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Abstract

Background

Several studies suggest that the APOE &4 allele modulates cerebrospinal fluid (CSF) levels of B-
amyloid,.«, (AB42). However, it is unknown whether this effect is secondary to the association
of the APOE ¢4 allele with cortical AP deposition or whether APOE ¢4 directly influences CSF
Ap42 levels in an AP pathology-independent manner.

Objective

We evaluated whether the APOE genotype affects the diagnostic accuracy of CSF biomarkers
for AD, CSF AP42 in particular, and whether the association of APOE &4 with CSF biomarkers
depends on cortical Ap status.

Design

Multicenter study.

Setting

Data from four different centers in Sweden, Finland and Germany as well as from the North
American multicenter study ADNIL

Participants

Cohort A: 1345 individuals (23-99 y) with baseline CSF samples, including 309 with AD, 287
with prodromal AD, 251 controls, 399 with stable mild cognitive impairment (sMCI) and 99
with dementias other than AD. Cohort B: 105 non-demented younger individuals (20-34 y)
with CSF taps. Cohort C: 118 patients (60-80 y) with mild cognitive symptoms and

['*F]flutemetamol PET amyloid imaging and CSF taps.



Main outcome measures

CSF AP42, total tau (T-tau) and phosphorylated tau (P-tau) in relation to the APOE €2/e3/¢e4
polymorphism in different diagnostic groups and in cases with or without ['*F]flutemetamol
cortical uptake.

Results

CSF AP42, but not T-tau and P-tau, was lower in APOE &4 carriers as compared to non-
carriers irrespective of diagnostic group (cohort A). Despite this, CSF Ap42 differed between
subjects with AD when compared to controls and sMCI, even when stratifying for APOE
genotype. Multiple binary logistic regression revealed that CSF AB42 and APOE &4 genotype
were independent predictors of AD diagnosis. In cohort B (individuals <35 years), APOE &4
carrier status did not influence CSF AB42 levels. Moreover, when stratifying for
["*F]flutemetamol cortical uptake in cohort C, APOE ¢4 genotype did not influence CSF Ap42
levels. This result was replicated in ADNI using "'C-Pittsburgh compound B (*'C-PiB).
Conclusion

CSF Ap42 is strongly associated with both AD diagnosis and cortical Ap accumulation
independent of APOE genotype. The clinical cut off for CSF AB42 should be the same for all

APOE genotypes.



Introduction

The apolipoprotein E (APOE) genotype is the most prominent susceptibility gene for late-
onset Alzheimer disease (AD).' Two polymorphisms (rs7412 and rs429358) make up three
different alleles, €2, €3 and €4, of the APOE gene. These polymorphisms lead to amino acid
substitutions at positions 112 and 158 in the ApoE protein. The €4 allele is known to increase
the risk and lower the age at onset of AD in a gene dose-dependent manner. As compared to
subjects lacking the ¢4 allele, individuals homozygous for the €4 allele have an approximately
12-fold increased risk of AD and an age at onset around 65 years, while heterozygous carriers
have about three-fold increased risk and an age at onset around 75 years.” The exact
pathophysiological mechanisms underlying this strong genetic association are yet to be
revealed, but some data point towards an impaired clearance of AB from the brains of APOE

e4-positive individuals as a possible key factor.**

With the emergence of biomarker-supported dementia diagnostics,’” there is an increasing
interest in cerebrospinal fluid (CSF) biomarkers associated with AD, especially f-amyloidi.s.
(AP42) and tau proteins.® Low CSF levels of AP42 indicate ongoing AD but several studies
have also shown decreased levels of AP42 in CSF in APOE e4-positive individuals without
clinical AD.*'? It is unknown whether the effect of APOE €4 on CSF A levels is secondary to
the association of the APOE &4 allele with cortical AB deposition or whether APOE &4 directly
influences CSF AB42 levels in an A pathology-independent manner. Further, for optimal

clinical usage of genetic and CSF biomarkers, studies are needed to clarify to what extent



