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Abstract—In this paper, we present a multipath-based
simultaneous localization and mapping (SLAM) algorithm that
continuously adapts mulitiple map feature (MF) models describ-
ing specularly reflected multipath components (MPCs) from flat
surfaces and point-scattered MPCs, respectively. We develop
a Bayesian model for sequential detection and estimation of
interacting MF model parameters, MF states and mobile agent’s
state including position and orientation. The Bayesian model is
represented by a factor graph enabling the use of belief propa-
gation (BP) for efficient computation of the marginal posterior
distributions. The algorithm also exploits amplitude information
enabling reliable detection of “weak” MFs associated with MPCs
of very low signal-to-noise ratios (SNRs). The performance
of the proposed algorithm is evaluated using real millimeter-
wave (mmWave) multiple-input-multiple-output (MIMO) mea-
surements with single base station setup. Results demonstrate the
excellent localization and mapping performance of the proposed
algorithm in challenging dynamic outdoor scenarios.

I. INTRODUCTION

5G and beyond networks exploiting mmWave spectrum and
massive MIMO techniques show great potential in providing
exceptional localization and sensing services even in harsh
environments like urban canyons and indoors. With increased
signal bandwidth and array aperture providing superior spa-
tial resolution, specular MPCs associated with distinct map
features (MFs) can be fine resolved and therefore exploited
for simultaneous localization and mapping (SLAM) [1]–[5].
Leveraging MPCs largely improves the localization accuracy
and robustness, particularly in environments with strong mul-
tipath propagation and line-of-sight (LoS) obstruction. More-
over, multipath-based SLAM alleviates infrastructure needs,
even single-base station localization becomes viable.

MFs for radio signals mostly refer to virtual anchors (VAs)
denoting the mirror images of physical anchors (PAs) (e.g.,
base stations) w.r.t., flat surfaces and modeling signal specular
reflection. However, the importance of considering diverse
MF models representing different environment interacting
objects such as extended surfaces [2] and point scatterers
[4], [6]–[8] is increasingly recognized. Different types of
MFs often coexist in complex propagation environments and
are gradually starting to be considered in multipath-based
SLAM approaches, e.g., [7] models VAs, point scatterers (PSs)
and their combination, [4], [8] incorporate the modeling and
detection of VA- and PS-type of MFs in a PMBM-based
SLAM framework. In general, the unknown MFs types, the
unknown time-varying MFs number in dynamic scenarios, and
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Fig. 1: Geometrical depiction of a MIMO radio propagation environ-
ment, where MPCs are represented by MFs, e.g., VAs and PSs.

the association uncertainty of measurements with MFs present
as major challenges for multipath-based SLAM.

In this paper, we extended a multipath-based SLAM al-
gorithm [1], [9] by incorporating different statistical models
for VA- and PS-type MFs, and MIMO setup. The time-
evolution of the interacting multiple MF model parameters are
described by a discrete Markov chain that is incorporated into
the Bayesian model formulating the SLAM problem. Using
the MPC estimates, i.e., distances, angle-of-arrivals (AoAs),
angle-of-departures (AoDs) and amplitudes, from a snapshot-
based parametric channel estimator SAGE [10] as measure-
ments, the proposed belief propagation (BP) algorithm sequen-
tially adapts the interacting multiple MF model parameters
along with the detection and estimation of the mobile agent
state (including time-varying position and orientation), and the
states of MFs. Furthermore, the algorithm uses the statistics of
MPC amplitudes to determine the unknown and time varying
detection probabilities, which improves the detectability and
maintenance of low SNR MFs. The performance is validated
using real mmWave MIMO measurements in a challenging
outdoor dynamic environment with single-PA setup.

