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Abstract

A structural design process typically involves various load cases for which a sufficient load-
bearing capacity must be demonstrated. In addition to static load cases, a verification of dy-
namic loads, such as blast and impact loading, may be required. To this end, the response
can be estimated using computational models representing an idealized structure, often for-
mulated using the finite element method. In contrast to static analyses, a dynamic response
analysis generally requires some form of time (or frequency) discretization. Furthermore, to
properly capture the structural behavior, it can be necessary to consider nonlinear effects, e.g.,
due to contact conditions, nonlinear material behaviors, or geometrically nonlinear effects.
The repeated solution in time of large nonlinear finite element models can be computationally
expensive and time-consuming. Consequently, there is a need for computationally efficient
modeling approaches, allowing for an interactive design process where alternative designs may
be tested in a time-efficient manner.

By generating a reduced order model, the aim is to reduce the system size while maintain-
ing sufficient accuracy of important output quantities. Hence, the computational cost can
be reduced by analyzing a smaller, approximate system. For continuous structural dynamics
problems discretized using the finite element method, reduced order models can be obtained
by introducing a reduction basis. More specifically, the response is approximated using a set of
time-independent displacement fields, referred to as mode shapes, which constitute the basis
vectors of the modal basis. This approach is well-established and frequently used within lin-
ear structural dynamics. In the context of nonlinear structural dynamics, modal methods for
reduced order modeling have gained more prominence during the last decades and is still an
active area of research.

In the dissertation, strategies for nonlinear reduced order modeling are developed on the basis
of structural engineering applications within two different areas; namely, concerning concrete
structures subjected to blast loading and glass structures subjected to impact loading. Some of
the challenges with regard to structural dynamics modeling are similar. In particular, brittle
failure modes are often critical, why the response of higher order modes can be of particular
importance. Moreover, an accurate representation of the structural behavior typically necessit-
ates models considering nonlinear behaviors. More specifically, the dynamic problems involve
localized nonlinearities in the form of contact conditions and joints, as well as geometric non-
linearity which, in contrast, is a distributed nonlinearity where degrees of freedoms throughout
the structure are nonlinearly coupled.

Impact loading is a fundamental load case in design of glazed barriers, such as full-height
facades and balustrades, which often governs the design. In this work, modeling strategies
were developed for predicting the pre-failure elastic response of flat glass panels subjected to
a standardized impactor, which represent a human body falling towards the glass panel. The



response of glass panels, having a small thickness compared to the span width, are typically
characterized by bending-stretching coupling effects. To consider these effects, which result in
a geometrically nonlinear behavior, reduction bases were generated using bending modes and
the associated static modal derivatives, corresponding to the second order terms in a Taylor’s
expansion of the quasi-static displacement field. Moreover, approximate techniques for mod-
eling contact were proposed, and a nonlinear viscous single-degree-of-freedom model was de-
veloped for reduced modeling of the impacting body. The response was evaluated based on
experimental data and detailed finite element models. For the studied load cases, the proposed
model was shown to predict important output quantities, such as the glass principal stresses,
with high accuracy.

Furthermore, computationally efficient analysis techniques were developed for analysis of con-
crete structures subjected to blast loading. Specifically, reduced models including pre-defined
plastic joints were developed by means of dynamic substructuring. A comparison to com-
monly used modeling strategies, which uses equivalent single-degree-of-freedom systems, sug-
gests that the developed models provide a significantly improved accuracy of shear forces. This
can be critical in a verification of brittle failure modes, such as diagonal and direct shear failure.

Finally, a review of various reduced order modeling techniques is presented which, in a broader
perspective, provide a basis for developing reduced order models in various structural dynamics
applications.



Sammanfattning

Vid utformning och dimensionering av såväl anläggningskonstruktioner som enskilda bygg-
nadsdelar måste vanligtvis ett flertal olika belastningssituationer analyseras. Utöver statiska last-
fall kan det vara nödvändigt att beakta dynamiska laster, såsom explosions- eller stötlast. För
att påvisa tillräcklig bärförmåga används i allmänhet datorbaserade beräkningsmodeller, of-
ta framtagna med finita elementmetoden. Vid beräkning av dynamisk respons krävs då, till
skillnad från statisk analys, en uppdelning av beräkningarna i antingen tids- eller frekvenssteg,
vilket medför upprepade beräkningar. Vidare kan det vara väsentligt att beakta olinjära effek-
ter för att säkerställa en beräkningsmodell som representerar ett korrekt strukturbeteende och
ger resultat med tillräcklig noggrannhet. Sådana effekter kan exempelvis uppstå till följd av
interaktion mellan strukturdelar, olinjärt materialbeteende eller geometrisk olinjäritet. Sam-
mantaget medför detta ofta beräkningsmässigt kostsamma och tidskrävande analyser. För att
möjliggöra en tidseffektiv designprocess, där olika utformningsalternativ och dimensioner kan
utvärderas, finns således behov av beräkningseffektiva modellerings- och analystekniker. I detta
avseende utgör också balansen mellan prestanda och noggrannhet en central aspekt.

Genom att upprätta en reducerad beräkningsmodell är målet att minska antalet systemvari-
abler samtidigt som viktiga utdataparameterar kan predikteras med tillräcklig noggrannhet.
Reducerade beräkningsmodeller kan exempelvis genereras utifrån finita elementmodeller. Mer
specifikt kan responsen approximeras som en summa av ett antal tidsoberoende utböjningsfor-
mer, så kallade modformer. På detta sätt kan de fysiska frihetsgrader som vanligtvis används vid
formulering av finita elementmodeller ersättas med ett reducerat antal generella frihetsgrader
som representerar modala amplituder. Dennametodik används regelbundet och är väletablerad
inom linjär strukturdynamik. Under de senaste decennierna har liknande metoder även före-
slagits för reducerad modellering av olinjära strukturdynamiska problem. Detta utgör däremot
fortfarande ett aktivt forskningsområde.

Utifrån samma principer som vid reducering av linjära system kan geometriskt olinjära mo-
deller reduceras genom att responsen uttrycks i modala amplituder. Till skillnad från linjär-
dynamiska tillämpningar, där relevanta modformer ofta har låga egenfrekvenser, kan det vara
väsentligt att beakta högfrekventa moder, som typiskt har egenfrekvenser avsevärt högre än las-
tens frekvensinnehåll. Ett systematiskt val av modformer utgör därför en av svårigheterna vid
reducerad modellering av geometriskt olinjära strukturer. De modala responserna blir även
olinjärt kopplade. För att möjliggöra en tidseffektiv dynamisk analys finns därför behov av
tekniker för effektiv tidsintegrering.

Beräkningsmodeller som inkluderar lokalt begränsade olinjäriteter kan reduceras genom dyna-
misk substrukturering. Med detta angreppsätt kan exempelvis substrukturer som förblir linjä-
relastiska modelleras effektivt utifrån modformer, medan förfinande modeller kan användas för



delar med olinjär respons. För att möjliggöra beräkningseffektiva modeller krävs dock tekniker
för att begränsa antalet frihetsgrader i gränssnitt mellan olika substrukturer.

I avhandlingen undersöks strategier för reducerad modellering av olinjära strukturdynamiska
problem, med fokus på tillämpningar gällande betongkonstruktioner belastade av explosions-
last samt glasstrukturer belastade av stötlast. I båda dessa tillämpningar är spröda brott ofta
kritiska, varför det blir speciellt viktigt att etablera beräkningsmodeller med god noggrann-
het. Vidare är det, för att säkerställa ett korrekt strukturbeteende, väsentligt att ta hänsyn till
olinjära effekter.

Vid dimensionering av glasbarriärer, såsom glasfasader och glasräcken, utgör stötlast ofta ett
kritiskt lastfall. I detta arbete har modelleringsstrategier tagits fram för beräkning av elastisk
respons för plana glaspaneler belastade av standardiserade stötlaster, vilka representerar enmän-
niska som faller mot glaset. Eftersom glasets tjocklek vanligtvis är liten i förhållande till spänn-
vidd påverkas strukturresponsen i hög grad av andra ordningens effekter. För att hantera dessa
effekter formulerades geometriskt olinjära reducerade modeller. Mer specifikt approximerades
responsen utifrån böjmoder och en uppsättning tillhörande membranmoder. Vidare utveck-
lades en olinjär en-frihetsgradsmodell för impaktorn samt tekniker för effektiv modellering
av interaktion mellan impaktor och glaspanel. Beräknad respons utvärderades utifrån expe-
rimentella data och detaljerade finita elementmodeller. Framtagen reducerad modell visades
prediktera viktiga resultat, såsom största huvudspänningar i glaspanel, med god noggrannhet.

Modelleringsstrategier har även utvecklats för analys av betongkonstruktioner belastade av ex-
plosionslast. Mer specifikt användes dynamisk substrukturering för att formulera reducerade
modeller med flytleder i fördefinierade positioner. Föreslagen modelleringsmetod möjliggör
effektiva beräkningar med god precision, vilket kan vara särskilt viktigt vid dimensionering
med hänsyn till spröda brott.

Slutligen presenteras en översikt av olika tekniker för reduceradmodellering, vilket i ett bredare
perspektiv utgör en grund för vidare utveckling av beräkningseffektiva modeller inom olika
strukturdynamiska tillämpningar.
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Part I

Introduction and Overview





1 Introduction

1.1 BACKGROUND

A structural design process typically involves various load cases for which a sufficient load-
bearing capacity must be demonstrated. To this end, the response may be estimated using
a computational model representing an idealized structure. Developing a suitable analytical
model by means of modeling abstractions is, therefore, an important step in a structural design
process; the model should capture the structural behavior and provide a sufficiently accurate
prediction of important output quantities. Furthermore, in many engineering applications,
a space discretization of the continuous analytical model is typically required, e.g., using the
finite element (FE) method [1].

In addition to static load cases, a verification of dynamic loads may be required. In contrast to
static analyses, a dynamic response analysis generally involves some form of time (or frequency)
discretization. Furthermore, to properly capture the structural behavior, it can be necessary
to consider nonlinear effects, e.g., due to contact conditions, nonlinear material behaviors,
or geometrically nonlinear effects. However, the repeated solution in time of nonlinear FE
models can be computationally expensive and time-consuming. Consequently, there is a need
for computationally efficient modeling approaches, allowing for an interactive design process
where design parameters can be evaluated in a time-efficient manner.

A detailed high-fidelity analysis, aiming to mimic the response of the real structure, may be
useful for analyzing complex structures, and can provide further insight into the structural
behavior. On the other hand, a simplified, approximate model can be beneficial for analyzing
the governing structural behavior or evaluating assumed failure modes. Particularly in the con-
ceptual design phase, a time-efficient and straightforward modeling approach can be of great
utility. Furthermore, an approach using a so-called reduced order model may be considered,
which is generated based on a detailed numerical model, e.g., formulated using the FEmethod.
The aim is to reduce the system size while maintaining sufficient accuracy of important output
quantities, i.e., the computational cost can be reduced by analyzing a smaller, approximate
system.
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Figure 1.1: Principal differences between models for structural dynamics analysis.

The concept is illustrated in Figure 1.1. A simplified model typically considers the governing
structural behavior and provide a rough estimate of the response in a time-efficient manner,
whereas a detailed model provides a “best estimate” representation of the structural response.
In contrast, by using a detailed numerical model as a starting point, an approximate reduced
model may be formed, which is computationally efficient, while providing a sufficiently accur-
ate response prediction. Moreover, by developing a reduced model, the essential dynamics are
extracted from the underlying detailed model, which can enable a more thorough understand-
ing of the dynamic problem at hand.

For structural dynamics problems discretized using the FE method, reduced order models can
be obtained by introducing a modal basis. More specifically, the response is approximated
as a linear combination of a set of time-invariant displacement fields, referred to as mode
shapes, which constitute the basis vectors of the modal basis. For instance, a modal basis can
be constructed using a set of low-frequency normal modes. The approach is well-established
and frequently used within linear structural dynamics. In the context of nonlinear structural
dynamics, modal methods for reduced order modeling have gained more prominence during
the last decades and is still an active area of research.

Reduced order models considering geometrically nonlinear effects, such as bending-stretching
coupling, can be established in a manner similar to modal reduction in linear dynamics (e.g.,
see [2, 3]). However, in contrast to linear systems, the response generally involves high-
frequency modes, with eigenfrequencies far above the frequency content of the loading. Con-
sequently, the basis selection procedure constitutes one of the main challenges here. Moreover,
to effectively determine the transient dynamic response using direct time-integration, special-
ized methods are needed for evaluating the system restoring forces and tangent stiffness.

Dynamic substructuring (DS) is a key concept for handling localized nonlinearities [4]. Hence,
by subdividing the structure into substructures, the modeling approach and the level of accur-
acy can be effectively adjusted for different parts of the structure. For example, substructures
that remain linear elastic may be modeled using mode-superposition methods whereas sub-
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structures involving nonlinear behavior can be represented by refined FE submodels.

In the dissertation, strategies for nonlinear reduced order modeling are developed on the basis
of structural engineering applications within two different areas; namely, concerning concrete
structures subjected to blast loading and glass structures subjected to impact loading. Some of
the challenges with regard to structural dynamics modeling are similar. In particular, brittle
failure modes are often critical, why the response of higher order modes can be of particular
importance. Moreover, an accurate representation of the structural behavior typically necessit-
ates models considering nonlinear behaviors. More specifically, the dynamic problems involve
localized nonlinearities in the form of contact conditions and joints, as well as geometric non-
linearity which, in contrast, is a distributed nonlinearity where degrees of freedoms throughout
the structure are nonlinearly coupled.

The developed modeling strategies are suitable for implementation in design tools, specialized
for specific applications. For instance, the model developed for analyzing impact loading is
intended to be implemented in ClearSight [5], which is a user-friendly FE tool, specialized for
design of glass structures.

1.2 AIMS AND OBJECTIVES

The aim of this research is to facilitate a broadened use of interactive structural design pro-
cesses, where different designs can be tested in a time-efficient and convenient manner, and,
in particular, that methods are available that can be used in accurate and computationally
efficient design tools for structural dynamic applications, suitable for such design processes.
Furthermore, by enabling accurate and efficient numerical models, too conservative designs
can be avoided, thus, leading to reduced costs as well as environmental benefits.

The objectives are to develop accurate and computationally efficient modeling strategies ap-
propriate for implementation in such specialized design tools. In particular, various reduced
order modeling techniques are evaluated and exemplified on the basis of the aforementioned
structural engineering applications. In the broader perspective, a review of the available re-
duced order modeling methods provides a basis for further investigations. Apart from various
numerical studies, the objectives include investigations of experimental methodologies for val-
idating reduced order models employed for analyzing glass structures subjected to soft-body
impact.

1.3 LIMITATIONS

In this work, focus is on investigating computationally efficient modeling techniques, appro-
priate for use in a structural design process. Accordingly, the models are evaluated based on
output quantities typically used in a structural verification. However, a detailed investigation
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with regard to design code requirements, e.g. related to the reinforcement arrangement in
concrete structures or allowable stress levels in glass structures, are not within the scope of this
dissertation.

On the basis of the aforementioned applications, various reduced order modeling techniques
and DS methods are investigated. However, the presented review is by no means exhaustive.
In particular, focus is on reduced order modeling techniques in structural dynamics, applied
in time domain analyses. Similar methods have been developed in other fields, e.g. system
and control, where focus often is on single input–output relations. Here, however, a structural
dynamics approach is considered where typically output for the whole structure is of interest.

Numerical models in structural dynamics applications are often established by means of the FE
method. However, using the reduction methods studied herein, a numerical model is typically
the starting point, which is then further modified to obtain a computational efficient reduced
order model. Therefore, only a brief review of the FE method is presented. Thus, details
regarding numerical methods for discretizing continuous dynamic problems are not within
the scope of this dissertation.

The geometrically nonlinear reduced order models are established using modal methods. In
particular, reduction methods using time-invariant reduction bases are considered. Other so-
called nonlinear reduction methods have been developed, where the full-order solution sub-
space is approximated using time-invariant submanifolds rather than linear reduction bases.
This concept is however not further studied in this work. Moreover, the geometric nonlinearity
considered here is based on the assumption of small strains and large displacements. Further,
focus is on nonintrusive methods, which do not require access to the source code of an FE
software.

1.4 OUTLINE OF DISSERTATION

This dissertation is divided into two parts:

Part I contains an introduction to structural dynamics modeling, reduced order modeling, DS,
and the applications further investigated in the appended papers. Starting with the equations of
motion, Chapter 2 introduces various modeling methods for structural dynamics applications.
Furthermore, a brief overview of damping models for time domain analyses and solution tech-
niques are presented. In Chapters 3 and 4, reviews of reduced order modeling techniques for
linear and geometrically nonlinear systems, respectively, are presented. In Chapter 5, dynamic
substructuring is introduced; in particular, various assembly methods and component mode
synthesis methods are presented. Moreover, some aspects regarding geometrically nonlinear
substructures are discussed. In Chapter 6, civil engineering applications using the concepts
introduced in Chapters 2 to 5 are discussed. In particular, an overview of reduced order mod-
eling techniques applied to concrete and glass structures subjected to blast and impact loading,
respectively, is presented.
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Part II contains the appended papers. Papers A and B consider concrete structures subjected
to blast loading, and Papers C to E consider glass structures subjected to soft-body impact.
In Paper A, reduced order models are developed providing an improved response accuracy as
compared to the simplified models commonly used for design of concrete beams and slabs
subjected to blast loading. Paper B presents strategies for analyzing concrete frame structures
subjected to blast loading in a computationally efficient manner. In Paper C, reduced order
models for verifying glass panels subjected to impact loading are presented. In particular, the
models are validated using a detailed reference model as well as experimental tests. Paper D
investigates modeling strategies for efficient reduced order modeling of geometrically nonlin-
ear flat structures. The methods developed in Paper D are then utilized in Paper E, where
a nonlinear reduced order model is presented for analyzing glass panels subjected to impact
loading.





2 Structural dynamics and
modeling methods

A structural dynamics analysis differs from the corresponding static analysis in some import-
ant aspects. Firstly, the accelerations of the structure give rise to inertia forces. Consequently,
both the stiffness and mass distribution of the structure affect the structural dynamic beha-
vior. Secondly, the frequency content of the loading, not only the load magnitude, affect the
dynamic response. In particular, structural vibrations may arise from an initial disturbance
(e.g., impact excitation), and/or from time-varying excitations. Here, the former type of ex-
citation, which typically is wide in the frequency domain and very short in the time domain,
result in free vibrations. In contrast, harmonic loading for selected frequencies result in forced
vibrations.

A distinction between dynamic and static loading can be made based on how quickly the load
varies in time, as compared to the natural dynamics of the structure. For dynamic loading, the
frequency range of the loading is in the range of the natural frequencies of the structure. On
the other hand, if the forcing frequency is far below the natural frequencies of the structure,
the loading can be considered static or quasi-static, where the latter implies that the load varies
through time, while it varies slowly compared to the structure’s natural dynamics. Accord-
ingly, both the loading characteristics and the properties of the structure must be considered
to determine if a structural verification necessitates a dynamic response analysis.

In a structural verification, the real structure (or design) must generally be idealized to obtain a
suitable analytical model. An analytical model representing a continuous system theoretically
has an infinite number of degrees-of-freedom. In general, the analytical model must be discret-
ized in some manner, e.g., by means of the finite element (FE) method or by an assumed-mode
approach [6]. The resulting discretized model should provide a sufficiently accurate response
prediction and be computationally efficient, both aspects being particularly important in a
structural dynamics analysis.

In this chapter, basic terminology and some fundamental modeling methods for structural dy-
namics applications are presented. First, in Section 2.1, various applications of single-degree-
of-freedom (SDOF) systems are discussed. In Section 2.2, the FE method is introduced which
allows for a space discretization of general continuous dynamic problems, leading to the formu-
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lation of multi-degree-of-freedom (MDOF) systems. In Section 2.3, modal expansion tech-
niques for MDOF systems are introduced, and, finally, damping models and solution methods
for time history analysis are presented in Sections 2.4 and 2.5.

The semi-discretized equations of motion (i.e., discretized in space and continuous in time),
obtained using an appropriate modeling method, constitute the starting point in both the
linear and nonlinear reduced order modeling techniques considered in this work, which are
described in detail in Chapters 3, 4, and 5. In Chapter 6, the reduction methods are then
employed for developing reduced order models in various engineering applications.

2.1 SINGLE-DEGREE-OF-FREEDOM MODELS

The simplest possible model is a lumped mass system with a massless supporting structure.
Such a system can be modeled by a single-degree-of-freedom (SDOF) model having only one
system variable, a degree-of-freedom (DOF), representing the movement of the lumped mass.
The equation of motion for an SDOF system can be derived from Newton’s second law of
motion. Hence, the inertia force acting in the opposite direction of the acceleration is balanced
by the external load and the force imposed by the supporting structure, e.g., expressed as

p(t)− fS(t, u)− fD(t, u̇) = mü(t) (2.1)

where u is the displacement,m is the lumped mass, p is the external force, fS is the linear (or
nonlinear) restoring force and fD is the damping force (dot notation is used for differentiation
with respect to time). If assuming linear elastic behavior and linear viscous damping, Eq. 2.1
can be rewritten to obtain the equation of motion for a linear elastic SDOF system, a second-
order differential equation of the form:

mü(t) + cu̇(t) + ku(t) = p(t) (2.2)

where c is the damping coefficient and k is the linear spring stiffness (see Figure 2.1). Further-
more, in many applications it is convenient to rewrite Eq. 2.2 such that:

ü(t) + 2ζωnu̇(t) + ω2
nu(t) =

p(t)

m
(2.3)

where

ωn =

√
k

m
(2.4)

is the natural angular frequency, fn = ωn
2π is the natural frequency, or eigenfrequency, and

ζ =
c

2mωn
(2.5)

is the damping ratio.
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Figure 2.1: Single-degree-of-freedom system.

Figure 2.2: Example of approximate, generalized SDOF systems for an elastic (a) and elasto-
plastic (b) response. p(t) is the external force and u(t) is the vertical displacement
at midspan.

Despite its simple form, the SDOF system turns out to be useful in several structural dynamic
applications. Apart from a wide range of applications in which the governing structural beha-
vior can be well-represented by an SDOF system it is the basis in response analysis methods
based on modal expansion techniques (see further Sections 2.3 and 2.5).

Furthermore, in some applications, continuous structures may be well-represented by a so-
called generalized SDOF system. For example, consider a simply supported beam subjected to
an external point load, as shown in Figure 2.2a. The vertical displacement at midspan may be
considered a degree-of-freedom. A linear spring stiffness representing the load–displacement
relation at midspan can readily by derived using standard static load cases found in textbooks
(see e.g. [7]). The mass associated to the vertical displacement may be determined based on
the assumed mode shape or, as a rough estimate, say 50% of the beam mass, which is referred
to as a lumped mass model. The beam’s dynamic response, in terms of the midspan displace-
ment, is thus represented by a generalized SDOF system. More specifically, the SDOF system
represents the motion of both the midspan displacement and the amplitude of the mode, cor-
responding to the static deflection of the external force. It should be emphasized that the mode
shape is constant whereas the mode amplitude varies through time.

In more general form, the generalized mass and stiffness for a linear elastic beam, assuming
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small displacements, can be written as [6]:

k =

∫ L

0
EI

(
d2ψ

dx2

)2

dx

m =

∫ L

0
ρAψ2dx

(2.6a)

(2.6b)

whereL is the beam length,E is Young’s modulus, I is the area moment of inertia, ρ is themass
per unit volume,A is the cross-sectional area, and ψ(x) is an admissible function, meaning that
it is continuous, satisfies geometric boundary conditions, and possesses derivatives of sufficient
order [6]. Further, ψ is in general normalized such that a value of one is provided in a suitable
position (e.g. at midspan).

In the specific case of a linear elastic simply supported beam, it turns out that a lumped mass
model can be employed for a fairly accurate prediction of the fundamental natural frequency.
However, the accuracy of this simplified model can be expected to decrease with an increasing
forcing frequency, because the response of higher order modes is neglected. Nonetheless, the
approach using assumed mode shapes (also referred to as basis or shape functions) is, in prin-
ciple, employed also in more advanced space discretization methods, such as the FE method
(see Section 2.2).

Moreover, note that a generalized SDOF system may also be utilized for modeling the non-
linear response of a structure, at least in an approximate manner. Consider, for example, a
simply supported beam where a plastic hinge may develop at midspan, modeled by means of
the assumed mode shape shown in Figure 2.2b. This model can e.g. be employed for estim-
ating the inelastic dynamic response of a concrete beam—a commonly used approach in blast
loading design of concrete structures [8] (see also Paper A).

2.2 FINITE ELEMENT METHOD

To compute the response of complex structures some form of discretization is generally re-
quired, e.g., by means of the FE method [1, 9, 10]. The structure is then idealized as an as-
semblage of elements representing subsystems, e.g., bars, beams, shells, or a continuum, for
which the stiffness and mass distribution are easier to define.

In this section, the FE formulation is introduced by first establishing the strong and weak
form of the continuous balance equation, being valid for linear as well as nonlinear dynamic
problems. Next, a space discretization is obtained by using element shape functions. Here,
solid continuum elements are considered, which allows for analyzing the deformations of an
arbitrary body. For details regarding the FE formulation of structural elements, such as beams
or shells, see e.g. [9].
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2.2.1 Strong and weak form of continuous dynamic problems

The equation of motion for an infinitesimal cube within a continuum in the current config-
uration can be expressed as (henceforth, the time dependence of variables may be omitted to
simplify the notation):

∂σij
∂xj

+ bi − ρ¨̄ui = 0 (2.7)

where σij(x1, x2, x3, t) is the Cauchy stress tensor, bi(x1, x2, x3, t) is the body force per unit
volume in direction i, and ūi(x1, x2, x3, t) is the displacement in direction i (i = 1, 2, 3).
Further, ρ(x1, x2, x3) is the material density and xi is the coordinate in direction i. Eq. 2.7,
which is referred to as Cauchy’s equation of motion, can be derived either from Newton’s
second law or the balance of linear momentum [10, 11].

For a (deformed) body V with surface boundary S, Eq. 2.7 can be rewritten as:

∇̃Tσ + b− ρ¨̄u = 0 ū ∈ V (2.8)

where

∇̃T =

 ∂
∂x1

0 0 ∂
∂x2

∂
∂x3

0

0 ∂
∂x2

0 ∂
∂x1

0 ∂
∂x3

0 0 ∂
∂x3

0 ∂
∂x1

∂
∂x2

 (2.9)

σT =
[
σ11 σ22 σ33 σ12 σ13 σ23

]
(2.10)

bT =
[
b1 b2 b3

]
(2.11)

ūT =
[
ū1 ū2 ū3

]
(2.12)

and the necessary boundary conditions can be expressed as:{
Σn = t̃ ū ∈ Sσ

ū = ũ ū ∈ Su

(2.13a)
(2.13b)

where Σ is the 3× 3 matrix representation of the Cauchy stress tensor, n is the outward unit
normal vector at the boundary, t̃ is the traction vector (i.e., force per unit current surface
area), and ũ are prescribed displacements (which are typically zero in structural dynamics
applications). Here, the boundary conditions t̃ and ũ are prescribed on complementary parts
of the surface boundary, i.e., S = Sσ ∪Su. Moreover, the initial conditions at the initial time
t = 0 must be specified for the dynamic problem, namely, in the form of the initial velocity
field ˙̄u(t = 0) = ˙̄u0 and the initial displacement field ū(t = 0) = ū0. Together with Eqs.
2.8–2.13, this is known as the strong form of the problem.

The weak form of the problem can be obtained by multiplying Eq. 2.8 by an arbitrary weight
function v, which is a smooth function being zero on the surface boundary Su, and integ-
rating over the region V [11]. In the context of structural dynamics, the weight function is
typically considered to be the kinematically admissible virtual displacements δū. Then, by use
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of Green–Gauss divergence theorem, the weak form (or virtual work) in the current, deformed,
configuration can be written as (e.g., see [10, 11]):∫

V

(
∇̃δū

)T
σ dV +

∫
V
ρδūT¨̄u dV −

∫
V
δūTb dV −

∫
S
δūTt dS = 0. (2.14)

Note that Eq. 2.14 is valid for linear and nonlinear problems using materials with arbitrary
stress–strain relations.

Here, the virtual work has been written in the deformed configuration. As will be further
discussed in Chapter 4, an alternative is to express the balance relation and virtual work in
the reference configuration. In an iterative solution process, the reference configuration and
the deformed configuration constitute the computational domain in the total and updated
Lagrangian formulation, respectively [1].

2.2.2 Finite element discretization

Using the FE method, the body is then idealized as an assemblage of smaller parts, finite
elements, representing subregions, which are interconnected through a set of nodal points.
Specifically, to obtain the FE formulation, the continuous displacement field is approximated
using nodal displacements and shape functions, as

ū(t) = Nu(t) (2.15)

where u is a n× 1 vector containing nodal displacements, andN is a matrix containing time-
independent shape functions. If considering continuum solid elements having three global
displacement DOFs per node, the shape function matrix can be expressed as:

N(x1, x2, x3) =

 N1 0 0 N2 0 0 · · · Nñ 0 0
0 N1 0 0 N2 0 0 · · · Nñ 0
0 0 N1 0 0 N2 0 0 · · · Nñ

 (2.16)

where Nk (k = 1, . . . , ñ) is the shape function associated to the kth global node, and ñ is
the total number of nodes. Thus, for continuum solid elements, we note that n = 3ñ, where,
again, n is the number of DOFs of the discretized model.

The shape functions are commonly constructed as low-order polynomial functions. Further,
the shape functionsNk are nonzero only within subregions, or elements, containing the global
nodal point k. In particular, at the nodal points, the shape functions are defined such that:{

Nk(xp) = 1 if k = p

Nk(xp) = 0 if k ̸= p

(2.17a)
(2.17b)

where k, p = 1, . . . , ñ, and xp = (x1,p, x2,p, x3,p) is the coordinate vector for nodal point p.
The displacement field within the body is thus expressed in terms of the nodal displacementsu,
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which can be viewed as generalized coordinates having a physical meaningful interpretation as
the displacements in the nodal DOFs. Accordingly, the model is sometimes said to be formu-
lated in the physical domain. Furthermore, a global assembly can be formed by interconnecting
the element DOFs in the nodal points (cf. Section 5.1).

By introducing the Galerkin method, the virtual displacements are expressed using the same
shape functions, i.e., δū = Nδu. By inserting these approximations into Eq. 2.14, and noting
that the virtual displacements δū are arbitrary, expressions for the mass matrix, the internal
(or restoring) force vector, and the external force vector can be written, respectively, as:

M =

∫
V
ρNTN dV (2.18)

f =

∫
V

(
∇̃N

)T
σ dV (2.19)

p =

∫
V
NTb dV +

∫
S
NTt dS. (2.20)

Thus, in accordance with Eq. 2.14, it follows that the semi-discretized equations of motion can
be written as:

Mü+Cu̇+ f = p (2.21)

where the n × n mass matrix M, and the n × 1 restoring force and external force vectors f
and g are given by Eqs. 2.18–2.20. Further, to consider energy dissipation, the n× n viscous
damping matrix C is included in the equations of motion, which is typically expressed as a
weighted sum of the mass and tangent stiffness matrices (see further Section 2.3).

According to above, the FE method was introduced using global shape functions Nk, be-
ing defined over the whole body. An alternative but equivalent approach, which is often en-
countered in the literature, is to employ element shape functions, being defined only within
each subregion/element. However, by using global shape functions, the similarity between the
FE method and projective reduced order modeling procedures can be clearly illustrated, as will
be further described in Chapter 3.

Next, by assuming small displacements and adopting a linear elastic constitutive law, the
Cauchy stress can be expressed in terms of the engineering strain ϵ:

σ = Dϵ (2.22)

where

D =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1

2(1− 2ν) 0 0
0 0 0 0 1

2(1− 2ν) 0
0 0 0 0 0 1

2(1− 2ν)


(2.23)
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is the constitutive matrix for isotropic elasticity, where E and ν are the Young’s modulus and
Poisson’s ratio, respectively.

By substituting Eq. 2.22 into Eq. 2.19, and introducing the relation σ = Dϵ = D∇̃Nu, it
follows that the linearized stiffness matrix can be expressed as:

K =

∫
V o

(
∇̃N

)T
D
(
∇̃N

)
dV o (2.24)

where the superscript o of a quantity indicate that it is evaluated in the reference configuration.
Thus, the linearized equations of motion for the MDOF system can be written as:

Mü+Cu̇+Ku = p (2.25)

where the mass matrix and the external force vector can be obtained by evaluating Eqs. 2.18
and 2.20 in the reference configuration. Notice the similarity between the equations of motion
for the linear MDOF system (Eq. 2.25) and the SDOF system (Eq. 2.2). In fact, as will be
demonstrated in the next section, the response of linearized MDOF systems can be decom-
posed into a set of generalized SDOF system responses, which can be solved independently
and superimposed to recover the MDOF system response.

2.3 MODAL EXPANSION

The equations of motion for free vibration of a linearized undamped MDOF system, e.g.
established using the FE method, is given by:

Mü+Ku = 0 (2.26)

where, again,M andK are the n×nmass and linearized stiffness matrices, respectively, and u
is an n× 1 displacement vector, which may include generalized and/or physical displacement
coordinates.

By assuming harmonic motion, u = ϕ cos(ωt−θ), whereϕ is a vector constant through time
and θ is the phase angle, and substituting into Eq. 2.26, the following nth-order generalized
eigenvalue problem is obtained [6]:(

K− ω2
jM
)
ϕj = 0 j = 1, 2, . . . , n. (2.27)

where ϕj is the jth eigenmode and ωj is the corresponding eigenfrequency. The eigenmodes
are ordered increasingly, such that ω1 < ω2 < . . . < ωn. Further, in the literature, the system
eigenmodes, as introduced above, are also referred to as normal modes, natural modes or vibra-
tion modes. As will be demonstrated throughout this thesis, the eigenmodes are fundamental
in structural dynamics as well as in model order reduction.
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The amplitudes of the eigenmodes are arbitrary, thus, the modes may be scaled in any suitable
manner. For example, in many applications it is convenient to scale the eigenmodes such that
the modal mass is one unit of mass, i.e.

ϕT
jMϕj = 1. (2.28)

By pre-multiplying with ϕT
j in Eq. 2.27, it follows that the corresponding modal stiffness is

given by
ϕT
jKϕj = ω2

j . (2.29)

Furthermore, an important property of the eigenmodes is the orthogonality property, namely
that

ϕT
i Mϕj = 0 if i ̸= j (2.30)

ϕT
i Kϕj = 0 if i ̸= j. (2.31)

Thus, by adopting the scaling introduced in Eq. 2.28, the eigenmodes are mass-orthonormal
and stiffness-orthogonal.

The physical displacements of the semi-discretized problem can be expressed in terms of the
modal responses, as:

u = Φq (2.32)

where Φ =
[
ϕ1 ϕ2 . . . ϕn

]
is the modal matrix and q =

[
q1 q2 . . . qn

]T is
the corresponding modal coordinates.

Further, by using the modal matrix, the linearized system equations (Eq. 2.25) can be trans-
formed into modal coordinates. The transformed system equations are then given as:

M̃q̈+ K̃q = p̃ (2.33)

where
M̃ = ΦTMΦ, K̃ = ΦTKΦ, p̃ = ΦTp.

Here, M̃, and K̃ are the n× n modal mass matrix and modal stiffness matrix, respectively, and
p̃ is the n× 1 modal load vector. The orthogonality property of the eigenmodes implies that
the modal mass and stiffness matrices are diagonal:

M̃ = ΦTMΦ = I (2.34)

K̃ = ΦTKΦ = Λ = diag(ω2
1, ω

2
2, . . . , ω

2
n). (2.35)

Hence, a set of n uncoupled second-order differential equations, which can be solved inde-
pendently, is obtained, e.g. expressed as:

q̈j + ω2
j qj = ϕ

T
j p j = 1, 2, . . . , n. (2.36)

If using a modal basis including all n eigenmodes, a pure transformation from physical to
modal coordinates is obtained. Hence, the systems expressed in terms of modal and physical
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coordinates, respectively, are equivalent. However, the full set of n eigenmodes is rarely used
in practice. Instead, a reduced system is commonly established using a truncated modal basis,
as will be further discussed in Section 3.2. The benefit of using modal coordinates is thus
two-fold—the orthogonality property of the modes enables a set of uncoupled differential
equations, and the number of system variables are decreased.

The eigenmodes are determined from a linearized system. However, as will be further de-
scribed in Chapter 4, eigenmodes can be used also for approximating the response of geomet-
rically nonlinear systems. In this case, however, the modal responses are no longer decoupled
and specialized techniques for calculating the transient dynamic response are needed (cf. Sec-
tion 2.5.2).

2.4 DAMPING MODELS FOR TIME DOMAIN ANALYSIS

For structures subjected to free vibration, a steadily diminishing displacement amplitude is
observed. Hence, energy is dissipated due to various mechanisms, such as opening/closing of
small cracks, friction between structural members etc., which is referred to as damping [12].
It turns out that a viscous damping model is convenient in linear analyses because it enables
analytical solutions. However, it should be emphasized that, in many structural engineering
applications, this model is unphysical. Thus, it is merely a mathematical model that can be
calibrated to mimic the damping of the real structure. In particular, a viscous damping model
is frequency dependent as indicated by Eq. 2.2; i.e., the damping force correspond to the
damping coefficient c multiplied with the velocity. Nonetheless, the viscous damping model
has several benefits regarding computational aspects that, in most engineering applications, far
outweighs the gain of using a more realistic and complicated damping model.

2.4.1 Rayleigh damping

Because both the modal mass and stiffness matrix are diagonal, one way to ensure that also
the viscous damping matrix C can be diagonalized is to construct the damping matrix as a
weighted sum of the mass and stiffness matrix, thus:

C = αM+ βK. (2.37)

This damping model is referred to as Rayleigh damping or proportional damping [12]. The
damping coefficientsα andβ, thus, determine the contribution ofmass- and stiffness-proportional
damping, respectively.

If the eigenmodes are mass normalized, the set of uncoupled differential equations including
viscous damping can be expressed as:

q̈ + 2ζjωj q̇ + ω2
j q = ϕ

T
j p j = 1, 2, . . . , n. (2.38)
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It follows that the Rayleigh damping coefficients can be expressed as:

2ζjωj = α+ ω2
jβ ⇒ ζj =

1

2

(
α

ωj
+ ωjβ

)
j = 1, 2, . . . , n (2.39)

where ζj is the modal damping ratio for mode j.

In structural engineering applications, experimental data typically suggests that the damping
ratio for manymaterials is frequency-independent [12]. Nonetheless, a viscous dampingmodel
where the amount of damping increases linearly with the forcing frequency is often employed
due to its utility in time domain analyses of linear systems. However, a useful property of the
Rayleigh damping model is that the mass-proportional damping is inversely proportional to
the eigenfrequency, whereas the stiffness-proportional damping is linearly proportional to the
eigenfrequency. Hence, the coefficients α and β can be adjusted such that the desired modal
damping ratio is fulfilled for two eigenfrequencies [12]. Furthermore, if the desired damping
ratio is equal for all modes, frequencies in-between the selected eigenfrequencies will then be
slightly underdamped whereas frequencies below and above the selected eigenfrequencies will
be overdamped, as shown in Figure 2.3. Thus, to ensure that the damping is not overestimated,
the set of eigenmodes used for calibrating the Rayleigh coefficients may be chosen such that
the frequency of important eigenmodes lies in-between the eigenfrequencies of the selected
modes.

The implication of prescribing a mass- and stiffness-proportional damping is shown in Fig-
ure 2.4 [12]. Clearly, the mass-proportional part, corresponding to dashpots connected to
ground, is unphysical. For example, a mass-proportional damping associates damping to rigid
body modes. Nonetheless, a pure stiffness-proportional viscous damping being linearly pro-

Figure 2.3: Rayleigh damping: variation of modal damping ratios ζn with natural fre-
quency ωn. (Figure based on [12].)
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Figure 2.4: Mass-proportional (left) and stiffness-proportional damping (right). (Figure based
on [12].)

portional to the forcing frequency is in general not appropriate. Thus, a mass-proportional
part is useful in practical applications. For structures having an irregular mass distribution,
however, a mass-proportional damping model might not be appropriate and should be used
with care.

Finally, it should be noted that the Rayleigh damping model is applicable in mode superposi-
tion methods, as well as in direct time-integration of linear or nonlinear systems expressed in
terms of physical DOFs. This is one of the main advantages using this damping model.

2.4.2 Modal damping

As discussed in Section 2.4.1, the frequency dependency of a viscous damping model can be
somewhat controlled by combining a mass- and stiffness proportional damping. An alternat-
ive, however, is to explicitly prescribe modal damping in the modal domain [12].

Recall that a modal transformation decouples the modal responses, as shown in Eqs. 2.34 and
2.35. Thus, the desired modal damping ratio may be prescribed explicitly in Eq. 2.38. In a
modal analysis, this approach is obviously advantageous compared to Rayleigh damping. The
drawback, however, is that this dampingmodel is in principle only applicable in modal domain
analyses, whereas the Rayleigh damping model can also be employed for systems expressed in
terms of physical DOFs.

It should be mentioned, however, that it is actually possible to expand the modal dampingmat-
rix to obtain a corresponding damping matrix in the physical domain [12]. Such an approach
should be used with great care, however—in general the resulting damping matrix will be full
and, moreover, may be physically impossible requiring external as well as negative damping
elements. Thus, the Rayleigh damping model is in general the preferred choice in time domain
analyses of systems formulated in the physical domain.
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2.4.3 Modal strain energy method

An approach using modal damping requires proportional, also referred to as classical, damping.
However, in several practical applications the damping is non-proportional, e.g., in models
representing buildings having a lower part made of concrete and an upper part made of steel, or
rubber components interacting with steel or glass structures (cf. Paper C). A Rayleigh damping
model can be employed for such systems. Then, the Rayleigh damping coefficients are derived
for each subsystem, respectively, by means of the global undamped eigenfrequencies and the
desired damping ratios [12].

However, because the damping matrix is not proportional, the corresponding modal damp-
ing matrix may not be diagonal. For determining the linearized response of such MDOF
systems either a direct time-integration of the coupled equations of motion or a mode super-
position method using the complex eigenmodes of the damped system is generally required
(e.g., see [13]). However, for lightly damped structures, non-proportional MDOF systems can
be analyzed using an approximate approach, which is sometimes referred to as the modal strain
energy (MSE) method [14]. The concept can be described as follows.

The damping ratio of an SDOF system representing a modal coordinate can be expressed
as [12]:

ζ =
ED

4πES
(2.40)

where ED is the one-cycle modal energy loss due to viscous damping and ES is the modal
strain energy amplitude, given by:

ES =
1

2
ϕT
jKϕj (2.41)

whereK is the global stiffness matrix for a structure with non-proportional damping, and ϕj

is the jth global eigenmode.

In the MSE method, the modal energy loss is determined as:

ED = πωjϕ
T
jCϕj (2.42)

where ωj is the eigenfrequency of mode j andC is the global damping matrix containing the
damping submatrices for substructures having different levels of damping. Assuming that the
modal basis is mass-normalized, it follows that the modal damping ratio for mode j can be
estimated as:

ζj =
ϕT
jCϕj

2ωj
. (2.43)

Using the above procedure, systems with non-proportional damping can be effectively analyzed
using a modal superposition of the undamped eigenmodes, as will be further discussed in
Section 2.4.2. As indicated by Eq. 2.43, the method implies that possible off-diagonal terms
in the modal damping matrix are ignored, i.e., ϕT

i Cϕj = 0 if i ̸= j. As, e.g., demonstrated
in [15], this is, however, a reasonable approximation for lightly damped structures.
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2.5 SOLUTION TECHNIQUES

In general, the following strategies may be employed for solving for the response of MDOF
systems in the time domain:

• mode superposition using the undamped eigenmodes,

• mode superposition using the complex damped eigenmodes, or

• by direct time-integration of the coupled system equations.

Here, only the first and third methods are considered. The damping levels for the structures
considered (see further Chapter 6) are fairly low, hence, an approximate mode-superposition
approach using the undamped eigenmodes are sufficiently accurate for analyzing the linearized
response (see Section 2.5.1). Systems including localized nonlinearities as well as geometric
nonlinearity are solved using direct time-integration (see Section 2.5.2). Moreover, although
time history analysis methods are the focus of this work, it should be mentioned that the
response can also be determined using frequency domain approaches, by establishing complex
frequency response functions (FRFs) (see further [12]).

2.5.1 Mode superposition methods

For linear (or linearized) systems, each modal response can be represented by a corresponding
SDOF system, i.e., Eqs. 2.3 and Eq. 2.38 are equivalent. It follows that the methods available
for computing the dynamic response of SDOF systems can be utilized for computing the
modal responses. In particular, a closed-form solution can be established for computing the
damped free vibration response:

qj(t) = e−ζjωjt

(
qj(0) cos(ωjDt) +

q̇j(0) + ζjωjqj(0)

ωjD
sin(ωjDt)

)
(2.44)

where ωjD = ωj

√
1− ζ2j is the jth damped natural frequency [12].

A time discretization is clearly needed to consider a load varying arbitrary through time. Non-
etheless, for such load cases, highly efficient numerical procedures are available that provide the
“exact” response of a load varying linearly between a range of time increments, i.e., the accuracy
merely depend on the time discretization of the dynamic problem. Moreover, a closed-form
solution can be established for certain pulse loads, periodic loads and, in particular, harmonic
loads, which in turn may be utilized for solving for arbitrary loading by means of frequency
domain methods [12].
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2.5.2 Direct time-integration methods

The computationally efficient analytical solution methods discussed in Section 2.5.1 require
that the system equations are linear (cf. Eq. 2.25). For nonlinear problems, however, a dir-
ect time-integration of the equations of motion is generally required. Several time-stepping
methods can be found in the literature (see e.g. [15]), which can be divided into one-step
and multi-step methods, where the former implies that only two time points are involved in
the computations at a given time, whereas the latter may include several time increments.
In structural dynamics applications the most common time-integration methods are one-step
methods.

Furthermore, a time-stepping scheme may be implicit, which implies knowledge of the accel-
erations in the computation of the velocity and displacements at a given time step, or explicit,
if the displacements and velocities are computed without prior knowledge of the accelerations.

One of the most important time-stepping methods is Newmark’s method—a one-step method
based on the following equations [15]:

u̇n+1 = u̇n + (1− γ)hün + γhün+1

un+1 = un + hu̇n + h2
(
1

2
− β

)
ün + h2βün+1

(2.45a)

(2.45b)

where h is the time increment (i.e. tn+1 = tn+h), and γ and β are parameters that defines the
variation of the acceleration within time increments. In particular, setting γ = 1

2 and β = 1
4

correspond to constant average acceleration within time increments, i.e., ü(τ) = ün+1+ün

2
where tn < τ < tn+1. This result in an unconditionally stable scheme, meaning that the time
increment size is always stable and need only be adjusted to ensure that the transient dynamic
response can be adequately resolved [15].

For nonlinear systems, where the tangent stiffness is amplitude dependent, the stable time
increment size will generally not be constant. Consequently, an unconditionally stable time-
integration scheme, such as Newmark’s method assuming constant average acceleration, is
particularly convenient. However, because it is an implicit time-stepping method, iterative
solution techniques are generally required to enforce equilibrium of the equations of motion
(see e.g. [12]). Specifically, using Newmark’s method, equilibrium is enforced at each time
point tn+1.

The residual, which should be minimized, can be expressed as:

r(un+1) = Mün+1 +Cu̇n+1 + f(un+1)− pn+1. (2.46)

An iterative solution procedure is commonly established using the Newton–Raphson method.
The iteration, which is carried out for each time point tn+1, is initialized by setting the ac-
celerations ün+1 to zero. Accordingly, an initial prediction of the displacements un+1 and
velocities u̇n+1 can be determined from Eq. 2.45 using the results from the previous time
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point tn. Then, the residual is updated in subsequent iteration steps. Namely, in the ith
iteration, the corrected displacements can be expressed as:

ui+1
n+1 = ui

n+1 +∆ui
n+1 (2.47)

where the corrections∆ui
n+1 are determined as [15]:

∆ui
n+1 = −S−1r(ui

n+1). (2.48)

Here, S is the iteration (or Jacobian) matrix, given as:

S =

[
∂r

∂u

]
ui
n+1

=
1

h2β
M+

γ

hβ
C+Kt(ui

n+1) (2.49)

where, again,M andC are the mass and damping matrix, andKt =
[
∂f
∂u

]
ui
n+1

is the tangent

stiffness evaluated at u = ui
n+1. The updated acceleration and velocity vectors can then be

computed from the displacement correction, as:

u̇i+1
n+1 = u̇i

n+1 +
γ

hβ
∆ui

n+1

üi+1
n+1 = üi

n+1 +
1

h2β
∆ui

n+1.

