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Evaluation of grain boundary energy, structure and stiffness from

phase field crystal simulations

Kevin Hult Blixt and Håkan Hallberg∗

Division of Solid Mechanics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden

Abstract

A two-mode phase field crystal (PFC) model is employed to investigate the equilibrium con-

figurations of a range of grain boundaries in FCC-structured materials. A total of 80 different

symmetrical tilt grain boundaries are evaluated by PFC simulations in 3D and the results are

shown to agree well with data taken from the literature, both regarding the variation of grain

boundary energy and also in terms of the resulting grain boundary structures. This verification

complements existing PFC studies which are almost exclusively focused either on grain bound-

aries found in 2D systems or in BCC lattices in 3D. The present work facilitates application of

PFC in the analysis of grain boundary mechanics in an extended range of materials, in particular

such mechanics that take place at extended time scales not tractable for molecular dynamics

simulations. In addition to the verification of predicted grain boundary energies and structures,

wavelet transforms of the density field are used in the present work to obtain phase fields from

which it is possible to identify grain boundary fluctuations that provide the means to evaluate

grain boundary stiffness based on the capillarity fluctuation method. It is discussed how PFC

provides benefits compared to alternative methods, such as molecular dynamics simulations, for

this type of investigations.

Keywords: Grain boundary, Phase field crystal, Grain boundary energy, Grain boundary

structure, Grain boundary stiffness, Capillary fluctuation method

1 Introduction

The properties of crystalline materials are dictated by the state of the material’s microstructure,

not least by the presence and character of structural defects. Grain boundaries, constituting

widespread planar defects in the crystal structure, are of particular importance for a number of

microstructure processes including creep and corrosion as well as diffusion and segregation of

alloying elements. Grain boundaries are also key factors in defining the material’s macroscopic

strength and toughness. Grain boundaries are, however, highly heterogeneous microstructure

features that carry anisotropic properties which depend on the local microstructure conditions.

This anisotropy is clearly manifested by, for example, the grain boundary energy which tend to

vary with a set of five degrees of freedom, comprising the local misorientation between abutting
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grains as well as the local inclination of the grain boundary plane [46]. This provides a com-

plex and multi-dimensional energy landscape that defies straightforward handling in numerical

models. As a result, this energy variation is usually neglected in mesoscale numerical models

of crystal microstructure based on, for example, phase fields, level sets, cellular automata or

Monte Carlo Potts and front tracking (vertex) algorithms. Examples of such methods used for

microstructure simulations can be found in [26]. If grain boundary energy variations are indeed

considered in such models, it is almost exclusively done under limiting simplifications and as-

sumptions. In fact, the grain boundary energy is in most numerical models taken as an isotropic

constant, an approach that is certain to render all subsequent calculations questionable, at best.

Notable exceptions to such customs are provided by the phase field model discussed in [34],

where advantage is taken of the grain boundary energy database established in [35], and by the

level set model proposed in [27], where use is made of the GB5DOF algorithm provided in [12].

A proper description of heterogeneous grain boundary properties is of particular importance

when considering nanocrystalline materials in which the volume fraction of grain boundaries is

high.

The means to provide a more faithful account of local grain boundary property variations

are provided by first principle or molecular dynamics (MD) simulations. But when considering

microstructure processes such as grain growth or segregation, the associated time scales (hours)

are beyond what is feasible to handle using these types of simulation models where the time

scale is dictated by the atomic vibration frequency. An alternative numerical tool emerged by

the introduction of phase field crystal (PFC) modeling in [17, 18]. The PFC method initially

appeared as an elaboration of standard phase field formulations, but it has later been shown that

PFC can be derived directly from density functional theory (DFT) [5, 19, 20, 30, 55]. Standard

phase field formulations are based on order parameter fields, defined such that they assume

different constant values in adjacent and stable phases and vary smoothly across phase interfaces.

In contrast, PFC describes a continuous transition of a density field from a homogeneous to a

periodic state. This is achieved as the evolution of the density field is governed by a free

energy functional that is minimized by a periodic solution, thereby avoiding the spatial averaging

over atomic distances inherent in standard phase field formulations. The governing free energy

functional can in PFC modeling be designed such that the symmetries of the ground state

correlate to a particular crystal structure. As PFC models a time-averaged atomic number

density field over diffusive time scales, while retaining atomic-level spatial resolution, the method

resides somewhere between standard phase field models and atomistic models.

Many, if not a majority, of the PFC studies published to date have focused on systems

involving solid-liquid transitions, including nucleation and growth, melting and glass formation.

Different applications of PFC modeling are reviewed in, for example, [7, 20]. PFC-based studies

on interfaces between solid phases, such as grain boundaries, are less common. The energy of

〈100〉 tilt boundaries in triangular 2D lattices has been evaluated by PFC in several studies, such

as in [17], and a few studies also extend to 〈100〉 tilt boundaries in 3D BCC crystals, for example

[3, 31]. It can also be noted that most PFC studies of grain boundaries in BCC materials focus

on the low-angle range of grain boundaries. In contrast to what is available for BCC materials,

PFC investigations on the energy and structure of grain boundaries in FCC crystals – which

is the focus of the present study – are even more scarce. In fact, FCC systems in general are

less explored by PFC than BCC systems. This gap is likely much due to that the classical PFC

DOI: 10.1088/1361-651X/ac3ca1 2
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formalism introduced in [18] will only provide triangular lattices in 2D and BCC structures in

3D. This follows from the “one-mode approximation” upon which the original PFC formalism

is built, in which the influence from all but the first density wave length are damped out. For

FCC lattices, the classical PFC formulation is insufficient but FCC structures can be achieved

by using a “two-mode approximation” as proposed in, for example, [6, 60].