APOE genotype and CSF biomarkers correlate and provide overlapping versus
complementing information for diagnosis and prognosis of AD and whether different clinical
cut offs for CSF AB42 should be used depending on APOE genotype. Several studies have
emphasized that the APOE &4 allele could affect the diagnostic power of CSF AP42 and that
APOE genotype should be taken into account when using CSF AP42 as a biomarker for AD.">
'> Here, we approached these issues by evaluating the effects of the APOE €2/e3/e4
polymorphism on the diagnostic accuracy of CSF APB42, total tau (T-tau) and phosphorylated
tau (P-tau) for AD in a cohort comprising 1345 individuals. We also assessed the association
of CSF biomarker levels with APOE genotype and/or cortical amyloid deposition i) in a cohort
with younger individuals, ii) in patients with mild cognitive symptoms with and without
abnormal cortical Ap42 uptake of [**F]flutemetamol and iii) in the Alzheimer Disease
Neuroimaging Initiative (ADNI) cohort in subjects who had undergone both CSF biomarker

analyses and ''C-Pittsburgh compound B PET.

Material and methods

Cohorts

Cohort A: Four memory clinics in Sweden, Finland and Germany took part in the study. The
total cohort comprised 251 controls, 399 patients with stable mild cognitive impairment
(sMCI), 287 patients with prodromal AD (MCI-AD), 309 demented patients with AD, and 99
patients with other dementias than AD. Patients in the sMCI group were followed for at least

2 years (median 3 years, range 2-11 years). All participants were assessed by physicians



specializing in cognitive disorders who were blinded to all CSF results. Parts of this cohort,
including 186 patients from the ongoing prospective clinical longitudinal Gothenburg MCI
study'®, have been included in earlier publications from our groups."”*

Cohort B: The study also included a separate cohort comprising 105 individuals younger than
35 years (mean age 27.7 * 3.8 years) without neurodegenerative conditions (67 patients with
bipolar disorder and 38 healthy controls). This cohort was only used to assess the association
of APOE &4 with CSF biomarker levels but was not included in the studies of the diagnostic
accuracy of the biomarkers due to their low age.

Cohort C: These subjects were included from the larger BioFINDER study (Biomarkers For
Identifying Neurodegenerative Disorders Early and Reliably), which enrolls consecutive non-
demented patients with mild cognitive symptoms from three memory clinics in Sweden. More
information regarding the BioFINDER study will be available at www.biofinder.se. From this
study, we selected the first 118 patients who had undergone both [**F]flutemetamol PET
imaging and CSF taps. Fifty-three percent of these were classified as having subjective MCI
and 47% as objective MCI based on an extensive neuropsychological battery and the clinical
assessment of a neuropsychologist. Among those with MCI, 76% had amnestic MCI (46%
single domain and 30% multi domain) and 24% had non-amnestic MCIL

ADNI cohort: 53 subjects (9 with AD, 33 with MCI and 11 healthy controls) with data on both
CSF analysis and "'C-PiB scans were obtained from the Alzheimer’s disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu).

For a more detailed description of the cohorts see eMethods 1 in the supplement.



Lumbar puncture

CSF samples were obtained by lumbar puncture in the L3/4 or L4/5 interspace without any
reported serious side effects, collected in polypropylene tubes, centrifuged and stored frozen
at -80°C until analysis according to standard operating procedures.® Most biomarker
measurements were performed at the Clinical Neurochemistry Laboratory at the Sahlgrenska
University Hospital, Mélndal, Sweden, but samples from Kuopio, Finland and Munich,

Germany were analyzed locally.