II. GEOMETRICAL MODEL OF THE ENVIRONMENT

We consider a mmWave MIMO system operating in a
dynamic scenario. For the sake of brevity, we assume a two-
dimensional scenario with horizontal-only signal propagation.
At each discrete time n, a PA with known position ppa =
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[ppa,x ppa,y]
T transmits a radio signal and a mobile agent

at unknown time-varying position pn = [pn,x pn,y]
T acts as

a receiver.1 We assume time and frequency synchronization
between the PA and the mobile agent. The PA is equipped
with a Ntx-element antenna array with known orientation ∆ϕ,
and the mobile agent is equipped with a Nrx-element antenna
array with unknown azimuth orientation ∆φn, respectively.
The positions ppa and pn refer to the center of gravity of the
arrays. Specularly reflected MPCs and scattered MPCs can
be modeled by VAs and PSs, reflectively. The PA, VAs and
PSs are collectively referred to as MFs at unknown but fixed
positions pl,mf = [pl,mf,x pl,mf,y]

T, with l ∈ {1, . . . , Ln}.
As shown in Fig. 1, for MPCs generated by VA-type of

MFs, the propagation distances and AoAs at time n are given
by dl,n = dva(pn,pl,mf) and φl,n = ∠(pn,pl,mf ,∆φn),
respectively. For MPCs originated from PS-type of MFs,
the propagation distances, AoAs, and AoDs are given by
dl,n = dps(pn,pl,mf ,ppa), φl,n = ∠(pn,pl,mf ,∆φn) and
ϕl,n = ∠(pl,mf ,ppa,∆ϕ).2 To conveniently address the PA-
related variables and factors, we define p1,mf ≜ ppa.

III. RADIO SIGNAL MODEL AND CHANNEL ESTIMATION

A. Discrete-Frequency Signal Model

The received signals are sampled with frequency spacing
∆B over the bandwidth B, yielding a length Nf = B/∆B
sample vector for each PA and mobile agent antenna pair. By
stacking the samples from all NrxNtx antenna pairs, we obtain
the discrete-frequency signal vector rn ∈CNrxNtxNf×1

rn =

Ln∑
l=1

B(θl,n)αl,n + nn (1)

where the first term comprises Ln MPCs, with each
characterized by its state vector θl,n ≜

[
dl,n ϕl,n φl,n

]T
containing the delay τl,n = dl,n/c, AoD ϕl,n,
AoA φl,n, and complex amplitude αl,n ≜
[αhh,l,n αhv,l,n αvh,l,n αvv,l,n]

T.3 We define the matrix
B(θl,n) ≜

[
bhh(θl,n) bhv(θl,n) bvh(θl,n) bvv(θl,n)

]
∈

CNrxNtxNf×4 with columns given by bhv(θl,n) ≜
reshape

(
brx,h(φl,n)♢btx,v(ϕl,n)♢bTf (τl,n)

)
∈ CNrxNtxNf×1

and ♢ denotes the Khatri–Rao product.4 The vectors
brx,h(φl,n) ∈ CNrx×Nf and btx,v(ϕl,n) ∈ CNtx×Nf

represent the far-field complex array responses by using
the effective aperture distribution function (EADF) [10], and
bf(τl,n) ∈ CNf×1 accounts for the system response, baseband
signal spectrum and the phase shift due to delay τl,n [11]. The
measurement noise vector nn ∈CNrxNtxNf×1 is a zero-mean,
complex circular symmetric Gaussian random vector with
covariance matrix C = σ2INrxNtxNf

where σ2 is the noise

1The proposed algorithm can be easily reformulated for the case where the
mobile agent acts as a transmitter and the PA acts as a receiver.

2∠(pn,pl,mf ,∆φn) ≜ atan2
( pl,mf,y−pn,y

pl,mf,x−pn,x

)
−∆φn, dva(pn,pl,mf)

= ∥pn−pl,mf∥, and dps(pn,pl,mf ,ppa) = ∥pn−pl,mf∥+∥pl,mf−ppa∥.
3The subscripts {hh, hv, vh, vv} denote four polarimetric transmission co-

efficients, e.g., hv indexes the horizontal-to-vertical transmission coefficient.
4The operation reshape(·) reshapes a matrix into a column vector.

variance. The MPC SNR is given as the SNR calculated for
hh transmission, i.e., SNRl,n =

|αhh,l,n|2∥bhh(θl,n)∥2

σ2 and the
according normalized amplitude is ul,n =

√
SNRl,n.