In the present study, the viability of PFC for simulating the structure and energy of grain

boundaries in FCC crystals is investigated by considering an extensive set of different grain

boundary configurations. In addition, evaluation of grain boundary stiffness is addressed by ex-

tracting grain boundary fluctuations from wavelet transforms of the density field. This work com-

plements existing PFC studies on 2D or BCC-structured materials and constitutes a verification

step permitting employment of PFC in other types of analyses related to polycrystal microstruc-

tures, for example aimed at phenomena such as normal/abnormal grain growth, stress-driven

grain boundary migration, grain boundary faceting and grain boundary phase transformations

(“complexions”). The evaluation of grain boundary stiffness opens for an even wider range of

grain boundary mechanisms for which PFC can be employed.

This paper is structured in such way that the PFC model is discussed first in Section 2 along

with details given on the numerical implementation of the model. Next, simulations of a large

number of grain boundary configurations in FCC crystals are shown in Section 3. In separate

sections, the evaluation of grain boundary energy, structure and stiffness is discussed. Finally,

some concluding remarks close the paper in Section 4.

2 Phase field crystal model

The PFC formulation is based on an atomic number density field ρ(r), with r denoting the spatial

coordinates. This is usually considered as a dimensionless density field φ(r) = (ρ(r)− ρ0)/ρ0 ≡
∆ρ(r)/ρ0, where ρ0 is the number density at the homogeneous liquid reference state and where

∆ρ(r) is the density variation around this reference state. By this definition, the order parameter

φ(r) represents the time-averaged density of atoms, measured relative to the constant reference

value ρ0. With these preliminaries, a Helmholtz free energy functional can be defined as

F(T, [φ(r)]) =

(∫

V

f (φ(r)) dr

)∣∣∣∣
T

(1)

where f (φ(r)) is the free energy density evaluated at temperature T in a system of volume V .

For a system with interacting particles, the Helmholtz free energy functional can be formu-

lated as

F(T, [φ(r)]) = F(T, [φ(r)])id + F(T, [φ(r)])exc (2)

where F(T, [φ(r)])id is the intrinsic free energy that do not depend on particle interaction and

where F(T, [φ(r)])exc is the excess energy due to particle interaction. Additional contributions

can be envisaged in eq. (2), for example due to external potentials, but that is beyond the present

scope. The variation of the non-interacting component F(T, [φ(r)])id can be found for an ideal

gas as

∆F(T, [φ(r)])id = ρ0kBT

∫
{[1 + φ(r)] ln [1 + φ(r)] − φ(r)} dr (3)

DOI: 10.1088/1361-651X/ac3ca1 3
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with kB denoting the Boltzmann constant. Following the Ramakrishnan-Yussouff pertubation

theory usually employed in DFT, cf. [44], the variation of the excess free energy component due

to interaction between particles positioned at coordinates r1 and r2 can be formulated as

∆F(T, [φ(r)])exc = −ρ0
kBT

2

∫
φ(r1)dr1

∫
[C2(r)φ(r2)] dr2 (4)

where C2(r) is the direct pair correlation function and r = |r1 − r2|. It is this correlation

function that permits the formation of periodic structures in PFC and as discussed in [24],

different modes can be incorporated into C2(r) in reciprocal lattice space to achieve a particular

crystal structure. This aspect is discussed further below. It can also be noted that higher order

correlation functions may be added to eq. (4) to realize more complex crystal structures, but at

the expense of an increased computational cost.

Following [13], and under the assumption of a locally conserved density field, the chemical

potential of the system can be identified as

µ(φ(r)) =
δF [φ(r)]

δφ(r)
(5)

Note that as the temperature is assumed to be constant in what follows, the explicit dependence

on T is omitted from here on. Introducing the flux J = −M∇ · µ, with M being a mobility

coefficient, mass conservation requires that

∂φ(r)

∂t
= −∇ · J (6)

where t denotes the time. Eq. (6) provides the Cahn-Hilliard evolution equation for the locally

conserved field φ as

∂φ(r)

∂t
=M∇2µ(φ(r)) (7)

A compact and quite general PFC formulation, akin to the format used in [4], can be obtained

by formulating the Helmholtz free energy functional as

F [φ(r)] =

∫

V

(
1

2
φ(r)Diφ(r) +

g

4
φ(r)4

)
dr (8)

Different PFC formulations are obtained from eq. (8) by defining the nonlinear operator Di,

being a rotation-invariant Hamiltonian, as

Di =





α+ λ
(
q20 +∇2

)2
one-mode model, i = 1

α+
[
r0 + λ

(
q20 +∇2

)2] [
r1 +

(
q21 +∇2

)2]
two-mode model, i = 2

(9)

The general formulation in eqs. (8)-(9) encompasses both the original one-mode PFC model

introduced in [17, 18] (for i = 1), as well as the two-mode model introduced in [60] and later

modified in [6] (for i = 2). The format in eq. (8) is arrived at by expanding the non-interacting

free energy component in eq. (3) as a power series to fourth order. One-mode PFC approxi-

mations only utilize the first set of reciprocal lattice vectors (RLV) in the correlation function

C2(r) which limits the types of crystal structures that can be represented to triangular in 2D

and BCC in 3D. In [60] it was shown that if the first two sets of RLV are included, also square

and FCC crystals can be described in 2D and 3D, respectively. In [39], it was proposed that use

DOI: 10.1088/1361-651X/ac3ca1 4
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of the first three RLV is sufficient to describe the full range of Bravais lattices. In the present

study, which focuses on FCC crystals, a two-mode model is employed corresponding to i = 2 in

eq. (9).

Appearing in eq. (9), the parameters q0 and q1 represent the wave lengths of the first and

second density waves while r0 and r1 are related to the Fourier amplitudes of the same two

density waves. These quantities are further detailed below. In particular, q0 is the wave number

that determines the lattice parameter a = 2π/q0 of the crystal and hence the spacing between

lattice planes. The additional parameters λ and g in eq. (9) must be identified for any particular

material.

