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Abstract: The Covid-19 pandemic has spawned numerous dynamic modeling attempts aimed
at estimation, prediction, and ultimately control. The predictive power of these attempts has
varied, and there remains a lack of consensus regarding the mechanisms of virus spread and
the effectiveness of various non-pharmaceutical interventions that have been enforced regionally
as well as nationally. Setting out in data available in the spring of 2020, and with a now-
famous model by Imperial College researchers as example, we employ an information-theoretical
approach to shed light on why the predictive power of early modeling approaches have remained
disappointingly poor.
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1. INTRODUCTION

We illustrate how the combination of poor excitation
in modelling data and opaque modelling easily lead to
the loss of practical identifiability of the resulting model.
While being well-known within system theory, these issues
have been neglected in remarkably many epidemiological
models used to estimate or predict aspects of the ongoing
SASRS-CoV-2 pandemic. Several such models have had
impact on policy, and ultimately on people’s lives. In
March 2020 the Imperial College Covid-19 Response Team
(ICCRT) issued a report [Ferguson et al. (2020)], based
on an agent model, that resulted in an overnight change
of the UK response policy, manifested by a nation-wide
lockdown [Boseley (2020)]. Later the same month, the
ICCRT published a subsequent report [Flaxman et al.
(2020b)], in which a Bayesian model ascribed almost all
reduction of the viral reproduction number R to lockdowns
in all modeled European countries, except for Sweden.
The non-pharmaceutical intervention (NPI) that brought
R < 1 in Sweden was in contrast ascribed to have had
only negligible effect on R in all the other countries. A
revision of the second model [Flaxman et al. (2020b)]
was published in Nature [Flaxman et al. (2020a)]. The
model code, including revision history, has been made
publicly available [ICCRT (2020)]. When executing the
original code, we found that the model suffered sensitivity
? The work behind this extended abstract was partially supported
by the ELLIIT Strategic Research Area, by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by
the Knut and Alice Wallenberg Foundation, and by the Swedish
Foundation for Strategic Research (SSF) via the project ASSEMBLE
(contract number: RIT15-0012).

issues, leading to practical loss of identifiability under
the data available at the time of publication [Soltesz
et al. (2020)]. This prompted us to conduct a systematic
investigation of the model. Here we provide a summary of
that investigation.

2. THE ICCRT NPI MODEL

The basic dynamics of how NPIs affect reported data is
illustrated in Fig. 1. Each NPI is assumed to have an
effect on the society that affects the spread, through (pre-
sumably) decreasing the effective reproduction number R.
Since the infected population is not directly measurable,
an observation model for some measurable data is needed.

Fig. 1. Block diagram for the ICCRT NPI model.

2.1 NPI Definitions

The binary indicator function σk,t,m models NPI k =
1, . . . ,K effectuated at time t = 1, . . . , T in country
m = 1, . . . ,M , where σk,t,m = ∞ denotes that NPI k
was not effectuated in country m during the studied time
interval t ∈ [1, T ]).
The modeled NPI categories are:
• Lockdown;
• Public events ban;
• School closure;
• Self isolation;



• Social distancing.
In addition to these, the model ascribes a country-specific
effect for the last NPI enacted in each country, modeled
as a virtual country-specific NPI.
It is worthy of notice that all five NPI categories were
enacted in 10 of the eleven Europeans countries included in
[Flaxman et al. (2020a)]. In the eleventh country, Sweden,
four of the categories were enacted, but there was no
lockdown. All NPI enactments took place in March 2020,
most of them within a single week.

2.2 Basic NPI Model

The model relies on three distributions of times between:
• becoming infected and infecting the next person is
called the serial interval and is here denoted pII(τ);
• infection and the onset of symptoms is denoted
pIO(τ);
• symptoms onset and death is denoted pOD(τ).

The distribution of time between infection and death,
pID(τ) = pIO ∗ pOD(τ), is used to relate the number of
infected people to the reported number of deaths.
We can now define the NPI model (1). The infected
population It,m at time t in country m having population
Nm is given by the recursion

It,m = Rt,m
Nm −

∑t−1
τ=0 Iτ,m

Nm

t−1∑
τ=0

Iτ,mpII(t− τ). (1a)

To get some intuition for this formula, consider the special
case where pII(k) = δ(k), that is, every infected person is
infectious exactly after k days, and only that day, and then
spreads the disease to Rt,mIt,m/Nm susceptible. The effect
of NPI k on Rt,m is modeled by:

Rt,m = R0,m exp
(
−

6∑
k=1

αkσk,t,m

)
. (1b)

Note that the parameter αk is the same for all countries.
This is what pools the M countries together within the
model.
Finally, we have an observation model for the mortality
data yt,m,

yt,m = IFR
t−1∑
τ=0

Iτ,mpID(t− τ), (1c)

where IFR denotes the infection-fatality ratio.