(2.50a)

(2.50b)

The iterative procedure is repeated until convergence is achieved and the residual is sufficiently
small, i.e., ||r(un+1)|| ≈ 0. Further, it should be noted that the damping matrix may be
amplitude dependent, although any dependencies have been left out in Eqs. 2.46 and 2.49 to
simplify the notation. For instance, Rayleigh damping may be adopted, such thatC(un+1) =
αM+ βKt(un+1).

If using the Newton–Raphson method to enforce equilibrium for a nonlinear system, the
Jacobian matrix has to be updated in each iteration, namely, because the tangent stiffness (and
possibly the damping matrix) is amplitude dependent. However, an alternative is to keep the
Jacobian matrix constant during the equilibrium iterations, such that it is only generated ones
for each time point. This approach is referred to as the modified Newton–Raphson method.
Although it typically results in more iterations to reach equilibrium, it can be computationally
less expensive since the Jacobian matrix is only constructed ones in the iterative process [12].

Another important time-stepping technique, a two-stepmethod, is the central differencemethod
(CDM), where the velocity and accelerations are expressed as (e.g., see [12, 15]):

u̇n =
un+1 − un−1

2h

ün =
un+1 − 2un + un−1

h2
.

(2.51a)

(2.51b)

In fact, the above expressions can be derived from Newmark’s formula by setting γ = 1
2 and

β = 0. The CDMmethod is a second order accurate explicit scheme, i.e., it can be formulated
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such that the displacements and velocities can be computed without prior knowledge of the
accelerations. In particular, a computationally efficient implementation of the CDM method
can be achieved for undamped systems having a diagonal lumped mass matrix, an approach
commonly employed in highly nonlinear and transient problems, such as crash simulations and
impact loading. Further, using an explicit time-stepping scheme, such as the CDM method,
for solving nonlinear systems is straightforward, because the nonlinear forces may be computed
explicitly.

The CDMmethod is conditionally stable, however, requiring that ωcrh ≤ 2, where ωcr is the
highest eigenfrequency of the system [15]. For large FE models this typically result in a very
small stable time increment. Furthermore, for nonlinear systems, the stable time increment
is not constant, which follows from the fact that the tangent stiffness matrix is amplitude
dependent. For this reason, the nonlinear systems considered in this work are generally solved
using Newmark’s method with γ = 1

2 and β = 1
4 , resulting in an unconditionally stable

implicit time-integration scheme. Further, equilibrium is enforced using Newton-Raphson
iterations.

For completeness, it should also be mentioned that enhanced versions of the Newmark time-
stepping scheme has been developed, such as the HHT (Hilber-Hughes-Taylor) method [16]
and the Generalized-α method [17], that introduces numerical damping for high frequencies.
These methods can be beneficial in the process of solving large FE models, where unphysical
high frequency modes can occur due to the use of small elements. Hence, it is desired to add
an appropriate amount of numerical damping for high frequencies, while the frequency band
of interested is undamped.





3 Reduced order modeling of
linear systems

This chapter presents methods for reduced order modeling of linear systems. The linearized,
semi-discretized equations of motion (cf. Eq. 2.25) constitute the starting point in the process
of generating the reduced order models. Although linear systems are considered here, many
of the procedures will be useful also in the context of reduced order modeling of nonlinear
systems, as further discussed in Chapter 4.

By generating a reduced order model, the aim is to reduce the system size while maintaining
sufficient accuracy of important output quantities. Hence, the computational cost can be
reduced by analyzing a smaller, approximate model. In an FE framework, the continuous
displacement field is typically discretized using a substantial number of physical DOFs, i.e.,
which represent the displacements (or rotations) at a set of nodal points. By introducing a
reduced order model, the size of the numerical model is reduced by instead representing the
displacement field using a reduced set of modal coordinates, representing the amplitude of a
set of global mode shapes, also referred to as reduction basis vectors or Ritz-vectors.

In an evaluation of the reduction methods, it is useful to distinguish between the computa-
tional offline cost, referring to the computational effort for generating the reduced order system
matrices, and the online cost, related to the computational cost for calculating the dynamic re-
sponse of the reduced order model. In particular, to obtain an efficient reduction method,
the sum of the offline and online cost should be smaller than the computational cost required
for solving the full-order model, while ensuring a reduced order model with adequate accur-
acy. In this regard, the reduced order models are often particularly efficient for analyzing long
time-records or in situations where several load cases is to be analyzed using the same model.

3.1 RAYLEIGH–RITZ METHOD

As described in Section 2.1, a continuous structure may be represented by an assumed mode
shape to form a generalized SDOF system. Using the Rayleigh–Ritz method, this approach
can be extended further such that the displacements are approximated by a superposition of k
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linearly independent mode shapes, satisfying the geometric boundary conditions [12]. Thus,
the structure displacements can be expressed as:

u(t) =
k∑

j=1

ψjqj(t) (3.1)

where qj is the generalized coordinate corresponding to the amplitude of mode shape ψj and
k is the number of mode shapes, e.g., generated using a set of assumed load patterns. The
Rayleigh-Ritz method was originally developed for continuous systems. Here, however, the
method is applied to discretized MDOF systems, e.g., formulated using the FE method.

Similar to the procedure using normal modes (cf. Section 2.3), the relation between the gen-
eralized coordinates and the physical DOFs can be expressed as a transformation (for clarity,
explicit time dependence is henceforth omitted):

u = Ψq (3.2)

where Ψ =
[
ψ1 ψ2 . . . ψk

]
is a transformation matrix constructed using the Ritz-

vectors, and q =
[
q1 q2 . . . qk

]T are the corresponding set of generalized coordinates.
Further, it is assumed that the number of assumed modes is less than the number of physical
DOFs, thus, k ≪ n. Accordingly, the system size is reduced by replacing the physical DOFs
by a reduced set of generalized coordinates.

By substituting Eq. 3.2 into Eq. 2.25 and pre-multiplying withΨT the reduced system is given
by:

M̃q̈+ C̃q̇+ K̃q = p̃ (3.3)

where
M̃ = ΨTMΨ, C̃ = ΨTCΨ, K̃ = ΨTKΨ, p̃ = ΨTp.

Here, M̃, C̃, and K̃ are the k × k reduced system matrices and p̃ is the k × 1 reduced load
vector. The linearly independent mode shapes form a reduction basis, in which the response,
i.e. the modal amplitudes, are represented by generalized (or modal) coordinates. Hence, the
reduction can be interpreted as a projection of the system equations onto a subspace, thus, a
reduction is achieved be means of a subspace projection. This projective reduced order modeling
technique is the basis in many of the methods considered in this work.

The reduced system matrices, as introduced above, are generally not diagonal, i.e., in contrast
to the modal mass and stiffness matrices introduced in Section 2.3. This follows from the
fact that the reduction basis is not constructed using eigenmodes of the full-order system (cf.
Eq. 2.27). However, the eigenmodes can be approximated by means of a reduced eigenvalue
problem in the space of the assumed modes, given as:

K̃Z = M̃ZΛ (3.4)

where Λ is a diagonal matrix containing pseudo-frequencies, and Z contains the associated
eigenvectors (or pseudo-modes), being normalized in order that ZTM̃Z = I. Then, a set
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of reduction basis vectors being stiffness-orthogonal and mass-orthonormal is given by Ψ̃ =
ΨZ. The approximate pseudo-frequencies are usually upper bound eigenfrequencies, and ap-
proaches the exact value when k is increased [12].

The orthogonal basis vectors Ψ̃, which are linear combinations of the assumed Ritz-vectors
Ψ, can be employed to form a reduced order system, in accordance with Eq. 3.3. Because
the reduction basis is orthogonal, the reduced system can be analyzed using any of the mode
superposition methods discussed in Section 2.5.1.

The procedure using assumedmode shapes may not be feasible for analyzing general structures.
Particularly for complex FE models, it is difficult to select appropriate mode shapes. This
problem is further addressed in the following sections, where various techniques for generating
reduction bases are discussed.

Finally, it is of interest to compare Eqs. 2.15 and 3.2, which illustrate the similarity between the
projective reduced order modeling approach, as introduced above, and the FE method. Thus,
in the FE framework, the infinite solution space is approximated using a finite set of shape
functions, leading to a semi-discretized MDOF system. On the other hand, by introducing
the transformation Eq. 3.2, the number of DOFs is reduced by assuming that the solution
can be represented in a subspace of the solution space of the full-order MDOF system. Two
observations can be made. Firstly, the approaches are similar in that an approximate solu-
tion is introduced by projecting the system onto a subspace, and, secondly, that the reduced
order modeling technique can theoretically be applied directly on the infinite solution space.
However, to avoid evaluating integrals (cf. Eqs. 2.18–2.20) involving complicated global shape
functions, it is convenient to first establish a space discretization by means of an FE model,
which is then reduced in a subsequent step by applying a reduction basis. In particular, as will
be further described in Sections 3.2–3.6, the FE model can then be used both for identifying
the reduction basis vectors as well as determining the reduced order system matrices.

3.2 MODAL TRUNCATION

The modal expansion of linear MDOF systems was introduced in Section 2.3. As mentioned
previously, this allows for diagonalizing the system matrices enabling the use of highly efficient
solutionmethods. Furthermore, by use of a modal truncation, the dynamic response can be ap-
proximated by considering a reduced set of low-frequency eigenmodes, i.e., the displacements
are approximated as:

u ≈
k∑

j=1

ϕjqj . (3.5)

Hence, the responses of the discarded modes ϕj (j = k + 1, k + 2, . . . , n) are neglected.
This approach is sometimes also referred to as the modal displacement method (MDM). As
will be shown next, the accuracy of the MDM can be further improved by use of the mode
acceleration (MA) method.
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Furthermore, it should be noted that, for large FE models, solving the full-order eigenvalue
problem can be computationally expensive. Then, an alternative is to adopt the Rayleigh–Ritz
method for approximating the eigenmodes, as described in Section 3.1. Moreover, in Sec-
tion 3.5, alternative approaches using Krylov-subspaces are introduced, which can be utilized
for reducing the computational effort, as well as improving the model accuracy.

3.3 MODE ACCELERATION METHOD

If the eigenfrequencies of the discarded modes ωj are significantly higher than the forcing
frequency ω, which in general is the case, it is reasonable to assume that the responses of
these modes are essentially static. Hence, if ωj ≫ ω the dynamic response of mode j can be
approximated based on the corresponding quasi-static response (for comparison, consider an
SDOF system subjected to a forcing frequency much lower than the natural frequency). This
is the essence of the mode-acceleration (MA) method [12]. The concept can be described as
follows.

The equation of motion for an undamped system may be written as:

Mü+Ku = MΦq̈+Ku = p (3.6)

where q̈ contains the complete set of nmodal accelerations. Further, Eq. 3.6 may be rewritten
as:

u(t) = K−1 (p−MΦq̈) . (3.7)

If the eigenmodes are mass-normalized, the spectral expansion of the inverse stiffness matrix is
given by:

K−1 = ΦK̃−1ΦT =
n∑

j=1

ϕjϕ
T
j

ω2
j

. (3.8)

(This expression will be useful in the derivation of the MAmethod, according to below, as well
as in the methodologies investigated in Sections 3.4 and 3.6.)

Substituting Eq. 3.8 into Eq. 3.7 and rearranging the terms yields:

u(t) = K−1p−ΦK̃−1ΦTMΦq̈ = K−1p−ΦK̃−1q̈ = K−1p−
n∑

j=1

q̈j
ω2
j

ϕj . (3.9)

Now, assume that the dynamic response is only computed for the first k modes, then

u(t) ≈ K−1p−
k∑

j=1

q̈j
ω2
j

ϕj . (3.10)

The above expression is thus employed in the MA method, where the first term in Eq. 3.10
can be interpreted as the pseudo-static response modified by the second term to obtain the
dynamic response.
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Themode-accelerationmethodmay be derived in a slightly differentmanner using an approach
referred to as the static correction method. Even though both methods are referred to in the
literature, the MA method and the static correction method are in fact equivalent, i.e., both
methods provide the exact same results [12]. The only difference lies in how the expressions
are derived (except for, possibly, differences due to numerical round-off errors in a numerical
implementation). Here, however, the alternative formulation employed in the static correction
methodwill be useful in Sections 3.4 and 3.6, namely, in a derivation of the (generalized)modal
truncation augmentation method as well as certain DS methods discussed in Chapter 5.

In the static correction method, the displacements are expressed as:

u(t) ≈
k∑

j=1

(ϕjqj) + ucor (3.11)

whereucor is a static correction vector. Furthermore, by substituting the inverse stiffness matrix
in Eq. 3.10 with its spectral expansion (Eq. 3.8), and separating the summation, the following
expression is obtained:

u(t) ≈

 k∑
j=1

ϕjϕ
T
j

ω2
j

+
n∑

j=k+1

ϕjϕ
T
j

ω2
j

p−
k∑

j=1

q̈j
ω2
j

ϕj . (3.12)

Further, recall that q̈j + qjω
2
j = ϕT

j p (cf. Eq. 2.36), thus:

k∑
j=1

ϕjqj =
k∑

j=1

ϕjϕ
T
j

ω2
j

p−
k∑

j=1

q̈j(t)

ω2
j

ϕj . (3.13)

Substituting Eq. 3.13 into Eq. 3.12 yields:

u(t) ≈
k∑

j=1

ϕjqj +
n∑

j=k+1

ϕjϕ
T
j

ω2
j

p (3.14)

Thus, by comparing Eq. 3.14 and Eq. 3.11, it follows that the correction vector is given by:

ucor =
n∑

j=k+1

ϕjϕ
T
j

ω2
j

p. (3.15)

However, the above expression can rarely be used in practice, because a computation of all
n eigenmodes is generally not feasible. Therefore, using Eq. 3.8, the following alternative
expression may be utilized:

ucor =

K−1 −
k∑

j=1

ϕjϕ
T
j

ω2
j

p. (3.16)
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Figure 3.1: Example of harmonic response (sine sweep) for an undamped two-DOF model,
as shown in Figure 3.2a. The stiffness and mass are set to k = 1000 N/m and
m = 1 kg, respectively, and the external force is p0 = 1 N (cf. Figure 3.2a). The
displacement amplitude in DOF 1 is shown for the MA method (a), and the MTA
method (b) (cf. Section 3.4). The first normal mode is considered. For comparison,
the response is presented for the full model and theMDMmethod (cf. Section 3.2).
Notice that, in this case, the response provided by the MTA method is identical to
the full order response; thus the MTA basis span the full solution.

In Figure 3.1a, the response of the undamped two-DOF model, shown in Figure 3.2a, due
to harmonic loading (sine sweep) is presented for the MA method and the MDM method,
respectively. The dynamic response of the first normal mode is considered. For comparison,
the response is also presented for the full model. As manifested by the results, the quasi-static
response is fully captured if adopting the MA method. The same is not true for the MDM
method, which follows from the fact that the static displacements cannot be fully resolved by
a single eigenmode. Further, as shown in the figure, the second resonance is neither captured
by the MDM method nor the MA method.
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(a) (b)

Figure 3.2: Two-DOF system (a) and example of a static correction vector ucor (b). The vec-
tors ϕ1 and ϕ2 indicate the directions of the normal modes, and ustatic and ucor
are the static displacement and static correction vectors, respectively. The dashed
line indicate the displacement response of the full model, given by ufull(ω) =(
K− ω2M

)−1
p0.

The static correction vector ucor is illustrated in Figure 3.2b. The dashed gray line corresponds
to the full order solution, i.e., where both eigenmodes are considered. Note that the response of
the second mode is indeed essentially static for a forcing frequency close to the first resonance.
As indicated by the figure, both eigenmodes are needed in the MDM approach to fully resolve
the static displacements.

3.4 MODAL TRUNCATION AUGMENTATION

In the MA method, the quasi-static response of the discarded modes are considered in the
dynamic analysis. An alternative is to employ the modal truncation augmentation (MTA)
method [18], where the eigenmodes are augmented by additional modes generated based on
the spatial distribution of the external force.

The MTA method is useful if the external load can be decomposed into a set of m time-
independent spatial load vectors, which usually is the case. Thus, the external force vector is
then expressed as:

p(t) =
m∑
j=1

pjαj(t) = Pα(t) (3.17)

where P is a n ×m matrix containing the spatial load vectors and α(t) contains the corres-
ponding time functions. Then, similar to the static correction method (cf. Eq. 3.16), a set of
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correction modes can be generated as:

Xcor =

K−1 −
k∑

j=1

ϕjϕ
T
j

ω2
j

P. (3.18)

which are mass- and stiffness orthogonal with respect to the retained eigenmodes. Further, the
additional basis vectorsXcor can be made mutually orthogonal by use of a reduced eigenvalue
problem, expressed as (cf. Eq. 3.4):(

XT
corKXcor

)
Z =

(
XT

corMXcor

)
ZΛ (3.19)

where, again, Λ and Z contain pseudo-frequencies and pseudo-modes of the reduced eigen-
value problem. Thus, an orthogonal basis, which span the original correction modes, can be
determined as X̃cor = XcorZ. A reduction basis including eigenmodes and correction modes
can then be constructed as:

ΨMTA =
[
Φ X̃cor

]
(3.20)

which can be applied in a standard fashion to obtain a reduced order model (cf. Eq. 3.3). Or-
thogonalizing the basis improves the numerical robustness. Furthermore, the reduced system
will be fully decoupled. Thus, for linear models, the dynamic response can be obtained using
the mode superpositions methods described in Section 2.5.1.

The MTA is similar to the MA method in that it considers the quasi-static response of the
discarded modes. However, in the MTA method, the modal basis is enriched by additional
Ritz-vectors. Hence, additional generalized coordinates are considered in the dynamic response
analysis. For instance, if a single eigenmode is considered for the two-DOF system illustrated
in Figure 3.2a, the MTA method result in an additional basis vector that coincides with the
direction of the static correction vectorucor. Accordingly, asmanifested by the results presented
in Figure 3.2b, the response of the two-DOF model is fully captured; i.e., the MTA basis span
the full order solution. TheMTAmethod is, thus, more accurate than the MAmethod, which
is also demonstrated by the numerical investigations in [19]. However, because additional
coordinates are introduced, the computational online cost can be expected to be somewhat
larger. Furthermore, in contrast to the MA method, the MTA method is restricted to load
cases where the external force can be decomposed into time-independent spatial load vectors
(cf. Eq. 3.17).

3.5 KRYLOV-SUBSPACE METHODS

Despite the great utility of modal expansion techniques and the wide range of applications,
there are some drawbacks when employed for reducing the number of system variables. Firstly,
solving the full-order eigenvalue problem for large systems can be computationally expensive
and, secondly, information related to the spatial distribution of the load is not considered (i.e.,
if not adopting the MA or MTA methods). Furthermore, a basis constructed using modal
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truncation may include eigenmodes that are not important for the specific load case. For
example, consider again the simply supported beam in Figure 2.2a. Indeed, anti-symmetric
eigenmodes, having zero displacement at midspan, cannot be excited by the external pressure
and, consequently, the solution accuracy will not be improved by including these eigenmodes
in the reduction basis.

An alternative to a reduction using a truncated set of full-order eigenmodes is the so-called
Krylov-subspacemethods, which do consider the spatial distribution of the load and, moreover,
are computationally efficient. As shown in the derivation below, the basis vectors can be com-
puted by matrix–vector multiplications. In contrast, an eigenvalue problem must be solved
for determining the eigenmodes.

In a structural dynamics context, the Krylov-vectors can be interpreted as the displacements
due to quasi-static loads and, accordingly, the modes are sometimes referred to as static correc-
tion modes [20]. This naming convention is also useful in an attempt to demonstrate how the
Krylov-subspace methods are related to theMA andMTAmethod, as described in Sections 3.3
and 3.4, as well as the generalized MTA method, which will be introduced in Section 3.6. In
the following, the static correction modes are derived based on the approach presented in [21].

Neglecting damping, the equation of motion can be written as:

Mü+Ku = p. (3.21)

Further, the displacement can be split into a static and dynamic part:

u = ustat + y. (3.22)

By setting the acceleration to zero in Eq. 3.21, the static response is given by ustat = K−1p.
Further, substituting Eq. 3.22 into Eq. 3.21, an expression similar to Eq. 3.22 is obtained for
y, namely

Mÿ +Ky = −MK−1p̈. (3.23)

This procedure can be continued by splitting y into a static and dynamic part z, i.e.

y = ystat + z. (3.24)

The quasi-static solution is then given by

ystat = K−1
(
−MK−1

)
p̈. (3.25)

In a similar manner, substituting Eq. 3.24 into Eq. 3.23 yields:

Mz̈+Kz =
(
−MK−1

)2 d4p
dt4

. (3.26)

Thus, the response is given by a sequence of quasi-static solutions:

u = ustat + ystat + zstat + . . . (3.27)
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Hence, a recursive procedure is obtained, indicating that the dynamic response can be approx-
imated as

u ≈
k∑

j=1

K−1
(
−MK−1

)j−1 d2(j−1)p

dt2(j−1)
(3.28)

where k is the number of static corrections. Furthermore, the higher order derivatives can
be treated as separate DOFs. Hence, instead of computing a sequence of static corrections, a
dynamic response analysis is conducted by means of generalized coordinates representing the
amplitudes of quasi-static modes. However, for this technique to be meaningful, the spatial
variation of the load must be time-independent in some manner. Hence, such that the external
load can be decomposed into a set ofm spatial load vectors in accordance with Eq. 3.17.

Then, the set of j-th order static correction modes are given by:

Xcor,j = K−1
(
MK−1

)j−1
P. (3.29)

where, again, the columns of P are a set of spatial load vectors. Further, the generated correc-
tion modes can be collected in a matrix:

Ψcor =
[
Xcor,1 Xcor,2 . . . Xcor,k

]
(3.30)

whereΨcor is a n×(k ·m)matrix including static correction modes. Due to the consideration
of the external force in the derivation, the static correction modes are often referred to as load-
dependent vectors. Further, to avoid numerical round-off errors, the correction modes may be
generated using the modified Gram–Schmidt orthogonalization procedure [12,22]. Moreover,
by solving a small eigenvalue problem, the basis Ψcor can be replaced by a corresponding set
of mass- and stiffness-orthogonal basis vectors. Thus, by using Eq. 3.4, the orthogonal basis
is given as Ψ̃cor = ΨcorZ, where Z contains the pseudo-modes of the reduced eigenvalue
problem.

Now, by introducing a transformation in a standard manner, the physical displacements are
approximated as:

u ≈ Ψ̃corη (3.31)

where η =
[
η1 η2 . . . ηk

]T are the generalized coordinates, corresponding to the cor-
rection mode amplitudes. Finally, a reduced system is obtained by setting Ψ = Ψ̃cor in Eq.
3.3.

The first order correction modes simply correspond to the static displacement of the external
force patterns. As indicated by Eq. 3.29, the jth-order static modes can be interpreted as
displacements due to inertia forces associated to the set of (j − 1)th-order static modes (cf.
Figure 3.3). Furthermore, note that the sequence of correction vectors form a so-called block-
Krylov subspace, given by:

Kr(K
−1M;K−1P) = span

(
K−1P, (K−1M)K−1P, . . . , (K−1M)r−1K−1P

)
.
(3.32)

Krylov subspace methods originating from system and control (e.g., see [23, 24]) are thus
closely related to the technique using higher-order static corrections, as introduced above.
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(a) 1st static correction mode (b) 2nd static correction mode

Figure 3.3: Example of static correction modes and corresponding load distributions, derived
from an uniform external pressure.

3.6 GENERALIZED MODAL TRUNCATION
AUGMENTATION

The MA method can be generalized to include higher order corrections, referred to as the
generalized MAmethod [20]. In fact, the higher order corrections can be derived in a manner
similar to the force-dependent Krylov vectors discussed in Section 3.5. Notice that setting
k = 1 in Eq. 3.28 correspond to the pseudo-static solution, which in turn is equal to the
static correction provided by Eq. 3.16 if the modal responses are neglected. Furthermore, if
including k modal responses, it follows that the higher order corrections can be computed as:

ucor, j =

K−1 −
k∑

j=1

ϕjϕ
T
j

ω2
j

(−MK−1
)j−1 d2(j−1)p

dt2(j−1)
. (3.33)

Hence, the response is approximated as

u(t) ≈
k∑
s

ϕsqs(t) +

l∑
j

ucor, j (3.34)

where l is the static correction order. Note that setting l = 1 in Eq. 3.34 indeed provides an
expression equivalent to the static correction method.

Calculating the higher order derivatives of the forcing, included in Eq. 3.33, might be incon-
venient (or not even possible). However, instead of computing the higher order derivatives,
the truncated modal matrix can be augmented by higher order correction modes, i.e., sim-
ilar to the procedure used in the MTA method as well as the Krylov-subspace method (cf.
Sections 3.4 and 3.5). Hence, the idea is to utilize higher order correction vectors as addi-
tional Ritz-vectors. This approach is known as generalized Modal Truncation Augmentation
(g-MTA) [20].
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The set of jth-order correction modes are then given by:

Xcor,j =

K−1 −
k∑

j=1

(
ϕjϕ

T
j

ω2
j

)

(MK−1
)j−1

P (3.35)

which are both mass- and stiffness-orthogonal to the retained eigenmodes. Further, to avoid
numerical round-off errors, the correction vectors may be generated using the modified Gram–
Schmidt orthogonalization procedure, as discussed in Section 3.5.

The generated correction vectors can be collected in a matrix:

X̄cor =
[
Xcor,1 Xcor,2 . . . Xcor,l

]
. (3.36)

Then, the set of correction vectors can be further orthogonalized by means of a reduced ei-
genvalue problem, i.e., in a manner similar to the procedure in Sections 3.4 (also see [20,21]).
Hence, by replacingXcor with X̄cor in Eq. 3.19, the orthogonalized vectors are given as X̂cor =
X̄corZ, where, again, Z contains the pseudo-modes of the reduced eigenvalue problem.

A reduction basis can now be constructed using the retained eigenmodes and the orthogonal-
ized higher order correction modes, as:

Ψg-MTA =
[
Φ X̂cor

]
. (3.37)

Finally, a reduced system can be generated by replacingΨ withΨg-MTA in Eq. 3.3. Note that,
due to the orthogonality properties of the basis, the reduced system will be fully decoupled.
Thus, as for the basis generation methods discussed previously, the dynamic response of lin-
ear systems can be obtained using any of the mode superposition methods described in Sec-
tion 2.5.1.



4 Reduced order modeling of
geometrically nonlinear systems

In Chapter 3, linear systems were considered, and, accordingly, the reduced order models
were developed based on the linear semi-discretized equations of motion, which assumes small
displacements and linear elastic materials. However, if the deformations can no longer be
considered small, due to the internal stresses being rotated with respect to the undeformed
configuration, it can be necessary to consider geometric nonlinearity. Hence, the discretized
dynamic problem is then expressed in terms of the nonlinear equations of motion, Eq. 2.21.

In the following, focus is on geometric nonlinearity due to large displacements and small
strains. Further, it is assumed that linear elastic constitutive laws can be adopted. In this re-
gard, thin-walled structures are critical, where the response is typically influenced by bending–
stretching coupling effects resulting in a geometrically nonlinear behavior.

4.1 EQUATIONS OF MOTION FOR GEOMETRICALLY
NONLINEAR SYSTEMS

The nonlinear semi-discretized equations of motion for an MDOF system, e.g., formulated
using the FE method are given by Eq. 2.21 (restated here for convenience):

Mü(t) +Cu̇(t) + f(u(t)) = p(t). (4.1)

Similar to the modal techniques commonly used in linear structural dynamics (cf. Chapter 3),
a reduced order model can be formulated by projecting the system equations onto a reduction
basis. Hence, the physical displacements can be approximated as:

u(t) ≈ Vη(t) (4.2)

whereV is a n×m reduction basis and η is am× 1 vector containing the associated gener-
alized coordinates, and wherem ≪ n. Thus, the physical displacement field is approximated
as a linear combination of the reduction basis vectors, which constitute the columns of V.
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Now, substituting Eq. 4.2 into Eq. 4.1 gives (henceforth, time-dependencies are left out for
compactness):

MVη̈ +CVη̇ + f(Vη̈) = p+ r (4.3)

where r is the residual force vector, compensating for the discrepancy between the full-order
solution and the approximate response spanned by the reduction basis vectors.

Next, a Galerkin projection may be considered where the error is forced to be orthogonal to
the reduction basis, i.e., similar to the approach employed in the FE discretization described
in Section 2.2, thus (e.g., see [2, 3]):

VTr = 0. (4.4)

Hence, by pre-multiplying with the transpose of the reduction basis, Eq. 4.3 can be rewritten
as:

M̃η̈ + C̃η̇ + f̃ = p̃ (4.5)

where
M̃ = VTMV, C̃ = VTCV, f̃ = VTf(Vη), p̃ = VTp.

Here, M̃ and C̃ are them×m reduced mass and damping matrices. Further, f̃ and p̃ are the
m × 1 reduced restoring force and external force vectors, respectively. A nonlinear reduced
order model, given by Eq. 4.5, can thus be established. Nevertheless, in order to achieve a
model that is both accurate and computationally efficient, two main challenges still exist, as
will be described as follows.

Firstly, an appropriate basis selection technique is needed. In particular, the geometrically
nonlinear response generally involves modes with eigenfrequencies far above the frequency
content of the forcing. For instance, in an analysis of the geometrically nonlinear response
of flat structures, the reduction basis typically has to be enriched by in-plane (membrane)
modes, as exemplified for a cantilever beam in Figure 4.1. Here, it should be emphasized that,
to ensure sufficient accuracy of the basis, additional in-plane modes is required regardless of
the forcing frequency; i.e., the in-plane motion must be adequately resolved in both static and
dynamic analyses. This is thus a fundamental difference to the requirements of reduction bases
applied in linear dynamics applications. Hence, for static loading, the linear response can be
fully resolved by a single mode shape, namely, corresponding to the static displacement field
u = K−1p. On the other hand, the geometrically nonlinear displacement field due to static
loading is amplitude dependent, why several modes might be needed to obtain a sufficiently
accurate approximation. Thus, in contrast to linear dynamics applications, bases constructed
using a few low-frequency normal modes is generally not appropriate. This issue will be further
discussed in Section 4.3, where various basis generation techniques are discussed.

The second problem concerns the evaluation of the reduced restoring force vector f̃ (cf. Eq.
4.5). The transient dynamic response of the nonlinear system has to be solved using direct
time-integration. Then, as described in Section 2.5.2, a time discretization is introduced,
where equilibrium at each time point is typically enforced using Newton–Raphson iterations.
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Figure 4.1: Example of approximation of the geometrically nonlinear deformation of a canti-
lever beam using a bending and membrane mode.

Consequently, the reduced restoring force vector (as well as the reduced tangent stiffness mat-
rix) has to be constructed in several iterations, for each time point. As indicated by Eq. 4.5,
this implies that the full-order internal forces must be generated and then projected onto the
reduction subspace, i.e., the reduced restoring forces are computed based on the expression
f̃ = VTf(Vη). Hence, with regard to computational efficiency, a new bottleneck emerges
due to that the internal force vector has to be generated based on the full-order displacement
field. One way to address this issue is to utilize the polynomial structure of the nonlinear restor-
ing forces, which is the approach adopted in this work. This concept will be further described
in the next section. For the sake of completeness, it should be mentioned that other techniques
have also been proposed for approximating the reduced internal forces, e.g., see [2, 3].

4.1.1 Polynomial structure of nonlinear internal forces

The reduced nonlinear restoring forces can be expressed by means of a Taylor series expansion
around the point of equilibrium (e.g., η = 0). In particular, if considering three terms, the
following approximate expression is obtained:

f̃(η) ≈ ∂ f̃

∂η
η +

1

2

∂2f̃

∂η2
ηη +

1

6

∂3f̃

∂η3
ηηη = K(1)η +K(2)ηη +K(3)ηηη (4.6)

where the compact tensor notation e.g. employed in [2,25] is used. Further,K(1) = VTKV
is the m × m reduced linear stiffness matrix, which can be obtained in a standard manner
from the n×n linearized stiffness matrixK = ∂f

∂u


0
. Thus, if using the FE method for space

discretization, the linear stiffness matrix can be determined from Eq. 2.24. In addition, K(2)

and K(3), having sizes m × m × m and m × m × m × m, respectively, are higher order
stiffness tensors which consider the nonlinear part of the reduced restoring forces. Methods
for determining the coefficients of the higher order tensors, henceforth referred to as nonlinear
stiffness coefficients (NSCs), are discussed in Section 4.2. (Note that the term tensor used here
simply refers to a multidimensional array, i.e., in contrast to the tensors used in continuum
mechanics, e.g., representing stresses and strains.)
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By substituting Eq. 4.6 into Eq. 4.5, it follows that the reduced nonlinear equations of motion
can be expressed, using index notation, as:

Mr,ij η̈j + Cr,ij η̇j +K
(1)
ij ηj +K

(2)
ijkηjηk +K

(3)
ijklηjηkηl = gr,i. (4.7)

Hence, an NLROM is obtained that only involves the reduced set of generalized coordinates,
and thus avoids evaluations of the nonlinear restoring forces based on the full-order displace-
ment field. The tensors are fully symmetric, i.e., the indices i, j, k, l are fully interchangeable
and in an numerical implementation only the unique values has to be considered.

The reduced nonlinear restoring forces can thus be approximated using a Taylor series in ac-
cordance with Eq. 4.6. Furthermore, if considering large displacements, while restricting the
analysis to small strains and assuming a linear elastic constitutive law, it turns out that the
approximation using multivariate cubic polynomials is “exact”.

This property can be shown by expressing the continuous balance equations (cf. Section 2.2)
in the undeformed (reference) configuration, as [11]:

div(FS) + bo − ρo¨̄u = 0 (4.8)

where bo is the body force per unit volume and ρo is the material density in the undeformed
configuration. Further, div is the divergence operator; specifically, the divergence of a tensor
field A is given as [div(A)]i =

∑
j
∂Aij

∂xo
j
(i, j = 1, 2, 3). Moreover, F is the deformation

gradient, given by:
F = I+∇ū (4.9)

where I is the 3 × 3 identity matrix and [∇ū]ij =
∂ūi
∂xo

j
is the displacement gradient. Further,

S is the second Piola–Kirchhoff stress tensor, which is related to the Cauchy stress as σ =
ρ
ρoFSF

T . Hence, σ and S coincide for small displacements, since ρo ≈ ρ and F ≈ I.
The second Piola–Kirchhoff stress measure is conjugated with the Green–Lagrange strain. The
Green–Lagrange strain tensor can be expressed in terms of the displacement gradient, as:

E =
1

2

(
∇ū+∇Tū+∇Tū∇ū

)
. (4.10)

Consider now a linear elastic constitutive law, given as:

Sv = DEv (4.11)

where the constitutive matrix for isotropic elasticityD is given by Eq. 2.23, and the subscript
v indicate the vector form of the stress and strain tensors (also known as the Voigt notation),
i.e.:

ST
v =

[
S11 S22 S33 S12 S13 S23

]
(4.12)

ET
v =

[
E11 E22 E33 2E12 2E13 2E23

]
. (4.13)

This is known as a St. Venant–Kirchhoff material which can be interpreted as a hyperelastic
representation of a linear elastic material.
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Next, assume that the continuous displacement field ū is discretized using the FE method
(cf. Eq. 2.15). Then, by considering the constitutive law Eq. 4.11 and the expression for the
Green–Lagrange strain Eq. 4.10, it can be shown that the second Piola–Kirchhoff stresses can be
expressed as quadratic functions of the nodal displacements, i.e., S = O(u2) (e.g., see [2, 26,
27]). Further, in accordance with Eq. 4.9, the deformation gradient can be expressed as a linear
function of the nodal displacements, i.e., F = O(u). By considering the balance relation
Eq. 4.8, and noting that the nodal displacements u are linear functions of the generalized
coordinates η (cf. Eq. 4.2), it follows that the reduced internal forces can be fully represented
by cubic polynomials in the generalized coordinates η, and, accordingly, the Taylor series (Eq.
4.6) is fully converged.

Note that the reduction basis is constructed using modes which are determined in the un-
deformed configuration. Thus, the reduced order model is indeed formulated using a total
Lagrangian framework. Further, it should be emphasized that the cubic polynomials are exact
in the sense that the reduced order response can be fully resolved, thus, the equations of mo-
tion given by Eqs. 4.5 and 4.7 are equivalent (if using the constitutive law Eq. 4.11). However,
if the full order solution is not properly spanned by the reduction basis, i.e., if the residual r is
not negligible, the reduced order model might still not be accurate.

The nonlinear equations of motion, as stated in Eq. 4.7, consider large displacements. How-
ever, because a St. Venant–Krichhoff material is assumed, the model can only be expected to
be valid for small or medium strain levels. Thus, large rigid body rotations and translations
are considered, whereas large strains is not. Furthermore, it should be noted that the size of
the higher order stiffness tensors grows exponentially. Therefore, to ensure a computational
efficient model, it is particularly important to keep the size of the reduction basis as small
as possible. In this regard, it is crucial to employ a basis selection technique which excludes
any redundant modes. Furthermore, for flat structures, several of the polynomial coefficients
can be ignored, thus, leading to a more computationally efficient model. This will be further
discussed in the next section.

4.1.2 Simplified form for flat structures

For transversely loaded flat structures, which are symmetric with respect to the middle plane,
a simplified form of the polynomial expressions for the reduced restoring forces can be estab-
lished, as will be demonstrated as follows.

First, note that the reduction basis for a flat structure can be divided into a set of out-of-plane
and in-plane modes. In particular, a flat structure modeled using an FE shell model may be
formulated such that the physical in-plane and out-of-plane displacements are fully decoupled
(e.g., see [9]). Thus, the reduction basis can be written in partitioned form, as:

V =
[
Vb Vm

]
(4.14)

where subscripts b and m refer to out-of-plane bending and in-plane membrane modes, re-
spectively. Here, the sizes of the matricesVb andVm are n×mb and n×mm, respectively.
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It follows that the generalized coordinate vector may be partitioned accordingly, as:

η =
[
qT pT ]T (4.15)

where q andp are vectors including the associated bending andmembrane coordinates, having
sizesmb×1 andmm×1, respectively (notice the difference between the membrane coordinate
vector p and the reduced external force vector p̃).

In structural dynamics applications of transversely loaded thin structures, themembranemodes
typically have resonance frequencies far above the frequency content of the forcing. Further-
more, the membrane modes are not explicitly excited by the transverse load. Thus, the external
modal forcing on the in-plane coordinates is zero, and, accordingly, the membrane modes are
only excited due to the nonlinear coupling between bending and membrane coordinates (cf.
Eq. 4.7). Therefore, as demonstrated in [25,28,29], it can be reasonable to neglect the higher
order stiffness coefficients of the in-plane coordinates. Furthermore, due to the symmetry of
the restoring forces, all quadratic coefficients involving three bending coordinates are zero [29].
Thus, for flat structuresK(2)

ijk = 0 for all i, j, k = 1, . . . ,mb.

It follows that the equations of motion for the bending coordinates can be expressed, using
index notation, as:

M̃b,ij q̈j + C̃b,ij q̇j +K
(1)
b,ijqj +K

(2)
bm,ijkqjpk +K

(3)
b,ijklqjqkql = p̃b,i (4.16)

and for the membrane coordinates:

M̃m,ij p̈j + C̃m,ij ṗj +K
(1)
m,ijpj +K

(2)
mb,ijkqjqk = 0 (4.17)

where it is assumed that the membrane and bending modes are mass- and stiffness-orthogonal.

Similarly, if using the compact tensor notation, the equations of motion can be expressed
schematically as:[

M̃b 0

0 M̃m

] [
q̈
p̈

]
+

[
K

(1)
b 0

0 K
(1)
m

] [
q
p

]
+

[
K

(2)
bmqp+K

(3)
b qqq

K
(2)
mbqq

]
=

[
p̃b

0

]
(4.18)

where the viscous damping has been excluded to simplify the notation. Here, the system
matrices for the bending coordinates M̃b and K

(1)
b have sizes mb ×mb. Further, K

(2)
bm have

sizemb×mb×mm, andK(3)
b have sizemb×mb×mb×mb. For the membrane coordinates,

Mm andK(1)
m have sizesmm×mm, andK(2)

mb have sizemm×mb×mb. Moreover, transverse
loading is considered, i.e, the modal forcing on the membrane coordinates is zero.

4.1.3 Static condensation of membrane coordinates

As mentioned previously, the eigenfrequencies of the membrane modes are often significantly
higher than the frequency content of the forcing. Therefore, it can be reasonable to neglect
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inertia terms associated to the membrane coordinates (see e.g. [25, 28, 29]). Hence, the idea
is similar to the concept used in the mode acceleration method, where the discarded modal
responses are approximated based on the quasi-static response (cf. Section 3.3).

By neglecting the inertia terms in Eq. 4.17, it follows that the membrane coordinates can be
expressed in terms of the bending coordinates:

pj = −
[
K(1)

m

]−1

jr
K

(2)
mb,rklqkql. (4.19)

Then, by substituting Eq. 4.19 into Eq. 4.16, the condensed equations of motion can be ex-
pressed as:

M̃b,ij q̈j + C̃b,ij q̇j +K
(1)
b,ijqj + K̄

(3)
b,ijklqjqkql = p̃b,i (4.20)

where
K̄

(3)
b,ijkl = K

(3)
b,ijkl −K

(2)
bm,ijr

[
K(1)

m

]−1

rs
K

(2)
mb,skl (4.21)

are the condensed stiffness coefficients. Note that the dynamic response of the condensed
system is expressed solely in terms of the bending coordinates. However, the structure is not
constrained in the in-plane direction, namely, the condensed stiffness coefficients are adjusted
such that the quasi-static response of the membrane coordinates is considered implicitly.

As e.g. demonstrated in Papers D and E, the condensed system equations can, e.g., be used to
accurately predict the response of flat plates supported on four sides. However, for cantilevered
structures, the in-plane inertia generally affects the dynamic response, and, consequently, an
analysis based on the condensed equations of motion can lead to erroneous results (on the
other hand, an approach using the simplified form, Eq. 4.18, including the in-plane inertia
terms, typically provide satisfactory results, e.g., see [29] and Paper D).

Finally, it should be noted that the procedure using static condensation of membrane coordin-
ates, as introduced above, theoretically can be applied to any of the modes included in the
reduction basis. Thus, the reason for restricting the static condensation to membrane coordin-
ates is that this is motivated by the structural characteristics observed for transversely loaded
flat structures. This aspect, and a generalization of the concept to consider slightly curved
structures, is further discussed in Paper D, where reduction bases enriched by so-called static
modal derivatives are investigated.

4.2 NONINTRUSIVE IDENTIFICATION OF NONLINEAR
STIFFNESS COEFFICIENTS

As shown in Section 4.1, the reduced nonlinear restoring forces can be fully represented by
multivariate cubic polynomials in modal coordinates. In fact, as e.g. demonstrated in [26,30],
closed form expressions can be derived for the higher order stiffness tensors. However, this
approach requires a space discretization using, e.g., the FE method, where expressions for the
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higher order tensors are implemented on the element level. Therefore, the so-called direct
approach for determining the NSCs can be cumbersome, especially if the FE model includes
various element types, or if the source code of the FE program is not available.

An alternative is to identify the NSCs using a nonintrusive (or in-direct) method. The idea is
to identify the NSCs by evaluating an FE model on the global level, namely, by solving a series
of static problems. In particular, the nonintrusive approaches do not require detailed know-
ledge of the FE implementation, and, therefore, any commercial FE software which allows for
solving geometrically nonlinear static problems can be used. Furthermore, the nonintrusive
approaches can be used for identifying the NSCs of FE models where the nonlinearity may not
be fully described by cubic polynomials. Thus, for such models, the Taylor series Eq. 4.6 is,
in general, an approximation. For instance, this would be the case if the FE model is not for-
mulated using St. Venant–Kirchhoff materials, or if the FE code uses an updated Lagrangian
framework.

Several nonintrusiveNSC identification techniques have been developed, which can be divided
into so-called enforced displacement (ED) and applied force (AF) methods (e.g., see [31,32]).
The ED method, which is also referred to as stiffness evaluation procedure (STEP), was first
proposed by Muravyov and Rizzi [33]. Using the ED method, the NSCs are identified by
imposing a series of static displacement fields onto the FE model, as further described in Sec-
tion 4.2.1. Moreover, an enhanced version of the EDmethod, the enhanced enforced displace-
ment (EED) method, was proposed by Perez et al. [34], which reduces the number of static
evaluations in the identification process. The EEDmethod is briefly described in Section 4.2.2.
Specialized techniques for determining the condensed NSCs of flat structures, which are based
upon the ED method, are discussed in Section 4.2.3. Finally, an overview of the implicit con-
densation and expansion (ICE) method, which was proposed by McEwan et al. [35] and later
improved by Hollkamp and Gordon [36], is provided in Section 4.2.4. The ICE method is
an AF method which, in contrast to the ED/EED method, is based upon a series of static
problems where external forces are applied on the FE model. Compared to the ED methods,
the ICE method is generally computationally more expensive. However, in contrast to the
ED methods, the ICE method allows for extracting additional basis vectors from the results
provided by the static problems (see further Section 4.2.4).

4.2.1 Enforced displacement method

In the ED method [33], the NSCs are determined based on a series of static problems where
prescribed displacement fields are imposed onto the underlying FE model. The idea is to
utilize that the polynomial structure of the nonlinear restoring forces is known. Specifically,
the reduced order restoring force vector can be determined by projecting the full-order restoring
force vector onto the reduction basis, as:

f̃(η) = VTf(u) (4.22)
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where V is an orthogonal reduction basis, u is the physical displacement vector of the FE
model, and f̃ and f are the reduced and full-order restoring force vectors, respectively. Further,
by using the polynomial expression, Eq. 4.6, the ith component of the reduced restoring force
vector can be expressed as:

f̃i(η) = K
(1)
ij ηj +K

(2)
ijkηjηk +K

(3)
ijklηjηkηl. (4.23)

The reduced restoring force vector can thus be expressed using either Eq. 4.22 or Eq. 4.23.
Then, assume that the full-order restoring force vector has been determined from the FEmodel
by prescribing the displacement fields α1vj and α2vj , respectively, where vj is a reduction
basis vector and α1 and α2 are arbitrary scalars. By using Eq. 4.22, the corresponding reduced
restoring force vectors can be determined by projecting the full-order restoring forces onto the
reduction basis. Now, by considering the orthogonality properties of the basis, the following
set of equations can be established (no summation over repeated indices):{

f̃i(η = ejα1) = K
(1)
ij α1 +K

(2)
ijjα

2
1 +K

(3)
ijjjα

3
1

f̃i(η = ejα2) = K
(1)
ij α2 +K

(2)
ijjα

2
2 +K

(3)
ijjjα

3
2

(4.24)

where ej is a unit vector in the jth direction. Hence, because the prescribed displacement field
is composed of a single reduction basis vector, the orthogonality properties of the basis implies
that ηj = α and ηi = 0 for all i ̸= j. By repeating this process for each of them basis vectors,
and noting the linear stiffness coefficientsK(1)

ij are known, it follows that all the NSCs of the

formK
(2)
ijj andK

(3)
ijjj can be solved from algebraic systems of equations, i.e., given by Eq 4.24.

Next, by prescribing displacement fields composed of two different basis vectors, stiffness coef-
ficients having three different indices (i.e. K(2)

ijk ,K
(3)
ijjk, andK

(3)
ijkk) can be identified. Here, the

displacement fieldsmust be prescribed using three different amplitudes. Furthermore, the sym-
metry of the stiffness tensors is considered, e.g. K(2)

ijk = K
(2)
ikj andK

(3)
ijjk = K

(3)
ijkj = K

(3)
ikjj .

In the final step, NSCs having four different indices (K(3)
ijkl) are determined by prescribing

displacement fields composed of three different basis vectors. In total, 2N + 3N(N − 1) +
N(N − 1)(N − 2)/6 static problems are required for determining all the NSCs [34]. For
FE models generated using St-Venant–Kirchhoff materials, the displacement fields can the-
oretically be prescribed using an arbitrary amplitude [2]. However, the amplitude can affect
the influence of numerical round-off errors. In the general case, the magnitude should be
sufficiently small to ensure convergence, but large enough such that the nonlinear regime is
entered. For instance, in [25,37], it is suggested that displacement fields for flat structures are
prescribed using an amplitude of t/20, where t is the structure thickness.

4.2.2 Enhanced enforced displacement method

In many applications, the ED method can be used effectively for determining the NSCs. In
particular, if the underlying FE model is built up using hyperelastic “memoryless” materials
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(e.g., St. Venant–Kirchhoff materials), the nonlinear restoring forces of the static problems can
be obtained by merely evaluating the restoring force vector for the prescribed displacement
field. Thus, the full-order nonlinear problems need not be solved using iterative techniques,
such as the Newton–Raphson method (cf. Section 2.5.2). However, for large reduction bases,
the number of static problems can become immense. Particularly if using commercial FE
tools, which typically are not optimized for analyzing a large series of static problems, the cost
of evaluating the prescribed displacement field can become unmanageable.