For convenience, the PFC formulation can be cast on non-dimensional form by introducing

the parameter set

ε = − α

λq40
, ψ = φ

√
g

λq40
, x = q0r, F =

g

λ2q50
F , τ = tMλq60 (10)

for the one-mode model (i = 1) or

ε = − α

λq80
, ψ = φ

√
g

λq80
, R0 =

r0
q40
, R1 =

r1
q40
, Q1 =

q1
q0
,

x = q0r, F =
g

λ2q130
F , τ = tMλq70

(11)

for the two-mode formulation (i = 2). Based on the non-dimensional parameters, the time

evolution of the locally conserved density field ψ is obtained as

∂ψ(x)

∂τ
= ∇2 δF [ψ(x)]

δψ(x)
(12)

where the non-dimensional free energy appears as

F [ψ(x)] =

∫

V

(
1

2
ψ(x)Diψ(x) +

1

4
ψ(x)4

)
dx (13)

with the differential operator Di being defined by

Di =





−ε+
(
1 +∇2

)2
one-mode model, i = 1

−ε+
[
R0 +

(
1 +∇2

)2] [
R1 +

(
Q2

1 +∇2
)2]

two-mode model, i = 2
(14)

As in DFT, the density in the crystalline state can be formulated based on density waves in

terms of RLV k according to

ψ = ψs +
∑

j

Aje
ikjt (15)

where ψs is the average dimensionless density in the solid state, i is the imaginary number and

Aj is the amplitude in Fourier space of the RLV kj . Further, following [60] the set of RLV are

chosen as k111 and k200, corresponding to the [111] and [200] wave vectors, respectively. This

means that the wave lengths q0 = |k111| and q1 = |k200| can be identified. This also provides

the parameter Q1, introduced in eq. (11), as Q1 = q1/q0 =
√

4/3 for FCC crystals. Following

[60], ε = 0.0082 and ψs = −0.06 are chosen to ensure a stable solid FCC phase. In fact, ε and

ψs are the only free parameters in the present non-dimensional study.

DOI: 10.1088/1361-651X/ac3ca1 5
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If As and Bs denote the amplitude in Fourier space of the first and second RLV, respectively,

eq. (15) permits the FCC solid state density field to be expressed by the expansion

ψFCC ≈ ψs + 8As cos (qx) cos (qy) cos (qz) + 2Bs [cos (2qx) + cos (2qy) + cos (2qz)] (16)

where q = 1/
√
3. The amplitudes As and Bs can be found by inserting eq. (16) into eq. (13)

and then minimizing the free energy with respect to As and Bs, respectively. This provides a

set of two coupled nonlinear equations that can be solved using an iterative scheme, as noted

in [8]. With the adopted values for ε and ψs, the amplitudes are found as As = 1.30479 × 10−2

and Bs = 9.99079× 10−3, respectively. Following [6], it is also noted that R0 = R1 (Bs/As)
2. In

the present case, however, R0 = R1 = 0 as also considered in [8, 60].

2.1 Numerical implementation

As materials of FCC structure are in focus of the present work, the two-mode formulation

provided by eqs. (12)–(14) is considered by setting i = 2. This yields the equation of motion for

the non-dimensional and locally conserved density field ψ as

∂ψ(x)

∂τ
= Lψ + h(ψ) (17)

where the linear operator L and the non-linear function h(ψ) were introduced as

L = ∇2
(
c0 + c2∇2 + c4∇4 + c6∇6 +∇8

)
and h(ψ) = ∇2ψ3 (18)

and where the following constants were defined for the sake of convenient notation

c0 = R1 (R0 + 1) +Q4
1 (R0 + 1)− ε

c2 = 2
(
R0Q

2
1 +R1 +Q2

1 +Q4
1

)

c4 = 1 +R0 +R1 + 4Q2
1 +Q4

1

c6 = 2
(
1 +Q2

1

)
(19)

The PFC equation of motion in eq. (17) can be solved using different approaches, for example by

finite element or finite difference approximations. Issues might arise, however, when addressing

the higher-order derivatives in the operator L in eq. (18) by such methods. Alternatively,

by considering periodic solution domains, eq. (17) be efficiently solved using a semi-implicit

spectral algorithm, as discussed in for example [16, 37, 62]. Letting L̃k and h̃k denote the

Fourier transforms of L and h, respectively, permits writing the semi-implicit spectral scheme

introduced in [37] as

ψ̃n+1

k
= e∆τ L̃kψ̃n

k +
h̃k

L̃k

(
e∆τ L̃k − 1

)
+
h̃n
k
− h̃n−1

k

∆τ L̃2
k

(
e∆τ L̃k − 1−∆τ L̃k

)
(20)

where ψ̃k is the Fourier transform of ψ and where two subsequent steps, indicated by superscripts

n and n+ 1, are separated by the non-dimensional time increment ∆τ .

The scheme in eq. (20) is adopted in the present work and implemented in CUDA For-

tran to take advantage of GPU parallelization and the NVIDIA cuFFT library for fast Fourier

transforms.

DOI: 10.1088/1361-651X/ac3ca1 6
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Lx

Ly

Out-of-plane dimension = Lz

Grain boundary regions

g2g1 g1

x

y

z

Figure 1: Schematic illustration of the simulation model setup used for the 3D PFC simulations
of grain boundaries in the present work. Two crystals, with orientations g1 and g2, are present in
the domain which is modeled as periodic in all three coordinate directions. Due to the periodicity,
two identical grain boundaries are present in the model and the grain boundary regions are
initially defined as narrow liquid domains without structure. Over the course of each simulation,
the adjacent crystals grow into the liquid regions to eventually form the different grain boundary
structures, driven by a minimization of the system’s energy. This is illustrated in Fig. 2.