CSF analyses

CSF T-tau levels were measured using a sandwich enzyme-linked immunosorbent assay
(ELISA, INNOTEST hTAU-Ag, Innogenetics, Ghent, Belgium), which detects all tau isoforms
irrespective of phosphorylation status, as previously described.?! CSF P-tau (Tau
phosphorylated at threonine 181) levels were determined using a sandwich-ELISA assay
(INNOTEST Phospho-Tau[181P]), as previously described.” The concentration of CSF Ap42
was measured using a sandwich-ELISA (INNOTEST p-amyloid[1-42]), designed to detect
both the 1* and the 42™ amino acid in the AP protein, as previously described.”® A subset of
the samples were analyzed for T-tau, P-tau and Ap42 using the xMAP Luminex AlzBio3 assay
(Innogenetics, Ghent, Belgium), normalized to INNOTEST concentrations as previously
described.?* All analyses were carried out by experienced laboratory technicians who were

blinded to the study participants’ diagnosis and other clinical information.



To adjust for variation in biomarker levels between the different laboratories, data were
normalized by defining one center cohort as reference group and then calculating factors
between the APOE e4-negative controls from each participating center and the APOE ¢4-
negative controls in the reference group. These factors were then applied to all data, hence
relating biomarker levels in all the different cohorts to those in the reference group. Cross-

fertilization of standard samples in each assay was not used, which is a limitation of the study.

APOE

APOE (gene map locus 19q13.2) genotyping was performed using TagMan® Allelic
Discrimination technology (Applied Biosystems, Foster City, CA) or equivalent techniques.
Genotypes were obtained for the two SNPs that are used to unambiguously define the €2, €3,

and ¢4 alleles (rs7412 and rs429358).

[8F]flutemetamol PET acquisition and analysis

Flutemetamol (*F) Injection was manufactured by GE Healthcare* and PET/CT scanning of
the whole brain was conducted at two sites (Malmo and Lund in Sweden) as described
previously.”® For a detailed description of PET acquisition and analysis see eMethods 2 in the

supplement.

Statistical analysis

Pair-wise comparisons of biomarker levels between and within the diagnostic groups were

performed using a Mann-Whitney-U test for independent samples. Comparisons between



more than two groups were performed using a Kruskal-Wallis-H test for several independent
samples. The area under the receiver operating characteristics (ROC) curve was calculated for
all biomarkers and separately for each APOE &4 carrier group in patients with AD versus
controls as well as sSMCI versus prodromal AD (MCI-AD). Multiple backward stepwise binary
logistic regression was performed to simultaneously study the associations between clinical
diagnosis versus biomarker levels as well as age as continuous variables, and gender and APOE
genotype (carriers of zero, one or two APOE ¢4 alleles) as nominal variables. General linear
model (ANCOVA) was used to examine the association between CSF APB42 (independent
variable) and APOE &4 (carriers of zero, or 1-2 APOE &4 alleles) when adjusting for
['*F]flutemetamol (dichotomized). Statistical significance was determined at P<0.05. All
statistical calculations above were performed using SPSS version 19 (SPSS Inc., Chicago, IL,
USA). All figures were created using GraphPad Prism version 5 (GraphPad Software, Inc., La

Jolla, CA, USA).

Results

Demographics, genetic and biochemical data of cohort A

As expected, most AD and MCI-AD patients carried one or two copies of the APOE &4 allele,
with less than 30% being APOE e4-negative (Table 1). Non-AD groups showed opposite
results. Frequencies of different genotypes were similar between AD dementia and MCI-AD

patients. AD and MCI-AD groups showed the lowest mean levels of CSF Ap42 and the highest

10



mean levels of CSF tau proteins (Table 1). Biomarker levels in the sMCI group were similar to

those in the control group.

CSF AP42 in relation to APOE genotype

CSF levels of AP42 were lower in APOE ¢4 carriers than in non-carriers in a gene dose-
dependent manner irrespective of diagnostic group (P < 0.001 in all groups) (Figure 1A).
However, the levels of Ap42 differed significantly between subjects with AD compared with
controls, as well as between MCI-AD subjects compared with sMCI cases, even when
analyzing subgroups according to APOE ¢4 carrier status separately (p<0.001 to p=0.006)

(Figure 1A).

