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Author Summary

Men and women differ substantially regarding height,
weight, and body fat. Interestingly, previous work detect-
ing genetic effects for waist-to-hip ratio, to assess body fat
distribution, has found that many of these showed sex-
differences. However, systematic searches for sex-differ-
ences in genetic effects have not yet been conducted.
Therefore, we undertook a genome-wide search for
sexually dimorphic genetic effects for anthropometric
traits including 133,723 individuals in a large meta-analysis
and followed promising variants in further 137,052
individuals, including a total of 94 studies. We identified
seven loci with significant sex-difference including four
previously established (near GRB14/COBLL1, LYPLAL1/
SLC30A10, VEGFA, ADAMTS9) and three novel anthropo-
metric trait loci (near MAP3K1, HSD17B4, PPARG), all of
which were significant in women, but not in men. Of
interest is that sex-difference was only observed for waist
phenotypes, but not for height or body-mass-index. We
found no evidence for sex-differences with opposite effect
direction for men and women. The PPARG locus is of
specific interest due to its link to diabetes genetics and
therapy. Our findings demonstrate the importance of
investigating sex differences, which may lead to a better
understanding of disease mechanisms with a potential
relevance to treatment options.

Introduction

Height, fat mass, and fat distribution differ substantially
between men and women, and these differences may, in part,
explain the sex-specific susceptibilities to certain diseases [1,2]. A
subtle sexual dimorphism in body composition is already apparent
during childhood, and emerges more prominently during adoles-
cence as boys start exceeding girls with regard to height and
muscle mass, while girls accumulate more fat mass [3-5]. These
considerable differences in anthropometry may reflect sex-specific
differences in steroid hormone regulation, adipogenesis, lipid
storage, muscle metabolism, composition, and contractile speed,
skeletal growth and maturation, or lipolysis, and suggest a genetic
underpinning [1,2,6-10].

While direct measures of height or weight are easily obtained,
measures of fat mass and fat distribution are more invasive and less
frequently assessed in large-scale epidemiological studies. Instead,
body mass index (BMI, computed as weight/height?) is used to
assess overall adiposity, whereas waist-to-hip ratio (WHR) is a
measure of fat distribution. Increased WHR 1is suggestive of more
preferential accumulation of fat around the waist versus the hip.
Obesity (defined as a BMI=30 kg/m?) is a well-established risk
factor for type 2 diabetes, cardiovascular disease, cancer and
mortality [11-18]. Also the independent effect of WHR — derived
by computing WHR adjusted for BMI - on morbidity and
mortality has been demonstrated [19,20]. Thus, anthropometric
measures depict not only body size, but also fat distribution and
consequently various facets of chronic disease risk.

Genome-wide association studies (GWAS) have successfully
identified many genetic loci robustly associated with height [21-
25], body mass index (BMI) [26-29], and waist-to-hip ratio
(WHR) [30,31]. So far, all GWAS for anthropometric traits have
been performed in men and women combined. However, in our
most recent GWAS of WHR within the Genetic Investigation of
ANthropometric Traits (GIANT) consortium, we found that seven
of the 14 novel loci displayed more pronounced effects in women
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than in men, when we subsequently stratified analyses by sex [31].
In contrast, our GWAS for BMI or height genetic effects with
GIANT, no sex-differences in the newly identified loci were noted
[25,29]. However, these GWAS did not specifically aim to identify
genetic loct with sex-specific effects such that a systematic search
for such sexually dimorphic loci was warranted.

Thus, given the obvious difference in physical appearance
between men and women in body size and shape, together with
the strong evidence of sex-specific effects of the recently identified
WHR loci, we performed a systematic search for sex-specific loci
for anthropometric traits. GWAS conducted separately in men
and women not only improve power to identify sex-sensitive
associations, but also allow testing for sex differences. Within the
Genetic Investigation of ANthropometric Traits (GIANT) consor-
tium, we performed sex-specific GWAS for six anthropometric
traits involving a total of 270,775 subjects from 94 studies in order
to investigate the extent and nature of sex-specific genetic effects
on anthropometry.

Results

Discovery meta-analysis of sex-specific GWAS for
anthropometric traits

In the discovery stage, sex-specific GWA analyses were
conducted in 46 studies (Table S1), including up to 60,586 men
and 73,137 women, testing ~2.8 million autosomal SNPs for
association with six anthropometric traits that are well established
to represent body size and shape: i.e. height, weight, BMI, waist
circumference (WC), hip circumference (HIP), and WHR. In
order to capture body fat distribution independent of overall
adiposity, the latter three traits were also analyzed with adjustment
for BMI (WCadjBMI, HIPadjBMI, WHRadjBMI) yielding nine
phenotypes n total (Methods). Study-specific information has been
described previously [25,29,31] and details on study-specific
analyses are given in Methods. All study participants were of
European and European American descent. We performed an
inverse-variance weighted fixed-effects meta-analysis for each of
the 18 analyses (9 phenotypes, 2 sexes; Methods) yielding meta-
analyzed sex-specific P-values for association (P-men, P-women) and
corresponding sex-specific effect estimates. In order to account for
multiple testing across SNPs genome-wide as well as across
phenotypes, we applied a false-discovery-rate (FDR) approach
[32].

Generally, in order to establish a sexually dimorphic association,
we require both a significant SNP association with an anthropo-
metric trait at least in one sex (P-men or P-women at 5% FDR across
all SNPs and phenotypes tested) and a significant sex-difference of
a SNP (P-value testing for difference in sex-specific effect estimates,
P-dyff; at 5% FDR). Sexually dimorphic SNPs could either show (i)
concordant effect direction (CED), if the association is present in
one sex (P-men or P-women at 5% FDR) and at least nominally
significant and directionally concordant in the other (P-women or P-
men<<0.05, respectively), (ii) single sex effect (SSE), if the association
is present in one sex and not significant in the other, or (iii)
opposite effect direction (OED), if the association is present in one
sex and at least nominally significant in the opposite direction in
the other sex. We aimed to identify genetic loci with CED or SSE,
which are biologically most plausible. Nevertheless, in this
exploratory effort, we also searched for OED loci — which are
biologically unlikely, but current lack of knowledge of such signals
could be due to the fact that current GWAS of men and women
combined cannot detect such signals.