3 Energy, structure and stiffness of grain boundaries in FCC materials

Details on the formulation of the PFC simulation model are discussed in subsection 3.1, followed

by subsection 3.2 that gives an account for the evaluation of grain boundary energy from the

simulations. Subsection 3.3 discusses the prediction of grain boundary structure, obtained from

the PFC simulations, followed by Subsection 3.4 that proposes a methodology for evaluating

grain boundary stiffness from the PFC density field, based on grain boundary fluctuations.

3.1 Simulation setup

The grain boundary simulations are based on 3D PFC models and are set up as schematically

illustrated in Fig. 1. The 3D domain is assumed to be periodic in all coordinate directions and

two crystals, with orientations g1 and g2, are present in the domain. Due to the periodicity, two

identical grain boundaries are present, with normal directions parallel to the x-axis. The crystal

structure is initiated using the density field provided by eq. (16) with rotations applied to provide

different grain boundary types. The grain boundaries are initiated as narrow liquid regions

and over the course of the simulations, driven by minimization of the free energy functional,

the crystals grow into these regions and form the grain boundary structure. This process is

illustrated in Fig. 2.

To ensure that periodicity of the density field is satisfied between opposite domain bound-

aries, the scheme introduced in [37] for a 2D hexagonal crystal structure is adopted here and

recast to suit the present 3D FCC conditions.

By this approach, base vectors are defined along the coordinate axes in terms of the non-

dimensional lattice parameter a = 2π/q0. These base vectors will depend on the crystal orien-

tation and the corresponding spacing between density peaks along each coordinate direction for

DOI: 10.1088/1361-651X/ac3ca1 7
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a) b) c)
ψ

0.10

0.05

0

−0.05

−0.10
−0.12

Figure 2: Three stages of the density field evolution in an initially liquid grain boundary region,
cf. Fig. 1, during a PFC simulation of a Σ9 (114) symmetrical tilt grain boundary with [110]
tilt axis. Note that only a small region of the full simulation domain is shown. a) Initial state,
b) intermediate state and c) final state.

each boundary type, as summarized in Table 1. Consider, as an example, the case of a sym-

metrical [110] tilt grain boundary. Following Table 1, the spacing between density peaks along

the z-direction is used to directly define the dimension Lz = a/
√
2, with Lz subsequently being

held constant in all simulations involving this tilt axis. Two base vectors a and b are defined

along the x- and y-axes, respectively, as a = a [1 0]T and b = a/
√
2 [0 1]T , with (·)T denoting a

transpose. These base vectors are rotated into arot and brot in the next step, to account for the

tilt angle θ, whereby

arot = RTa and brot = RTb (21)

with R being the 2×2 orthogonal rotation matrix defining a rotation around the z-axis through

an angle θ. When forming a symmetrical tilt boundary, the orientations g1 and g2, shown in

Fig. 1, are defined by a rotation of θ/2 in opposite directions for the two crystals. In a periodic

system, the domain dimension along each coordinate direction must correspond to an integer

number of steps along each base vector. This can be used to combine the rotated base vectors

into the vector equations

iarot + jbrot =

[
Lx

0

]

−karot + lbrot =

[
0
Ly

] (22)

where i, j, k, l are integer numbers. Following [37], the signs on the left-hand side of eq. (22) are

Table 1: Crystal orientations and density peak spacing along each coordinate direction used
when setting up the periodic simulation domain for the different types of symmetrical tilt grain
boundaries under consideration. The initial crystal orientation g is rotated to provide the two
crystals orientations g1 and g2 illustrated in Fig. 1.

Tilt axis Initial crystal orientation g Density peak spacing along (x, y, z)

[100] (100)//x, (010)//y, (001)//z (a, a, a)

[110] (11̄0)//x, (001)//y, (110)//z (a 1√
2
, a, a 1√

2
)

[111] (1̄10)//x, (1̄1̄2)//y, (111)//z (a 1√
2
, a
√

3
2
, a
√
3)

DOI: 10.1088/1361-651X/ac3ca1 8
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chosen to provide positive integers. Using the equations in eq. (22) with a zero on the right-hand

side, results in two conditions on the angle θ according to

tan θ =
j

i
√
2

and tan θ =
k
√
2

l
(23)

Periodic simulation domains can only be defined for sets of the integers i, j, k, l which satisfy

these two conditions. Once identified, the integers can be used in the two equations in eq. (22)

with non-zero right-hand sides to obtain the domain dimensions in the x- and y-directions as

Lx = a
[
i cos θ + j√

2
sin θ

]

Ly = a
[
k sin θ + l√

2
cos θ

] (24)

For other boundary types and crystal orientations the base vectors a and b must be chosen

differently, as indicated by Table 1, but the procedure in eqs. (21)–(24) is the same.

As a result of the periodicity requirement and the obtained domain dimensions, the grid

spacing cannot in general be held equal in different coordinate directions. The number of grid

points along each axis is, however, chosen to meet a target grid spacing of ∆x = ∆y = ∆z = π/4

as this grid spacing has been found to work well in PFC implementations employing spectral

solution schemes [17, 18, 37]. The obtained values of Lx, Ly and Lz provide the minimum

dimensions to maintain a periodic simulation domain. In the present case, however, the values

are multiplied by integer values to expand the domain along the x- and y-directions in order

to mitigate any influence of the domain size, especially from the spacing between the periodic

grain boundaries, on the resulting grain boundary energy. This is discussed in further detail in

subsection 3.2.

A typical simulation domain is in the present work discretized by approximately 30×106 grid

points and contains in the order of 25 × 103 atoms (density peaks). Different non-dimensional

time increments ∆t were evaluated and it was found that ∆τ = 1 provides stable results. In

fact, a unit time increment appears as a conservative choice as also two or three times this value

gives negligible differences in the simulation results. The simulations are ran until the relative

change over 25 time steps in the average free energy density of the system is below 10−10.

