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Preface

Human physiology is the study of how organisms, organ systems, and in-
dividual organs function under normal circumstances. As a consequence of
its paramount importance to medicine, physiology has been studied since
ancient times, but the models studied in this book follow the tradition of
modern physiology pioneered by Claude Bernard in the mid 1800s.

The focus of the book lies on how dynamical mechanisms and phenom-
ena in physiology can be understood and studied using mathematical mod-
eling. Each chapter commences with the introduction of a well-established
physiological model. Although these models are collected from seemingly
disparate areas such as hemodynamics, pharmacology, and biomechanics,
it quickly becomes apparent how theory and methods surrounding differ-
ential equations and dynamical systems constitutes a fabric that unites all
the studied models.

Both nonlinear and linear models are treated. Simulation of dynamical
models through numerical integration is presented, and for linear models
it is shown how responses can be obtained both in the time and “frequency”
(Laplace) domains.

The powerful concept of feedback is introduced, and the book serves as
an excellent spring board for studying cyber-physical “closed-loop” systems
in medicine.

The intended audience is primarily undergraduate biomedical engineer-
ing students.

Kristian Soltesz,
Lund, April 2024
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1
Dynamical models

Learning goals
After reading this chapter you should (be able to)

• Know the difference between physiology and anatomy.

• Explain the difference between a static and dynamic relation.

• Mention a few dynamical systems in human physiology.

• Explain what is meant by a model; an animal model; a math-
ematical model.

• Distinguish between systems, signals, and states.

• Know the difference between a forced and an autonomous sys-
tem.

• Know what it means for a dynamical system to be in equilib-
rium.

• explain what time-invariant and linear mean in the context of
dynamics.
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Chapter 1. Dynamical models

1.1 Dynamical systems in physiology

Historic Note. While anatomy is the study of structure or configura-
tion of the body and its systems, physiology is the study of their function.

Although studied to some extent already in ancient times—
Hippocrates proposed a theory of four bodily fluids: black bile, yellow
bile, phlegm, and blood, that needed to be in balance to maintain a
healthy state. The term physiology itself was first introduced by French
physician Jean Fernel (1497–1558). He combined the Greek words φύσις
(physis, meaning nature or origin) with λογία (logia, meaning study of ),
thus coining the term physiology.

It is another Frenchman, Claude Bernard (1813–1878), depicted in
Figure 1.1, who is regarded by many as the “father” of physiology. He pro-
moted the use of devised experiments to investigate physiological phe-
nomena with the purpose of rejecting hypotheses, which is the method-
ology applied still within modern medicine.

Figure 1.1 Claude Bernard (1813–1878), the “father” of modern phys-
iology, with his pupils.

Bernard paved the way for a very productive era. In fact, much of the
science underlying the models in this book was conducted in the decade
following Bernard’s death.

In the early studies of organs and other physiological systems it
turned out, similarly to what had happened around 100 years earlier in
physics, that tools from calculus and (linear) algebra were well-suited
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1.1 Dynamical systems in physiology

to describe, or model the behavior of the studied systems. The introduc-
tion of modeling paradigms such as the compartment model and electric
circuit equivalent models—both studied in this book—followed.

In this age, it may feel a bit discouraging to consider the skewed gen-
der balance in Figure 1.1, and indeed much—but not all—of the early
work within psychological modeling was conducted by men, broadly re-
flecting the norm of the era. Fortunately, the research scene has since
changed, exemplified by an increasing fraction of Nobel prizes for phys-
iological discoveries going to women, although the imbalance is not yet
eliminated.

Life
As mentioned in the historic note, physiology is the study of function within
a living organism, while anatomy is the study of its structure or configura-
tion. However, there still today exists no unanimously accepted definition of
what life itself is. Contemporary definitions are descriptive, and constitute
lists of processes that a living organism must be capable of. An attempt of
such definition is shown in Figure 1.2.

Life

Reproduction

Movement

Metabolism

Control

Excretion

Growth

Figure 1.2 Life processes. A common definition of life is that if each of
these processes can take place within an organism, it is labeled as living.

Using the descriptive definition of Figure 1.2, we can note that it ex-
cludes viruses, since they for example do not maintain a metabolic process.
However, many scientists would argue that viruses indeed constitute a form
of life.

Physiological complexity
The functions defining life are complex. It therefore helps to study processes
within individual systems of the living organism. Here “system” is a quite
vague word for a collection of things. In the context of physiological mod-
eling we often define these systems through their relation to anatomy. For
example, we can consider individual body organs as systems to be studied,
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Chapter 1. Dynamical models

Figure 1.3 For the study of physiology to be practically manageable, we
typically delimit modeling to a system within the organism. This could be an
anatomic delimitation, for example to study individual organs, as the kidney
shown to the left. It could also be a functional delimitation, as illustrated by
the metabolic system (where several organs are involved), to the right.

as illustrated in the left half of Figure 1.3. A physiological system can also
be delimited to a particular function, as exemplified in the right half of Fig-
ure 1.3.

Homeostasis
Homeostasis is a composition of Greek words όμοιος (homoios, meaning
similar) and στάσις (stasis, meaning “standing still”), introduced in the
17th century into modern Latin (being the scientific language of the time)
to describe a physiological state of “business as usual”.

A homeostatic state is necessary for life processes to function opti-
mally. For example, human metabolism relies on a core body temperature
of around 37 °C (normothermia), and a blood plasma glucose concentra-
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1.2 Models

tion roughly in the range of 3–8 mmol/L (normoglycemia). Some variables,
like body temperature, are tightly controlled to a constant set-point, while
others, like blood plasma glucose concentration, may vary within some ad-
missible range, often as a result of external factors.

Homeostasis is achieved by the organism through actively controlling
variable entities to lie within admissible ranges. In this book we will mainly
be concerned with the life processes necessary for homeostasis, rather than
how they are controlled.

1.2 Models

What is a model?
A model is an informative representation of something—the modeled object
or system. With this definition, many things are models:

• a mental image;

• a map;

• a toy.

A trait of a good model is that it shares features of interest with the sub-
ject being modeled. Physiology often holds several options when it comes to
modeling:

• in silico, meaning “in silicon”, refers to modeling through simulation
within a digital computer1. This will be our focus;

• in vitro, meaning “in glass”, refers to isolating the system to be mod-
eled ex vivo—outside of the organism—for the purpose of studying its
behavior;

• in vivo, meaning “in life” refers to using the organism itself as a (sur-
rogate) model. Animal models and clinical trials fall under this cate-
gory.

Typically, the realism of the model increases from top-to-bottom of the
bullet list above. But there remain several reasons to study in silico models.
For example, they are cheap and do not come with the ethical concerns or
medical risks associated with in vitro or in vivo models. However, to devise
a realistic in silico model almost always relies on availability of informative
experimental data.

1 Integrated circuits that form the hardware of modern computers are made from silicon
wafers.
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Chapter 1. Dynamical models

Mathematical models
A mathematical model is a construct that uses mathematical expressions
to approximate the object or relation being modeled. Let us consider a very
simple physiological model.

Example 1.1: Body mass index. The body mass index (BMI)
is defined as the body mass in kilograms, divided by the squared
body height in meters. The unit of BMI is therefore kg/m2. The body
mass index is broadly used to model whether an individual is under-
weight, normal weight, overweight or, obese.

It is a very simple model. For extremes of low or high BMI it pro-
vides adequate classification that can provide helpful information
to physicians, but in-between it is a blunt model.

For example, the BMI model does not take into account that indi-
viduals with a relatively large muscle mass may have a larger body
mass for their height, without necessarily being overweight or obese,
in the sense of having an excess of fat tissue. Conversely, tall persons
can easily be mis-classified as being underweight under the BMI
model.

The important take-away from Example 1.1 is that models are—often
simplifying—approximations, useful within some range of validity, within
which the error of the approximations are sufficiently small. Further in-
sight into what this entails will be provided in Section 4.2, when studying
local linearizations of nonlinear dynamics.

1.3 Modeling dynamics

The word dynamic or dynamical in the context of mathematical system
modeling refers to a special property: the internal state of the model is—
either explicitly or implicitly—a function of time. Below, we will introduce
some of the core concepts and terminology from dynamical modeling. Un-
derstanding the presented concepts and terms will facilitate reading the
remainder of the chapters in this book.

First, let us introduce the difference between static and a dynamic rela-
tions through an example.

12



1.3 Modeling dynamics

Example 1.2: Dynamic versus static relation. The BMI model
introduced in Example 1.1 is an example of a static model. Provided
with inputs in form of a body mass and height, it produces a well-
defined output, the BMI. Provided with the same mass and height
values, it will always produce the same BMI. The BMI model pro-
vides a static relation between mass, height and BMI. We therefore
call it a static model.
In contrast, the output of a dynamical model can additionally depend
on time. This is often captured by an internal model state, and the
model output depends both on the model inputs and the model state.
Perhaps this sounds abstract? Let us provide an example: if you take
a headache pill, its effect will first increase, then decay, as a function
of how the concentration of active substance dissolved in the blood
plasma varies. This is conceptually illustrated in Figure 1.4.

0
0

time

bl
oo

d
co

nc
.

Figure 1.4 Conceptual illustration of how the mass of undissolved
drug (grey) and blood plasma concentration (black) vary following
ingestion of a headache pill at time 𝑡 = 0.

Regarding the administration of drug as input and the clinical effect
as output, we can no longer relate the two with a static relation, as
we could in the BMI example. Instead, we now also need to keep
track of time, either explicitly, or through introducing states that
capture the amount of yet undissolved drug in the stomach, and of
dissolved drug in the blood plasma, respectively.
We will have reason to get back to the notions of inputs, states, and
outputs of models at several occasions throughout the book. But for
now, the take-away is that there is a distinction between static and
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Chapter 1. Dynamical models

dynamic models, where the output of the latter depend not only on
their input at the present time, but also their past input. The infor-
mation about this past input can be encoded into what we call the
state of the system.

In our headache pill example, the undissolved drug mass and blood
plasma concentration together make up a state. This state enables
us to predict the evolution of the clinical drug effect, if we have access
to a dynamical model that relates the output, state and input. Much
of this book will concern such models, and particularly how we can
express and analyze them using mathematical tools.

Somewhat simplified—and to be clarified in the remainder of this
chapter—a static relation can be modeled without involving derivatives
with respect to time, as opposed to a dynamical relation, where you will
find 𝑑/𝑑𝑡 in the system model.

State
In Example 1.2, the notion of an internal system state was introduced, but
not thoroughly explained. The state of a dynamical system (model) is a col-
lection of variables that, together with possible external inputs, provide suf-
ficient information to uniquely define the time-evolution of the system.

𝒙 =
⎡⎢⎢⎢⎢
⎣

𝑥1

⋮

𝑥𝑛

⎤⎥⎥⎥⎥
⎦

. (1.1)

While 𝒙 depends on time 𝑡, it is customary to write 𝒙 instead of 𝒙(𝑡), to
simplify notation.

The number of state variables, 𝑛 in (1.1), is referred to as the order of
the system. For the case of 𝑛 = 1, we say that the system is scalar, or equiv-
alently of first order. Throughout the book we denote scalar signals with
standard typeface, such as 𝑥, and vector-valued signals with boldface, such
as 𝒙. We will also take a closer look at system states in Section 3.3, but let
us begin with an illustrative example.

Example 1.3: System state. In this brief example, let us consider
a system with state variables 𝑥1 and 𝑥2. They could for example be
the undissolved drug mass and blood plasma concentration that to-
gether constituted the state in Example 1.2. For that example, the
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1.3 Modeling dynamics

choice of those particular state variables was quite natural as they
represent physical entities that are, at least conceptually, possible
to measure.

However, we could equivalently well describe the system state with
the variables ̃𝑥1 = 𝑥1 + 𝑥2 and ̃𝑥2 = 𝑥1 − 𝑥2, since any pair ( ̃𝑥1, ̃𝑥2)
uniquely defines a pair (𝑥1, 𝑥2), and vice versa. We could also let
̃𝑥1 = 𝛼𝑥1 + 𝑥2 for any 𝛼 ≠ 0 and be able to uniquely determine

(𝑥1, 𝑥2) from ( ̃𝑥1, ̃𝑥2) and vice versa. This serves to show that the
same dynamics can be represented using one of infinitely many pos-
sible state variable choices.

Often, the choice of state variables is motivated by their physiolog-
ical or physical interpretations, as in Example 1.2. However, some-
times it might be advantageous to make other state variable choices,
motivated for example by computational efficiency or numeric ro-
bustness. We will see also such examples in Section 4.3.

The take-away from Example 1.3 is that the state defines the configura-
tion of the system at any given time. Provided that the state at some time
is known, and that any possible external signals that may affect the system
state are known for all future times, the state at any future time is well-
defined and can be computed. How to practically do this will be covered in
Chapter 2, and for the special case of linear dynamics in Section 4.3.

While there is always a minimum number of state variables—the true
system order—required to represent the dynamics of a given system model,
it is worthwhile noting that it is always possible to add state variables. For
example, we can always add the temperature in Berlin as a state variable
(component of 𝒙), although for most physiological models this state will not
have any dynamical coupling to other (relevant) state variables.

Forced versus autonomous systems
An autonomous system is one where there are no external signals that can
affect the system state. The dynamics of such system can be described by

̇𝒙 = 𝒇 (𝒙, 𝑡). (1.2)

The dot notation is a convenient way to represent a derivative. For example

̇𝒙 = 𝑑𝒙
𝑑𝑡 =

⎡⎢⎢⎢⎢⎢
⎣

𝑑𝑥1
𝑑𝑡
⋮

𝑑𝑥𝑛
𝑑𝑡

⎤⎥⎥⎥⎥⎥
⎦

. (1.3)
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Chapter 1. Dynamical models

Higher-order derivatives can also be represented using dots. For example
̈𝒙 = 𝑑2𝒙/𝑑𝑡2, and so on.

Example 1.4: Cooling body. An example of an autonomous dy-
namical system, with relevance to forensic physiology, would be a
cooling deceased body in a room with constant temperature and neg-
ligible air exchange. The core body temperature is uniquely defined
by an initial state, being the temperature 𝑥(0) = 37 °C at the in-
stance of death, 𝑡 = 0. We can model the core body temperature
using Newton’s cooling law,

̇𝑥 = −𝛼(𝑥 − 𝑥𝑒), (1.4)

where 𝑥𝑒 is the temperature of the environment, and 𝛼 > 0 is a
numeric constant defined by the heat transfer coefficient and surface
area of the body.

We note that (1.4) is an autonomous (input free) system model, since
it constitutes a special case of (1.2) with the vector 𝒙 having just one
component, and thus being a scalar 𝑥:

𝒇 (𝒙, 𝑡) = 𝑓 (𝑥, 𝑡) = −𝛼(𝑥 − 𝑥𝑒). (1.5)

In this case, the model of the dynamical system (the cooling body)
has no explicit time dependence. There is an important distinction
here between the model and the model state: although the model
has no explicit time dependence, the model state, body temperature
𝑥, does change with time as it cools as described by the model 𝑓 (𝑥, 𝑡).

The reason we chose a dead body to represent an autonomous system
in Example 1.4 system was not pure coincidence. In fact, most systems we
study in physiology are not autonomous. Instead, the time-evolution of their
states are affectable by some external stimulation. We model this using one
or several exogenous, or input signals, that are themselves functions of time.
These inputs are assembled into the vector 𝒖, and we have

̇𝒙 = 𝒇 (𝒙, 𝒖, 𝑡). (1.6)

As opposed to an autonomous system with no inputs, a system with input
𝒖 is often referred to as a forced system. In the context of mechanical sys-
tems, as the ones we will consider in Section 4.1, the input is indeed often a
force. However, the notion of forced systems has a much broader relevance,
and we will encounter systems where 𝒖—in our case often a scalar 𝑢—will

16



1.3 Modeling dynamics

represent entities other than mechanic force. Before moving on, we can also
note that autonomous systems are a special case of forced systems.

It might at first appear confusing that terms such as state, system and
signal sometimes appear in singular, and other times in plural, often even
within the same body of text. This is because sometimes the state vector 𝒙
can be referred to as the state, which also holds for its individual elements
𝑥1, … , 𝑥𝑛. In contrast, thinking of 𝒙 as the collection of its individual ele-
ments, it is natural to refer to 𝒙 as the states of the system. In practice this
seldom causes ambiguity, and possibly ambiguities can be resolved by for
example referring to 𝑥1, … , 𝑥𝑛 as the state components, or state variables,
of the system.

Time-varying versus time-invariant systems
An important special case of dynamical systems are ones where the dy-
namics do not change over time. This is equivalent to the absence of the
argument 𝑡 of 𝒇 in (1.6). A forced time-invariant system model can thus be
written on the form

̇𝒙 = 𝒇 (𝒙, 𝒖). (1.7)

The corresponding special case of time-invariant autonomous systems have
dynamics on the form ̇𝒙 = 𝒇 (𝒙).