We evaluated the power of two genome-wide approaches to
screen for sex-sensitive genetic loci: (a) a scan for sex-specific
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association P-values in men and women separately (P-men, P-
women, sex-specific scan) and (b) a scan for P-values testing for sex
difference between effects of men and women (P-dyff, sex-difference
scan; details in Methods). Power calculations showed that the sex-
specific scan had a higher probability to select SNPs with true
underlying CED or SSE signal into follow-up, while the sex-
difference scan had a higher probability to select SNPs with true
underlying OED effect (details in Text S1). We thus conducted
both scans.

The sex-specific scan showed an excess of small P-values
(Figure la, b). Controlling for 5% FDR (across all SNPs, nine
phenotypes, two sexes; corresponding to a P-value of 2x107°),
this scan yielded 619 independent SNPs associated with at least
one of the phenotypes in at least one of the sexes. Including a
rough filter for sex-difference (nominal significant, P-dyf<<0.05),
we took 348 out of these 619 SNPs forward for follow-up (73
SNPs for height, 28 for weight, 32 for BMI, 31 for WC, 46 for
WCadjBMI, 33 for HIP, 38 for HIPadjBMI, 28 for WHR, and
39 for WHRadjBMI; Table S2). The sex-difference scan did not
identify any SNPs at 5% FDR, despite the fact that the QQ-plot
for all phenotypes combined as well as for phenotype-specific
traits indicated some deviation of the observed P-diff distribution
from the expected (under the null hypothesis of no sex-difference)
for the waist phenotypes (WHRadjBMI, WHR, WCadjBMI)
(Figure 2a,b). Indeed, even if we were to carry forward SNPs at
30% FDR, we would not have identified any significant OED
effects. As such, no SNPs were taken forward from this second
scan for follow-up.

Follow-up of 348 SNPs reveals seven sexually dimorphic
anthropometric trait loci

In the follow up, we examined the 348 SNPs for the phenotype
that the SNP was selected for in 18 studies with in-silico genotype
information (up to 20,340 men and 41,872 women) and in 30
studies with Metabochip data (up to 42,055 men and 32,785
women; which contained assays for 43% of selected SNPs
prioritized for follow-up). Study-specific information is given in
Tables S1, S3, S4A,S4B, S5 and Methods. Meta-analyses of the
follow-up studies as well as jointly with discovery studies were
conducted for each sex separately (P-women, P-men) and both
combined (P, Methods).

As all 348 SNPs were derived from the sex-specific discovery
scan, the follow-up was then used to establish unbiased estimates
of sex-difference in an independent data set (Methods). We
filtered SNPs with a main effect (P-value for association combined
in men and women <0.01; Methods). This yielded 74 SNPs,
which were subsequently tested for sex-difference. Seven of these
74 SNPs reached a significant sex-difference at 5% FDR (six for
WHRadjBMI, one for WCadjBMI, Table 1). For these seven
SNPs, the P-diff jointly for the discovery and follow-up ranged
from 2.7x107* t0 6.2x107'° and the joint discovery and follow-
up association P-value in the predominant sex — interestingly, all
in women — was genome-wide significant (P-women<<5x10~%).
Effect sizes were similar when we restricted our follow-up
analyses to population-based studies or control-only series in
order to eliminate a potential bias by patient groups (Figure S1).

The seven confirmed sex-difference loci include three
novel signals

We found that three of these seven identified loci describe novel
associations with WCadjBMI (near MAP3KT) or WHRadjBMI (near
HSDI17B4 and PPARG) that were genome-wide significant in women
(joint P-women: 3.4x10~ % to 4.2x10~"), but not in men (joint P-men:
0.41 to 0.76), whereas the remaining four had been established
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previously (ref). These three novel loci would have been missed by sex-
combined scans at 5% FDR (equivalent to P>5.8x107>).

Of particular interest is the PPARG region, which we identified
for the first time as a locus for anthropometric traits
(WHRadjBMI) in the context of a genome-wide study and with
evidence for a women-specific association. PPARG is of consider-
able importance due to its function as a nuclear hormone receptor
with specific known interaction with sex hormones, for example
with estrogen receptors [33], and due to its role in type 2 diabetes
development and therapy.

The remaining four loci were near (<1 cM) previously
established sexually dimorphic loci for WHRadjBMI (GRB14/
COBLLI1, LYPLALI/SLC30410, VEGFA, and ADAMTSY; sce
Table 2) [31]. The further sexually dimorphic WHRadjBMI loci
previously reported in that work were included among the ten
additional SNPs at 30% FDR in our data (RSPO3, HOXCI3,
ITPR2-SSPN, see Table S6), which illustrates the pay-off between
our power gain from this sex-specific approach and larger sample
size with the increased multiple testing burden of interrogating
nine phenotypes in comparison to one phenotype in our previous
work. An overview of the SNP selection and findings is given in
Figure 3 and the genes surrounding the seven signals are depicted
in the region plots (Figure S2).

Although identifying sex-differences was our primary goal, we note
that among the 348 SNPs chosen for follow-up, 46 SNPs exhibited
genome-wide significant association in either men or women in the
joint analysis of discovery and follow-up data (P-men or P-
women=<5x10"%, 27 SNPs for height, 12 for WHRadjBMI, three
for weight, three for BMI, one for WCadjBMI, zero for WC, HIP,
HIPadjBMI, or WHR). Detailed information regarding P-values and
effect estimates of these 46 SNPs are included in Table S2.

No opposite effect direction, but enrichment for genetic
effects in women

When examining the sex-specific effect estimates for the seven
SNPs (Figure 4), we found that effect sizes were consistent in
discovery and follow-up and that none of the seven loci showed
OED. Furthermore, the associations for six of the seven SNPs
were observed in women only (SEE), whereas for one SNP
(ADAMTSY9) we observed CED in both sexes, but the effect was
more pronounced in women than in men. The absence of loci with
OED together with the observation that the sex-difference scan
did not detect any sex-difference, even at 30% FDR, our data does
not support the existence of genetic loci that have opposite effect in
men versus women.

When comparing the effect sizes of the 46 SNPs with genome-
wide significant sex-specific associations between women and
men, we found again significant enrichment for larger effects in
women for WHRadjBMI (Binomial test P=1.1x10"*, Methods),
but not for other phenotypes (P=0.08, 0.08, 0.11, 0.16, for BMI,
weight, height, or WCadjBMI, respectively). This underscores
that our data does provide evidence for sexual dimorphism in the
genetics, and thus biology, underlying WHRadjBMI, but not for
height or BMI. This is consistent with the fact that the seven loci
with confirmed sex-difference were for waist phenotypes only.
Nevertheless, it should be noted that we identified suggestive
sexually dimorphic genetic signals for height and BMI when
applying a 30% FDR threshold (Table S6).