ROC analysis showed that AB42 had high diagnostic accuracy for AD versus controls in
individuals with either none or one APOE ¢4 allele (Figure 1B). The diagnostic accuracy of
Ap42 in individuals with two alleles was lower than in the other APOE groups, but the
uncertainty was large due to the relatively small number of APOE e4 homozygous controls. A
similar pattern was seen for MCI-AD versus sMCI patients (Figure 1C). The 95% CI of the
different AUCs were clearly overlapping (Figure 1B-C), indicating that there was no real

difference between them.

To determine to what extent CSF AP42 levels and APOE genotype contributed to
distinguishing between AD and controls, as well as between MCI-AD and sMCI cases, we

performed multiple binary logistic regression models which revealed that CSF Ap42

11



concentration and APOE genotype were independent statistical predictors of AD diagnosis.
Table 2 shows logistic regression using a backward stepwise conditional method. APOE
genotype, CSF AP42, age and gender were entered in the first step. Gender was non-
significant and was removed from the model. Analysis was done using AD dementia patients
versus controls and revealed that CSF Ap42, APOE genotype and age were independent
statistical predictors of AD diagnosis. Results were similar in the MCI cohort, but with a

somewhat smaller contribution from APOE genotype (data not shown).

CSF tau proteins in relation to APOE genotype

CSF T-tau levels were similar in all APOE genotype subgroups across the diagnostic spectrum
and did not show the same dose-dependent differences as CSF Ap42 within the diagnostic
groups (Figure 2A). Statistical differences were only observed within the sMCI and MCI-AD
groups (P =0.013 and P = 0.009, respectively), which could be attributed to differences
between the APOE €4 -/- and APOE &4 +/- subgroups. However, as expected CSF T-tau levels
differed significantly between AD and controls (P < 0.001 to P = 0.010) as well as between

MCI-AD and sMCI cases (P < 0.001) irrespective of APOE genotype group (Figure 2A).

As far as the diagnostic performance is concerned, ROC analyses showed that APOE genotype
did not affect the diagnostic accuracy of CSF T-tau (Figures 2B-C). As for AP42, the
diagnostic accuracy for T-tau among homozygous APOE &4 carriers was somewhat lower than
in the other APOE genotype subgroups when comparing AD versus controls (Figure 2B).

When comparing MCI-AD versus sMCI, the diagnostic performance of CSF T-tau showed
12



high accuracy across all APOE €4 subgroups (Figure 2C). Relating the levels of CSF P-tau to

the different APOE genotypes revealed the same pattern as for CSF T-tau (data not shown).

No effect of APOE €4 genotype on CSF AB42 levels in individuals younger than 35 years

To dissect if the association of APOE genotype with CSF Ap42 levels was due to a direct effect
of apoE isoforms on CSF AP42 concentration, or if it was an indirect association confounded
by more amyloid pathology in the brains of APOE &4 carriers, we analyzed young individuals
(<35 years of age; cohort B) who most likely would have no amyloid accumulation in the
brain. This cohort consisted of patients with bipolar disorder (n=67) and healthy, age-
matched controls (n=38). No differences in APOE €4 genotype frequencies or CSF A42
concentrations were seen between the two groups (data not shown). Pooled data revealed no
association of APOE genotype with CSF APB42 levels (Figure 3). However, the low number of

APOE €4 homozygous individuals (n=3) in this group was a limitation.