We have already seen an example of a time-invariant system—the cool-
ing body in Example 1.4. It can be worthwhile to emphasize that time-
invariant refers to the dynamics defined by the function 𝒇 and not to the
state 𝒙: the state of a time-invariant system may change over time, but
the function describing how it changes does not explicitly take time as an
argument, as opposed to the case in (1.6). For example ̇𝑥(𝑡) = −3𝑥(𝑡),
with 𝑓 (𝑥, 𝑡) = −3𝑥, is an example of a time-invariant system, while ̇𝑥(𝑡) =
−3𝑥(𝑡) + 𝑡, with 𝑓 (𝑥, 𝑡) = −3𝑥 + 𝑡, is not.

Most dynamic systems encountered in physiology, and indeed in the real
world, have dynamics that are, to some degree, time-varying. However, of-
ten the variation over the time scale relevant for the model is sufficiently
small for the dynamics to be adequately approximated by a time-invariant
model. One example would be modeling of neurological pathways, that do
change as a function of the individual’s age. However, while the modeled
dynamics act on the millisecond time scale, the aging acts on a time scale
of years, and can therefore typically be disregarded.

All systems considered henceforth in this book will be assumed to be
time-invariant, unless otherwise stated.

Equilibrium
A system is in equilibrium when the state does not change over time. There-
fore, an equilibrium is also referred to as the system being in “steady state”.

17



Chapter 1. Dynamical models

Static systems are typically in equilibrium unless forced by some external
signal. A dynamical system is in equilibrium if ̇𝒙 = 𝟎. Note that for a forced
time-invariant system (1.7), any pair (𝒙0, 𝒖0) with 𝒇 (𝒙0, 𝒖0) = 𝟎 defines an
equilibrium. If 𝒖0 is constant, it is referred to as a static equilibrium. It is
not uncommon for a forced system to have infinitely many static equilibria.

Example 1.5: Equilibrium heart rate. Consider what happens
to your heart rate 𝑥 [bpm] under physical work load 𝑢 [Watt]. When
you increase physical work load, the heart rate dynamically in-
creases to meet the increased gas exchange demands of your working
muscles.

If the work load is held constant over time—as it would be for some-
one running on a treadmill at constant speed—the heart rate will
reach an equilibrium matching the gas exchange requirement for the
particular work load. If the work load is slightly increased, the heart
rate will increase, and if it is slightly decreased it will decrease. Thus
this is an example of a dynamical system with infinitely many static
equilibria (𝑥0, 𝑢0), one for each possible work load level 𝑢0.

It is again worthwhile reminding ourselves that we are dealing with
models here, and that these models are simplifying abstractions of
reality. It might for example happen that your heart rate does not
stay exactly constant although you do not vary physical work load, or
even that it increases slightly when you decrease work load and vice
versa. But on the whole, the described relationship between work
load and steady state heart rate is a fair approximation.

Measurement signals
In some cases, it is straightforward to introduce sensors that can measure
the entire state—one measurement per state vector component. For exam-
ple, the body temperature in Example 1.4 could simply be measured using
a thermometer. In other cases only some combination of systems states can
be measured. We typically denote the vector of corresponding measurement
signals 𝒚, and use an observation model (1.8b) to model them:

̇𝒙 = 𝒇 (𝒙, 𝒖), (1.8a)
𝒚 = 𝒈(𝒙, 𝒖). (1.8b)

Quite often the input 𝒖 only affects the measurement 𝒚 through the state,
and we have 𝒚 = 𝒈(𝒙). The measurement 𝒚 is often referred to as output of
the system model.
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1.3 Modeling dynamics

A dynamical model may have one or several inputs and one or several
measurements, or outputs, and there are commonly used acronyms to de-
scribe the possible cases:

• SISO: single input, single output;

• SIMO: single input, multiple output;

• MISO: multiple input, single output;

• MIMO: multiple input, multiple output.

Linear systems
Another special case of dynamical systems are ones where the dynamics
and observation functions 𝒇 and 𝒈 are linear. For the herein considered
case of time-invariant systems, this means that the system model can be
expressed on state space form as

̇𝒙 = 𝐴𝒙 + 𝐵𝒖, (1.9a)
𝒚 = 𝐶𝒙 + 𝐷𝒖, (1.9b)

where 𝐴, 𝐵, 𝐶, and 𝐷 are constant matrices of appropriate dimensions.
Models of the type (1.9), that are both linear and time-invariant, are re-
ferred to as LTI models for short. The representation (1.9) of LTI systems
will be the topic of Section 3.3, and in Section 4.2 we will see how nonlinear
models on the form (1.8) can be locally approximated with linear ones on
the form (1.9).

Block diagrams, signals, and states
As we will see later, it can be convenient to graphically illustrate dynamical
systems using blocks as the one in Figure 1.5, where 𝐺 denotes the system,
defined for example through (1.9).

While technically the states are variables that change over time, they
are typically not referred to as signals. The word signal is instead reserved

𝐺
𝒙

𝒖 𝒚

Figure 1.5 Graphical block representation of a dynamical system 𝐺 with
input signal 𝒖, output or measurement signal 𝒚, and internal state 𝒙. The
arrows indicate signal flow directions.
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Chapter 1. Dynamical models

for variables that interface externally to the dynamical system, as illus-
trated through the arrows in Figure 1.5.

A similar floating semantic boundary is that between system model, and
system. As mentioned in Section 1.1, “system” is a general term for a regu-
larly interacting or interdependent group of items forming a unified whole.
This holds also for a dynamical system in physiology, where—for “dynam-
ical” signals—there is a time-dependence to the interaction. A dynamical
system model is a mathematical description of such system. In this book
we will use ordinary differential equations (ODEs) for such descriptions. It
is important to keep in mind that the models we consider are approxima-
tions. The system of differential equations, defined through the elements of
𝒇 in (1.8), should not be confused with the actual dynamical system that the
equations represent.

Uses of dynamical models
Now that we have established some notation, we are ready to discuss in
what ways dynamical models can be useful. Principal uses of dynamical
models include

1. parameter estimation;

2. simulation;

3. state estimation;

4. prediction.

Parameter estimation. Estimation of parameters, also known as sys-
tem identification or learning of dynamics, refers to using the combined
recorded input and output (𝒖, 𝒚) of a system to estimate parameters of the
dynamics and observation functions 𝒇 and 𝒈. For example, if an LTI model
on the state-space form (1.9) is used for a SISO system that can be ade-
quately modeled using 𝑛 = 2 state variables, the dynamics are fully pa-
rameterized by the elements of the 2 × 2 𝐴 matrix, 2 × 1 𝐵 matrix, 1 × 2
𝐶 matrix and 1 × 1 𝐷 matrix, where the 𝐷 matrix is thus a scalar. In this
case, the system identification problem concerns determining the constant
elements of these matrices from (𝒖, 𝒚) time series data.

Simulation. A common use of dynamical models is to investigate the be-
havior of the modeled system, without performing experiments on it. Here
experiments typically refer to exposing the system to a known but varying
input 𝒖, and investigating the resulting evolution of the output 𝒚.

In engineering, this surrogate use of models is often referred to as “dig-
ital twins”, since the models are typically implemented in a digital com-
puter. In medical applications, simulation models can (to a certain extent)
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1.3 Modeling dynamics

be used to replace animal models in development of new treatments and
drugs. They also have a use in training personnel without exposing patients
to risk.

For a simulation model to be useful, it typically needs to extrapolate
well, meaning that if the modeled system is exposed to some input signal 𝒖
that was not represented in the data from which the model was devised, it
is desirable that the model responds similarly to the system it aims to rep-
resent. One example would be to construct a model for blood insulin based
on bolus (shot) injections, and then use the same model to simulate blood
insulin level resulting from steady rate delivery using an infusion pump.
How well a model extrapolates, and the related topics of over-fitting and
sensitivities, are essential but unfortunately easily forgotten, particularly
in data-driven modeling.

State estimation. State estimation concerns partial or full reconstruc-
tion of the state vector 𝒙 form input–output recordings (𝒖, 𝒚). State esti-
mation can be used to estimate state variables that are not—and some-
times cannot be—directly measured. Such estimators are referred to as
“soft sensors” since they estimate (rather than measure) a state using soft-
ware (rather than direct sensor hardware). A trivial example of a soft sen-
sor would be the use of a flow sensor in a spirograph to estimate the volume
of inhaled gas. The state variable—inhaled volume—is hard to measure di-
rectly (unless using some expensive imaging modality such as MR), but can
easily be estimated as the time-integral of the flow sensor signal.

A more subtle use of state reconstruction is in the estimation of state
variables that are directly measurable, but where the measurements are
corrupted by noise. In such case, measurements that are coupled to the
state variable(s) of interest through the system dynamics can be used to
obtain a better estimate of the measured signal than available through
the noisy estimate. A good example of this is inertial measurement units
(IMUs), used in tracking of body movements. The IMU is a combined sen-
sor that measures 3D velocities and accelerations. In this case, the dy-
namic relation is exactly known, since the accelerations constitute the time
derivatives of the velocities. Utilizing this, and taking into account that the
acceleration measurements from the accelerometer is corrupted by high-
frequency measurement noise, while the velocity measurements of the gy-
roscope are corrupted by low-frequency drift, it is possible to obtain a better
velocity estimator than the gyroscope alone.

Prediction. Prediction is closely related to simulation, and indeed sim-
ulations can be used to provide predictions. As opposed to the simulations
described further above, that have as their main purpose to replicate the
modeled dynamics, predictions are used to investigate (within the model!)
how the state and output would evolve as a result of certain actions. This
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Chapter 1. Dynamical models

can be used to compare the anticipated outcome of several input signal can-
didates, to choose the one that is optimal in some pre-determined sense. It
could for instance inform how long before a painful procedure a local anes-
thetic should be administered.
Modeling for control. Dynamic models also have a central role in the
design of control systems. There, the dynamic models are used to design
the control law, typically implemented as a computer algorithm.

A simple example of a feedback controller is one that measures temper-
ature 𝑦 of blood circulating within an extra-corporal membrane oxygenator
(ECMO) and applies heating 𝑢 > 0 or cooling (𝑢 < 0) to keep the blood tem-
perature at a desired set-point, or reference, 𝑟. One way to do this is to let
the control signal be 𝑢 = 𝐾(𝑟 − 𝑦), where the controller gain 𝐾 is a design
parameter, in this case a real number. Having access to a dynamical model
relating the control signal 𝑢 to the resulting blood temperature 𝑦 makes
it possible to make an informed choice of 𝐾. The system described above is
schematically illustrated in Figure 1.6, from which it is also easy to see why
this configuration is referred to as a feedback or closed-loop control system.

heater/
cooler

blood in
ECMO

temp-
sensor𝐾

−1

∑
𝑦

−𝑦

𝑒 = 𝑟 − 𝑦 𝑢 = 𝐾𝑒𝑟

Figure 1.6 Closed-loop or feedback control system, where the current con-
trol signal 𝑢 is determined by the (current and possibly past) measurement
𝑦, using a control law, with the objective to track a reference or set-point
signal 𝑟. In this example, the control law is simply a proportional gain 𝐾, by
which the control error 𝑒 = 𝑟 − 𝑦 is multiplied.

In the example above, a dynamical model is used offline to determine a
suitable 𝐾. Dynamical models can also be used online within control sys-
tems. The most common example is referred to as model predictive con-
trol (MPC). In MPC, a prediction model is used to find the optimal 𝑢 over
some time horizon. Then this control signal is applied, and the procedure
is repeated periodically with a period that is typically much smaller than
the prediction horizon. A schematic illustration of MPC is provided in Fig-
ure 1.7. For an MPC solution to be successful, the model needs to be of
sufficient accuracy for the optimization across the horizon to make sense.
It is for example uncommon (within physiology) to have models that pro-
vide reliable predictions on a time scale that is much larger than that of
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Figure 1.7 Conceptual illustration of model predictive control, MPC. In
each execution of the MPC algorithm an optimization problem is solved. The
result of this optimization at 𝑡 = 15, an optimal control signal 𝑢, is shown
in red in the lower pane. Only the first sample of this input is applied to
the process input. At the next iteration, here 𝑡 = 16, the optimization is
repeated, and so on. This enables the MPC controller to cope with model
errors and external disturbances.

the modeled dynamics. And, of course, the optimization criterion by which
candidate control signals are compared needs to be carefully chosen with
the particular application in mind.

This book focuses on models that can be used for control, rather than
control itself.

Purpose-based model choice. In general, it is important to have a clear
idea of what the model will be used for before modeling a dynamical system.
For example, to obtain a mechanistic understanding of oxygen uptake, you
might need to model how individual alveolae within the lungs work, but if
your modeling objective is to study how exercise affects oxygen uptake over
time you could–and should–use a coarser model. Settling for the right de-
tail level when modeling is indeed a challenge, as what is right depends on
for example what you will use the model for, and what data is available to
determine the parameters that define the behavior of the model. Pickinga
model that is too simple might result in it not providing a sufficiently ac-
curate description to be useful to you. Picking too complex a model might
result in the model being too sensitive to provide reliable results.
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Chapter 1. Dynamical models

Further reading. If you are, or become, interested in dynamical
modeling, there exist a rich literature on the topic. While relatively
few works focus specifically on physiological models, the concepts,
theory and methods typically translate across disciplinary bound-
aries. For a general introduction we would recommend [Ljung
et al., 2021]. For a book on mathematical models in physiology,
we can recommend [Claudio Cobelli and Carson, 2019]. If you are
interested in a historic review of physiology, [Rothschuh, 1973] can
provide some inspirational examples that can be better understood
with access to dynamic modeling methods.

Ljung, L., T. Glad, and A. Hansson (2021). Modeling and identifica-
tion of dynamic systems. Studentlitteratur, Lund, Sweden. isbn:
9789144153452.

Claudio Cobelli, C. and E. Carson (2019). Introduction to modelling
in physiology and medicine. Elsevier, Amsterdam, Netherlands.
isbn: 9780128157565.

Rothschuh, K. E. (1973). History of physiology. Krieger, Malabar, FL.
isbn: 9780882750699.
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2
Simulating differential
equation models

Learning goals
After reading this chapter you should (be able to)

• Explain the difference between anabolism and catabolism.

• Describe the steps of an enzymatic reaction, and the role of the
enzyme.

• Represent an enzymatic reaction as a system of differential
equations based on a reaction formula.

• Derive the Michaelis-Menten model and understand under
what approximation it holds.

• Approximately solve a differential equation using finite-
difference approximations.

• Know the difference between the explicit and implicit Euler
methods.
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Chapter 2. Simulating differential equation models

Historic Note. In this chapter we will study enzyme kinetics, and
particularly a dynamical model thereof, introduced by the German bio-
chemist Leonor Michaelis (1875–1949) and the Canadian biomedical re-
searcher Maud Menten (1879–1960), seen in Figure 2.1.

Figure 2.1 Maud Menten (1879–1960), Canadian chemist and physi-
cian most famous for formulating the Michaelis-Menten model of enzyme
kinetics.

Maud Menten was one of the first women to earn a medical doctorate
in Canada, and moved to Germany in 1912 since it was not possible to
conduct medical research as a woman in Canada at the time.

In Berlin, Maud Menten worked at the lab of Leonor Michaelis.
Despite the lab being a relatively simple establishment, they together
managed to formulate the dynamical model that constitutes Michaelis-
Menten enzyme kinetics. This model has since been used to describe
a large number of enzymatic reactions across the discipline of bio-
chemistry.

2.1 Enzyme kinetics

Metabolism
The human body, like any organism or other system in nature, obeys
the laws of thermodynamics. Without some active—meaning energy
consuming—action, the body will reach a thermal equilibrium with the
environment, associated with death, as already brought up in Example 1.4.
In contrast, energy needs to be added to maintain homeostasis. In plants,
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Figure 2.2 Schematic illustration of the citric acid cycle, being a well-
studied catabolic pathway.

this is achieved through photosynthesis, while animals ingest nutrients1.
Metabolism is the collective term for the life-sustaining processes

needed to maintain homeostasis, and thereby life. Human metabolism
can be divided into

• Anabolism— Process of creating bigger molecules out of smaller ones.

• Catabolism—Processes breaking down molecules into smaller ones
that are oxidized to release energy or used in anabolic reactions.

Both anabolic and catabolic processes are arranged into pathways. Perhaps
the most well-known catabolic pathway is the citric acid cycle which gen-
erates energy ATP, NADH, and FADH2—also known as the Krebs cycle—
schematically depicted in Figure 2.2.

Human metabolism comprises of a large number of metabolic pathways.
1 There are some notable exceptions, including sea slugs that can steal chloroplasts from

ingested algae and use them to maintain their own photosynthesis.
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Chapter 2. Simulating differential equation models

Enzymatic reactions
The reactions within metabolic pathways are catalyzed by biological cat-
alysts, called enzymes. Let us exemplify this with the catabolic reaction
that converts the sugar maltose into two glucose sugars, as depicted in
Figure 2.3.