This choice of termination criteria ensures that each grain boundary structure has obtained its

(numerically) stagnant low energy configuration before stopping. A typical simulation requires

approximately 30-60 minutes when running the current 3D GPU implementation with this quite

restrictive termination criteria. Numerical experiments were performed, however, indicating

that the resulting grain boundary energies and structures are quite unaffected when relaxing the

termination criteria by increasing it by one or two orders of magnitude, allowing the simulation

times to be reduced with only negligible variations in the resulting grain boundary energy and

structure.

3.2 Grain boundary energy

The grain boundary energy γgb can be evaluated from the PFC simulations by comparing the

free energy fgb of a simulation domain which contains a grain boundary, to the free energy f0 of a

domain containing a perfect crystal without grain boundaries. This provides the grain boundary

energy as

γgb = Lx

fgb − f0
2

(25)

DOI: 10.1088/1361-651X/ac3ca1 9
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0.01 0.0125 0.015 0.0175 0.02
3.18795

3.187955

3.18796

3.187965

3.18797

3.187975

L−1

x [a−1]

f g
b
[×

1
0
−
3
]

2γgb

Figure 3: Average free energy density in the simulation domain as function of the inverse of the
domain size Lx along an axis perpendicular to the grain boundary, cf. Fig. 1. The results are
taken from the present PFC simulations of a Σ9 (114) symmetrical tilt grain boundary with [110]
tilt axis. Non-dimensional quantities are plotted. The open circles show simulation data and the
solid line the fit of a linear function according to eq. (26). The slope of the line provides the
grain boundary energy, multiplied by a factor of two due to the presence of two grain boundaries
in the periodic simulation domain.

where the domain size Lx is present to provide the correct dimensions and where the factor

1/2 is due to the presence of two grain boundaries in the periodic domain. There are, however,

numerical issues related to this direct approach which relate to the very small energy differences

that must be handled and possibly also to numerical errors present in the evaluation of gradients

in the free energy, as noted in [32, 37]. In [37], a more stable approach is introduced based on

reformulating eq. (25) to express fgb as a function of L−1
x according to

fgb = 2γgbL
−1
x + f0 (26)

In the absence of numerical errors, a plot of fgb versus L
−1
x will be a straight line and the grain

boundary energy γgb can evaluated as 1/2 of the slope of the linear function. This is illustrated

in Fig. 3, where the symbols show the present PFC results for a Σ9 (114) symmetrical tilt grain

boundary with a [110] tilt axis. The solid line is a fitted linear function, indicating that the PFC

data is well represented by a linear function as given by eq. (26). All grain boundary energies

presented in the present work are based on four or more simulations with different domain sizes

Lx. The results were in all cases well represented by a linear fit, as in Fig. 3, indicating negligible

numerical errors in the evaluation [37].

The study performed herein is based on a non-dimensional formulation of the PFC model,

as discussed in Section 2. By purpose, the model is not fitted to a particular FCC material in

order to maintain generality. It can be noted, however, that the PFC model parameters can be

set to fit individual materials as shown for Ni and Al in [8] and for Ni in [60]. Employing a non-

dimensional model is further motivated by the MD study in [51], showing the transferability of

grain boundary energy data from one FCC system to another by scaling. Such a correspondence

between different materials is also demonstrated by the extensive grain boundary energy data

sets obtained for Al and Ni by MD simulations in [42]. The latter study gives a strong indication

that the grain boundary energy in different materials of FCC structure will have approximately
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Figure 4: Energy of symmetric tilt grain boundaries obtained by the present PFC simulations (red
filled circles) compared to energy data taken from the literature. Dashed lines show the energy
variations obtained using the GB5DOF code in [12]. Special grain boundary configurations (Σ-
type boundaries) are indicated by vertical lines, labeled with the boundary plane normal direction
above the plots. a) Energy of tilt boundaries with a [100] misorientation axis, normalized by the
energy of the Σ5 (210) boundary, with data from [52] (▽), [23] (△ and ✁), [59] (✄) and [51]
(✸). b) Energy of tilt boundaries with a [110] misorientation axis, normalized by the energy of
the Σ9 (221) boundary, with data from [52] (�), [45] (▽) and [51] (✁ and △). c) Energy of tilt
boundaries with a [111] misorientation axis, normalized by the energy of the Σ7 (231) boundary,
with data from [59] (✁ and △).
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the same variation with the macroscopic geometric degrees of freedom, only separated by a

material-specific scaling factor. The same behavior can be seen in Fig. 4 where grain boundary

energy data for FCC materials has been compiled from various sources, showing a high level of

agreement between the data sets.

The grain boundary energy variation will to some extent be influenced by the temperature.

As an example, a decreasing temperature can be expected to make the energy cusps wider and

more shallow [38, 47]. In the present non-dimensional PFC implementation the temperature is

only present in terms of the parameter ε. The value ε = 0.0082 is adopted from the study in [60]

wherein it is noted that this places the system close to the melting point but well into the solid

FCC region of the phase diagram. This may have an impact on the appearance of the variation

of the grain boundary energies in Fig. 4. But as also the other data sets in Fig. 4 – obtained

from the literature and used for comparison – are obtained at quite varying temperatures, we

tacitly assume the energy variations to be representative for FCC-structured materials.

A total of 80 different [100], [111] and [110] symmetrical tilt grain boundaries (STGB) have

been evaluated by PFC in the present study and the filled red circles in Fig. 4 show the predicted

grain boundary energies. Which tilt angles θ are investigated for each tilt axis is determined by

the requirement of maintaining a periodic simulation domain, as discussed in Section 3.1.

Fig. 4a shows the energy variation of [100] STGB with the individual data sets normalized

by the energy of the Σ5 (210) grain boundary at 53.1◦. The grain boundary energy predictions

from the PFC simulations are seen to fairly well capture the energy variations observed in the

other data sets.