B. Parametric Channel Estimation

Based on the signal model in (1), a snapshot-based
parametric channel estimation algorithm SAGE is applied
in the pre-estimation stage [12], providing estimated dis-
persion parameters of Mn MPCs stacked into the vec-
tor zn ≜ [zT

1,n · · · zT
Mn,n

]T ∈ R4Mn×1. Each zm,n ≜
[zdm,n zϕm,n zφm,n zum,n]

T comprises estimates zdm,n of
the distance, the estimates zϕm,n of the AoD, the estimates
zφm,n of the AoA, and the estimates zum,n ∈ [ude,∞) of
normalized amplitude, as well as of the noise variance. The
estimates zn above the detection threshold ude are used as
noisy measurements by the proposed algorithm.

IV. SYSTEM MODEL

A. Agent State and PMF States

At each time n, the state of mobile agent is given by xn ≜
[pTn vTn ]

T consisting of the position pn and the velocity vn =
[vx,n vy,n]

T. We assume that the array of the mobile agent
is rigidly coupled with the movement direction, i.e., azimuth
array orientation ∆φn is determined by the direction of its
velocity vector vn, i.e., ∆φn(vn) = atan2(

vy,n
vx,n

). All agent
states up to time n are denoted as x1:n ≜ [xT1 · · · xTn ]T.

Following [1], [2], we account for the unknown and time-
varying number of MFs by introducing potential MFs (PMFs)
indexed by k ∈ {1, . . . ,Kn}, where Kn represents the max-
imum possible number of MFs that produced a measurement
so far and Kn increases with time. Augmented states of PMFs
are denoted as yk,n ≜ [µT

k,n rk,n]
T with µk,n = [pTk,mf uk,n]

T.
The existence/non-existence of the kth PMF is modeled by
a binary random variable rk,n ∈ {0, 1} in the sense that it
exists if and only if rk,n = 1. The type of the kth PMF is
modeled by a random variable qk,n ∈ {1, 2} in the sense
that the kth PMF is a VA-type of MF if qk,n = 1 and it
is a PS-type of MF if qk,n = 2. Formally, PMF k is also
considered even if it is non-existent, i.e., rk,n = 0. The
states µk,n of non-existent PMFs are obviously irrelevant and
have no influence on the PMF detection and state estimation.
Therefore, all probability density functions (PDFs) defined
for PMF states f(yk,n) = f(µk,n, rk,n) are of the form
f(µk,n, 0) = fk,nfD(µk,n), where fD(µk,n) is an arbitrary
“dummy PDF” and fk,n ∈ [0, 1] is a constant representing the
probability of nonexistence [1], [13], [14].

B. Measurement Model

Before the measurements are observed, they are considered
as random and denoted as zn ≜ [zT1,n · · · zTMn,n

]T ∈ R4Mn×1

and zm,n ≜ [zdm,n zϕm,n zφm,n zum,n]
T. An existing PMF

generates a PMF-originated measurement zm,n with detection
probability pd(uk,n) corresponding to the normalized ampli-
tude uk,n. The measurement likelihood function (LHF) is
assumed to be conditionally independent across the individual



measurements within the vector zm,n. The individual LHFs
of the distance, AoA and AoD measurements are modeled by
Gaussian PDFs. More specifically, the LHFs of the distance
measurements for VA-originated and PS-originated paths are
given by

fqk,n=1(zdm,n|pn,µk,n)

= fN(zdm,n; dva(pn,pk,mf), σ
2
d(uk,n)), (2)

fqk,n=2(zdm,n|pn,µk,n,p1,mf)

= fN(zdm,n; dps(pn,pk,mf ,p1,mf), σ
2
d(uk,n)), (3)

respectively. The LHFs of the AoD measurements for the LoS
path are given by

f(zϕm,n|p1,mf ,pn, uk,n)