Maltose

Maltase
(enzyme)

2 × glucose

Figure 2.3 Illustration of the catabolic conversion of maltose into glucose,
facilitated by the enzyme maltase.

Enzymes function through an active site to which the substrate—in our
case maltose—can bind. While bound, the per-time probability of splitting
into two maltose molecules is importantly increased, as opposed to when
the maltose molecule is not bound to the enzyme.

Enzymes play a crucial role in all of biology, and enzymology is the field
of biochemistry devoted to the study of enzymatic reactions, being reactions
catalyzed by enzymes.

Modeling enzyme dynamics
An enzymological model of the process depicted in Figure 2.3 can be ex-
pressed as

𝐸 + 𝑆 −⇀↽− 𝑋𝐸𝑆 −⇀ 2𝑃 + 𝐸. (2.1)

This should be read as “one unit of enzyme 𝐸 combines with one unit of
substrate 𝑆 to form one unit of enzyme-substrate compound, or complex,
𝑋𝐸𝑆; one unit of 𝑋𝐸𝑆 can be decomposed back into 𝐸 and 𝑆, or it can produce
(in this case) two units of product 𝑃 and free up the enzyme.”

Instead of units, it is often convenient to handle concentrations instead.
In (2.2), being an enzymatic reaction in which one unit of substrate can
produce one unit of product, [𝐸] denotes the concentration of 𝐸 within the
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2.1 Enzyme kinetics

reaction system, and so on:

[𝐸] + [𝑆]
𝑘1−−⇀↽−−
𝑘−1

[𝑋𝐸𝑆]
𝑘2−−⇀ [𝑃] + [𝐸]. (2.2)

The SI base unit for chemical concentration is mol/m3, but the more
commonly used unit is molarity (mol L−1 or equivalently mol/dm3). The
numbers 𝑘1, 𝑘−1, and 𝑘2 are called rate constants. They determine at what
rates the reactions indicated by arrows occur as functions of reactant con-
centration. For example the production rate 𝑑𝑃/𝑑𝑡 is 𝑘2[𝑋𝐸𝑆], and we see
that the rate constants 𝑘−1 and 𝑘2 have the SI base unit of s−1, while 𝑘1
has the unit ofmol m−3 s−1. Keeping track of units can save a modeler much
work, and we will return to this topic in Section 5.3.

Here we will assume that the enzymatic reaction (2.2) takes place within
a volume that is constant over time. Translating between quantity (𝐸, 𝑆,
𝑋𝐸𝑆, 𝑃) and concentration ([𝐸], [𝑆], [𝑋𝐸𝑆], [𝑃]) then comes down to mul-
tiplication with a positive constant. It is therefore often convenient to drop
the square bracket notation, and this is often (somewhat sloppily) done
when concentrations are considered.

The law of mass action is a model that states that the rate of a chem-
ical reaction of well-mixed reactants (under some additional assumptions)
is directly proportional to the product of their concentrations. Applied to
the enzyme binding reaction, it enables us to express (2.2) as a system of
ordinary differential equations

�̇� = −𝑘1𝐸𝑆 + (𝑘−1 + 𝑘2)𝑋𝐸𝑆, (2.3a)
�̇� = −𝑘1𝐸𝑆 + 𝑘−1𝑋𝐸𝑆, (2.3b)

�̇�𝐸𝑆 = 𝑘1𝐸𝑆 − (𝑘−1 + 𝑘2)𝑋𝐸𝑆, (2.3c)
�̇� = 𝑘2𝑋𝐸𝑆. (2.3d)

Before continuing, let us verify that (2.3) indeed describes a dynamical
system on one the standard forms introduced in Chapter 1.

Example 2.1: ODE on standard form. Provided we consider a
reaction system that is closed in the sense that no enzyme, substrate
or complex are externally added or removed, we can consider the
dynamics (2.3) to constitute an autonomous system, since there are
then no external signals acting on it once the reaction has started.
We can also note that (2.3) describes a time-invariant system, since
there is no explicit time-dependence of the right-hand-side. Thus, we
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can re-write (2.3) onto the standard form of a an autonomous time-
invariant differential equation, ̇𝒙 = 𝒇 (𝒙). To do this, we need to
introduce state variables. In Section 3.3 the choice of state variables
will be discussed further, but often it is possible to choose states with
some natural physiological interpretation. This is indeed the case for
(2.3), where a natural state choice is constituted by

𝒙 = [𝐸 𝑆 𝑋𝐸𝑆 𝑃]
⊤

= [𝑥1 𝑥2 𝑥3 𝑥4]
⊤

. (2.4)

With this choice, we see that 𝒇 has four components, one per equation
in (2.3):

̇𝑥1 = 𝑓1(𝒙) = 𝑓1(𝑥1, 𝑥2, 𝑥3, 𝑥4) = −𝑘1𝑥1𝑥2 + (𝑘−1 + 𝑘2)𝑥3, (2.5a)
̇𝑥2 = 𝑓2(𝒙) = 𝑓1(𝑥1, 𝑥2, 𝑥3, 𝑥4) = −𝑘1𝑥1𝑥2 + 𝑘−1𝑥3, (2.5b)
̇𝑥3 = 𝑓3(𝒙) = 𝑓1(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑘1𝑥1𝑥2 − (𝑘−1 + 𝑘2)𝑥3, (2.5c)
̇𝑥4 = 𝑓4(𝒙) = 𝑓1(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑘2𝑥3. (2.5d)

We end the example by noting that we regard 𝑓3 as a function of
𝑥1, 𝑥2, 𝑥3, 𝑥4 despite not explicitly being dependent on 𝑥4. This will
turn out convenient, for example when we consider local linear ap-
proximations of 𝒇 in Section 4.2.

Knowing the dynamic (2.3), equivalently expressed as (2.5), is not suf-
ficient to simulate the model. To do that, we additionally need boundary
conditions for the differential equation system to have a unique solution.
One such set of boundary conditions is to specify the state at time 𝑡 = 0
through 𝒙(0) = 𝒙0, where

𝒙0 = [𝐸0 𝑆0 0 0]⊤. (2.6)

In Sections 2.2 and 2.3 we will look into how we can simulate the resulting
initial value problem using numeric software algorithms.

Michaelis-Menten kinetics
In the often physiologically relevant situation of substrate excess, the pro-
duction rate is limited by the concentration of enzyme within the reac-
tion system. Assuming the system reaches a dynamic equilibrium in the
sense that the concentration of enzyme-substrate complex 𝑋𝐸𝑆 is constant,
we can combine the equivalent condition �̇�𝐸𝑆 = 0 with (2.3c) to obtain
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0 = 𝑘1𝐸𝑆 − (𝑘−1 + 𝑘2)𝑋𝐸𝑆, that we can then rewrite as

𝐸𝑆 = 𝑘−1 + 𝑘2
𝑘1⏟⏟⏟⏟⏟
𝐾𝑚

𝑋𝐸𝑆. (2.7)

Assuming an initial condition where all enzyme is unbound, 𝑋𝐸𝑆(0) =
0, 𝐸(0) = 𝐸0, conservation of mass within the reaction system gives us
𝐸(𝑡) + 𝑋𝐸𝑆(𝑡) = 𝐸0 for all times, 𝑡, and we can insert 𝐸0 − 𝑋𝐸𝑆 in place of
𝐸 in (2.7) to obtain 𝐸𝑆 = (𝐸0 − 𝑋𝐸𝑆)𝑆 = 𝐾𝑚𝑋𝐸𝑆, that we can rewrite as

𝑋𝐸𝑆 = 𝐸0𝑆
𝐾𝑚 + 𝑆. (2.8)

Finally, combining (2.8) with (2.3d), we obtain the Michaelis-Menten kinet-
ics2

�̇� = 𝑣 = 𝑘2𝐸0𝑆
𝐾𝑚 + 𝑆 = 𝑣max𝑆

𝐾𝑚 + 𝑆, (2.9)

where 𝐾𝑚 is the Michaelis-Menten constant, and 𝑣 = �̇� is the production
rate. Assuming an abundance of substrate, such that 𝑆 → ∞ and 𝑆 ≫ 𝐸0
we have that

𝑣max = lim
𝑆→∞

𝑣 = lim
𝑆→∞

𝑘2𝐸0𝑆
𝐾𝑚 + 𝑆 = 𝑘2𝐸0. (2.10)

Thus 𝑣max = 𝑘2𝐸0 constitutes an upper limit for the production rate 𝑣, and
this upper limit is approached when there is an abundance of substrate.

Example 2.2: Linear production rate. Assume an enzymatic
reaction system of the form (2.3), that has reached an equilibrium
at which �̇�𝐸𝑆 = 0, and that there is an abundance of substrate so
that (2.10) is a good approximation. Then, the production rate can
be expressed

𝑃(𝑡) = ∫
𝑡

0
�̇�(𝜏)𝑑𝜏 = 𝑃(0) + 𝑣max𝑡. (2.11)

So in this case, with an abundance of substrate, plotting the amount
of formed product against time would form a straight line with in-
clination 𝑣max, and passing through (𝑡, 𝑃) = (0, 𝑃(0)).

2 Kinetics and dynamics can be used interchangeably here. Kinetics is the study of how
something (here enzyme) moves, and thus a somewhat more precise term than dynamics.
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The Lineweaver-Burk plot
In its standard form (2.9), the Michaelis-Menten kinetics relate substrate
concentration 𝑆 to production rate 𝑣. If we introduce the variable transfor-
mation (reversible change of variables)

𝑆′ = 1/𝑆, (2.12a)
𝑣′ = 1/𝑣, (2.12b)

we can rewrite (2.9) as

𝑣′ = 1
𝑣 = 𝐾𝑚 + 𝑆

𝑣max𝑆 = 𝐾𝑚 + 1/𝑆′

𝑣max/𝑆′ = 𝐾𝑚𝑆′ + 1
𝑣max

= 𝐾𝑚
𝑣max

𝑆′ + 1
𝑣max

. (2.13)

The plot of 𝑆′ = 1/𝑆 against 𝑣′ = 1/𝑣 is called the Lineweaver-Burk di-
agram or plot. For the Michaelis-Menten kinetics it constitutes a straight
line, as shown below in Example 2.3.

Example 2.3: Lineweaver-Burk diagram. Let us assume that
we have are studying an enzymatic reaction with 𝐾𝑚 = 2 and 𝑣max =
1/3 (in some unit system). In Figure 2.4 we have plotted 𝑣 against
𝑆, using (2.9). From this plot, it is not straightforward to determine
the Michaelis-Menten constant 𝐾𝑚.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

𝑣max = 1/3

𝑆

𝑣

Figure 2.4 Production rate 𝑣 plotted against substrate concentra-
tion 𝑆 for the Michaelis-Menten dynamics of the example.

If we instead plot 𝑣′ = 1/𝑣 against 𝑆′ = 1/𝑆 we obtain Figure 2.5,
showing the relation (2.13). Indeed, we can directly see from (2.13)
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2.2 Finite-difference approximations

that the plot should be a straight line with slope 𝑘 = 𝐾𝑚/𝑣max = 6
that intersects the 𝑣′-axis at 𝑚 = 1/𝑣max = 3.

0
0

Δ𝑆′

Δ𝑣′

Δ𝑣′

Δ𝑆′ = 𝑘 = 𝐾𝑚
𝑣max

= 61
𝑣max

= 3

𝑆′ = 1
𝑆

𝑣′ = 1
𝑣

Figure 2.5 Transformed variables 𝑣′ = 1/𝑣 and 𝑆′ = 1/𝑆 plotted
against each other for the same Michaelis-Menten dynamic as shown
in Figure 2.4.

Reading out the slope 𝑘 and 𝑣′-axis intersection 𝑚 from a
Lineweaver-Burk plot allows us to retrieve

𝐾𝑚 = 𝑘
𝑚, (2.14a)

𝑣max = 1
𝑚. (2.14b)

2.2 Finite-difference approximations

In Section 1.3 we established fundamental concepts and nomenclature for
dynamical system modeling, and in Section 2.1 we just saw a concrete ex-
ample of how ordinary differential equation (ODE) models can be used to
describe physiological dynamics. But what if we want to simulate the en-
zyme kinetics of (2.3), or more generally an ODE on the form

̇𝒙 = 𝒇 (𝒙, 𝒖, 𝑡), (2.15a)
𝒙(0) = 𝒙0, (2.15b)

as outlined in Section 1.3?
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Chapter 2. Simulating differential equation models

First of all, to simulate or solve—the words can be used interchange-
ably here—the system (2.15) refers to determining 𝒙(𝑡). Since (2.15a) only
determines the rate of change of the state 𝒙 resulting from some input 𝒖,
the model also needs to be “grounded” by some boundary condition, as il-
lustrated in Example 2.4 below.

Example 2.4: Initial conditions. Assume we have a system with
a scalar state 𝑥 and autonomous dynamics described by

̇𝑥 = 𝑓 (𝑥) = −𝛼𝑥, (2.16)

for some real 𝛼 > 0. Then we can verify that

𝑥(𝑡) = 𝑒−𝛼𝑡 + 𝑐 (2.17)

solves (2.16), since

̇𝑥 = 𝑑
𝑑𝑡 (𝑒−𝛼𝑡 + 𝑐) = −𝛼𝑒−𝛼𝑡 = −𝛼𝑥. (2.18)

But to determine the real number 𝑐, we need some boundary condi-
tion. If 𝑥(𝑡0) = 𝑥0 is known, we can use (2.17) to determine 𝑐:

𝑥(𝑡0) = 𝑒−𝛼𝑡 + 𝑐 = 𝑥0 ⇒ 𝑐 = 𝑥0 − 𝑒−𝛼𝑡0. (2.19)

It is conventional to choose 𝑡0 = 0. In fact, this is not much of a
limitation, since if we have 𝑡0 ≠ 0, we can introduce the shifted time
variable 𝜏 = 𝑡 − 𝑡0, and say that our “new 𝑡” is 𝜏.

As in Example 2.4, we will assume throughout the book that the state
𝒙(𝑡0) = 𝒙0 is known at some initial time 𝑡0. Together with (2.15a) this
constitutes what is called an initial value problem (IVP)3.

For some special 𝒇 it is therefore possible to solve (2.15) analytically .
This means that the solution is a symbolic expression for 𝒙 like the one in
(2.17), that can be directly evaluated without numeric approximation of the
expression. Due to this property, such expression are referred to as being of
“closed form”. Notably, and further investigated in Section 4.3, linear time-
invariant (LTI) systems—that is, systems where 𝒇 is a linear function of 𝒙
and 𝒖—have analytic solutions. But for most 𝒇, we need to rely on numerical
methods to solve (2.15). Such methods are referred to as numeric integra-
tion methods, since they are concerned with numerically approximating the

3 Other possibilities also exist. For example, reconstructing the historic state using (2.15a)
together with a known end-time state is referred to as an final value problem (FVP).
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2.2 Finite-difference approximations

integral

𝒙(𝑡) = ∫
𝑡

𝑡0

̇𝒙(𝜏) 𝑑𝜏 = ∫
𝑡

𝑡0

𝒇 (𝒙(𝜏), 𝒖(𝜏), 𝜏) 𝑑𝜏. (2.20)

The arguably simplest way to approximate a derivative

𝑑𝑥
𝑑𝑡 = lim

ℎ→0+

𝑥(𝑡 + ℎ) − 𝑥(𝑡)
ℎ , (2.21)

is to not take the limit, but instead evaluate the right-hand-side of (2.21)
for some small, but finite, ℎ, resulting in the approximation

̇𝑥 ≈ 𝑥(𝑡 + ℎ) − 𝑥(𝑡)
ℎ . (2.22)

The right-hand-side of (2.22) is referred to as a finite difference approxima-
tion, since ℎ is a finite difference, as opposed to in (2.21), where it is instead
inifinitesimal.

Forward Euler. Going back to (2.15), assuming we know 𝒙(𝑡) and 𝒖(𝑡),
we can evaluate ̇𝒙(𝑡) and use it in (2.22) to approximate 𝒙(𝑡 + ℎ) as

𝒙(𝑡 + ℎ) ≈ 𝒙(𝑡) + ℎ ̇𝒙(𝑡). (2.23)

Iteratively applying (2.23) we can thus obtain approximations of 𝒙(𝑡 + ℎ),
𝒙(𝑡 + 2ℎ), 𝒙(𝑡 + 3ℎ), and so on. Using a known initial state 𝒙0 = 𝒙(𝑡0) to
ground the solution, it is possible to approximate 𝒙 at 𝑡0 +𝑘ℎ for all integers
𝑘 > 0.