No effect of APOE €4 genotype on CSF AB42 levels when subjects with mild cognitive symptoms
are stratified according to cortical [**F|flutemetamol uptake

Next we analyzed a cohort of 118 individuals with CSF taps and ["*F]flutemetamol PET
imaging (cohort C). Subjects with positive cortical ['*F]flutemetamol uptake (> 1.42 SUVR)
had lower levels of CSF AP42 (Figure 4A). When the patients with positive or negative
['*F]flutemetamol PET scans were analyzed separately, there was no difference in CSF AB42
levels between those with no APOE &4 alleles or 1-2 APOE &4 alleles (Figure 4A). Moreover,

when adjusting for cortical ["*F]flutemetamol uptake status, there was no association between

13



CSF APB42 and APOE &4 carrier status (P=0.72). Similar results were obtained for CSF T-tau
and P-tau (data not shown). We next aimed to replicate the results in the ADNI cohort. Since
['*F]flutemetamol scans were not performed, we instead examined data from scans with the
similar PET tracer ''C-Pittsburgh compound B ('C-PiB).” Fifty-three subjects with both CSF
analysis and "'C-PiB scans were located in the ADNI database, 9 with AD, 33 with MCI and 11
healthy controls. The cut off to identify an abnormal mean "C-PiB SUVR was established
with mixture modeling (> 1.63 SUVR). The results were very similar to our study (Figure 4B),
i.e. no differences were found in Ap42 levels between no APOE ¢4 alleles and 1-2 alleles, when
the patients with positive or negative "'C-PiB PET scans were analyzed separately. Further,
there was no association between APOE &4 and AP42 (P=0.36), when adjusting for ''C-PiB
amyloid status. Even when using a previously defined "'C-PiB cutoff by Jagust et al.*® (>1.46

SUVR) the results were similar (data not shown).

Discussion

Distribution of APOE genotypes across the diagnostic spectrum

In cohort A, we conducted a large study with data from four specialized memory clinics to
assess the effect of the APOE €2/e3/e4 polymorphism on the diagnostic accuracy of CSF
biomarkers for AD (AP42, T-tau and P-tau). The memory clinics were not prospectively
harmonized against each other regarding the details of the diagnostic algorithms but all used
the same clinical criteria. Likewise, the laboratory procedures for the measurement of CSF

biomarkers were not harmonized, which necessitated a normalization approach (described in

14



detail in the methods section). Finally, the median follow-up time of stable MCI patients was 3
years, which may be considered somewhat short to rule out prodromal AD in the light of
recent studies.” These are three major limitations of our study, all considered unlikely to
influence the interpretability of the data.

As expected, the APOE &4 allele was more prevalent in AD and prodromal AD cases than in
controls and sMCI cases. However, also sMCI cases had higher APOE ¢4 prevalence compared
with controls, especially in cases with low CSF Ap42 levels. One possible explanation for this
somewhat skewed distribution might be that some of these individuals, in spite of being non-
demented at the time of sampling, actually had prodromal AD. To fully verify that an MCI
case is non-progressive, a follow-up time of 5-10 years is probably needed.**** The short
clinical follow-up time of MCI patients and the lack of autopsy data are the major limitations

of our study.

The diagnostic accuracy of CSF biomarker levels does not depend on APOE genotype

We could clearly verify that APOE &4 genotype is associated with lower CSF levels of AB42,
but not the levels of T-tau and P-tau, in a gene dose-dependent manner, which is in
agreement with earlier studies.”"

However, all three biomarkers showed significant differences between AD patients and
controls as well as between MCI-AD and sMCI patients, irrespective of APOE genotype. Even
the high diagnostic accuracy of CSF AP42 as well as that of T-tau and P-tau was shown to be

independent of APOE genotype (with the exception of somewhat lower diagnostic

performance in APOE €4 homozygous subjects, which is due to the low number of

15



observations in this subgroup), which further underlines the biomarkers’ strength in
discriminating between the diagnostic groups. Finally, multiple logistic regression analysis
confirmed that both CSF Ap42 and APOE genotype are in fact independently associated with
AD diagnosis. This is in line with earlier findings, including the North American multicenter

study ADNIL.>"