The EEDmethod, which was proposed in [34], significantly reduces the number of static cases
needed for determining the NSCs. The method relies on the same concept as the ED method.
However, instead of using the restoring force vector the EEDmethod is based upon evaluations
of the tangent stiffness matrix. The method is briefly described as follows.

The reduced tangent stiffness matrix can be obtained by projecting the full-order tangent stiff-
ness matrix onto the associated reduction basis, as:

K̃(η) = VTKt(Vη)V. (4.25)

On the other hand, the reduced tangent stiffness matrix can be determined from the polyno-
mial expression of the reduced nonlinear restoring forces, as (see e.g. [31, 34]):

K̃iu = ∂
∂ηu

[
K

(1)
ij ηj +K

(2)
ijl ηjηl +K

(3)
ijlpηjηlηp

]
= K

(1)
iu +

[
K

(2)
iju +K

(2)
iuj

]
ηj +

[
K

(3)
ijlu +K

(3)
ijul +K

(3)
iujl

]
ηjηl.

(4.26)

Hence, the reduced tangent stiffness can be determined using either Eq. 4.25 or Eq. 4.26. Now,
similar to the ED method, static problems are defined in terms of prescribed displacement
fields. In the first step, displacement fields composed of a single basis vector, scaled by α1

and α2, respectively, are imposed onto the FE model. Then, by using Eqs. 4.25 and 4.26, the
following set of equations can be established (no summation over repeated indices):K̃iu(η = ejα1) = K

(1)
iu +

[
K

(2)
iju +K

(2)
iuj

]
α1 +

[
K

(3)
ijju +K

(3)
ijuj +K

(3)
iujj

]
α2
1

K̃iu(η = ejα2) = K
(1)
iu +

[
K

(2)
iju +K

(2)
iuj

]
α2 +

[
K

(3)
ijju +K

(3)
ijuj +K

(3)
iujj

]
α2
2.

(4.27)
Then, by assuming that the linear stiffness coefficients K(1)

iu are known, and noting that the
stiffness tensors are fully symmetric, it follows that all NSCs of the form K

(2)
iuj , K

(2)
ijj , K

(3)
iujj ,

K
(3)
ijju, and K

(3)
ijjj can be determined. Finally, by enforcing displacement fields composed of

two different basis vectors, the coefficients of the form K
(3)
ijlu can be determined. Thus, in

contrast to the ED method, displacement fields composed of three different basis vectors need
not be evaluated in the identification procedure. Therefore, all the NSCs can be determined
by evaluating 2N +N(N − 1)/2 static cases, i.e., significantly less than in the ED method.
However, the method necessitates an FE program which releases the tangent stiffness matrix.
Furthermore, in the numerical investigations presented in Paper D, convergence issues was
sometimes encountered for models generated using the EED method. This was also observed



4.2 Nonintrusive identification of nonlinear stiffness coefficients 47

in [31, 34]. Therefore, in certain applications, the standard ED method may be the preferred
choice, even though the computational offline cost is larger.

4.2.3 Identification of condensed stiffness coefficients

The condensed system equations, Eq. 4.20, were introduced in Section 4.1.3. Further, the
condensed stiffness coefficients K̄(3)

b,ijkl can be determined from Eq. 4.21, i.e., based on the

linear stiffness coefficientsK(1)
ij , and the nonlinear coefficientsK(2)

ijk andK
(3)
ijkl, which in turn

can be determined using, e.g., the ED or EED method. However, for flat structures, the
condensed NSCs can be determined explicitly by applying the ED method on the out-of-
plane DOFs, as demonstrated in [28].

First, consider an FE shell model representing a flat structure, and, furthermore, assume that a
reduction basisV is constructed using pure bending andmembrane modes. Then, the physical
displacements of the FE model can be expressed as:[

ub

um

]
︸ ︷︷ ︸

u

=

[
Vbb 0
0 Vmm

]
︸ ︷︷ ︸

V

[
q
p

]
︸ ︷︷ ︸

η

(4.28)

where the matrices Vbb and Vmm have sizes nb ×mb and nm ×mm, respectively, and thus
contain the entries of the reduction basis vectors corresponding to physical out-of-plane and in-
plane displacement DOFs. Hence, the total number of DOFs of the FEmodel is n = nb+nm
and the size of the reduced order model ism = mb +mm.

Next, the displacement fields, as defined in the EDmethod, are enforced onto the out-of-plane
DOFs ub, while the in-plane displacement DOFs um are allowed to move freely. Thus, the
modal forcing on the in-plane coordinates is zero, and the static problems involving a single
out-of-plane basis vector are given as: {

ub = αvbb,j

gm = 0
(4.29)

where vbb,j is a nb × 1 vector containing the out-of-plane displacements of a bending mode,
α is a scaling coefficient, and gm is the external forces associated to in-plane DOFs.

Recall that the reduction basis vectors are mutually orthogonal. Consequently, the load cases,
as defined by Eq. 4.29, implies that qj = α and qi = 0 for all i ̸= j (i = 1, . . . ,mb). However,
the membrane coordinates are generally nonzero, i.e., pi ̸= 0 for all i = 1, . . . ,mm, which
is due to the nonlinear coupling between the bending and membrane modes. Then, by using
Eqs. 4.20 and 4.22, and assuming that the linear stiffness coefficients are known, it follows that
the condensed NSCs of the form K̄

(3)
ijjj can be determined from the equation (no summation

over repeated indices):
fr,i(q = αej) = K

(1)
ij α+ K̄

(3)
ijjjα

3. (4.30)
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By following the procedure in the standard ED method, the condensed NSCs of the form
K̄

(3)
ijjk, K̄

(3)
ijkk can be identified by prescribing displacement fields composed of two out-of-

plane basis vectors. The static problems are then given as:{
ub = α(vbb,j + vbb,k)

gm = 0
. (4.31)

Finally, coefficients of the form K̄
(3)
ijkl can be determined based on static problems defined

using out-of-plane displacement fields composed of three out-of-plane basis vectors; i.e., the
static cases are defined such that:{

ub = α(vbb,j + vbb,k + vbb,l)

gm = 0
. (4.32)

Note that the membrane modes are not included in the identification procedure. Hence,
the condensed NSCs can be generated without knowledge of the in-plane basis. Further, the
number of static problems is reduced compared to the standard ED method, i.e., since the
load cases are defined solely in terms of the nb out-of-plane bending modes. However, be-
cause the in-plane DOFs are allowed to move freely, the static problems must be solved using
iterative techniques, such as the Newton–Raphson method. As will be further described in
Sections 4.2.4 and 4.3.1, it turns out that the number of membrane basis vectors required to
properly resolve the in-plane response is, in general, quadratically proportional to the num-
ber of bending coordinates. Therefore, the computational cost can still be reduced using the
explicit procedure for identifying the condensed NSCs, i.e., which only involves the bending
modes.

A similar procedure for estimating the condensed NSCs of flat structures (or straight beams)
modeled using solid elements was proposed by Vizzaccaro et al. [25], which is referred to as the
modified-STEP (M-STEP) method. Thus, the above approach, where FE shell models were
considered, is generalized to flat FE models implemented using solid elements. However, the
geometrical and material distribution of the structure, as well as boundary conditions must be
symmetric with respect to the middle line/plane of the structure.

In this generalized case, the membrane modes are replaced by non-bending modes, which gen-
erally involve longitudinal and thickness displacements. Furthermore, as for the approach
using shell (or beam) elements, all quadratic coefficients involving three bending coordinates
can be assumed zero, i.e., K(2)

ijk = 0 for all i, j, k = 1, . . . ,mb. In particular, this allows for
defining the non-bending modes as the set of modes for which this condition is not fulfilled.

By adopting a procedure similar to the standard ED method, the bending modes vb,i (i =
1 . . .mb) are enforced on a subset of the FE model physical DOFs, referred to as master DOFs
uM , which correspond to the out-of-plane DOFs along the middle line/surface. Thus, the
remaining DOFs, referred to as slave DOFs uS , are allowed to move freely. Accordingly, the
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physical displacements can be expressed in terms of the generalized coordinates, as:[
uM

uS

]
︸ ︷︷ ︸

u

=

[
VM

b 0
VS

b VS
m

]
︸ ︷︷ ︸

V

[
q
p

]
︸ ︷︷ ︸

η

(4.33)

where superscripts M and S refers to master and slave DOFs, respectively. Because the dis-
placements are enforced solely on the uM DOFs in the identification process, it can be shown
that the modal forcing on the non-bending coordinates is zero [25]. Hence, for displacement
fields composed of one basis vector, the static problems are defined such that:{

uM = αvM
b,i

gS = 0
(4.34)

where i = 1, . . . ,mb, α is an arbitrary scalar, and gS is the external force vector associated
to the slave DOFs. Furthermore, it is assumed that the slave DOFs are not involved in the
orthogonality relations of the bending modes. Thus, as in the standard ED method, the or-
thogonality of the bending modes implies that qj = 0 if j ̸= i (j = 1, . . . ,mb) for load cases
defined according to Eq. 4.34. However, the coordinates representing non-bending modes
p are generally not zero and depend on their nonlinear coupling with the prescribed modal
coordinate.

Although the conceptual framework is more complicated, the M-STEP method can be im-
plemented in a similar manner as the standard ED method; thus, instead of prescribing the
modal displacement fields on the full set of DOFs, the displacements are enforced solely on
the master DOFs. Furthermore, it should be noted that the M-STEP approach implies that
the external load in the reduced order dynamic analysis is applied on the master DOFs, i.e.
the external forcing on the non-bending coordinates is assumed zero. A detail description of
the M-STEP method can be found in [25].

4.2.4 Implicit condensation and expansion

The ICE method [35, 36, 38] allows for generating reduced order models of flat as well as
slightly curved structures. In its original form, a set of low-frequency normal modes are used
as a starting point, which would typically be used for analyzing the corresponding linearized
system. Thus, additional modes, such as high-frequency membrane modes, are not required.
Instead, the statically condensed response of modes not included in the basis are considered
implicitly. In this regard, the method is similar to the approaches using the condensed system
equations, discussed in Sections 4.1.3 and 4.2.3. An overview of the method is presented as
follows.

By ignoring the inertia terms in Eq. 2.21, the nonlinear static problem for a full-order FE
model can be expressed as:

f(u) = p. (4.35)
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Further, let p be a prescribed external force vector. Then, the unknown displacement field u
can be determined using any appropriate FE code capable of solving geometrically nonlinear
static problems. Further, the computed displacements and the associated external loads can be
projected onto a mass-orthogonal reduction basis Vb, as [6]:

q = VT
bMu, p̃ = VT

b p (4.36)

where, again, q is the generalized coordinate vector and p̃ are the associated modal force vector.
For flat structures,Vb is typically constructed using pure out-of-plane bendingmodes, why the
subscript b is employed here. However, for slightly curved structures, the set of low-frequency
modes included in Vb would rather be transverse-dominated modes, involving out-of-plane
as well as in-plane displacements.

Next, by adopting the polynomial form of the nonlinear restoring forces, the corresponding
reduced order static problem can be written as:

K
(1)
ij qj +K

(2)
ijkqjqk +K

(3)
ijklqjqkql = p̃i (4.37)

where all quantities are known, except for the NSCsK(2)
ijk andK

(3)
ijkl (again, we assume that the

linear stiffness coefficients are available). Now, according to the procedure suggested in [38],
external force patterns are defined using permutations of one, two, and three basis vectors,
such that the external force is given by:

p = K (±αivb,i ± αjvb,j ± αkvb,k) (4.38)

where vb,i, vb,j , vb,k are basis vectors with the associated scaling coefficients αi, αj , αk,
respectively, and i, j, k = 0, . . . ,mb, i ̸= j ̸= k, with index zero implying that a term
is omitted (e.g., see [3]). It follows that the total number of static cases to be analyzed is
np = 2mb + 2mb(mb − 1) + 4mb(mb − 1)(mb − 2)/3 [38].

Similar to the ED/EED method, the scaling coefficients α (cf. Eq. 4.38) should be sufficiently
large to ensure that geometric nonlinearities are activated [36, 38]. Then, based on the results
from the series of static analyses, i.e., the set of np pairs of modal coordinate vectors q and
modal forces p̃, the NSCs can be determined in a least-squares sense, as described in detail
in [38].

It should be emphasized that the basis can be constructed using the same modes as would be
used for the corresponding linearized system. Hence, for a flat transversely loaded structure,
it is sufficient to consider solely the out-of-plane bending modes. The condensed response of
the membrane modes is considered implicitly, which follows from the fact that the in-plane
displacements are not constrained in the static load cases. Consequently, the number of load
cases can, in practice, be smaller than for the standard ED method (cf. Section 4.2.1) which
involvesm = mb +mm basis vectors. On the other hand, in contrast to the ED method, the
nonlinear static problemsmust be solved using iterative techniques, e.g., the Newton–Raphson
method.
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TheNSC identification procedure, as introduced above, is referred to as the implicit condensa-
tion (IC) method, and was originally proposed in [35]. In [36], an additional step was sugges-
ted for identifying modes using an expansion process. The procedure, where both the NSCs
are determined and additional modes are generated, is referred to as the implicit condensation
and expansion (ICE) method. The expansion process is briefly described below.

According to [36], the physical displacements of the full-order FE model are approximated as:

u ≈ Vbq+Tr (4.39)

where, again, Vb contains the reduction basis vectors considered in the IC procedure, and q
is the associated coordinate vector. The n × mm matrix T contains a set of mm unknown
basis vectors, which are assumed to be orthogonal to Vb (here, the subscript m is used since
the additional modes are generally membrane-dominated). Further, r is a mm × 1 vector
containing the corresponding modal coordinates, which, thus, are currently unknown.

By using Eq. 4.39, it follows that the set of np nonlinear static solutions generated in the IC
procedure can be written in matrix form, such that:

U ≈ VbQ+TR (4.40)

where the columns of the n × np matrix U =
[
u(1) . . . u(np)

]
are the displacement

fields calculated based on the static cases, and themb×np matrixQ =
[
q(1) . . . q(np)

]
contains the generalized coordinate vectors obtained by projecting the static solutions onto
Vb (cf. Eq. 4.36). Further, the modal coordinates associated to T are stored in themm × np
matrixR =

[
r(1) . . . r(np)

]
.

Then, a quadratic relationship between the generalized coordinates q and the coordinates of
the unknown basis vectors r is assumed. Specifically, these are defined such that:

r =
[
q21 q1q2 . . . q1qmb

q22 q2q3 . . . q2qmb
. . . q2mb−1 qmb−1qmb

q2mb

]T
.

(4.41)
Hence, the number of modal coordinates associated to the basis T is nm = mb +mb(mb −
1)/2. It follows that the nm unknown basis vectors can be determined in a least squares sense,
as:

T = (U−VbQ)R+ (4.42)

whereR+ is the pseudo-inverse ofR.

According to the procedure suggested in [36], the additional basis vectors obtained in the
expansion process are used for generating the displacements of the full-order models in the
post-processing stage. Thus, the time-integration is performed usingmb bending coordinates,
while the time-histories for the mm membrane coordinates are generated after the dynamic
response analysis has been completed. Accordingly, only the quasi-static responses of the ad-
ditional membrane coordinates are considered. However, the membrane coordinates can be
used for generating physical displacement fields including out-of-plane as well as in-plane dis-
placements, e.g., needed for determining the stress distribution.
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The ICEmethod, as introduce above, can thus be employed for both identifying the condensed
NSC of the transverse-dominated basisVb as well as generating additional mode shapes. Other
techniques for generating reduction bases appropriate for geometrically nonlinear structures
will be further discussed in the next section.

4.3 REDUCTION BASIS GENERATION

The reduction basis is a key aspect in the process of developing accurate reduced order models.
A proper reduction basis should capture the dynamic characteristics of the system, or put
differently, it should (approximately) span the full-order solution subspace. Furthermore, an
important aspect is the computational effort for generating the reduction basis, i.e., which
affect the computational offline cost. In particular, for the reduction method to be meaningful,
the sum of the computational offline and online cost of the reduced model should be smaller
than the computational cost for solving the full-order dynamic problem.

In Chapter 3, various methods for generating modes based on the linearized system were dis-
cussed. This type of modes, e.g., normal modes and modes generated using Krylov-subspace
methods, are sometimes referred to as linear modes (e.g., see [31, 32]). In contrast to linear
dynamics applications, a substantial number of linear modes are generally required to ensure a
basis that adequately spans the solution of geometrically nonlinear problems (e.g., see [25]). As
discussed previously, this is due to the influence of high-frequency modes, such as membrane
modes, which need not be considered in the corresponding linear analysis.

Various basis generation techniques have been proposed to approach the problem (see, e.g.,
[2, 30,34]). In principle, these can be divided into data-driven methods, where the basis gen-
eration procedure involves training data (see, e.g., [39]), and simulation-free methods, which
can be employed without prior knowledge of the full-order solution [2, 30, 31, 34].

Reviews of basis generation methods can, e.g., be found in [3, 32]. Here, an overview of
basis generation techniques employed in this work is presented. In Section 4.3.1, the concept
of static modal derivatives is introduced. Static modal derivatives are derived based on an
associated linear basis and correspond to the second order terms in a Taylor’s expansion of
the quasi-static displacement field. The basis generation procedure is simulation-free in the
sense that results from the full-order dynamic solution are not required. In Section 4.3.2, a
data-driven technique, often referred to as proper orthogonal decomposition (POD), is briefly
described which, in contrast, is based on time-history data from the full-order solution.

4.3.1 Static modal derivatives

Reduction bases generated using linear modes can be used effectively for analyzing the linear-
ized response of a structure. However, as the deformations increases and the structure enters
the nonlinear regime, a set of low-frequency linear modes may no longer capture the struc-
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tural behavior. To approach this problem, the linear basis can be enriched by so-called modal
derivatives, which was first proposed in [40, 41]. The modal derivatives, as defined in [40] are
mode shapes which are calculated based on a perturbation of the generalized eigenvalue prob-
lem (cf. Eq. 2.27). Here, however, the so-called static modal derivatives are considered, where
the inertial contribution is neglected [42]. As, e.g., demonstrated in [2, 42], the computation
of the static modal derivatives is more straightforward. Moreover, the numerical investiga-
tions presented in [2,31] indicate that reduction bases enriched by modal derivatives and static
modal derivatives, respectively, result in a response prediction of similar accuracy. Further, the
static modal derivatives can be computed nonintrusively, as further described below.

Let Vb be an n ×mb linear basis, with the associated modal coordinates q, being generated
using any of the techniques discussed in Chapter 3. Here, the subscript b is used to indicate
that, for flat structures, the basis would typically be constructed using low-frequency bending
modes.

Then, as e.g. shown in [43], a Taylor series expansion of u(q) around q = 0 including two
terms can be expressed as:

u(q) ≈
mb∑
i=1

∂u

∂qi


0

qi +
1

2

mb∑
i=1

mb∑
j=1

∂2u

∂qj∂qi


0

qiqj . (4.43)

It can be shown that the terms ∂u
∂qi


0
is equal to the linear basis vectors vb,i, i = 1, . . . ,mb

(e.g., see [43]). Moreover, as demonstrated in [42, 43], the static modal derivatives associated
toVb can be expressed as:

θij =
∂2ug

∂qi∂qj


0

= −K−1 ∂K
t

∂qj


0

vb,i (4.44)

where K is the linear stiffness matrix of the full-order model (linearized around u = 0), and
vb,i is a reduction basis vector. Further, ∂Kt

∂qj


0
is the directional derivative of the tangent

stiffness matrix along the mode vb,j .

It then follows that the nonlinear static response can be approximated as:

u(q) ≈
mb∑
i=1

vb,iqi +
1

2

mb∑
i=1

mb∑
j=1

θijqiqj . (4.45)

Thus, if the second term is neglected, this result in an approximation using a standard modal
truncation including mb linear modes, being appropriate in linear dynamics applications.
However, by considering the second term including the static modal derivatives, an approx-
imation suitable for geometrically nonlinear structures is obtained. Furthermore, note that
the static modal derivatives are symmetric with respect to the indices i and j, i.e. θij = θji,
which can be utilized in a numerical implementation (this is, however, not the case for modal
derivatives defined based on a perturbation of the generalized eigenvalue, e.g., see [42]). In
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Figure 4.2: Example of bending modes and the associated static modal derivatives for a canti-
lever beam.

Figure 4.2, linear bending modes and the associated static modal derivatives are exemplified
for a cantilever beam, modeled using two-dimensional continuum elements. As shown in the
figure, the static modal derivatives include displacements in the thickness direction as well as
the longitudinal direction of the beam, which are not considered by the bending modes.

If using an FE code which releases the tangent stiffness matrix, the directional derivative of the
tangent stiffness matrix can be calculated in a nonintrusive manner, as [31]:

∂Kt

∂qi


0

=
Kt(vb,ih)−Kt(−vb,ih)

2h
(4.46)

where h is a small value, and Kt is the full-order tangent stiffness matrix, which can be de-
termined by imposing the displacement fields (±vb,ih) onto the full-order FE-model. Ac-
cordingly, the static modal derivatives can be calculated nonintrusively using Eq. 4.44. In
situations where the FE software does not support the generation of tangent stiffness matrices
for prescribed displacement fields, the directional derivative of the tangent stiffness matrix
can be calculated using numerical differentiation based on the reaction forces from prescribed
displacement fields, as shown in [25, 31]. This approach is, however, computationally more
expensive.

A reduction basis can thus be formed using linear modes and the associated static modal
derivatives, determined from Eq. 4.44. For numerical robustness, the basis should be re-
orthogonalized using the procedures discussed in Chapter 3. Further, the NSCs of the en-
riched basis can be determined in a nonintrusive manner using, e.g., the ED method (cf.
Section 4.2.1). However, as indicated by Eq. 4.45, the number of modal derivatives is quad-
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ratically proportional to the number of linear modes. Thus, for large or moderate linear bases,
the size of the enriched basis can become substantial, which in turn may result in an unaccept-
able offline and online computational cost.

To mitigate this issue, techniques for reducing the size of the enriched basis have been pro-
posed, e.g., see [30, 44]. For flat structures, an alternative is to employ the condensed system
equations, which is the approach generally adopted in this work (e.g., see Paper E). In fact, as
shown in [25], the static modal derivatives associated to out-of-plane bending modes of flat FE
models, which are symmetric with respect to the middle plane, are pure in-plane modes which
are orthogonal to the bending modes. Thus, similar to the ICEmethod, the static modal deriv-
atives can be used for recovering the quasi-static in-plane displacements in the post-processing
stage.

Another approach to reduce the computational effort for analyzing flat structures is to ad-
opt the simplified form, Eq. 4.18 (e.g., see [26]). More specifically, the higher order stiffness
coefficients are omitted for coordinates representing static modal derivatives. It should be em-
phasized that, in contrast to the approach using the condensed system equations, inertia effects
are in this case considered for the bending modes as well as the associated static modal deriv-
atives, which are thus represented by additional coordinates in the dynamic analysis. Further,
the static modal derivatives should be made mutually orthogonal for numerical robustness. As
manifested by the numerical investigations in Paper D, this approach results in a significant
reduction of both the offline and online cost, as compared to an approach using the full set of
NSCs. Furthermore, the numerical studies in Paper D suggests that this approach is reasonably
accurate for cantilevered structures, which cannot be properly modeled using the condensed
system equations [29].

For linear bases constructed using normal modes, this modeling strategy can be generalized
to non-flat structures; namely, by computing the static modal derivatives using the residual
flexibility (cf. Eq. 3.16), i.e.:

θ̃ij = −

(
K−1 −

mb∑
l=1

vb,lv
T
b,l

ω2
l

)
∂Kt

∂qj


0

vb,i =
(
I−VbV

T
bM

)
θij (4.47)

where Vb contains (out-of-plane) normal modes with eigenfrequencies ωl. Hence, the sub-
space spanned by the linear basis Vb is removed from the static modal derivatives. Moreover,
for numerical robustness, the vectors θ̃ij can be made mutually orthogonal.

It follows that the simplified form, Eqs. 4.16–4.18, can be adopted, where coordinates repres-
enting the subspace spanned by the vectors θ̃ij can be treated as membrane coordinates. The
numerical investigation presented in Paper D indicates that the method provides satisfactory
results for slightly curved structures. How this technique performs for structures with arbitrary
geometry is, however, an open question.
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4.3.2 Proper orthogonal decomposition

By means of a proper orthogonal decomposition (POD), a reduction basis can be generated
based on time-history data from full-order dynamic solutions (e.g., see [2, 32, 39, 45]). In
contrast to the approach using modal derivatives, the POD is a purely data-driven method;
thus, knowledge of system properties (e.g., mass and stiffness matrices) are not needed in the
basis generation procedure. The concept is briefly described as follows.

The displacement time–histories from a full-order dynamic analysis can be organized in a snap-
shot matrix, as:

S =
[
u(t1) u(t2) · · · u(tk)

]
(4.48)

where u(ti) is a n× 1 vector containing the nodal displacements at time point ti.

In the POD, a reductions basis V is determined by considering the minimization problem
min

∑k
i=1 ||u(ti)−Vη(ti)||2, whereη are generalized coordinates associated to the reduction

basis vectors. Specifically, this can be accomplished bymeans of a singular value decomposition
(SVD) of the snapshot matrix, such that (for further details on the SVD, see [22]):

S = UsvdΣVT
svd (4.49)

where the columns of the orthogonal matrices Usvd and Vsvd are the left- and right singular
vectors, respectively. Further, Σ = diag(σ1, σ2, . . . , σn) is a diagonal matrix containing the
singular values, which are ordered decreasingly such that σi ≥ σi+1. The left singular vectors
usvd,i contain the spatial information of the displacement fields, and the importance of a left
singular vector is associated to the magnitude of the corresponding singular value σi. Further-
more, as indicated by Eq. 4.49, the right singular vectors vsvd,i provide information of the
variation of the displacements through time.

It follows that the displacement time-histories included in the snapshot matrix can be approx-
imated by a truncated set of singular vectors, as:

u(t) ≈
r∑

i=1

σiusvd,iv
T
svd,i (4.50)

where r is the number of retained singular vectors. Here, the left singular vectors represent
an approximation of the full-order solution subspace. Accordingly, a reduction basis may be
constructed using the first r left singular vectors. Further, the basis may be orthogonalized
using the procedure discussed in Section 3.1.

For FE models that uses both translational and rotational DOFs, or models with irregular
meshes, it can be beneficial to introduce a weighted POD, where the mass norm is used instead
of the Euclidean norm (e.g., see [2]). For flat FE models, the in-plane and out-of-plane DOFs
may also be separated into different snapshot matrices. Hence, a POD is then applied on the
in-plane and out-of-plane displacement fields, i.e., resulting in an in-plane and out-of-plane
basis, respectively [32]. By using this approach, the difference of the in-plane and out-of-plane
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response amplitude is also somewhat accounted for. Thus, in a POD of the total displacement
field, the resulting basis can be expected to be transverse-dominated and important membrane
modes might not be identified.

Reduction bases generated using a POD can be viewed as the best possible basis for approx-
imating the full-order solution considered in the snapshot matrix. However, a significant
drawback in the approach using a POD is that the accuracy of the basis is strongly dependent
on the data included in the snapshot matrix. Thus, in contrast to the approach using static
modal derivatives, which is load-independent, the reduction basis cannot be expected to be
suitable for load cases not considered in the training data.

Finally, it should be mentioned that the POD can also be used for approximating other quant-
ities. For instance, in Paper E, the POD is employed for approximating a time-dependent
pressure distribution. In particular, this can be useful in basis generation procedures, such as
Krylov subspace methods (see 3.5), where time-independent load patterns are considered (cf.
Eq. 3.17).
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The dynamic response of linear systems can be efficiently computed by use of modal dynamics;
the system matrices are diagonalized and reduced by projecting the system equations onto a
truncated modal basis (cf. Chapters 2 and 3). However, for large systems it can be beneficial to
divide the system into substructures and employDS to perform a reduction on the substructure
level, e.g. as a preconditioning in the process of computing the global eigenmodes. Solving
several substructures can be computationally less expensive than solving one large system.

Moreover, DS can be used for reducing nonlinear structures. For instance, it allows for redu-
cing linear substructures interacting with nonlinear subsystems. In particular, reduced models
considering local nonlinearities, such as plastic hinges in concrete structures or local contact
interactions, can be established, as illustrated by various applications in Chapter 6. The parts
of the structure that remain linear elastic are then modeled using a reduced set of generalized
coordinates, while the nonlinear submodels may be expressed in terms of physical displace-
ment DOFs. In contrast, geometric nonlinearity is a distributed nonlinearity where degrees of
freedoms throughout the structure are nonlinearly coupled (cf. Chapter 4). Nonetheless, an
approach using DS can still be useful, e.g., in cases where geometrically nonlinear affects need
not be considered for the whole structure.

Several DS methods have been developed since the late 1960s, extensive reviews of existing
methods are e.g. presented in [4,6,46]. In particular, DS may be applied in both time domain
and frequency domain analyses. Here, however, focus is on DS for time domain analysis.

Section 5.1 presents assembly methods, which is an important aspect of DS. To this end, the
fundamental equilibrium and compatibility conditions are introduced, as formulated in [4],
which then provide a basis in a derivation of various assembly techniques. In particular, a
global assembly may be formed such that a unique set of DOFs or, in contrast, dual DOFs are
retained at interfaces.

In most DS methods a reduction is performed on the substructure level using some form of
modal method. Hence, the substructure response is expressed in terms of generalized coordin-
ates representing the amplitudes of a specific set of component modes (in the following, the
terms substructure and component are used interchangeably). This class of DS approaches are
often referred to as component-mode synthesis (CMS) and is further discussed in Section 5.2.
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In particular, CMS methods may be formulated using a so-called free- or fixed-interface ap-
proach.

In Sections 5.1 and 5.2, assembly methods and common CMS techniques are introduced for
systems composed of linear (or linearized) substructures. Aspects regarding CMS for structures
including geometrically nonlinear substructures are discussed in Section 5.3.

5.1 ASSEMBLY METHODS

The equations of motion for a linear structure consisting ofN substructures and the associated
compatibility and equilibrium conditions may be written as [4]:

Mü+Cu̇+Ku = p+ g

Bu = 0

LTg = 0

(5.1a)
(5.1b)

(5.1c)

where
M = diag

(
M(1),M(2), . . . ,M(N)

)
C = diag

(
C(1),C(2), . . . ,C(N)

)
K = diag

(
K(1),K(2), . . . ,K(N)

)
u =

[
u(1)T u(2)T . . . u(N)T

]T
p =

[
p(1)T p(2)T . . . p(N)T

]T
g =

[
g(1)T g(2)T . . . g(N)T

]T
.

Here,M,C, andK are the global mass, damping and stiffness matrices, respectively, u is the
global displacement vector andp and g are the external and interface force vectors, respectively.
Furthermore, note that the global system equations (Eq. 5.1a) are written in block-diagonal
form which implies that dual DOFs are present at interfaces between substructures.

Eq. 5.1b concerns the compatibility condition. More specifically, it includes equations describ-
ing how DOFs are constrained. For example, consider the constraint equation ui − uj = 0,
i.e., the displacement in DOF i is equal to the displacement in DOFj. This correspond to B
being a row vector of the form:

B =
[
0 1 −1 0

ui uj

]
(5.3)

Hence, if assuming a conforming discretization on interfaces,Bwill be a signednc×nBoolean
matrix, where nc is the number of constraints and n is the number of DOFs in the dually
assembled global system.
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Eq. 5.1c represents the equilibrium condition where, in the case of a conforming interface
discretization, L is a Boolean localization matrix. For example, consider again the constraint
equation ui−uj = 0 and the associated equilibrium condition gi+ gj = 0. This correspond
to L being a n× (n− 1) matrix given by (with blank entries being zero):

L =



1

1
1 ui

1

1 uj

1


(5.4)

The global displacement vector may be partitioned into a set of unique uu and redundant ur

DOFs. Hence, the unique DOFs include one set of interface DOFs and, possibly, internal
DOFs being substructure DOFs that are not part of the substructure boundary (a selection of
interface DOFs is thus required). Then, the compatibility condition can be expressed as:

[
Brr Bru

] [ ur

uu

]
= 0. (5.5)

Further, by rewriting Eq. 5.5, the redundant DOFs can be expressed in terms of the unique
DOFs:

ur = −B−1
rr Bruuu. (5.6)

Hence, the following transformation may be defined:

u = Luu =

[
−B−1

rr Bru

Iuu

]
uu. (5.7)

Thus, the Boolean localization matrixL, that transforms the unique set of DOFs to dual form,
can readily be obtained if B is available.

Furthermore, substituting Eq. 5.7 into Eq. 5.1a and pre-multiplying with LT gives:

MP üu +CP u̇u +KPuu = pP (5.8)

where
MP = LTML, CP = LTCL, KP = LTKL, pP = LTp.

Here,MP ,CP andKP are nP ×nP systemmatrices and pP is a nP ×1 external force vector,
where nP is the number of unique DOFs in a so-called primal formulation. Notice that this
primal approach correspond to the assembly procedure commonly employed in standard FE
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modeling, i.e., the global displacement vector u is replaced by a set of unique displacements
uu. Moreover, substituting Eq. 5.7 into the compatibility condition yields Bu = BLuu =
0. Hence, by noting that uu is arbitrary, it follows that the Boolean localization matrix L
represents the null-space of B, i.e., BL = 0 [4]. Accordingly, a primal assembly is actually
obtained by projecting the system equations onto the null-space of B (cf. Eqs. 3.3 and 5.8).
Furthermore, it follows that (BL)T = LTBT = 0, i.e. BT is the null-space of LT.

Instead of using a primal formulation, the compatibility and equilibrium conditions (Eqs.
5.1b and 5.1c) can be enforced such that dual DOFs are retained at interfaces, e.g., by means
of Lagrange multipliers [4]. Then, the interface forces may be selected such that:

g = −BTλ (5.9)

where λ is a nc × 1 vector containing Lagrange multipliers. Further, by substituting Eq. 5.9
into the equilibrium equation (Eq. 5.1b) one obtains:

LTg = −LTBTλ = 0. (5.10)

Hence, because BT is the null-space of LT the equilibrium condition is always satisfied. It
then remains to enforce the compatibility condition, i.e. Bu = 0. In matrix form, the dually
assembled system can thus be written as:[

M 0
0 0

] [
ü
λ

]
+

[
C 0
0 0

] [
u̇
λ

]
+

[
K BT

B 0

] [
u
λ

]
=

[
p
0

]
(5.11)

where both the equilibrium and compatibility conditions are satisfied.

Furthermore, a dually assembled system can be enforced in an approximate manner using a
penalty formulation, e.g. expressed as:

Mü+Cu̇+
(
K+ αBTB

)
u = p (5.12)

where α is a penalty stiffness being sufficiently large such that Bu ≈ 0 [1]. Again, consider
the constraint equation ui − uj = 0 and the corresponding signed Boolean matrix B (cf.
Eq. 5.3). It follows that:

αBTB =



0 0

0 α −α 0 ui

0 −α α 0 uj

0 0
ui uj


(5.13)
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Hence, using the penalty formulation, the constraint is indeed enforced by means of a spring
element having stiffness α.

The preferred assembly method depends on the specific application. A primal formulation
where the number of global DOFs are reduced can be cumbersome in some applications. On
the contrary, it can be problematic to ensure stability in direct time-integration schemes for
systems including Lagrangemultipliers [47]. Even thoughmethods to ensure stability exist, the
available time-integration schemes are at least limited (for example, a standard Newmark time-
integration, assuming constant average accelerations, is in this case unconditionally unstable).
If using the penaltymethod, a suitable penalty stiffnessmust be determined—if it is too low, the
constraint equations might not be enforced properly and if it is too large, the system equations
can be ill-conditioned with respect to inversion. Moreover, if using a conditionally stable time-
integration scheme, such as the central difference method, a large penalty stiffness might result
in a very small critical time increment (see Section 2.5.2).

5.2 COMPONENT MODE SYNTHESIS

On the substructure level, the system equations are expressed in terms of the substructure
displacements u(s), which can be approximated by a reduced set of generalized coordinates
q(s). The transformation can be expressed as

u(s) ≈ T(s)q(s) (5.14)

where superscript s is the substructure label and T(s) is a n(s) × m(s) transformation (or
reduction) matrix representing a reduction basis. Here, n(s) and m(s) are the number of
variables in the unreduced and reduced subsystem, respectively. Typically,m(s) ≪ n(s).

An FE formulation of a linear substructure leads to an equation of motion of the following
form:

M(s)ü(s) +C(s)u̇(s) +K(s)u(s) = p(s) + g(s) (5.15)

where M(s),C(s) and K(s) are the n(s) × n(s) substructure mass, damping and stiffness
matrices, respectively, and p(s) and g(s) are the n(s) × 1 substructure external force and in-
terface force vectors, respectively. By substituting Eq. 5.14 into Eq. 5.15 and pre-multiplying
with TT the reduced system equations are given as:

M̃(s)q̈(s) + C̃(s)q̇(s) + K̃(s)q(s) = p̃(s) + g̃(s) (5.16)

where

M̃(s) = T(s)TM(s)T(s), C̃(s) = T(s)TC(s)T(s), K̃(s) = T(s)TK(s)T(s)

p̃(s) = T(s)Tp(s), g̃(s) = T(s)Tg(s).

Here, M̃(s), C̃(s) and K̃(z) are them(s) ×m(s) reduced system matrices of the substructure,
and p̃(s) and g̃(s) are the corresponding m(s) × 1 reduced external force and interface force
vector.
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In most CMS methods, a reduction basis is constructed using some form of pseudo-static and
vibrational modes [21]. In particular, a set of pseudo-static modes may be constructed such
that the generalized coordinates correspond to the physical displacements of the substructure
boundary DOFs. This is convenient when enforcing intercomponent compatibility, i.e., the
components can be assembled in a standard fashion as superelements. Accordingly, the re-
duced coordinate vector q(s) may include both physical DOFs, often referred to as master,
boundary, or interface DOFs, as well as other generalized coordinates representing the amp-
litudes of component modes. To simplify the notation, the substructure label s is left out in
the remainder of this section, unless otherwise noted.

5.2.1 Condensation methods

Neglecting damping, the equation of motion in partitioned form for a substructure can be
written as:[

Mii Mib

Mbi Mbb

] [
üi

üb

]
+

[
Kii Kib

Kbi Kbb

] [
ui

ub

]
=

[
pi

pb

]
+

[
0
gb

]
(5.17)

where the subscripts i and b denotes the internal and interface boundary DOFs, respectively.
Here, the interface forces are by definition zero on the internal DOFs. Further, if assuming that
the external forcing is zero on the internal DOFs, the internal displacements can be expressed
as:

ui = −K−1
ii (Miiüi +Mibüb +Kibub) . (5.18)

Using a CMS approach, the inertia effects related to the internal DOFs are considered by a
component mode superposition according to Eq. 5.14. In particular, CMS methods where q
only contains physical master DOFs are often referred to as condensation methods, which are
arguably the most straightforward techniques.

A basic condensation method is the Guyan reduction [48], where the inertia terms in Eq. 5.18
are ignored. This leads to the following transformation:[

ui

ub

]
=

[
Ψib

Ibb

]
ub = TGq (5.19)

where Ibb is am×m identity matrix,Ψib = −K−1
ii Kib is the internal part of the component

modes, and TG is the n × m Guyan reduction matrix. The columns of the transformation
matrix are the so-called constraint modes, obtained by prescribing a unit displacement for a
boundary DOF, while the internal DOFs are force-free and the other boundary DOFs are held
fixed. Thus, for a beam element, the constraint modes correspond to the mode shapes shown
in Figure 5.1. Further, note that if retaining only one boundary DOF, the reduced system
represents a generalized SDOF system, as discussed in Section 2.1.

Using condensation methods, the displacements of the boundary nodes are related to a set
of component modes. In the Guyan reduction technique, these modes are based on the static
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(a) Constraint mode 1 (b) Constraint mode 2

(c) Constraint mode 3 (d) Constraint mode 4

Figure 5.1: Constraint modes for beam with transversal (1 and 3) and rotational (2 and 4)
boundary DOFs at beam ends.

displacement of the boundary, and accordingly “exact” results are achieved for static loading on
the substructure boundary. For dynamic loading, however, the accuracy is highly dependent
on the forcing frequency and the selected master DOFs.

Other condensation methods have been developed where the component modes are chosen
differently. For example, the stiffness matrix can be replaced by the dynamic stiffness matrix,
often referred to as dynamic reduction. Using this approach, “exact” results can be obtained in
a steady state analysis for a certain forcing frequency. However, such a system is not “statically
complete”, i.e., the set of component modes does not span the possible displacements of the
internal DOFs due to static loading on the boundary (note that the Guyan reduction can be
interpreted as a dynamic reduction being evaluated at zero frequency). Other more sophistic-
ated condensation methods have been developed, such as Improved Reduction System (IRS)
and System Equivalent Reduction Expansion Process (SEREP) [24]. However, the number of
exact resonances is always less or equal to the number of boundary nodes.

5.2.2 Fixed-interface methods

Thecomponentmodes associated to the boundaryDOFs, employed in the condensationmeth-
ods, can be complemented by additional modes which enables reduced models that are both
statically complete and that compensates for the neglected inertia terms related to the internal
DOFs (cf. Eq. 5.18). These reduction methods, where the reduced coordinate vector includes
both physical and/or generalized coordinates, may be divided into fixed- and free-interface
methods [6]. The most common method is a fixed-interface method, namely the Craig–
Bampton (C–B) method developed in the late 1960s [49], where the constraint modes are
augmented by a set of fixed-interface normal modes (see Figure 5.2).
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(a) Fixed-interface mode 1 (b) Fixed-interface mode 2

(c) Fixed-interface mode 3 (d) Fixed-interface mode 4

Figure 5.2: First four fixed-interface normal modes for beam element, with rotational and
transversal DOFs at beam ends being boundary DOFs.

By setting the boundary displacements to zero in Eq. 5.17, the fixed-interface normal modes
are obtained by the generalized eigenvalue problem:(

Kii − ω2
i,jMii

)
ϕi,j = 0 (5.20)

where ωi,j and ϕi,j are the jth fixed-interface eigenfrequency and eigenmode, respectively.
Further, Kii and Mii are the internal stiffness and mass matrices. The reduction matrix is
then given by: [

ui

ub

]
=

[
Φik Ψib

0bk Ibb

] [
qk

ub

]
= TC−Bq (5.21)

where the subscript k denotes the number of retained fixed-interface normal modes, TC−B

is the Craig–Bampton transformation matrix, and Φik and Ψib are the internal part of the
set of fixed-interface normal modes and constraint modes, respectively. By setting k ≪ ni,
a reduction is achieved in terms of a truncated fixed-interface modal basis. In contrast, if all
fixed-interface modes are included in the basis, one obtains a pure transformation, without
reducing the number of variables. Moreover, an important property of the C–B method is
that the portion of the reduced system matrices related to the fixed-interface normal modes
will by diagonal, thus, the reduced system matrices will in general be sparse (see further [6]).

A transformation according to Eq. 5.21 is employed in the standard C–B approach. In the
early 2000s, an extension of the C–B method was proposed where the set of fixed-interface
normal modes is augmented by higher order static correction modes [20]. The approach is
similar to the generalized MTAmethod, discussed in Section 3.6. In particular, loading on the
substructure boundary is considered in the derivation and, moreover, the static modes can be
generated in a computationally efficient manner by means of matrix–vector multiplications.
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If assuming that the external forces are only applied on boundary DOFs, the top row of Eq.
5.18 can be rewritten as:

Miiüi +Kiiui = −Mibüb −Kibub. (5.22)

Hence, the substructure internal DOFs can be considered excited by imposed displacement
on its boundary. Similarly to the derivation in Section 3.5, the internal displacements can be
split into a static and dynamic part:

ui = ui,stat + y. (5.23)

By setting the accelerations to zero in Eq. 5.22, the static part is given byui,stat = −K−1
ii Kibub.

Then, by substituting Eq. 5.23 into Eq. 5.22 and rearranging the terms, the dynamic part y
can be replaced by a quasi-static solution and a dynamic correction (cf. Eq. 3.24). Thus, a
recursive procedure can be derived such that the displacement of the internal DOFs can be
approximated as:

ui ≈ −K−1
ii Kibub +

k∑
j=1

(
−K−1

ii Mii

)j−1
K−1

ii Y
d2jub

dt2j
(5.24)

whereY = MiiK
−1
ii Kib−Mib. As in the Krylov-subspace method and the generalizedMTA

method (cf. Sections 3.5 adn 3.6), the higher order derivatives may be replaced by generalized
coordinates, i.e., which are treated as additional variables in the dynamic response analysis.
Moreover, for numerical robustness, the static corrections may be computed using the residual
flexibility, as discussed in Section 3.6. A set of jth-order correction modes are then given by:

ψi,cor.j =

(
K−1

ii −
k∑

r=1

ϕrϕ
T
r

ω2
r

)(
MiiK

−1
ii

)j−1
Y. (5.25)

The resulting set of correction modes are mass- and stiffness-orthogonal to the fixed-interface
normal modes. Similarly to the generalized MTA method, the correction modes can be made
mutually orthogonal by solving a reduced eigenvalue problem (e.g., see Eq. 3.4). Then, a
transformation of the following form is obtained:

[
ui

ub

]
=

[
Φik Ψ̃il,cor. Ψib

0bk 0bl Ibb

] qk

ql

ub

 = TC−B,cor.q (5.26)

where the columns of the matrix Ψ̃il,cor. are the total set of l (orthogonalized) pseudo-static
modes andTC−B,cor. is the reduction matrix where the fixed-interface modal basis is augmen-
ted by higher order static modes.

The higher order static modes, as introduced above, are force-dependent in the sense that load-
ing on the substructure boundary DOFs (i.e., expressed in terms of imposed displacements)
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is considered. It should be noted, however, that the above procedure implies that the num-
ber of pseudo-static modes generated in each iteration correspond to the number of boundary
DOFs. Hence, if the number of boundary DOFs is large, this methodology is best used in
combination with an interface reduction technique, as further discussed in Section 5.2.4.

In both the standard C–B method and in an approach where the fixed-interface modal basis
is augmented by higher order static modes, the physical boundary DOFs are retained in the
reduction process. Hence, a global assembly can be formed using any of the assembly methods
discussed in Section 5.1.

For instance, consider an assembly including two substructures reduced by means of the stand-
ard C–B method. Then, if assuming a conforming interface discretization, a unique set of
coordinates can be obtained using the transformation:

q
(1)
k1

u
(1)
b

q
(2)
k2

u
(2)
b


︸ ︷︷ ︸

q̂

=


I
(1)
k1k1

0 0

0 0 I
(1)
bb

0 I
(2)
k2k2

0

0 0 I
(2)
bb


︸ ︷︷ ︸

L

 q
(1)
k1

q
(2)
k2
ub


︸ ︷︷ ︸

q̂P

(5.27)

where L is a Boolean matrix localizing the boundary DOFs of the substructures, and q̂P is the
unique set of coordinates in a primal formulation (cf. Section 5.1). Hence, a global assembly
can be formed using Eq. 5.8, i.e., similar to a standard FE assembly procedure.

The assembly procedure, as described above, can be generalized to consider an arbitrary num-
ber of substructures, non-conforming meshes, etc. (e.g., see [21]). Furthermore, the global
assembly may include nonlinear subsystems. Hence, the linear substructures can then be
modeled using any of the fixed-interface CMS techniques discussed above, while the nonlinear
subsystems may be formulated using full-order FE submodels.

5.2.3 Free-interface methods

In the 1970s, so-called free-interface methods were developed by MacNeal, Rubin, and Craig
and Chang [50–52]. Instead of fixed-interface component modes, these methods use a reduc-
tion basis including free-interface normal modes and, possibly, rigid body modes.

The free-interface normal modes ϕj (cf. Figure 5.3) are determined from the generalized
eigenvalue problem: (

K− ω2
jM
)
ϕj = 0 (5.28)

where K and M are the component stiffness and mass matrices, respectively. Note that these
matrices, in contrast to the system matrices in Eq. 5.20, include partitions related to both the
internal and boundary DOFs (cf. Eq. 5.17).
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(a) Free-interface flex mode 1 (b) Free-interface flex mode 2

(c) Free-interface flex mode 3 (d) Free-interface flex mode 4

Figure 5.3: First four free-interface flex modes for beam element with free-free boundary con-
ditions.

Further, using a free-interface approach, the constraint modes employed in the fixed interface
methods are typically replaced by attachment modes, corresponding to unit loading on the
boundary DOFs. More specifically, an attachment mode corresponds to a unit load applied
on a boundary DOF while the other DOFs are force-free.