The described method of numerically solving, or rather approximating
the solution of, an ODE is referred to as forward, or explicit, Euler. It is
named after 18th century mathematician Leonard Euler, who made the
method popular. Forward, because it relies on 𝒙 at the current time 𝑡 to
approximate 𝒙 at the future time 𝑡+ℎ. Explicit, because the approximation
of 𝒙(𝑡 + ℎ) is an explicit (direct) function of the known 𝒙(𝑡), 𝒖(𝑡), and 𝑡.
The method is simple, but relies on an adequate choice of step length, as
illustrated in Example 2.5 below.

Example 2.5: Forward Euler approximation errors. Let us
return to the initial value problem of Example 2.4, with 𝛼 = 1, 𝑡0 =
0, and 𝑥0 = 1. The IVP we want to find an approximate solution to
is

̇𝑥 = −𝑥, (2.24a)
𝑥(0) = 1. (2.24b)
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Chapter 2. Simulating differential equation models

We already know from Example 2.4 that an exact solution is 𝑥(𝑡) =
𝑒−𝑡, shown in Figure 2.6.
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and ℎ = 0.01

ℎ = 0.1

ℎ = 0.5

ℎ = 2.0
see image below
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0

0.5
1

ℎ = 2.0

Figure 2.6 Exact solution of (2.24) together with approximation
based on ℎ = 0.01, ℎ = 0.5, and ℎ = 2.

For a given step length ℎ, the forward Euler method gives us

̂𝑥(𝑡 + ℎ) = ̂𝑥(𝑡) + ℎ ̇𝑥(𝑡) = ̂𝑥(𝑡) + ℎ𝑓 (𝑥) = (1 − ℎ) ̂𝑥(𝑡), (2.25)

where the hat over 𝑥 signifies that ̂𝑥 is an approximation of 𝑥. Recur-
sive application of the method gives us the forward Euler approxi-
mate solution

̂𝑥(𝑘ℎ) = (1 − ℎ)𝑘𝑥0 = (1 − ℎ)𝑘. (2.26)

We have plotted the forward Euler approximation of the solution 𝑥
for some values of ℎ together with a plot of the actual solution in
Figure 2.6. Particularly, we can note that for ℎ > 1, the approximate
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2.2 Finite-difference approximations

solution maintains an undamped oscillation as 𝑡 → ∞, while the
true solution tends to zero.

Choosing a sufficiently small value of the step length ℎ is therefore re-
quired. There are, however, two problems associated with this. Firstly, it be-
comes more computationally expensive with decreasing the step size, since
the approximation of the solution will then be evaluated at a larger number
of time points. Secondly, real numbers are represented using finite resolu-
tion floating point numbers inside digital computers. Thus, the machine
precision 𝜖 constitutes a lower feasibility bound for ℎ, since (2.23) would re-
sult in 𝑥(𝑡 + ℎ) = 𝑥(𝑡) for any positive ℎ < 𝜖, corresponding to the constant
solution 𝑥(𝑡) ≡ 𝑥0.
Backward Euler. An alternative to forward, or explicit, Euler, is consti-
tuted by the reverse, or implicit, Euler method. In it, ̇𝒙(𝑡 + ℎ) ≈ (𝑥(𝑡 + ℎ) −
𝑥(𝑡))/ℎ is approximated instead of ̇𝒙(𝑡), resulting in

𝒙(𝑡) ≈ 𝒙(𝑡 + ℎ) − ℎ ̇𝒙(𝑡 + ℎ) = 𝒙(𝑡 + ℎ) − ℎ𝒇 (𝒙(𝑡 + ℎ), 𝒖(𝑡 + ℎ), 𝑡). (2.27)

Denoting 𝒙(𝑡) with 𝒙, 𝑡 + ℎ with 𝑡+, 𝒙(𝑡+) with 𝒙+, and 𝒖(𝑡+) with 𝒖+, we
can rewrite (2.27) as

𝒙 ≈ 𝒙+ − ℎ𝒇 (𝒙+, 𝒖+, 𝑡+). (2.28)

Replacing the approximate equality with a true one, we can solve (numer-
ically) for 𝒙+. This explains why the backward Euler method is also called
implicit, as the approximation only provides an implicit solution in the form
of (2.28), that then needs to be solved in each time step. Below in Exam-
ple 2.6, the explicit and implicit Euler methods are illustrated on a scalar
example.

Example 2.6: Implicit Euler. Let us again consider the IVP of
Example 2.5. The backward Euler method (2.27) provides the fol-
lowing update equation:

̂𝑥(𝑡) = ̂𝑥(𝑡 + ℎ) − ℎ ̇̂𝑥(𝑡 + ℎ) = (1 + ℎ) ̂𝑥(𝑡 + ℎ). (2.29)

Solving (2.29) for ̂𝑥(𝑡 + ℎ) we obtain

̂𝑥(𝑡 + ℎ) = (1 + ℎ)−1 ̂𝑥(𝑡), (2.30)

and through recursion

̂𝑥(𝑘ℎ) = (1 + ℎ)−𝑘𝑥0 = (1 + ℎ)−𝑘. (2.31)
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Figure 2.7 shows the true solution alongside explicit Euler for ℎ =
0.5 in dashed, and implicit Euler for the same ℎ in dotted.
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Figure 2.7 The true solution of (2.24), together with implicit and
explicit Euler for ℎ = 0.5.

As can be seen in Figure 2.7, the implicit Euler method provides
better approximations, which is commonly the case.

The finding of Example 2.6 generalizes, and implicit methods often out-
perform explicit ones, when it comes to approximation error for a given step
length. However, they require solving an equation in each iteration. In Ex-
ample 2.6 that equation, (2.28), had a simple analytic solution, but for more
complicated 𝒇 it typically does not. This means that while explicit methods
generally have faster execution times per time step, they require shorter
time steps to perform equally well in terms of approximation error.

Difference equations
Finite difference approximations turn differential equations into difference
equations. If the infinitesimal 𝑑𝑡 is approximated with a (small) positive
real number ℎ, an expression containing the differential operator 𝑑/𝑑𝑡 is
turned into an ordinary function of ℎ. Let us first illustrate this with a
simple example
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2.3 Higher-order and adaptive step length methods

Example 2.7: Difference equation approximation. Let us con-
sider the enzyme kinetics ODE (2.3). Applying the forward Euler
approximation (2.23) to its first equation (2.3a), we obtain

𝐸(𝑡 + ℎ) = 𝐸(𝑡) + ℎ(−𝑘1𝐸(𝑡)𝑆(𝑡) + (𝑘−1 + 𝑘2)𝑋𝐸𝑆(𝑡)), (2.32)

Just like the differential operator 𝑑/𝑑𝑡 acts on whatever stands to
the right of it, we can introduce a time-shift operator 𝑞 that shifts
any function of time by ℎ, so that 𝑞𝑓 (𝑡) = 𝑓 (𝑡 + ℎ). This helps us
simplify the notation, and we can write (2.32) as

𝑞𝐸 = 𝐸 − ℎ𝑘1𝐸𝑆 + ℎ(𝑘−1 + 𝑘2)𝑋𝐸𝑆. (2.33)

We can do the same for the remaining equations of (2.3), thus turn-
ing the differential equation into a system of difference equations.

Turning an ordinary differential equation (one in 𝑑/𝑑𝑡) into a differ-
ence equation (one in 𝑞) is referred to as discretizing the ODE. Relatedly,
while ODE system models are referred to as being continuous-time mod-
els, difference equation system models are referred to as a discrete time
ones. The focus of this book is on continuous-time models. For readers that
have a background in digital signal processing—a subject that deals with
discrete-time systems—it should be worthwhile to build an understanding
of how the two relate. If you do not, there is no need to worry, and you can
view the time shift operator 𝑞 as a side note.

2.3 Higher-order and adaptive step length methods

Both the explicit and implicit Euler methods are first-order methods. This
property refers to the function 𝒇 being approximated through a truncated
Taylor series, where terms of order exceeding one are discarded. In case of
explicit Euler approximation (2.23), the associated Taylor series is

𝒙(𝑡 + ℎ) = 𝒙(𝑡) + ℎ ̇𝒙(𝑡) + O(ℎ2), (2.34)

where O(ℎ2) denotes the approximation error and informs that it con-
sists of quadratic and higher order terms in ℎ. Since the first error term
is quadratic (of order two), the Euler methods are referred to as first-order
methods.

The Runge-Kutta (RK) methods, named after German mathematicians
Runge and Kutta, are generalizations of the Euler’s method, in that they
also consider inclusion of higher-order terms in the truncated Taylor series
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Chapter 2. Simulating differential equation models

used to represent 𝒇. The original Runge-Kutta method, RK4, includes terms
up to order four, and thus has an approximation error of O(ℎ5).

Just like we saw in Example 2.5 that the approximation error could be
decreased by decreasing the step size ℎ, it can also be decreased by increas-
ing the method order. But, particularly for implicit methods, using high-
order approximation of 𝒇 becomes computationally expensive.

In general, a larger step size can be allowed for times 𝑡, where 𝒙 changes
slowly, than for other 𝑡, where 𝒙 changes more abruptly. This inspires the
use of adaptive step lengths. But since the studied problem is to find an
approximation of 𝒙, we do not beforehand know at which times we can get
away with taking longer integration steps, and at which we should instead
decrease step size to maintain an acceptably small approximation error 𝒙−

̂𝒙. A common method for step length adaptation is to run two RK methods
in parallel. The step length ℎ for the considered step is then adaptively
decreased until the difference between the RK4 and RK5 methods for the
considered step is smaller than some admissible threshold.

In this book, all simulation examples were generated with an explicit
RK45 solver, unless otherwise stated. In fact, it is often a sufficient solver for
ODEs that are not stiff, meaning that the derivatives of 𝒇 vary sufficiently
slowly.

Numerical solver software
Many programming languages have packages or libraries that provide uni-
fied interfaces to suites of numeric ODE integrators, for example the com-
mon implicit and explicit Runge-Kutta methods. To solve an initial value
problem, the user typically needs to define the right-hand-side function 𝒇 of
the ODE as a function within the language, typically with a signature like

def xdot=f(t,x)
u=getu(t,x)
xdot=...

return

where getu fetches the input from a memory area or a function that com-
putes the input based on the current time, and possibly the current state.
The user then passes the name of the function, in our example f to the ODE
integrator, together with an initial value. This could look like

x,t=solve(f,tstart,tstop,x0,method)

where tstart and tstop specify the time range of interest, x0 is a vector con-
taining the initial value, and the solution states x are returned as a matrix,
where each column (or row) corresponds to one time instance, stored in the
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2.3 Higher-order and adaptive step length methods

vector t. In our example method indicates which of the available solver algo-
rithms will be used. An important observation is that f is never invoked by
the user, only by the solver.

Many ODE integrators also have additional features, like the possibility
to obtain solutions when some user-defined function of x or t crosses zero.
This is often implemented by registering a callback function, and it enables
for example obtaining solutions at user-specified times within the simula-
tion model (like every second) or when a particular variable attains a value
of interest. The latter is particularly interesting for hybrid models, that
have some dynamics for certain values of x and other dynamics for others.
The classic example is a bouncing ball, that has two distinct regimens: free
in space and ground contact. In order to simulate such system, the ODE
integrator will need to provide a solution exactly for the time when the ball
hits the ground, since the “free in space” dynamics do not apply anymore
from that time on, until the ball leaves the ground again.

Further reading. If you are interested to learn more about the
Michaelis-Menten model, [Johnson and Goody, 2011] is a good re-
source.
Linear differential equations play a central role in dynamical mod-
eling and control systems design. For a thorough background, we
recommend [Åström and Wittenmark, 1984].
More generally, numerical analysis studies, among other things,
the accuracy of numerical solutions to differential equations. Due
to the importance of this topic within essentially all disciplines
of engineering, there exist a rich literature within the area. One
example, particularly targeting initial value problems (which have
been our focus in this chapter) is [Lambert, 1991].

Johnson, K. A. and R. S. Goody (2011). “The original Michaelis con-
stant: translation of the 1913 Michaelis–Menten paper”. Bio-
chemistry 39, pp. 8264–8269. doi: 10.1021/bi201284u.

Åström, K. J. and B. Wittenmark (1984). Computer-controlled sys-
tems: theory and design. Prentice Hall, Hoboken, NJ. isbn: 978-
0486486130.

Lambert, J. D. (1991). Numerical methods for ordinary differential
equation systems: the initial value problem. Wiley, New York.
isbn: 978-0471929901.
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3
Compartment models

Learning goals
After reading this chapter you should (be able to)

• Explain what a compartment model is.

• Distinguish between common compartment model topologies.

• Know what rate constants are.

• Determine if a particular LTI state space model represents a
compartmental system, and if so draw its topology.

• Derive differential equation system representations for linear
compartment models.

• Describe what is meant by state space and represent an LTI
system of differential equations on state-space form.

• Be able to perform state transformations, for example mov-
ing between compartment models where the states represent
masses and concentrations, respectively.
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3.1 Pharmacokinetics

3.1 Pharmacokinetics

Historic Note. Pharmacokinetics, PK for short, is the study of how
drug is taken up by, distributed within, and eliminated from the body.
The field was pioneered by Swedish researchers Erik Widmark and
Torsten Teorell. Widmark studied ethanol kinetics within the body, and
in 1922 he published a paper with an equation corresponding to a one-
compartment model. The proper introduction of modern pharmacoki-
netics took place in 1937, when Torell published a two-part paper ti-
tled “Kinetics of distribution of substances administered to the body”,
in which compartment models were used to describe drug PK. The first
part considered extravehicular drug administration, while the second
part considered intravascular. A schematic illustration from Teorell’s
work shown in Figure 3.1 summarizes the basic idea: the body tissues
are divided into compartments, between which drug (or another sub-
stance of interest) flow.

Figure 3.1 Schematic illustration of pharmacokinetic compartment
model by Torsten Teorell.

Compartments
The human body can be partitioned into fluid compartments, as schemat-
ically illustrated in Figure 3.2. In pharmacology, compartment models are
used to describe the kinetics of substances as they move between compart-
ments. For intravenously administered drugs, the blood plasma constitutes
a natural choice of compartment, and if it holds a given mass 𝑚 of substance
the concentration within the plasma compartment is given by 𝜌 = 𝑚/𝑣,
where 𝑣 is the blood plasma volume, also referred to as the volume of dis-
tribution (of the plasma compartment). At least conceptually, the volume of
distribution can be determined experimentally as outlined in Example 3.1
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Figure 3.2 Schematic illustration of fluid compartments of the human
body.

Example 3.1: Volume of distribution. The following procedure
can be used to determine the volume of distribution of a compart-
ment:

1. Inject mass 𝑚+ of the considered substance into the compart-
ment of interest, and ensure no additional substance enters,
or is synthesized within, the compartment.

2. Monitor the concentration of the substance within the com-
partment and await equilibrium. Denote the equilibrium con-
centration 𝜌.

3. Estimate mass 𝑚− of substance that has left the compart-
ment, for example through metabolism or through transport to
a communicating compartment. (More on communication be-
tween compartments will follow shortly.)

The volume of distribution 𝑣 can now be determined as

𝑣 = 𝑚+ − 𝑚−

𝜌 . (3.1)

While the procedure is conceptually simple, it has its practical lim-
itations. Particularly, estimating 𝑚− can be practically infeasible.
Parameters of compartment models are therefore instead often esti-
mated from the dynamic evolution of concentration following injec-
tion of a substance, rather than from the arising steady state levels.
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A compartment can also be an abstract construct. For example, some
drugs have dynamics that are well-explained by a model with three com-
partments, but where there is no (obvious) mapping between these com-
partments and anatomy. In fact, there are numerous examples, where a
compartment model best fits the data when a compartment has a volume
exceeding that of the human body. It is therefore often more meaningful
to think of compartment models as an abstraction that replicate input—
output behavior, such as the blood ethanol level after drinking a beer, than
a verbatim anatomical model were each compartment has a clear interpre-
tation. What this all means will hopefully become a bit clearer, once we
reach Example 3.5.

Transport between compartments
Drugs and other substances can move between body fluid compartments,
by one of several mechanisms:

• Diffusion is the movement of a substance from a compartment with
higher concentration to one with lower.

• Osmosis is the movement of a substance across a selective membrane.

• Filtration is the movement of a fluid (containing the substance) from
a compartment with higher hydrostatic pressure to one with lower.

• Active transport processes are ones where energy is continuously
added to drive transport against gradients.

Both diffusion and osmosis are passive transport processes striving to-
ward concentration equilibrium. In this context, passive means that no en-
ergy addition is needed to drive the process (although at some point energy
has been added to achieve the gradient driving the process.) Filtration is
a third example of passive transport process, where the gradient is one in
hydrostatic pressure.

In contrast, active transport mechanisms rely on exogenously added en-
ergy to drive transport against (concentration, pressure, or other) gradi-
ents.