APOE genotype does not modulate CSF levels of A342 in younger individuals

The underlying mechanism of the association between APOE and CSF AB42 concentration is
not fully understood, but might be partly linked to the hypothesis that the e4-encoded ApoE
isoform may be less effective at clearing AP from the brain, thus resulting in accelerated Af
deposition and lower AP42 levels in the CSF in APOE e4 carriers.>* Although this is an
observational study that cannot address molecular mechanisms, we decided to explore the
APOE-A42 association in young individuals who were likely to be amyloid-free to test the
hypothesis that there might be a primary effect (not amyloid-mediated) of different apoE
isoforms on CSF AB42 levels. In this group of individuals, the gene-dose dependent effect on
CSF levels of AP42 was absent. Thus, in the absence of AP pathology, there is no association of
APOE ¢4 with CSF Ap42 levels. Earlier results showing a gene-dose dependent effect on CSF

1> may thus be interpreted as driven

levels of AB42 in cognitively normal elderly individuals
by APOE e4-associated preclinical AP pathology and not a direct effect of APOE €4 on CSF

AB42 levels.

CSF AP42 in relation to amyloid PET

16



It has been suggested that different cut off levels should be used for CSF Af42 based on APOE
e4 status. Our data show a strong association between CSF A42 and cortical
['*F]flutemetamol uptake, but no effect of the APOE &4 genotype on CSF AP42 levels when
stratifying patients into those with positive or negative ["*F]flutemetamol PET scans (Figure
4A). This result was also replicated in the ADNI database using the almost identical PET
tracer 'C-PiB (Figure 4B). These data strongly suggest that CSF A42 levels reflect cortical Af
deposition and not the APOE &4 genotype per se. Consequently, the cut off for CSF Ap42

should be the same for all APOE genotypes.

Conclusion

Taken together, we confirm that the APOE &4 allele is associated with lower CSF levels of
Ap42, but not T-tau or P-tau, in age groups where amyloid pathology is prevalent, also in the
absence of manifest AD. We extend these data by showing that CSF A42 levels are not
associated with the APOE &4 genotype when stratifying for cortical uptake of
['*F]flutemetamol, suggesting that CSF Ap42 levels reflect cortical AP deposition in an APOE
e4-independent manner. Consequently, the clinical cut off for CSF AB42 should be the same
for all APOE genotypes. Finally, CSF biomarkers are strongly associated with AD diagnosis

and cortical AP deposition independent of APOE &4 genotype.
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Figure legends

Figure 1. APOE genotype and the diagnostic accuracy of CSE AB42.

Panel A: CSF AP42 levels show gene dose-dependent differences within the diagnostic groups,
with lower levels in APOE e4-positive individuals (P < 0.001 in all groups). CSF Ap42 levels
differ significantly between AD and controls (Mann Whitney U test; P < 0.001 to P = 0.006) as
well as between MCI-AD and sMCI (Mann Whitney U test; P < 0.001 to P = 0.001)
irrespective of APOE genotype.

Panel B: When comparing AD vs. controls, the diagnostic performance of CSF AB42 is high,
irrespective of APOE genotype. Among homozygous APOE &4 individuals the diagnostic
accuracy is lower with a large uncertainty due to the limited number of APOE €4 +/+ controls
(n=7).

Panel C: When comparing MCI-AD vs. sMCI, the diagnostic performance of CSF AB42 is
similar to that of AD vs. controls, with a somewhat lower diagnostic accuracy among APOE ¢4

+/+ individuals.

Figure 2. APOE genotype and the diagnostic accuracy of CSF T-tau.

Panel A: CSF T-tau levels do not show any clear gene dose-dependent differences within the
diagnostic groups. Statistical significance is only reached within the sMCI and MCI-AD
groups (Kruskal-Wallis-H test; P = 0.005 and P = 0.015 respectively), which is due to

differences between the APOE &4 -/- and €4 +/- subgroups. However, CSF T-tau levels differ
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significantly between AD and controls (Mann Whitney U test; P < 0.001 to P = 0.010) as well
as between MCI-AD and sMCI (P < 0.001) irrespective of APOE genotype.