= fN(zϕm,n;∠(p1,mf ,pn,∆ϕ), σ
2
ϕ(uk,n)). (4)

The LHFs of the AoD measurements for PS-originated path
are given by

f(zϕm,n|p1,mf ,µk,n)

= fN(zϕm,n;∠(p1,mf ,pk,mf ,∆ϕ), σ
2
ϕ(uk,n)). (5)

The LHFs of the AoA measurements are given by

f(zφm,n|xn,µk,n)

= fN(zφm,n;∠(pn,pk,mf ,∆φ(vn)), σ
2
φ(uk,n)). (6)

The variances σd
2(uk,n), σ2

ϕ(uk,n) and σ2
φ(uk,n) depend

on the normalized amplitude uk,n and are determined
based on the Fisher information given as σd

2(uk,n) =
c2/(8π2β2

bwu
2
k,n), σ

2
ϕk,n

(uk,n) = c2/(8π2f2c u
2
k,nD

2(ϕk,n))

and σ2
φk,n

(uk,n) = c2/(8π2f2c u
2
k,nD

2(φk,n)) with β2
bw de-

noting the mean square bandwidth of the transmit signal pulse
and D2(·) is the squared array aperture [9], [15].5

The LHFs of the normalized amplitude measurements
uk,n > ude is modeled by a truncated Rician PDF [16,
Ch. 1.6.7] [17], i.e.,

f(zum,n|uk,n) = fR(zum,n;uk,n, σu(uk,n), pd(uk,n);ude) (7)

where the scale parameter σu(uk,n) corresponding to uk,n
is determined based on the Fisher information given as
σ2
u(uk,n) = 1

2 + 1
4NrxNtxNf

u2k,n. The detection probabil-
ity pd(uk,n) is modeled by the Marcum Q-function, i.e.,
pd(uk,n) = Q1(uk,n/σuk,n, ude/σuk,n) [16], [17].

Using (2) to (7), the LHFs fqk,n
(zm,n|xn,µk,n,µ1,n) for

measurements originated from different type of PMFs are
given as follows.

1) LHF for VA-originated path: The LHF for VA-
originated paths is fqk,n=1(zm,n|xn,µk,n), which factorizes
as

fqk,n=1(zm,n|xn,µk,n) = fqk,n=1(zdm,n|pn,µk,n)

5D2(ϕk,n) = 1
Ntx

∑Ntx
i=1

(dtx,i sin(θi) sin(ϕi−ϕk,n))2

c2
, where dtx,i, ϕi

and θi denote the distance, azimuth and elevation angles from the transmit
array center to the ith antenna element. The squared array aperture for receive
antenna array D2(φk,n) is defined in the same way.

× f(zφm,n|xn,µk,n)f(zum,n|uk,n). (8)

Note that the LoS path is considered as a VA-originated
path, but the corresponding LHF also accounts for the AoD
measurement, yields

fqk,n=1(zm,n|xn,µ1,n)

= fqk,n=1(zdm,n|pn,µ1,n)f(zϕm,n|p1,mf ,pn, u1,n)

× f(zφm,n|xn,µ1,n)f(zum,n|u1,n) (9)

2) LHF for PS-originated path:

fqk,n=2(zm,n|xn,µk,n,µ1,n)

= fqk,n=2(zdm,n|pn,µk,n,p1,mf)f(zϕm,n|pn,µk,n)

× f(zφm,n|xn,µk,n)f(zum,n|uk,n) (10)

3) LHF for FAs: We assume that the false alarm (FA)
measurements originating from the snapshot-based paramet-
ric channel estimator are statistically independent of PMF
states. They are modeled by a Poisson point process with
mean number µfa and PDF ffa,qk,n

(zm,n). For VA-originated
paths, the FA PDF is factorized as ffa,qk,n=1(zm,n) =
ffa(zdm,n)ffa(zφm,n)ffa(zum,n). For LoS path and PS-
originated paths, the PDF is factorized as ffa,qk,n=2(zm,n) =
ffa(zdm,n)ffa(zϕm,n)ffa(zφm,n)ffa(zum,n). The LHFs of FA
measurements corresponding to distance, azimuth angle and
elevation angle are uniformly distributed on [0, dmax], [−π, π)
and [0, π], respectively. The false alarm LHF ffa(zum,n) of the
normalized amplitude is given by a truncated Rayleigh PDF
(see [17], [18] for details).