Moreover, the attachment modes can be computed based on the component residual flexibility,
i.e. similar to what is done in the generalized MTA method as well as the fixed-interface CMS
approach including higher-order static modes (see Sections 3.6 and 5.2.2, respectively). The
residual attachment modes can be expressed as:

Ψnb =

[
Ψib

Ψbb

]
= Gres

[
0ib
Ibb

]
(5.29)

where Gres is the components residual flexibility matrix, which can be expressed in terms of
the spectral expansion of the inverse stiffness matrix (cf. Eq. 3.8):

Gres =

n∑
j=k+1

ϕjϕ
T
j

ω2
j

=

K+ −
k∑

j=1

ϕjϕ
T
j

ω2
j

 . (5.30)

Here, k is the number of retained free-interface eigenmodes (excluding rigid body modes), and
K+ is a pseudo-inverse of the component stiffness matrix. Furthermore, as indicated by Eq.
5.29, the residual attachment modes correspond to columns of the residual flexibility matrix.

It should be noted that a computation of Gres based on the discarded modes, thus, by per-
forming the summation from k + 1 to n in Eq. 5.30, is in general not possible, i.e., since it
necessitates a computation of all free-interface eigenmodes. Therefore, the second expression
in Eq. 5.30 is used in practice. For components constrained such that there are no rigid body
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(a) Attachment mode 1 (b) Attachment mode 2

(c) Attachment mode 3 (d) Attachment mode 4

Figure 5.4: Inertia-relief attachment modes corresponding to loading at transversal (1 and 3)
and rotational (2 and 4) DOFs at beam ends.

modes, the component stiffness matrix is invertible and the residual attachment modes can be
computed in a straightforward manner, i.e., K+ = K−1 (see also Paper E). However, if rigid
body modes are present, which in general is the case, the stiffness matrix will be singular and
a pseudo-inverse of the stiffness matrix is required.

Recall that the attachment modes correspond to unit loading on the boundary DOFs (cf. Eq
5.29). It follows that the problem of finding a pseudo-inverse can in principle be replaced by
the problem of finding self-equilibrated force systems replacing the unit forces on the boundary
DOFs (cf. Figure 5.4). A detailed description of how to compute a pseudo-inverse using this
approach can e.g. be found in [6]. In summary, a pseudo-inverse, referred to as the constrained
flexibility matrix, is first computed by constraining suitable DOFs. Then, a projection matrix
termed inertia-relief projection matrix is constructed which converts a given force vector to a
self-equilibrated force system. Further, by post-multiplying the constrained flexibility matrix
with the inertia-relief projection matrix one obtains a matrix whose columns correspond to
modes of self-equilibrated force systems. Finally, by pre-multiplying with the transpose of
the inertia-relief projection matrix the corresponding modes are made orthogonal to the rigid
body modes. The pseudo-inverse obtained using this procedure actually correspond to the
elastic flexibility matrix, i.e. a spectral expansion of the inverse of the stiffness matrix where
the rigid body modes are excluded (indeed, including rigid body modes in Eq. 5.30 would
imply division by zero).

Now, a transformation matrix can be defined based on the rigid body modes, free-interface
eigenmodes, and the residual-flexibility attachment modes, i.e.

[
ui

ub

]
=

[
Φir Φik Ψib

Φbr Φbk Ψbb

] qr

qk

gb

 = TRFAq. (5.31)
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Here, r denotes the rigid body modes, gb contain the generalized coordinates representing the
amplitude of the residual attachmentmodes, andTRFA is the so-called augmented free-interface
transformation matrix [6].

In a CMS technique where the boundary DOFs are kept as physical DOFs, an assembly can
be formed in a straightforward manner using any of the assembly methods discussed in Sec-
tion 5.1. However, this approach cannot be adopted if, e.g., using the transformation given
by Eq. 5.31. Hence, because the constraint modes are replaced by attachment modes, the
physical boundary DOFs are not available in the reduced coordinate vector. Instead, a global
assembly has to be formed using alternative procedures, as further discussed below.

For a system includingN substructures, the global displacement vector can be written in terms
of the global coordinate vector q, as:

u ≈ Tq (5.32)

where

T = diag
(
T(1),T(2), . . . ,T(N)

)
, q =

[
q(1)T q(2)T . . . q(N)T

]T
. (5.33)

Here, the component reduction matricesT(s) (s = 1, . . . , N ) can, e.g., be constructed in ac-
cordance with Eq. 5.31. By substituting Eq. 5.32 into Eq. 5.1b, it follows that the compatibility
condition can be transformed to generalized coordinates, as (e.g., see [4]):

Bu = BTq = Bqq = 0. (5.34)

Similar to the primal assembly approach for substructures with physical boundary DOFs, as
described in Section 5.1, a unique set of global coordinates qP satisfying the compatibility
condition can be found from the expression q = LqqP , where Lq = null(Bq). Here, Bq

and Lq are in general non-Boolean.

Now, by applying T to Eq. 5.1a, the reduced substructures (cf. Eq. 5.16) can be written in
block-diagonal form. It follows that, by adopting a primal formulation according to Eq. 5.8, a
global assembly can be expressed in terms of the unique set of global coordinates qP . Altern-
atively, a global assembly may be established using a dual formulation. As described in [4], a
dually formulated system can be expressed using Largange multipliers, similar to the approach
used for substructures with physical boundary DOFs (cf. Eq. 5.11).

To further simplify the assembly process, it can be convenient to formulate the reduced com-
ponents such that the boundary DOFs are available on the substructure level, i.e., such that
each component can be treated as a superelement. This can be achieved using MacNeal’s
and Rubin’s methods [50,51], being free-interface methods that retains the physical boundary
DOFs.

By rearranging the terms in the bottom row of Eq. 5.31, the generalized coordinates gb can be
expressed as:

gb = Ψ−1
bb (ub −Φbrqr −Φbkqk) . (5.35)
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It follows that an additional transformation may be defined, i.e.: qr

qk

gb

 =

 Irr 0 0
0 Ikk 0

−Ψ−1
bb Φbr −Ψ−1

bb Φbk Ψ−1
bb

 qr

qk

ub

 . (5.36)

Hence, by applying both transformations, given by Eq. 5.31 and Eq. 5.36, respectivly, a re-
duced substructure can be constructed such that the physical boundary DOFs are kept in the
coordinate vector. Accordingly, a global assembly can be formed in a standard manner using
any of the assembly methods in Section 5.1. This procedure is employed in the Rubin method.
The MacNeal approach is similar—an alternative approach is used for constructing a diagonal
mass matrix, whereas the reduced stiffness matrix is identical in both methods (see e.g. [21] for
further details).

In contrast to the fixed-interface methods, the sparsity of the system matrices is in general lost
when using the free-interface approaches discussed above. However, another free-interface
method was developed in the early 2000s, referred to as the dual C–B method [53] which,
unlike the other free-interface methods, preserves the sparsity of the system matrices. It does
not employ a true Rayleigh–Ritz transformation, however, and the compatibility condition is
enforced in a weakened sense. In particular, it requires special techniques to ensure stability in
direct time-integration schemes [54].

Finally, it should be mentioned that also the free-interface reduction bases discussed above can
be augmented by higher order quasi-static modes, see e.g. [55]. This is, however, not further
investigated herein.

5.2.4 Interface reduction

In practical applications, the number of physical interface DOFs can often be very large and,
therefore, much can be gained if an interface reduction is performed. In both the free- and
fixed-interface CMS approaches the sparsity is lost in the parts of the system matrices related
to interface DOFs. Hence, models including a large number of boundary DOFs can become
computationally expensive.

Various approaches can be used for reducing the number of interface DOFs (see e.g. [56,57]).
In general, the preferred interface reduction approach depends on the specific application. In
particular, a reduction may be performed on the substructure level, before the substructures
are assembled or, in contrast, on the global assembled structure.

The simplest interface reduction approach is obtained by assuming rigid interfaces, i.e., by
constraining the interface DOFs to the motion of a virtual master node, having three transla-
tional and three rotational DOFs (in a three-dimensional domain). Using a similar approach,
the displacements of a virtual node may be defined as the weighted mean value of the interface
DOFs, a constraint often referred to as a distributed coupling (see e.g. [58, 59]). In particu-
lar, it turns out that the interface-forces on the interface DOFs are related to the weights (see
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Papers C and E). Accordingly, the sum of the weights is related to the interface force acting
on the virtual node (also referred to as condensation node or master node). Hence, a distrib-
uted coupling can be employed for establishing a coupling with an arbitrary interface-force
distribution (see further Paper C and E).

Furthermore, a reduction may be performed using a secondary eigenvalue analysis on the bb-
partitions of the assembled system [6]. Thus, the interface DOFs are replaced by a truncated
set of interface eigenvectors. Using this approach, however, the physical interface DOFs are
lost in the reduction process.

5.3 GEOMETRICALLY NONLINEAR SUBSTRUCTURES

Dynamic substructuring techniques for geometrically nonlinear structures have, e.g., been pro-
posed in [60–68]. The linear CMSmethods, as discussed in Section 5.2, are generally used as a
starting point. Thus, on the substructure level, either the fixed-interface C–B or free-interface
Rubin/MacNeal reduction basis is typically adopted.

More specifically, in [60], the fixed-interface C–B method was extended to consider geomet-
ric nonlinearity. Reduction bases including constraint modes and a truncated set of fixed-
interface eigenmodes were considered. The nonlinear restoring forces were expressed as cubic
mutivariate polynomials, i.e., using the concepts discussed in Section 4.1.1, and the NSCs were
determined in a nonintrusive manner using the ICE method (cf. Section 4.2.4). Furthermore,
an enriched basis was introduced in the post-processing stage using the expansion process
described in Section 4.2.4. In [61], the nonlinear substructuring approach was extended to
consider interface reduction.

A free-interface geometrically nonlinear substructuring approach was proposed in [62]. The
Rubin/MacNeal reduction basis was adopted and the NSCs were determined using the ICE
method. Similar to the procedure proposed in [60], the statically condensed response of (in-
plane) modes were considered implicitly. Moreover, various interface reduction techniques
were suggested.

Approaches using reduction bases enriched by modal derivatives were proposed in [63, 64],
where the NSCs were precomputed using direct methods. Nonintrusive procedures for non-
linear reduced order modeling using C–B reduction bases enriched by modal derivatives were
suggested in [65].

The reduced equations of motion for geometrically nonlinear substructures are briefly de-
scribed in Section 5.3.1. Aspects regarding the coupling procedure for geometrically nonlinear
substructures are discussed in Section 5.3.2.
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5.3.1 Equations of motion for nonlinear substructures

Recall that the physical displacements of a substructure can be approximated such that u(s) ≈
T(s)q(s). Here,T(s) is the substructure reduction basis and q(s) is the associated reduced co-
ordinate vector, which may include both physical boundary DOFs and additional generalized
coordinates associated to fixed- or free-interface component modes (cf. Section 5.2).

The reduced equation of motion of a geometrically nonlinear substructure can then be ex-
pressed as:

M̃(s)q̈(s) + C̃(s)q̇(s) + f̃ (s)(q(s)) = p̃(s) + g̃(s) (5.37)

where the reduced mass and damping matrices M̃(s) and C̃(s), and the external and interface
force vectors p̃(s) and g̃(s) were defined in Eq. 5.16 (linear damping is considered here to
simplify the notation). Moreover, the reduced nonlinear restoring forces are given by f̃ (s) =
T(s)Tf (s)(T(s)q(s)), where f (s) is the full-order nonlinear restoring force vector.

If assuming large displacements and small strains, the reduced nonlinear restoring forces for a
substructure can be expressed as cubic polynomials, i.e., as described in Section 4.1.1. Hence,
using the compact tensor notation, the restoring forces can be expressed as:

f̃ (s)(q(s)) = K(1)(s)q(s) +K(2)(s)q(s)q(s) +K(3)(s)q(s)q(s)q(s). (5.38)

The coefficients of the stiffness tensorsK(2)(s) andK(3)(s) can, e.g., be determined in a non-
intrusive manner using the ICE or ED method, as described in detail in [60, 65] (see also
Section 4.2 and Paper E).

5.3.2 Substructure coupling procedure

An assembly can be formed using, e.g., a primal assembly approach, as described in Section 5.1.
To this end, the global system including reduced substructures can be written in block-diagonal
form, as:

M̃q̈+ C̃q̇+ f̃(q) = p̃+ g̃ (5.39)

where
M̃ = TTMT, C̃ = TTCT, p̃ = TTp, g̃ = TTg.

Here, the full-order matrices and vectorsM,C, p, and g were defined in Eq. 5.1, and T and
q are given by Eq. 5.33. Further, the reduced restoring force vector of the global system is
given by:

f̃(q) =

 f̃ (1)(q(1))
...

f̃ (N)(q(N))

 . (5.40)

As described in Section 5.2, the compatibility condition can be written as Bu = BTq =
Bqq = 0. Furthermore, the equilibrium condition is expressed by LT

q g̃, where Lq is the
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null-space of Bq. Using a primal formulation, a unique set of assembled coordinates qP are
then given by q = LqqP . It follows that the constrained equations of motion can be written
as:

LT
q M̃Lqq̈P + LT

q C̃Lqq̇P + LT
q f̃(Lqq̂P ) = LT

q p̃. (5.41)

If the nonlinear reduced model is solved using Newmark implicit time-integration, the equi-
librium iterations necessitates evaluations of the tangent stiffness matrix (cf. Section 2.5.2). In
a primal formulation, the assembled tangent stiffness matrix can be expressed as:

K̃P = LT
q K̃(q)Lq (5.42)

where
K̃(q) = diag

(
K̃(1)(q(1)), . . . , K̃(N)(q(N))

)
and where the tangent stiffness matrices of the substructures, K̃(s) (s = 1, . . . , N ), are given
by Eq. 4.26.

The physical boundary DOFs are retained in both the fixed-interface C–B method and the
free-interface Rubin/MacNeal method. Accordingly, if assuming a conforming discretization
on interfaces, the matrix Lq will be a Boolean localization matrix, as exemplified in Eq. 5.27.





6 Applications: structures subjected to
blast and impact loading

This chapter presents an overview of applications concerning blast and impact loading. Focus is
on the development of time-efficientmodeling strategies which are suitable for a structural veri-
fication or design process. More specifically, the aim is to establish reduced models which are
computationally efficient, while maintaining sufficient accuracy of important output quant-
ities. In particular, this allows for an interactive design process where parameters and design
concepts may be evaluated in a time-efficient manner. The proposed models are primarily in-
tended to be implemented in user-friendly FE tools, such as ClearSight [5], being specialized
for specific engineering applications. Details regarding the developed modeling strategies are
provided in the appended papers.

Structural engineering applications within two different areas have been investigated; namely,
concerning concrete structures subjected to blast loading (Papers A and B) and glass panels sub-
jected to impact loading (Papers C and E). Some of the challenges with regard to computational
aspects are similar. In particular, the structural dynamics problems involve transient loading
and various types of nonlinear behaviors, e.g., localized nonlinearities in the form of contact
conditions or nonlinear materials, as well as geometric nonlinearities which, in contrast, is a
distributed nonlinearity where degrees of freedoms throughout the structure are nonlinearly
coupled.

Due to the presence of nonlinear behaviors, the efficient modal techniques commonly used in
linear dynamics cannot be utilized (cf. Chapters 2 and 3). However, locally nonlinear reduced
models may be formulated using DS, as described in Chapter 5. Hence, the parts of the struc-
tures that remain linear elastic can be modeled using a reduced set of generalized coordinates,
while the nonlinear parts are expressed in terms of physical displacements. Further, by as-
suming small strains and large displacements, geometrically nonlinear effects can be effectively
modeled using the techniques discussed in Chapter 4.

Section 6.1 presents an overview of modeling techniques for analysis of concrete structures sub-
jected to blast loading. Simplified models commonly used in the industry as well as alternative
procedures using reduced models are briefly discussed. In Section 6.2, modeling strategies for
predicting the response of glass panels subjected to impact loading are discussed, which is an
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(a) Flexural failure

(b) Diagonal shear failure

(c) Direct shear failure

Figure 6.1: Example of failure modes for reinforced concrete beam subjected to uniform im-
pulse pressure.

important load case in design of glazed barriers.

6.1 CONCRETE STRUCTURES SUBJECTED TO BLAST
LOADING

Several aspects in the structural design of concrete structures subjected to blast loading are
fundamentally different compared to a verification of static loads. Not only the load-bearing
capacity, but also the ductility of the structure is of considerable importance. To ensure that
the structure can withstand the external pulse, it must be designed such that the induced
kinetic energy can be absorbed. For example, the kinetic energy may be converted into elastic
and plastic strain energy. Thus, the ductility of the structure, i.e. the capability to deform
plastically without failure, is of importance. In particular, concrete members, such as beams
and plates, must be designed to resist brittle failure modes.

With regard to the semi-global response (i.e. the global response of an individual member,
such as beams and slabs) at least three failure modes must be considered to ensure an adequate
design; namely, flexural failure, diagonal shear failure, and direct shear failure, as illustrated in
Figure 6.1 [8]. If the concrete member is designed using bending reinforcement with sufficient
ductility and an appropriate reinforcement arrangement, a flexural failure mode is typically de-
sirable, while brittle failuremodes, such as shear failure, should be avoided. Further, if a flexural
failure mode can be ensured, the elastic strain energy upon failure is often significantly smaller
than the plastic dissipation. Consequently, a model that considers the nonlinear structural
behavior is required to avoid a too conservative design.

Generalized SDOF systems (cf. Section 2.1) are commonly used for evaluating concrete mem-
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bers, such as beams and slabs, subjected to blast loading. More specifically, a so-called equival-
ent SDOF system is formulated by means of an assumed shape function and a reference point,
e.g., located at midspan. Then, an equivalent stiffness, mass, and load are determined such that
the internal energy, kinetic energy, and external work for the SDOF system and the continu-
ous structure are equivalent (e.g., see [69]). In particular, this approach allows for estimating
the nonlinear elasto-plastic response of beams or slabs where plastic hinges/yield lines may
develop, at least in an approximate manner. However, the locations of the plastic hinges are
predefined, e.g., for a simply supported beam, a plastic hinge may be introduced at midspan.
Further, the assumed mode shape is no longer continuous. Instead, a shape function is typic-
ally obtained by neglecting the elastic deformations and only consider the plastic rotation at
the plastic joints (cf. Figure 2.2). Hence, the shape function corresponds to a rigid body mode
of the system, assuming free-rotations at the predefined joints (however, as suggested in [8],
a combined elastic and plastic shape function can be considered in an approximate manner
using weight factors). This methodology, which was proposed already in the mid 1960s [70],
can be very useful, particularly in the conceptual design phase. In fact, if assuming that the
pulse time is negligible, which is reasonable in many practical applications, a peak response can
be estimated without conducting a response analysis, namely, by simply equating the internal
work and the kinetic energy induced in the system due to the external impulse.

Despite its utility, the approach using an equivalent SDOF system has several limitations. In
particular, the response of higher order modes is neglected. For a concrete member subjected
to blast loading, resulting in a very large pressure with short duration, the influence of higher
order modes can, however, have a significant influence on the response. For example, the shear
force close to supports might not be accurately represented by an SDOF model (see e.g. [71]).
Particularly for concrete members without shear reinforcement, brittle failure modes, such as
shear failure, are often critical.

In Paper A, the influence of higher order modes on the shear force close to supports is further
investigated. More specifically, reduced models of beams with predefined plastic joints were
developed by use of DS. The rotational DOFs at the plastic joints were selected as boundary
DOFs, while the remaining structure was represented by a few fixed-interface eigenmodes. The
model thus considers the response of higher order modes as well as the ductility of a flexural
failure mode.

If using an SDOF model, a proper representation of the interaction between structural mem-
bers and the global load-bearing structure is in general not possible. Instead, the global struc-
ture is often considered rigid in the response analysis of an individual member. In many
applications, this simplified approach can be sufficiently accurate, since the mass of the global
structure is often large compared to the mass of the individual member. However, some ap-
plications necessitate a more detailed modeling of the supporting structure. For instance,
consider a concrete frame structure, as illustrated in Figure 6.2, subjected to a uniformly dis-
tributed horizontal impulse pressure. Indeed, a verification considering the two failure modes
shown in the figure—related to lateral stability and progressive collapse, respectively—cannot
be properly captured by an SDOF model. Thus, to consider mixed failure modes, an integ-
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(a) Progressive collapse (b) Lateral stability

Figure 6.2: Example of failure modes for concrete frame structure subjected to blast loading.

Figure 6.3: Example of predefined plastic hinges for a concrete frame structure.

rated analysis is required where the response of the frame columns as well as the horizontal
beam are computed simultaneously.

In Paper B, strategies are presented for modeling concrete-frame structures with an arbitrary
number of predefined plastic joints. Furthermore, to obtain computationally efficient models,
parts remaining linear elastic were reduced by means of DS. For the concrete frame in Fig-
ure 6.2, an approximate model, being suitable at least in a conceptual design phase, can be
established by allowing plastic hinges to be developed at five positions, as illustrated in Fig-
ure 6.3. Furthermore, a more accurate model can be obtained by including additional joints,
e.g., by adding multiple joints at the frame corners, such that the mass of the frame corners is
considered.

6.2 GLASS STRUCTURES SUBJECTED TO IMPACT LOADING

Building regulations inmany countries prescribe that glazed barriers, such as full-height facades
and parapets for balconies or interior level changes, which may constitute a safety risk for
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building occupants, must be designed to withstand accidental impact of humans. To ensure an
adequate design, the glass structure load-bearing capacity is often verified using experimental
tests, based on the standardized soft-body pendulum described in the European Standard EN
12600 [72]. A typical test arrangement is shown in Figure 6.4.

Alternatively, the structural dynamic response can be evaluated using numerical methods. To
this end, a simplified approach is commonly adopted, where the response of higher order
modes is neglected. Similarly to the methodology for design of concrete members, the glass
structure is then modeled by means of a generalized SDOF system. Here, however, an integ-
rated analysis of the glass structure and the impacting body is generally required. Thus, the
glass panel is represented by an SDOF model which interacts with the soft impact body, being
modeled by a (linear or nonlinear) SDOF lumped mass model. The interacting glass-impactor
system is thus represented by a two-DOF system (e.g., see [73, 74]). Because the external
forcing is zero, the dynamic problem constitutes an initial value problem. Specifically, the
analysis is initiated just before impact and an initial impactor velocity is prescribed based on
the pendulum drop height.

The simplified modeling approach for verifying glass panels is similar to the SDOF modeling
approach for analysis of concrete members in two ways; firstly, higher order modes of the
glass panel/concrete member is neglected and, secondly, the supporting structure is considered
rigid. However, glass is a brittle material, being essentially linear elastic before failure [75],
while the reinforcement in a concrete structure can be arranged to obtain a ductile behavior.
Hence, an approach considering nonlinear materials is necessary in an analysis of concrete
members, while a glass panel can be assumed linear elastic before failure. However, the load–

Main frame

Clamping frame

Impactor

Figure 6.4: Standardized soft-body pendulum for glass classification according to the
European Standard EN 12600 [72].
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displacement response of the standardized impactor, consisting of two pneumatic rubber tires
and steel weights, is nonlinear. Moreover, the contact interaction between the glass panel and
the impactor introduces a nonlinear behavior. Thus, localized nonlinearities are present in both
structural dynamics problems; namely, in the form of plastic hinges, local contact interactions,
and nonlinear subsystems. In addition, the response of glass panels, having a small thickness
compared to the span width, are typically characterized by bending–stretching coupling effects,
resulting in a geometrically nonlinear behavior, as illustrated in Figure 6.5.

In Paper C, experimental as well as numerical studies of simply-supported glass panels subjec-

Figure 6.5: Principle sketch of bending–stretching coupling behavior for fixed–fixed glass
panel.
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Figure 6.6: Schematic representation of nonlinear SDOFmodel representing the standardized
impactor (a) and impactor response for impact with a rigid surface (b), as provided
by a high-fidelity FE model (HFM) (dashed lines) and the SDOF model (solid
lines), respectively. The load–displacement curves represent the total contact force
and the displacement of the impactor center of mass. results are presented for a
pendulum drop height of 200 mm and 450 mm, respectively.
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ted to soft-body impacts are presented. In particular, the glass strain was measured on simply
supported monolithic glass panels subjected to impact loading. The glass panels were moun-
ted in a steel frame and impact loads were generated by releasing the standardized EN 12600
impactor from various drop heights. Furthermore, impact tests were performed to determ-
ine the dynamic characteristics of the impactor. Moreover, a nonlinear viscous SDOF model
representing the impactor was developed, see Figure 6.6. The linearized pre-failure elastic re-
sponse of the glass panel was represented by a modal basis including a set of force-dependent
Krylov-vectors (see Sections 3.5 and 5.2.2). A coupled system, including the impactor SDOF
model as well as the reduced model representing the glass panel, was formulated using DS. For
the load cases studied, it was shown that an accurate prediction of the pre-failure glass strain
can be obtained by considering only a few generalized coordinates. However, the influence
of higher order modes can be expected to be more pronounced for larger glass panels or glass
panels with other fixing methods.

The reduced order model of the glass–impactor system, as proposed in Paper C, does not con-
sider the geometrically nonlinear response of the glass panel, nor the time dependency of the
contact pressure distribution. However, in Paper E, an enhanced nonlinear reduced order
model for simulating the soft-body impact is suggested, which considers both these effects.
More specifically, a geometrically nonlinear model for the glass panel was established using
the condensed system equations, discussed in Section 4.1.3. An out-of-plane reduction basis
for the glass structure was generated using a Krylov-subspace approach, which considers the
position, as well as the spatial distribution, of the impact loading. The quasi-static in-plane
response was then generated using static modal derivatives (cf. Section 4.3.1). Hence, co-
ordinates representing the in-plane motion need not be considered explicitly in the dynamic
response analysis. Further, the reduced order models were implemented using the modeling
strategies presented in Paper D.

Moreover, a procedure for modeling an approximate (and time-dependent) contact pressure
distribution was introduced. Specifically, the physical DOFs involved in the contact are re-
placed by a significantly reduced set of generalized variables, representing scaling coefficients
of time-invariant pressure distributions. The approximate contact model was established by
means of a POD analysis (cf. Section 4.3.2) of contact pressure time-histories, generated based
on a reference load case. The methodology is described in detail in Paper E.

The numerical studies presented in Paper E suggests that the proposed nonlinear glass–impactor
model can be used for an accurate prediction of important output quantities, e.g., the glass
panel principal stresses. Furthermore, the calculated principal tensile stresses are in good agree-
ment with the reference curves provided in the German standard DIN 18008-4 [76], as mani-
fested by the results presented in Figure 6.7.
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Figure 6.7: Example of principal tensile stresses on the backside of a glass panel, having dimen-
sions according to the reference plate given in the German standard DIN 18008-
4 [76]. The principal stresses due to a centric impact is shown, as provided by a
linear (a) and geometrically nonlinear (b) reduced order model. The dashed lines
show the corresponding result provided by a detailed high-fidelity FE model (cf.
Paper C).The gray areas indicate the reference stresses given in DIN 18008-4 [76].
The stresses are presented for a pendulum drop height of 200 mm and 450 mm,
respectively. The results were calculated in the numerical investigations presented
in Paper E.
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PAPER A

Reduced order modeling for the dynamic analysis of structures with nonlinear interfaces.
Linus Andersson, Peter Persson, Per-Erik Austrell, Kent Persson
In proceedings of COMPDYN 2019, 7:th International Conference on Computational Meth-
ods in Structural Dynamics and Earthquake Engineering, pp. 2395–2406, Crete, Greece,
2019.

Abstract

In the present paper, linear substructures with nonlinearities localized at their interfaces, such
as the joints in a beam structure, are studied. By subdivision of the total structure into substruc-
tures, reduced subsystems are obtained by component mode synthesis. Nonlinear elements are
introduced at supports or between substructures. A numerical example is presented where a
beam subjected to blast loading is studied. The influence of the nonlinear behavior as well as
the number of retained fixed-interface normal modes in the reduced subsystems are evaluated.
The response is also compared to the response of equivalent single-degree-of-freedom systems,
which are frequently employed in blast load design calculations. For the load cases studied,
the displacement computed from an equivalent single-degree-of-freedom system correspond
fairly well to the displacement given by a refined two-dimensional beam model, reduced by
substructuring. In contrast, the shear force differs significantly due to that higher order modes
are neglected in the single-degree-of-freedom system.

Contributions by Linus Andersson

Main author of the paper and wrote the manuscript. He formulated research aims, developed
the modeling strategies, implemented the models, and performed the simulations as well as
synthesized the results and drew conclusions.
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PAPER B

Model reduction for structures subjected to blast loading by use of dynamic substructuring.
Linus Andersson, Peter Persson, Kent Persson
In proceedings of EURODYN 2020, XI International Conference on Structural dynamics,
pp. 2544–2564, Streamed from Athens, Greece, 2020.

Abstract

In the present study, strategies are developed to enable time-efficient models for structures sub-
jected to blast loading, appropriate for use in a structural design process. Dynamic substruc-
turing is employed to obtain reduced models with localized nonlinearities, such as predefined
plastic hinges in a beam–column structure. The parts of the substructures that remains lin-
ear elastic are modeled by Ritz-vectors whereas parts with a nonlinear response are retained as
physical degrees-of-freedom. Furthermore, a time-stepping method is presented that is shown
to be suitable for reduced models including local and predefined rigid–plastic behavior. The
proposedmethodology is applied and demonstrated in a numerical example of a concrete frame
structure. Both the well-established Craig-Bampton method and reduction bases enriched by
so-called correction modes are evaluated. For the load case studied, it is shown that the stand-
ard Craig-Bampton technique is suitable for reducing the substructures. Furthermore, it is
shown that only a few Ritz-vectors are needed to sufficiently describe the deformation of the
structure. However, additional modes are needed to ensure an accurate representation of the
interface forces between the substructures.

Contributions by Linus Andersson

Main author of the paper and wrote the manuscript. He formulated research aims, developed
the modeling strategies, implemented the numerical models and performed the simulations.
He synthesized the results and contributed to the conclusions drawn.
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PAPER C

Reduced order modeling of soft-body impact on glass panels.
Linus Andersson, Marcin Kozłowski, Peter Persson, Per-Erik Austrell, Kent Persson
Engineering Structures, Volume 256, 1 April 2022, 113988.

Abstract

In the paper, strategies for reduced order modeling of glass panels subjected to soft-body im-
pact are developed by means of dynamic substructuring. The aim is to obtain accurate and
computationally efficient models for prediction of the pre-failure elastic response. More spe-
cifically, a reduction basis for the subsystem representing the glass panel is established us-
ing correction modes, being fixed-interface component modes that considers loading on the
substructure boundary. The soft-body impactor is effectively modeled by a nonlinear single-
degree-of-freedom system, calibrated by experimental data. Furthermore, a simplified and
computationally efficient modeling approach is proposed for the contact interaction between
the glass panel and the impact body. An experimental campaign was carried out to validate
the developed models. In particular, the glass strain was measured on simply supported mono-
lithic glass panels subjected to soft-body impact. Additional impact tests were performed to
determine the dynamic characteristics of the impactor. Moreover, a detailed numerical refer-
ence model was developed to evaluate the discrepancy between the experimental tests and the
results provided by the reduced order models. The developed models show good agreement
with the experimental results. For the studied load cases, it is shown that an accurate predic-
tion of the pre-failure glass strain can be obtained by systems including only a few generalized
degrees-of-freedom.

Contributions by Linus Andersson

Main author of the paper and wrote the manuscript. He contributed to the conceptualization
of ideas and the experimental methodologies. He conducted the experiments for determining
the dynamic properties of the impactor. He developed the numerical modeling strategies,
implemented the numerical models, and performed the simulations. He synthesized the results
and contributed to the conclusions drawn.
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PAPER D

Efficient nonlinear reduced order modeling for dynamic analysis of flat structures.
Linus Andersson, Peter Persson, Kent Persson
Mechanical Systems and Signal Processing, Volume 191, 15 May 2023, 110143.

Abstract

In the present paper, strategies for reduced order modeling of geometrically nonlinear finite
element models are investigated. Simulation-free, non-intrusive approaches are considered,
which do not require access to the source code of a finite element program (e.g., propriet-
ary knowledge). Our study focus on but is not restricted to flat structures. Reduction bases
are generated using bending modes and the associated modal derivatives, which span the addi-
tional subspace needed for an adequate approximation of the geometrically nonlinear response.
Moreover, the reduced nonlinear restoring forces are expressed as third order polynomials in
modal coordinates. Consequently, the reduced systems can be effectively solved using time-
integration schemes involving only the reduced coordinates. A bottleneck in the non-intrusive
methods is typically the computational effort for precomputing the polynomial coefficients
and generating the reduction basis. In this regard, we demonstrate that modal derivatives have
several useful properties. In particular, the modal derivatives essentially provide all the in-
formation needed for generating the polynomial coefficients for the in-plane coordinates. For
condensed systems, which ignores the inertia of the in-plane modes, we show that the modal
derivatives can be used effectively for recovering the in-plane displacements. Based on these
findings, we propose a methodology for generating reduced order models of geometrically
nonlinear flat structures in a computationally efficient manner. Moreover, we demonstrate
that the concepts extend also to curved structures. The modeling techniques are validated by
means of numerical examples of solid beam models and continuously supported shell models.
The computational efficiency of the proposed methodology is evaluated based on the number
of static evaluations needed for identifying the polynomial coefficients, as compared to the
state-of-the-art methods. Furthermore, strategies for efficient time integration are discussed
and evaluated.

Contributions by Linus Andersson

Main author of the paper and wrote the manuscript. He formulated research aims, developed
the modeling strategies, implemented the numerical models, and performed the simulations.
He synthesized the results and drew conclusions.
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PAPER E

Nonlinear reduced order modeling of glass panels subjected to soft-body impact.
Linus Andersson, Peter Persson, Kent Persson
Submitted for publication.

Abstract

In the paper, we propose a nonlinear reduced order model for dynamic analysis of glass panels
subjected to soft-body impact. The aim is to determine the pre-failure elastic response of the
glass panel in a computationally efficient manner, while maintaining sufficient accuracy of im-
portant output quantities. The response of glass panels, having a small thickness compared to
the span width, are typically characterized by bending–stretching coupling effects, which result
in a geometrically nonlinear behavior. To consider these effects, a reduction basis for the glass
panel was established using out-of-plane bending modes and the associated modal derivatives,
which span the additional subspace needed to adequately predict the geometrically nonlinear
response. The reduced nonlinear restoring forces for the glass structure were expressed as cu-
bic polynomials in modal coordinates. Consequently, the transient dynamic response can be
effectively solved using direct time integration. The impacting body was modeled using a non-
linear, viscous single-degree-of-freedom system. Furthermore, a contact model was developed,
allowing for approximating the contact pressure distribution using only a few time-dependent
variables. For the studied load cases, the glass panel displacements as well as the principal tensile
stresses predicted by the proposed model are in good agreement with the corresponding results
provided by a detailed, full order finite element model.

Contributions by Linus Andersson

Main author of the paper and wrote the manuscript. He developed the numerical modeling
strategies, implemented the numerical models, and performed the simulations. He synthesized
the results and drew conclusions.





8 Concluding remarks

8.1 CONCLUSIONS

Reduced order models were developed for use in structural engineering applications within
two different areas, namely, concerning concrete structures subjected to blast loading and glass
structures subjected to impact loading. In particular, modeling strategies were developed that
are sufficiently accurate, computationally efficient, and suitable for use in a structural design
process. Moreover, the models consider the response of higher order modes as well as nonlinear
effects, e.g., localized nonlinearities of various forms and geometric nonlinearities. The main
contributions to the research field are:

• Modeling strategies for time-efficient analysis of concrete structures subjected to blast
loading (see Papers A and B).

• Time-stepping scheme for systems with localized rigid–plastic behavior (see Paper B).

• Modeling strategies for analysis of glass panels subjected to soft-body impact (see Pa-
per C).

• Experimental methodology for estimating damping of standardized impactor (see Pa-
per C).

• Novel nonlinear viscous SDOF model for reduced modeling of standardized impactor,
and methodology for calibrating the SDOF model based on detailed FE models (see
Paper C).

• Strategies for efficient nonintrusive computation of nonlinear stiffness coefficients for
geometrically nonlinear reduced order models using static modal derivatives (see Pa-
per D).

• Strategies for efficient analysis of geometrically nonlinear flat or slightly curved structures
using static modal derivatives (see Paper D).

• Nonlinear reduced ordermodel for analysis of glass panels subjected to soft-body impact,
considering contact conditions as well as geometrically nonlinear effects (see Paper E).
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• Modeling procedure for considering varying contact pressure distribution in reduced
order model (see Paper E).

Furthermore, a review of various reduced order modeling techniques is presented which, in a
broader perspective, provides a basis for developing reduced order models in various structural
engineering applications.

8.2 FURTHER RESEARCH

The modeling strategies proposed for analyzing concrete structures subjected to blast load-
ing can possibly be further developed to consider geometric nonlinearity. Thus, by means of
dynamic substructuring, reduced models including predefined plastic joints as well as geomet-
rically nonlinear substructures could be investigated. However, the bending moment capacity
of concrete structures is strongly influenced by the normal force, which can be expected to
be fairly large in applications influenced by geometrically nonlinear effects. Consequently, it
might be necessary to replace the simplified rigid–perfectly plastic joints with more sophistic-
ated submodels.

The glass–impactor model proposed in Paper E for simulating soft-body impact could be fur-
ther developed. For instance, the accuracy could be evaluated for various load cases, fixing
methods, and glass panel sizes. Also, an implementation of loss-of-contact could be con-
sidered, and the influence of in-plane inertia could be studied for cantilevered glass structures.
Moreover, modeling strategies for considering the dynamic response of the supporting struc-
ture could be studied; e.g., guidelines for when the supporting structure can be considered rigid
could possibly be established, and modeling strategies for taking into account the flexibility
could be investigated.

The approach using static modal derivatives for efficient analysis of flat and slightly curved
structures, as suggested in Paper D, could be further evaluated. In particular, it is of in-
terest to investigate for which strain levels this simplified approach provide satisfactory results.
Moreover, the suggested generalization, where the modal derivatives are computed using the
residual flexibility, could be applied and evaluated for thin-walled structures with arbitrary
geometries.
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Abstract 

In the present paper, linear substructures with nonlinearities localized at their interfaces, such 

as the joints in a beam structure, are studied. By subdivision of the total structure into substruc-

tures, reduced subsystems are obtained by component mode synthesis. Nonlinear elements are 

introduced at supports or between substructures. A numerical example is presented where a 

beam subjected to blast loading is studied. The influence of the nonlinear behavior as well as 

the number of retained fixed-interface normal modes in the reduced subsystems are evaluated. 

The response is also compared to the response of equivalent single-degree-of-freedom systems, 

which are frequently employed in blast load design calculations. For the load cases studied, 

the displacement computed from an equivalent single-degree-of-freedom system correspond 

fairly well to the displacement given by a refined two-dimensional beam model, reduced by 

substructuring. In contrast, the shear force differs significantly due to that higher order modes 

are neglected in the single-degree-of-freedom system.  

Keywords: Substructuring, Component Mode Synthesis, Blast Loading, Structural Dynamics 
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1 INTRODUCTION 

Design of structures subjected to accidental loading, such as impact and blast loading, can 

be challenging compared to the design of static loading. As for dynamic loading in general, the 

structure mass, stiffness and strength affect the response and must be considered to determine 

whether a certain design fulfill the design code requirements. Consequently, it is often neces-

sary to consider accidental loads in both the conceptual and detailed design phase and, therefore, 

it is important to employ simplified, conservative and computationally efficient models to esti-

mate the structure response in a time-efficient manner. Moreover, the response computed from 

a large complex nonlinear model can be difficult to interpret and verify, hence, a smaller and 

less complex model simplifies the result evaluation.  

In the present paper, linear substructures with nonlinearities localized at their interfaces, such 

as the joints in a beam structure, are studied. By subdivision of the total structure into substruc-

tures, reduced subsystems are obtained by dynamic substructuring [1]. Nonlinear elements are 

introduced at supports or between substructures [3]. The concept is presented in a numerical 

example in which a simply supported beam subjected to blast loading is studied. The influence 

of the nonlinear behavior as well as the number of retained fixed-interface normal modes in the 

reduced subsystem are evaluated. The response is also compared to the response of equivalent 

single-degree-of-freedom (SDOF) systems which are frequently employed in blast load design 

calculations. 

2 REDUCED ORDER MODELING OF BEAMS SUBJECTED TO BLAST 

LOADING 

The response of a linear structural dynamic system can be analyzed in a computationally 

efficient manner by considering an approximate reduced order model. For example, the re-

sponse of a few important eigenmodes can form a reduced model. However, in analyses related 

to blast loading it is important to include the nonlinear behavior to ensure a model that predicts 

a realistic structural response. The material nonlinearities are often localized to certain areas 

such as plastic hinges in heavily loaded beams and plates. Hence, the structure can be subdi-

vided into substructures with a linear response, connecting the nonlinear elements introduced 

at the supports or between substructures. Since each subsystem is linear, dynamic substructur-

ing can be employed to form a reduced model.  

2.1 Impulse pressure due to unconfined explosion 

An unconfined explosion results in a shock wave that moves radially away from the center 

of the explosion [6]. Upon impact, the initial wave is reinforced and reflected. The reflected 

impulse acting on the structure is characterized by a very large pressure and short duration. For 

design purposes, the reflected impulse can, in general, be replaced by an equivalent triangular 

pulse where the actual duration is replaced by a fictitious duration, calculated based on the peak 

reflected pressure and reflected impulse. Moreover, if the explosion is unconfined and the ex-

plosion center is reasonable far from the structure considered, the pressure acting on a structure 

member can, in general, be approximated by a uniform pressure. 

2.2 Single-degree-of-freedom systems 

Equivalent SDOF systems are frequently employed for the design of the semi-global re-

sponse of structural members subjected to blast loading, e.g. as proposed in [4]. This is a well-

established approach compatible with the requirements in several design codes, e.g. UFC [6]. 
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Equivalent SDOF systems can be derived for structures idealized as either beams or plates. In 

the study presented here only beams are considered.  

The main assumption when developing an equivalent SDOF system is that the member de-

forms according to an assumed shape, φ(x), which is constant through time. Hence, the member 

deflection u(x,t) can be expressed as φ(x)us(t), where us is the displacement of a reference point, 

e.g. the point of maximum displacement, see Figure 1. The shape function φ(x) is often chosen 

as a Ritz vector corresponding to the static deflection of the external pressure. Note that, as for 

the deformed shape, the load distribution is assumed constant through time. The beam model is 

then transformed into a SDOF system by calculating an equivalent mass, stiffness and load in 

terms of the reference point displacement.  

The equation of motion for an equivalent SDOF system can be expressed as: 

κmmü + κkR(u) = κFp(t) (1) 

where κm, κk and κF  are dimensionless transformation factors for the mass (m), resistance (R) 

and load (p), respectively. The mass factor, by which the total distributed mass of an element 

is multiplied to obtain an equivalent lumped mass, is derived by assuming conservation of ki-

netic energy [4]. If the mass is uniformly distributed, the mass factor for a beam with length L 

is given by: 

κm = 
1

L
∫

φ(x)
2

us
2

dx

L

0

 (2) 

The load factor, by which the total pressure on the element is multiplied to obtain an equivalent 

concentrated force, is derived by assuming conservation of external work [4]. If the external 

pressure is uniformly distributed, the load factor for a beam with length L is given by: 

κF = 
1

L
∫

φ(x)

us

dx

L

0

 (3) 

The resistance factor, by which the resistance of the structural element is multiplied to obtain 

the equivalent resistance of the SDOF system, is derived by assuming conservation of strain 

energy for the structural member, computed based on the assumed deformed shape. According 

to [4], it can be shown that the resistance-factor must always be equal to the load-factor, i.e.: 

κk = κF (4) 

Hence, the equation of motion (1) for the SDOF system can be rewritten as 

κm

κF

mü + R(u) = p(t) (5) 

Consequently, the beam can be transformed into an equivalent SDOF system by scaling the 

mass only and, therefore, it is convenient to define a load-mass factor κmF = κm κF⁄ . 
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Figure 1: Assumed shape for elastic (a) and plastic (b) response. 

When the ultimate moment capacity of a beam member is reached, in general, a plastic hinge 

is developed, which indeed affect the shape of the deflection. Hence, the assumed deflection 

shape considered for an elastic response, reasonable in the initial stage, differ significantly from 

the assumed plastic deflection shape which is reasonable in the second stage where a plastic 

hinge has been developed, cf. Figure 1. Moreover, the transformation factors given by Eqs. (2) 

and (3), which are constant through time, depend on the assumed shape φ(x). Consequently, the 

equivalent SDOF system must be derived based on either an elastic or plastic deflection shape. 

For example, the κmF factors corresponding to a simply supported beam subjected to a uniform 

pressure are 0.787 and 0.667 for an elastic and plastic deflection shape respectively.  

For a simply supported beam subjected to a uniform pressure the ultimate resistance can be 

calculated as: 

Ru = 
8Mu

L
 (6) 

where Mu is the ultimate moment capacity, which implies that the maximum shear force at the 

supports can be calculated as V = Ru/2. Hence, the ultimate moment capacity has, in general, a 

large impact on the shear force magnitude and clearly a larger moment capacity is not beneficial 

(however, the moment capacity must be sufficiently large to ensure that the plastic rotation is 

smaller than the rotation capacity). For example, if the amount of bending reinforcement in a 

concrete member is increased the amount of shear reinforcement due to blast loading must be 

increased accordingly. Since both the mass, stiffness and ultimate capacity affect the response, 

the design often requires iterative design calculations where simplified models, as the equiva-

lent SDOF system, are important.  

However, it should be noted that the shear force given by an equivalent SDOF system is 

computed with the assumption that the beam deflection shape is constant through time and, 

consequently, higher order modes are neglected. Furthermore, the shear forces are in general 

large at the initial stage, due to that higher order modes are excited. As e.g. observed in [7], the 

neglection of higher order modes indeed affect the precision of the shear force computed from 

an equivalent SDOF analysis.  

For concrete members, a shear failure at the initial stage is referred to as a direct shear failure 

and is characterized by a rapid propagation of a vertical crack, located at the supports. Unlike 

diagonal shear failure, shear reinforcement perpendicular to the beam axis does not prevent 

this type of failure, instead inclined bars may be needed to ensure an adequate design. However, 
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it is in general not possible to determine the actual magnitude of the maximum shear force based 

on the response computed from an equivalent SDOF system. 

2.3 Substructuring of beam model with plastic hinges 

The response of a beam subjected to blast loading is, in general, elastic in a first stage and a 

mixture of both elastic and plastic in a second stage. Furthermore, in contrast to the response 

computed from an equivalent SDOF system, the fundamental mode as well as higher order 

modes are excited. To fully capture the structural behavior, it is therefore necessary to employ 

a nonlinear multi-degree-of-freedom (MDOF) model. Nonlinear analyses of large systems are, 

however, time consuming and might not be suitable in a design calculation. Nevertheless, a 

more refined model, compared to an equivalent SDOF system, might be necessary to enable 

accurate predictions of both the maximum displacement and shear force. 

If the material nonlinearities are localized to certain areas, such as plastic hinges in heavily 

loaded beams, the total structure can be subdivided into substructures. Each substructure then 

consists of a subsystem with a linear response, connecting the nonlinear elements introduced at 

interfaces, i.e. at the supports or between substructures. Since each subsystem is linear, it is 

straight-forward to employ component mode synthesis (CMS) to form a reduced model [3]. 

Hence, a reduced model that captures a combined elastic and plastic response as well as includ-

ing higher order modes can be derived. This procedure can be extended further to include both 

material and geometrically nonlinearities, i.e. to allow for large translations and rotations of the 

substructures. However, in the study presented here only material nonlinearities are considered. 

The substructures can for example be reduced by condensation methods, such as Guyan re-

duction [2], where only physical DOFs are involved or by hybrid methods, such as component 

mode synthesis by Craig-Bampton or Krylov subspace component mode synthesis, where both 

physical and generalized DOFs are considered [8]. 

A finite element formulation of a subsystem leads to a linear equation of motion of the fol-

lowing form: 

Mü + Cu̇ + Ku = p (7) 

Neglecting damping the partitioned mass and stiffness matrices can be written as: 

[
Mii Mib

Mbi Mbb
] [

üi

üb
]  + [

Kii Kib

Kbi Kbb
] [

ui

ub
]  = [

p
i

p
b
] (8) 

where the subscripts i and b denotes the interior and interface boundary DOFs, respectively. If 

assumed force-free, the interior DOFs can be expressed as: 

ui = -Kii
-1(Miiüi + Mibüb + Kibub) (9) 

By neglecting the inertia terms this leads to the following transformation matrix: 

[
ui

ub
]  = [

-Kii
-1

Kib

Ibb

] ub = [
Ψib

Ibb
] ub = TGub (10) 

where TG is the Guyan transformation matrix. By applying the transformation matrix to Eq. (7) 

a reduced system is given by: 

MGüb + CGu̇b + KGub = p
G (11) 
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where, 

MG = TG
T
MTG 

CG = TG
T
CTG 

KG = TG
T
KTG 

p
G

 = TG
T
p 

(12) 

The Craig-Bampton method combines the retained physical DOFs with fixed-interface normal 

modes, obtained by the generalized eigenvalue problem: 

(Kii - ωj
2Mii){ϕ

i
}

j
 = 0 (13) 

The eigenvectors are then normalized in order that 

Φii
T
MiiΦii = Iii (14) 

where Φii is the complete set of fixed-interface normal modes. The physical coordinates can be 

represented as: 

[
ui

ub
]  = [

Φik Ψib

0bi Ibb
] [

q
k

ub
]  = TC-B [

q
k

ub
] (15) 

where the subscript k denotes the retained (kept) fixed-interface normal modes, TC-B is the 

Craig-Bampton transformation matrix, q
k
 is the generalized DOFs and [Ψib Ibb]Tis the inter-

face constraint mode matrix, equal to the Guyan transformation matrix. Hence, the Craig-

Bampton method can be interpreted as an extension of the Guyan reduction where the neglected 

inertia terms are compensated by including a set of fixed-interface normal modes.  