Panel B: When comparing AD vs. controls, the diagnostic performance of CSF T-tau is high
irrespective of APOE genotype group. Among homozygous APOE &4 individuals the
diagnostic accuracy is lower with a large uncertainty due to the limited number of APOE &4
+/+ controls (n = 7).

Panel C: When comparing MCI-AD vs. sMCI, the diagnostic performance of CSF T-tau

shows high accuracy across all APOE &4 subgroups.

Figure 3. No association between CSF AB42 and APOE ¢4 genotype in younger non-

demented subjects.

In cohort B, including non-demented subjects under the age of 35, CSF APB42 levels do not

show any APOE &4 gene-dose dependent differences (Kruskal-Wallis-H test; P = 0.841).

Figure 4. No association between CSF AB42 and APOE ¢4 genotype when adjusting for

cortical A deposition.

In cohort C, we found that in the subgroup with negative ["*F]flutemetamol scans (<1.42
SUVR) there were no differences in the levels of CSF AB42 between cases with no APOE ¢4
alleles (n=49) and cases with 1-2 APOE ¢4 alleles (n=10) (Mann Whitney U test; P = 0.78).
Similarly, in the subgroup with positive [**F]flutemetamol scans there were no differences in

the levels of CSF AP42 between cases with no APOE ¢4 alleles (n=17) and cases with 1-2
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APOE ¢4 alleles (n=42) (Mann Whitney U test; P = 0.23) (Panel A). This result was replicated

in the ADNI cohort using ''C-PiB in a population of 53 subjects (9 with AD, 33 with MCI and

11 healthy controls) (Panel B). An abnormal "'C-PiB was defined as a mean SUVR of >1.6

based on mixture modeling analysis.

26



Tables

Table 1. Demographics, genetic and biochemical data (cohort A)

Clinical & Controls sMCI Other MCI-AD AD (n=309) | all cases
laboratory (n=251) (n=399) dementias (n=287) (n=1345)
values (n=99)

Age, mean 65 (23-99) 67 (29-89) 73 (54-86) 73 (49-87) 77 (56-89) 71 (23-99)
(range), years

Gender, 118/133 189/210 59/40 97/190 97/212 560/785
male/female

APOE &4 -/-, | 177 (70.5) 235 (58.9) 57 (57.6) 76 (26.5) 87 (28.2) 632 (47.0)
No. (%)

APOE ¢4 +/-, | 67 (26.7) 136 (34.1) 37 (37.4) 155 (54.0) 172 (55.7) 567 (42.2)
No. (%)

APOE ¢4 7 (2.8) 28 (7.0) 5(5.1) 56 (19.5) 50 (16.2) 146 (10.9)
+/+, No. (%)

CSF Ap42, 670.5 (181.4) | 632.7 (182.9) | 554.4 (184.4) | 386.2 (146.7) | 382.8 (102.3) | 524.1 (204.2)
mean (SD),

ng/L?

CSF T-tau, 323.7 (166.9) | 353.4 (184.6) | 422.6 (350.4) | 689.3 (348.8) | 793.1 (481.5) | 525.7 (377.9)
mean (SD),

ng/L"

CSF P-tau, 61.4 (21.7) 64.3 (23.9) 61.8 (24.6) 98.6 (39.3) 105.7 (56.1) | 79.7 (41.2)
mean (SD),

ng/L®

abased on 1342 cases (3 missing data); ® based on 1338 cases (7 missing data); ¢ based on
1256 cases (89 missing data)

Table 2. AD vs. controls, logistic regression using a backward stepwise conditional method

Variables B (intercept) Standard error P Value odds ratio (95% ClI)
APOE &4 -/- .01 Reference category
for APOE genotype
APOE &4 +/- 0.786 0.309 .01 2.20 (1.20-4.03)
APOE &4 +/+ 1.224 0.551 .03 3.40 (1.16-10.01)
CSF AB42 -0.011 0.001 <.001 0.99 (0.986-0.991)
Age 0.137 0.018 <.001 1.15 (1.11-1.19)
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