Compartment topologies
Compartment models can be of several structures or topologies. A few com-
monly encountered such topologies have special names:

• Catenary refers to a topology where compartments only communicate
with their nearest neighbor, forming a chain.
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Figure 3.3 Common compartment model topologies: catenary (left), mam-
milary (center), and cyclic (right).

• Mamillary (as in mammal) refers to a topology where all peripheral
communicate only with a single central compartment.

• Cyclic refers to a catenary model where the two end compartments
communicate with each other, thus forming a cycle.

Examples of the model types above are illustrated in Figure 3.3. Note that
there exist some overlap. For example, a model with only two compartments
that communicate with each other is catenary, mammillary and cyclic at the
same time.

Example 3.2: Adjacency matrix. Element 𝐸𝑖𝑗 of the adjacency
matrix 𝐸 of a graph equals 1 if there is an edge from node 𝑖 to node
𝑗, and 0 otherwise. Regarding compartments as nodes in a graph,
adjacency matrices of the models in Figure 3.3 can be obtained after
numbering the compartments. If we number them from left to right
for each of the models, we get:

• Catenary:

𝐸 =

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

(3.2a)
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• Mammillary:

𝐸 =

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

(3.2b)

• Cyclic:

𝐸 =

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

(3.2c)

We can note that if we number in another way, for example replacing
2 ↔ 3, this corresponds to swapping rows 2 ↔ 3 and columns 2 ↔ 3
in the adjacency matrix.

Another note worth taking is that we are not interested in the diag-
onal elements of the adjacency matrix here. It makes no difference
to the dynamics whether a compartment has a direct flow-path to
itself. Therefore, we have simply chosen to let all diagonal elements
of 𝐸 equal 0.

In Figure 3.3 all compartment-compartment communication is bi-
directional. How would (3.2) change if the edge 2 → 3 was removed?

All compartment models have a special “compartment” that is not explic-
itly drawn in schematic pictures like the ones in Figure 3.3. This compart-
ment is the environment, modeling “everything else”. The environment can
be thought of as a compartment with infinite volume, that takes up all space
in the schematic pictures that is consumed by the other compartments. We
distinguish between

• Closed models, in which there is no communication between the envi-
ronment and the other compartments.

• Open models, in which at least one compartment communicates with
the environment.

In a schematic drawing of an open model, communication with the environ-
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ment is depicted as either an arrow pointing towards a compartment or out
from a compartment, as we will see in Example 3.5. It is common to number
the compartments of the model using the natural numbers 1, … and reserve
0 to denote the environment. Flow from the environment is regarded as an
input to the system. A closed model therefore constitutes an autonomous
system, since it has no inputs.

Apart from possible communication with the environment, we will as-
sume that communication between compartments is bi-directional, as il-
lustrated in Figure 3.3. It is of course possible to devise compartment mod-
els with directed (uni-directional) communication between some compart-
ments, and this typically signals that the communication between them is
the result of an active transport process.

As a final note, and as the careful reader might already have observed,
the compartment “extracellular fluid” in Figure 3.2 is itself the union of
other compartments. Defining new compartments as unions of others fits
the formalism well, as we can write down mass balances by considering the
connection going into or out of the group. Models where this is done are
referred to as hierarchical or nested compartment models.

3.2 Compartmental dynamics

State variable selection
In Section 3.1 we have already seen a few examples of compartment mod-
els. In this section we will look closer at how we can describe the kinetics
(dynamics) of these models using ODE systems.

As we have already touched upon in Example 1.3, there are typically in-
finitely many equivalent state space representations for any given dynam-
ical system. When modeling, it is often beneficial to select state variables
that have a physiological (or more generally physical) interpretation. For a
compartment models with 𝑛 compartments (not counting the environment),
there are two such natural choices: the compartment substance masses

𝒙 = 𝒎 = [𝑚1 … 𝑚𝑛]
⊤

, (3.3a)

or the compartment substrate concentrations

𝒙 = 𝝆 = [𝜌1 … 𝜌𝑛]
⊤

. (3.3b)

Note that the environment, “compartment 0” is excluded from the state vec-
tor, since it has infinite volume. In the literature, the letter 𝒒 for quantity
is often used in place of the 𝒎 in our notation.
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Letting 𝑉 be a matrix with diagonal elements 𝑣1, … , 𝑣𝑛, and all off-
diagonal elements 0, we then have that

𝑉𝝆 = 𝒎. (3.4a)

Under the reasonable assumption that all compartment volumes are
strictly positive and finite—remember, the infinite-volume environment
with index 𝑘 = 0 is excluded from the state vector—the inverse of 𝑉 is
well-defined since 0 < det 𝑉 = 𝑣1 ⋯ 𝑣𝑛 < ∞, since the determinant of 𝑉 is
in this case simply the product 𝑣1 ⋯ 𝑣𝑛 We can rewrite (3.4a) as

⎡⎢⎢⎢⎢
⎣

𝜌1

⋮

𝜌𝑛

⎤⎥⎥⎥⎥
⎦⏟

𝝆

=
⎡⎢⎢⎢⎢⎢
⎣

1
𝑣1

0

⋱

0 1
𝑣𝑛

⎤⎥⎥⎥⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑉−1

⎡⎢⎢⎢⎢
⎣

𝑚1

⋮

𝑚𝑛

⎤⎥⎥⎥⎥
⎦⏟

𝒎

. (3.4b)

The matrices 𝑉 and 𝑉−1 can therefore be viewed as transforms taking
us back and forth between the state representations 𝒙 = 𝒎 and 𝒙 = 𝝆, and
we will take a closer look at such transformations in Section 3.3.

A third possible state representation would be to use the molarity
[mol L−1], expressing the number of substance particles per volume, as state
variables. Yet another possibility would be to represent the state in some
compartments as their mass content, in others as the concentration, and
in yet others as molarity. While this would be possible, it is rarely practi-
cal. So which of all possible state representations should one choose? Often
it comes down to what one wants to track. If we are interested in concen-
trations, it makes sense to use them also to represent the system state.
In some occasions it might, however, be that certain state variable choices
come with computational advantages, and we will get back to this in Sec-
tions 3.3 and 4.3.

The compartment models that we focus on in this chapter describe the
transport of substance between compartments. This focus is motivated by
the usefulness of compartment models in pharmacological modeling. How-
ever, compartment models have a broader use. For example, we can utilize
the compartment model paradigm to model the flow of (heat) energy or elec-
tric charge. In fact, the variable does not have to be a physiological, or even
a physical entity.

Balance equations
Regardless of how transport between compartments take place, compart-
ment model dynamics are governed by (mass) balance equations. In our
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case, the rate of change �̇� within the compartment may have the following
contributors:

+ exogenous inflow;

+ endogenous production;

- endogenous consumption;

- exogenous outflow.

Let 𝜑𝑖𝑗 [kg s−1] be the flow of substance mass from compartment 𝑖 =
1, … , 𝑛 to compartment 𝑗 = 0, … , 𝑛, where, again, compartment 0 is the
environment.

Here we choose to model consumption within compartments as outflow
to the environment, since the two are equivalent from the perspective of
individual compartments: mass is removed. This explains why we include
the destination index 𝑗 = 0, but not the source index 𝑖 = 0. Furthermore, it
is nonsensical to model flow from a compartment to itself, so we set 𝜑𝑖𝑖 = 0
for all compartment indices 𝑖.

Denoting the exogenous substance mass inflow 𝜑0𝑖 from the environ-
ment to compartment 𝑖 = 1, … , 𝑛 by 𝑢𝑖, we can now write down a mass
balance equation for our compartment model:

�̇�𝑖 =
𝑛

∑
𝑗=1

(𝜑𝑗𝑖 − 𝜑𝑖𝑗) − 𝜑𝑖0 + 𝑢𝑖. (3.5)

Here 𝑢 represents the sum of exogenous inflow and endogenous production.
While formulation (3.5) is general and can express any compartment

model, it is not very useful without further elaboration, since it does not
explicitly address the kinetics (dynamics) governing the flows 𝜑𝑖𝑗. If we as-
sume that the flows are explicit functions of the state, and possibly also
the input and time, then we have that 𝜑𝑖𝑗(𝒎, 𝒖, 𝑡), where 𝒎 = 𝒙. This
means that we can express the ODE on the standard form (1.6), with
𝒇 = [𝑓1, … , 𝑓𝑛]⊤, where

𝑓𝑖(𝒎, 𝒖, 𝑡) =
𝑛

∑
𝑗=1

(𝜑𝑗𝑖(𝒎, 𝒖, 𝑡) − 𝜑𝑖𝑗(𝒎, 𝒖, 𝑡)) − 𝜑𝑖0 + 𝑢𝑖 (3.6)

for 𝑖 = 1, … , 𝑛.
Using (3.4) we can replace 𝒎 with 𝑉−1𝝆 if we prefer to model the com-

partment substrate concentration, rather than the masses.
We still have a very general compartment model. For example, we can

use it to model scenarios where 𝑉 is time-varying. A physiological situation
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3.2 Compartmental dynamics

where this occurs is when one of the volumes model the blood plasma of
a patient that bleeds as a result of trauma (volume decrease) or receives
intravenous fluid (volume increase).

Before moving on, let us consider a few types of kinetics that the indi-
vidual components of Φ can model:

1. Michaelis-Menten There are situations where elimination from a par-
ticular compartment follows the Michaelis-Menten kinetics intro-
duces in Section 2.1. For example, assume that the substrate 𝑆 is a
drug that is converted into a product substance 𝑃 though an enzy-
matic reaction that follows the Michaelis-Menten kinetics (2.9), and
that this reaction takes place within the blood plasma of the patient.
Denoting the plasma drug concentration by 𝜌, there is an elimination
that contributes to the change rate in plasma drug concentration with
𝑣max𝜌/(𝐾𝑚 + 𝜌).

2. Zero-order elimination This type of kinetics arises when substance is
removed from a compartment with constant rate 𝑘 so that ̇𝜌 = −𝑘.
For example, zero-order kinetics with 𝑘 = 𝑣max is a good approxi-
mation of Michaelis-Menten kinetics when 𝜌 ≫ 𝐾𝑚, which leads to
𝑣max𝜌/(𝐾𝑚 + 𝜌) ≈ 𝑣max.

LTI compartment models
While we have listed a few examples of nonlinear compartment kinetics
and provided an example where time-varying volumes are motivated within
the model, the class of linear time-invariant compartment models can be
used to model many physiological systems. Particularly, they are useful in
modeling the uptake, distribution and elimination of many drugs within
the body, as we will demonstrate shortly in Example 3.5. These dynamics
are referred to as the pharmacokinetics (PK) of the considered drug.

In an LTI compartment model, the individual compartment volumes are
constant, so 𝑉 of (3.4) is constant. Furthermore, the kinetics are linear func-
tions of the state, meaning that we can express the general compartment
model as

�̇� = 𝒇 (𝒎, 𝒖, 𝑡) = (Φ − Φ0)⏟⏟⏟⏟⏟
𝐴

𝒎 + 𝒖. (3.7)

This looks like (1.9a), with the 𝐴 matrix broken up into two terms. In (3.7),
Φ models the inter-compartment kinetics, and row 𝑖 of Φ𝒎 corresponds to
the sum in (3.6). That is, element 𝜙𝑖𝑗 of Φ relates to the flows 𝜑𝑖𝑗 of (3.6)
through

[𝜙𝑖1 … 𝜙𝑖𝑛] 𝒎 =
𝑛

∑
𝑗=1

(𝜑𝑗𝑖 − 𝜑𝑖𝑗). (3.8)
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The matrix Φ0 models elimination and row 𝑖 of Φ0𝒎 corresponds to 𝜙𝑖0
in (3.6).

Row 𝑖 of 𝒖, models an exogenous inflow of substance into compartment
𝑖, corresponding to 𝑢𝑖 in (3.6). Thus, the matrix 𝐵 determines into which
compartment(s) substance is administered.

Let us consider a concrete example:

Example 3.3: Closed LTI compartment system. We consider
a mammillary compartment model—cf. Figure 3.3—with three com-
partments, numbered so that compartment 1 is the central compart-
ment. Let

𝒎 =
⎡⎢⎢⎢⎢
⎣

𝑚1

𝑚2

𝑚3

⎤⎥⎥⎥⎥
⎦

(3.9)

denote the compartment masses of a substance of interest, and let

𝒗 =
⎡⎢⎢⎢⎢
⎣

𝑣1

𝑣2

𝑣3

⎤⎥⎥⎥⎥
⎦

(3.10)

be the compartment volumes.

We now assume that the dynamics governing mass transport are
such that the amount of mass that flows from compartment 𝑖 to com-
partment 𝑗 per unit time is proportional to the concentration gradi-
ent 𝜌𝑗 −𝜌𝑖, ie. the larger the concentration in compartment 𝑖 relative
to compartment 𝑗 the more rapid the flow of mass from 𝑖 to 𝑗. We call
the proportionality constant that governs transport between com-
partments 1 and 2 𝛼, and let one that governs transport between 1
and 3 𝛽. This gives us the dynamics

�̇�1 = 𝛼(𝜌2 − 𝜌1) + 𝛽(𝜌3 − 𝜌1), (3.11a)
�̇�2 = 𝛼(𝜌1 − 𝜌2), (3.11b)
�̇�3 = 𝛽(𝜌1 − 𝜌3). (3.11c)

Assuming we want to use the masses as state variables, we have
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that

�̇�1 = −𝛼 + 𝛽
𝑣1

𝑚1 + 𝛼
𝑣2

𝑚2 + 𝛽
𝑣3

𝑚3 (3.12a)

�̇�2 = 𝛼
𝑣1

𝑚1 − 𝛼
𝑣2

𝑚2, (3.12b)

�̇�3 = 𝛽
𝑣1

𝑚1 − 𝛽
𝑣3

𝑚3. (3.12c)

We can express (3.12) as

�̇� = Φ𝒎, (3.13)

where

Φ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−𝛼 + 𝛽
𝑣1

𝛼
𝑣2

𝛽
𝑣3

𝛼
𝑣1

− 𝛼
𝑣2

0
𝛽
𝑣1

0 − 𝛽
𝑣3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (3.14)

The matrix Φ0 in (3.7) models elimination of substance. Its element 𝑖𝑖
defines the elimination rate constant of compartment 𝑖, and must thus be
zero or larger. If we consider the most common case, where the elimination
rate of compartment 𝑖 is proportional to the mass—and since 𝑉 is constant
also the concentration—in the same compartment, all off-diagonal elements
of Φ0 need to be zero. Otherwise, the requirement is that Φ0 is a positive
semi-definite matrix.

So are all systems in the form of (3.7) compartment models? To be a
compartment model, the mass balance (3.5) needs to be fulfilled. Let us
assume that we are given a diagonal (or positive semi-definite) elimination
matrix Φ0 and a matrix Φ governing the inter-compartment kinetics. Note
that the closed compartment model is a special case that we can arrive at
by replacing Φ0 with 0 ⋅ Φ0 and 𝐵 with 0 ⋅ 𝐵, resulting in

�̇� = Φ𝒎. (3.15)

The total mass within the system is 𝑀 = 𝑚1 + 𝑚2 + ⋯ + 𝑚𝑛, and since
that mass needs to be constant in time for our closed system we have that

�̇� = 0 = �̇�1 + �̇�2 + ⋯ + �̇�𝑛 = 𝟏⊤�̇�, (3.16)

where 𝟏⊤ is an 𝑛 × 1 vector where each element is 1, making 𝟏⊤�̇� equal to
the sum of elements of �̇�.
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Combining (3.15) and (3.16) we thus have

𝟏⊤�̇� = 𝟏⊤Φ⏟
𝝓

𝒎 = 𝝓𝒎 = 0 (3.17)

must hold for any substrate mass distribution 𝒎. This means that any lin-
ear combination of the elements of 𝝓 = 𝟏⊤Φ (with non-negative weights)
must be zero. Assume that 𝜙𝑖 is non-zero and that 𝝓𝒎 = 0 for some 𝒎.
Changing 𝑚𝑖 will then make 𝝓𝒎 ≠ 0. This is true for 𝑖 = 1, … , 𝑛, and means
that we require 𝝓 = 𝟎 must hold. So to test whether Φ is a compartmen-
tal matrix—that is a matrix representing the (closed) inter-compartment
kinetics of a LTI compartment model—we can simply check whether

𝟏⊤Φ = 𝟎 (3.18)

which is the same as

0 =
𝑛

∑
𝑖=1

𝜙𝑖𝑗 (3.19)

holding for 𝑗 = 1, … , 𝑛, as demonstrated in Example 3.4 below. In words:
Φ holds the rate constants describing inter-compartment kinetics within a
compartment model if and only if each column of Φ sums to 0.

The matrix Φ also reveals the topology of the compartment model. Set-
ting the diagonal elements to zero and replacing all non-zero off-diagonal
elements by ones, we can obtain the adjacency matrix (see Example 3.2)
from the rate coefficient matrix Φ.