By applying the transformation matrix to Eq. (7) a reduced system is given by: 

MC-B [
q̈

k

üb

]  + CC-B [
q̇

k

u̇b

]  + KC-B [
q

k
ub

]  = p
C-B

 (16) 

where, 

MC-B = TC-B
T
MTC-B 

CC-B = TC-B
T
CTC-B 

KC-B = TC-B
T
KTC-B 

p
C-B

=TC-B
T
p 

(17) 

Note that each constraint mode is the deflection shape due to a unit displacement of a bound-

ary DOF, while the interior DOFs are force-free and the other boundary DOFs are held fixed, 

i.e. 

[
Kii Kib

Kbi Kbb
] [

Ψib

Ibb
] = [

0ib

Rbb
] (18) 

where Rbb is the reaction forces acting on the substructure. 

By using a similar procedure as presented above, the fixed-interface normal modes employed 

in the Craig-Bampton method can be replaced by other Ritz vectors, e.g. Krylov subspace vec-

tors derived from a suitable load distribution, see for example [5]. 
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3 NUMERICAL EXAMPLE: SIMPLY SUPPORTED CONCRETE BEAM 

SUBJECTED TO BLAST LOADING 

3.1 Reduced two-dimensional beam model 

The effect of higher order modes on the displacement and shear force is studied by evaluating 

the response for a simply supported concrete beam subjected to a uniform distributed impulse 

pressure. The beam length is L = 3 m and the cross-section width and height is 1000 mm and 

200 mm respectively. The load consists of a uniform reflected impulse pressure of 1500 Pa∙s. 

Two load cases are studied with a peak reflected pressure of 1000 kPa in Load Case 1 and 

300 kPa in Load Case 2, respectively. The pulse is approximated by an equivalent triangular 

pulse, hence, a fictitious duration can be calculated to 3 ms and 10 ms for Load Cases 1 and 2 

respectively. 

The beam is assumed to consist of concrete C30/37 with reinforcement Ø16s200 K500C-T. 

The modulus of elasticity for concrete and reinforcement steel is 32 GPa and 200 GPa respec-

tively and the density for reinforced concrete is set to 2500 kg/m3. The ultimate moment capac-

ity is set to Mp = 80 kNm. The response is calculated with a two-dimensional beam model with 

a total of 20 Euler-Bernoulli two-node beam elements, as shown in Figure 2. Due to symmetry, 

only half of the beam is included in the FE model. Furthermore, small deformations are con-

sidered and the axial DOFs of the beam elements are neglected. It is assumed that a plastic 

hinge can appear at the beam midspan only. The plastic hinge is modelled by adding a rigid-

perfectly plastic rotational spring to the rotational DOF at the symmetry line, as shown in Fig-

ure 2. Several effects are neglected in the model, e.g. catenary effects, reduced stiffness due to 

concrete cracking, concrete spalling etc. Nevertheless, the beam model is appropriate for eval-

uating the influence of higher order modes on the shear force and midspan displacement.  

The beam model consists of a linear elastic subsystem, namely the beam element assemblage, 

which is connected to a nonlinear element. As discussed in Section 2, a reduced model can 

therefore be obtained by substructuring, e.g. by Guyan reduction or CMS by Craig-Bampton. 

Only one boundary DOF is kept, i.e. the rotational DOF at the beam symmetry line, denoted 

with superscript b in Figure 2. All other DOFs are internal DOFs and denoted with superscript 

i in Figure 2. Accordingly, the fixed-interface normal modes are calculated with fixed bounda-

ries, i.e. with fixed rotation at the symmetry line. Hence, the substructure normal modes corre-

spond to the symmetric eigenmodes for a simply supported beam, which are also the only modes 

that are excited by a uniform load. Thus, for an elastic response the system response is equiva-

lent to the response of a linear elastic simply supported beam analyzed with modal truncation. 

Figure 2: Two-dimensional beam model with nonlinear rotational spring at the symmetry line. 
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Figure 3: First four fixed-interface normal modes. 

  

Figure 4: Constraint mode. 

3.2 Structural analysis and results 

In Figure 3 the first four fixed-interface normal modes are shown, which correspond to the 

first, third, fifth and seventh eigenmodes for a simply supported beam. Hence, by employing a 

symmetry model instead of a full model both the number of physical DOFs and modal coordi-

nates are halved. 

The constraint mode is shown in Figure 4 and correspond to a unit rotation of the boundary 

DOF, i.e. a unit rotation of the rotational DOF at the symmetry line. Hence, the constraint mode 

corresponds to a rigid body mode of the beam element assemblage which in turn correspond to 

the plastic deflection shape considered for an equivalent SDOF system, cf. Figure 1b. 

The nonlinear dynamic response is calculated using the Newmark β-method with γ = ½ and 

β = ¼ (constant average acceleration) combined with the modified Newton-Raphson method. 

The total analysis time is 50 ms and the time-stepping is performed with very fine time incre-

ment < 0.01 ms to ensure sufficient resolution of the shear force. 
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The midspan displacement and shear force at the supports are evaluated for the beam model 

reduced by both Guyan reduction and the Craig-Bampton method for Load Cases 1 and 2 re-

spectively. The response is compared to the response computed from an equivalent SDOF sys-

tem. The stiffness of the SDOF system is calculated based on an uncracked cross section and 

the ultimate resistance is computed from the ultimate moment capacity, according to Eq. (6). A 

plastic deflection shape in accordance with Figure 1b is considered when determining the load-

mass factor. 

Figure 5: Midspan displacement vs. time for Load Case 1. 

Figure 6: Midspan displacement vs. time for Load Case 2. 
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As shown in Figure 6, the midspan displacement for Load Case 2 calculated by the two-

dimensional beam model is close to the displacement computed from an equivalent SDOF sys-

tem. However, for Load Case 1 the response somewhat differs due to a larger influence of 

higher order modes, see Figure 5. Furthermore, as shown in Figures 5 and 6, only two fixed-

interface normal modes need to be retained to obtain a response very close to the response for 

the full unreduced model.  

  

Figure 7: Shear force at supports for Load Case 1. 

  

Figure 8: Shear force at the supports for Load Case 2. 
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The response obtained with Guyan reduction is included for comparison only. Additional 

boundary (or master) DOFs must be added to increase the precision of the Guyan reduction. As 

shown in Figures 5 and 6, a Guyan reduction where only the rotational DOF at the symmetry 

line is kept correspond to an equivalent rigid-plastic SDOF system, i.e. only the rigid mode of 

the beam assemblage is activated and the external work is dissipated by plastic deformation of 

the rigid-perfectly plastic rotational spring alone. 

The shear force at the supports for Load Cases 1 and 2, computed from both an equivalent 

SDOF system and the two-dimensional beam model, are shown in Figures 7 and 8, respectively. 

As shown in the figures, the shear force computed from the two-dimensional model is, as ex-

pected, much larger due to that higher order modes are considered. The difference is greater for 

Load Case 1, where the impulse duration is shorter. As shown in Figure 7, at least four fixed-

interface normal modes need to be included to capture the peak shear force. For Load Case 2, 

however, the shear force computed from a reduced model with two to three fixed-interface 

normal modes is fairly close to the peak shear force given by the full model.  

Note that the shear force is V ≠ 0 at t = 0. This is due to the discretization of the beam 

substructure. Half of the pressure on the beam element connected to the vertical support is in-

stantaneously transferred to the support. Hence, the shear force/reaction force at t = 0 due to 

discretization can be calculated as V(0) = p(0)∙L/(2∙2∙n), where n is the number of beam ele-

ments in the symmetry model. Since a Guyan reduction only includes a rigid body mode of the 

beam elements the shear force should clearly be equal to zero, thus, the shear force shown in 

the diagrams is only due to the discretization of the beam assemblage. For Load Cases 1 and 2 

the shear force due to discretization is calculated to 38 kN and 11 kN, respectively, i.e. in ac-

cordance with the response shown in Figures 7 and 8. 

4 CONCLUSIONS 

In the present paper, linear substructures with nonlinearities localized at their interfaces, such 

as plastic hinges in a beam member, are studied. By subdivision of the structure into substruc-

tures, reduced subsystems are obtained by use of the Craig-Bampton method. A numerical ex-

ample is presented where a simply supported beam subjected to blast loading is studied. 

For the Load Cases studied, the midspan displacement computed from an equivalent SDOF 

system, which are frequently employed in blast load design calculations, correspond fairly well 

to the displacement computed from a refined two-dimensional beam model, reduced by sub-

structuring. In contrast, the shear force computed from an equivalent SDOF systems differ sig-

nificantly from the peak shear force given by a refined two-dimensional beam model. This is 

due to that higher order modes are neglected in the equivalent SDOF system. As expected, the 

difference is greater for Load Case 1, where the beam is subjected to a pulse with higher peak 

pressure and shorter duration. To capture the peak shear force at least the first three to four 

fixed-interface normal modes need to be included in the reduced model. However, one bound-

ary DOF and three to four generalized DOFs result in a MDOF system with five DOFs, which 

is still a very small system appropriate for time efficient iterative design calculations in both 

the conceptual and detailed design phase. 

For a simply supported beam with a plastic hinge at the midspan the boundary DOFs in the 

Craig-Bampton method can be selected so that the linear response is equivalent to a linear elas-

tic beam analyzed by modal truncation. Furthermore, the fixed-interface normal modes em-

ployed in the Craig-Bampton method can be replaced by other Ritz vectors, such as Krylov 

subspace vectors, which are derived from the current load configuration. Krylov subspace com-

ponent mode synthesis can be expected to be efficient if the load configuration does not match 

the first normal modes. 
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MODEL REDUCTION FOR STRUCTURES SUBJECTED TO BLAST 
LOADING BY USE OF DYNAMIC SUBSTRUCTURING 

Linus Andersson, Peter Persson, Kent Persson 

Keywords:

Abstract. In the present study, strategies are developed to enable time-efficient models for
structures subjected to blast loading, appropriate for use in a structural design process. Dy-
namic substructuring is employed to obtain reduced models with localized nonlinearities, such 
as predefined plastic hinges in a beam–column structure. The parts of the substructures that 
remains linear elastic are modeled by Ritz-vectors whereas parts with a nonlinear response are 
retained as physical degrees-of-freedom. Furthermore, a time-stepping method is presented 
that is shown to be suitable for reduced models including local and predefined rigid–plastic 
behavior. The proposed methodology is applied and demonstrated in a numerical example of a 
concrete frame structure. Both the well-established Craig-Bampton method and reduction ba-
ses enriched by so-called correction modes are evaluated. For the load case studied, it is shown
that the standard Craig-Bampton technique is suitable for reducing the substructures. Further-
more, it is shown that only a few Ritz-vectors are needed to sufficiently describe the deformation
of the structure. However, additional modes are needed to ensure an accurate representation
of the interface forces between the substructures. 
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1 INTRODUCTION

2 SIMPLIFIED MODELING OF CONCRETE STRUCTURES SUBJECTED TO 
BLAST LOADING
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2.1 Impulse pressure due to unconfined explosion

2.2 Reduced models for design of concrete members

3 DYNAMIC SUBSTRUCTURING OF STRUCTURES WITH PLASTIC HINGES
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3.3 Substructure coupling procedures
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4.1 Time-stepping algorithm
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4.2 Remarks on performance and accuracy 
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5 NUMERICAL EXAMPLE: CONCRETE FRAME SUBJECTED TO BLAST 
LOADING

t

5.1 Frame structure model reduced by dynamic substructuring
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5.2 Dynamic response analysis and results
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A B S T R A C T

In the paper, strategies for reduced order modeling of glass panels subjected to soft-body impact are developed
by means of dynamic substructuring. The aim is to obtain accurate and computationally efficient models for
prediction of the pre-failure elastic response. More specifically, a reduction basis for the subsystem representing
the glass panel is established using correction modes, being fixed-interface component modes that considers
loading on the substructure boundary. The soft-body impactor is effectively modeled by a nonlinear single-
degree-of-freedom system, calibrated by experimental data. Furthermore, a simplified and computationally
efficient modeling approach is proposed for the contact interaction between the glass panel and the impact
body. An experimental campaign was carried out to validate the developed models. In particular, the glass
strain was measured on simply supported monolithic glass panels subjected to soft-body impact. Additional
impact tests were performed to determine the dynamic characteristics of the impactor. Moreover, a detailed
numerical reference model was developed to evaluate the discrepancy between the experimental tests and
the results provided by the reduced order models. The developed models show good agreement with the
experimental results. For the studied load cases, it is shown that an accurate prediction of the pre-failure glass
strain can be obtained by systems including only a few generalized degrees-of-freedom.

1. Introduction

During the last few decades, glass has become an increasingly com-
mon building material in modern architecture. Glass is not only used
for building enclosures and translucent facades allowing sunlight into
the building, but also in load-bearing structures and glazed barriers,
such as full-height façades and parapets for balconies or interior level
changes.

If the glass barrier constitutes a safety risk for building occupants,
building regulations in most countries prescribes that the glazing must
be designed to withstand accidental impact of humans. A dynamic
verification is then required, usually performed by experimental testing
using the standardized soft-body pendulum for glass classification ac-
cording to the European Standard EN 12600 [1]. The test arrangement
used for glass classification, shown in Fig. 1, consists of a glass panel
fixed in a steel frame and a soft impact body on a pendulum, represent-
ing a human body falling towards the glass panel. Hence, a soft-body
impact is considered, where the impact body is deformed under impact
and thus redistribute the impact load.

Impact tests can be very costly, especially for large and complex
glass structures. Furthermore, it can be difficult to set-up a test arrange-
ment that accurately capture the structural behavior of the underlying
load-bearing structure. Moreover, a structural verification using tests
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applied to the real structure can be both costly and requires a re-
design of the existing structure if the load-bearing capacity turns out
to be inadequate. Therefore, it can be preferable to instead perform
the verification by means of dynamic calculation methods. Beside a
reduced cost and the possibility to easily evaluate different design
concepts, numerical analyzes enable an increased insight into the struc-
tural behavior and additional control of e.g. structural and material
parameters. In a physical impact test, however, the material parameters
can vary depending on the specific glass specimen, why several tests are
needed to adequately account for statistical variations. The validity of
using numerical simulations for strength evaluation of glass structures
have been shown by several researchers, see e.g. [2–5].

Static load cases are often verified by means of a commercial
finite element (FE) software. For this purpose, a specialized FE tool
ClearSight [6] has been developed at the Department of Construction
Science, Lund University, being streamlined for an interactive and
efficient verification of glass panels subjected to static load cases.
However, using an FE analysis to calculate the dynamic response due
to impact can be time-consuming and computationally expensive. In
general, a nonlinear transient response analysis is required, and the FE
model should include the glass panel and its fixings, the impactor, and
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Fig. 1. Test frame with impactor according to the European Standard EN 12600 [1].

a suitable description of the contact interaction between the impactor
and the glass structure. To set up and perform such an analysis can be
time-consuming and often requires a relatively advanced FE software
and extensive user knowledge.

To enable a more time-efficient and straightforward approach for
evaluating dynamic load cases, reduced modeling techniques special-
ized for glass panels subjected to impact loading have been proposed
by several researchers, see e.g. [7–14]. For instance, in [7], reduction
bases were successfully constructed using predefined load patterns,
employed for reduced modeling of glass panels in a Rayleigh–Ritz
fashion. In [8], various reduced models of unsupported glass panels
subjected to low-velocity impact were investigated. For example, a
three degree-of-freedom (DOF) spring–mass model was proposed, con-
structed by calibrating the system matrices to the strain energies and
eigenfrequencies of the fundamental flexural modes of a glass panel
in free–free conditions. Thus, the mode shapes are used implicitly for
identifying eigenfrequencies and energies, which are then employed in
a second stage for calibrating the lumped-mass systems. Furthermore,
a lumped mass model based on Hertz contact law (see e.g. [15]) was
proposed for modeling the impactor. However, the low-velocity impacts
studied in [8] were generated using a specialized spherical impactor,
particularly suitable for approximation using Hertz law. Further, the
reduced models were successfully validated by experimental studies,
suggesting that the importance of higher order modes increases for
larger glass panels and a stiffer impactor. In [10], a nonlinear SDOF
model was proposed for modeling the impactor with a spring force
expressed in terms of a quadratic polynomial. Further, the contact be-
tween the impactor tires and the glass panel was modeled by assuming
a uniform contact stress applied on a contact area having a predefined
elliptical shape, with a variable size governed by the impactor spring
displacement. This impactor model has also been implemented in the
commercial finite element package SJ Mepla [16], where it is typically
assembled with a glass structure represented by shell elements consid-
ering large deflection theory. A reduction on the glass substructure level
is, however, not possible. In [11], a simplified engineering model based
on equivalent static loads is presented, which enables a very quick and
straightforward verification of impact loading. However, because the
response of higher order modes is neglected, it is only applicable for
two- and four-sided rectangular, continuously supported glass panels
within a limited range of dimensions.

In the present paper, strategies for reduced order modeling of soft-
body impact on glass panels are developed by means of dynamic

substructuring (DS). The aim is to achieve an accurate prediction of
the pre-failure elastic response while significantly reducing the com-
putational cost. More specifically, a reduction basis for the subsystem
representing the glass panel is established using correction modes,
being fixed-interface component modes that considers loading on the
substructure boundary [17,18]. Because information related to the
loading pattern is considered in the derivation, all the generated cor-
rection modes will, by definition, be excited by the applied load. In
contrast, a reduced basis established using eigenmodes may include
redundant modes, e.g. anti-symmetric modes that cannot be excited
by a centric impact. The soft impact body is effectively modeled by a
nonlinear viscous single-degree-of-freedom (SDOF) system, calibrated
by experimental data. Furthermore, a simplified and computationally
efficient modeling approach, assuming a constant contact area, is em-
ployed for modeling the contact interaction between the glass panel and
the impact body. The developed reduced order models are intended for
analyzing glass panels with various support configurations. However,
because a linear response is assumed for the glass substructure, second
order effects (e.g. due to membrane action) is not considered. Thus,
the proposed models are suitable for analyzing glass panels where
the response is mildly influenced by second order effects or where
an assumed linear response of the glass structure yields a reasonably
conservative design.

An experimental campaign was carried out to validate the devel-
oped models. In particular, the glass strain was measured on simply
supported monolithic glass panels subjected to impact loading. The test
arrangement was similar to the standardized impact test for glass classi-
fication described in EN 12600 [1]—the glass panels were mounted in a
steel frame and impact loads were generated by releasing the standard-
ized EN 12600 impactor from various drop heights. Additional impact
tests on a very stiff steel column (which was considered rigid) were also
performed to determine the dynamic characteristics of the impactor.
The test arrangement and the standardized impactor employed in the
experimental campaign are shown in Fig. 2.

To evaluate the differences between the measured glass strain and
the strain provided by the reduced models, a detailed FE model, herein
referred to as the reference model, was established using the commer-
cial FE software Abaqus [19]. The reference model includes a penalty
contact formulation to consider the interaction between the impactor
and the glass panel, geometric nonlinearity, hyperelastic constitutive
models for rubber, and a sophisticated modeling of the tire air pressure,
aiming to mimic the impact tests. Evaluating the deviation between the
response computed with the reduced models, the reference model and
the experimental tests makes it possible to distinguish between errors
related to modeling abstractions and simplifications employed in the
reduced models and other, unknown error-sources.

To summarize, the aim of the paper is to:

• develop accurate reduced order models for computation of the
pre-failure glass strain, suitable for implementation in
user-friendly design tools,

• validate the developed models by experimental data,
• set up a detailed numerical reference model to get further in-

sight into the structural behavior and to evaluate the discrep-
ancy between measurements and the response computed with the
reduced order models.

The paper is structured as follows. In Section 2, reduced modeling
concepts for simulating soft-body impact are presented, including tech-
niques for reduced modeling of the impactor, the glass panel, and the
contact interaction. In Section 3, a detailed FE model of the standard-
ized impactor is presented, herein referred to as the reference model,
being used for calibration as well as validation of the reduced models.
Experimental tests are presented and discussed in Section 4—both
experiments involving testing of glass panels subjected to soft-body
impact as well as tests to characterize the dynamic properties of the
impactor. In Section 5, calibrations of the impactor models as well as
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Fig. 2. Experimental set-up for glass impact tests (a) and impactor (b).

a validation of the assembled reduced models are presented, both by
comparison to experimental results and the response computed with
the numerical reference model. Finally, the results are discussed in
Section 6 and conclusions are presented in Section 7.

2. Reduced order models for analysis of soft-body impact on glass
panels

Upon impact, contact is established between the glass panel and
the impactor. Hence, a coupled system is formed consisting of the
glass structure and the impacting body. Glass is a brittle material that
is essentially linear elastic before failure [20]. Hence, if neglecting
geometric nonlinearity, the pre-failure structural response of mono-
lithic glass panels can be accurately represented by a linear model.
It should be noted, however, that in some applications the influence
of second order effects can be of considerable importance. For such
cases, a nonlinear model representing the glass substructure is required
for an accurate prediction of the glass strain. For example, the in-
vestigation presented in [7] shows that the influence of second order
effects (i.e. membrane action) are significant for four-sided, continu-
ously supported glass panels. Moreover, the investigations suggest that
the glass strain is overestimated if second order effects are neglected.
A linear representation of the glass panel can thus be suitable if the
response is only mildly influenced by second order effects or, arguably,
in applications where an assumed linear response yields a reasonably
conservative design. However, a nonlinear model may still be required
to properly describe the contact interaction between the soft impact
body and the glass panel, as well as the nonlinear behavior of the
pneumatic tires. For such models, the coupled system can be reduced
by means of DS, allowing for a reduction of the linear glass substructure
while retaining the physical DOFs interacting with the soft impact body.

Several DS methods have been developed since the late 1960s,
extensive reviews can be found in [21–23]. We base our approach on
the Craig–Bampton (C-B) method [24], which preserves the physical
boundary DOFs of the substructures. However, instead of using the
fixed-interface normal modes, employed in the standard C-B method, a
reduction basis for the glass substructure is established using correction
modes that considers loading on the substructure boundary, see further
Section 2.1. Furthermore, the impactor is effectively modeled as a
nonlinear single-degree-of-freedom (SDOF) system, see Section 2.2.

The subdivision of the coupled glass–impactor system into substruc-
tures is illustrated in Fig. 3. Interface reduction is applied, as further
discussed in Section 2.3, such that only one virtual boundary DOF
is retained for the glass substructure, corresponding to a weighted

Fig. 3. Subdivision of the coupled glass–impactor system into substructures. As further
described in Section 2.3, the blue arrows represent the contact forces acting on the glass
panel top surface, corresponding to a uniform contact pressure applied on the regions
with elliptical shapes, marked with purple dashed lines. The red arrow represent the
total contact force acting on a virtual node. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

mean vertical displacement of a group of nodes considered to be in
contact with the impactor tires (see Fig. 3). The reduced substructures
are assembled in a standard manner to form a reduced model of the
coupled system. Strategies for computing the dynamic response of the
assembled system is further discussed in Section 2.4.

2.1. Reduced order modeling of glass panels

A reduction of a system including local nonlinearities, such as
the coupled glass–impactor system, necessitates a DS technique that
preserves the physical boundary DOFs. For example, the standard C-
B method [24] or the MacNeal/Rubin approaches [25,26], which uses
the fixed- and free-interface normal modes, respectively, are suitable
methods. The preferred method can be due to both accuracy and com-
putational efficiency, which in turn considers both the computational
cost of establishing the reduction basis and the number of variables
required in the final system.

In the present study, a DS method that uses fixed-interface cor-
rection modes is employed for reducing the glass panel, an approach
first proposed in [17] and later extended in [18] to enable a mixed
usage of normal modes and correction modes (this method was also
employed in [27] for establishing reduced models of concrete frame
structures, where plastic joints were treated as local nonlinearities). For
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the glass–impactor system, this type of reduction basis turns out to be
favorable both regarding the system size and the computational cost
related to the computation of the reduction basis vectors. As shown in
the derivation below, the correction modes are generated by a sequence
of matrix–vector multiplications, whereas the fixed- or free-interface
normal modes are computed by solving an eigenvalue problem. Fur-
thermore, information related to loading on the substructure boundary
DOFs is considered in the derivation of the correction modes and,
consequently, redundant modes that cannot be excited by loads applied
on the substructure boundary are automatically excluded. Reduction
bases including correction modes, also referred to as block-Krylov
subspaces, can be derived in several ways. Following Rixen in [18],
but excluding the fixed-interface normal modes in the reduction basis,
the derivation is as follows.

Neglecting damping, the equation of motion for the glass substruc-
ture in partitioned form can be written as:
[

𝐌𝑖𝑖 𝐌𝑖𝑏
𝐌𝑏𝑖 𝐌𝑏𝑏

] [

�̈�𝑖
�̈�𝑏

]

+
[

𝐊𝑖𝑖 𝐊𝑖𝑏
𝐊𝑏𝑖 𝐊𝑏𝑏

] [

𝐮𝑖
𝐮𝑏

]

=
[

𝐩𝑖
𝐩𝑏

]

(1)

where the subscripts 𝑖 and 𝑏 denotes the interior and interface boundary
DOFs, respectively (the number of interior and boundary DOFs is
henceforth denoted 𝑛𝑖 and 𝑛𝑏, respectively, and the total number of
DOFs is thus 𝑛 = 𝑛𝑖 + 𝑛𝑏). Notice that, in this case, the virtual DOF
interacting with the impactor model is selected as the interface DOF
(cf. Fig. 3). Furthermore, if the external forces on the interior DOFs are
zero, the top row of Eq. (1) can be rewritten as:

𝐌𝑖𝑖�̈�𝑖 +𝐊𝑖𝑖𝐮𝑖 = −𝐌𝑖𝑏�̈�𝑏 −𝐊𝑖𝑏𝐮𝑏. (2)

Hence, the substructure can be considered excited by imposed displace-
ments on its boundary. Further, the internal displacements can be split
into a static part and a dynamic correction

𝐮𝑖 = 𝐮𝑖, stat + 𝐲 (3)

where 𝐮𝑖, stat = −𝐊−1
𝑖𝑖 𝐊𝑖𝑏𝐮𝑏 is the quasi-static solution, obtained from

Eq. (2) assuming �̈�𝑖 and �̈�𝑏 are zero. The dynamic part, 𝐲, is added to
the quasi-static solution to provide the dynamic response. Further, by
inserting Eq. (3) into Eq. (2) and rearranging the terms, the dynamic
response of 𝐲 can be expressed as

𝐌𝑖𝑖�̈� +𝐊𝑖𝑖𝐲 = −𝐌𝑖𝑖�̈�𝑖,stat −𝐌𝑖𝑏�̈�𝑏 = 𝐘�̈�𝑏 (4)

where 𝐘 = 𝐌𝑖𝑖𝐊−1
𝑖𝑖 𝐊𝑖𝑏 − 𝐌𝑖𝑏 can be interpreted as inertia forces

associated to static modes [18]. Thus, the acceleration of the boundary
DOFs, the mode shapes and the mass distribution determines the forces
applied in Eq. (4). This procedure can be continued by replacing 𝐲 with
a quasi-static solution and a dynamic correction 𝐳:

𝐲 = 𝐲stat + 𝐳 (5)

where 𝐲stat = 𝐊−1
𝑖𝑖 𝐘�̈�𝑏 is the static solution obtained from Eq. (4),

assuming �̈� is zero. By inserting Eq. (5) into Eq. (4), and rearranging
the terms, the dynamic response of 𝐳 can be expressed as

𝐌𝑖𝑖�̈� +𝐊𝑖𝑖𝐳 = −𝐌𝑖𝑖𝐊−1
𝑖𝑖 𝐘

d4𝐮𝑏
d𝑡4

. (6)

Thus, the response of the interior displacements is given by a sequence
of quasi-static solutions:

𝐮𝑖 = 𝐮𝑖, stat + 𝐲stat + 𝐳stat +⋯ (7)

where, in a similar manner, 𝐳stat = −𝐊−1
𝑖𝑖 𝐌𝑖𝑖𝐊−1

𝑖𝑖 𝐘
d4𝐮𝑏
d𝑡4 is the quasi-static

solution of Eq. (6). Hence, a recursive procedure is obtained, indicating
that the dynamic response can be approximated as

𝐮𝑖 ≈ −𝐊−1
𝑖𝑖 𝐊𝑖𝑏𝐮𝑏 +

𝑙
∑

𝑗=1

(

−𝐊−1
𝑖𝑖 𝐌𝑖𝑖

)𝑗−1 𝐊−1
𝑖𝑖 𝐘

d2𝑗𝐮𝑏
d𝑡2𝑗

(8)

where 𝑙 is the number of static corrections. Furthermore, the higher
order derivatives 𝑑2𝑗𝑢𝑏

𝑑𝑡2𝑗
can be treated as separate DOFs. Hence, instead

of computing a sequence of static corrections, a dynamic response
analysis is conducted by means of generalized coordinates representing
the amplitudes of the correction modes. The set of 𝑗th order correction
modes are then given by:

𝐱cor,𝑗 =
(

𝐊−1
𝑖𝑖 𝐌𝑖𝑖

)𝑗−1 𝐊−1
𝑖𝑖 𝐘 (9)

where 𝐱cor,𝑗 is a 𝑛𝑖 × 𝑛𝑏 matrix, containing the correction modes gen-
erated in iteration 𝑗. Notice that each correction mode is associated
to a boundary DOF. Consequently, a large number of boundary DOFs
result in a large number of correction modes being generated in each
iteration, why this method is best used in combination with an interface
reduction technique (see further Section 2.3).

To avoid numerical round-off errors, the correction modes are
generated using the modified Gram–Schmidt orthogonalization proce-
dure [28,29]. Furthermore, the static correction modes are not mutu-
ally mass- and stiffness orthogonal. This can e.g. be achieved by solving
a small eigenvalue problem:
(

𝐗⊤
𝑖𝑘,cor𝐊𝑖𝑖𝐗𝑖𝑘,cor

)

𝐙 =
(

𝐗⊤
𝑖𝑘,cor𝐌𝑖𝑖𝐗𝑖𝑘,cor

)

𝐙Λ (10)

where 𝐗𝑖𝑘,cor =
[

𝐱cor,1 𝐱cor,2 … 𝐱cor,𝑙
]

is the 𝑛𝑖 × 𝑘 correction
mode matrix, Λ is a diagonal matrix containing pseudo-frequencies and
𝐙 contains the corresponding eigenvectors, which are normalized such
that 𝐙⊤

(

𝐗⊤
𝑖𝑘,cor𝐌𝐗𝑖𝑘,cor

)

𝐙 = 𝐈. An orthonormal basis of the correction
modes is then provided by �̃�𝑖𝑘,cor = 𝐗𝑖𝑘,cor𝐙, and the relation between
the substructure physical DOFs and the generalized coordinates 𝐪 is
given by
[

𝐮𝑖
𝐮𝑏

]

=
[

�̃�𝑖𝑘,cor Ψ𝑖𝑏
𝟎𝑏𝑘 𝐈𝑏𝑏

] [

𝐪𝑘
𝐮𝑏

]

= 𝐓𝐪 (11)

where 𝐪𝑘 is the amplitudes of the (orthonormal) correction modes
and Ψ𝑖𝑏 = −𝐊−1

𝑖𝑖 𝐊𝑖𝑏 is the internal part of the constraint modes,
corresponding to the static displacement of a unit displacement on a
boundary node while the other boundary nodes are held fixed. Using
the transformation given by Eq. (11), the reduced system equations for
the glass substructure is obtained by means of subspace projection in a
standard fashion (see e.g. [23]), i.e.

�̃��̈� + �̃��̇� + �̃�𝐪 = 𝐟 (12)

where

�̃� = 𝐓⊤𝐌𝐓, �̃� = 𝐓⊤𝐂𝐓, �̃� = 𝐓⊤𝐊𝐓, 𝐟 = 𝐓⊤𝐟 .

Here, 𝐌, 𝐂 and 𝐊 are the un-reduced 𝑛×𝑛 system matrices and 𝐟 is a 𝑛×1
external force vector. Further, for this procedure to be meaningful, the
reduction basis should be established using a reduced set of generalized
coordinates, i.e. 𝑘 ≪ 𝑛.

Notice that the generated correction modes are in fact forming a
Krylov sequence [28], why these are also referred to as Krylov modes.
As indicated by Eq. (9), the modes can be generated by matrix–vector
multiplications. Furthermore, the generated modes, as derived above,
are force dependent in the sense that the substructure is considered
loaded by imposed displacements on its boundary.

An example is presented in Fig. 4 showing the constraint mode and
the first three fixed-interface normal modes for a simply supported
1000 mm × 800 mm glass panel. Further, Fig. 5 shows the constraint
mode and the first three correction modes. One boundary DOF is
considered, corresponding to the out-of-plane direction for the virtual
node shown in Fig. 3. As shown in Fig. 4, two of the fixed-interface
normal modes are anti-symmetric and cannot be excited by a vertical
force applied at the center of the panel. On the contrary, all the
correction modes will, by definition, be excited.
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Fig. 4. Constraint mode and first three fixed-interface normal modes.

Fig. 5. Constraint mode and first three correction modes.

2.2. Reduced order modeling of the impactor

The standardized impactor, described in EN 12600 [1], consist of
two pneumatic rubber tires and steel weights, as shown in Fig. 2b.
The impactor mass is almost entirely concentrated to two rigid solids
(i.e. the steel weights), positioned symmetrically around the impactor
centroid. Consequently, the impactor can, when in contact with the
glass panel, be well-represented by a generalized SDOF system. Hence,
the impactor mass is lumped to a single DOF. However, due to the
contact interaction between the tire and the glass panel, and the
behavior of the pneumatic tires, the SDOF model can be expected to
be nonlinear.

With inspiration from Hertz contact law [15], a nonlinear load–
displacement relation of the following form was assumed:

𝑓𝑠(𝑢) = 𝑘0𝑢 + 𝑘1𝑢
𝛼 (13)

Hence, an SDOF model consisting of a linear spring in parallel with a
nonlinear spring. Furthermore, a stiffness-proportional viscous damp-
ing model was adopted, such that the damping force 𝑓𝑑 is proportional
to the secant stiffness, i.e.

𝑓𝑑 (𝑢, �̇�) =
(

𝛽0𝑘0 + 𝛽1𝑘1𝑢
𝛼−1) �̇� (14)

where 𝛽0 and 𝛽1 are factors that determines the amount of damping
(i.e. a nonlinear Rayleigh 𝛽-damping). The damping factors and the
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Fig. 6. Example of contact area, shown in dark-gray color, provided by the reference
model.

unknown factors 𝑘0, 𝑘1, and 𝛼 were calibrated using experimental
data as well as results provided by the numerical reference model,
see further Sections 4 and 5. A similar nonlinear SDOF model was
proposed in [10] which, however, is undamped and calibrated based
on a polynomial expression (further, in [10], a reduction of the glass
substructure was not considered).

Note that a linear dashpot model, independent of the displacement,
result in an unrealistic damping force having its peak value just upon
impact, when the impactor mass velocity has its peak value. Nonethe-
less, it is of interest to investigate the accuracy of a linear approximate
model for the impactor, which enables the use of computationally
efficient analysis techniques. Approximate linear models representing
the impactor are further discussed in Section 5.1.

2.3. Coupling procedures and interface reduction

The impactor is modeled by an SDOF system, thus, only one DOF
is to be connected to the glass panel substructure. Furthermore, the
nonlinearity introduced due to contact between the impactor and the
glass panel is partly integrated in the nonlinear impactor model, as
described in Section 2.2. However, the distribution of the contact
stresses determines which DOFs on the glass panel that should be
included in the coupling.

Upon impact, contact is established and a small contact area is
formed which gradually increases when the impactor kinetic energy is
transformed into strain energy (and damping energy dissipation). Con-
sequently, the contact area varies significantly during impact. Nonethe-
less, an approximate modeling approach assuming a constant contact
area can be reasonably accurate, as e.g. demonstrated by the investiga-
tions presented in [7,11]. Hence, instead of including a full description
of the contact interaction the contact stress distribution 𝜃(𝑥, 𝑦) is as-
sumed constant while the total contact force 𝐹𝑐 (𝑡) varies through time,
i.e.

𝐹𝑐 (𝑡) = ∫ 𝜎𝑐 (𝑡, 𝑥, 𝑦)𝑑𝐴 = 𝐹𝑐 (𝑡)∫ 𝜃(𝑥, 𝑦)𝑑𝐴 (15)

where 𝜎𝑐 is the contact stress and ∫ 𝜃(𝑥, 𝑦)𝑑𝐴 = 1.
Furthermore, it is reasonable to assume that an approximation that

underestimates the contact area in general overestimates the peak-
strain in the glass panel, since the contact pressure can then be expected
to be larger. Accordingly, a more realistic peak-strain can be obtained
if a somewhat larger ‘‘best-estimate’’ contact area is chosen, assuming
that the peak-strain occur at a point in time when the contact area is
relatively large.

An example of the shape and size of the contact area computed with
the numerical reference model (see further Section 3.1) is shown as
dark-gray colored elliptical area in Fig. 6. Based on the results provided

by the reference model, the contact area in the reduced models is
assumed to have the shape of two ellipses, shown with purple dashed
lines in Fig. 7. The major and minor radius of the ellipses are set
to 90 mm and 50 mm, respectively. These values are assumed to
correspond to the contact area developed when the glass strain reaches
a peak value. However, the contact area varies both in time and for
different load cases, thus, the specified values should only be regarded
as rough estimations. Furthermore, a uniform contact stress is assumed
within the predefined contact area. In [10], the contact interaction
is modeled using a similar approach. In particular, a uniform contact
stress and elliptical contact surfaces are assumed. However, in [10], the
glass panel physical DOFs are retained in the final system, while such
an approach is more computationally expensive it allows for an update
of the contact area size in a direct time-stepping scheme.

The simplified modeling approach described above was imple-
mented by means of a multi-point constraint (MPC) where the interface
forces between a master DOF and a group of slave DOFs are controlled
using weight factors. This type of constraint can e.g. be found in
Abaqus [19], where it is referred to as a distributed coupling. However,
because no detailed information describing the implementation have
been found, a proposal of how to enforce such a MPC constraint is
presented herein. For simplicity, and the fact that only one master DOF
is present, a one-dimensional MPC is considered (i.e. only interface
forces perpendicular to the glass panel are considered). The MPC
constraint, as described below, was implemented in Matlab.

The basis in the MPC method is the requirement that the sum of
the interface forces acting on the slave DOFs is equal to the interface
force acting on the master DOF, cf. Fig. 7. This requirement is not
that restrictive and can in principle be fulfilled by any interface force
distribution, as long as equilibrium is maintained. As shown further
below, this is also why this method allows for customized interface
force distributions.

Assume that a set of weight factors 𝑤𝑖, related to the MPC slave
DOFs, are normalized such that

�̂�𝑖 =
𝑤𝑖

𝛴𝑝
𝑗=1𝑤𝑗

(16)

where 𝑝 is the number of slave DOFs. Further, the constraint is enforced
so that the displacement of the master DOF is the weighted mean value
of the slave DOFs [19], i.e.

𝑢(𝑚) =
𝑝
∑

𝑗=1
�̂�𝑗𝑢

(𝑠)
𝑗 (17)

which implies that the displacement associated to slave DOF 𝑖 can be
expressed as:

𝑢(𝑠)𝑖 = 1
�̂�𝑖

(

𝑢(𝑚) −
𝑝
∑

𝑗=1,𝑗≠𝑖
�̂�𝑗𝑢

(𝑠)
𝑗

)

. (18)

Hence, one DOF is redundant and can be calculated based on the
displacements of the other DOFs included in the MPC. Further, Eq. (18)
can be expressed in matrix form

𝐁𝐮 = 0 (19)

where 𝐁 is a vector containing the normalized weight factors �̂�𝑖 at
entries corresponding to slave DOFs, a negative one at the entry cor-
responding to the master DOF and zeros in the remaining entries. The
size of 𝐁 is 1× �̃�, where �̃� = 𝑛+1 (thus, one master DOF is added to the
glass panel substructure having 𝑛 DOFs).

The displacement can be partitioned in a set of unique 𝐮𝑢 and
redundant 𝐮𝑟 DOFs [21]. If slave DOF 𝑝 is chosen as the redundant
DOF, then 𝐮𝑟 = 𝑢(𝑠)𝑝 and 𝐮𝑢 =

[

𝟎 𝑢(𝑚) 𝑢(𝑠)1 … 𝑢(𝑠)𝑝−1

]

. Hence,

𝐁 =
[

𝐁𝑢 𝐁𝑟
]

[

𝐮𝑢
𝐮𝑟

]

= 0 (20)
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Fig. 7. Distributed coupling between a master node and the glass panel slave nodes. The interface forces acting on the slave nodes and the master node are shown in blue and red
color, respectively. The SDOF system representing the impactor is shown by the black dashed line. Note that the arrow length is not to scale. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

where 𝐁𝑢 =
[

𝟎 −1 �̂�1 … �̂�𝑝−1
]

and 𝐁𝑟 = �̂�𝑝. By rewriting
Eq. (20), the redundant displacement can be expressed as

𝐮𝑟 = −𝐁−1
𝑟 𝐁𝑢𝐮𝑢. (21)

Thus, the displacement vector can be expressed in terms of the unique
displacements,
[

𝐮𝑢
𝐮𝑟

]

=
[

𝐈𝑢𝑢
−𝐁−1

𝑟 𝐁𝑢

]

𝐮𝑢 = 𝐋𝐮𝑢 (22)

where 𝐋 is a �̃� × 𝑛 transformation matrix.
The equation of motion for a linear system, including the redundant

DOFs, can be written as:

𝐌�̈� + 𝐂�̇� +𝐊𝐮 = 𝐟 + 𝐠 (23)

where 𝐌, 𝐂 and 𝐊 are the �̃� × �̃� mass, damping and stiffness matrix, 𝐮
is the �̃�× 1 displacement vector, 𝐟 is the �̃�× 1 external force vector and
𝐠 is a �̃�×1 interface force vector, which is included due to the presence
of MPCs. Now, inserting the transformation according to Eq. (22) in
Eq. (23) and pre-multiplying with 𝐋⊤ yields:

𝐋⊤𝐌𝐋�̈�𝑢 + 𝐋⊤𝐂𝐋�̇�𝑢 + 𝐋⊤𝐊𝐋𝐮𝑢 = 𝐋⊤𝐟 (24)

thus,

𝐋⊤𝐠 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐈 𝟎 𝟎 ⋯ 𝟎 𝟎
𝟎 1 0 ⋯ 0 1

�̂�𝑝

𝟎 0 1 ⋯ 0 − �̂�1
�̂�𝑝

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝟎 0 0 ⋯ 1 − �̂�𝑝−1
�̂�𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝟎
𝑔(𝑚)

𝑔(𝑠)1
⋮

𝑔(𝑠)𝑝−1
𝑔(𝑠)𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝟎 (25)

where we use that −𝐁−1
𝑟 𝐁𝑢 = − 1

�̂�𝑝

[

𝟎 −1 �̂�1 … �̂�𝑝−1
]

.
As indicated by Eq. (25), the weight factors control the distribution

of the interface forces acting on the slave DOFs. For example, Eq. (25)
implies that 𝑔(𝑠)𝑝 = −�̂�𝑝𝑔(𝑚), 𝑔

(𝑠)
1 = �̂�1

�̂�𝑝
𝑔(𝑠)𝑝 = −�̂�1𝑔(𝑚) and, in general,

𝑔(𝑠)𝑖 = �̂�𝑖
�̂�𝑝

𝑔(𝑠)𝑝 = −�̂�𝑖𝑔(𝑚). Further, according to Eq. (16), the weight
factors are normalized, which implies that
𝑝
∑

𝑗=1
𝑔(𝑠)𝑗 =

𝑝
∑

𝑗=1
−𝑔(𝑚)�̂�𝑗 = −𝑔(𝑚)

𝑝
∑

𝑗=1
�̂�𝑗 = −𝑔(𝑚). (26)

Hence, equilibrium is maintained. Moreover, it should be noted that the
above formulation allows for arbitrary weight factors, e.g. to consider
a non-uniform interface force distribution or a non-uniform element
mesh.

2.4. Dynamic response analysis

In the experimental tests, the pendulum impactor is released from a
specific drop height and starts a swing motion until, at its lowest point,
impact with the glass panel. The numerical analyzes are initiated just
upon impact. Thus, the dynamic response of the glass–impactor system
is obtained by solving an initial value problem—the external forces are
zero and an initial velocity is prescribed to the impactor. The initial
velocity 𝑣0,imp is computed based on the pendulum drop height:

𝑣0,imp =
√

2𝑔ℎ (27)

where 𝑔 is the gravitational acceleration and ℎ is the drop height.
Using this approach, the impactor angular velocity is assumed negli-
gible which is reasonable considering that the length of the pendulum
employed in the experimental campaign was approximately 2 m. (If
assuming rigid body motion it follows that the ratio between the linear
and rotational kinetic energy upon impact is given by 𝐸𝜔0

/𝐸𝑣0 =
𝐼/(𝑚𝐿2) < 1%, where 𝑚 and 𝐼 are the impactor mass and moment of
inertia, respectively, and 𝐿 is the distance between the impactor center
of mass and the pendulum fixed point.)

Solution methods for both linear and nonlinear systems are investi-
gated. Furthermore, only the first phase, when there is contact between
the impactor and the glass panel, is considered.

2.4.1. Linear systems with nonclassical damping
If the coupled impactor–glass structure is approximated using a

linear model with classical damping, a closed-form solution is straight-
forward to obtain by means of modal expansion techniques applied
to the assembled system [29]. However, this approach is in general
not feasible for systems with non-classical (also referred to as non-
proportional) damping since a projection of the system equations onto
a modal basis would then not result in a diagonal damping matrix.
According to Section 5.1, the damping ratio of a linear impactor model
can be estimated to be about 5%, whereas the damping ratio of the sim-
ply supported glass panels is approximately 1.7%, as discussed further
in Section 4. Thus, the damping of the assembled system is indeed non-
proportional and, consequently, a traditional modal analysis cannot
be utilized. Nonetheless, a closed-form solution can be achieved. For
example, by means of the complex damped eigenmodes using a state-
space formulation (see e.g. [30]) or by use of the so-called modal strain
energy (MSE) method, which is an approximate method to account
for non-proportional damping [31,32]. An advantage using the MSE
method compared to a state-space formulation is that the number
of system variables are halved and that imaginary variables can be
avoided. Furthermore, the numerical investigations presented in [32]
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suggests that the MSE method is accurate for systems with damping less
than approximately 20%, thus, it can be assumed sufficiently accurate
for the studied glass–impactor system.

The damping ratio of an SDOF system representing a modal coordi-
nate can be expressed as:

𝜁 =
𝐸𝐷

4𝜋𝐸𝑆
(28)

where 𝐸𝐷 is the one-cycle modal energy loss due to viscous damping
and 𝐸𝑆 is the modal strain energy amplitude, given by:

𝐸𝑆 = 1
2
𝝓⊤
𝑗 �̂�𝝓𝑗 (29)

where �̂� is the �̂� × �̂� global stiffness matrix, representing the coupled
impactor–glass system, and 𝝓𝑗 is the eigenvector for mode 𝑗, obtained
by solving the generalized eigenvalue problem:
(

�̂� − 𝜔2
𝑗 �̂�

)

𝜙𝑗 = 0 (30)

where 𝜔𝑗 is the corresponding eigenfrequency. Notice that the elements
of the eigenvectors includes physical as well as generalized DOFs.

