to transfer the state of the system from an initial point to a final point.

As an example we consider a binomial case where G(z) = a−1z−1+ a1z1

and a−1 ≥ 0, a1 > 0. The minimum of qG(ρz)q∞ is achieved for ρ∗ =√
a−1/a1. Substituting ρ∗ into G(ρz), results in

G(ρ∗z) =
√
a−1a1z−1 +

√
a−1a1z1 = a(z−1 + z1), (8.51)

and qG(ρ∗z)q∞ = 2a, where a := √a−1a1. Therefore, the coefficients are
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retrieved by considering

a1 =
1
2r

∗ qG(ρ∗z)q∞ , (8.52)

a−1 =
1
2

1
ρ∗ qG(ρ

∗z)q∞ . (8.53)

Observe that

G(ρ∗z)n = an(z−1 + z1)n

= anzn(1+ z−2)n

= an(z−n + nz−n+2 + · · ·+ nzn−2 + zn). (8.54)

Using Stirling’s approximation when n is large, we have

ln
(
n
m

)
(

(
n+ 1

2

)
ln (n) −

(
m+ 1

2

)
ln (m)

−

(
n−m+ 1

2

)
ln (n−m) − 1

2 ln (2π) . (8.55)

If we further define k ∈ Z such that m = mn/2o + k, and approximate ln(·)
by its fourth-order Taylor series expansion around 1/2, we find

ln
(

n
n/2+ k

)
( −

16
13

k4

n3 −2
(

1
n −

1
n2

)
k2+(n+1) ln(2)− 1

2 ln (2π) . (8.56)

From (8.56), it becomes clear that the coefficients grow with the order of
O(2n). Thus, qG(ρ∗z)q∞ = 2a < 1 guarantees the convergence to zero.
Additionally, we see that the effect of ρ is that it balances the tails of the
polynomials in this case.

As a numerical example consider G(z) = 0.225z1 + 0.9z−1. The plot of
qG(ρz)q∞ against ρ is shown in Fig. 8.14. Figure 8.15 illustrates how the
wave of divergence is affected by different values of ρ.

The frequency domain criterion provides an intuitive way to judge the
convergence of ILC and facilitates the design process. Moreover, its evalu-
ation can be computationally advantageous compared to the time-domain
criteria. Iterative algorithms are often employed to solve for the largest
eigenvalue or to calculate the H∞ norm. Given a system with state di-
mension n, the cost of computing the H∞ norm scales with O(n3) per
iteration [Vandenberghe et al., 2005]. On the other hand, to compute the
largest eigenvalue of a lifted system for the interval length of N, the cost per
iteration for general algorithms is roughly O(N2). Thus, the time-domain
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Figure 8.14 Plot of qG(ρz)q∞ vs. ρ for a binomial case G(z) = 0.225z1 +
0.9z−1.
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Figure 8.15 The effect of a weighting function on �nρ [k]. For the top plot
ρ = ρ∗ = 2, for the middle plot, ρ = 1 < ρ { and for the bottom plot
ρ = 4 < ρ h. When ρ < ρ {, the wave of divergence moves toward minus
infinity and when ρ > ρ h, it moves toward plus infinity.
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criteria scale poorly with the interval length N, while the the frequency
domain computation is independent of N.

Even when ρ is not set to one, the search over a range of ρ can be done
efficiently. Firstly, note that very large values of ρ are not interesting since
they imply poor transients. Secondly, the valid range of ρ is constrained
by {pzp = ρ} ⊂ ROC of G(z). Let pp1p ≤ pp2p ≤ . . . ≤ ppnp denote the
poles of G(z). Since the ROC must be a connected region, if G is causal
ppnp < ρ and if G is non-causal, ppip < ρ < ppi+1p for some pi. Thirdly,
note that as a consequence of the Hadamard three-circle theorem [Lang,
2013], log ppG(ρz)pp∞ is strictly convex in log(ρ) if G(z) is not a pure delay
or forward shift. These facts allow for a fast evaluation of (8.35) using, for
example, a bisection method.