Age-stratified analyses and association with other traits
for the seven SNPs

Hormonal changes during menopause affect a woman’s body
shape and composition, generally resulting in a more android body
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type. Therefore, we examined whether any of the seven confirmed
sexually dimorphic loci showed evidence of age-specific effects
(Methods). More specifically, we performed association analyses
for the seven loci stratified by age with a cut-off at 50 years (i.e.
average age of onset of menopause) and by sex. None of the loci
showed evidence for age-specific effect among women (or men) (P
for difference between age groups >0.135, Table S7).

When extending the investigation of the seven SNPs from the
phenotype for which the SNP was selected (six for WHRadjBMI,
one for WCadjBMI) to the other anthropometric phenotypes (Tables
S8A-C), we found no nominally significant association with height
(joint discovery and follow-up P-women and P-men from 0.065 to
0.86), except for one SNP (rs2820443, P-women=2.8x10"°
P-men=6.0x10"%. Four of the seven associations showed some

Sexual Dimorphism in Anthropometric Trait Loci

evidence of BMI association (P-women or P-men 3.2x10™* to
6.0x107%. More specifically, we found — in women only —
decreased HIPadjBMI (P-women from 2.7x10™% to 0.015) and
increased WCadjBMI (P-women from 7.6 x 1072% t0 3.82x10™ %) for
all WHRadjBMI increasing alleles, whereas no association with
HIPadjBMI (P-women = 0.32) was observed for the SNP selected for
WCadjBMI. This underscores that the seven sexually dimorphic
SNPs are primarily waist- and WHR-related.

Using data from other GWAS consortia [34-36], we evaluated
whether the seven SNPs showed associations with other metabolic
traits consistent with the observed association with WHRadjBMI
or WCadjBMI and whether the similar sex-specific pattern of
association was also observed (Methods). We did indeed find
directionally consistent enrichment (binomial P<<0.05) for women-
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Figure 1. Genome-wide scan for sex-specific genome-wide association highlights numerous loci. (a) Manhattan plot showing the men-
specific (upward, up to 60,586 men) and women-specific (downward, up to 73,137 women) association P-values from the discovery with the 619
selected loci colored by the phenotype for which the locus was selected; (b) QQ-plot showing the sex-specific association P-values as observed
against those expected under the null overall phenotypes (black) and for each phenotypes separately (colored).

doi:10.1371/journal.pgen.1003500.g001
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Figure 2. Genome-wide sex-difference scan fails to pinpoint loci. (a) Manhattan plot showing sex-difference P-values, (b) QQ plot for sex-
difference P-values overall phenotypes (black) and for each phenotype separately (colored).

doi:10.1371/journal.pgen.1003500.9002

specific associations (P-women<<0.05) with lipids, fasting insulin,
type 2 diabetes, and HOMA-B (binomial P from 1.2x107° to
5.9x107% Tables S8D-G). Remarkable was the consistent
women-specific association for the index SNP near the GRBI4/
COBLLI with HDL-cholesterol, triglycerides, insulin, and type 2
diabetes (here though for a different SNP, but correlated with our
index SNP, D’ = 1.0, r*=0.735) and for our SNP ncar MAP3KI
with triglycerides. Three of our novel SNP findings localize near
well-known loci for type 2 diabetes (ADAMTS9, VEGFA, PPARG),
although only our SNP near ADAMTS9 displayed a strong
correlation with the published type 2 diabetes index SNP
(rs4607103, *=0.9, ~0.001 cM), while the other two SNPs were
uncorrelated with the reported type 2 diabetes SNPs (rs9472138,
VEGFA, r*>=0.008, ~0.23 cM distant from our lead SNP;
rs17036101, PPARG, r*=0.024, ~0.15 cM). It should be noted
that many of the studies that participated in GIANT also
participated in the other consortia and given the correlation
between the phenotypes, the sex-specific consistency is likely
somewhat inflated. Taken together, our findings suggest common
genetic influences on body fat distribution, lipids, and type 2
diabetes, particularly for women.

PLOS Genetics | www.plosgenetics.org

Pathway analyses

In order to summarize the biological pathways that are
primarily depicted by our data on sex-difference, we examined
whether the genes harbored by the seven confirmed loci showed
enrichment for particular pathways or other units of the molecular
networks (processes, functions) using MAGENTA (Methods). We
found that PPARG Signaling, post-Golgi vesicle-mediated trans-
port and kinase- and annexin-related molecular functions showed
enrichment at 5% FDR (Table S9).

Potential functional or biological role of the seven loci
Regarding the biological role of the SNPs and genes in the
proximity of the seven sex-specific SNPs, we searched literature
and functional annotation data bases and catalogues (Methods).
The genes inflicted in the seven regions of interest generally
highlighted genes with a reported role in insulin sensitivity
(PPARG, VEGFA, ADAMTS9, GRB14) and lipid-related traits (fatty
liver: LYPLALI; triglyceride concentrations: MAP3K1, HDL-C:
GRBI4). Among the index SNPs or their proxies (pairwise
correlation, r*>0.8) in the immediate region (49 SNPs altogether),
we found one SNP (rs10478424; r’=1 with lead SNP at
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Table 1. Seven SNPs show sex difference.
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Discovery Follow-up Joint
Sex- Sex- Sex-

MEN WOMEN Diff MEN WOMEN Diff MEN WOMEN Diff MEN WOMEN
SNP Trait® Sex® Gene P P P P P¢ P¢ P P P N N
rs6717858 WHRadjBMI W GRB14/COBLL1 0.309 2.78E-15 6.49E-07 0.965 3.64E-16  1.08E-11 0.613 1.99E-29 6.18E-16 76,594 98,321
rs2820443 WHRadjBMI W LYPLAL1/SLC30A70 0.191 3.69E-18 1.25E-07 0.532 9.15E-21  2.60E-10 0.374 4.62E-37 6.95E-16 76,625 98,352
rs1358980 WHRadjBMI W VEGFA 0.110 1.11E-13  3.02E-05 0.112 1.38E-19  4.53E-08 0.048 241E-31  2.46E-11 75,703 97,269
rs11743303 WCadjBMI i MAP3K1 0974 227E-06 6.24E-04 0.172 7.15E-07 5.35E-05 0.570 2.69E-11  8.41E-07 85,136d 107,403d
rs2371767 WHRadjBMI W ADAMTS9 0.196 1.63E-08 1.85E-03 6.08E-03 8.55E-17 2.14E-04 8.34E-03 7.07E-23 1.91E-06 72,649 95,325
rs10478424 WHRadjBMI W HSD17B4 0.399 1.02E-05 9.84E-03 0.864 3.81E-05 1.67E-03 0.761 3.45E-09 2.66E-04 43,852° 73,066°
rs4684854 WHRadjBMI W PPARG 0955 2.36E-08 6.46E-05 0.132 148E-07 4.22E-03 0.411 4.17E-14  4.04E-06 74,652 96,472

*Trait and sex for which the SNP was selected;
“One-sided P-Values.