Example 3.4: Compartmental matrices. Assume that we are
presented the with the system

̇𝒙 =
⎡⎢⎢⎢⎢
⎣

1 2 3

4 −2 0

−5 0 −3

⎤⎥⎥⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴

𝒙 +
⎡⎢⎢⎢⎢
⎣

1

0

0

⎤⎥⎥⎥⎥
⎦⏟

𝐵

𝑢 (3.20)

and want to know if it represents a compartmental model without
outflow to the environment. We can determine this by investigating
whether 𝐴 in (3.20) is a compartmental matrix:

𝟏⊤𝐴 = [1 1 1]
⎡⎢⎢⎢⎢
⎣

1 2 3

4 −2 0

−5 0 −3

⎤⎥⎥⎥⎥
⎦

= [0 0 0] . (3.21)
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The test revealed that 𝐴 is a compartmental matrix. The correspond-
ing adjacency matrix is

𝐸 =
⎡⎢⎢⎢⎢
⎣

0 1 1

1 0 0

1 0 0

⎤⎥⎥⎥⎥
⎦

, (3.22)

Linear diffusion
A common way to model transport between connected compartments is by
assigning a mass flow rate 𝐷𝑖𝑗(𝜌𝑗 − 𝜌𝑖) from compartment 𝑖 to 𝑗 ≠ 𝑖. This
corresponds to linear diffusion, where 𝐷𝑖𝑗 = 𝐷𝑗𝑖. In the closed (no sources
or sinks) case, mass balance for compartment 𝑖 gives

𝑣𝑖𝜌𝑖 = ∑
𝑖≠𝑗

𝐷𝑖𝑗𝜌𝑗 − 𝜌𝑖 ∑
𝑗≠𝑖

𝐷𝑖𝑗. (3.23)

Defining
𝐷𝑖𝑖 = ∑

𝑗≠𝑖
𝐷𝑖𝑗, (3.24)

the system can be expressed

̇𝝆 = 𝑉−1𝐷𝝆 (3.25)

Let us close this section with a real-world modeling example, where we
transition between masses and concentrations as state variables in a model
involving linear diffusion.

Example 3.5: Propofol pharmacokinetics. The anesthetic
drug propofol is administered through intravenous infusion. Let 𝑢(𝑡)
[mg s−1] denote the drug mass that is pumped into the blood plasma
of the patient per unit time.
The pharmacokinetics (PK) of propofol model uptake, redistribution
and elimination of drug within the body. It is natural to consider the
blood plasma as one compartment, with volume 𝑣1 [L]. The input, 𝑢
feeds into this compartment. Many drugs, including propofol, are
eliminated from the blood plasma through renal (kidney) or heptic
(liver) metabolism.
When modeling the kinetics of a new intravenous drug it is custom-
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ary to perform experiments comprising of infusion step changes and
boluses and recording the resulting changes in blood plasma con-
centration and then see how well compartment models with differ-
ent numbers of compartments and topologies match the data. Of-
ten this process is aided by physiological insight. We will return to
such experiments.But for now it is sufficient to mention that it was
concluded through early clinical trials that a three-compartment
mammillary model approximates the PK of propofol sufficiently well.
Such model is schematically illustrated in Figure 3.4.

𝑉1𝑉3 𝑉2

𝑘31

𝑘13 𝑘21

𝑘12

𝑢

𝑘10

Figure 3.4 Schematic illustration of three-compartment PK model
for propofol. The rate constants 𝑘, central volume 𝑣1 and infusion
rate 𝑢 are defined in the text of the example.

Let us now introduce as state variables the substance mass in each
compartment:

𝒙 = [𝑚1 𝑚2 𝑚3]
⊤

. (3.26)

Using Figure 3.4 we can thus write down the state space dynamics

�̇� =
⎡⎢⎢⎢⎢
⎣

−(𝑘10 + 𝑘12 + 𝑘13) 𝑘21 𝑘31

𝑘12 −𝑘21 0

𝑘13 0 −𝑘31

⎤⎥⎥⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Φ−Φ0

𝒎 +
⎡⎢⎢⎢⎢
⎣

1

0

0

⎤⎥⎥⎥⎥
⎦

𝑢. (3.27)

Since the matrix Φ0 governs elimination, we see from (3.27) that
it has −𝑘10 as its top left element, and all other elements zero. We
can then also easily verify that Φ is indeed a compartmental matrix,
since 𝟏⊤Φ = 𝟎.
Let us now express the dynamics (3.27) with the compartment con-
centrations (rather than masses) as state variables.
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The dynamics for the first state then become

𝑣1 ̇𝜌1 = −(𝑘10 + 𝑘12 + 𝑘13)𝑣1𝜌1 + 𝑘21𝑣2𝜌2 + 𝑘31𝑣3𝜌3 + 𝑢. (3.28)

Dividing by 𝑣1 we obtain

̇𝜌1 = −(𝑘10 + 𝑘12 + 𝑘13)𝜌1 + 𝑘21
𝑣2
𝑣1

𝜌2 + 𝑘31
𝑣3
𝑣1

𝜌3 + 1
𝑣1

𝑢. (3.29)

To proceed, let us consider what happens if there is an equilibrium
so that 𝜌1 = 𝜌2, or equivalently

𝑚1
𝑣1

= 𝑚2
𝑣2

. (3.30)

Since we are dealing with linear diffusion, there will be no net flow
between compartments 1 and 2 at such equilibrium, meaning that

𝑘21𝑚2 = 𝑘12𝑚1. (3.31)

Combining (3.30) and (3.31) we arrive at

𝑣2
𝑣1

𝑘12 = 𝑘21. (3.32)

Carrying out the corresponding computations imposed by equilib-
rium conditions between other combinations of compartments, we
can eliminate 𝑣2 and 𝑣3 from (3.29) to obtain

̇𝜌1 = −(𝑘10 + 𝑘12 + 𝑘13)𝜌1 + 𝑘21𝜌2 + 𝑘31𝜌3 + 1
𝑣1

𝑢. (3.33)

Repeating for the state equations for 𝜌2 and 𝜌3 we thus arrive at

̇𝝆 =
⎡⎢⎢⎢⎢
⎣

−(𝑘10 + 𝑘12 + 𝑘13) 𝑘21 𝑘31

𝑘12 −𝑘21 0

𝑘13 0 −𝑘31

⎤⎥⎥⎥⎥
⎦

𝝆 + 1
𝑣1

⎡⎢⎢⎢⎢
⎣

1

0

0

⎤⎥⎥⎥⎥
⎦

𝑢. (3.34)

We can note that the system matrix for the system with concentra-
tions as states is the transpose of the corresponding system matrix
with masses as states.
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3.3 Linear state space models

We have already encountered state space models. In the time-invariant case
any state space model can be written as (1.7). The state is “stored” in the
vector 𝒙 and it constitutes a sufficient boundary condition for the differen-
tial equation system to have a unique solution. That is, if we know 𝒙(𝑡) the
future evolution of 𝒙 is uniquely defined by the input 𝒖.

A concrete example is the mass drug in a compartment. If we know the
mass 𝑥 at time 𝑡, we can (at least numerically) compute the mass at a future
time 𝜏 > 𝑡, as long as we know the rates at which drug is added and removed
between instances 𝑡 and 𝜏. But if we do not know the mass at time 𝑡, then
information about the addition and subtraction rates is not sufficient to
compute 𝒙(𝜏). You can also think of the state as something that grounds
the solution of the system.

A particularly important special case arises when the function 𝒇 is
(jointly) linear in 𝒙 and 𝒖. This means that we can express the dynamics as

̇𝒙 = 𝐴𝒙 + 𝐵𝒖, (3.35a)
𝒚 = 𝐶𝒙 + 𝐷𝒖. (3.35b)

where 𝐴, 𝐵, 𝐶, and 𝐷 are matrices.
For obvious reasons 𝐵 is referred to as the input matrix, while 𝐶 is re-

ferred to as the output matrix. The matrix 𝐴 is called the system matrix. It
defines how the state would evolve, for the constant zero input 𝒖 = 𝟎. The
matrix 𝐷 is referred to as the direct term (matrix). It provides a direct link
between input and output. If we only have one state component, the 𝐴 “ma-
trix” will only have one element, represented a scalar number. However, we
still refer to 𝐴 as a matrix for consistency.

At this point, it might not be obvious why (3.35) is an important special
case of (1.7). We will see why this is the case as we build up methodology for
handling linear time-invariant systems throughout the chapters to follow.

State variable transformations
As we have already seen in Example 3.6, the choice of state variables is
associated with some freedom. In fact, there are infinitely many valid state
choices. To convince yourself of this, consider a system with state 𝒙. We
might as well represent it with the alternative state 𝒙′ = 𝛼𝒙 for some scalar
𝛼 ≠ 0.

In the linear and time-invariant (LTI) case (1.7), it is straightforward to
characterize all valid state representations. To see this, let 𝑛 be the number
of elements in 𝒙 of (3.35) and 𝑇 be an invertible (same as full rank) 𝑛 × 𝑛
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matrix. We can then introduce the new state 𝒙′ that relates to 𝒙 through

𝒙′ = 𝑇𝒙, (3.36a)
𝒙 = 𝑇−1𝒙′. (3.36b)

Inserting (3.36b) into (3.35) we get

𝑇−1 ̇𝒙′ = 𝐴𝑇−1𝒙′ + 𝐵𝒖, (3.37a)
𝒚 = 𝐶𝑇−1𝒙′ + 𝐷𝒖. (3.37b)

Left-multiplying (3.37a) with 𝑇 we have

̇𝒙′ = 𝑇𝐴𝑇−1𝒙′ + 𝑇𝐵𝒖, (3.38a)
𝒚 = 𝐶𝑇−1𝒙′ + 𝐷𝒖, (3.38b)

that we can write as

̇𝒙′ = 𝐴′𝒙′ + 𝐵′𝒖, (3.39a)
𝒚 = 𝐶′𝒙′ + 𝐷′𝒖, (3.39b)

where

𝐴′ = 𝑇𝐴𝑇−1, (3.40a)
𝐵′ = 𝑇𝐵, (3.40b)
𝐶′ = 𝐶𝑇−1, (3.40c)
𝐷′ = 𝐷, (3.40d)

and conversely

𝐴 = 𝑇−1𝐴′𝑇, (3.41a)
𝐵 = 𝑇−1𝐵′, (3.41b)
𝐶 = 𝐶′𝑇, (3.41c)
𝐷 = 𝐷′. (3.41d)

Using (3.40) and (3.41) we can thus move back and forth between the state
space representations (3.35) and (3.39). Because there exist infinitely many
invertible matrices 𝑇—for example if 𝑇 is invertible, so is 𝛼𝑇 for any scalar
𝛼 ≠ 0—it directly follows that there exist infinitely many state space real-
izations of the LTI system (3.35).

What if 𝑇 is not invertible? Then, we will lose information going from
𝒙 to 𝒙′, and so 𝒙′ will in general not be a valid state representation for
the original dynamics. What then if our state transformation is not a lin-
ear mapping, as signified by the 𝑇 being a matrix? We could of course also
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consider non-linear state transformations. However, applying them would
in general result in the dynamics becoming nonlinear in the transformed
state 𝒙′, which means they cannot be written on the form (3.35).

In example Example 3.6 we see a concrete example of when a state trans-
formation of the form (3.40) can be useful.

Example 3.6: Compartment concentrations as state. Assume
we have an LTI compartment model on the form (3.7) and want to
express the same dynamics with the compartment concentrations as
state variables. Left-multiplying (3.7) with 𝑉−1 we obtain

𝑉−1�̇� = 𝑉−1𝐾𝒎 − 𝑉−1𝐾0𝒎 + 𝑉−1𝐵𝑢. (3.42)

Since 𝑉−1𝑉 = 𝐼 we can left-multiply 𝒎 with that to obtain

𝑉−1�̇� = 𝑉−1𝐾𝑉𝑉−1𝒎 − 𝑉−1𝐾0𝑉𝑉−1𝒎 + 𝑉−1𝐵𝑢, (3.43)

which we can write as

̇𝝆 = 𝐾 ′𝝆 − 𝐾 ′
0𝝆 + 𝐵′𝑢, (3.44)

where

𝐾 ′ = 𝑉−1𝐾𝑉, (3.45a)
𝐾 ′

0 = 𝑉−1𝐾0𝑉, (3.45b)
𝐵′ = 𝑉−1𝐵. (3.45c)

Conversely, if we have a model with compartment substance concen-
trations as state variables, we can convert it into one with compart-
ment substance masses as state variables, using the inverse trans-
form of (3.45):

𝐾 = 𝑉𝐾 ′𝑉−1, (3.46a)
𝐾 ′

0 = 𝑉𝐾 ′
0𝑉−1, (3.46b)

𝐵 = 𝑉𝐵′. (3.46c)

Another practically motivated case, illustrated in Example 3.7, is when
𝑇 can be chosen so that 𝐴′ = 𝑇𝐴𝑇−1 is a diagonal matrix. We will return
to when a diagonal state space realization is useful in Section 4.3.

60
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Example 3.7: Diagonalizing transform. Assume we have a
state space realization with

𝐴 = ⎡⎢⎢
⎣

∗ ∗

∗ ∗
⎤⎥⎥
⎦

, (3.47)

where each ∗ represents a number, and want to find a 2 × 2 matrix
𝑇 so that 𝐴′ = 𝑇𝐴𝑇−1 is diagonal:

𝐴′ = ⎡⎢⎢
⎣

𝜆1 0

0 𝜆2

⎤⎥⎥
⎦

. (3.48)

Denoting by 𝒗1 and 𝒗2 the eigenvectors of 𝐴, and by 𝜆1 and 𝜆2 the
corresponding eigenvalues, we have from the definition of eigenvalue
that

𝐴𝒗1 = 𝜆1𝒗1, (3.49a)
𝐴𝒗2 = 𝜆2𝒗2. (3.49b)

(3.49c)

Packing the (column) eigenvectors into matrices we can equivalently
write (3.49) as

𝐴 = [𝒗1 𝒗2]⏟⏟⏟⏟⏟
𝑆

= [𝒗1 𝒗2] ⎡⎢⎢
⎣

𝜆1 0

0 𝜆2

⎤⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟

Λ

. (3.50)

If Λ is invertible, we thus have that

𝑆−1𝐴𝑆 = Λ. (3.51)

Combining (3.41) with (3.51), we see that the diagonalizing trans-
form is given by

𝑇 = 𝑆−1 = [𝒗1 𝒗2]
−1

(3.52)

Note that this example extends to cases with 𝑛 > 2 states. We can
also note that the diagonalizing transform exists when 𝑆 is diagonal-
izable. This happens exactly when the eigenvectors of 𝐴 are linearly
independent.
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Chapter 3. Compartment models

In Chapter 4 we continue to work with linear models, and start to get a
sense of why they are so popular. We will also see how we can approximate
nonlinear models with linear ones.
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3.3 Linear state space models

Further reading. Both (pharmacological) compartment models
and linear systems enjoy a rich literature. An overview of the
history of pharmacokinetics is found in [Wagner, 1981]. As we
will see, linear systems will be a central theme throughout the
remainder of this book. For the interested reader, a thorough math-
ematical reference is provided in [Kaliath, 1980]. The book [Rugh,
1995] covers essentially the same content, but at a somewhat more
accessible level.

Wagner, J. G. (1981). “History of pharmacokinetics”. Pharmacology
& therapeutics 12, pp. 537–562. doi: 10.1016/0163-7258(81)90097-
8.

Kaliath, T. (1980). Linear systems. Prentics Hall, Hoboken, NJ. isbn:
978-0135369616.

Rugh, W. J. (1995). Linear systems theory. Pearson, London, Eng-
land. isbn: 978-0134412054.
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4
Linear models

Learning goals
After reading this chapter you should (be able to)

• Know what a constitutive model is, and how it differs from a
balance equation.

• Write down a system of differential equations based on a com-
ponent diagram of a material model.

• Define linearity and exemplify why it is a desirable property
when it comes to system modeling.

• Identify stationary points of a nonlinear system.

• Perform local (Jacobian) linearization around a stationary
point.

• verify and use the formula for the general solution to a linear
system.

• Know what is meant by zero-order-hold sampling.

4.1 Biomechanics
Historic Note. Biomechanics concerns mechanical properties (anatomy)
and movement (physiology) of tissue. Fluid dynamics that govern blood
and breathing gas flows are also included under the umbrella of biome-
chanics.

Like many other branches of basic physiology, biomechanics has
a long history. Aristotle (384–322 B.C.) opened up the discipline
of kinesiology—a biomechanical discipline that fuses kinetics and
physiology—in his book “Movement of animals”. Another notable con-
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4.1 Biomechanics

tributor to biomechanics was Leonardo da Vinci (1452–1519). Within
biology and medicine, da Vinci is most famous for his contributions to
anatomy, including detailed drawings like the one in Figure 4.1. How-
ever, he went beyond anatomy and contributed to basic physiology by
also describing how muscles, bones and tendons interact.