C. State-Transition Model

For each PMF with state yk,n−1 with k ∈ {1, . . . ,Kn−1}
at time n − 1, there is one “legacy” PMF with state y

k,n
≜

[µT
k,n

rk,n]
T with k ∈ {1, . . . ,Kn−1} at time n. We define

the stacked PMF state vector y
n
≜ [yT

1,n
· · · yT

Kn−1,n
]T and

stacked PMF type state vector q
n

= [q
1,n

· · · q
Kn−1,n

]T.
Following the interacting multiple model (IMM) approach,
the temporal evolution of PMF type index qk,n is modeled
by a discrete Markov chain with constant transition matrix
Q ∈ [0, 1]2×2 over time, and the transition probability mass
function (PMF) is given by p(q

k,n
= 1|qk,n = 2) = [Q]2,1

with
∑2

i=1[Q]i′,i = 1 ∀ i′ .6 The PMF type index is assumed
to evolve independently across k and n, this the factorized
prior PMF of joint state is given as

p(q
n
|qn−1) =

Kn−1∏
k=1

p(q
k,n

|qk,n−1) (11)

where p(q0) is the initial PMF type PMF at time n = 0. The
agent state and the legacy PMFs states are assumed to evolve

6[0, 1]2×2 denotes a 2× 2 matrix with entries between 0 and 1.



independently across k and n according to state-transition
PDFs f(xn|xn−1) and f(y

k,n
|yk,n−1), respectively, yields

f(xn,yn
|xn−1,yn−1) = f(xn|xn−1)

Kn−1∏
k=1

f(y
k,n

|yk,n−1)

(12)
where the formulation of the augmented PMF state-transition
PDF f(y

k,n
|yk,n−1) = f(µ

k,n
, rk,n|µk,n−1, rk,n−1) is inline

with [1], [13].

D. New PMFs
Newly detected MFs at time n, i.e., PMFs that generate

measurements for the first time at time n, are modeled by
a Poisson point process with mean µn and PDF fn(µm,n).
Following [1], [13], newly detected PMFs are represented by
new PMF states ym,n ≜ [xTm,n rm,n]

T, m ∈ {1, . . . ,Mn}.
Each new PMF ym,n corresponds to a measurement zm,n, and
rm,n = 1 means that the measurement zm,n was generated by
a newly detected PMF. The state vector of all new PMFs at
time n is given by yn ≜ [yT1,n · · · yTMn,n]

T and the stacked
PMF type state vector is given by qn = [q1,n · · · qMn,n]

T.
The new PMFs yn become legacy PMFs at time n + 1,
accordingly the number of legacy PMFs is updated as Kn =
Kn−1 +Mn. We also define yn ≜ [yT

n
yTn ]

T with yk,n and
k ∈ {1, . . . ,Kn}, and qn ≜ [qT

n
qTn ]

T. The state and type
vectors for all times up to n are given by y1:n ≜ [yT1 · · · yTn ]T
and q1:n ≜ [qT1 · · · qTn ]T, respectively.

E. Data Association
Estimation of multiple PMF states is complicated by the

data association (DA) uncertainty. Furthermore, it is not known
if a measurement did not originate from a PMF (false alarm),
or if a PMF did not generate any measurement (missed
detection). The associations between measurements and legacy
PMFs are described by the PMF-oriented association vec-
tor an ≜ [a1,n · · · aKn−1,n

]T with entries ak,n ≜ m ∈
{1, . . . ,Mn}, if legacy PMF k generates measurement m, or
ak,n ≜ 0, if legacy PMF k does not generate any measurement.
In line with [1], [13], [19], the associations can be equivalently
described by a measurement-oriented association vector an ≜
[a1,n · · · aMn,n]