While the frequency domain representation is widely accepted as an
approximation for a practical ILC system where each iteration has a finite
duration [Norrlöf and Gunnarsson, 2002; Longman, 2000], its implication for
the frequency domain criterion (8.4) has not been clarified. From Lemma 9,
it becomes evident how qG(z)q∞ approximates σ̄ (G). Namely, the maximum
singular value of a finite Toeplitz matrix is upper bounded by σ̄ (T∞(�)),
which is equal to the infinity norm of the system. Thus, the criterion (8.4) is
sufficient even for the convergence of a practical ILC algorithm. Moreover,
when � ∈ {1 according to Lemma 10, as N → ∞ we have equality and
hence the criterion (8.4) in this case is both sufficient and necessary for
monotone convergence.

The criterion for non-monotone convergence is closely related to the
results by [Schmidt and Spitzer, 1960], which states that if G has a finite
impulse response (FIR), then

lim inf
N→∞

radTN(�) ≤ lim sup
N→∞

radTN(�) ≤ inf
ρ>0
qG(ρz)q∞ .

However, this criterion cannot be used for evaluating the convergence of
long sequences, i.e., when N is large. The reason is that (8.29) does not
guarantee robustness against perturbations. Specifically, the spectral radius
cannot reliably describe the convergence behavior of large Toeplitz matrices
and instead, pseudo-spectrum should be considered [Reichel and Trefethen,
1992]. In our opinion, this can clarify some of the gaps observed between the
theoretical and practical convergence of ILC reported in the literature. The
lack of robustness can manifest itself as the divergence of ILC that starts
at a distant sample in time after a number of iterations. Hence, either a
shorter time interval or an early termination strategy should be considered.
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8.10 Conclusion

The time domain criterion states that ILC converges if and only if
the spectral radius of TN(�) corresponding to the lifted system fulfills
radTN(�) < 1. For strictly monotone convergence, it is necessary and suf-
ficient that the largest singular value is less than one, i.e., σ̄ (TN(�)) < 1.
These conditions have sufficient frequency domain counterparts applicable
to ILC systems with causal as well as non-causal filters with no restriction
to minimum-phase systems.

Our main result states that (non-monotone) convergence of ILC on finite-
time intervals is implied by

inf
ρ>0

sup
ω

∣∣G(ρeiω)
∣∣ < 1,

which is less conservative than supω pG(eiω)p < 1. In other words, for non-
monotone convergence, the criterion qG(z)q∞ < 1 can be evaluated on any
circle in the region of convergence with radius larger than zero. The criterion
implies that the spectral radius of the corresponding finite Toeplitz matrix
TN(�) is less than one. In this case, repeated composition with the operator
G shifts the energy distribution of the control signal toward plus or minus
infinity if qG(z)q∞ ≥ 1 but qG(ρz)q∞ < 1 for some ρ > 0.

Our treatment clarified the source of approximation in using the fre-
quency domain criterion. Furthermore, we elaborated on the connection
between repetitive control and ILC. Specially, it was shown that the conver-
gence criterion of repetitive control is more restrictive compared to ILC. We
proposed an idea to use ILC for point-to-point trajectory planning problems.

Practical considerations were discussed, whereby it is advisable to em-
ploy safe-feed and early-termination strategies in an ILC system. Rigorous
extensions of the main results to the multi-input-multi-output (MIMO) case
as well as analyzing scenarios with non-repetitive disturbances [Mishra et
al., 2007; Ruan et al., 2008] are parts of future research.
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Conclusions and Future
Research

A dual-arm haptic interface was proposed for collecting human-generated
trajectories and interaction forces in a natural way. This model for Human
Robot Interface (HRI) can solve the problem of mapping between a human
demonstration and a robot behavior in addition to capturing interaction
forces. While in the single-arm lead-through programming there is an un-
avoidable mechanical coupling between the operator, the manipulator, and
the workpiece, using the teleoperation model decouples the operator–robot
interface from the robot–workpiece interface. Thanks to this separation, it
is possible to interact with the workpiece with a higher degree of trans-
parency, which reduces unwanted demonstration side-effects compared to
typical single-arm lead-through approaches.