Figure 4.1 Study of the human arm by Leonardo da Vinci.

Another milestone along the journey to modern biomechanics was
“Physiologie des mouvements” by G. B. A. Duchenne (1806–1875). Based
on knowledge from electrophysiological experiments, the book sets out to
describe how individual muscles contribute to animal movement. These
and similar contributions have since become cornerstones of orthopedics
and sports medicine.

Diving deeper into physiological aspects later opened up the study of
tissue biomechanics, to describe dynamic properties of tissues. Its close
connection to material science, combined with the advent of modern to-
mography techniques including X-ray, synchrotron, and neutron scatter-
ing have led to a 22nd century renaissance of tissue biomechanics.

Constitutive material models
As evident from the historic note, biomechanics is a broad term, and encom-
passes phenomenons from macroscopic down to microscopic scales. Here,
we will delimit ourselves to study a class of models that can be used to de-
scribe properties of muscles and other tissues. Particularly, we will focus on
the linearity property of these models.

So far, our modeling foundation has been balance equations. For exam-
ple, in Section 3.1 a mass balance equation was used to derive the dynamics
of compartment models. While balance equations are important, they are
not the only building block of physical models. Consider a spring obeying
Hooke’s law

𝐹 = 𝑘𝑥, (4.1)

where 𝐹 [N = kg m s−2] is net pulling force, 𝑥 [meter] is elongation (dis-
placement), and 𝑘 is a proportionality constant—the spring constant.
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𝑘

𝐹 = 𝑘𝑥

𝑥

Figure 4.2 A spring obeying Hooke’s law. The convention is that 𝑘 ≥ 0,
and that 𝑥 denotes the elongation of the spring. The externally applied force
required to maintain the static equilibrium at displacement 𝑥 is 𝐹 = 𝑘𝑥. The
vertical line with diagonal dashes to the left in the figure is the symbol of a
fixed wall.

Hooke’s law (4.1) is known as a constitutive equation since it relates
two different physical entities; a force and a displacement. For the units to
match, the spring constant must have the unit of N m−1 = kg s−2. Conduct-
ing correct unit analyses is a fundamental part of good modeling practice,
and we will return to it in Section 5.3.

A schematic illustration of a spring obeying Hooke’s law is shown in Fig-
ure 4.2. The illustration shows a static equilibrium, in which the externally
applied force 𝐹 is balanced by the contracting spring force at the displace-
ment 𝑥 fulfilling 𝐹 = 𝑘𝑥. Note that this displacement is in relation to the
equilibrium length 𝑥 = 0 of the spring, corresponding to no applied force
𝐹 = 𝑘0 = 0. A common source of mistakes is to confuse the internal spring
force to the equal but opposite externally applied pulling force. We can also
note that a net pushing force simply translates into 𝐹 < 0.

Plotting the force 𝐹 against the elongation 𝑥, we obtain a straight line
that passes through the origin of our coordinate system, and that has a
slope of 𝑘, as shown in Figure 4.3. We can see in Figure 4.3 that the linear
relation between force and displacement holds best for small displacements
and forces. If we pull harder on the spring than was done in Figure 4.3 it
will plasticise, meaning that it will permanently deform and not return to
its original length if the external force is removed. Pulling even harder, the
spring will eventually snap off. The linear model that Hooke’s law defines
thus has a local validity region. This is true for most (if not all) physio-
logical models, and important to keep in mind when using the model. Par-
ticularly, if extrapolating to data outside those used when arriving at the
model, it is not certain that the model will provide an adequate or useful
approximation. In Section 4.2 we will see how we can obtain local linear
approximations of dynamics from a nonlinear model.

Another fundamental element in constitutive material modeling is the
viscous damper, schematically depicted in Figure 4.4. As with the spring,
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Figure 4.3 Experimental data points (elongation, pulling force)= (𝑥, 𝐹)
and the line 𝑘𝑥 that best fits the data in the least-squares sense. Only data
points with 𝑥 ≤ 3cm were used when fitting 𝑘, since the linear relation starts
to deteriorate for 𝑥 > 3 cm in our example.

the viscous damper defines a linear constitutive relation

𝐹 = 𝜂 ̇𝑥. (4.2)

Here, the externally applied force needed to maintain a steady (stationary)
velocity ̇𝑥 of the damper element is 𝐹 = 𝜂 ̇𝑥. In the spring, zero force is
needed to maintain the elongation 𝑥 = 0; in the damper zero force is needed
to maintain the velocity ̇𝑥 = 0. As with the spring, the sign convention is
that the damping coefficient 𝜂 is greater than zero for a damper. There are

𝐹 = 𝜂 ̇𝑥

𝑥

Figure 4.4 Schematic illustration of a viscous damper. While a spring
contributes with a force 𝑘𝑥 proportional to its elongation 𝑥, a viscous
damper contributes with a force −𝜂 ̇𝑥 proportional to its rate of change of
elongation, ̇𝑥.
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𝑚
𝐹 = 𝑚 ̈𝑥

𝑥

Figure 4.5 Schematic illustration of a mass element. When a net external
force 𝐹 is applies, the mass 𝑚 undergoes an acceleration ̈𝑥 governed by New-
ton’s second law (4.3).

situations that can be modeled with 𝜂 < 0, and we will return to these in
Section 6.2 when discussing stability.

A third constitutive element is the mass. The spring (4.1) relates force
to elongation 𝑥, and the damper (4.2) relates force to the time derivative
of elongation, ̇𝑥. A mass element instead relates the net applied force to
acceleration ̈𝑥 through Newton’s second law:

𝐹 = 𝑚 ̈𝑥, (4.3)

as schematically illustrated in Figure 4.5.
Next, we demonstrate how the constitutive elements can be combined

into a constitutive material model, and give two examples of such models:
two commonly used visco-elastic material models due to Voigt and Maxwell,
respectively. “Viscoelastic” signals that they have both viscous damping and
elastic properties, thus containing both a damper and a spring. They each
also contain a mass element, giving them an inertial property, since the
mass needs to be accelerated for elongation to occur. The combination of
constitutive elements that make up each model can be expressed visually
as a component diagram, from which we can infer the model’s dynamic be-
havior.

Example 4.1: The Voigt model. The Voigt model is shown in Fig-
ure 4.6. It can be used to describe how a specimen of tissue responds
when pulled on by an external force 𝐹.
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𝑚

𝑘

𝜂

𝐹

𝑥

Figure 4.6 Component diagram of the Voigt model, where the
spring and damper are connected in parallel to the mass element.

The displacement 𝑥 of the damper equals the elongation of the
spring. The force pulling the mass to the left (negative direction)
is thus −𝑘𝑥 − 𝜂 ̇𝑥, and the net force on the mass is the sum of this
force and the externally applied force 𝐹. Applying Newton’s second
law (4.3) to this force, we obtain

𝑚 ̈𝑥 = −𝑘𝑥 − 𝜂 ̇𝑥 + 𝐹, (4.4)

being a differential equation in 𝑥, driven by 𝐹. Introducing a state
vector 𝒙 = [𝑥 ̇𝑥]⊤, input 𝑢 = 𝐹, and output 𝑦 = 𝑥1, we could write
(4.4) on state space form (1.9a):

̇𝑥1 = 𝑥2, (4.5a)

̇𝑥2 = − 𝑘
𝑚𝑥1 − 𝜂

𝑚𝑥2 + 1
𝑚𝐹, (4.5b)

𝑦 = 𝑥1. (4.5c)

Alternatively we can provide the equations of (4.5) in matrix form

̇𝒙 =
⎡⎢⎢
⎣

0 1

− 𝑘
𝑚 − 𝜂

𝑚

⎤⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟

𝐴

𝒙 +
⎡⎢⎢
⎣

0
1
𝑚

⎤⎥⎥
⎦⏟

𝐵

𝑢, (4.6a)

𝑦 = [1 0]⏟
𝐶

, (4.6b)

(with 𝐷=0).

Moving on to the Maxwell model, let us derive the differential equation
in a systematic way, that will work also for constitutive material models of
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higher complexity (more elements). This is done by introducing temporary
variables to denote the elongations or displacements of individual elements,
alongside forces acting on the individual elements. We will use two funda-
mental properties when combining (groups of) elements:

• If connected in parallel, their total elongations or displacement must
be equal.

• If connected in series, the elongation or displacement of the intercon-
nection is the sum of elongations and displacements of the connected
parts.

For the spring and damper, the force pulling to the left on the left side
of the element is equal in magnitude to the force pulling to the right at
the right side of the element. Note that for the mass, this is generally not
true. Finally, forces are continuous across connections between elements:
the sum of forces at each interconnection must equal zero.

Example 4.2: The Maxwell model. The Maxwell model is
schematically illustrated in Figure 4.7, with the positive direction
being to the right.

𝑚
𝑘

𝜂

𝐹

𝑥

Figure 4.7 Component diagram of the Maxwell constitutive ma-
terial model.

Let us denote by 𝑥𝑠 the elongation of the spring and by 𝐹𝑠 the force
pulling to the right on the right side of the spring . From (4.1) we
have that

𝐹𝑠 = 𝑘𝑥𝑠. (4.7a)

Denoting by 𝑥𝑑 the elongation of the damper, and by 𝐹𝑑 the force
pulling to the right on the right side of the damper, (4.2) gives

𝐹𝑑 = 𝜂 ̇𝑥𝑑. (4.7b)
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The force pulling to the right on the right side of the spring is 𝐹𝑠.
The force pulling to the right on the right side of the damper is 𝐹𝑑.
The force pulling to the left on the left side of the damper is thus
−𝐹𝑑. For force to be continuous across the intersection between the
spring and the damper, it is required that

𝐹𝑠 − 𝐹𝑑 = 0, (4.7c)

which we can interpret as the sum of the force pulling to the right
on the right side of the spring being equal in magnitude to the force
pulling to the left on the left side of the damper.

The total elongation of the series interconnection of the spring and
the damper is

𝑥 = 𝑥𝑠 + 𝑥𝑑, (4.7d)

where 𝑥 is also the displacement of the mass. The net force on the
mass,

𝐹 − 𝐹𝑑 = 𝑚 ̈𝑥, (4.7e)

obeys Newton’s second law (4.3). The force terms in (4.7e) are the
force 𝐹 pulling to the right on the right side of the mass, and −𝐹𝑑,
pulling to the left on the left side of the mass.

Combining the equations of (4.7) we obtain the system of equations

𝐹𝑠 = −𝑘𝑥𝑠, (4.8a)
𝐹𝑑 = −𝜂 ̇𝑥𝑑, (4.8b)
𝐹𝑠 = 𝐹𝑑, (4.8c)

𝑥 = 𝑥𝑠 + 𝑥𝑑, (4.8d)
𝐹 = 𝐹𝑑 + 𝑚 ̈𝑥 (4.8e)

and are left with eliminating the temporary variables 𝑥𝑠, 𝐹𝑠, 𝑥𝑑, and
𝐹𝑑, to end up with a differential equation parameterized in 𝑘, 𝜂, and
𝑚, that relates 𝐹 to 𝑥.

We can write the time-derivative of (4.8d) as

̇𝑥 = ̇𝑥𝑠 + ̇𝑥𝑑 = − 𝑑
𝑑𝑡 (𝐹 − 𝑚 ̈𝑥

𝑘 ) − 𝐹 − 𝑚 ̈𝑥
𝜂

= 𝑚
𝑘 ⃛𝑥 + 𝑚

𝜂 ̈𝑥 − 1
𝑘

̇𝐹 − 1
𝑘𝐹.

(4.9)

Unlike the previous differential equations we have studied, (4.9) also
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involves differentiation of the input—in our case the driving force 𝐹. Look-
ing at (4.9) it is therefore not directly obvious that it can be written on the
standard state space form (3.35) of an LTI system. In Section 6.1 we will
introduce the Laplace transform that will both serve to show how this is
done, and as a tool that enables us to establish the relation between 𝐹 and
𝑥 in a more straightforward way than the one in Example 4.2.

A related, and important, thing to note about the constitutive elements
is that it is not obvious which of the related physical entities should be
regarded as an input (action), and which should be regarded as an output
(reaction). For example, we could view applied force as an input to the spring
element, and deformation as the resulting output. But we could also view
deformation as the input, and corresponding force as an output. In contrast,
when dealing with pharmacokinetic compartment models in Section 3.1,
it was natural to view drug administration as input and arising (central)
compartment drug concentration as output.

The viscoelastic Hill muscle model
Let us next attempt to model the contractile dynamics of a skeletal mus-
cle. The contractile force is generated by contractile elements comprising
of the proteins myosin and actin. These elements are arranged in individ-
ual muscle cells, also known as muscle fibers. A motor neuron connects to a
number of muscle fibers, forming a motor unit. The motor unit is electrically
activated by the motor neuron in a process involving the neurotransmitter
acetylcholine.

The properties of an isolated contractile element can be studied through
electrophysiological experiments, in which a specimen of muscle fiber is sus-
pended in a setup where contractile force resulting from applying an elec-
tric excitation potential across the specimen can be measured. Assume we
have thus obtained a good model for the contractile element itself, and are
interested in modeling how its contractile force contributes to contraction
of the muscle. The spring plays a natural role here as it models elasticity
of the muscle, and in Example 4.3 we derive the dynamics of the elastic
two-element Hill model.

Example 4.3: Hill muscle model. The Hill model, named after
physiologist and Nobel price laureate Archibald Hill (1886–1977),
uses constitutive elements (springs) to model the dynamics of a mus-
cle. The structure of the two-element elastic Hill model is shown
in Figure 4.8. The contributions from all contractile elements are
lumped together and contribute with a total contractile force 𝐹𝑐, that
can be regarded as the input of our system.
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4.1 Biomechanics

In this example we will consider isometric contraction, meaning that
the muscle is constrained so that it cannot change length. This is for
example what you would have if you attempt to lift an object that is
too heavy for you to lift. The externally applied pulling force, denoted
𝐹 in Figure 4.8, can then be regarded as the output of our system,
and we want to establish a relationship between 𝐹𝑐 and 𝐹.

𝑘𝑠

𝑘𝑝

𝐹

𝐹𝑐

Figure 4.8 Component diagram of the two-element elastic
Hill model, with contractile force 𝐹𝑐 and externally applied
pulling force 𝐹.

The series connected spring with spring constant 𝑘𝑠 models the elas-
ticity of the tendon to which the muscle attaches, as well as the mus-
cle fibres themselves, while the spring connected in parallel, with
spring constant 𝑘𝑝, models forces from connecting tissues.

Let 𝑥𝑠 denote elongation of the serial element, and 𝑥𝑝 elongation of
the parallel element. Furthermore, let 𝐹𝑠 and 𝐹𝑝 denote the corre-
sponding contractile forces within each element. Force balance, geo-
metric constraints, and the property of the constitutive elements (in
this case two springs) give

𝐹 = 𝐹𝑠 + 𝐹𝑝, (4.10a)
𝐹𝑠 = 𝐹𝑐, (4.10b)

𝑥𝑠 + 𝑥𝑝 = 0, (4.10c)
𝑥𝑠 = −𝑘𝑠𝐹𝑠, (4.10d)
𝑥𝑝 = −𝑘𝑝𝐹𝑝. (4.10e)

Solving for 𝐹 we obtain

𝐹 =
𝑘𝑝 − 𝑘𝑠

𝑘𝑝
𝐹𝑐. (4.11)
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Chapter 4. Linear models

Note that (4.11) is a static model, as 𝐹 can be written as an ordinary
function of 𝐹𝑐. But if we would replace one of the springs with a
damper, its force contribution would instead be 𝐹 = −𝜂 ̇𝑥, and we
would arrive at a dynamic relation between 𝐹𝑐 and 𝐹.

4.2 Linearity and linearization

Linearity
We have seen a few examples of linear dynamics, such as the linear com-
partment models in Chapter 3 and the linear viscoelastic models in this
chapter. Before moving on, let us establish an understanding of what is
meant by linearity, and why it is a property of interest in dynamic system
modeling.

We begin with the definition of a linear function. A function 𝑓 is linear
if and only if

𝑓 (𝛼𝑣) = 𝛼𝑓 (𝑣), (4.12a)
𝑓 (𝑣 + 𝑤) = 𝑓 (𝑣) + 𝑓 (𝑤) (4.12b)

holds for all scalar coefficients 𝛼 and possible combinations of arguments
𝑣 and 𝑤. Depending on 𝑓, the arguments could be either scalar or vector-
valued. And the same definition is used if the value set of 𝑓 is vector-valued,
in which case we denote the function 𝒇 instead.

We can use the definition (4.12) of a linear function to determine whether
a particular function is linear, as illustrated below in Example 4.4.