Ssmaller sample size as this SNP was not on Metabochip.

doi:10.1371/journal.pgen.1003500.t001

HSDI17B4) that was a predicted transcription factor binding site
(TFBS). Interestingly, one of the transcription factors predicted to
bind at this TFBS is PPARG, which itself is located near one of our
other association signals. None of the other 48 SNPs tagged any
known copy-number variant, was a non-synonymous coding
variant, or was present in any of the other predicted functional
classes. When extending this search to SNPs that were more
moderately correlated (r2>0.5) with the lead index SNPs (146
SNPs altogether), these included several proxies of rs2820443
(near LYPLALI/SLC30A410) that annotated as TFBSs as well as
proxies of rs10478424 that disrupt predicted microRNA binding
sites. These findings may indicate potential involvement in the
regulation of gene transcription near those loci.

A specific description of potentially functionally elements in the
association regions as indicated by UCSC and Ensembl genome
browsers and more details from the literature and functional
annotation data base searches can be found in the Text S1.

Effect of the seven sexually dimorphic loci on expression
in relevant tissues

To localize the potentially causal gene at each locus, we
examined the evidence for sex specific ¢cis expression quantitative
trait loci (eQTL) for genes near the seven identified SNPs in
different types of human subcutaneous adipose tissue, lympho-
cytes, and whole blood (Methods). Although there was evidence
for gene expression association of two (GRBI4, ADAMTS9, Table
S10) of the seven SNPs (SNP highly correlated with the peak SNP
of the transcript, r*>>0.8, the association of the peak SNP with the
transcript expression vanished when adjusted for our SNP), the
associations were not sex-specific (P-diff>0.05).

We also examined whether genes harbored by the seven sex-
specific loci showed sex-specific expression in various tissues of
mouse models using real-time PCR expression data (brown fat,
inguinal and gonadal fat, and liver) and Illumina expression data
(liver, inguinal and gonadal fat; Methods). We found significantly
(at a significance level of 0.05/19=0.003) lower expression of
GRB14 in brown fat of female mice (P-dyff= 0.001); due to the role
of brown fat in triglyceride catabolism [37], this is in-line with the
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PGene labels state the nearest gene or the gene as published previously; details on all genes near the association signal can be found in the Figure S2;
dIarger sample size due to one additional study that did not have hip circumference, and therefore could not contribute to WHRadjBMI.
Shown are the seven SNPs with significant (at 5% false discovery rate) sex difference in the follow-up data. These seven SNPs exhibit genome-wide significant

association in women (joint discovery and follow-up P_women<5 x10—8) and only two of these show nominally significant association in men (joint P_men<0.05). The
three loci MAP3K1, HSD17B4, and PPARG are shown here for the first time for their anthropometric trait association as well as for sex-difference.

previously described sexually dimorphic association of this SNP
with HDL-C and triglycerides. For female compared to male
mice, we found significantly lower expression of VEGFA (P-
diff=1x10"% in inguinal fat, whereas in liver, we found higher
expression for three genes (LYPLALI, PPARG, MRRNI; P-diff from
0.002 to 0.003) with the latter two genes being located in the
PPARG locus (Table S11).

Discussion

In our genome-wide search for sexually dimorphic associations
including over 270,000 individuals from 94 studies from the
GIANT consortium, we found evidence for seven loci with
significant sex-difference including three novel anthropometric
trait loci (near MAP3K1, HSD17B4, PPARG). Importantly, for all
seven loci, the associations were observed for waist phenotypes
with more prominent effects in women. These findings are
consistent with our previous reports for sex-differences in the
genetics of WHR [30,31].

The waist phenotypes used in this study are well established
proxy measures of body fat distribution. Women have more
subcutaneous body fat, which is part of the skin, that is
preferentially deposited at the hips and thighs whereas men have
more visceral fat, which is fat in and around the inner organs and
accumulates particularly around the waist [38-40]. It is well
known that hormonal levels are associated with differences in fat
distribution in men and women, distinctions that emerge early in
childhood and subsequently amplify during puberty [41,42].
Moreover, fat distribution in women changes as estrogen levels
drop during menopause, leading to a more android shape, with
greater visceral fat accumulation [43]. Subcutaneous and visceral
fat has distinct morphological and functional properties that
account in part for clinically relevant sex differences in a variety of
metabolic phenotypes [40,44].

Our findings of sex-specific genetic effects on waist-hip-ratio as a
measure of fat distribution are consistent with a study of families in
whom MC4R mutations segregate that demonstrated larger effects
on obesity in female compared to male mutation carriers [45]. In
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Discovery
46 studies

~2.8 Million SNPs in sex-specific
genome-wide scans for 9 phenotypes

(60,586 men; 73,137 women)

FDR < 5% across 9 phenotypes and 2 sexes

Sex-difference P < 0.05

348 SNPs in follow-up, for the phenotype as selected for

Follow-up
48 studies
(62,395 men; 74,657 women)

Main SNP effect P < 0.01

74 S

NPs*

7 SNPs** with significant sex-difference

Testing for sex difference

10 SNPs*** with suggestive sex-difference:

at FDR < 5%

4 known, 3 novel

5% < sex-difference FDR < 30%

5 known, 5 novel

The 3 novel loci would have been missed
in a sex-combined scan (FDR 5% in discovery)

One of the 5 novel would have been missed
in a sex-combined scan (FDR 5% in discovery)

* Including 46 SNPs with genome-wide significant association in at least one sex in the joint analysis (discovery and follow-up,

P_women or P_men < 5x10-8)