The results of the rest of the thesis are applicable to automatic trajec-
tory generation. There are many applications in which only initial and final
states matter for defining a task. To motivate the use of simplistic models
of robots for trajectory generation, we compared kinematic and dynamic
models. Provided that kinematic constraints are conservative enough, our
examples showed that kinematic models can be sufficient for trajectory plan-
ning. Having this in mind, we considered point-to-point trajectory planning
and proposed a number of solutions. We derived an analytic solution to
the problem of fixed-time optimal trajectory planning with maximum veloc-
ity and maximum acceleration constraints using the Pontryagin maximum
principle. In another approach, rather than finding an optimal trajectory,
we developed an instantaneous trajectory generator in the form of an opti-
mal controller using the Hamilton-Jacobi-Bellman equation. The controller
updates the trajectory in a closed-loop fashion as a result of the changes
in the state of the target and/or the state of the robot. Along the same
line of thought, we proposed Model Predictive Control (MPC) for fixed-time
point-to-point trajectory planning. MPC enabled us to consider a wider
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range of constraints and models. The MPC approach was evaluated in a
ball-catching experiment with real-time constraints. We consider trajectory
generation and path planning as interrelated problems, since they cannot
always be treated separately without loss of performance. Hence, we incor-
porated geometric constraints in the MPC approach by approximating the
workspace.

Manipulation tasks require interaction with a work-piece or other robots.
For example, assembly relies on making contacts and controlling the robot
in the contact situation. We developed a model for a ball-and-finger system.
This model allowed us to study more challenging scenarios for trajectory
generation, where interaction with another object plays an important role.
Because of varying contacts and friction properties, the modeling resulted
in a hybrid model with differential algebraic equation systems. We found
optimal trajectories and paths for rotating the ball despite providing the
algorithm with virtually no information about how to achieve the goal. The
only information explicitly provided was the need for making and breaking
contact. The optimization algorithm figured out where and when a contact
has to be made and to be broken, in addition to finding the control and state
trajectories. The proposed system opens up new opportunities for research,
both in the modeling part and in the optimization. An extension of this work
is to include extra fingers, where the problem of coordination and planning
becomes of major importance.

Iterative Learning Control (ILC) as a means to obtain the control sig-
nal for realizing a trajectory was also studied in this thesis. We provided
less restrictive criteria than the existing ones in the literature for evalu-
ating the convergence of an ILC system, which are also applicable to non-
monotone convergence of the ILC algorithm. Some suggestions for making
non-monotone convergence practically useful were proposed. We also gave
an example of how ILC can be modified for point-to-point trajectory genera-
tion. Finding directly control signals for point-to-point movements using an
ILC algorithm, especially in multidimensional problems, is an interesting
topic of research.

The ultimate goal in trajectory generation can be viewed as developing
methods to arrive at a low-level representation of motion (and its corre-
sponding input to a system) from a high-level specification and available
inputs. In this sense, a trajectory planner is no different than a controller
which maps set-points and current measurements to a control signal. Thus,
the border between motion planning and trajectory generation is blurry.
Continuing on the analogy, it is also important to pay attention to the
source of the changes when a trajectory controller is designed. Hence, a tra-
jectory controller with two degrees of freedom is required to ensure different
responses to the high-level goal and measurement disturbances.

As there are many ways to synthesize a controller, there exist many
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approaches to design a trajectory and a trajectory planner. In any case, it is
of great importance how we specify tasks and how we measure performance.
For instance, in guarded motion-based programming [Ghazaei Ardakani,
2015], we can specify sensor-based piece-wise trajectories to accomplish a
task. In essence, this is a form of the so-called procedural programming. On
the other hand, we can specify relationships between objects and tolerances
in a declarative way to come up with such a procedure. Using the optimal
control framework, i.e., defining a cost functional, constraints, and models
was a step toward this goal.