In accordance with the MSE method, the modal energy loss is
computed as:

𝐸𝐷 = 𝜋𝜔𝑗𝝓⊤
𝑗 �̂�𝝓𝑗 (31)

where 𝜔𝑗 is the eigenfrequency for mode 𝑗 and �̂� is the �̂� × �̂� global
damping matrix, containing the damping submatrices related to the
glass and impactor, respectively. It follows that the modal damping
ratio for mode 𝑗 can be computed as:

𝜁𝑗 =
𝝓⊤
𝑗 �̂�𝝓𝑗

2𝜔𝑗𝝓⊤
𝑗 �̂�𝝓𝑗

(32)

where �̂� is the �̂� × �̂� global mass matrix.
As in a traditional modal decomposition applied to systems ex-

pressed in terms of physical DOFs, a linear system reduced by means
of DS can be expressed in modal coordinates:

𝐪 =
∑

𝑗
𝝓𝑗𝜂𝑗 (33)

where 𝜂𝑗 is the modal coordinate for mode 𝑗.
If neglecting damping, the system equations can be diagonalized by

projecting the system onto the modal basis:

Φ⊤�̂�Φ�̈� +Φ⊤�̂�Φ𝜂 = Φ⊤�̃� (34)

where Φ =
[

𝝓1 𝝓2 … 𝝓�̂�
]

is the modal matrix and 𝜂 =
[

𝜂1 𝜂2 … 𝜂�̂�
]⊤ is the modal amplitudes. Hence, a set of �̂� un-

coupled differential equations, which can be solved independently, is
obtained.

Now, by introducing the modal damping ratios determined by
means of the MSE method, and assuming that the external force is zero,
each modal response is given by:

𝜂𝑗 (𝑡) = 𝑒−𝜁𝑗𝜔𝑗 𝑡
(

𝜂𝑗 (0) cos(𝜔𝑗𝐷𝑡) +
𝜂𝑗 (0) + 𝜁𝑗𝜔𝑗𝜂𝑗 (0)

𝜔𝑗𝐷
sin(𝜔𝑗𝐷𝑡)

)

(35)

where 𝜁𝑗 is the damping ratio for mode 𝑗 and 𝜔𝑗𝐷 = 𝜔𝑗

√

1 − 𝜁2𝑗 is the
𝑗th natural frequency with damping [29]. In contrast to a traditional
modal response analysis, which commonly uses a truncated modal
basis, it is in this case reasonable to include all �̂� modes in the
modal basis because a reduction has already been performed on the
substructure level. Hence, the modal analysis is primarily employed for
diagonalizing the system matrices, not for reducing the system size.

In a standard modal analysis, the modal damping matrix is in
general constructed directly in the modal domain by means of modal
damping ratios, e.g. provided by experimental tests. However, using the
MSE method, the global damping matrix �̂�, containing the damping
submatrices, is required. The SDOF model representing the impactor

uses stiffness-proportional damping, as discussed in Section 2.2. Hence,
if considering a linear impactor model, viscous damping is modeled by
a ordinary dashpot. The damping matrix related to the glass panel is
constructed by means of Rayleigh-damping, i.e.

𝐂 = 𝛼𝐌 + 𝛽𝐊 (36)

where 𝛼 and 𝛽 are the Rayleigh damping parameters [29]. The glass
panel damping is further investigated in Section 4 and the calibration
of the Rayleigh parameters is discussed in Section 5.

By using the above methodology, a closed-form solution is ob-
tained for initial value problems of linear systems even though non-
proportional damping is present. Notice, however, that the above pro-
cedure is indeed an approximation due to that possible off-diagonal
terms is not considered in the modal damping matrix given by Φ⊤�̂�Φ.

2.4.2. Direct time-integration of nonlinear systems
The dynamic response of the nonlinear systems is solved using

implicit direct time-integration. For the reduced models, direct time-
integration is performed using Newmark’s method [29]. The Newmark
parameters are set to 𝛽 = 1

4 and 𝛾 = 1
2 resulting in a unconditionally

stable system, which is convenient when solving a nonlinear system.
Further, force equilibrium in each time increment is established by
means of Newton–Raphson iterations [29].

3. Numerical reference model

A detailed FE model of the impactor was established using the
commercial FE analysis software Abaqus [19]. The response computed
with the reference model complements the experimental results in a
validation of the reduced models (see further Section 5.3). Furthermore,
the FE model provides insight into the impactor structural behavior and
its interaction with the glass panel, which is vital knowledge in the
process of deriving and evaluating a reduced model.

Furthermore, a FE model of the glass panel was developed, em-
ployed both in the Abaqus analyzes including the impactor reference
model and for generating system matrices, being necessary in the
process of establishing reduced models representing the glass panel.
The FE model of the glass panel was modeled in Abaqus. However,
to get full access to the FE procedures a separate, but in practice
equivalent, FE model was made using Matlab.

3.1. Impactor

The impactor rubber tires are pneumatic bias-ply tires which consist
of rubber reinforced by nylon ply-cords, usually in an angle ± 30◦–
40◦ from the direction of travel, with each additional ply positioned in
opposite direction [4].

In Abaqus, the nearly incompressible rubber material was modeled
using a hyperelastic model. The strains in the rubber turns out to be
relatively small (< 20%), why a Neo-Hookean model, with parameters
according to Table 1, is judged to be sufficiently accurate. The rubber
tires were modeled by four-node shell elements and the nylon cords
were modeled using so-called rebar layers, a feature in Abaqus that
allows for specifying orthogonal or skew reinforcement embedded in
shell or membrane elements. Hence, the nylon cords are not modeled
by separate elements, but is rather modeled as a smeared rebar layer
positioned at the shell element reference surface. The cords diameter
was set to 0.45 mm with spacing 1.6 mm, in accordance with [3]. By
an optical investigation of a cut of a tire, the thickness of the rubber
was estimated to 5 mm.

An accurate model of the stiffness distribution of the nylon ply-cords
is important for a realistic behavior of the tire model. The pressure
exerted by the contained air is mainly balanced by tensile stresses in
the nylon cords having a stiffness several order of magnitude larger
than the rubber (even when considering the difference in cross-section
area). Therefore, the stiffness of the inflated tires is primarily due to
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Table 1
Material models employed in the reference model.

Material Material model Material parameters

Rubber Hyperelastic, Neo-Hookean 𝐺 = 1.2 MPa, 𝐾 = 2 GPa, 𝜌 = 1100 kg/m3 [3,4]
Nylon Linear elastic 𝐸 = 3 GPa, 𝜈 = 0.3, 𝜌 = 1100 kg/m3 [3,33]
Steel Linear elastic 𝐸 = 210 GPa, 𝜈 = 0.3, 𝜌 = 7830 kg/m3 [3]
Glass Linear elastic 𝐸 = 72 GPa, 𝜈 = 0.23, 𝜌 = 2500 kg/m3 [34]

Fig. 8. Undeformed (left) and inflated (right) configuration. The rubber/nylon and steel are shown in dark-gray and gray color, respectively.

prestressing of the nylon ply-cords and, consequently, the angle of the
nylon cords have a relatively large effect on the structural behavior.
However, data for the nylon cord angle for the specific tires used in
this study were not available. Instead, the angle was determined by
comparison of the deformed shape of the actual tire, when inflated and
non-inflated, with the deformed shape given by a quasi-static analysis
of the tire inflation. Based on this comparison, the angle was estimated
to be 40◦.

The tire air pressure was modeled using a feature in Abaqus denoted
fluid cavity, which considers the coupling between the deformation
of the tire structure and the pressure exerted by the contained air.
Using this modeling approach, only the quasi-static air pressure is
considered, whereas the dynamic pressure is ignored. An overpressure
of 4.07 bar was prescribed in the undeformed configuration to obtain
an air pressure of 3.5 bar in the deformed configuration.

The steel weights, rims, and the screw spindle (the axis connecting
the two weights) were modeled using linear elastic material properties
according to Table 1. In principle, the weights can be modeled as
rigid bodies since these are much stiffer than the tires. However, the
deformation of the rim and the screw spindle might not be negligible.
Also, the off-center location of the weights causes the screw spindle to
bend, which in turn effects the deformation of the tires. To consider
a possible influence of these effects the steel weights and the screw
spindle were modeled by eight-node solid elements, whereas the rim
was modeled with four-node shell elements. The impactor model mesh,
for both the undeformed and inflated configuration, is shown in Fig. 8.

A viscous stiffness-proportional damping was calibrated to the en-
ergy loss measured in the impact tests, as discussed in Sections 4 and
5.1. Moreover, a contact interaction was prescribed between the tires,
with a friction coefficient of 𝜇 = 0.7 in accordance with [4].

3.2. Glass panel

The glass panel was modeled with solid shell elements, which uses
an assumed strain distribution for an enhanced modeling of bend-
ing [35]. An advantage using these elements compared to conventional
shell elements is that no special treatment is needed to consider offsets
of loads or prescribed boundary conditions. An evaluation of using solid
shells for modeling glass panels is e.g. presented in [36].

The supporting steel frame was assumed rigid and the EPDM rubber
strips positioned between the glass and the steel were modeled by linear
elastic spring beds. In the experimental set-up, the rubber along the
supports were prestressed due to bolting of the glass panels, which
affect the rubber stiffness. Therefore, the stiffness of the spring beds
were calibrated based on the fundamental frequencies as measured
for the 8, 10 and 12 mm, respectively, simply supported glass panels.
Using this approach, the stiffness of the rubber strips, modeled with
a thickness of 10 mm and a width of 15 mm, was estimated to
10 MPa (the glass geometry, density, and stiffness, which also affect
the fundamental periods, are thus regarded as relatively well-known
parameters). The in-plane stiffness of the rubber strips was modeled in
a similar manner using elastic springs.

In accordance with the measurements discussed in Section 4, a
damping ratio of 1.7% was assumed for the glass panels being modeled
by means of Rayleigh 𝛼- and 𝛽-damping. The derivation of the Rayleigh
parameters is further discussed in Section 5.

4. Experimental testing

Experimental tests were performed to validate the reduced models.
In particular, the strain was measured on simply supported monolithic
glass panels with dimensions 1000 mm×800 mm, made of regular soda-
lime silicate toughened glass. The glass panel impact tests were part
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Fig. 9. Soft-body impact test set-up (a) and strain gauge on the rear side of the glass
panel (b).

Table 2
Impactor rigid impact energy loss.

Test No Drop height
(ℎ0) [mm]

Height diff.
(𝛥ℎ = ℎ0 − ℎ1) [mm]

Energy loss
( 𝛥ℎ
ℎ0

) [%]
Mean
[%]

1 100 20 20 202 100 20 20
3 200 55 27.5 284 200 55 27.5
5 300 80 26.7 276 300 80 26.7
7 450 140 31.1 308 450 130 28.8
9 700 230 32.9 3210 700 220 31.4

of an experimental campaign summarized in [37,38], which includes
additional tests of glass panels mounted with various fixing methods,
such as linear clamps, local clamp fixings and point fixings. Moreover,
glass with different heat treatment as well as glass laminated with
different materials were also tested.

Additional measurements were performed to identify the dynamic
characteristics of the impactor. The dynamic properties of the impactor,
such as the dynamic stiffness and damping turn out to have a large
impact on the dynamic behavior of the coupled impactor–glass system.
Also, an increased insight into the structural behavior is essential in
the process of developing reduced models, to ensure that no significant
characteristics of the system are lost in the reduction process.

4.1. Dynamic characteristics of impactor

The impactor design is described in [1], where the impactor parts
are specified in detail. The tires should be of the type 3.50-R8 4PR (by
Vredestein) or tires that are demonstrated equivalent. In the present
study, two Michelin 3.50-S83 tires were used (see Fig. 9b), which
were also used in the experimental tests presented in [3]. The inflation
pressure is 3.5 bar and the total weight of the impactor is 50 kg.

The impactor damping and stiffness were evaluated based on impact
with a very stiff steel column, which can be considered rigid. The im-
pactor acceleration was measured at several locations on the impactor
weights, as shown in Fig. 2b. Similar tests were also performed in [3].
However, the tests performed in the present study also included an
estimation of the impactor damping. More specifically, the difference
between the maximum height of the impactor after impact ℎ1 and the
initial drop height ℎ0 was measured. Hence, the energy loss during
impact (𝛥𝐸) was estimated as

𝛥𝐸 = 𝑚𝑔
(

ℎ0 − ℎ1
)

. (37)

The measurement of the impactor position was performed by
recording the impact sequence on video at a frame rate of 240 frames
per second, sufficiently high to enable a smooth slow-motion video.
Before the impact tests were performed, a physical measurement-grid
was positioned in the plane of the pendulum, filmed at the same angle
and position as the impact tests. This measurement grid was then used
to calibrate the measurements performed directly in the slow-motion
videos. Tests were preformed with an impactor drop height of 100,
200, 300, 450 and 700 mm, respectively.

The experimental results and the estimated energy loss, which
in turn determines the damping, is presented in Table 2. Note that
the experimental methodology implies that the mass of the impactor
weights can be assumed sufficiently large such that the system can
be well-represented by an SDOF system when in contact with the
rigid wall and a rigid mass floating in space when contact is not
established. Furthermore, the kinetic energy related to the impactor
angular velocity is assumed negligible being reasonable given that the
pendulum length is approximately 2 m.

4.2. Soft-body impact on glass panels

Experimental results from impact tests of two-sided simply sup-
ported glass panels, as shown in Fig. 9a, was used for validation
of the reduced order models. The glass panels consist of toughened
monolithic glass with nominal thickness 8, 10 and 12 mm, respectively.
As described in [38], the horizontal strain was measured by a strain
gauge bonded at the rear side (tensile side) of the glass panels at the
point of impact, see Fig. 9b. Impact tests were conducted with a drop
height of 100, 200, 300, 400 and 500 mm, respectively.

The signal from the strain gauge was logged at a frequency of
600 Hz for a few seconds. However, the impactor contact time is
typically less than 80 ms. Hence, the logged strain data includes the
decay of motion after impact, which was utilized for estimating the
damping of the glass panels and its fixings. An example of the logged
strain data is shown in Fig. 10a. Further, the logarithmic decrement is
given by:

𝛿 = 1
𝑛
ln
(

𝑢𝑖
𝑢𝑖+𝑛

)

=
2𝜋𝜁

√

1 − 𝜁2
(38)

where 𝑢𝑖 is the amplitude measured at cycle 𝑖, 𝑛 is the number of
cycles between the measured amplitudes and 𝜁 is the damping ratio. If
assuming linear elasticity, the displacement amplitudes in Eq. (38) can
be replaced by the measured strain amplitude. The estimated damping
for some of the tests is presented in Fig. 10b. The horizontal axis
denotes the strain amplitude measured at cycle 𝑖, corresponding to 𝑢𝑖 in
Eq. (38). As shown in the figure, the damping ratio does not vary much
with neither the glass thickness nor the amplitude. However, it should
be noted that the strain amplitude is fairly low in all the measurements,
i.e. less than 0.25 mm/m. Based on the data from the impact tests, the
damping ratio of the glass and its fixings was estimated to 1.7%. This is
slightly larger than the damping ratios reported in e.g. [39,40] where,
however, different test arrangements were used.

In addition to the estimation of the glass panel damping ratio,
the measured strain due to free vibration after impact was used for
estimation of the fundamental periods of the simply supported glass
panels. Note that the glass strain, which is measured in the center of
the glass panel, is mainly due to vibration of the fundamental mode.
For glass panels with thickness 8, 10 and 12 mm, respectively, the
fundamental period was estimated to 46, 37 and 31 ms, respectively.

Finally, the strain was measured in a double impact test, as shown
in Fig. 11. More specifically, the soft-body pendulum was released and
the glass strain was measured during the first as well as the second
impact, by letting the pendulum move freely after the first impact until
a second impact was initiated. Using this procedure, the impact energy
in the second impact approximately corresponds to the impactor kinetic
energy after the first impact. This test was done for one impact test:



Engineering Structures 256 (2022) 113988

11

L. Andersson et al.

Fig. 10. Decay of motion in terms of glass strain for test with a drop height of 500 mm and a glass thickness of 10 mm (a) and estimated damping ratios (b). The strain 𝜖1 is the
strain measured at cycle 𝑖, corresponding to 𝑢𝑖 in Eq. (38). The mean damping ratio for measurements with 𝜖1 > 0.1 mm/m is equal to 1.7% and is shown by the black dashed
line.

Fig. 11. Horizontal strain measured on the rear side of the glass panel with thickness
8 mm for the double impact test. The initial drop height was 200 mm. The red and
green circle indicate the peak strain during the first and second impact, respectively.
The blue circle indicates the peak strain after the first impact. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

the 8 mm glass panel subjected to an impact corresponding to a drop
height of 200 mm. The measured strain was exploited to implicitly
estimate the energy loss during impact for the whole system. This
includes energy dissipation due to deformation of the impactor (e.g.
frictional or viscous damping), through frictional effects due to contact,
and deformation of the glass panel and its fixings.

If assuming linear elastic behavior, the response can be obtained
by solving an initial value problem of a linear system. As implied
by Eqs. (33) and (35), the displacements of such a system is linearly
dependent on the initial velocity. Accordingly, the displacements are
quadratically dependent on the initial kinetic energy of the impact body
𝐸𝐾,0, given by

𝐸𝐾,0 =
𝑚imp�̇�20,imp

2
. (39)

It follows that the square of the ratio between the peak strain in
the first and second impact is proportional to the ratio between the
kinetic energies induced in the system upon the first and second impact,

respectively. Hence,
(

𝜖(2)

𝜖(1)

)2
=

𝐸𝐾,0
(2)

𝐸𝐾,0
(1)

(40)

where 𝜖(1) and 𝜖(2) are the strains measured for the first and second
impact, and 𝐸𝐾,0

(1) and 𝐸𝐾,0
(2) are the kinetic energy just before the

first and second impact, respectively. From the measured peak strains
according to Fig. 11 (red and green circle), the ratio between the
kinetic energy in the first and second impact can be estimated to
(1.386∕1.616)2 = 0.74. Thus, the energy induced in the system upon
the second impact is 74% of the impact energy in the first impact
and, accordingly, the energy loss is approximately 26%. This is fairly
close to the energy loss measured in the rigid impact tests, shown in
Table 3, which may indicate that the energy dissipation related to the
deformation of the glass panel is fairly small. However, it should be
noted that the energy loss computed from a double impact test using
the above procedure is in principle only valid for linear systems, why
it should only be regarded as a rough estimate. Moreover, some of the
induced energy is not dissipated during the impact but instead causes
the glass panel to oscillate after impact. The glass panel strain energy
is related to the square of the glass strain. Accordingly, a strain energy
ratio can be estimated based on the peak strain during impact and
the peak strain after impact. Using the measured strains according to
Fig. 11 for the first impact (red and blue circle), the strain energy ratio
is (0.1925∕1.616)2 = 1%, which principally is negligible.

5. Model validation

In order to validate the reduced models, the computed response is
compared to both experimental results and the response provided by
the reference model. Two load cases are evaluated where the point
of impact is centric (load case A) and eccentric (load case B), respec-
tively. In both load cases impact loading of a two-sided continuously
supported monolithic glass panel, with width 1000 mm and height
800 mm, is studied. The position of the impactor for load cases A and
B, respectively, is shown in Fig. 12.

Calibrations of the impactor reference model and the developed
SDOF models, representing the impactor, are presented in Section 5.1.
In Section 5.2, the response computed with the reference model and
the reduced models are compared and evaluated based on load cases A
and B. Furthermore, in Section 5.3, a validation based on experimental
results is presented for load case A.
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Fig. 12. Position of impactor in load case A and B. The glass panel dimensions are h = 800 mm and w = 1000 mm. Spring beds are applied on the parts of the glass panels
marked with light gray color.

Table 3
Impactor energy loss due to impact with rigid beam.

Drop height [mm] Experiment [%] FE modela [%] SDOF model [%]

100 20 24 22
200 28 26 25
300 27 28 27
450 30 30 30
700 32 32 32

aViscous dissipation and frictional damping due to contact interaction.

5.1. Calibration of impactor models

A calibration of the numerical reference Abaqus model of the im-
pactor was conducted based on the rigid impact tests discussed in
Section 4. Numerical analyzes of impact with a rigid surface was per-
formed to simulate the experimental tests. The analyzes were initiated
just upon impact by prescribing an initial velocity to the impactor.
The model was calibrated in the sense that a stiffness-proportional
viscous damping was prescribed to match the energy loss obtained in
the experimental tests, see Table 3. Based on this calibration, a damping
parameter of 𝛽 = 0.022 was prescribed to the rubber, proportional to
the strain-free elastic stiffness. The other material parameters were set
according to Table 1.

The impactor acceleration is shown in Fig. 13 for a drop height of
100, 200, 300, 450 and 700 mm, respectively. The dashed lines are
the accelerations measured in the impact tests and the solid lines are
the accelerations provided by the numerical simulations, extracted from
a node close to the position of the accelerometer in the experimental
tests. As shown in the figure, the computed accelerations show good
agreement with the experimental results for drop heights 450 and
700 mm. However, the measured peak acceleration is higher, and the
measured pulse time is shorter for drop heights 100, 200 and 300 mm.
It may be that some of the discrepancy is due to that the damping of the
impactor is in fact frictional rather than viscous for lower amplitudes;
a Coulomb type damping would result in an unsymmetrical and shorter
acceleration pulse with a larger peak acceleration. Notice that even
though friction is considered in the contact interactions in the reference
model, this has a small impact on the total energy dissipation, which
is mainly due to viscous damping. Moreover, the rotational motion
of the impactor upon impact is not considered in the analysis, which
may be another reason for the discrepancy between the calculated and
measured accelerations.

The nonlinear SDOF model, presented in Section 2.2, was calibrated
to the impactor reference model. More specifically, a hysteresis loop,
representing the behavior of a generalized SDOF system, was obtained
from the reference model by plotting the movement of the impactor
mass centroid and the total contact force between the impactor and the
rigid surface. The total contact force is equal (but with opposite sign) to
the sum of the impactor damping force and elastic force. To distinguish
the total elastic force from the total internal force, the elastic force was
approximated as the derivative of the total strain energy with respect to
the displacement of the impactor mass centroid, as shown by the green
curve in Fig. 14. In a similar manner, the damping force was estimated
as the derivative of the viscous dissipation. Hence, the sum of the
derivatives, shown by the yellow curve in Fig. 14, represent the total
internal force, which is very close to the total contact force shown by
the dashed red curve. The unknown stiffness factors in the generalized
SDOF model (i.e. 𝑘0, 𝑘1 and 𝛼 in Eq. (13)) were then computed from
the load–displacement curve in a least-square sense. More specifically,
the factors 𝑘0, 𝑘1 were determined by a least-squares problem for a
given 𝛼 value. By traversing a sequence of 𝛼 values, a best estimate was
obtained. For instance, the blue dashed curve in Fig. 14 correspond to
the nonlinear SDOF model calibrated to the data pairs marked by blue
circles. Note that the derivatives are ill-conditioned close to the peak
displacement, why these are only computed for displacements less than
approximately 35 mm.

The acceleration given by the nonlinear SDOF model, with factors
calibrated to 𝑘0 = 1.59 ⋅ 105, 𝑘1 = 1.25 ⋅ 107, and 𝛼 = 2.242, respectively,
is shown for various drop heights in Fig. 15a. The damping parameters
in Eq. (14) were calibrated to 𝛽0 = 8 ⋅ 10−4 and 𝛽1 = 4 ⋅ 10−3,
respectively, based on the shape of the hysteresis loop provided by the
reference model and the measured energy loss, presented in Table 3.
The hysteresis loop for various drop heights are shown in Fig. 16,
computed with the reference model and the nonlinear SDOF system,
respectively.

As discussed in Section 2.4, a linear system can be solved using
modal expansion techniques and, in particular, a closed-form solution
can be achieved for initial value problems. A linear model of the
assemble system implies the use of a linear impactor model. However,
as shown in Fig. 13, the pulse time vary with the impact energy, which
is expected for a nonlinear system. The system appears stiffer, i.e.
the pulse time is shorter, for an increasing drop height, which is also
consistent with the nonlinear system discussed above. Nonetheless, a
simplified approximate model can be derived using the measured pulse
time.
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Fig. 13. Comparison of impactor acceleration according to reference model (solid line) and experiments (dashed line).

Fig. 14. Example of calibration of nonlinear SDOF model from the hysteresis loop
provided by the reference model.

When contact is established, the movement of the impactor mass
centroid can be represented by an SDOF system subjected to free
vibration. It then follows that the pulse time, which corresponds to
half the natural period of the system, can be employed for estimating
a linear stiffness. Using this approach, a pulse time of 38 ms was
considered for estimating an approximate stiffness, which is close to the
pulse time measured for a drop height of 450 mm. Hence, the natural
period of the system can be approximated as 𝑇 = 2 ⋅ 38 = 76 ms,
corresponding to an angular frequency of 𝜔 = 82.7 rad/s. Accordingly,
the stiffness is given by 𝑘 = 𝑚𝜔2 = 342 kN/m. Similar to the nonlinear
system, a stiffness-proportional damping was considered (i.e. a ordinary
dashpot) with a damping coefficient calibrated to 𝑐 = 445 N s/m
(corresponding to a damping ratio of 𝜁 = 5.4%). The acceleration
computed with the linear SDOF model is shown in Fig. 15b. Notice that
there is an instantaneous acceleration in the acceleration curves, which
is a consequence of the initial damping force being linearly proportional
to the prescribed initial velocity. Also, the computed pulse time is, as
expected for a linear system, not dependent on the impact energy.

Table 4
Rayleigh parameters for the glass panel substructure and natural periods and damping
ratios for the assembled system.

Glass thickness 𝛼 𝛽 𝑇1 [ms] 𝑇2 [ms] 𝜁1a [%] 𝜁2a [%]

8 mm 1.25 1.21 ⋅ 10−4 144.8 26.6 1 9.4
10 mm 1.49 1.14 ⋅ 10−4 117.6 25.7 1.6 9.1
12 mm 1.67 1.07 ⋅ 10−4 103.1 24.5 2.3 8.1

aDamping ratio computed by means of the MSE method, as described in Section 2.4.

5.2. Evaluation of reduced order models

One of the benefits of the reduced linear model is the possibility
to perform a modal decomposition of the coupled system. Beside the
possibility to perform computationally efficient modal analyzes, the
eigenfrequencies, eigenmodes, and modal responses can be investigat-
ing to get further insight into the structural behavior. Moreover, the
eigenfrequencies of the global system can be used for calibrating the
Rayleigh damping model employed for constructing a damping matrix
for the glass panel substructure. The Rayleigh damping parameters can
then be utilized in the linear as well as the nonlinear analyzes.

Fig. 17 shows the glass panel mid-point displacement provided by
the linear reduced order model, including six component modes in the
glass panel reduction basis. Furthermore, the mid-point displacement
has been decomposed into the contributions from the first three global
modes, shown by separate curves in the figure. As shown, the response
can be almost entirely represented by the first two modes, this is true
for all the thicknesses studied. In the fundamental global mode, the
displacement of the impactor DOF and the glass panel have the same
sign, i.e. they are oscillating in-phase as shown in Fig. 19. The second
mode, however, is an ‘‘out-of-phase’’-mode, where the displacement of
the impactor and the glass panel have opposite signs. For higher order
modes, it turns out that the impactor deformation is very small. This is
due to that the impactor mass is large compared to the effective mass in
the out-of-plane direction for higher order modes—for anti-symmetric
modes the effective mass is zero, and for symmetric modes the effective
mass decreases rapidly with the mode order.

The Rayleigh damping parameters for the glass panel were cali-
brated to match a ‘‘best-estimate’’ damping of 1.7% (c.f. Section 4)
for the eigenfrequency of the first and second global mode, respec-
tively [29]. The damping parameters, the corresponding natural peri-
ods, and the modal damping ratios are presented in Table 4. Notice
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Fig. 15. Comparison of impactor acceleration according to reference model (solid), nonlinear (dotted) and linear (dashed) SDOF model.

Fig. 16. Comparison of total contact force and centroid displacement computed using the reference model and SDOF system, respectively.

Fig. 17. Displacement of glass panel mid-point computed with the linear model. The modal contributions for the first three global modes are plotted separately.
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Fig. 18. Horizontal strain provided by the linear and nonlinear reduced order models using various reduction bases. The glass thickness is 10 mm and the drop height is 500 mm.
The label ‘‘Cor. 𝑖’’ denotes the order of the correction modes, where 𝑖 = 0 implies that only constraint modes are considered.

Fig. 19. First five global modes for assembled reduced system consisting of a linear impactor SDOF model and a reduction basis for the glass panel including a total of six
component modes. The impactor mass is shown by the black square.
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that the modal damping ratios for the assembled system, computed by
means of the MSE method, considers both the Rayleigh-damping pre-
scribed to the glass panel substructure as well as the viscous damping
model employed in the impactor SDOF model, which is linearly propor-
tional to the frequency. Consequently, the computed global damping
ratios will be frequency dependent, as shown in Table 4.

As discussed in Section 4, the energy loss of the glass–impactor
system was estimated to be around 26% for a glass panel thickness
of 8 mm and a drop height of 200 mm. The corresponding energy
loss provided by the linear model is approximately 18%, indicating
that the damping prescribed to the assembled system is somewhat low.
However, as discussed in Section 4, the energy loss estimated based on
a double impact test should be regarded as a rough estimation due to
limitations in the experimental methodology; for example, energy loss
related to the motion of the pendulum is not considered, and a linear
elastic behavior is assumed.

Fig. 18 shows the horizontal strain on the rear side of the glass panel
at the point of impact for various reduction bases applied to the glass
substructure. As shown in the figure, the peak-strain is similar for all
the models. However, a refined reduction basis is required for the glass
substructure to capture the shape of the strain curve, in particular for
the eccentric load case. Notice that the reduction basis employed for
reducing the glass substructure should be sufficiently large so that the
deformed shape of the glass panel for the important global modes can
be resolved. Hence, the number of component modes required may
be larger than the number of global modes needed for an accurate
representation of the global response.

5.3. Validation of numerical models using experimental data

The measured horizontal strain on the rear side of the glass panels
are shown for various drop heights and glass thicknesses in Fig. 20,
together with the corresponding strain given by the reference model
and the reduced linear and nonlinear model, respectively. In the re-
duced models, the glass panel was reduced using six component modes
(i.e. five fixed-interface correction modes and a constraint mode). As
shown in the figure, the strain computed with the reference model and
the reduced nonlinear model corresponds well to the measured strains
for impact tests with a drop height 100 mm. However, the differences
are amplified for impact tests with an increasing drop height. The
deviation is especially pronounced for the glass panels with thickness
12 mm. Furthermore, it is of interest to evaluate not only the peak
strain (even though this, in general, is the governing parameter in a
design calculation) but also the shape of the strain curves indicating
how well the models capture the structural behavior. As shown in the
figure, the shape of the strain curves is relatively close for glass panels
with thickness 8 mm, whereas the shape of the computed strain curves
somewhat differ for glass panels with larger thickness.

The strain provided by the linear model is very close to the response
computed with the nonlinear reduced model for the cases with a drop
height of 500 mm. This is due to that the stiffness prescribed to the
linear model fits better for larger amplitudes, as manifested by the
acceleration curves in Fig. 15. Accordingly, the pulse time is slightly
underestimated by the linear model for lower drop heights .

To further corroborate the results, the calculated and measured data
can be evaluated based on the reference diagrams presented in [11],
which are also included in DIN 18008-4 [41]. The reference diagrams
result from experimental data and numerical simulations and provide
the pendulum acceleration as well as the peak principal stress for a ref-
erence plate, having width 1000 mm and height 700 mm. Both results
for all-sided and two-sided (supported at the short ends), continuously
supported plates are presented, the latter being comparable to the glass
plates studied herein. Further, the reference diagrams consider a pendu-
lum drop height of 200 mm and 450 mm, respectively. In particular, the
principal peak stress for impact with drop height 200 mm against the
center of the two-sided reference plate is approximately 140 MPa. The

corresponding stress given by the Abaqus reference analysis is 131 MPa
(the peak strain shown in Fig. 20 is thus given by 𝜖𝑥𝑥 = (𝜎𝑥𝑥 − 𝜈𝜎𝑦𝑦)∕𝐸,
where the vertical stress according to the analysis is 𝜎𝑦𝑦 = 59 MPa).
It should be noted, however, that the height of the glass plate studied
herein is 800 mm. Thus, a slightly lower stress is expected.

According to the reference diagrams, the pendulum peak acceler-
ation during impact with a rigid body is approximately 170 m/s2 and
265 m/s2 for drop heights 200 mm and 450 mm, respectively. As shown
in Fig. 13, this is in good agreement with the computed and measured
accelerations.

6. Discussion

When verifying the load-bearing capacity of glass structures sub-
jected to impact loading, time efficient and user-friendly design tools
can be of great utility, allowing for an interactive design process where
alternative designs may be tested. In the present study, an approach
using DS have been employed for developing reduced order models that
are computationally efficient while providing an accurate prediction of
the pre-failure elastic response. For the studied load cases, the coupled
glass–impactor system can be well-represented by only two global
modes. However, it should be noted that the influence of higher order
modes might not be negligible for larger glass panels or panels with
other boundary conditions. Moreover, it was shown that up to four
component modes may be required to resolve the displacement of the
glass panel in the global modes.

A reduction basis for the glass panel was constructed using correc-
tion modes, as further discussed in Section 2.1. An alternative could
be to construct a reduction basis by means of the traditional C-B or
Rubin approaches, that uses the fixed- and free-interface normal modes,
respectively. However, not much would be gained if these methods
were applied to linear systems, i.e. where linear subsystems are used
for modeling the glass panel as well as the impactor. The assembled
system includes 𝑚 + 1 DOFs, i.e. the glass panel has a total of 𝑚
DOFs and an additional DOF is added representing the displacement
of the lumped impactor mass. Clearly, the computational cost for
generating a set of component normal modes or global eigenmodes is
in practice identical. On the contrary, an approach using correction
modes replaces the eigenvalue problem by a number of matrix–vector
multiplications. Furthermore, the set of correction modes, by definition,
excludes redundant modes, which cannot be excited by loading on the
substructure boundary. Accordingly, there are no anti-symmetric mode
shapes in the global modal basis, as shown in Fig. 19.

As discussed in Section 2.4, linear systems can be solved by means
of modal dynamics, which in turn enables a closed-form solution for
initial value problems. However, a time discretization is required for
identifying the peak glass strain during impact. Moreover, the gen-
eralized coordinates must be transformed to physical displacements
in each time increment, which in turn can be used for computing
the glass strain. Consequently, the post-processing of the dynamic
response can become computationally expensive. An approach using
modal summation techniques can be employed to overcome this prob-
lem. For example, a conservative evaluation can be made by means of
an absolute summation of the modal responses. Since only one set of
data needs to be evaluated in the physical domain the computational
effort in the post-processing stage is reduced significantly. However, it
should be noted that the modal phase information is lost in a modal
summation, why an absolute summation may be too conservative in
some applications.

In general, the developed models show good agreement with the
experimental results. However, there are some discrepancies, which
are especially pronounced for glass panels with a nominal thickness of
12 mm (see Fig. 20). The deviation can be due to errors/imperfections
in the experimental set-up and/or inadequate modeling abstractions,
such as the assumption of a constant contact area, neglection of ge-
ometric nonlinearity (i.e. membrane action), and an assumed viscous
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Fig. 20. Comparison between the measured and computed glass strain on the rear side of the glass panel at the center of impact. The impactor drop height, h, is 100 to 500 mm
and the glass panel thickness is 8, 10 and 12 mm, respectively.
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damping model. Notice, however, that the glass strain curves provided
by the reduced models and the numerical reference model are very
similar, suggesting that the deviations are due to simplifications made
in both models. Recall that both the reduced models and the numerical
reference model uses a viscous damping model (in contrast to e.g. a
frictional modal) and, furthermore, ignores the dynamic air pressure in
the impactor tires. One can thereby assume that these simplifications,
or other unknown errors, are the reason for the deviations.

The damping matrix of the glass substructure was constructed by
means of Rayleigh-damping, using both mass- and stiffness-proportional
damping. This damping model is convenient since it can be utilized in
the physical as well as the modal domain. It should be noted, however,
that a damping model being proportional to the structure mass is
clearly unphysical (see e.g. [29]). A more refined damping model may
be developed. Moreover, by means of further experimental studies,
the frequency dependency of the glass panel as well as the impactor
damping can be investigated.

For the glass panel with thickness 8 mm, the shape of the strain
curve given by the numerical reference model deviates from the curves
obtained with the other models. The pulse is shorter whereas the peak
strain is fairly close to the peak strain of the other curves. Because the
deviation is pronounced for the 8 mm glass panel, having a bending
stiffness considerably lower than the thicker panels, it is reasonable to
claim that this discrepancy is due to membrane action being manifested
by a stiffer response (i.e. shorter pulse). Recall that geometric non-
linearity is considered in the numerical reference model, while these
effects are ignored in the reduced order models. However, one would
then expect the measured strains to be closer to the strain provided by
the reference model, which is not what the experimental data suggests.
Nonetheless, the influence of membrane action can still be one of the
reasons for the discrepancy. The stiffness of the rubber strips along the
supports, modeled by means of elastic spring beds, affects the influence
of membrane action. The stiffness of the rubber strips (and the in-
plane stiffness, in particular) can be regarded as a particularly uncertain
parameter, which is influenced by the prestressing force due to bolting
of the glass panels. Hence, the influence of membrane action might not
be accurately captured by the reference model, even though geometric
nonlinearity is considered. Furthermore, it is plausible that the stiffness
of the rubber strips are in fact nonlinear, e.g. due to friction between
the rubber and the glass/steel surface.

Finally, it should be noted that the presented reduced order models
may also be employed for analyzing laminated glass, as long as the glass
panel response can be approximated as linear.

7. Conclusions

The paper presents strategies for reduced order modeling of glass
panels subjected to soft-body impact. The aim was to develop accu-
rate reduced order models for computation of the pre-failure elastic
response, suitable for implementation in user-friendly interactive de-
sign tools. Concepts for reduced modeling of the glass panel, the
impactor and the contact interaction between the glass panel and
the impact body were investigated. In particular, a methodology is
proposed for calibrating a nonlinear SDOF model representing the
impactor. Furthermore, a model validation was performed based on
experimental tests and a detailed numerical reference model. More-
over, a fixed-interface DS method that uses correction modes was
successfully employed for developing computationally efficient models
of the coupled impactor–glass system. The following conclusions can
be drawn:

• The measured glass strains and the strains provided by the nu-
merical models are fairly close. The discrepancy is similar for
the reduced models and the reference model, suggesting that the
deviations are due to inadequate modeling abstractions applied
in both models.

• The impactor acceleration measured during impact with a very
stiff steel column (which can be considered rigid) is close the
acceleration provided by the numerical reference model.

• A nonlinear SDOF model representing the impactor was suc-
cessfully calibrated to the reference model. In particular, the
acceleration computed for impact with a rigid surface with the
nonlinear SDOF model showed very good agreement with the
acceleration provided by the numerical reference model.

• The evaluation of the reduced order models suggests that a simpli-
fied modeling approach assuming a constant contact area is fairly
accurate.

• Reduction bases including correction modes turn out to be par-
ticularly suitable for implementation in design tools, such as
ClearSight, where a manual selection of component modes should
be avoided. The set of correction modes automatically excludes
redundant modes that cannot be excited by loading on the sub-
structure boundary.

• If the impactor is approximated by a linear model, a closed-form
solution can be obtained by means of the modal strain energy
method, which enables the use of modal expansion techniques
for lightly damped systems with non-proportional damping. For
the studied load cases, the coupled glass–impactor system can be
well-represented by only two global modes.

• A very computationally efficient approximate evaluation of the
glass strain can be obtained if a closed-form modal solution is
combined with a modal summation technique, e.g. an absolute
summation of the peak modal responses. Using this approach, a
time discretization in the physical domain is avoided.
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A B S T R A C T

In the present paper, strategies for reduced order modeling of geometrically nonlinear finite
element models are investigated. Simulation-free, non-intrusive approaches are considered,
which do not require access to the source code of a finite element program (e.g., proprietary
knowledge). Our study focus on but is not restricted to flat structures. Reduction bases are
generated using bending modes and the associated modal derivatives, which span the additional
subspace needed for an adequate approximation of the geometrically nonlinear response.
Moreover, the reduced nonlinear restoring forces are expressed as third order polynomials in
modal coordinates. Consequently, the reduced systems can be effectively solved using time-
integration schemes involving only the reduced coordinates. A bottleneck in the non-intrusive
methods is typically the computational effort for precomputing the polynomial coefficients
and generating the reduction basis. In this regard, we demonstrate that modal derivatives
have several useful properties. In particular, the modal derivatives essentially provide all the
information needed for generating the polynomial coefficients for the in-plane coordinates. For
condensed systems, which ignores the inertia of the in-plane modes, we show that the modal
derivatives can be used effectively for recovering the in-plane displacements. Based on these
findings, we propose a methodology for generating reduced order models of geometrically
nonlinear flat structures in a computationally efficient manner. Moreover, we demonstrate
that the concepts extend also to curved structures. The modeling techniques are validated by
means of numerical examples of solid beam models and continuously supported shell models.
The computational efficiency of the proposed methodology is evaluated based on the number
of static evaluations needed for identifying the polynomial coefficients, as compared to the
state-of-the-art methods. Furthermore, strategies for efficient time integration are discussed and
evaluated.

1. Introduction

In many engineering applications, numerical models are vital tools for investigating structures subjected to dynamic loading.
The most popular method for developing numerical models is the finite element (FE) method, which allows for a discretization
of continuous structural dynamic problems [1]. Particularly for thin, lightweight structures, it can be important to use an FE
formulation considering large deformation theory. This implies solving a geometrically nonlinear system, requiring a time-stepping
procedure where the nonlinear restoring forces are updated, in general using iterative techniques (e.g. the Newton–Raphson
method) [2]. Because the FE models typically include a large number of degrees-of-freedoms (DOFs), such analyses can be time-
consuming and, consequently, there is a need for efficient modeling strategies. To this end, several reduced order modeling
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Fig. 1. Example of approximate displacements 𝐮 for a transversely loaded cantilever beam, decomposed into the first eigenmode 𝜙1 and an in-plane mode,
namely the associated modal derivative 𝜃11. Note that the physical displacement fields are unscaled whereas the modal amplitudes are governed by the modal
coordinates 𝑞1 and 𝑝1, respectively.

techniques have been proposed during the last few decades, aiming to decrease the system size while providing accurate results
[3–13].

Analogous to the modal techniques commonly used for linear FE models (see e.g. [14,15]), nonlinear reduced order models
(NLROMs) can be obtained by projecting the system equations onto a reduction basis. Thus, instead of solving a system expressed in
terms of physical DOFs, the structural response is approximated using a substantially reduced set of modal coordinates. Furthermore,
by using a Taylor series expansion around the point of equilibrium, the reduced nonlinear restoring forces can be expressed in
terms of the reduced coordinates [6,16]. Consequently, the NLROM approach, sometimes referred to as polynomial tensor hyper-
reduction [16], avoids computationally expensive evaluations of the nonlinear restoring forces based on the full system. Hence,
the NLROM can be solved using standard time-stepping procedures (e.g. Newmark’s family of methods) involving a substantially
reduced set of variables and, accordingly, a significantly reduced computational cost.

The non-intrusive NLROM approaches, which uses the polynomial tensor technique, have turned out to be particularly useful
because it enables the use of numerical routines already implemented in most FE analysis software packages (e.g. Abaqus,
Nastran). Furthermore, proprietary knowledge of the FE implementation, such as element formulations, is not required. In principle,
establishing a non-intrusive NLROM involves two fundamental problems: generating a suitable reduction basis, and computing the
entries of the higher order stiffness tensors, often referred to as nonlinear stiffness coefficients (NSCs) [13].

The accuracy of an NLROM is highly dependent on the properties of the reduction basis. More specifically, the reduction basis
should span a subspace where a good approximation of the full solution can be established. For a linear system, the dynamic
response can typically be well-represented by a small set of low-frequency eigenmodes. However, this is generally not true for
geometrically nonlinear systems. For instance, the bending normal modes of a linearized, cantilever beam model only involve out-of-
plane displacements. However, the geometrically nonlinear response of a transversely loaded cantilever beam result in out-of-plane
as well as in-plane displacements. Hence, to obtain an accurate model, a reduction basis enriched by high frequency in-plane modes
is required (cf. Fig. 1). The same issue arises for a general structure; thus, a sufficient subspace is not spanned by a few low-frequency
modes, and, accordingly, additional basis vectors are required.

Various techniques have been proposed to approach the problem. Kim et al. [17] introduced so-called dual (or companion) modes.
McEwan et al. [4] proposed a regression analysis, referred to as implicit condensation (IC), to account for high frequency modes.
Hollkamp et al. [7] further developed this approach by introducing an additional post-processing step, referred to as the implicit
condensation and expansion (ICE) method. Specifically for flat structures, Kim et al. [9], Wang et al. [18], and Vizzaccaro et al. [19]
proposed condensation methods using similar concepts, where only the quasi-static response of the high frequency (in-plane) modes
are considered. Barbič and Doug [6], Rutzmoser [16], Wu et al. [20,21], Weeger et al. [22] and Mahdiabadi et al. [13] introduced
reduction bases enriched by modal derivatives. Furthermore, a somewhat different technique was proposed in [10,11,16], referred to
as the quadratic manifold (QM) approach, which uses a nonlinear (quadratic) mapping instead of an invariant linear subspace. The
preferred approach depend on the specific application and, in particular, if it allows for static condensation of certain coordinates,
e.g. related to high-frequency (in-plane) modes. For the sake of completeness, it should be mentioned that reduction bases can
also be generated using data-driven methods, such as the Proper Orthogonal Decomposition (POD) (see e.g. [16]). In this context,
the QM approach has also been proposed for cost-effective generation of training sets [23]. Furthermore, machine learning based
simulation frameworks using neural networks have been introduced for general ROM approaches, see e.g. [24]. However, in this
study, focus is on simulation-free methods, meaning that training simulations of the full-order dynamic problem are avoided. While
the data-driven methods allow for arbitrary NLROMs, the simulation-free approaches can be particularly useful for structures where
the nonlinear restoring forces can be well-represented by cubic polynomials, since the generation of training sets is avoided.

Regarding the second problem of non-intrusive NLROMs—determining the NSCs—two procedures are commonly used, sometimes
referred to as the applied force (AF) and the enforced displacement (ED) method, respectively [12]. The AF approach, first proposed
by McEwan et al. [4], requires that several nonlinear static problems are solved for the full-order system. However, it is the basis
in the ICE method, which in turn enables a particularly efficient approach for recovering the displacements of the full model. The
ED method, also referred to as STEP (STiffness Evaluation Procedure), was first introduced by Muravyov and Rizzi [3], and is the
basis in several techniques [3,9,13,17–19,25–27]. Similar to the AF method, this procedure requires that several static problems
are solved. However, the static problems are defined using enforced displacement fields instead of external forces. Consequently,
iterative solution techniques can be avoided if using hyperelastic (‘‘memoryless’’) constitutive models; thus, static solutions are
simply obtained by evaluating the internal forces for prescribed displacement fields. Moreover, the number of required load cases
can be further decreased by using the enhanced enforced displacement (EED) method [27]. A review of non-intrusive NLROM
techniques can be found in [28].
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With respect to computational efficiency, a bottleneck in the non-intrusive methods is typically the offline cost, referring to the
computational cost required for establishing the system matrices before the dynamic response analysis is initiated. This includes both
the computational effort related to the generation of basis vectors as well as calculating the NSCs. In contrast, the computational
online cost concerns the time-stepping procedure. For cases where the dynamic response is to be evaluated during a short time frame,
such as impact analyses, the online cost is typically significantly smaller than the offline cost. However, if the analysis necessitates
long time records, e.g. in random response analyses, the online cost can be significant. Furthermore, as discussed in e.g. [13,18],
issues related to numerical round-off errors can be a significant problem, both with regard to convergence and accuracy. Thus, to
enable efficient and accurate NLROMs using non-intrusive methods, there is a need to develop methods for reducing the offline and
online cost, and ensuring sufficient accuracy of the NSCs.

In the present paper, the aim is to develop cost-effective strategies for non-intrusive reduced order modeling of geometrically
nonlinear structures. Our study is focused on flat and slightly curved, shallow structures. These types of structures are often
characterized by a geometrically nonlinear behavior and appear in several engineering applications, such as design of glass barriers
(see e.g. [29,30]), or applications within the aerospace industry [8,27]. The NLROMs are generated using reduction bases including
out-of-plane bending modes and the associated modal derivatives. Moreover, the generation of the out-of-plane modes is accelerated
by means of a Krylov-subspace approach that considers the spatial distribution of the external load [31]. Using this approach,
redundant eigenmodes, that cannot be (explicitly) excited by the external load is automatically excluded.

For the specific case of flat structures, it turns out that the modal derivatives associated to out-of-plane bending modes have
several useful properties. In particular, we show that the modal derivatives essentially provide all the information needed for
generating the NSCs for the in-plane basis. Furthermore, the modal derivatives can be used effectively for recovering the in-plane
displacements for condensed systems, which ignores the dynamics of the in-plane coordinates (see e.g. [9,18,19]).

Based on these findings, we propose a procedure for developing NLROMs in a computationally efficient manner. The modeling
strategies can, in addition to beam and shell models, be applied to structures modeled using solid elements. Moreover, we show that
the concepts can be extended also to slightly curved structures. Finally, a decondensation approach for mitigating the influence of
numerical round-off errors, which was proposed in [9,18], is investigated for NLROMs established using modal derivatives.