T with entries am,n ≜ k ∈ {1, . . . ,Kn−1}, if
measurement m is generated by legacy PMF k, or am,n ≜ 0,
if measurement m is not generated by any legacy PMF.
Furthermore, we assume that at any time n, each PMF can
generate at most one measurement, and each measurement
can be generated by at most one PMF [1], [13], [19]. The
“redundant formulation” of using an together with an is the
key to make the algorithm scalable for large numbers of PMFs
and measurements. The association vectors for all times up to
n are given by a1:n ≜ [aT1 · · · aTn ]T and a1:n ≜ [aT1 · · · aTn ]T.

F. Joint Posterior PDF
By using common assumptions [1], [13], [16], the joint

posterior PDF of x0:n, y0:n, q1:n, a1:n and a1:n conditioned
on observed (thus fixed) measurements z1:n is given by

f(x0:n,y0:n, q0:n,a1:n,a1:n|z1:n)

∝

(
f(x0)

K0∏
i=1

f(yi,0)f(qi,0)

)
n∏

n′=1

f(xn′ |xn′−1)

×

Kn′−1∏
k′=1

f(y
k′,n′ |yk′,n′−1)p(qk′,n′ |qk′,n′−1)


×

Kn′−1∏
k=1

g(y
k,n′ , qk′,n′ , ak,n′ ,xn′ ; zn′)

Mn′∏
m=1

ψ(ak,n′ , am,n′)


×

 Mn′∏
m′=1

h(ym′,n′ , qm′,n′ , am′,n′ ,xn′ ; zm,n′)

 (13)

where the pseudo LHFs g(y
k,n
, q

k,n
, ak,n,xn; zn) = g(µ

k,n
,

rk,n, qk,n, ak,n,xn; zn) related to legacy PMFs are given by

g(µ
k,n
, rk,n = 1, q

k,n
, ak,n,xn; zn)

≜


fqk,n

(zm,n|xn,µk,n
,µ

1,n
)pd(uk,n)

µfaffa,qk,n
(zm,n)

, ak,n = m

1− pd(uk,n), ak,n = 0

(14)

and g(µ
k,n
, rk,n = 0, q

k,n
, ak,n,xn; zn) ≜ δ(ak,n). The

pseudo LHFs h(ym,n, qm,n, am,n,xn; zm,n) = h(µm,n,
rm,n, qm,n, am,n,xn; zm,n) related to new PMFs are given by

h(µm,n, rm,n = 1, qm,n, am,n,xn; zm,n)

≜


0, am,n = k
µnfn(µm,n)fqk,n

(zm,n|xn,µm,n,µ1,n)

µfaffa,qk,n
(zm,n)

, am,n = 0

(15)

and h(µm,n, rm,n = 0, qm,n, am,n,xn; zm,n) ≜ fD(µk,n).
The detailed derivations of the joint posterior PDF, the binary
check function ψ(ak,n, am,n) and the factor graph representa-
tion of (13) are in parts inline with [1], [13], [17].

V. PROBLEM FORMULATION AND PROPOSED METHOD

Using all the measurements up to time n, we aim to
sequentially detect PMFs and estimate their positions and
and agent state. This relies on the marginal posterior exis-
tence probabilities p(rk,n = 1|z1:n), the marginal posterior
PDFs f(pk,mf |rk,n = 1, z1:n), f(qk,n|rk,n = 1, z1:n) and
f(xn|z1:n). More specifically, a PMF is detected if p(rk,n =
1|z1:n)> pde, with pde denoting the detection threshold. The
agent state xn, and the states pk,mf and qk,n of detected PMFs
are estimated by means of the minimum mean-square error
(MMSE) estimator [20], i.e.,

x̂n ≜
∫

xnf(xn|z1:n)dxn (16)

p̂k,mf ≜
∫

pk,mff(pk,mf |rk,n = 1, z1:n)dpk,mf (17)