Fig. 4b shows the energy of [110] STGB, normalized by the energy of the Σ9 (221) boundary

at 141.1◦. The PFC data is seen to systematically predict slightly lower energy values for tilt

angles below approximately 30◦. There is also a tendency for overestimating the energy around

θ = 90◦. This tendency is, however, shared with the MD-based results taken from [51].

The energy variation of [111] STGB is shown in Fig. 4c and it can be noted that the PFC

results are in good agreement with the other data sets, although the PFC data appears to predict

slightly higher energies for low-angle boundaries at θ < 15◦. Misorientations are only shown up

to 60◦ as the misorientations θ and 120◦ − θ for [111] STGB are identical in FCC crystals [49].

For the Σ3 (112) boundary, the PFC energy is almost identical to the energy predicted by the

GB5DOF model in [12] (shown by a dashed line in the plots in Fig. 4), while the two data points

from [59] for the same boundary, obtained from MD simulations, predict slightly lower energy

values.

3.3 Grain boundary structure

In order to further verify the predictions provided by the PFC simulations, the structure of

the grain boundaries can be considered in addition to the grain boundary energies discussed

in Section 3.2. To evaluate grain boundary structure, it is convenient to have access to the

positions of individual atoms, as provided by MD simulations. But while MD consider discrete

atoms or particles, PFC is based on the evaluation of a continuous density field, cf. Section 2.

To address this, a quadratic interpolation of the density field is performed in 3D to locate the

density maxima, corresponding to the “atoms” in the simulated crystal structure. A similar

approach is also adopted in, for example, [61]. Fig. 5a shows a part of the density field obtained

from the PFC simulation of a Σ11 (332) grain boundary with [110] tilt axis. Fig. 5b shows the
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Figure 5: a) PFC density field for the [110] Σ11 (332) grain boundary (note that only a part of the
simulation domain is shown). b) Density maxima, corresponding to atom positions, interpolated
from the domain in figure a. The color legend is common to both a and b.

interpolated density field maxima, corresponding to the atom positions, of the same region.

As seen in Fig. 5a, the density field will exhibit incomplete maxima along a general grain

boundary, except for along fully coherent twin boundaries. This means that a selection among

the identified maxima may be required to distinguish actual maxima from those which are

incomplete and do not represent atom positions. In the present study atoms are identified as

those maxima having a density ≥ 75 % of the maximum density in the simulation domain. This

was found to be a robust threshold for the present application, but alternative selection criteria

can be envisaged. One possibility is to consider the energy field that exhibits minima at the

density maxima. Alternatively, the value of a phase field – as discussed in Section 3.4 – at the

interpolated density maxima can be used. Yet another possibility is to use the identified maxima

to evaluate quantities such as the centrosymmetry parameter, introduced in [33] and often used

in MD simulations, to distinguish between the density maxima. A somewhat different approach

is offered by employing the “Vacancy PFC” (VPFC) formulation, proposed in [14]. In VPFC, an

additional term is added ot the free energy in eq. (13) to penalize negative values in the density

field whereby voids or vacancies are represented by near-zero values of the density. This can be

used to only maintain those density maxima that correspond to actual atom positions.

The atom configuration along a number of representative grain boundaries considered in the

present study is shown in Fig. 6. Atoms in the top layer, facing the reader, are indicated by

filled (red) circles and atoms in the layer beneath are indicated by filled (blue) squares. In order

to verify that realistic grain boundary configurations are obtained from the PFC simulations,

the idea of “structural units” (SU) can be employed. The SU concept is usually attributed to

[10] and has been further evolved in, for example, [49]. The idea behind the SU concept is

that a grain boundary can be represented by a repeated arrangement of structural (geometrical)

units that connect the interface atoms of the two abutting crystals. Solid lines have been drawn

in Fig. 6 to indicate the sequential arrangement of structural units along the individual grain

boundaries and to give a qualitative indication that the PFC model predicts the expected grain

boundary structures.

Fig. 6a-d depicts a number of [100] STGB where the characteristic kite-like SU’s are seen,

in agreement with the [100] boundaries investigated in, for example, [43, 53].

Fig. 6e-g show [111] STGB configurations obtained from the PFC simulations. These struc-

tures are in agreement with those found in [15, 57]. It can be noted, however, that these two
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Figure 6: Grain boundary structures obtained from the PFC simulations for three different tilt
axes: a-d) [100], e-g) [110] and h-k) [111]. Different symbols (red circles and blue squares)
indicate atoms in two different layers along the tilt axis. The CSL number Σ, the grain boundary
plane normal (hkl) and the tilt angle θ is provided at each figure.
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sources give alternative SU representations of the [111] Σ13 (134) grain boundary. SU at two

different atom layers along this grain boundary are indicated by solid lines of different color in

Fig. 6e.

Fig. 6h-k show the structure of STGB with a [110] tilt axis. The high symmetry of the

coherent Σ3 (111) twin boundary in Fig. 6j can be noted. The [110] STGB structures are in

agreement with previous studies, for example those found in [15, 52, 64]. A slight discrepancy

is seen in Fig. 6i where the PFC simulations predict a more straightened grain boundary profile

than expected from the other studies.