The paper is structured as follows. In Section 2, the governing equations for NLROMs and techniques for precomputing the NSCs
are presented. Section 3 presents methods for generating reduction bases. In Section 4, we introduce methodologies for developing
NLROMs in a computationally efficient manner. In particular, concepts with/without in-plane dynamics are considered. In Section 5,
the NLROM techniques are evaluated by means of numerical examples, based on FE models developed using both MATLAB and
the commercial software Abaqus. Various approaches for considering the in-plane response are evaluated as well as strategies for
mitigating the influence of numerical round-off errors. Finally, the results are discussed in Section 6 and conclusion are presented
in Section 7.

2. Equations of motion for nonlinear reduced order models

An FE formulation of a structural dynamics problem result in a multi-degree-of-freedom (MDOF) system, for which the equations
of motion can be expressed in matrix form:

𝐌�̈�(𝑡) + 𝐂�̇�(𝑡) + 𝐟 (𝐮(𝑡)) = 𝐠(𝑡) (1)

where 𝐌 and 𝐂 are the 𝑛 × 𝑛 mass and (viscous) damping matrix, respectively, 𝑛 being the number of physical DOFs. Further, 𝐮 is
the 𝑛×1 displacement vector (dot notation is used for differentiation with respect to time), and 𝐟 and 𝐠 are the 𝑛× 1 restoring force
and external force vector, respectively (henceforth, the time-dependence of variables is left out for compactness).

In this work, lightly damped, geometrically nonlinear systems are considered and, accordingly, the restoring force vector in
Eq. (1) is amplitude-dependent. Further, it is assumed that the viscous damping matrix is stiffness-proportional (i.e. Rayleigh 𝛽-
damping [15]), which implies that the damping matrix in general depend on the displacement magnitude. However, to simplify
the notation, the amplitude-dependence of the damping is omitted in the derivations (for further details on the specific damping
applied in the numerical investigations, see Section 5).

The FE model typically involves a large number of DOFs which can lead to a significant computational cost. To decrease the
system size, a ROM can be obtained by applying a 𝑛×𝑁 reduction basis, 𝐕, where 𝑁 is the number of basis vectors, also referred to
as mode shapes (in the following, the terms mode and basis vector are used interchangeably). Further, it is assumed that the number
of modes is significantly smaller than the number of physical DOFs, i.e. 𝑁 ≪ 𝑛. It follows that the FE model physical displacements
can be expressed in terms of a reduced set of generalized coordinates 𝜼:

𝐮 = 𝐕𝜼 (2)

where the size of 𝜼 is 𝑁 × 1. Hence, the physical displacements are expressed in terms of a linear transformation, such that the
generalized coordinates determines the amplitude of the mode shapes, corresponding to the columns of 𝐕. A reduction of the
system size is thus achieved by assuming that the solution lives in a subspace, spanned by 𝐕. This projective reduced order modeling
approach are frequently used in linear dynamics, where the reduction basis typically consist of a few low-freqency eigenmodes of
the linearized system (see e.g. [14,15]). However, it should be noted that any type of basis vectors can be used, and the subspace
projection technique is not restricted to linear systems. Specifically, the equations of motion for a NLROM can be expressed as:

𝐌𝑟�̈� + 𝐂𝑟�̇� + 𝐟𝑟(𝜼) = 𝐠𝑟 (3)
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where

𝐌𝑟 = 𝐕T𝐌𝐕, 𝐂𝑟 = 𝐕T𝐂𝐕, 𝐟𝑟 = 𝐕T𝐟 (𝐕𝜼), 𝐠𝑟 = 𝐕T𝐠.

Here, 𝐌𝑟 and 𝐂𝑟 are the 𝑁 × 𝑁 reduced mass and damping matrix, respectively, and 𝐟𝑟 and 𝐠𝑟 are the 𝑁 × 1 reduced nonlinear
restoring force and external force vector, respectively.

The NLROM can be solved using standard time-stepping schemes (e.g. Newmark’s family of methods), where the nonlinear
restoring forces, in general, needs to be updated in each time increment using iterative techniques (e.g. the Newton–Raphson
method). However, as indicated by Eq. (3), this would require an evaluation of the full nonlinear restoring force vector in
each iteration, which can be computationally expensive. To enable a time-stepping procedure involving only the reduced set of
generalized coordinates, the reduced nonlinear restoring forces can be expressed as multivariate cubic polynomials [3–9,11,12].
More specifically, an expression can be derived using a Taylor series expansion of the reduced nonlinear restoring forces around
the point of equilibrium, namely:

𝐟𝑟(𝜼) ≈
𝜕𝐟𝑟
𝜕𝜼

𝜼 + 1
2
𝜕2𝐟𝑟
𝜕𝜼2

𝜼𝜼 + 1
6
𝜕3𝐟𝑟
𝜕𝜼3

𝜼𝜼𝜼 = 𝐊(1)𝜼 +𝐊(2)𝜼𝜼 +𝐊(3)𝜼𝜼𝜼 (4)

where we used the compact tensor notation e.g. employed in [16,19]. Further, 𝐊(1) = 𝐕T𝐊0𝐕 is the 𝑁 ×𝑁 reduced linear stiffness
matrix, which can be obtained in a standard manner by projection of the 𝑛 × 𝑛 linearized stiffness matrix 𝐊0 = 𝜕𝐟

𝜕𝐮
⏐⏐⏐⏐⏐⏐⏐𝟎

. In addition,
𝐊(2) and 𝐊(3), having sizes 𝑁 ×𝑁 ×𝑁 and 𝑁 ×𝑁 ×𝑁 ×𝑁 , respectively, are higher order stiffness arrays introduced to consider the
nonlinear part of the restoring forces. Methods for precomputing the elements of these higher order stiffness arrays (i.e. the NSCs)
are further discussed in Section 2.3. Then, it follows that the reduced nonlinear equation of motion can be expressed, using index
notation, as:

𝑀𝑟,𝑖𝑗 �̈�𝑗 + 𝐶𝑟,𝑖𝑗 �̇�𝑗 +𝐾 (1)
𝑖𝑗 𝜂𝑗 +𝐾 (2)

𝑖𝑗𝑘𝜂𝑗𝜂𝑘 +𝐾 (3)
𝑖𝑗𝑘𝑙𝜂𝑗𝜂𝑘𝜂𝑙 = 𝑔𝑟,𝑖. (5)

Hence, a NLROM is obtained that only involves the reduced set of generalized coordinates, and thus avoids evaluations of the
nonlinear restoring forces in the physical domain.

It can be shown that a Taylor series expansion up to 3rd order (i.e. by considering the higher order stiffness arrays 𝐊(2) and 𝐊(3))
provide an exact solution for models that uses a hyperelastic, St-Venant Kirchhoff constitutive model (see e.g. [16]). In general,
however, Eq. (4) is an approximation. It should be noted that a fast convergence of the Taylor series expansion is crucial, because
the number of NSCs grows exponentially. However, the tensors are fully symmetric, i.e. the indices 𝑖, 𝑗, 𝑘, 𝑙, are fully interchangeable;
thus, in a numerical implementation, only the unique values need to be considered. Furthermore, the accuracy of the NLROM is
highly dependent on the reduction basis, which ideally should span a subspace where the nonlinear solution can be fully resolved.
In particular, to obtain an adequate approximation of the response, geometrically nonlinear systems typically require additional
high-frequency modes, as further discussed in Section 3.

2.1. Simplified form for flat structures

For flat structures, modeled using beam or shell elements, a linearized FE model can be formulated such that the physical in-plane
and out-of-plane displacements are uncoupled (see e.g. [32]). It follows that the in-plane displacements for bending eigenmodes, or
any static displacement field due to external forcing in the out-of-plane direction, are zero. Similarly, the out-of-plane displacements
for membrane eigenmodes, or any static displacement field due to external forcing in the in-plane direction, are zero. Thus, it is
possible to separate the modal basis generated from a flat, linearized structure into in-plane and out-of-plane modes, respectively.

Now, let 𝐪 and 𝐩 denote the generalized coordinate vectors for the 𝑁𝑏 bending modes, and 𝑁𝑚 membrane modes, respectively.
Then, the physical displacements can be expressed in partitioned form:

[

𝐮𝑏
𝐮𝑚

]

⏟⏞⏟⏞⏟
𝐮

=
[

�̂�𝑏 𝟎
𝟎 �̂�𝑚

]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝐕

[

𝐪
𝐩

]

⏟⏟⏟
𝜼

(6)

where subscripts 𝑏 and 𝑚 refers to bending and membrane coordinates/DOFs, respectively. Further, �̂�𝑏 and �̂�𝑚 have sizes 𝑛𝑏 ×𝑁𝑏
and 𝑛𝑚 ×𝑁𝑚, respectively, and include the basis vectors for the bending and membrane modes. Here, ∙̂ is introduced to distinguish
these matrices from the corresponding bases including the full set of 𝑛 = 𝑛𝑏 + 𝑛𝑚 DOFs, henceforth denoted 𝐕𝑏 and 𝐕𝑚, respectively.

By exploiting the partitioned form of the generalized coordinates, Eq. (5), which describe the equation of motion for a general
NLROM, can be further simplified. In particular, as e.g. shown in [18], all quadratic coefficients involving three bending coordinates
are zero due to the symmetry of the restoring forces, i.e. for flat structures 𝐾 (2)

𝑖𝑗𝑘 = 0 for all 𝑖, 𝑗, 𝑘 = 1,… , 𝑁𝑏. Moreover, as
demonstrated in [9,18,19], it can be reasonable to assume a linear response of the membrane-modes, which typically have resonance
frequencies well-above the frequency content of the forcing. Then, as e.g. shown in [16,18,19], the nonlinear equation of motion can
be written in simplified, partitioned form. Specifically, the system equations for the generalized coordinates associated to bending
modes can be expressed using index notation, as (where subscript 𝑟 of the reduced mass and damping matrix, and the reduced
external force vector has been omitted to simplify the notation):

𝑀𝑏,𝑖𝑗𝑞𝑗 + 𝐶𝑏,𝑖𝑗 �̇�𝑗 +𝐾 (1)
𝑏,𝑖𝑗𝑞𝑗 +𝐾 (2)

𝑏𝑚,𝑖𝑗𝑘𝑞𝑗𝑝𝑘 +𝐾 (3)
𝑏,𝑖𝑗𝑘𝑙𝑞𝑗𝑞𝑘𝑞𝑙 = 𝑔𝑏,𝑖 (7)
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and for the in-plane coordinates:

𝑀𝑚,𝑖𝑗 �̈�𝑗 + 𝐶𝑚,𝑖𝑗 �̇�𝑗 +𝐾 (1)
𝑚,𝑖𝑗𝑝𝑗 +𝐾 (2)

𝑚𝑏,𝑖𝑗𝑘𝑞𝑗𝑞𝑘 = 𝑔𝑚,𝑖 (8)

where a linear response is assumed for the in-plane coordinates.
Similarly, if using compact tensor notation, the system equations can be expressed schematically as follows (where the viscous

damping has been excluded for compactness):
[

𝐌𝑏 𝟎
𝟎 𝐌𝑚

] [

�̈�
�̈�

]

+

[

𝐊(1)
𝑏 𝟎
𝟎 𝐊(1)

𝑚

]

[

𝐪
𝐩

]

+

[

𝐊(2)
𝑏𝑚𝐪𝐩 +𝐊(3)

𝑏 𝐪𝐪𝐪
𝐊(2)

𝑚𝑏𝐪𝐪

]

=
[

𝐠𝑏
𝐠𝑚

]

. (9)

As evident by Eq. (9), the simplified system equations consider the linearized stiffness as well as quadratic coupling coefficients and
cubic stiffness coefficients involving three bending coordinates. Further, notice that multiple subscripts of 𝑏 and 𝑚 are omitted to
simplify the notation (for instance, 𝐊(1)

𝑏𝑏 , 𝐊(2)
𝑚𝑏𝑏, and 𝐊(3)

𝑏𝑏𝑏𝑏 are replaced by 𝐊(1)
𝑏 , 𝐊(2)

𝑚𝑏 and 𝐊(3)
𝑏 , respectively).

In addition to flat structures modeled using beam or shell elements, the simplified form can be used to approximate the response
of flat structures modeled using solid elements, as e.g. demonstrated in [19]. Then, the in-plane modes are replaced by non-bending
modes involving longitudinal and/or thickness displacements.

2.2. Static condensation of in-plane modes

As mentioned previously, the eigenfrequencies of the in-plane (or non-bending) modes are typically significantly higher than the
frequency of the forcing. Therefore, it can be reasonable to neglect the dynamics of the in-plane coordinates, and thus only consider
the quasi-static response (see e.g. [9,18,19]).

By neglecting the inertia terms in Eq. (8), and assuming that the external forcing on the in-plane DOFs is zero, the in-plane
coordinates can be expressed in terms of the out-of-plane coordinates:

𝑝𝑗 = −
[

𝐾 (1)
𝑚

]−1
𝑗𝑟 𝐾 (2)

𝑚𝑏,𝑟𝑘𝑙𝑞𝑘𝑞𝑙 (10)

Furthermore, by substituting Eq. (10) into Eq. (7), the condensed system equations can be expressed as:

𝑀𝑏,𝑖𝑗𝑞𝑗 + 𝐶𝑏,𝑖𝑗 �̇�𝑗 +𝐾 (1)
𝑏,𝑖𝑗𝑞𝑗 + �̃� (3)

𝑏,𝑖𝑗𝑘𝑙𝑞𝑗𝑞𝑘𝑞𝑙 = 𝑔𝑏,𝑖 (11)

where

�̃� (3)
𝑏,𝑖𝑗𝑘𝑙 = 𝐾 (3)

𝑏,𝑖𝑗𝑘𝑙 −𝐾 (2)
𝑏𝑚,𝑖𝑗𝑟

[

𝐾 (1)
𝑚

]−1
𝑟𝑠 𝐾 (2)

𝑚𝑏,𝑠𝑘𝑙 (12)

are the condensed stiffness coefficients, meaning that they are adjusted with respect to the quasi-static response of the in-plane
coordinates. Hence, even though only the out-of-plane modal coordinates are kept as system variables, the structure is in fact
not fully constrained in the in-plane direction. For example, prescribing an out-of-plane modal coordinate 𝑞𝑖, in general, result
in out-of-plane as well as in-plane displacements (cf. Fig. 1).

2.3. Precomputation of nonlinear stiffness coefficients

In this work, we utilize the ED and EED method for precomputing the NSCs, which are briefly described in Sections 2.3.1 and
2.3.2 (for further details, see [3] and [27], respectively). Techniques for identifying the condensed stiffness coefficients are discussed
in Section 2.3.3, and a brief description of a decondensation method [18] for mitigating the influence of numerical round-off errors
is presented in Section 2.3.4.

2.3.1. Enforced displacement method
Because the polynomial structure of the nonlinear forces are known, the NSCs can be determined based on prescribed

displacement fields for which the nonlinear internal force vector is known. This is the basic idea of the ED method. Specifically, the
reduced nonlinear restoring forces can be calculated as:

𝐟𝑟(𝜼) = 𝐕T𝐟 (𝐮) (13)

where, as stated previously, 𝐟 is the full-order restoring force vector due to the prescribed displacement field 𝐮. Furthermore, recall
that the reduced nonlinear restoring force vector can be expressed as (cf. Eq. (4)):

𝑓𝑟,𝑖(𝜼) = 𝐾 (1)
𝑖𝑗 𝜂𝑗 +𝐾 (2)

𝑖𝑗𝑘𝜂𝑗𝜂𝑘 +𝐾 (3)
𝑖𝑗𝑘𝑙𝜂𝑗𝜂𝑘𝜂𝑙 . (14)

Now, assume that the static solution is available for an enforced displacement field given by 𝐮 = 𝐯𝑗𝛼1, where 𝛼1 is an arbitrary scalar.
Further, in a similar manner, a static solution can be calculated using a different scalar, 𝛼2. Then, by using Eqs. (13) and (14), and
assuming that 𝐕 is orthogonal, the NSCs of the form 𝐾 (2)

𝑖𝑗𝑗 and 𝐾 (3)
𝑖𝑗𝑗𝑗 can be solved by means of algebraic systems of equations (no

summation over repeated indices):

⎧

⎪

⎨

⎪

⎩

𝑓𝑟,𝑖(𝜼 = 𝐞𝑗𝛼1) = 𝐾 (1)
𝑖𝑗 𝛼1 +𝐾 (2)

𝑖𝑗𝑗𝛼
2
1 +𝐾 (3)

𝑖𝑗𝑗𝑗𝛼
3
1

𝑓𝑟,𝑖(𝜼 = 𝐞𝑗𝛼2) = 𝐾 (1)
𝑖𝑗 𝛼2 +𝐾 (2)

𝑖𝑗𝑗𝛼
2
2 +𝐾 (3)

𝑖𝑗𝑗𝑗𝛼
3
2

(15)
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where it is assumed that the linear stiffness coefficients 𝐾 (1)
𝑖𝑗 are known. Then, as demonstrated in [3], stiffness coefficients having

three different indices (i.e. 𝐾 (2)
𝑖𝑗𝑘, 𝐾 (3)

𝑖𝑗𝑗𝑘, and 𝐾 (3)
𝑖𝑗𝑘𝑘) can be determined in a second step, by prescribing displacement fields composed

of two different basis vectors. Finally, stiffness coefficients having four different indices (𝐾 (3)
𝑖𝑗𝑘𝑙) can be determined by prescribing

displacement fields composed of three different basis vectors. In total, 2𝑁 +3𝑁(𝑁 −1)+𝑁(𝑁 −1)(𝑁 −2)∕6 static solutions is needed
to determine all the NSCs [27].

For models using St-Venant Kirchhoff materials, an arbitrary magnitude of the prescribed displacement fields can be selected [16].
However, the magnitude may still affect the influence of numerical round-off errors. In the general case, the magnitude should be
sufficiently small to ensure convergence, but large enough such that the nonlinear regime is entered.

2.3.2. Enhanced enforced displacement method
The ED method only require a FE program capable of solving nonlinear static problems. Nonetheless, for reduction bases of

large or moderate sizes, the number of load cases can become immense and, consequently, the computational offline cost can
be unmanageable. However, if the tangent stiffness matrix is available (which, for example, is the case in the commercial software
Abaqus), the number of static load cases can be significantly decreased by means of the EED method [27], which is briefly described
as follows:

The reduced tangent stiffness matrix can be expressed in terms of the full tangent stiffness matrix, as:

𝐊𝑟(𝜼) = 𝐕T𝐊(𝐕𝜼)𝐕. (16)

Moreover, the reduced tangent stiffness matrix is the Jacobian of the reduced nonlinear restoring forces with respect to the
generalized coordinates 𝜼. Thus, by using Eq. (14), the reduced tangent stiffness can be expressed as follows (see e.g. [13,27]):

𝐾𝑟,𝑖𝑢 =
𝜕
𝜕𝜂𝑢

[

𝐾 (1)
𝑖𝑗 𝜂𝑗 +𝐾 (2)

𝑖𝑗𝑙 𝜂𝑗𝜂𝑙 +𝐾 (3)
𝑖𝑗𝑙𝑝𝜂𝑗𝜂𝑙𝜂𝑝

]

= 𝐾 (1)
𝑖𝑢 +

[

𝐾 (2)
𝑖𝑗𝑢 +𝐾 (2)

𝑖𝑢𝑗

]

𝜂𝑗 +
[

𝐾 (3)
𝑖𝑗𝑙𝑢 +𝐾 (3)

𝑖𝑗𝑢𝑙 +𝐾 (3)
𝑖𝑢𝑗𝑙

]

𝜂𝑗𝜂𝑙 (17)

Then, similarly to the ED method, sets of two static solutions are generated based on the full-order FE model for enforced
displacement fields corresponding to a reduction basis vector, scaled by 𝛼1 and 𝛼2, respectively. Thus, by using Eqs. (16) and (17),
one obtains (no summation over repeated indices):

⎧

⎪

⎨

⎪

⎩

𝐾𝑟,𝑖𝑢(𝜼 = 𝐞𝑗𝛼1) = 𝐾 (1)
𝑖𝑢 +

[

𝐾 (2)
𝑖𝑗𝑢 +𝐾 (2)

𝑖𝑢𝑗

]

𝛼1 +
[

𝐾 (3)
𝑖𝑗𝑗𝑢 +𝐾 (3)

𝑖𝑗𝑢𝑗 +𝐾 (3)
𝑖𝑢𝑗𝑗

]

𝛼21

𝐾𝑟,𝑖𝑢(𝜼 = 𝐞𝑗𝛼2) = 𝐾 (1)
𝑖𝑢 +

[

𝐾 (2)
𝑖𝑗𝑢 +𝐾 (2)

𝑖𝑢𝑗

]

𝛼2 +
[

𝐾 (3)
𝑖𝑗𝑗𝑢 +𝐾 (3)

𝑖𝑗𝑢𝑗 +𝐾 (3)
𝑖𝑢𝑗𝑗

]

𝛼22
(18)

Thereafter, by utilizing that the higher order stiffness arrays are fully symmetric (i.e. the indices are fully interchangeable), all NSCs
of the form 𝐾 (2)

𝑖𝑢𝑗 , 𝐾
(2)
𝑖𝑗𝑗 , 𝐾

(3)
𝑖𝑢𝑗𝑗 , 𝐾

(3)
𝑖𝑗𝑗𝑢, and 𝐾 (3)

𝑖𝑗𝑗𝑗 can be determined by means of algebraic systems of equations, assuming that the linear
stiffness matrix is known. Finally, in a second step, coefficients of the form 𝐾 (3)

𝑖𝑗𝑙𝑢 can be determined by enforcing displacement fields
composed of two different basis vectors. Further details on the EED method can be found in [27].

It should be noted that, in contrast to the ED method, static displacement fields composed of three different basis vectors is not
needed in the identification process. Accordingly, the total number of static cases to be solved for determining all the NSCs is of
order (𝑁2), namely 2𝑁 +𝑁(𝑁 − 1)∕2. Hence, significantly smaller than for the ED method.

2.3.3. Condensed stiffness coefficients
For flat structures modeled using beams or shells, the condensed stiffness coefficients �̃� (3)

𝑏,𝑖𝑗𝑘𝑙 (cf. Eq. (12)) can be computed
explicitly by applying the ED method on the out-of-plane DOFs. Hence, the modal displacements are enforced on the 𝐮𝑏 DOFs, while
the 𝐮𝑚 DOFs are allowed to move freely, as e.g. demonstrated in [9,18]. This implies that several full nonlinear static problems must
be solved using iterative procedures, such as the Newton–Raphson method. In contrast, if all DOFs are prescribed, iterative solution
techniques can be avoided; thus, the internal forces can be determined by a single evaluation based on the prescribed displacement
field (i.e., as in the original version of the ED method). Nonetheless, because the number of in-plane modes scales quadratically
with the number of out-of-plane modes (see Section 3), the condensed approach can still be beneficial. It should be emphasized,
however, that this approach implies that the dynamics of the in-plane coordinates is ignored.

A similar approach, referred to as the Modified-STEP (M-STEP) method, was recently proposed by Vizzaccaro et al. [19] for
estimating the condensed stiffness coefficients for flat structures (or straight beams) modeled using solid elements. More specifically,
the M-STEP method can be applied to flat, solid models where the geometrical and material distribution as well as boundary
conditions are symmetric with respect to the middle line/plane of the structure. The resulting NLROM is given by Eq. (11) and, thus,
uses the out-of-plane coordinates 𝑞 as system variables. Further, the M-STEP method assumes that the external forcing is applied
solely on the out-of-plane DOFs located in the middle line/plane. Results obtained using the M-STEP method is further investigated
in Section 5.1.
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2.3.4. Decondensation for mitigating the influence of numerical round-off errors
As discussed in [18], the influence of numerical round-off errors can be a significant issue when using the non-intrusive methods,

both with respect to convergence and accuracy. Numerical errors can arise due to the finite precision of computations, but can also
be attributed the discrepancies between the total Lagrangian formulation used for defining the NLROMs and the updated Lagrangian
formulation commonly employed in commercial FE codes.

To mitigate the influence of such numerical round-off errors, Wang et al. [18] proposed a decondensation technique, specialized
for flat structures. In summary, they suggest that the condensed stiffness coefficients �̃� (3)

𝑏,𝑖𝑗𝑘𝑙 are calculated in a first step, i.e., by
enforcing the ED procedure on the out-of-plane DOFs while the in-plane DOFs are allowed to move freely (cf. Section 2.3.3). Further,
the coefficients 𝐾 (2)

𝑚𝑏,𝑖𝑗𝑘 and 𝐾 (2)
𝑏𝑚,𝑖𝑗𝑘 are determined by applying the ED method on all the DOFs in a standard manner. Then, by

rearranging the terms in Eq. (12), the decondensed NSCs are calculated as

𝐾 (3)
𝑏,𝑖𝑗𝑘𝑙 = �̃� (3)

𝑏,𝑖𝑗𝑘𝑙 +𝐾 (2)
𝑏𝑚,𝑖𝑗𝑟

[

𝐾 (1)
𝑚

]−1
𝑟𝑠 𝐾 (2)

𝑚𝑏,𝑠𝑙𝑝. (19)

In [18], the in-plane basis was constructed using dual modes. However, the decondensation technique can also be used for
reduction bases constructed using modal derivatives, as demonstrated in Section 5.2.

3. Reduction basis for geometrically nonlinear models

There are several ways to generate mode shapes that can be used for constructing a reduction basis. In structural dynamic
applications, the most common approach is to generate a set of modes based on the linearized system. This type of modes are
herein referred to as linear modes, and are further discussed in Section 3.1. Furthermore, modal derivatives, which are derived using
modal perturbations, are investigated as means for generating enriched reduction bases appropriate for nonlinear models, see further
Section 3.2.

3.1. Linear modes

As described in Section 2.1, the reduction basis for a flat structure can be separated into in-plane and out-of-plane modes. In the
following, it is assumed that the set of linear modes only include out-of-plane bending modes. Further, two different types of linear
modes are investigated: normal modes (see Section 3.1.1) and force-dependent modes, generated using a Krylov-subspace approach
(see Section 3.1.2).

3.1.1. Normal modes
In linear dynamics applications, the eigenmodes of the undamped linearized system, often referred to as normal modes, are

arguable the most common type of reduction basis vectors. Typically, a reduction basis is constructed based on a set of low frequency
eigenmodes, computed based on the generalized eigenvalue problem:

(

𝐊0 − 𝜔2
𝑗𝐌

)

𝝓𝑗 = 𝟎 (20)

where the eigenmodes are commonly scaled such that 𝝓T
𝑖 𝐌𝝓𝑖 = 1 for all 𝑖 = 1,… , 𝑁𝑏. Further, it should be noted that the eigenmodes

are both stiffness- and mass-orthogonal [2].
The frequency content of the loading in structural dynamics applications are generally in the range of the low-frequency

eigenmodes of a structure. Furthermore, the eigenmodes are not affected by the spatial distribution of the external load. Thus,
the reduction basis can be applicable for several types of loading (see e.g. [13]).

3.1.2. Krylov-subspace
In some applications it can be beneficial to instead generate a set of basis vectors using a Krylov sequence, which consider

the spatial distribution of the external load [31]. For this technique to be meaningful, the spatial variation of the load must be
time-independent in some manner. For example, the external load may be decomposed into a set of 𝑝 spatial load vectors such that

𝐠 =
𝑝
∑

𝑗=1
𝐠𝑗𝜶𝑗 (𝑡) = 𝐆𝜶(𝑡) (21)

where 𝐆 is a 𝑛 × 𝑝 matrix containing the spatial load vectors and 𝜶(𝑡) contains the corresponding time functions. Then, a block
Krylov-subspace is given by

𝑟(𝐊−1
0 𝐌;𝐊−1

0 𝐆) = span
(

𝐊−1
0 𝐆, (𝐊−1

0 𝐌)𝐊−1
0 𝐆,… , (𝐊−1

0 𝐌)𝑟−1𝐊−1
0 𝐆

)

. (22)

Hence, a set of basis vectors can be generated using repeated matrix–vector multiplications and, consequently, a reduction basis can
be generated with a small computational effort, in contrast to the computational cost required for solving an eigenvalue problem. To
avoid numerical round-off errors, the Krylov-subspace should be generated using e.g. the modified Gram–Schmidt orthogonalization
procedure (see e.g. [15,33]). Furthermore, the basis vectors are not mutually mass- and stiffness orthogonal. This can be achieved
by solving a small eigenvalue problem:

(

�̃�T𝐊0�̃�
)

𝐙 =
(

�̃�T𝐌�̃�
)

𝐙Λ (23)
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Fig. 2. Comparison of normal modes and reduction basis vectors generated using the Krylov-subspace approach for a simply supported beam subjected to a
uniform pressure. Note that the anti-symmetric modes, not being excited by a uniform pressure, are automatically excluded when using the Krylov-subspace
approach.

where �̃� is the original basis, Λ is a diagonal matrix containing pseudo-frequencies, and 𝐙 contains the corresponding eigenvectors,
which are normalized such that 𝐙T (𝐕T𝐌𝐕

)

𝐙 = 𝐈. An orthonormal basis can then be calculated as 𝐕 = �̃�𝐙.
Because the spatial distribution of the load is used as input in the derivation, the generated modes will, by definition, be excited

by the applied load. On the contrary, a reduction basis established using normal modes may include redundant modes, which are not
excited by the external load (see Fig. 2). Limiting the size of the linear basis is particularly important for cost-effective generation
of NLROMs, as demonstrated in Section 5.

If the external load is applied on the out-of-plane DOFs of flat structures modeled using beam or shell elements, the Krylov-
subspace will not involve the in-plane DOFs. As further discussed in Section 3.2.2, this result extend also to shallow solid models
being symmetric with respect to the middle plane. Furthermore, the Krylov-subspace technique considers the quasi-static response
of the external load. Accordingly, specialized techniques for considering the quasi-static response of eigenmodes excluded from the
basis, such as the mode acceleration method [14], are not needed. It should be noted, however, that modes orthogonal to the applied
load can be excited in the nonlinear regime due to internal resonances between pair of modes. The Krylov subspace approach is
thus most suitable if such internal resonances have negligible impact. Nonetheless, the Krylov basis can be enriched by additional
normal modes which are not explicitly excited by the external forcing. For further details on the Krylov-subspace technique, and
examples of linear dynamics applications, see e.g. [31,34,35].

3.2. Modal derivatives

As demonstrated in [19], reduction bases suitable for analyzing geometrically nonlinear systems must typically span a significant
number of eigenmodes, having eigenfrequencies considerably higher than the forcing frequency. Thus, an approach using a truncated
modal basis, which is standard procedure in linear dynamics, is not feasible. This can be realized by evaluating the static response
of an FE model. Clearly, the static displacements of a linearized model can be fully represented by a single mode, i.e. corresponding
to an arbitrary scaling of the static displacement field (𝐮 = 𝐊−1

0 𝐠). However, for a geometrically nonlinear model, additional modes
would be required to resolve the displacement field, because the tangent stiffness of the system is amplitude-dependent. This is
apparent for cantilever structures, where bending modes as well as in-plane modes are required for an accurate representation
of the static deformation, as exemplified in Fig. 1. In the general case, the reduction basis should span the eigenmodes needed
for analyzing the corresponding linearized system, as well as high-frequency modes that may neither be explicitly excited nor
have eigenfrequencies in the range of the forcing frequency. Hence, constructing a reduction basis using linear modes, suitable
for NLROMs, is not a trivial task.

To approach the problem, reduction bases enriched by modal derivatives were proposed in [6,13,16,22,36,37]. In the following,
the modal derivatives are derived using an approach similar to the one presented in [36]. However, by using the generalization first
proposed in [37], the below derivation allows for applying the concept of modal derivatives to any type of linear modes.

By neglecting the inertia terms in Eq. (1), the static response for a FE model can be expressed as:

𝐟 (𝐮) = 𝐠 (24)

where 𝐟 and 𝐠 are the 𝑛×1 nonlinear restoring force and external force vector, respectively. Further, let the external load be defined
by

𝐠 = 𝐊0

𝑁𝑏
∑

𝑖=1
𝐯𝑏,𝑖𝑞𝑖 (25)

where 𝐯𝑏,𝑖 are linear modes scaled by the associated coordinates 𝑞𝑖 (cf. Section 3.1). Hence, the external load correspond to the
internal forces of a linearized system, obtained by prescribing the displacement fields 𝐯𝑏,𝑖𝑞𝑖. Now, assume that 𝐮 is 𝐶2-differentiable
with respect to the modal coordinates 𝐪. Then, differentiate Eq. (24) with respect to 𝑞𝑖:

𝜕𝐟
𝜕𝐮

𝜕𝐮
𝜕𝑞𝑖

= 𝐊 𝜕𝐮
𝜕𝑞𝑖

=
𝜕𝐠
𝜕𝑞𝑖

= 𝜕
𝜕𝑞𝑖

(

𝐊0

𝑁𝑏
∑

𝑖=1
𝐯𝑏,𝑖𝑞𝑖

)

= 𝐊0𝐯𝑏,𝑖. (26)

Evaluating Eq. (26) around 𝐮 = 𝟎 yields:
𝜕𝐮
𝜕𝑞𝑖

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝟎
= 𝐯𝑏,𝑖. (27)
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Thus, the modes 𝐯𝑏,𝑖 used for generating the external force vector (cf. Eq. (25)) are obtained. Here, it should be emphasized that
these modes can be either normal modes or the load-dependent modes discussed in Section 3.1.2. Then, differentiate Eq. (26) with
respect to 𝑞𝑗 , as:

𝜕
𝜕𝑞𝑗

(

𝐊 𝜕𝐮
𝜕𝑞𝑖

)

= 𝜕𝐊
𝜕𝑞𝑗

𝜕𝐮
𝜕𝑞𝑖

+𝐊 𝜕2𝐮
𝜕𝑞𝑗𝜕𝑞𝑖

= 𝟎. (28)

Evaluating around 𝐮 = 𝟎 yields:

𝜕𝐊
𝜕𝑞𝑗

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝟎
𝐯𝑏,𝑖 +𝐊0

𝜕2𝐮
𝜕𝑞𝑖𝜕𝑞𝑗

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝟎
= 𝟎. (29)

Thus, the modal derivative is given by

𝜽𝑖𝑗 =
𝜕2𝐮

𝜕𝑞𝑖𝜕𝑞𝑗

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝟎
= −𝐊−1

0
𝜕𝐊
𝜕𝑞𝑗

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝟎
𝐯𝑏,𝑖. (30)

Furthermore, a Taylor series expansion of 𝐮(𝐪) around 𝐪 = 𝟎 gives:

𝐮(𝐪) ≈ 0 +
𝑁𝑏
∑

𝑖=1

𝜕𝐮
𝜕𝑞𝑖

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝟎
𝑞𝑖 +

1
2

𝑁𝑏
∑

𝑖=1

𝑁𝑏
∑

𝑗=1

𝜕2𝐮
𝜕𝑞𝑗𝜕𝑞𝑖

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝟎
𝑞𝑖𝑞𝑗 . (31)

By substituting Eqs. (27) and (30) into Eq. (31), it then follows that the nonlinear response can be approximated as

𝐮(𝐪) ≈
𝑁𝑏
∑

𝑖=1
𝐯𝑏,𝑖𝑞𝑖 +

1
2

𝑁𝑏
∑

𝑖=1

𝑁𝑏
∑

𝑗=1
𝜽𝑖𝑗𝑞𝑖𝑞𝑗 . (32)

Clearly, for linear systems the second term can be neglected, resulting in the well-known modal expansion approach. However,
in geometrically nonlinear analyses, the modal derivatives span precisely the additional subspace needed to achieve an accurate
reduction basis. Furthermore, the modal derivatives, as derived above, are symmetric with respect to the indices 𝑖 and 𝑗, i.e. 𝜽𝑖𝑗 = 𝜽𝑗𝑖.

It should be noted that the above derivation neglects the inertia terms and, thus, consider the static response of the geometrically
nonlinear model. Accordingly, these modes are sometimes referred to as static modal derivatives. An alternative is to derive the
modal derivatives based on the generalized eigenvalue problem (cf. Eq. (20)) as e.g. described in [10,16]. However, this approach
is, arguably, less straightforward and, moreover, result in modal derivatives not being symmetric with respect to the indices 𝑖 and 𝑗.
Furthermore, the investigations presented in e.g. [13,16] indicate that the additional accuracy gained using this approach is fairly
limited. In this study, we therefore consider only static modal derivatives (henceforth referred to as modal derivatives).

3.2.1. Non-intrusive calculation of modal derivatives
According to Eq. (30), the directional derivative of the tangent stiffness matrix along a mode 𝐯𝑏,𝑖 is required for computing the

modal derivatives (i.e. 𝜕𝐊
𝜕𝑞𝑖

⏐⏐⏐⏐⏐⏐⏐⏐⏐𝟎
). This quantity can be computed analytically on the element level (see e.g. [6]). However, this requires

specialized routines not available in most FE programs. An alternative, as e.g. proposed in [13,16], is to compute the derivative of
the tangent stiffness matrix in a non-intrusive manner using numerical central differences, as:

𝜕𝐊
𝜕𝑞𝑖

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝟎
=

𝐊(𝐯𝑏,𝑖ℎ) −𝐊(−𝐯𝑏,𝑖ℎ)
2ℎ

. (33)

Hence, neither specialized routines nor detailed knowledge of the FE implementation are required; thus, the directional derivatives
can be calculated using any FE program which releases the tangent stiffness matrix for nonlinear static problems (such as Abaqus,
Nastran). Furthermore, note that only 𝑁𝑏 evaluations of Eq. (33) is required for computing the 𝑁2

𝑏 modal derivatives 𝜽𝑖𝑗 (cf. Eq. (30)).
Alternatively, if the tangent stiffness matrix is not available, the modal derivatives can be computed using numerical differentiation
based on the reaction forces from prescribed displacement fields, as proposed in [13,19]. However, this approach is computationally
more expensive.

3.2.2. Properties of modal derivatives for flat structures
For flat structures, it turns out that the modal derivatives associated to bending modes are in-plane modes. Furthermore, the

bending modes 𝐯𝑏,𝑖, 𝑖 = 1,… , 𝑁𝑏 of flat structures are mass- and stiffness-orthogonal to all the modal derivatives 𝜽𝑖𝑗 = 𝜕𝐯𝑏,𝑖
𝜕𝑞𝑗

,
𝑖, 𝑗 = 1,… , 𝑁𝑏. For nonlinear models using hyperelastic, St-Venant Kirchhoff materials this can be shown as follows (a similar
proof can also be found in [19]):

First, note that a FE model can be fully represented in terms of modal coordinates. In particular, a transformation can be expressed
as:

𝐮 = 𝜱𝜼 (34)

where 𝜱 =
[

𝝓1 … 𝝓𝑛
]

is a 𝑛 × 𝑛 transformation matrix containing the full set of eigenmodes (cf. Eq. (20)). Hence, applying
the basis result in a full-order transformed system which fully describe the original system.

Further, as discussed in Section 2, the reduced nonlinear restoring forces 𝐟𝑟 can be expressed in terms of higher order stiffness
arrays (cf. Eq. (4)). In particular, if including the higher order stiffness arrays 𝐊(2) and 𝐊(3), an exact expression is obtained for FE
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models that uses St-Venant Kirchhoff materials (cf. Section 2). Furthermore, recall that all quadratic coefficients involving three
bending coordinates are zero for flat beam and shell models, i.e 𝐾 (2)

𝑖𝑗𝑘 = 0 for all 𝑖, 𝑗, 𝑘 = 1,… , 𝑁𝑏 (cf. Section 2.1). Based on this
observation, let the set of eigenmodes for which this condition holds be defined as bending modes. Note that, by using this definition,
the concept of in-plane and out-of-plane modes is generalized; thus, in addition to beam and shell models, it can be used for other
FE models, such as flat structures modeled using solid elements.

Now, let 𝜱 be partitioned such that:

𝜱 =
[

𝜱𝑏 𝜱𝑚
]

(35)

where 𝜱𝑏 and 𝜱𝑚 contain the 𝑁𝑏 bending modes and the 𝑁𝑚 non-bending modes, respectively. Accordingly, the modal coordinate
vector is partitioned such that 𝜼 =

[

𝐪T 𝐩T ]T, where 𝐪 are the bending coordinates and 𝐩 are the non-bending coordinates,
respectively. Moreover, the reduced tangent stiffness matrix can be expressed according to Eq. (17) (restated here for convenience):

𝐾𝑟,𝑖𝑢 = 𝐾 (1)
𝑖𝑢 +

[

𝐾 (2)
𝑖𝑗𝑢 +𝐾 (2)

𝑖𝑢𝑗

]

𝜂𝑗 +
[

𝐾 (3)
𝑖𝑗𝑙𝑢 +𝐾 (3)

𝑖𝑗𝑢𝑙 +𝐾 (3)
𝑖𝑢𝑗𝑙

]

𝜂𝑗𝜂𝑙 (36)

where 𝐊𝑟 is the 𝑁 ×𝑁 reduced tangent stiffness matrix. In this specific case, 𝑁 = 𝑁𝑏 +𝑁𝑚 = 𝑛, since the modal basis include the
full set of eigenmodes.

Because the modal basis is orthogonal, prescribing a coordinate in Eq. (36), such that 𝜂𝑗 = ℎ (with 𝜂𝑖 = 0 ∀𝑖 = 1,… , 𝑁 , 𝑖≠ 𝑗),
result in the following expression for the tangent stiffness matrix:

𝐾𝑟,𝑖𝑢(𝜼 = 𝐞𝑗ℎ) = 𝐾 (1)
𝑖𝑢 +

[

𝐾 (2)
𝑖𝑗𝑢 +𝐾 (2)

𝑖𝑢𝑗

]

ℎ +
[

𝐾 (3)
𝑖𝑗𝑗𝑢 +𝐾 (3)

𝑖𝑗𝑢𝑗 +𝐾 (3)
𝑖𝑢𝑗𝑗

]

ℎ2 (37)

where ℎ is an arbitrary scalar and 𝐞𝑗 is a 𝑁 × 1 unit vector in direction 𝑗. Then, by applying Eq. (37) to Eq. (33), an expression for
the directional derivative of the tangent stiffness matrix along the unit vector 𝐞𝑗 is obtained, namely:

[

𝜕𝐾𝑟
𝜕𝑞𝑗

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝟎

]

𝑖𝑢

= 𝐾 (2)
𝑖𝑗𝑢 +𝐾 (2)

𝑖𝑢𝑗 . (38)

Moreover, for flat structures, where 𝐊(2)
𝑏 = 𝟎 for the set of bending modes, the derivative of the tangent stiffness matrix can be

written in partitioned form, as:

𝜕𝐊𝑟
𝜕𝑞𝑗

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝟎
=

⎡

⎢

⎢

⎢

⎢

⎣

𝟎
[

𝜕𝐊𝑟
𝜕𝑞𝑗

]

𝑏𝑚
[

𝜕𝐊𝑟
𝜕𝑞𝑗

]

𝑚𝑏

[

𝜕𝐊𝑟
𝜕𝑞𝑗

]

𝑚𝑚

⎤

⎥

⎥

⎥

⎥

⎦

(39)

where, the symbol ∙⏐⏐⏐𝟎 has been omitted on the right hand side to simplify the notation. Further, by using that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝐊𝑟
𝜕𝑞𝑗

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝟎
= ΦT 𝜕𝐊

𝜕𝑞𝑗

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝟎
Φ

𝐊−1
0 = 𝜱Λ−1𝜱T

𝝓𝑖 = 𝜱𝐞𝑖

(40)

where 𝑖, 𝑗 = 1,… , 𝑁𝑏, and Λ = 𝜱T𝐊0𝜱 = diag(𝜔2
1, 𝜔

2
2,… , 𝜔2

𝑁 ), Eq. (30) can be rewritten as:

𝜽𝑖𝑗 = −𝐊−1
0

𝜕𝐊
𝜕𝑞𝑗

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝟎
𝝓𝑖 = −𝜱Λ−1 𝜕𝐊𝑟

𝜕𝑞𝑗

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝟎
𝐞𝑖 =

𝑁
∑

𝑘=1+𝑁𝑏

𝝓𝑘𝛽𝑘 (41)

where 𝛽𝑘 = − 1
𝜔2
𝑘

[

𝜕𝐊𝑟
𝜕𝑞𝑗

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝟎

]

𝑘𝑖
are scalars. Hence, the modal derivatives associated to bending eigenmodes can be expressed as

superpositions of the non-bending eigenmodes. It follows that, because the eigenmodes are mass and stiffness-orthogonal (cf.
Section 3.1.1), the modal derivatives must be mass- and stiffness orthogonal to all the bending eigenmodes, thus

{

𝝓T
𝑘𝐌𝜽𝑖𝑗 = 0

𝝓T
𝑘𝐊0𝜽𝑖𝑗 = 0

(42)

for all 𝑖, 𝑗, 𝑘 = 1,… , 𝑁𝑏.
For flat structures modeled using beam or shell elements, the linearized FE model can be formulated such that the in-plane and

out-of-plane DOFs are uncoupled; thus, it is straightforward to separate the membrane and bending modes. However, the above
derivation is valid for any structure where the condition 𝐊(2)

𝑏 = 𝟎 holds for a set of 𝑁𝑏 eigenmodes. Hence, as demonstrated in
Section 5, the derivation can also be assumed valid for flat structures modeled using solid elements, for which the geometrical and
material distribution as well as boundary conditions are symmetric with respect to the middle line/plane of the structure.
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3.3. Reduction basis and orthogonalization

A reduction basis suitable for geometrically nonlinear, flat structures can be constructed using an appropriate set of out-of-plane
linear modes and the corresponding modal derivatives. The basis can be partitioned such that

𝐕 =
[

𝐕𝑏 𝐕𝑚
]

(43)

where

𝐕𝑏 =
[

𝐯𝑏,1 … 𝐯𝑏,𝑁𝑏

]

(44)

𝐕𝑚 =
[

𝜽11 𝜽12 … 𝜽1𝑁𝑏
𝜽22 𝜽23 … 𝜽2𝑁𝑏

… 𝜽(𝑁𝑏−1)(𝑁𝑏−1) 𝜽(𝑁𝑏−1)𝑁𝑏
𝜽𝑁𝑏𝑁𝑏

]T
. (45)

Here, the linear modes 𝐯𝑏,𝑖 may be normal modes or force-dependent modes, as discussed in Section 3.1. Further, the symmetry
property of the modal derivatives are considered, i.e. 𝜽𝑖𝑗 = 𝜽𝑗𝑖, such that only the unique set of modal derivatives are included in
the basis.

As shown in Section 3.2.2, the modal derivatives are in-plane (or non-bending) modes, being orthogonal to the out-of-plane
bending modes. However, the modal derivatives may not be mutually orthogonal. Thus, the in-plane basis 𝐕𝑚 consisting of the raw
modal derivatives must generally be orthogonalized using e.g. the Gram–Schmidt method. Further, an in-plane basis being both
mass- and stiffness-orthogonal, can be obtained by applying Eq. (23) to the set of in-plane modes.

3.4. Other non-intrusive basis selection methods

In addition to approaches using modal derivatives, other simulation-free, non-intrusive basis selection methods have been
proposed, an extensive review can be found in [28]. In the following, two of the most popular methods are briefly introduced,
namely, the ICE method [7] and basis selection strategies using dual modes [17].

The ICE method is a popular approach for establishing NLROMs, because it allows for analyzing flat as well as slightly curved
shallow structures, in a fairly straightforward manner [7,8]. It uses a set of linear modes as input, e.g. a set of low-frequency
normal modes, which would typically be used for analyzing the corresponding linearized system. Thus, additional, specialized basis
vectors, such as modal derivatives, are not required. Instead, the statically condensed response of basis vectors not included in
the basis are considered implicitly. Moreover, an enriched reduction basis (e.g. including in-plane modes) can be extracted in a
second step, using the expansion process proposed in [7]. It turns out that the number of basis vectors generated in the expansion
process equals to the number of unique model derivatives obtained for the same set of linear modes. Nonetheless, the techniques
are fundamentally different; the ICE method uses a regression analysis, whereas the modal derivatives are derived using modal
perturbations (cf. Section 3.2). Furthermore, using the ICE method, several full nonlinear static problems must be solved, which can
be computationally expensive. Hence, even though the full-order solution of the dynamic problem is not needed, the ICE method can
be interpreted as a type of data-driven method and, accordingly, the (static) training-simulations are of considerable importance. The
magnitude as well as the distribution of the external load must be selected properly, generally requiring a trial and error process [8].
Following the procedure suggested in [8], the number of load cases for precomputing the NSCs and generating the in-plane modes
is 2𝑁𝑏 + 2𝑁𝑏(𝑁𝑏 − 1) + 4𝑁𝑏(𝑁𝑏 − 1)(𝑁𝑏 − 2)∕3. Here, it should noted that the condensed NSCs are obtained for the 𝑁𝑏 linear modes.
Hence, the additional modes generated in the expansion process are not considered explicitly in the dynamic response analysis.