** All with genome-wide significant association in at least one sex in the joint analysis

** All with genome-wide significant association in at least one sex in the joint analysis, except one with P_men=6x10-8

Figure 3. Overview of design and findings. Among the 7 identified loci, we defined those close to (<1 c¢M) published hits [25,29,31] as near
published hits and novel otherwise. Novel loci with sex-combined discovery P-value<5.8 x10~>, which is the P-value cut-off corresponding to 5% FDR,
were declared as loci that could have been discovered also with sex-combined analysis, and otherwise that these would have been missed without the

sex-stratified analyses. FDR =false discovery rate.
doi:10.1371/journal.pgen.1003500.g003

known to be associated with triglyceride levels in sex-combined
analyses [59], whereas we found this locus to be associated with
WHR in women only. The MAP3K] plays a pivotal role in a
network of phosphorylating enzymes integrating cellular responses
to a number of mitogenic and metabolic stimuli, including insulin
and many growth factors [60]. Interestingly, mutations in MAP3K]
have recently been demonstrated to result in a 46XY disorder of
sex development with varying manifestations of gonadal dysgenesis
[61]. Thus this gene is implicated in normal sex development,
which may be related to our observed sexually dimorphic genetic
effect. Finally, the locus near HSD17B4 is of particular interest,
because HSD17B4 is a multifunctional peroxisomal enzyme
involved in steroid metabolism and fatty acid oxidation [62,63].
It converts the more active hormone, estradiol, to the less active
estrone. Sex differences in HSD17B4 expression with estradiol
supplementation have been noted in zebra fish [64]. In addition,
the position of our lead marker at a predicted transcription factor
binding site located just upstream of a putative protein coding
splice variant of HSDI17B4 indicates a potential function for the
association signal observed at this locus and may warrant
additional follow-up work. Interestingly, among the genes that
bind to this transcription factor binding site is PPARG.
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A major strength of our study is that we were uniquely
positioned to perform the analyses described, taking advantage of
the highly efficient collaborative environment of the many study
partners within the GIANT consortium, which allowed us to
conduct the largest possible sex-difference GWAS for anthropo-
metric phenotypes ever reported. As a consequence, we were well-
powered (about 80% power) to detect sex-sensitive genetic effects
of the same magnitude as those observed previously for WHR or
to detect genetic effects as previously observed for height, but
assuming these to appear only in one sex [25,31]. Nevertheless,
our statistical power to detect subtle sex differences in genetic
effects was limited. Notably, we used a conservative approach to
avoid false positive claims: (i) we used ranks instead of the absolute
phenotypic values of anthropometric traits in order to avoid
artefacts due to outliers, (ii) we applied double genomic control
correction in order to avoid any artefact from possible population
stratification, and (iil) we established sex-difference using our
follow-up as opposed to the combined discovery+ollow-up data
sets to avoid overestimated sex-differences through winner’s curse.
It is a further strength that we were able to show associations of
our sex-specific anthropometric trait signals also with other
metabolic traits such as lipids, glucose and type 2 diabetes;
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Figure 4. Consistently higher effect sizes for women for all seven loci. Shown are beta-estimates and 95% confidence intervals for the seven
identified SNPs (also stating the phenotype for which the SNP was selected for).

doi:10.1371/journal.pgen.1003500.9g004

however, we need to note the limitation that these associations
were not adjusted for the anthropometric traits, so that some of the
observed metabolic trait associations were expected due to the
correlation of anthropometric traits with lipids, glucose and type 2
diabetes.

Overall, we found women-specific SNP effects for anthropo-
metric traits, particularly for waist-related phenotypes. Our study
findings lend support to distinct genetic effects on body shape by
sex and argue for the importance of further integrative studies of
sex differences of body shape. While the actual underlying genes
and their mechanisms of action remain elusive, we hypothesize
that such differences are hormonally regulated. Moreover, because
body fat has a prominent endocrinological function and body fat
distribution has a critical relevance for many metabolic pathways,
understanding these differences could help improve our under-
standing of metabolic disease processes. Particularly the estab-
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lished sex-difference for the SNP near the therapy-relevant PPARG
could impact treatment options. In the era of personalized
medicine, which attempts to tailor treatment to fit the individual,
a better differentiation between men and women in research and
patient treatment could be an important start.

Summary and conclusion

While our data underscores a lack of genetic association in
opposing direction in men versus women, we have highlighted
female-specific effects in waist phenotypes. Our investigation
underscores the importance of considering sex-differences when
interrogating the genetic architecture of anthropometric traits. FFor
those traits with strong a priori evidence for sex differences, the
routine analysis of sex-specific genome-wide analyses may allow
for numerous options for meta-analysis including a sex-combined
scan optimally powered to detect the general association as well as
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sex-specific scans when searching for sexually dimorphic signals.
Although our study focused on sex-differences for anthropometric
traits, sex differences in genetic effects likely exist for other traits
and diseases and should be taken into consideration in future
genetic as well as translational studies.

Methods

Anthropometric phenotypes

The anthropometry of men and women differ in various
aspects: Average height, waist circumference, and WHR, is higher
for men than for women, whereas average BMI is similar.
Variability for all phenotypes is similar for men and women, which
can be seen on the example of the KORA study (Table S12) and
specifically for WHR adjusted for BMI for all studies (Figure S3).

The anthropometric traits examined are height (cm), weight
(kg), body mass index (BMI, kg/m? computed as weight divided
by meter of height squared, waist circumference (WC, cm), hip
circumference (HIP, cm), and waist-hip-ratio (WHR). The last
three traits were analyzed without and with adjustment for BMI,
yielding nine phenotypes in total (height, weight, BMI, WC, HIP,
WHR, WCadjBMI, HIPadjBMI, WHRadjBMI). For the further
analyses, the traits were all transformed at the study-level by
calculating age-adjusted residuals (including age and age? into the
regression model for trait creation) for men and women separately
and adding BMI into the adjustment as indicated above; then — for
all traits except height — the values were ranked and an inverse
normal transformation was applied, whereas a z-score transfor-
mation was performed for height.

Study-specific analyses for discovery and follow-up

For discovery stage, we included 46 studies (up to 60,586 men,
73,137 women) on height, weight and BMI, 34 studies (up to
36,231 men, 45,192 women) on WC, 33 studies (up to 34,942
men, 43,316 women) on HIP and 32 studies (up to 34,629 men,
42,969 women) on WHR. Each study was genotyped using either
Affymetrix or Illumina arrays. To enable meta-analyses across
different SNP panels, each group performed genotype imputation
using HapMap II CEU (build 21 or 22) via MACH [65],
IMPUTE [66] or BimBam [67]. Details are given in Tables S1,
S3, S4, S5 and Text S2.