q̂k,n ≜
∑
i∈Q

if(qk,n|z1:n) (18)



where f(pk,mf |rk,n = 1, z1:n) =
∑

qk,mf∈{1,2} f(pk,mf , qk,n|
rk,n = 1, z1:n) Since the marginal posterior PDFs f(xn|z1:n),
p(rk,n = 1|z1:n) and f(pk,mf |rk,n = 1, z1:n) cannot be ob-
tained analytically, we use a computationally efficient sequen-
tial particle-based message-passing implementation by means
of sum-product algorithm rules to obtain approximations of
these marginal posterior PDFs. As the number of PMFs grows
with time n (at each time by Kn = Kn−1 +Mn), PMFs with
p(rk,n = 1|z1:n) below a threshold ppr are removed from the
state space (“pruned”).

VI. EXPERIMENTAL RESULTS

The performance of the proposed algorithm is validated
using both synthetic and real radio measurements, for which
the following setup and parameters are commonly used.

A. Analysis Setup

The state-transition PDF f(xn|xn−1) of the agent is defined
by a linear near constant-velocity motion model [16], given
as xn = Fxn−1 + Γνn, where the matrix F ∈ R4×4 and
Γ ∈ R4×2 are chosen as in [16] with the sampling period
∆T . The driving process νn ∈ R2×1 is iid across time n, zero-
mean and Gaussian with covariance matrix σ2

νI2, I2 denotes
a 2×2 diagonal matrix and σ2

ν = 0.0025m/s2 represents the
average speed increment along x or y axis during ∆T . The
state-transition PDF of legacy PMFs p

k,mf
is chosen to be

p
k,mf

= pk,mf +ϵk,n, where the noise ϵk,n is iid across k and
n, zero-mean, and Gaussian with variance σp

2
k
I2 and σpk

=

10−5 m. The state-transition PDF of the normalized amplitude
uk,n is chosen to be uk,n = uk,n−1 + ϵuk,n, where the noise
ϵuk,n is iid across k and n, zero-mean, and Gaussian with
variance σ2

u(uk,n). The PMF mode transition probabilities are
chosen as [Q]1,1 = [Q]2,2 = 0.96 and [Q]1,2 = [Q]2,1 = 0.04.

We assume that the geometric environment information is
not available as a prior. The samples for the initial agent
state are drawn from a 4-D uniform distribution centered at
[pT

0 0 0]T where p0 is the true agent start position, and the
support of position and velocity components are [−0.2, 0.2]m
and [0.02, 0.02]m/s, respectively. The samples for the initial
states µk,n of a new PMF are drawn from a 4-D Gaussia distri-
bution with means [zdm,n zϕm,n zφm,n zum,n]

T and variances
calculated using the amplitude measurements zum,n (see Sec-
tion IV-B). The mean number of new PMFs is µn = 0.1,
the probability of survival is ps = 0.999, the detection and
pruning threshold are pde = 0.5 and ppr = 10−3, and the
particle number is 200000.

B. Synthetic Measurement Evaluation

First, we present the simulation results using fully synthetic
measurements without involving the snapshot-based channel
estimator. We synthesized 3 MPCs with time-varying dis-
tances, angles and amplitudes according to the true agent posi-
tions over 100 time steps obtained in the real measurement and
three true MFs (one PS and two VAs) highlighted with dotted
circle markers in Fig. 4c. Fig. 2 shows the two PMF mode
beliefs of the three detected MFs, averaged over 20 simulation
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Fig. 2: Results for synthetic measurements. Averaged PMF mode
beliefs associated to the three true MFs highlighted in Fig. 4c.

Fig. 3: Overview of the measurement environment, Lund Sweden.
The groud truth trajectory of the mobile agent is denoted with white
dashed line. The static PA position and the current mobile agent
position are indicated by a orange square and a cyan triangle, the
same markers are also applied in Fig. 1 and Fig. 4c. A metallic pillar
and a window corner are highlighted by yellow squares as examples
of distinct point scatterers.

runs. It can be seen that the first detected MF (associated with
the highlighted PS in Fig. 4c) rapidly converged to the PS
mode, and the other two detected MFs (associated with the
highlighted VAs in Fig. 4c) rapidly converged to the VA mode.