Linear bases enriched by dual modes was introduced in [17] and has been further investigated by several researchers (see
e.g. [9,27]). Similarly to the ICE method, several full-order static problems are solved for representative load configurations defined
based on the linear basis (see [17] for further details). Then, in a second step, the displacement fields are orthogonalized with
respect to the linear modes, which allows for extracting additional modes to be appended the linear basis. In contrast to the ICE
method, the technique using dual modes only concerns the generation of the reduction basis. Thus, the NSCs are typically identified
in a separate procedure using the ED or EED method. As e.g. indicated by the investigations presented in [13], the offline cost for
constructing NLROMs using dual modes is generally larger, as compared to NLROMs constructed using modal derivatives.

4. Proposed methodology for efficient generation of NLROMs

As discussed in Section 2.3.3, the number of NSCs for flat structures can be significantly decreased by applying the ED method on
out-of-plane (or master) DOFs, such that the statically condensed response of the non-bending coordinates are considered implicitly
(cf. Sections 2.2 and 2.3.3). The drawback using this approach is that only the quasi-static response of the non-bending coordinates
is considered and, furthermore, that several full-order nonlinear static problems must be solved because the in-plane (or slave) DOFs
are allowed to move freely in the ED identification process.

In this section, we will investigate how these two issues can be addressed by utilizing the relationship between the NSCs and
the modal derivatives. Thus, the aim is to formulate a methodology that allows for developing NLROMs that consider the in-plane
dynamics, and, moreover, reduces the computational offline cost by both limiting the number of static load cases and avoiding
iterative solution methods in the ED (or EED) identification process. Furthermore, we demonstrate that modal derivatives can be
effectively used for recovering the in-plane (or slave DOFs) displacements for condensed NLROMs. Moreover, if the out-of-plane
basis is constructed using normal modes, we show that the concepts extend also to curved structures.

The proposed methodologies for NLROMs including in-plane dynamics and condensed NLROMs are presented in Sections 4.1
and 4.2, respectively. A generalization of the concepts is introduced in Section 4.3.
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4.1. Systems considering in-plane dynamics

If adopting the simplified form for flat structures, as described in Section 2.1, the only NSCs involving in-plane coordinates
are the quadratic coupling coefficients 𝐊(2)

𝑚𝑏 and 𝐊(2)
𝑏𝑚, respectively (cf. Eq. (9)). Consequently, the modal derivatives provide all the

information needed for precomputing the in-plane NSCs, which can be shown as follows:
First, by using that 𝐊 = 𝜕𝐟

𝜕𝐮 , the left hand side of Eq. (28) can be rewritten as:

𝜕2𝐟
𝜕𝑞𝑗𝜕𝐮

𝜕𝐮
𝜕𝑞𝑖

+𝐊 𝜕2𝐮
𝜕𝑞𝑖𝜕𝑞𝑗

= 𝜕2𝐟
𝜕𝑞𝑖𝜕𝑞𝑗

+𝐊 𝜕2𝐮
𝜕𝑞𝑖𝜕𝑞𝑗

= 𝟎. (46)

Then, evaluating Eq. (46) around 𝐮 = 𝟎 gives:

𝜕2𝐟
𝜕𝑞𝑖𝜕𝑞𝑗

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝟎
+𝐊0𝜽𝑖𝑗 = 𝟎. (47)

Now, assume that an in-plane basis 𝐕𝑚 is constructed using the full set of unique modal derivatives associated to the bending modes
included in the out-of-plane basis 𝐕𝑏 (cf. Eqs. (44) and (45)). Specifically, the in-plane basis vectors are given by 𝐯𝑚,𝑟 = 𝜽𝑖𝑗 =

𝜕𝐯𝑏,𝑖
𝜕𝑞𝑗

,
for all 𝑖, 𝑗 = 1,… , 𝑁𝑏, 𝑗 ≥ 𝑖, where the in-plane vectors are organized such that 𝑟 = 𝑁𝑏(𝑖 − 1) + 𝑗 − 𝑖(𝑖 − 1)∕2 (thus, the total number
of in-plane modes is 𝑁𝑚 = 𝑁𝑏 +𝑁𝑏(𝑁𝑏 − 1)∕2). Then, by pre-multiplying by the transpose of an in-plane basis vector 𝐯T

𝑚,𝑟, Eq. (47)
can be rewritten as:

𝐯T
𝑚,𝑟

𝜕2𝐟
𝜕𝑞𝑖𝜕𝑞𝑗

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝟎
= −𝐯T

𝑚,𝑟𝐊0𝐯𝑚,𝑠 if 𝑗 ≥ 𝑖 (48)

where the indices 𝑖, 𝑗 = 1,… , 𝑁𝑏, 𝑟 = 1,… , 𝑁𝑚, and 𝑠 = 𝑁𝑏(𝑖− 1) + 𝑗 − 𝑖(𝑖− 1)∕2. Moreover, note that the right hand side of Eq. (48)
correspond to entries of the reduced linear stiffness matrix associated to in-plane coordinates, given by:

𝐊(1)
𝑚 = 𝐕T

𝑚𝐊0𝐕𝑚. (49)

Further, as indicated by the second Taylor coefficient in Eq. (4), the left hand side of Eq. (48) is related to the quadratic coupling
coefficients 𝐊(2)

𝑚𝑏. Specifically, the following relations can be identified:

⎧

⎪

⎨

⎪

⎩

𝐾 (2)
𝑚𝑏,𝑟𝑖𝑗 =

1
2 𝐯

T
𝑚,𝑟

𝜕2𝐟
𝜕𝑞𝑖𝜕𝑞𝑗

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐𝟎
if 𝑗 ≥ 𝑖

𝐾 (1)
𝑚,𝑟𝑠 = 𝐯T

𝑚,𝑟𝐊0𝐯𝑚,𝑠
(50)

Thus, substituting Eq. (50) into Eq. (48) gives:

𝐾 (2)
𝑚𝑏,𝑟𝑖𝑗 = −1

2
𝐾 (1)

𝑚,𝑟𝑠 if 𝑗 ≥ 𝑖 (51)

where 𝑠 = 𝑁𝑏(𝑖 − 1) + 𝑗 − 𝑖(𝑖 − 1)∕2.
Furthermore, it should be noted that the stiffness arrays are fully symmetric, thus 𝐾 (2)

𝑚𝑏,𝑟𝑗𝑖 = 𝐾 (2)
𝑚𝑏,𝑟𝑖𝑗 . Moreover, the nonlinear

stiffness coefficients 𝐊(2)
𝑏𝑚 can be obtained by rearranging the elements of 𝐊(2)

𝑚𝑏. Now, as evident by Eq. (9), only the stiffness
coefficients 𝐊(3)

𝑏 remains to be identified, involving the 𝑁𝑏 out-of-plane modes. Accordingly, the number of static load cases, if
using the EED method, is of order (𝑁2

𝑏 ). Moreover, the static solutions already used for calculating the modal derivatives, i.e.
using numerical differences according to Eq. (33), may be reused in the identification process.

As mentioned previously, the above procedure uses the raw modal derivatives in-plane basis. To ensure an accurate NLROM,
the basis should be orthonormalized. This can be achieved by applying a transformation matrix 𝐙, e.g. calculated based on a small
eigenvalue problem in accordance with Eq. (23). An orthogonal in-plane basis is then obtained as �̃�𝑚 = 𝐕𝑚𝐙. The transformation
can be applied either directly on the higher order stiffness array 𝐊(2) or by replacing the in-plane basis vectors 𝐯T

𝑚,𝑟 in Eq. (50) by
the set of orthogonal vectors. This means that Eq. (51) will be replaced by:

𝐾 (2)
𝑚𝑏,𝑟𝑖𝑗 = −1

2
�̃�T
𝑚,𝑟𝐊0𝐯𝑚,𝑠 if 𝑗 ≥ 𝑖 (52)

where, 𝑠 = 𝑁𝑏(𝑖 − 1) + 𝑗 − 𝑖(𝑖 − 1)∕2.
Finally, since the higher order stiffness arrays are fully symmetric, the nonlinear system equations are commonly implemented

such that non-unique NSCs are avoided, by assuming that the elements are zero unless the indices 𝑗 ≤ 𝑙 ≤ 𝑘. Specifically for flat
structures, the system equations for the bending coordinates may be expressed as:

𝑁𝑏
∑

𝑗=1

[

𝑀𝑏,𝑖𝑗𝑞𝑗 + 𝐶𝑏,𝑖𝑗 �̇�𝑗 +𝐾 (1)
𝑏,𝑖𝑗𝑞𝑗 +

𝑁𝑚
∑

𝑘=𝑗
�̄�(2)

𝑏𝑚,𝑖𝑗𝑘𝑞𝑗𝑝𝑘 +
𝑁𝑏
∑

𝑘=𝑗

𝑁𝑏
∑

𝑙=𝑘
�̄�(3)

𝑏,𝑖𝑗𝑘𝑙𝑞𝑗𝑞𝑘𝑞𝑙

]

= 𝑔𝑏,𝑖 (53)

and for the in-plane coordinates:
𝑁𝑚
∑

𝑗=1

[

𝑀𝑚,𝑖𝑗 �̈�𝑗 + 𝐶𝑚,𝑖𝑗 �̇�𝑗 +𝐾 (1)
𝑚,𝑖𝑗𝑝𝑗

]

+
𝑁𝑏
∑

𝑗=1

𝑁𝑏
∑

𝑘=𝑗
�̄�(2)

𝑚𝑏,𝑖𝑗𝑘𝑞𝑗𝑞𝑘 = 𝑔𝑏,𝑖 (54)
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where ∙̄ is introduced to distinguish the higher order stiffness arrays only including the unique elements from the corresponding full
arrays. It follows that Eq. (51) must be adjusted accordingly, such that:

�̄� (2)
𝑚𝑏,𝑟𝑖𝑗 =

{

−𝐾 (1)
𝑚,𝑟𝑠∕2 if 𝑖 = 𝑗

−𝐾 (1)
𝑚,𝑟𝑠 if 𝑖≠ 𝑗

(55)

Similarly, for an orthogonalized in-plane basis �̃�𝑚 one obtains:

�̄� (2)
𝑚𝑏,𝑟𝑖𝑗 =

{

− 1
2 �̃�

T
𝑚,𝑟𝐊0𝐯𝑚,𝑠 if 𝑖 = 𝑗

−�̃�T
𝑚,𝑟𝐊0𝐯𝑚,𝑠 if 𝑖≠ 𝑗

(56)

where 𝑗 ≥ 𝑖, and, again, the mapping between the elements are defined such that 𝑠 = 𝑁𝑏(𝑖 − 1) + 𝑗 − 𝑖(𝑖 − 1)∕2.

4.2. Statically condensed systems

By using the methodology described in Section 4.1, an NLROM is obtained that considers the dynamics of the out-of-plane as
well as in-plane coordinates. However, in some applications, it can be reasonable to neglect the dynamics of the in-plane modes to
further decrease the system size. Then, if assuming that the external load on the in-plane coordinates is zero, and that 𝐊(1)

𝑚 , 𝐊(2)
𝑚𝑏,

𝐊(2)
𝑏𝑚, and 𝐊(3)

𝑏 have already been determined using the procedure described in Section 4.1, the condensed stiffness coefficients can
be obtained by using Eq. (12). Moreover, recall that the quasi-static response of the in-plane coordinates can be expressed in terms
of the out-of-plane coordinates, i.e., in accordance with Eq. (10) (restated here for convenience):

𝑝𝑗 = −
[

𝐾 (1)
𝑚

]−1
𝑗𝑠 𝐾 (2)

𝑚𝑏,𝑠𝑟𝑙𝑞𝑟𝑞𝑙 . (57)

Now, assume that the in-plane basis is defined by Eq. (45), and, moreover, that the set of raw modal derivatives are linearly
independent (which should be checked for the specific application). Then, by using Eqs. (55) and (57), it can be shown that the
quasi-static response of the in-plane coordinates 𝐩 are in fact directly related to the out-of-plane coordinates 𝐪, as:

𝑝𝑠 =
{

−𝑞𝑖𝑞𝑗∕2 if 𝑖 = 𝑗
−𝑞𝑖𝑞𝑗 if 𝑖≠ 𝑗

(58)

where 𝑗 ≥ 𝑖, and 𝑠 = 𝑁𝑏(𝑖 − 1) + 𝑗 − 𝑖(𝑖 − 1)∕2. Hence, the in-plane coordinate vector is given by:

𝐩 = −
[

𝑞21∕2 𝑞1𝑞2 … 𝑞1𝑞𝑁𝑏
𝑞22∕2 𝑞2𝑞3 … 𝑞2𝑞𝑁𝑏

… 𝑞2𝑁𝑏−1
∕2 𝑞𝑁𝑏−1𝑞𝑁𝑏

𝑞2𝑁𝑏
∕2

]T
. (59)

Thus, by using the above procedure, a condensed NLROM can be developed in a computationally efficient manner, which allows
for recovering the physical displacements by applying Eq. (2) for the out-of-plane as well as in-plane coordinates.

4.3. Generalization for curved structures

The procedures described in Sections 4.1 and 4.2 are intended to be applied to flat structures which are symmetric with respect to
the middle plane. However, the methodology can be generalized to consider curved structures and structures with non-symmetric
stiffness distribution along the thickness. In this case, the modal derivatives are generally neither in-plane modes nor mass- and
stiffness orthogonal to the out-of-plane modes. Nonetheless, if the linear basis is constructed using normal modes (cf. Section 3.1),
a projector may be defined as:

𝐏 = 𝐈 − 𝐕𝑏𝐕T
𝑏𝐌 (60)

which removes from a basis vector the part spanned by the linear modes 𝐕𝑏. Specifically, the basis 𝐕𝑚 given by Eq. (45), which
include the set of unique modal derivatives can be orthogonalized to the linear modes:

�̂�𝑚 = 𝐏𝐕𝑚 (61)

where the columns of �̂�𝑚 are basis vectors being both mass- and stiffness orthogonal to the linear modes, i.e., �̂�𝑚,𝑟 = �̂�𝑖𝑗 = 𝐏𝜽𝑖𝑗 for
all 𝑖, 𝑗 = 1,… , 𝑁𝑏, 𝑗 ≥ 𝑖. Further, the linear stiffness matrix projected onto �̂�𝑚 can be expressed as:

𝐊(1)
𝑚 = �̂�T

𝑚𝐊0�̂�𝑚 = �̂�T
𝑚𝐊0𝐏𝐕𝑚 = �̂�T

𝑚𝐊0𝐕𝑚 − �̂�T
𝑚𝐊0𝐕𝑏𝐕T

𝑏𝐌𝐕𝑚 = �̂�T
𝑚𝐊0𝐕𝑚. (62)

Now, by replacing 𝐯T
𝑚,𝑟 in Eq. (48) with �̂�T

𝑚,𝑟, and using the relation given by Eq. (62), it is clear that Eq. (55) holds also for non-flat
structures. Moreover, if the external forcing is orthogonal to �̂�𝑚, Eq. (58) is still valid. However, in contrast to the case of flat
structures, the quadratic stiffness coefficients involving three bending coordinates 𝐊(2)

𝑏 is not zero for curved structures and should
therefore be added to the simplified form of the equation of motion (cf. Eq. (7)). Furthermore, by using the same procedure as
described in Section 4.1, the orthogonalized modal derivatives �̂�𝑖𝑗 can be made mutually mass- and stiffness-orthogonal.
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Fig. 3. Flowchart showing the proposed modeling procedures. Note that the NLROM can be analyzed using the full set of generalized coordinates or by means
of the condensed system equations (cf. Eq. (11)) involving only the out-of-plane coordinates.

4.4. Remarks on the proposed methodology

The proposed methodologies, with and without non-bending inertia effects, are summarized schematically in Fig. 3. The
decondensation technique for reducing the influence of numerical round-off errors, as discussed in Section 2.3.4, can be incorporated
in the methodology by means of a small modification, namely, by computing the condensed stiffness coefficients �̃�(3)

𝑏 in the second
step, and then applying Eq. (19) in the fourth step (right side) of the flowchart presented in Fig. 3. Furthermore, by means of the
generalization introduced in Section 4.3, the methodology can be used for curved structures. However, a decondensation is then no
longer possible.

The methodology allows for developing NLROMs without solving full-order static problems which necessitates iterative solution
methods. Furthermore, if using the EED identification process, the number of static load cases for determining the NSCs is of order
(𝑁2

𝑏 ). Thus, significantly smaller than in e.g. the standard EED method involving all NSCs or the ICE method, where the number
of full-order static problems is of order (𝑁2) and (𝑁3

𝑏 ), respectively.
In addition to reducing the number of full-order static problems in the offline stage, the computational online cost can also be

decreased, as compared to systems considering the full set of NSCs. The NLROMs are solved using direct time-integration where
the tangent stiffness matrix (cf. Eq. (17)) must be constructed in each iteration. By utilizing the symmetry of the tangent stiffness
matrix, and noting that 𝐾 (2)

𝑖𝑗𝑘 is zero if 𝑗, 𝑘 > 𝑁𝑏 and 𝐾 (3)
𝑖𝑗𝑘𝑙 is zero if 𝑖, 𝑗, 𝑘, 𝑙 > 𝑁𝑏, the computational cost for computing the tangent

stiffness matrix can be significantly reduced. More specifically, only 𝑁𝑏 rows (or columns) of the 𝑁 ×𝑁 reduced stiffness matrix 𝐊𝑟
need to be updated, where the stiffness coefficients 𝐾 (3)

𝑖𝑗𝑘𝑙 are only involved in the update of 𝑁𝑏 ×𝑁𝑏 entries.

5. Numerical examples

The proposed modeling strategies were evaluated by means of numerical examples of beam structures (see Section 5.1) and a
continuously supported panel structure (see Section 5.2). The beam structures were modeled with 2D solid elements using an FE code
implemented in MATLAB, and the panel structure was modeled with shell elements using the commercial FE software Abaqus. The
beam model was mainly used for investigating the proposed modeling procedures and, moreover, the properties of modal derivatives
associated to out-of-plane bending modes, whereas the shell model is intended to represent a real-life application. NLROMs were
established using the procedures presented in Section 4. Thus, the simplified system equations (cf. Eq. (9)) were considered.
Moreover, statically condensed systems as well as the decondensation technique for mitigating the influence of numerical round-off
errors were investigated (cf. Sections 2.2 and 2.3.4, respectively). Further, various support configurations were investigated. All
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Fig. 4. Element mesh for solid 2D beam models. The displacement boundary conditions indicated by blue color are active for both the clamped–clamped and
cantilever beam models and the orange boundary conditions are active only for the clamped–clamped model (thus, a symmetry model is considered). The position
of the external point load is indicated by the red arrow. The horizontal stress component in the element marked with purple color is to be evaluated. (For
interpretation of the references to color in this figure, the reader is referred to the web version of this article.).

Fig. 5. Linear and nonlinear static response for clamped–clamped (a) and cantilever beam (b) models, respectively.

the developed NLROMs were solved in MATLAB using Newmark implicit time-integration, assuming constant average acceleration
within time-increments. Equilibrium in each time increment was enforced by means of Newton–Raphson iterations. All the analyses
were performed on a desktop PC with 16 GB RAM and Intel® CoreTM i7-8700 CPU (3.2 GHz).

5.1. Solid beam model

The solid beam model, shown in Fig. 4, have a length of 300 mm and a height of 15 mm. The FE model was established
using two-dimensional, triangular three-node elements assuming plain strain conditions. The thickness in the elements’ out-of-plane
direction was set to 10 mm. Further, a hyperelastic, St-Venant Kirchhoff material was used. The Young’s modulus and Poisson’s
ratio was set to 10 GPa and 0.3, respectively, and the density was set to 1700 kg∕m3.

Two different support configurations were considered. Firstly, a symmetry model representing a clamped–clamped beam was
obtained by prescribing the horizontal displacements at the beam ends, and the vertical displacement at the mid node at the left
end (see Fig. 4). Secondly, a cantilever beam model was obtained by prescribing the horizontal displacements and the vertical
displacement at the mid node at the left end. As demonstrated in Fig. 5, the static response of the systems differ significantly. In
particular, the nonlinear response of the cantilever beam is close to the linearized response, whereas the clamped–clamped beam is
characterized by a highly nonlinear response.

The dynamic response due to a triangular impulse applied at the right end of the beam models (see Fig. 4) were analyzed, having
a peak force after 1 ms and a total duration of 2 ms. The impulse was adjusted for the respective cases; the peak forces were set to
5000 N and 1500 N for the clamped–clamped symmetry model and the cantilever model, respectively. To simplify the evaluations,
both systems were assumed undamped. In practice, free vibration is studied, since the impulse duration is very short in comparison
to the analysis time (see further Sections 5.1.1 and 5.1.2).

To provide a complete verification of the NLROMs, the response was also evaluated for a banded random excitation white noise
applied at the load DOF (cf. Fig. 4). The random response was evaluated for the clamped–clamped beam and the cantilever beam.
Furthermore, the response of a slightly curved clamped–clamped beam, as shown in Fig. 15, was evaluated. As shown in Fig. 15, the
curved beam was generated using the same topology and boundary conditions as the clamped–clamped beam. The frequency range
of the excitation was set to 0–2000 Hz for all the models. The response was calculated using direct time-integration with a fixed
time-increment of 20 μs, and the total analysis time was 20 s. For the random response analyses a Rayleigh damping was adopted.
The Rayleigh coefficients, 𝛼 and 𝛽, were prescribed such that a modal damping ratio of 2% were obtained for the first and third
linear mode. In the nonlinear analyses, the damping was proportional to the mass and tangent stiffness, i.e. 𝐂 = 𝛼𝐌 + 𝛽𝐊, thus,
the damping was amplitude dependent. The displacement power spectral density (PSD) was estimated using a moving window of
period 0.33 s. Note that the nonlinear responses are generally not stationary, although this is assumed when estimating the PSD.
Nonetheless, several researchers have demonstrated that similar procedures for estimating the PSD for nonlinear models provide
satisfactory results [8,13,17,18,38].
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Table 1
Computational offline times using the ED method.

Model Offline time [s]

4+10 Modes 0.4
4 Modes (Cond.) 0.4
4+10 Modes (All NSCs) 4.9

10+55 Modes 2.6
10 Modes (Cond.) 2.6
10+55 Modes (All NSCs) 428

Fig. 6. First three linear modes and the associated modal derivatives 𝜃𝑖𝑖 (𝑖 = 1, 2, 3) for the clamped–clamped beam model. The amplitude of the modal derivatives
are 𝑝𝑖 = −𝑞2𝑖 ∕2. Note that, for brevity, modal derivatives with different indices (𝜃𝑖𝑗 , 𝑖≠ 𝑗) are not included in the figure.

The reduction bases for the flat beams were established using out-of-plane bending modes and the associated modal derivatives.
Specifically, the bending modes were generated using the Krylov-subspace technique described in Section 3.1.2. The Krylov sequence
was initiated using an external force at the right end of the beam, as shown in Fig. 4. Note that, in contrast to an approach using
normal modes, this procedure ensures that any in-plane modes are excluded. The reduction basis for the curved beam was generated
using the first four normal modes and the associated modal derivatives.

The computational offline cost using the proposed methodology and the standard approach considering the full set of NSCs are
presented in Table 1 for NLROMs based on 4 and 10 linear modes. All the associated modal derivatives were considered such that a
total of 4+10 and 10+55 modes, respectively, were included in the reduction bases. As shown in Table 1, the computational offline
cost increases significantly if the number of basis vectors is increased. Particularly for dynamic analyses of short time frames, such
as impulse analyses, the offline cost can be significantly larger than the online cost.

5.1.1. Clamped–clamped beam
The first three out-of-plane bending modes and the associated modal derivatives for the clamped–clamped model are shown

in Fig. 6 (note that, for brevity, only the modal derivatives with equal indices 𝜽𝑖𝑖 are shown in the figure). In accordance with
Section 3.2.2, the modal derivatives are non-bending modes, being orthogonal to the bending modes. Furthermore, the statically
condensed response of the modal derivatives, being enslaved by the bending coordinates, are demonstrated in Fig. 6. Specifically,
the amplitude of the modal derivatives are 𝑝𝑖 = −𝑞2𝑖 ∕2, where 𝑞𝑖 is the associated bending coordinate (cf. Section 4.2).

The vertical displacement at the vertical DOF where the external load is applied, henceforth referred to as the load DOF, is
presented in Fig. 7. The displacements are shown for the full-order model and NLROMs using various reduction basis sizes (Fig. 7a),
as well as a linear ROM and NLROMs with/without inertia effects for the in-plane modes (Fig. 7b). As shown in the figure, a
reduction basis including four bending modes and the associated modal derivatives (i.e. a total of 4+10 modes) provide a response
close to the full-order model. Further, the condensed NLROMs are fairly accurate, meaning that the influence of in-plane inertia
effects is small. In accordance with the results from the static analysis (cf. Fig. 5), the displacement from the linear analysis differ
significantly.

The horizontal Cauchy stress at the top of the left support (in the element marked with purple color in Fig. 4) is shown in Fig. 8
for the full-order model and NLROMs developed using reduction bases of various sizes. As shown in the figure, up to six bending
modes and the associated modal derivatives (i.e. a total of 6+21 modes) are required for an accurate response prediction. Moreover,
it is notable that the magnitude of the max/min stresses differ significantly, which is due to that normal forces are induced in the
geometrically nonlinear analyses. Accordingly, for the linearized system, this effect cannot be observed, i.e. the stress oscillates
between approximately the same peak magnitudes.
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Fig. 7. Comparison of the vertical displacement at the load DOF for the full-order clamped–clamped model and NLROMs using various reduction basis sizes (a),
and a linear ROM and NLROMs with/without inertia effects for the in-plane modes (b). The NLROMs were established using the method described in Section 4.
The condensed NLROMs were established using both the MSTEP method [19] and the approach described in Section 4—as expected, these methods provide
almost identical results.

Table 2
Computational online times for random excitation analyses.

Model Online time [s]

Clamped–clamped Cantilever Curved beam

4+10 Modes 66 68 64
4 Modes (Cond.) 27 25 29
4+10 Modes (All NSCs) 681 715 683
Full model 73 248 77 066 72 928

The clamped–clamped beam was evaluated for a random excitation with a standard deviation of 300 N. The displacement PSD
for the load DOF is shown for various models in Fig. 9. All the NLROMs are in fairly good agreement with the full-order model.
As shown in Table 2, the computational online cost is decreased significantly as compared to the full-order model and the NLROM
using the full set of NSCs.

5.1.2. Cantilever beam
The first three out-of-plane bending modes and the associated modal derivatives for the cantilever model are shown in Fig. 10.

As shown, the modal derivatives are non-bending modes. Furthermore, the superposition of the bending modes and the statically
condensed response of the modal derivatives indicate that the nonlinear response due to out-of-plane loading result in considerable
in-plane displacements (i.e, in contrast to the clamped–clamped system).
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Fig. 8. Comparison of the horizontal Cauchy stress component in the element marked with purple color in Fig. 4 for the clamped–clamped full-order model and
NLROMs established using various reduction bases. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 9. Power spectral density of vertical displacement at the load DOF for the clamped–clamped beam given by the full-order model, linear ROM, NLROM
considering all NSCs, and NLROMs with/without inertia effects for the in-plane modes (cf. Section 4). The black dashed lines mark the first three eigenfrequencies
of the linearized system.

The vertical displacement at the load DOF are shown in Fig. 11, for the full-order model and NLROMs established using various
reduction bases. As shown, the displacements are fairly close if including two bending modes and the associated modal derivatives
(i.e. 2+3 modes). However, the response provided by the condensed NLROMs deviates from the full model. As indicated by the
modal derivatives, shown in Fig. 10, the nonlinear response is characterized by a significant in-plane motion. However, the in-plane
inertia is ignored in the condensed NLROMs, and, consequently, the systems oscillates at slightly higher frequencies. For this specific
case, the displacements given by the linearized model are in fact more accurate than the condensed NLROMs.

Fig. 12 shows the horizontal displacement at the load DOF for the cantilever beam model given by a NLROM based on two
bending modes and the associated modal derivatives (Fig. 12a), and a condensed NLROM based on to two bending modes (Fig. 12b).
The response is fairly accurate, and adding additional basis vectors does not provide a notably increase of accuracy. However, as
mentioned previously, the condensed NLROM ignores the in-plane inertia, which result in a periodicity error.

The horizontal Cauchy stress at the top of the left support (i.e. in the element marked with purple color in Fig. 4) are shown in
Fig. 13 for the full-order model and NLROMs developed using reduction basis of various sizes. As shown in the Figure, a reasonable
accuracy is obtained if including two bending modes and the associated modal derivatives. In contrast to the clamped–clamped
beam, the stress oscillates between max/min values with approximately the same magnitudes, which is expected since the beam
normal force is zero. Furthermore, it is notable that the linearized system provide a fairly accurate response.

The cantilever beam was evaluated for a random excitation with a standard deviation of 200 N. The PSD for the vertical
displacement at the load DOF is shown for various models in Fig. 14. The NLROMs considering in-plane inertia effects are in good
agreement with the full-order model. However, the displacement PSD clearly indicate that the condensed NLROM overestimates the
resonant frequencies, thus, in accordance with the results obtained from the impulse analysis. As shown in Table 2, the computational
online cost is decreased significantly as compared to the full-order model and the NLROM using the full set of NSCs.
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Fig. 10. First three linear modes and the associated modal derivatives 𝜃𝑖𝑖 (𝑖 = 1, 2, 3) for the cantilever beam model. The amplitude of the modal derivatives are
𝑝𝑖 = −𝑞2𝑖 ∕2. Note that, for brevity, modal derivatives with different indices (𝜃𝑖𝑗 , 𝑖≠ 𝑗) are not included in the figure.

Fig. 11. Comparison of the vertical displacement at the load DOF for the full-order cantilever model and NLROMs using various reduction basis sizes (a), and a
linear ROM and NLROMs with/without inertia effects for the in-plane modes (b). The NLROMs were established using the methodology described in Section 4.
The condensed NLROMs were established using both the MSTEP method [19] and the approach described in Section 4—as expected, these methods provide
almost identical results.
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Fig. 12. Horizontal displacement at the load DOF for the cantilever beam model provided by a NLROM based on two bending modes and the associated modal
derivatives (a), and a condensed NLROM based on to two bending modes (b).

Fig. 13. Comparison of the horizontal Cauchy stress component at the top of the left support (i.e. in the element marked with purple color in Fig. 4) for the
full-order cantilever model and NLROMs established using various reduction bases. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 14. Power spectral density of vertical displacement at the load DOF for the cantilever beam given by the full-order model, linear ROM, NLROM considering
all NSCs, and NLROMs with/without inertia effects for the in-plane modes (cf. Section 4). The black dashed lines mark the first three eigenfrequencies of the
linearized system.

Fig. 15. Element mesh for curved solid 2D beam model. The position of the external point load is indicated by the red arrow.

5.1.3. Curved beam
The first three normal modes and the associated orthogonalized modal derivatives (cf. Section 4.3) for the curved beam model

are shown in Fig. 16. The curved beam was evaluated for a random excitation with a standard deviation of 300 N. The PSD for the
vertical displacement at the load DOF is shown for various models in Fig. 17. As shown, the NLROMs developed using the procedure
described in Section 4, with/without in-plane inertia, provide a response close to the full order model as well as the NLROM using
the full set of NSCs. Similar to the other beam models, the computational online cost is decreased significantly as compared to the
full-order model as well as the NLROM using the full set of NSCs (cf. Table 2).

5.2. Continuously supported shell model

A four-sided, simply supported panel structure was studied (see Fig. 18). An FE model was established using four-node linear
shell elements, denoted S4R in Abaqus. The panel height and width were 800 mm and 1000 mm, respectively, and the panel
thickness was 8 mm. Further, the density was 2500 kg∕m3, the Young’s modulus was 72 GPa, and Poisson’s ratio was 0.23. This
approximately correspond to the material properties of both glass and aluminum. Thus, the model can be representative for panel
structures consisting of either of these materials. A small stiffness-proportional damping was prescribed, such that 𝐂 = 5 ⋅ 10−5𝐊.
Hence, the damping is amplitude-dependent. The element mesh is shown in Fig. 18. The full-order models were analyzed in Abaqus.
In addition, Abaqus was employed for generating the system matrices needed for generating the NLROMs, and for solving the static
load cases in the NSC identification processes.

An out-of-plane reduction basis was generated by means of the Krylov-subspace approach, using a start vector corresponding to
the static displacement of a uniform pressure (cf. Eq. (22)). The Krylov-subspace was generated using the modified Gram–Schmidt
orthogonalization procedure—seven iterations were used, such that a total of eight basis vectors were obtained. Then, after the basis
was orthonormalized according to Eq. (23), the first four modes, as shown in Fig. 19, were used in the reduction basis. Recall that
the Krylov-subspace technique automatically excludes redundant modes that cannot be (explicitly) excited by the external pressure.
Accordingly, any membrane modes or anti-symmetric bending modes, which cannot be excited by a uniform pressure, have been
automatically excluded.

The panel structure was analyzed for two cases, where the in-plane displacement boundary conditions along the supports were
free and fixed, respectively (see Fig. 18). As demonstrated in Fig. 21, both configurations result in models being geometrically
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Fig. 16. First three normal modes and the associated orthogonalized modal derivatives �̂�𝑖𝑖 (𝑖 = 1, 2, 3) for the curved beam model. The amplitude of the modal
derivatives are 𝑝𝑖 = −𝑞2𝑖 ∕2. Note that, for brevity, modal derivatives with different indices (𝜃𝑖𝑗 , 𝑖≠ 𝑗) are not included in the figure.

Fig. 17. Power spectral density of vertical displacement at the load DOF for the curved beam given by the full-order model, linear ROM, NLROM considering
all NSCs, and NLROMs with/without inertia effects for the in-plane modes (cf. Section 4). The black dashed lines mark the first three eigenfrequencies of the
linearized system.

Fig. 18. Finite element mesh and output points (marked with blue squares), positioned at the center of the panel and at the midpoint of the bottom edge.
Further, the displacement boundary nodes are marked with orange circles.
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Fig. 19. First four bending modes generated using a Krylov-subspace approach, with a start vector corresponding to the static displacement due to a uniform
pressure (cf. Section 3.1.2).

Fig. 20. Contour plot showing the initial velocity prescribed in Abaqus.

Fig. 21. Comparison of midpoint vertical displacement provided by the Abaqus model, for geometrically linear and nonlinear analyses, respectively. The nonlinear
models are analyzed with free and fixed in-plane displacements along supports. Note that the in-plane displacement boundary conditions do not affect the linearized
response.
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Fig. 22. Modal derivatives associated to the first four bending modes, computed with free in-plane displacements along supports. The contour plot colors
correspond to displacement magnitude. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.).

nonlinear. Furthermore, the membrane bases were generated using the full set of modal derivatives associated to the linear modes.
Note that the out-of-plane linear modes are not affected by the boundary conditions in the in-plane direction, thus, the same
set of linear modes were used in both cases. However, the modal derivatives, which are in-plane modes, differ significantly (as
demonstrated in Sections 5.2.1 and 5.2.2).

To evaluate the NLROMs, a uniformly distributed initial velocity was prescribed in the out-of-plane direction. Hence, the external
forcing consist of a uniform impulse pressure with zero duration. Thus, free-vibration is studied. Furthermore, to make sure that
the same load is applied in the NLROMs and the full-order Abaqus analyses, and thereby simplify the evaluation, the initial velocity
field was projected onto the reduction basis, such that only the first four bending modes were explicitly excited in the initial phase.
However, due to that the models are nonlinear, the modal responses are not decoupled (i.e., in contrast to linear models) and higher
order modes can therefore be implicitly excited. The initial velocity field prescribed in the analyses is shown in Fig. 20.

5.2.1. Free in-plane displacements at supports
The modal derivatives for the model with free in-plane displacements along the supports are shown in Fig. 22. These were

computed based on the linear modes (cf. Fig. 19), using the procedure described in Section 3.2. NLROMs were developed using the
methodology in Section 4. Hence, the simplified system equations for flat structures were adopted (cf. Section 2.1). The cubic stiffness
coefficient associated to bending coordinates were generated using the ED method, whereas the quadratic coupling coefficients
were computed based on the modal derivatives (i.e., using the procedure proposed in Section 4.1). Moreover, a statically condensed
model was developed, such that only the quasi-static response of the in-plane coordinates were considered. Here, the NSCs were
generated by applying the ED method on the out-of-plane DOFs, while the in-plane DOFs were allowed to move freely, i.e., by using
the approach described in Section 2.3.3. In addition, a NLROM was developed using the decondensation technique described in
Section 2.3.4.

The vertical and horizontal displacements at the panel midpoint and bottom edge (cf. Fig. 18) for the NLROMs and the full-order
Abaqus analysis are shown in Fig. 23. The displacements provided by the NLROMs are in good agreement with the displacements
given by the full-order Abaqus analysis. Furthermore, the result from the statically condensed NLROM indicates that the influence of
the in-plane inertia is small. Thus, it is sufficient to consider the quasi-static response of the in-plane modes. Moreover, the response
provided by the condensed and the decondensed NLROMs are almost identical. Thus, the discrepancy between the NLROMs may
be due to numerical round-off errors, which can be expected to be less pronounced for NLROMs that uses the condensed NSCs (as
discussed in Section 2.3.4).

To allow for a more detailed comparison of the results, the vertical displacements were decomposed into the respective modal
contributions. The decomposed displacements from the full-order Abaqus analyses were obtain from the physical displacement fields,
using the expression:

�̂�𝑖,FE = 𝐯𝑏,𝑖𝐯T
𝑏,𝑖𝐌𝐮FE (63)

where 𝐮FE is the displacement field given by Abaqus, and �̂�𝑖,FE is the corresponding displacements projected onto 𝐯𝑏,𝑖.



Mechanical Systems and Signal Processing 191 (2023) 110143

25

L. Andersson et al.

Fig. 23. Vertical displacement at midspan (a) and horizontal displacement at bottom edge (b) (see Fig. 18) for shell model with free in-plane displacements at
the supports, provided by the full-order Abaqus model, and NLROMs established using a condensed, decondensed, and standard approach, respectively.

The decomposed responses are shown in Figs. 24 and 25, respectively. The results are in fairly good agreement. However, there
are some discrepancies. In particular, the vertical displacements provided by the decondensed NLROM (which is very close to the
results from the condensed NLROM) is closer to the full-order model. Thus, the results indicate that the decondensation technique
can be used for mitigating the influence of numerical round-off errors.

5.2.2. Fixed in-plane displacements at supports
The modal derivatives for the model with fixed in-plane displacements along the supports are shown in Fig. 26. The midpoint

vertical displacement for the NLROM and the full-order Abaqus analysis are shown in Fig. 27. Further, the decomposed displacements
are shown in Fig. 28. As shown, the results from the NLROM correspond fairly well to the response provided by the full model.
However, the discrepancies are larger than for the case where the in-plane displacements at the supports were allowed to move
freely. Furthermore, the condensed and decondensed NLROMs provide almost identical results as the NLROM generated using the
methodology in Section 4.1 (accordingly, these results are not included in the figures). One of the reasons for the deviations can
possibly be due to a larger influence of the amplitude-dependent, stiffness-proportional damping. The panel structure having fixed in-
plane boundaries are clearly stiffer than the corresponding model where the in-plane DOFs are allowed to move freely. Consequently,
the amplitude dependency of the damping can be more pronounced, and, thus, the response can be more sensitive with respect to
the specific implementation of the damping. In particular, the Abaqus manual does not provide sufficient information to ensure that
our implementation is identical to the one used in Abaqus. However, by varying the damping level, it was indeed concluded that it
had a fairly significant influence on the response magnitude and frequency.
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Fig. 24. Vertical displacement at midspan decomposed into the contributions from each bending mode for shell model with free in-plane displacements at the
supports.

6. Discussion

The non-intrusive reduced order modeling techniques can be used effectively for developing NLROMs. However, with respect
to computational efficiency, a bottleneck in the non-intrusive methods is typically the offline cost; in particular, the computational
effort for identifying the NSCs. In this work, strategies were developed for reducing the offline cost of NLROMs applied to flat
structures, as described in Section 4, and exemplified in Section 5. Furthermore, we showed that the concepts extend also to slightly
curved structures.

The modal derivatives associated to out-of-plane bending modes essentially provide all the information needed for generating
the NSCs for the in-plane coordinates. Consequently, NLROMs can be derived, that accurately represent both the out-of-plane
and in-plane displacements in a computationally efficient manner. Moreover, the bending modes were generated using a Krylov-
subspace approach, that considers the spatial distribution of the external load. Using this approach, redundant bending modes, which
cannot be excited by the external load are automatically excluded. This is particularly important for limiting the number of modal
derivatives which scales quadratically with the number of bending modes (cf. Figs. 22 and 26).

The proposed modeling strategies were evaluated using numerical examples, analyzed using both an FE code implemented
in MATLAB and the commercial software Abaqus. The NLROMs generally show good agreement with the full-order models.
Furthermore, in several of the studied cases, NLROMs that uses the statically condensed response of the in-plane modes provide
accurate results (see Section 5). However, to accurately predict the response of cantilever structures, the numerical studies indicate
that it can be important to consider the dynamics of the in-plane modes (see Section 5.1.2). For such cases, the NSCs involving
in-plane coordinates can be generated with a small additional computational effort using the procedure described in Section 4.1.

In many engineering applications, it is of interest to compute the stresses and strains of the structure, which are typically
required for evaluating the response. To accurately predict these quantities, the out-of-plane as well as in-plane displacements of
the full model must be recovered. Hence, even though the dynamics of the in-plane modes may be negligible, an in-plane basis is
needed. For such cases, modal derivatives can be effectively used for generating the in-plane displacements. More specifically, the
quasi-static amplitudes of the modal derivatives are enslaved by the associated bending coordinates and, consequently, the in-plane
displacements can be computed based on the bending coordinate amplitudes (see Section 4.2). It should be noted that this procedure
does not involve the quadratic coupling coefficients 𝐊(2)

𝑚𝑏 and 𝐊(2)
𝑏𝑚. Thus, the in-plane coordinates can be recovered using Eq. (58)

instead of Eq. (10), which would be required for a general in-plane basis. This is particularly convenient if the condensed NSCs �̃�(3)
𝑏

were explicitly determined using the procedures discussed in Section 2.3.3.
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Fig. 25. Vertical displacement at midspan decomposed into the contributions from each bending mode for shell model with free in-plane displacements at the
supports. The NLROM was establishing by means of the decondensation approach for mitigating the influence of numerical round-off errors, as discussed in
Section 2.3.4.

Fig. 26. Modal derivatives associated to the first four bending modes, computed with fixed in-plane displacements along supports. The contour plot colors
correspond to displacement magnitude. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.).
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Fig. 27. Vertical displacement at midspan provided by the full-order Abaqus model and the NLROM for shell model with fixed in-plane displacements at the
supports.

Fig. 28. Vertical displacement at midspan decomposed into the contributions from the bending modes for shell model with fixed in-plane displacements at the
supports.

The influence of numerical round-off errors can be a significant problem when developing NLROMs using non-intrusive methods,
affecting both the convergence and accuracy (cf. Section 2.3.4). To approach this problem, we investigated the decondensation
method proposed by Wang et al. [18], which was originally developed and demonstrated using dual modes. The numerical
investigations presented in Section 5.2.1 indicate that the accuracy can be increased using this approach for NLROMs established
using modal derivatives. Furthermore, the technique can be combined with the M-STEP method [19] to allow for decondensation
of solid models which are symmetric along the thickness. However, the computational offline cost can, in general, be expected
to be larger due to that the solutions of several full-order nonlinear static analyses are required. Moreover, it was found that the
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influence of numerical round-off errors were significantly larger for the FE models generated using Abaqus, as compared to the
models implemented in MATLAB; thus, the decondensation technique was only applied to the Abaqus models.

The efficiency of the proposed method (cf. Section 4) can be compared to the ICE method (cf. Section 3.4) by evaluating the
number of static solutions needed in the NSC identification process, which is strongly related to the computational offline cost.
Using the ICE method, the number of static problems to be solved is 2𝑁𝑏 + 2𝑁𝑏(𝑁𝑏 − 1) + 4𝑁𝑏(𝑁𝑏 − 1)(𝑁𝑏 − 2)∕3 (recall that 𝑁𝑏 and
𝑁𝑚 are the number of bending and membrane modes, respectively, whereas 𝑁 = 𝑁𝑏 +𝑁𝑚 is the total number of basis vectors). On
the contrary, if using the proposed methodology, the number of static load cases is 2𝑁𝑏+3𝑁𝑏(𝑁𝑏−1)+𝑁𝑏(𝑁𝑏−1)(𝑁𝑏−2)∕6 if using
the ED method and 2𝑁𝑏 +𝑁𝑏(𝑁𝑏 − 1)∕2 if using the EED method. Hence, by using the proposed method, the number of static load
cases are decreased in either case. The numerical stability of the ED method was found to be somewhat better compared to the EED
method, which was also observed in [13,27]. Thus, in applications where convergence and accuracy is problematic, the ED method
can be the preferred choice. Finally, it should be noted that approaches using dual modes (cf. Section 3.4) are combined with the ED
or EED method in a similar manner as for approaches using modal derivatives. However, as indicated by the investigations in [13],
the total offline cost, including both the basis generation and NSC identification, is generally larger if using dual modes.

7. Conclusions

In the present paper, strategies for non-intrusive reduced order modeling of geometrically nonlinear flat structures were devel-
oped. The NLROMs were established by means of out-of-plane bending modes generated using a Krylov-subspace technique [31],
which automatically excludes normal modes that are not explicitly excited by the external forcing. Modal derivatives were employed
for generating in-plane reduction basis vectors. The proposed modeling strategies were validated and demonstrated using numerical
examples. The following conclusion can be drawn:

• The computational offline cost for generating NLROMs of flat structures can be significantly reduced by using the method
proposed in Section 4. Furthermore, we demonstrate that the method can be generalized to consider curved structures.

• By adopting the simplified form of the equation of motion, the modal derivatives provide all the information needed for
generating the quadratic coupling coefficients required for considering the dynamic response of the non-bending coordinates.

• The number of linear modes can be effectively reduced by using a Krylov-subspace approach that considers the spatial
distribution of the external load. It follows that the number of modal derivatives, which scales quadratically with the number
of linear modes, is also significantly reduced.

• The developed NLROMs generally showed good agreement with the full-order models. Furthermore, in several of the studied
load cases a reasonable approximation was obtained by condensed NLROMs, considering only the quasi-static response of the
in-plane modes. However, for cantilever structures, the numerical investigations indicate that the in-plane inertia can have a
significant influence on the response.

• Although the condensed NLROMs are expressed solely in terms of out-of-plane coordinates, an appropriate in-plane basis is
still required for recovering the physical displacements of the full-order model. In particular, this is needed for computing
stresses and strains, typically required in engineering applications for evaluating the response. In this context, an approach
using modal derivatives turns out to be particularly useful because their quasi-static responses are enslaved by the amplitudes
of the associated linear modes. Thus, the amplitudes of the modal derivatives are not involved in the reduced-order dynamic
analysis and can, therefore, be computed in a post-processing procedure. In particular, the amplitude of the modal derivatives
can be generated without knowledge of the quadratic coupling coefficients, i.e. by using Eq. (58) instead of Eq. (10).

• The numerical investigations suggest that the influence of numerical round-off errors for NLROMs developed using modal
derivatives can be mitigated by use of the decondensation technique, proposed in [18]. However, the approach may result
in a larger computational offline cost, because several full nonlinear static problems must be solved in the NSC identification
process.
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Abstract

In the paper, we propose a nonlinear reduced order model for dynamic analysis of glass panels subjected to soft-

body impact. The aim is to determine the pre-failure elastic response of the glass panel in a computationally effi-

cient manner, while maintaining sufficient accuracy of important output quantities. The response of glass panels,

having a small thickness compared to the span width, are typically characterized by bending–stretching coupling

effects, which result in a geometrically nonlinear behavior. To consider these effects, a reduction basis for the

glass panel was established using out-of-plane bending modes and the associated modal derivatives, which span

the additional subspace needed to adequately predict the geometrically nonlinear response. The reduced nonlinear

restoring forces for the glass structure were expressed as cubic polynomials in modal coordinates. Consequently,

the transient dynamic response can be effectively solved using direct time integration. The impacting body was

modeled using a nonlinear, viscous single-degree-of-freedom system. Furthermore, a contact model was devel-

oped, allowing for approximating the contact pressure distribution using only a few time-dependent variables. For

the studied load cases, the glass panel displacements as well as the principal tensile stresses predicted by the pro-

posed model are in good agreement with the corresponding results provided by a detailed, full order finite element

model.

Keywords: glass structures, dynamic analysis, model order reduction, geometrically nonlinear, nonlinear finite
element model, modal derivatives, soft-body impact
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