3. NPI ESTIMATION APPROACHES

In [Flaxman et al. (2020a)] a Bayesian MCMC framework
was used to estimate the parameters R0,m, m = 1, . . . ,M
and αk, k = 1, . . . ,K. Our contribution has been to recast
the model in a linear regression framework where the least
squares (LS) method can be used.

3.1 Bayesian Approach

The Bayesian model [Flaxman et al. (2020a)] relies on the
following prior distributions:

pII(τ) = Γ(6.5, 0.62), (2a)
pIO(τ) = Γ(5.1, 0.86), (2b)
pOD(τ) = Γ(18.8, 0.45). (2c)

Here, Γ(a, b) has mean a, coefficient of variation b, and
standard deviation ab.
Priors for the NPI parameters were chosen as αk ∼
Γ(0.5, 1) in [Flaxman et al. (2020b)], and subsequently
changed to

αk ∼ Γ(1/6, 1)− log(1.05)
6 , (3)

in [Flaxman et al. (2020a)], with the motivation that∑
αk ∼ U(0, 1.05) when all NPIs are effectuated. That is,

there is a possibility that the interventions increase R by
a factor e1.05, but most of the prior is assigned to a signif-
icant decrease. As was noted by Nicholas Lewis in [Lewis
(2020)], the Γ prior has a regularization effect. Suppose
that the model needs

∑
k αk = 1.75, corresponding to a

reduction of 1− e1.75 = 0.83 in Rt which was the median
reduction in the MCMC samples of the Nature model
[Flaxman et al. (2020a)]. Then the prior for αi = 1.76/6
for all i is 0.0023. If one αi = 1.71 dominates and the
others are insignificant, αj = 0.01, then the prior is 64.3.
That is, the prior gives a strong bias to having one or a
few NPIs that explain data.
Further, R0,m ∼ N (2.4, |κ|) where κ ∼ N (0, 0.5). The
ICCRT model approach is based on sampling from the
parameter priors, evolving (1a) and (1b), and then evalu-
ating the likelihood for each sample in a Bayesian MCMC
framework. A simplified description of the methodology
essentially consists of the following steps:
(1) Generate random numbers of the K + M involved

parameters θ = (α:, R0,:). This is the most impor-
tant step and there are many sampling strategies to
achieve it.

(2) Simulate the model (1).
(3) Compute the likelihood for the observed mortality

data.
(4) Generate a random number u = U(0, 1).
(5) If the log likelihood ratio has increased more than u,

the simulation is accepted, otherwise it is rejected.
(6) Continue until a pre-defined number of samples has

been obtained, excluding the burn in time before the
MCMC has converged to stationarity.

3.2 Fisherian Approach

It turns out that the estimation problem can be cast in
a Fisherian LS framework. This explicitly reveals identifi-
ability issues of the model, obscured by ambiguous prior
choices in the Bayesian MCMC framework.
Equation (1b) is a linear regression in the log domain:

logRt,m = logR0,m −
6∑
k=1

αkσk,t,m. (4)

Taking the logarithm also of (1a), and eliminating Rt,m,
gives



log It,m = logR0,m −
6∑
k=1

αkσk,t,m (5)

+ log
(

1−
∑t−1
τ=0 Iτ,m
Nm

)
+ log

(
t−1∑
τ=0

Iτ,mpII(t− τ)
)
.

This fits the classical linear regression framework, with
zt,m = xt,mθ, (6a)

where

zt,m = log It,m − log
(
t−1∑
τ=0

Iτ,mpII(t− τ)
)

(6b)

+ log
(

1−
∑t−1
τ=0 Iτ,m
Nm

)
, (6c)

xt,m =
(
σ:,t,m, e

T
m

)
, (6d)

θ =
(
α:, log

(
R0,:

))T
. (6e)

Here, em is the mth unit vector. Vectorizing the data for
all M countries, we get the more compact form

Zt = Xtθ, (7a)
Zt = (zt,1, . . . , zt,M )T , (7b)
X̄t =

(
σ:,t,:, I

)
. (7c)

The solution is given by

θ̂ =
(∑

t

XT
t Xt

)−1(∑
t

XT
t Zt

)−1

, (8a)

Cov
(
θ̂
)

= λ

(∑
t

XT
t Xt

)−1

. (8b)

Here, λ = Var(zt,m) denotes the variance of the trans-
formed data, assuming it to be the same for all times and
countries.

3.3 Inverse Convolution

The above linear regression model requires knowledge of
the number of infected people It,m to compute zt,m of (6b).
It can be estimated by inverse convolution from the model

Dt,m = IFR
t−1∑
τ=0

Iτ,mpID(t− τ). (9)

From a statistical viewpoint, this two-step procedure cor-
responds to a certainty equivalence assumption that does
not attempt to give a correct description of the observation
noise. However, it is useful for analyzing identifiability of
the model.