C. Real Measurement Evaluation

1) Measurement Setup: The performance is further val-
idated using real mmWave massive MIMO measurements
collected in a countyard at Lund University, Sweden, as
shown in Fig. 3. The courtyard has approximate dimension of
35m×15m×13m, which presents a rich-scattering environ-
ment featuring vegetation and surrounded by brick walls with
multiple reflective windows. The measurement used a switched
array channel sounder supporting an effective bandwidth of
768MHz centered at 28GHz. On the PA side, a uniform planar
array with 64 dual-polarized patch antennas (128 ports in total)
was placed at a fixed known position with the main radiation
direction facing the yard. At the mobile agent side, a cylin-
drical array with 128 dual-polarized patch antennas (256 ports
in total) was used and manually moved along a 10m straight
line trajectory. The channel impulse response was recorded
every 10 cm, generating a total of 100 measurement snapshots.
For some snapshots, LoS propagation path are obstructed by
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Fig. 4: Performance results using real mmWave massive MIMO measurements. (a) root mean square errors (RMSEs) versus time of the agent
position and (b) RMSEs versus time of the agent orientation. (c) shows the floorplan of the measurement environment (Fig. 3) including the
windows, walls and true MF positions. The zoomed-in plot on the top shows the true and estimated agent positions. The MMSE estimates
of detected MF positions at time n = 65 are denoted as circle markers with the respective marker color representing the average of the
two MF mode probability estimates. The three true MFs (one PS and two VAs) highlighted by dotted circles were used for generating the
synthetic measurements in Section VI-B.

the vegetation. The complex gain over both polarizations of
antenna arrays were characterized in an anechoic chamber.
More details on the mmWave channel sounder can be found
in [21]. The ground truth of agent positions was obtained with
a SLAM system fusing measurements from a LiDAR sensor
and an IMU sensor mounted on the cart holding the mobile
agent array [6]. Considering the 2D formulation of the agent
and MF states, we only used the measurements from SAGE
with elevation AoAs that are within 8 degrees of the horizontal.

2) Performance: Fig. 4a shows the root mean square errors
(RMSEs) of the agent positions versus time n which are
mostly below 0.2m, and the mean RMSE over the whole track
is 0.12m. Fig. 4b shows the RMSEs of the agent orientation
versus time n, which rapidly converge below 5 degrees after
10 steps, and the mean orientation RMSE over the whole track
is 2 degrees. For an exemplary simulation run, Fig. 4c shows
the estimated agent track and the estimated PMFs at time
n = 65 with the marker color indicating the average belief of
the two MF modes. Given that PA planar array was orientated
towards the yard, no distinct MPCs (i.e., MFs) associated with
the wall behind the PA are detected. It is shown that the
window corners along side the agent track, the window corners
close to the 3rd highlighted MF, and the metallic pillar close
to the PA are clearly detected with PS as the dominant MF
mode. Furthermore, several VAs up to the 2nd order are also
detected and match the geometrical predicted VAs. Note that
in this environment, the signals scattered from the window
corners act like a radar returns and are much stronger than the
signals scattered from “classical” PSs such as metal pillars.

VII. CONCLUSIONS

We presented a multipath-based SLAM algorithm that con-
tinuously adapts interacting MF models describing MPCs
originating from specular reflection and point scattering. The
interacting MF model evolves over time according to a dis-
crete Markov chain, which is incorporated into the factor
graph representing the SLAM problem. The results using real
measurements demonstrate the great potential of mmWave
massive MIMO systems for accurate and robust localization
in real and challenging outdoor scenarios, and the exceptional
environment sensing capability of the proposed algorithm,
compared to VA-only based methods. Possible directions for
future research include extending the proposed algorithm to
three-dimensional scenarios with horizontal and vertical prop-
agation, and introducing AoDs to VA-related LHFs.
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