For follow-up, we included (i) 30 studies (up to 42,055 men,
32,785 women) for height, weight and BMI and 27 studies (up to
36,671 men, 28,326 women) for WC, WCadjBMI, HIP,
HIPadjBMI, WHR and WHRadjBMI that were genotyped using
the custom iISELECT Metabochip array containing ~195K SNPs
designed to support large-scale follow-up of putative associations
with metabolic and cardiovascular traits, and (i1) 18 studies (20,340
men, 41,872 women) for height, weight, and BMI and 14 studies
(11,225 men, 32,610 women) for WC, WCadjBMI, HIP,
HIPadjBMI, WHR and WHRadjBMI genotyped using genome-
wide SNP chips with subsequent imputation for in silico follow up.

In each study, association was tested separately for men and
women. The additive genetic effect for each SNP on each
phenotype was estimated using a normal linear regression model
using MACH2QTL [68], SNPTEST [66], ProbABEL [69],
GenABEL [70], Merlin [71], or PLINK [72]. For studies with a
case-control design, cases and controls were analyzed separately.
Study-specific information was described previously [25,29,31] for
discovery studies and in Tables S1, S3, S4, S5 for follow-up
studies.

All involved studies were conducted according to the principles
expressed in the Declaration of Helsinki. The studies were
approved by the local Review Boards and all study participants
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provided written informed consent for the collection of samples
and subsequent analysis.

Sex-specific discovery meta-analysis

All discovery study-specific files were processed in the meta-
analysis centers through a standardized cleaning script that
included checks of allele frequencies, compliance with Hapmap
alleles, file completeness, number of markers, and ranges of test-
statistics.  We excluded monomorphic SNPs, SNPs with
MAF*N=3 (minor allele frequency multiplied by sample size)
and SNPs with poor imputation quality, i.e. r2_hat <0.3 in
MACH,; observed/expected dosage variance <0.3 in BIMBAM;
proper_info <0.4 in IMPUTE; information <0.8 in PLINK
[65,66,72,73].

Sex-specific standard errors and P-values from each participat-
ing study were genomic-control (GC) corrected [74] using the
lambda factors as published [25,29,31], then beta-estimates were
meta-analyzed using the inverse-variance weighted fixed effect
model as implemented in METAL [75]. A sensitivity analysis
using the sample-size weighted Z-score meta-analysis approach
yielded the same results; only fixed effect model results are shown.
The 2,971,914 SNPs in each of 18 analyses (nine phenotypes in
two sexes) reduced to 2,846,694 SNPs with available chromosome
and position annotation in dbSNP. The genetic position (cM) was
extracted from HapMap release 22 (http://hapmap.ncbi.nlm.nih.
gov/downloads/recombination/2008-03_rel22_B36/rates/) or -
if unavailable - approximated by the inverse-distance weighted
average of the genetic positions of the nearest HapMap SNPs
(release 22) on each side.

SNP selection strategy

We conducted two types of genome-wide searches in the
discovery stage: (a) In the sex-specific scan, we computed sex-specific
association P-values for each SNP, concatenated these for all nine
phenotypes totaling 50,586,560 P-values (i.e. 2 sexesx9 pheno-
types x2.85 Million SNPs), and selected 20,215 SNPs at 5% FDR
[32]. Pruning this list to independent SNPs (starting with the
20,215 SNPs sorted by increasing P-value and deleting SNPs
within 0.2 ¢M of any of the SNPs above) yielded 619 independent
SNPs. For each SNP and for the phenotype that the SNP was
selected for, we also computed P-values (P-diffj testing for
difference between the meta-analyzed men-specific and women-
specific beta-estimates byen, Dyomen with corresponding standard
errors SEpen, and SEpmen using the t statistic

bmen — b women

1=
\/SEmenz + SEnr"omenz - 2’“SEmen “SE\yomen

The correlation 7 between by, and bygmen, computed as the
Spearman rank correlation coefficient across all SNPs for each
phenotype, ranged from 0.04 to 0.18 across phenotypes. From
these 619 SNPs, we seclected the 348 SNPs with nominally
significant sex-difference (P-diff<<0.05) to ensure some level of sex-
difference in the discovery. Whether the sex-difference was
significant was then evaluated in the follow-up stage (see below).
(b) In the sex-difference scan, we computed P-diff for each of the
~2.85 Million SNPs and each of the nine phenotypes and
concatenated the totaling 25,293,280 P-values. We had planned to
select SNPs for follow-up at an FDR of 5% across all SNPs and
phenotypes, but there were none. Power considerations are
provided in the Text S1 and Figure S4A.
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Follow-up and joint meta-analysis, establishing sex-
difference

Study-specific follow-up data were quality-controlled in a
similar manner as discovery data with increased attention towards
strand-issues. We conducted sex-specific follow-up meta-analyses
using the same statistical models as for the discovery. We
combined (i) i silico studies and (ii) metabochip studies, and then
combined results of (i) and (it) implying a double genomic control
correction (Text S1). Additionally, we conducted a joint meta-
analysis combining the sex-specific association results of discovery
and follow-up.

For SNPs selected for their small P-values of sex-specific
association, the sex-difference estimates and corresponding P-
values in the same data set would be inflated (see Figure S5) as the
two tests are not independent. We therefore derived sex-difference
estimates and corresponding P-values in the follow-up data alone.

As none of our selected SNPs stemmed from the scan targeted
for OED signals (i.e. the sex-difference scan) or showed any
evidence of OED in the discovery, we targeted our follow-up
analysis for CED or SSE signals. We filtered for a main effect (P
for both sexes combined <<0.01) prior to testing for sex-difference
(P-diff; as described above), since this increased the power to detect
SSE and CED signals (Figure S4B, Text S1), while this filter did
not introduce a bias such as a sex-stratified association filter would.
SNPs with a P-djff in the follow-up at 5% FDR were considered as
SNPs with significant sex difference.

Establishing genome-wide significance of
anthropometric trait association and enrichment for
female or male genetic effects

We considered a joint (discovery and follow-up combined)
association P-men or P-women<<5x10"° as genome-wide significant. For
each phenotype, we tested whether there were more male-specific
or more female-specific associations among the associations with
established genome-wide significance in at least one sex compared
to the expected binomial distribution.