4. IDENTIFIABILITY

The lack of excitation in the NPIs constitutes a fundamen-
tal limitation. It can be formalized through the Cramér-
Rao lower bound (CRLB) that limits the achievable esti-
mation accuracy of any unbiased estimator

Cov
(
α̂
)
≥ λJ(θo)−1, (10)

where J(θo) is the Fisher information matrix (FIM) evalu-
ated at the true parameter values θo, and λ is the variance

of the noise on zt,m. Since we have a linear regression, the
bound simplifies into

Cov
(
α̂
)
≥ λ

(∑
t

X̄T
t X̄t

)−1

. (11)

4.1 Condition number of the FIM

One can note that Xt is a matrix with binary entries,
rendering a FIM J =

∑
tX

T
t Xt over Z+. Identifiability is

directly related to the condition number of the FIM. The
Nature version of the model corresponds to cond(J) >
1 000, indicating a very high model sensitivity.

4.2 Eigen Decomposition of the FIM

Assume we apply all available data up to May 9, 70
days after March 1, and that we can compute the virtual
measurement zt,m, having Gaussian noise with variance λ.
In this idealistic case, the CRLB dictates

Cov
(
α̂
)
≥


0.010 −0.004 −0.002 −0.000 −0.003

−0.004 0.029 −0.013 −0.004 −0.008
−0.002 −0.013 0.039 −0.005 −0.019
−0.000 −0.004 −0.005 0.020 −0.010
−0.003 −0.008 −0.019 −0.010 0.039

 . (12)

That is, the variance of each parameter lies in the range
0.010− 0.039. Applying an SVD to the inverse FIM gives
D = diag(0.0588, 0.0409, 0.0261, 0.0116, 0.0003), (13)

U =


0.02 −0.02 0.17 0.90 0.40
−0.15 0.72 −0.49 −0.10 0.46

0.72 −0.38 −0.32 −0.17 0.46
0.09 0.21 0.78 −0.35 0.46
−0.67 −0.54 −0.13 −0.17 0.46

 . (14)

The diagonal matrix reveals that one linear combination
of the parameter vector can be estimated with a variance
bound of only 0.0003, which is 200 times better than the
worst linear combination

Var
(∑

k

α̂k
)
≥ 0.0015. (15)

The conclusion is that the sum of the parameters has a
CRLB that is 6 to 20 times smaller than its individual
components.

4.3 Practical implications

The high sensitivity of the ICCRT model is not merely
concerning from a theoretical point of view. In [Soltesz
et al. (2020)], we have analyzed how seemingly subtle
changes in NPI category definitions result in the ICCRT
model [Flaxman et al. (2020a)] ascribing wildly varying ef-
fectivnessess to different NPI categories. The two changes
we considered were introduced by the ICCRT modellers
in subsequent code versions. They redefined the crowd
size associated with a public events ban, and whether a
school closure should also encompass high schools and
universities.
The perhaps most remarkable artefact of the identifiabil-
ity issues is that the ICCRT model ascribes almost all
reduction of virus spread during the spring of 2020 to the
lockdown NPI in the 10 modeled European countries that
implemented one. In tho only country that (according to



the model) did not implement a lockdown, another NPI
category provided an almost as large spread reduction as
that caused by lockdowns elsewhere. This other NPI cat-
egory is either of school closure, public events ban, or the
encouragement of social distancing, depending on which
of the above-mentioned definition variants is adopted. No-
tably, neither of these three NPI categories had substantial
impact in the other 10 countries. According to the model
it was thus fortunate that a lockdown was implemented
in all countries where it was effective, and omitted in the
single country, where another, and elsewhere ineffective
NPI, turned out crucial to bring down R.

5. DISCUSSION

Using established principles from systems theory, we have
demonstrated that even a seemingly simplistic and data-
driven phenomenological model can suffer from severe
input sensitivity and identifiability issues.
There are indeed additional properties of the ICCRT
model that would justify scrutiny. For instance, the base
assumption that changes in R are solely driven by NPIs
constrain the model to explain any reduction in R through
the NPIs. Another problematic aspect is the stochastic
delay, with a mean of about 3-4 weeks, between infec-
tion and the death report, which is what is typically
directly measured. This adds further uncertainty to the
(pseudo) observations of the regression model, and thus
the parameter estimates. The perhaps most remarkable
model property is, however, the special role ascribed to
the last NPI enacted in a particular country. This prohibits
prospective use of the model, since it is impossible to tell
whether the latest enacted NPI was also the last.
Unfortunately, high sensitivity cannot solely be ascribed
to questionable choices underlying the studied model.
Instead, practical parameter identifiability is to a large
extent inherently limited by available data. All NPIs were
effectuated during a period of 22 days, most of them
in one single week. The regression tensor therefore has
many common leading zeros as well as many common
trailing ones for all parameters, indicating poor excitation.
Furthermore, several of the involved countries had very
little virus spread when the NPIs were effectuated, leading
to an almost zero output.

6. CONCLUSION

With much at stake during all phases of a pandemic,
we conclude that it is crucial to thoroughly scrutinise
any SARS-CoV-2 estimation or prediction model, prior to
considering its use as decision support in policy-making.
Such scrutiny relies on modellers following the practice
used by the ICCRT in sharing open source code.
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