This thesis can naturally be extended in different directions. Firstly,
the models can be improved to better capture the reality of robots, e.g., by
introducing an element of uncertainty in both models and measurements.
Secondly, the constraints and the cost functional could be revised to be
more representative of the tasks. Thirdly, the representation and reuse of
human-generated trajectories can be investigated thoroughly. Trajectories
augmented with sensory inputs, such as force/torque measurements, pro-
vide information-rich data for programming robots. A possible use of this
information in the context of optimal control is to warm start optimization
algorithms from a demonstrated feasible solution.
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A
Supplementary Equations
for Ball and Finger System

A.1 Forward kinematics and Jacobian

Considering Fig. 7.1, the position of the fingertip, pe, and the orientation of
the 3rd link, described as a rotation matrix, are

pe =


 −s23 − s2 + 2

1
2 (s123 + s12̄3̄ + s12 + s12̄) + s1
1
2 (c12̄3̄ + c123 + c12̄ + c12) + c1


 , (A.1)

[êx3 êy3 êz3 ] =


 −s23 −c23 0

1
2 (s123 + s12̄3̄)

1
2(c123 − c12̄3̄) −c1

1
2 (c12̄3̄ + c123)

1
2 (s12̄3̄ − s123) s1


 , (A.2)

where si j...k denotes sin(qi + q j + · · · + qk) and ci j...k denotes cos(qi + q j +
· · · + qk). A variable with a bar denotes the variable with a negative sign,
e.g., ī represents −qi.

The geometric Jacobian for the fingertip is

J =
[
Jp
Jo

]
, (A.3)

where the translational part, Jp, is given by

Jp =


 0 −c23 − c2 −c23
J21

1
2(c123 − c12̄3̄ − c12̄ + c12)

1
2(c123 − c12̄3̄)

J31
1
2 (s12̄3̄ − s123 − s12 + s12̄) − 1

2 (s12̄3̄ − s123)


 , (A.4)

where

J21 =
1
2(c12̄3̄ + c123 + c12̄ + c12) + c1,

J31 = −
1
2 (s123 + s12̄3̄ + s12 + s12̄) − s1,
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A.2 Dynamics

and the rotational part, Jo, is given by

Jo =


−1 0 0

0 −c1 −c1
0 s1 s1


 . (A.5)

A.2 Dynamics

In this section, the expressions for the dynamical properties of the finger
used in (7.23) are given. Every link is characterized by the mechanical
properties mass mi and moments of inertia Ii = diag

(
Ixxi , Iyyi , Izzi

)
where

i denotes the link number.
The expression for the gravitational force is

�(q) = −�0
4


 �11
m2 (s11 − s11̄) + (s111 − s11̄1̄ + 2s11 − 2s11̄)m3

m3 (s111 − s11̄1̄)


 , (A.6)

�11 = 2m1s1 + (s11 + s11̄ + 4s1)m2

+ (s111 + s11̄1̄ + 2s11 + 2s11̄ + 4s1)m3. (A.7)

Here sxyz denotes sin(xq1+ yq2+ zq3) and cxyz denotes cos(xq1+ yq2+ zq3).
A variable with a bar denotes the variable with a negative sign, e.g., x̄
represents −x. The trailing zeros are omitted.

The mass matrix for the finger is

M f (q) = MT
f (q)

=


m11 0 0

0 m3c001 +
5
4m3 +

1
4m2 + Izz2 + Izz3

1
4 (2c001 + 1)m3 + Izz3

0 1
4 (2c001 + 1)m3 + Izz3

1
4m3 + Izz3


 ,
(A.8)

where

m11 =
1
8 (−4Ixx3 + 4Iyy3 +m3) c022 +

1
2m3c021 +

1
8 (8c01 + 9)m2

+
1
8 (4m3 +m2 − 4Ixx2 + 4Iyy2) c020 +

1
2(Iyy2 + Ixx3 + Iyy3 + Ixx2)

+
1
8 (16c01 + 4c001 + 8c011 + 13)m3 + Iyy1 +

1
4m1. (A.9)

The matrix C(q, q̇) can be expressed as

Ci j =
3∑

k=1
ψ i jkq̇k, (A.10)
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where ψ i jk = 0 except for

ψ112 = ψ121 = −ψ211 =
1
8 (4Ixx3 − 4Iyy3 −m3) s022 −

1
2m3s021

−
1
8 (4m3 +m2 − 4Ixx2 + 4Iyy2) s02 −

1
2m3s011

−

(
1
2m2 +m3

)
s01, (A.11)

ψ113 = ψ131 = −ψ311 =
1
8 (4Ixx3 − 4Iyy3 −m3) s022

−
1
4m3 (2s011 + s001 + s021) , (A.12)

ψ223 = ψ232 = ψ233 = −ψ322 = −
1
2m3s001. (A.13)
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