Age-stratified sex-specific meta-analysis and association
with metabolic traits

For the identified signals with sex-difference, study partners of
the discovery and the wn silico follow-up re-analyzed their data
stratified by sex and age group (=50 years, <50 years) using the
same models as described above. Age difference was tested within
each sex using the same t statistic as applied for the sex-difference
testing.

Sex-specific associations of the identified signals with metabolic
traits were derived requesting a sex-stratified re-analysis from the
Global Lipids Genetics Consortium (GLGC, Triglycerides, HDL-,
LDL-, and Total cholesterol) [34], the Meta-Analyses of Glucose
and Insulin-related traits Consortium (MAGIC, fasting insulin,
fasting glucose, HOMA-B, HOMA-IR) [35,76]; and, the DIA-
GRAM consortium (type 2 diabetes) [36]. We tested the overall
number of SNPs with consistent nominally significant association
for the sex that the SNP was selected for (P_women or P_men <0.05)
compared to a binomial draw with an event rate of 0.05. It needs
to be noted that this test does not account for the correlation
between the traits nor for the fact that the consortia involve an
overlap of studies.

Pathway analyses

In order to explore whether certain pathways are enriched
among the genes depicted by loci with evidence for sex-
difference, we applied MAGENTA [77]. Briefly, MAGENTA
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calculates gene-specific scores (for ~18,000 genes) by combining
the p-values (here: the sex-difference P-values from our
discovery stage for a specific anthropometric phenotype) of
SNPs in and around the genes (40 kb down-, 100 kb upstream).
The genetic score is corrected for potential confounders, such as
gene size, number of independent SNPs, LD pattern, length in
genetic distance, and number of recombination hotspots. These
scores are ranked and the genes within the top 5% of these
scores are tested for enrichment in certain pathways (separately
for each phenotype) as given by different databases (GO:
http://www.geneontology.org/, KEGG: http://www.genome.
jp/kegg/, Ingenuity: http://www.ingenuity.com/products/
pathways_analysis.html, and PANTHER: http://www.
pantherdb.org/). MAGENTA determines whether the genes
among the 5% top scores link to certain pathways more often
than expected by chance. FDR is controlled at 5% via 10,000
permutations (using a random set of genes with the same
number of genes as those observed).

Search for biological and functional knowledge of the
seven association regions

For the seven confirmed sex-difference loci (defined as the
regions depicted by SNPs within 1.0 cM of the respective lead
SNP showing a certain level of association, P=100 * Pj.,qsnp), wWe
searched several catalogues and data bases to depict potential
biologically relevant links or functional entities. We extended the
regions of interest to +—500 kB around the lead SNP if the regions
were very small and no gene was inflicted (as for the PPARG,
VEGFA, MAP3K1 loci).

First, we performed an automated search for reported genes
or variants in our regions in PubMed (http://www.pubmed.
com) and OMIM (http://www.ncbi.nlm.nih.gov/omim) using
Snipper (http://csg.sph.umich.edu/boehnke/snipper) or man-
ually inspected UCSC (PMID: 22086951) and Ensembl (PMID:
21045057) genome browsers as well as the NHGRI GWAS
catalog [78,79]. Second, we explored whether SNPs known to
provide reliable tags for Copy-Number-Variations (CNVs) in
European-descent samples (combining four catalogues includ-
ing 60167 CNV-tagging SNPs as described previously [31])
correlated with our lead SNPs. Third, we performed several
online database searches to establish whether known variants
within 500 kb of each lead SNP, that are correlated (r*>0.8 or
0.5) with our lead SNPs (using SNAP Proxy search [80]), might
have putative or predicted function. (i) We searched the SIFT
database [81] to determine whether any of these SNPs was
predicted to affect protein function. (i) We used SNPinfo [82]
to investigate predicted and putative function in several
functional classes, including splicing regulation, stop codons,
polyphen predictions, SNPs3D predictions, transcription factor
binding site (TFBS) prediction, and miRNA binding site
prediction.

Expression QTL analyses in human and mouse tissue
We examined transcript expression of genes near each of the
seven identified SNP. For human eQTL, we explored four
different tissues (subcutaneous adipose tissue, whole blood, and
lymphoblastoid cells; details on methodology and tissue samples
in the Text S1). We computed sex-specific association including
conditional analyses and r? measures to identify cis ¢QTL
signals that were likely to be coincident with the anthropometric
trait signal. For mouse eQTL, we had four types of tissues
(inguinal fat, gonadal fat, liver, brown fat) with expression
derived by real-time RT-PCR as well as three types of tissue
(liver, inguinal fat, gonadal fat) with Illumina assays (details in
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Text S1). The sex-specific association and a test for sex-
differences were computed.

Supporting Information

Figure S1 Sensitivity Analysis excluding patient groups shows
consistent results. Shown are sex-specific beta-estimates of the
seven identified SNPs in the follow-up data without (original
analysis) and with exclusion of patient groups. It can be seen that
the results are robust and patient groups do not trigger the
observed sex-differences.

(TIF)

Figure 82 Region plot of the 7 identified loci showing the (a)
association P-value in women, (b) association P-value in men, and
(c) the sex difference P-value.

(PDF)

Figure 83 Distribution of waist-to-hip ratio adjusted for BMI.
Shown are the 5, 25", 50™ (median), 75", and 95" percentiles of
the residuals of waist-hip-ratio (before inverse normal transform)
adjusted for BMI (therefore zero mean) for each contributing
study. It can be seen that the variability of the phenotype is
symmetric and to a similar extent in men and women.

(TTFF)

Figure S84 Power comparison. (A) Discovery: Shown is the
power for selecting a sex-sensitive SNP (42969 women, 34629
men; assuming a signal as PPARG in women, MAF=0.42,
RZ omen=0.00057, various effects for men) into follow-up at
0 =2x10"" for the sex-specific (orange) scan, the sex-difference
scan (magenta), or the sex-combined scan (black). (B) Follow-up:
Power (60936 women, 47896 men; assuming a signal such as
PPARG as above in women, various effects for men) to establish
sex-difference among the 348 SNPs in the follow-up by (i) testing
all 348 SNPs for sex-difference (no prior filter for a main effect;
blue) at 5% FDR (corresponding to a P-diff of 9.9x10*; bluc), or
by (ii) testing first for a main effect (P-value combined for men and
women <0.01) and then testing the remaining 74 SNPs for sex-
difference at 5% FDR (here corresponding to a P-diff of 4.2x10~%;
red).