3.4 Grain boundary stiffness

Prior to addressing grain boundary stiffness, the issue of identifying the grain boundary shape

is considered by finding the boundary as a sharp interface between the adjacent crystals. This

is achieved by constructing a continuous phase field throughout the simulation domain by con-

sidering the periodic nature of the PFC solution and evaluating the corresponding phase field

through wavelet filtering. The idea of using continuous wavelet transforms for this purpose was

originally proposed in [48] and later adopted for PFC in, for example, [56]. By this approach the

lattice orientations are identified from the density field by performing an initial convolution of

the density field with a wavelet function w1 that is sensitive to the lattice structure in question

and then, in a subsequent step, smoothing the result by a second convolution using a Gaussian

wavelet kernel w2. The phase field is thus obtained through the repeated convolutions

ξ = (ψ ∗ w1) ∗ w2 (27)

where ∗ denotes a convolution operation. To establish w1, a rotation-dependent direct pair

correlation function can be formulated in Fourier space, following [25], as

C̃2,i(k) = exp

(
−|k − ki|2

2σ21

)
(28)

where k is the wave vector introduced in Section 2, ki is the vector related to mode i in reciprocal

lattice space and σ21 is the variance. As introduced in Section 2, it is recalled that (̃·) denotes

a quantity in Fourier space. Considering all modes i, the maximum value of the direct pair

correlation in eq. (28) is used as the wavelet w1 for the initial transform (in Fourier space) by

setting

w̃1(k) = max
i

(
C̃2,i(k)

)
(29)

Since FCC crystals are in focus here, the modes i comprise the k111 and k200 vectors as noted

in Section 3.1. The second wavelet is taken as the Gaussian smoothing kernel

w̃2(k) =
1

σ2
√
2
exp

(
− k2

2σ22

)
(30)

where the variance σ2 sets the width of the smoothing Gaussian. In the present study the

variance parameters in eqs. (28) and (30) are set to σ1 = 0.45 and σ2 = 0.25, respectively. With

both wavelet kernels w̃1 and w̃2 defined in Fourier space, as well as the density field ψ̃k, the

convolution operations in eq. (27) reduce to straightforward multiplications.
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Figure 7: a) The phase field ξ, evaluated according to eq. (27) and corresponding to the [110]
Σ11 (332) density field shown in Fig. 5a (note that only a part of the simulation domain is
shown). b) Interpolated atoms (density maxima) colored by their ξ value in the region shown in
a. The grain boundary found at ξ = 0.5 is drawn by a solid black line in b.
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Figure 8: Grain boundary profiles obtained from the phase field at ξ = 0.5 and at coordinate
z = 0 for a number of STGB with [110] tilt axis. The smooth interface of the coherent Σ3 (111)
twin boundary can be noted.

Fig. 7a illustrates the phase field ξ obtained by applying the wavelet filtering in eq. (27) to

the density field of the [110] Σ11 (332) STGB, shown in Fig. 5a. The phase field in Fig. 7 is

normalized such that ξ ∈ [0, 1]. As only two lattice orientations are present in the considered

bi-crystal, the individual crystals are clearly distinguishable by the value of ξ and the grain

boundary is located around ξ = 0.5, as shown by the solid black line in Fig. 7b.

To give an extended view of the variation of grain boundary geometries provided by the

present approach, Fig. 8 shows the profiles of a number of STGB with a [110] tilt axis. These

profiles are also obtained from the respective phase fields at ξ = 0.5 and are drawn at z = 0.

As a sharp representation of the grain boundaries is now available, the next step is to consider

the accumulated information from the PFC simulations for evaluation of grain boundary stiffness.

As a point of departure, it is recalled that grain boundary energy γgb is a function of five degrees

of freedom (DOF), comprising the misorientation θ across the boundary and the normal n of

the grain boundary plane [27]. Following the work in [28, 50] and considering curvature-driven

grain boundary migration, the local migration velocity of a grain boundary is found as

v =Mgb

[(
γgb +

∂2γgb
∂α2

1

)
κ1 +

(
γgb +

∂2γgb
∂α2

2

)
κ2

]
(31)

whereMgb is the grain boundary mobility and where κ1,2 and α1,2 denote the principal curvatures
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and the related interface inclinations, respectively. The grain boundary stiffness is identified from

eq. (31) as

Γgb(θ,n) = γgb(θ,n) + γgb(θ,n)
′′ (32)

It can be noted that the misorientation θ will be a constant here as the crystal orientations are

held fixed for each grain boundary configuration that is studied and the second-derivative in

eq. (32) is taken with respect to the boundary inclination. As recently emphasized in [1, 40],

the grain boundary stiffness is a key thermodynamic parameter in a range of important grain

boundary phenomena, including grain boundary migration, roughening, segregation and grain

boundary phase transformations, commonly referred to as grain boundary “complexions”. In

[29, 50] it is noted that the grain boundary stiffness may vary more due to the boundary plane

inclination than the grain boundary energy on misorientation alone. It can also be noted that

in numerical mesoscale models involving grain boundary migration – for example those based

on phase fields, vertex formulations, cellular automata or level sets, cf. [26] – the inclination

dependence of the grain boundary energy is commonly neglected. A main reason for this severe

simplification is likely the issue of correctly describing the full five-DOF dependence of the grain

boundary energy/stiffness for general grain boundaries.

Based on the work in [11, 58] and as discussed in, for example, [2, 21, 22, 50, 54, 63], the grain

boundary stiffness can be seen as a measure of the boundary’s resilience towards geometrical

changes. Considering the two components of Γgb in eq. (32), γgb is the energy related to extension

of the boundary and the second derivative γ′′gb is related to the energy involved in a local rotation

of the boundary. This is the basis for the“Capillary Fluctuation Method”(CFM), which has been

employed in several MD-based studies as a convenient means for determining grain boundary

stiffness. An overview of CFM can be found in [29]. If the grain boundary equilibrium profile is

represented as a Fourier series

Sgb(r, t) =
∑

k

Agb(k) exp(ik · r) (33)

and in the small slope limit |∇rSgb| ≪ 1 – corresponding to the long wavelength limit with

wavelengths much larger than the grid spacing – it holds that the grain boundary stiffness is

directly related to the equilibrium static fluctuation spectrum of a molecularly rough interface

according to

〈|Agb(k)|2〉 =
kBT

LyLzΓgb(k̂)k2
(34)

where Ly and Lz are the dimensions in the plane of the initial flat interface, with coordinates

being defined in Fig. 1. Further, k is the magnitude of k and k̂ is a unit vector in the direction

of k. Γgb(k̂) is the interface stiffness in the k̂-direction.