(TTF)

Figure 85 Inflated P-values of the sex-difference test due to the
selection on sex-specific association. We have simulated 1 Million
SNPs under the null hypothesis of no sex-difference (and no
association), selected 348 SNPs with the most extreme sex-specific
association, and plotted the observed P-values of the sex-difference
test compared to the expected. It can be seen that the observed
sex-difference P-values are inflated (i.e. do not lie on the identity
line), which indicates that the sex-difference test is not independent
from the sex-specific association selection.

(TIFF)

Table S1 List of studies including sample sizes.
(XLS)

Table 82 Association results of the 348 loci put forward to
follow-up, showing the results from 46 discovery studies including
60,556 men and 73,133 women and 48 follow-up studies including
62,397 men and 74,651 women. These include 46 SNPs with
genome-wide significant association in men or women in the joint
analysis of discovery and follow-up studies.

(XLS)

Table 83 Study-specific designs and references. (follow-up stage
only).

(XLS)
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Table S4 Study-specific methods. (follow-up stage only) (A)
imnsilico studies, (B) metabochip studies.

(XLS)

Table 85 Study-specific descriptives. (follow-up stage only).
(XLS)

Table S6 Iurther ten SNP show sex-difference at 30% FDR.
Shown are the SNPs with sex-difference in the follow-up according
to 30% FDR additional to those shown in Table 1. These include
the further three loci previously reported for sexually dimorph
waist-hip ratio associations, HOXC13, ITPR2/SSPN, and RPO3/
Coorf173 [31].

(XLS)

Table 87 No difference in any of the 7 associations between age
groups. Age-stratified analyses results were conducted from 59
discovery and i silico follow-up studies for the seven identified

SNPs.

(XLS)

Table S8 Sex-specific association of the 7 SNPs with other
traits.(A) BMI, height and weight: From the joint discovery and
follow-up including 122,907 men and 147,746 women for height,
97,482 and 97,062 for weight, and 120,975 and 142,332 for BMI.
It should be noted that results in Table 1 and Table S7 are only
for the phenotype and sex for which the SNP was selected. (B) hip
circumference (HIP), waist circumference (WC), waist-hip-ratio
(WHR): Including 75,102 men and 96,383 women for hip,
86,196 and 108,303 for waist circumference, and 76,838 and
98,747 for waist-hip-ratio. (C) hip circumference adjusted for
BMI (HIPadjBMI), waist circumference adjusted for BMI
(WCadjBMI), waist-hip-ratio adjusted for BMI (WHRadjBMI).
Including 74,949 men and 96,353 women for HIPadjBMI,
86,036 and 108,052 for WCadjBMI, and 76,625 and 98,352 for
WHRadjBMI. (D) lipid traits: From the Global Lipids Consor-
tium (Teslovich et al., 2010) including 39,104 men and 64,235
women. (E) glycaemic traits: From the MAGIC consortium
(Prokopenko et al., 2009) including 54,046 men and 60,450
women. (F) type 2 diabetes: From the DIAGRAM consortium
(Zeggini et al., 2008) including 18,786 men (4,451 cases and
14,335 controls) and 28,332 women (3,680 cases and 24,652
controls). (G) Summary of enrichment statistics: for sex-specific
association of the 7 SNPs with the metabolic traits.

(XLS)

Table S9 Pathway analysis reveals enrichment of PPAR
signaling among genes with evidence for sex-difference. Shown
are P-values for phenotype-specific enrichment using MAGENTA
to determine whether certain pathways/biological processes/
molecular functions are enriched among genes harboring SNPs
with evidence for sex-difference. Only categories with false
discovery rate (FDR)<<10% are reported in the table and those
with FDR<5% are considered statistically significant (bold). In
short, for a certain phenotype in the discovery data, MAGENTA
assigns a gene-specific score based on the sex-difference P-values of
SNPs in or nearby (40 kb down-, 100 kb upstream) the respective
gene. The score is calculated for each o the ~18 000 annotated
genes and corrected for gene-size, number of independent SNPs,
LD pattern, length in genetic distance, and number of recombi-
nation hotspots. Then MAGENTA determines whether the genes
with a score in the top 5% (~900 genes for each phenotype)
overlap with certain pathways more than expected by chance (.e.
as compared to a random gene set including the same number of
genes).

(XLS)
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Table S10 Associations with cis gene expression (eQTL) in
human subcutaneous adipose tissue (SAT) and lymphocytes.
Transcripts of genes near each of the identified seven SNPs were
examined in four differenet data sets (DeCode, MolOBB,
childhood asthma study, HapMap, details in Text SI). Sex-
specific associations with the transcript are shown for the identified
SNP with and without conditioning on the most significant SNP
for that transcript (peak SNP) and also for the peak SNP with and
without conditioning on the identified SNP, if FDR<5%
(DeCode) or FDR<1% (MolOBB, childhood asthma study,
HapMap) in one sex. For GRBI4 and ADAMTS9, our identified
SNP was highly correlated (r?>0.8) with the peak transcript SNP
in men. No SNP showed nominally significant sex difference
(Pgiy=>0.05).

(XLS)

Table S11 Gene expression in mice. Shown are expression levels
in female and male mice, if expression was nominally significant in
at least on sex, and the P-value testing for sex difference (P-
a@1ff<<0.05) from the mouse experiments in three different center: (i)
21 male and 21 female mice with Illumina array for inguinal or
gonadal fat (Houston, H), (i) 139 male and 133 female mice with
Ilumina array for liver (Oxford, O), (iii) 7 male and 7 female mice
with PCR analysis for brown fat, inguinal or gonadal fat, and liver
(Regensburg, R). Examined genes are listed in Table S13.

(XLS)

Table S12 Sex-specific phenotype description. Shown are mean
and standard deviation (std.) of the investigated traits in a German
general population study (KORA-S3 and KORA-S4). Age range
is 25-75 years of age with mean of 53.6 for men and 52.9 for
women. All phenotypes are adjusted for age and age? as in the
genetic association analyses.

(XLS)

Table S13 Genes included in mouse eQTL investigations. (A)
Regensburg mouse eQTL. Also shown are primers used for
analysis of gene expression. (B) Oxford and Houston mouse
eQTL. We explored all genes containing SNPs with at least some
level of association in the initial discovery (P_men or P_women
smaller than hundred times the index SNP P-value), but at least 3
genes and at maximum all genes within =1 c¢M of the index SNP
(annotation using genome browser Ensembl build 54).

(XLS)

Text 81 Supplementary note.
(PDF)

Text 82 Extended acknowledgments.
(PDF)
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