In MD simulations, 〈|Agb(k)|2〉 must in general be evaluated as an average over an extended

simulation time due to temporal variations of the interface morphology [22, 29, 50]. This need

for averaging of the grain boundary morphology is avoided in PFC as a quasi-static equilibrium

ground state configuration of the grain boundary is obtained after sufficient simulation time,

as discussed in Section 3.1. The brackets 〈·〉 that denote an average are, however, kept here as

PFC in itself provides an average of fluctuations at very short time scales. The present phase
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Figure 9: Power spectra of the equilibrium grain boundary profiles for [110] STGB. a) Σ9 (114),
b) Σ11 (113), c) Σ3 (112), d) Σ3 (111), e) Σ11 (332) and f) Σ9 (221). The dashed red lines have
a slope of −2 and are in each figure vertically offset to fit the long wavelength region, identified
at values of k <∼ 1.5a−1.
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field-based evaluation of the grain boundary geometry, cf. Fig. 7, also conveniently avoids the

range of steps required to identify the grain boundary shape during MD simulations, as discussed

in [50].

Power spectra based on the grain boundary profiles in Fig. 8 are shown in Fig. 9. As discussed

related to the MD-based studies in [22, 29, 50], the decay of the amplitudes can be expected to

be proportional to k−2 for rough surfaces in the long wavelength limit, i.e. for small values of k.

The same trend is clearly seen in the present PFC-based results in Fig. 9 in which dashed red

lines with a slope of −2 have been drawn together with the power spectra. The dashed red lines

are offset vertically to fit the long wavelength regime of each spectrum up to k ≤ 1.5a−1. This

corresponds well to the k-range considered in [22, 50]. For shorter wavelengths, i.e. at higher

values of k, all the spectra in Fig. 9 exhibit quite sharply defined peaks indicating the presence

of dominant modes in the spectral content. The vertical offset of the power spectra in Fig. 2 is

a measure of the anisotropy of the grain boundary stiffness [29].

The agreement of the results shown in Fig. 9 with those discussed in, for example, [22, 29, 50]

shows that the present PFC-based approach is a viable alternative to CFM based on MD.

The use of PFC for evaluation of grain boundary stiffness is further motivated as it avoids

computationally demanding time averaging of boundary fluctuations and also the effort involved

in a repeated reconstruction of the grain boundary geometry, as called for if using MD.

Having demonstrated that the power spectrum fluctuations 〈|Agb(k)|2〉 can be conveniently

determined from PFC simulations, means that also the grain boundary stiffness is available by

evaluating eq. (34). As noted in the MD-based study in [22], the anisotropy of the grain boundary

stiffness can be determined by performing the stiffness evaluation along k-vectors in different

directions. In [9], it is noted that the evaluation of Γgb can be done for different orientations

of the boundary plane normal n, after which an expansion of γgb = γgb(n) in terms of cubic

harmonics can be used to fit the simulation data. A corresponding fit of a Taylor expansion of

the grain boundary energy to MD data is detailed in [1]. Such grain boundary stiffness analysis,

based on PFC, will be considered in forthcoming studies. In addition, it can be noted that

CFM is also frequently adopted to evaluate the anisotropy of grain boundary mobility Mgb,

cf. eq. (31), as discussed in for example [22, 36]. Use of PFC for this purpose remains to be

investigated further, elaborating on the results presented here.

4 Concluding remarks

The present study investigates the possibilities in using PFC modeling to predict grain boundary

properties in FCC-structured materials. This complements existing PFC studies which have

almost exclusively focused on 2D lattices or on BCC-structured materials in 3D and which are to

a large extent limited to low-angle grain boundaries in such materials. Based on 3D simulations,

and using a two-mode PFC model, a large number of symmetrical tilt grain boundaries have

been studied in the present work and its is found that both grain boundary energy and grain

boundary structure are predicted in very good agreement with comprehensive data sets taken

from the literature. In addition, continuous phase fields are evaluated from the PFC results using

wavelet transforms. It is shown that this approach makes it possible to estimate sharp interface

representations of grain boundaries from the numerical results. This information is then used

in a subsequent step to obtain the spectral content of the grain boundary fluctuations, which is
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directly proportional to the grain boundary stiffness, being a key thermodynamic parameter in

grain boundary mechanics. To the authors’ knowledge, this is the first study that explores this

methodology based on PFC, as it is usually based on averaging of the output from MD over

extended simulation times. The successful application of PFC to evaluation of grain boundary

stiffness also paves the way for extended studies into the anisotropy of grain boundary stiffness

and also into corresponding variations in grain boundary mobility, based on PFC. Another

interesting prospect for future investigation is to use the frequency spectrum of grain boundary

profiles as a “fingerprint”, identifying individual grain boundaries and permitting categorization

of different classes of grain boundaries.

Having verified the applicability of PFC to studies on grain boundary mechanics in FCC-

structured materials, new possibilities are available for studying grain boundary evolution with

the high spatial resolution provided by PFC, and at time scales not tractable when using MD.

In addition to restrictive time limitations, another issue in performing first principle or MD

simulations of grain boundaries arises from the fact that a minimum-energy structure of each

grain boundary needs to be sought before running the simulation. This is usually achieved by

performing an iterative relaxation procedure during which the positions of individual atoms are

gradually adjusted [41], possibly combined with rigid body translations of the abutting crystals

and followed by a removal of overlapping atoms. This pre-processing procedure carries a certain

degree of uncertainty regarding whether a minimum-energy configuration has actually been

found or not. This issue is, however, largely avoided when performing PFC simulations which

evolve towards states of minimum energy without the need for the pre-processing steps required

in MD.
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