Example 4.4: Nonlinear function. Let us consider the function
𝑓 (𝑥) = √𝑥. We have that

𝑓 (𝛼𝑥) = √𝛼𝑥 = √𝛼√𝑥 = √𝛼𝑓 (𝑥). (4.13)

The right-hand-side is not equal to 𝛼𝑓 (𝑥) unless 𝛼 = 0 or 𝛼 = 1,
and therefore 𝑓 is nonlinear (the same as not linear) according to the
definition (4.12).

Now that we have seen an example of a nonlinear function, let us follow
up on the previously made claim that 𝒇 defines the dynamics of the LTI
system (3.35) is in fact linear.
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4.2 Linearity and linearization

Example 4.5: Linear function. The function we are considering
is defined by

𝒇 (𝒙, 𝒖) = 𝐴𝒙 + 𝐵𝒖, (4.14)

where the arguments 𝒙 and 𝒖 are column vectors, while 𝐴 and 𝐵
are constant “coefficient” matrices. Since 𝒇 has two arguments, we
cannot directly check whether (4.14) fulfills the linearity definition
involving (4.12). But just as we can regard a function of the two scalar
arguments 𝑥1 and 𝑥2 as a function of a single vector argument 𝒙 =
[𝑥1 𝑥2]⊤, we can introduce 𝒛 = [𝒙⊤ 𝒖⊤]⊤. Letting 𝑛 and 𝑚 denote
the number of elements of 𝒙 and 𝒖, respectively, we have that

𝒇 (𝒙, 𝒖) = 𝐴𝒙 + 𝐵𝒖 = ̃𝒇 (𝒛) = ⎡⎢⎢
⎣

𝐴 0𝑛×𝑚

0𝑛×𝑛 𝐵
⎤⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑀

𝒛, (4.15)

where the subscripts indicate the sizes (rows × columns) of matrices,
while ̃𝑓 represents the same function as 𝑓, but with with a single input
𝒛 = [𝒙⊤ 𝒖⊤]⊤. It is thus sufficient to test for linearity of ̃𝒇.

We have that
̃𝒇 (𝛼𝒗) = 𝑀𝛼𝒗 = 𝛼 ̃𝒇 (𝒗), (4.16)

which fulfills (4.12a) for all scalar 𝛼. We also have (from the behavior
of vector–vector addition that

̃𝒇 (𝒗 + 𝒘) = 𝑀(𝒗 + 𝒘) = 𝑀𝒗 + 𝑀𝒘 = ̃𝒇 (𝒗) + ̃𝒇 (𝒘). (4.17)

We have therefore shown that ̃𝒇, and consequently 𝒇, are linear func-
tions. The same applies to the output or measurement equation of
(3.35), with 𝐶 and 𝐷 replacing 𝐴 and 𝐵.

To get a glimpse of why linearity is a useful property, assume we have an
LTI system on the form (3.35), and that 𝒙0 = 𝒙(𝑡0) is known at some fixed
initial time 𝑡0. Let us apply an input signal 𝒖(𝑡) = 𝒗(𝑡) to the system and
record the corresponding output 𝒚(𝑡) = 𝒚𝑣(𝑡). Then we take the system back
to the state 𝒙0 and repeat the experiment for another input 𝒖(𝑡) = 𝒘(𝑡) and
record the resulting measurement 𝒚(𝑡) = 𝒚𝑤(𝑡). Knowing that the system is
linear, the resulting signals 𝒚𝑣 and 𝒚𝑤 contain complete information of what
the resulting output for any linear combination of inputs 𝛼𝒗(𝑡) + 𝛽𝒘(𝑡)
would be, namely 𝒚(𝑡) = 𝛼𝒚𝑣(𝑡) + 𝛽𝒚𝑤(𝑡). A graphical illustration of this
concept is shown in Figure 4.9
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𝑣(𝑡)

𝐺

𝑦𝑣(𝑡)

𝑤(𝑡)

𝐺

𝑦𝑤(𝑡)

2𝑣(𝑡) + 𝑤(𝑡)

𝐺
2𝑦𝑣(𝑡) + 𝑦𝑤(𝑡)

Figure 4.9 Superposition allows us to compute the output of a linear sys-
tem when subjected to the input 𝛼𝑣(𝑡) + 𝛽𝑤(𝑡) if we know the outputs re-
sulting from the inputs 𝑣(𝑡) and 𝑤(𝑡).

In other words, if we can decompose the input 𝒖 into a linear combina-
tion of components for which we each know the system output, then we can
compute the system output directly, without having to simulate the system
or run an experiment. The important property that a linear combination
𝛼𝒗(𝑡) + 𝛽𝒘(𝑡) of inputs result in the corresponding linear combination
𝛼𝒚𝑣(𝑡) + 𝛽𝒚𝑤(𝑡) (as described above), is referred to as superposition. In
Section 6.1 we will use the superposition property to completely character-
ize scalar-input LTI systems in terms of their responses to inputs on the
form 𝑢(𝑡) = sin(𝜔𝑡). When considering systems of several inputs, the su-
perposition property enables us to consider one input at the time, as their
combined effect on the system state and output is simply the sum of their
individual contributions.

Another consequence of superposition is that the LTI property is pre-
served under various compositions of linear systems, as we will look more
closely at in Section 6.2. For example, if two systems are connected in se-
ries, so that the input 𝒖 of the second system is the output 𝒚 of the first,
then the combined system will also be LTI.

Finally, there exist a formula for the solution of linear differential equa-
tions, that becomes particularly useful in certain cases, as we will see in
Section 4.3.
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Linearization
We have now seen some initial motivation as to why the superposition prin-
ciple, being valid for LTI systems, is a desirable property. The true power of
this seemingly subtle property will become more clearly apparent when we
consider interconnections between, and responses of, LTI systems in Sec-
tion 6.2 and Chapter 7, respectively.

Yet, most systems you will encounter in nature are to some extent non-
linear, meaning that superposition does not hold. Here we will show how we
can approximate a nonlinear system with a linear one, around a considered
operating point.

We define the operating point as some point 𝒙0 in the state space of the
system, in vicinity of which we want our model to approximate the system
dynamics well. You can for example think of the spring that obeys Hooke’s
law, as long as elongation is small, as was illustrated in Figure 4.3. Here
we consider only stationary operating points, being points (𝒙, 𝒖) = (𝒙0, 𝒖0)
for which

𝟎 = ̇𝒙 = 𝒇 (𝒙0, 𝒖0) (4.18)
holds. In words: a stationary operating point (𝒙0, 𝒖0) is such that there for
a constant input 𝒖0 the system remains in 𝒙0, since ̇𝒙 = 𝟎. Let us illustrate
this with a simple scalar example.

Example 4.6: Stationary operating point. Consider a consti-
tutive modeling element that behaves somewhat like a spring, but
with the nonlinear constitutive relation

𝐹𝑠 = 𝑘𝑥2 (4.19)

between spring force 𝐹𝑠 and elongation 𝑥.
We connect this element in series with a mass element according to
Figure 4.10 and apply an external pulling force 𝐹 = 𝑢.

𝑘
𝑚

𝐹 = 𝑢

𝑥

Figure 4.10 Constitutive model consisting of mass element and
nonlinear spring element.
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The relation between force 𝑢 and displacement 𝑥 is thus

(𝑢 − 𝑘𝑥2) = 𝑚 ̈𝑥 (4.20)

Introducing state variables 𝑥1 = 𝑥 and 𝑥2 = ̇𝑥 we have that

̇𝑥1 = 𝑓1(𝒙, 𝑢) = 𝑥2, (4.21a)

̇𝑥2 = 𝑓2(𝒙, 𝑢) = − 𝑘
𝑚𝑥2

1 + 1
𝑚𝑢, (4.21b)

where 𝒇 = [𝑓1 𝑓2]⊤ and 𝒙 = [𝑥1 𝑥2]⊤.

Possible stationary points are those (𝒙, 𝑢) for which 𝒇 (𝒙, 𝑢) = 𝟎,
which we can expand to

0 = 𝑥2, (4.22a)

0 = − 𝑘
𝑚𝑥2

1 + 1
𝑚𝑢. (4.22b)

The first equation (4.22a) gives us that 𝑥2 = 0, while the second
equation (4.22b) gives us that −𝑘𝑥2

1 + 𝑢 = 0. There are thus in-
finitely many stationary points for this system. Parameterizing the
solution with a parameter 𝑥1 = 𝑝, we can write all stationary points
(𝒙0, 𝑢0) as ([𝑝 0]⊤, 𝑘𝑝2). In words, this means that for any elonga-
tion 𝑥, there is a corresponding pulling force 𝐹 = 𝑢 that keeps the
system stationary at 𝑥.

Assume we have identified a stationary point (𝒙0, 𝒖0) of interest to us.
What we can then do is to introduce new state variables Δ𝒙 and inputs Δ𝒖,
that define the deviation from the stationary point:

Δ𝒙 = 𝒙 − 𝒙0 (4.23a)
Δ𝒖 = 𝒖 − 𝒖0. (4.23b)

Writing out the first terms of the Taylor series of 𝒇 around that stationary
point, we obtain

Δ ̇𝒙 = ̇𝒙 − ̇𝒙0 = ̇𝒙 = 𝒇 (𝒙, 𝒖)

≈ 𝒇 (𝒙0, 𝒖0)⏟⏟⏟⏟⏟
𝟎

+ ( 𝜕𝒇
𝜕𝒙) (𝒙0, 𝒖0)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐴

(𝒙 − 𝒙0)⏟⏟⏟⏟⏟
Δ𝒙

+ ( 𝜕𝒇
𝜕𝒖) (𝒙0, 𝒖0)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐵

(𝒖 − 𝒖0)⏟⏟⏟⏟⏟
Δ𝒖

,

(4.24)
where the approximation error consists of us having removed the higher-
order terms from the Taylor series expansion of 𝒇.
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The matrix

𝜕𝒇
𝜕𝒙 =

⎡⎢⎢⎢⎢⎢⎢
⎣

𝜕𝑓1
𝜕𝑥1

… 𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

… 𝜕𝑓𝑛
𝜕𝑥𝑛

⎤⎥⎥⎥⎥⎥⎥
⎦

. (4.25)

is known as the Jacobian of 𝒇 with respect to 𝒙. The type of linearization
we are looking into is sometimes referred to as Jacobian linearization, in
order not to mix it up with feedback linearization (that we will not deal with
here). The Jacobian with respect to 𝒖 is definied similarily:

𝜕𝒇
𝜕𝒖 =

⎡⎢⎢⎢⎢⎢⎢
⎣

𝜕𝑓1
𝜕𝑢1

… 𝜕𝑓1
𝜕𝑢𝑚

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑢1

… 𝜕𝑓𝑛
𝜕𝑢𝑚

⎤⎥⎥⎥⎥⎥⎥
⎦

. (4.26)

As in (1.1), 𝑛 denotes the number of state components and 𝑚 the number of
input components. The parenthesis around the Jacobians in (4.24) signify
that the Jacobians should first be determined, then evaluated at the sta-
tionary point (as opposed to evaluating 𝒇 at the stationary point and then
determining the Jacobian of the resulting expression). An output equation
𝒚 = 𝒈(𝒙, 𝒖) is approximated in the same way with

𝐶 = (𝜕𝒈
𝜕𝒙 ) (𝒙0, 𝒖0), (4.27a)

𝐷 = ( 𝜕𝒈
𝜕𝒖) (𝒙0, 𝒖0). (4.27b)

Thus evaluating the Jacobians and using the short-hand notation intro-
duced in (4.24), we have now arrived at the LTI system dynamics

Δ ̇𝒙 = 𝐴Δ𝒙 + 𝐵Δ𝒖, (4.28a)
Δ𝒚 = 𝐶Δ𝒙 + 𝐷Δ𝒚, (4.28b)

where
Δ𝒚 = 𝒚 − 𝒚0, (4.29)

and
𝒚0 = 𝒈(𝒙0, 𝒖0). (4.30)

Let us give an illustrative example in the scalar case.
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Example 4.7: Linearization of a scalar system. We consider a
time-invariant system with dynamics given by

̇𝑥 = −𝑥(𝑥 + 2) + 𝑢, (4.31)

Stationary points for this system are the solutions of

0 = −𝑥(𝑥 + 2) + 𝑢. (4.32)

Assuming we are at a stationry point defined through 𝑢 = 𝑢0, the
corresponding stationary 𝑥 = 𝑥0 is thus given by

𝑥0 = −1 ± √1 + 𝑢0. (4.33)

This means that for any 𝑢0 > −1 we have two stationary points, for
𝑢0 = −1 there is a unique stationary point, and for 𝑢0 < −1 the
system lacks stationary points.
Let us linearize the system around a the stationary point (𝑥0, 𝑢0) =
(1, 3). (In a real scenario, the choice of stationary point is often easy,
since we would typically know ahead of time around what operating
point we are interested in modeling the system dynamics.)
To visualize the situation, we can fix 𝑢 = 𝑢0 = 3 and plot 𝑓 (𝑥, 𝑢) =
−𝑥(𝑥+2)+𝑢 as a function of 𝑥 alone, as shown in figure Figure 4.11.

−4 −3 −2 −1 1 2

−2

−1

1

2

3

4

5

𝑥

𝑓 (𝑥, 𝑢0 = 3)

Figure 4.11 Dynamics function 𝑓 (𝑥, 𝑢0) = −𝑥(𝑥 + 2) + 3 plotted
as a function of 𝑥.
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We could of course draw a similar plot as that in Figure 4.11, showing
a function of 𝑢, where we instead fix 𝑥 = 𝑥0.

We are interested in constructing a linear approximation around the
stationary point (𝑥0, 𝑢0) = (1, 3) and introduce the offset variables

Δ𝑥 = 𝑥 − 𝑥0 = 𝑥 − 1, (4.34a)
Δ𝑢 = 𝑢 − 𝑢0 = 𝑢 − 3. (4.34b)

In Figure 4.11 the offset variables correspond to moving the station-
ary point to the origin, as illustrated in Figure 4.12.

−4 −3 −2 −1 1

−2

−1

1

2

3

4

Δ𝑥 = 𝑥 − 𝑥0
= 𝑥 − 1

𝑓 (𝑥, 𝑢0 = 3)

Figure 4.12 Dynamics function 𝑓 (𝑥, 𝑢0 = 3) plotted as a function
of Δ𝑥 = 𝑥 − 𝑥0 = 𝑥 − 1 in black, together with linear approximation
in gray. The inclination of the linear approximation is 𝜕𝑓 (𝑥, 𝑢)/𝜕𝑥,
evaluated at (𝑥, 𝑢) = (𝑥0, 𝑢0) = (1, 3).

Going back to (4.24), we have that

Δ ̇𝑥 ≈ ( 𝜕𝑓
𝜕𝑥) (𝑥0, 𝑢0)Δ𝑥 + ( 𝜕𝑓

𝜕𝑢) (𝑥0, 𝑢0)Δ𝑢, (4.35)

where the first term constitutes the straight line in Figure 4.12. We
see that when |Δ𝑥| is small, the difference between 𝑓 an the linear ap-
proximation is relatively small, but also that the difference increases
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for larger |Δ𝑥|. Again, we could make a corresponding plot to analyze
the approximation error in 𝑢 with 𝑥 = 𝑥0 fixed. In this particular ex-
ample, there will be no such approximation error, since 𝑓 is already
linear in 𝑢.

The situation in Example 4.7 generalizes to vector valued 𝒙, 𝒖 and 𝒇.
In the example, the linear approximation of 𝑓 (𝑥, 𝑢) is a plane in three-
dimensional space, and when we fixed 𝑢 = 𝑢0 we cut through this plane
to obtain the line in Figure 4.12. In the general case, the linear approxi-
mation is the generalization of a plane, a hyperplane, living in a space of
dimension 𝑛 + 𝑚 + 1, where 𝑛 is the number of states, and 𝑚 the number
of scalar inputs. We cannot draw this hyperplane, but we utilize the intu-
ition we gained from Example 4.7. To summarize, linearization follows the
following scheme:

1. Find a stationary point (𝒙0, 𝒖0) of interest that fulfils 𝟎 = 𝒇 (𝒙0, 𝒖0),
at (or around) which to approximate the dynamics with a linear sys-
tems.

2. Introduce the offset variables Δ𝒙 = 𝒙 − 𝒙0 and Δ𝒖 = 𝒖 − 𝒖0, that
translate the stationary point to the origin of our coordinate system.

3. Approximate 𝒇 with a linear function defined by the first terms of its
Taylor series expansion. Since we have translated the stationary point
to the origin, this corresponds to replacing 𝒇 (𝒙, 𝒖) with two hyper-
planes that are tangent to 𝒇 at the origin. These hyperplanes are de-
fined by the Jacobians 𝜕𝒇 /𝜕𝒙 and 𝜕𝒇 /𝜕𝒖, and model deviations in 𝒙
and 𝒖 away from the stationary point.

4. If there is an output equation 𝒚 = 𝒈(𝒙, 𝒖), introduce the offset vari-
able Δ𝒚 = 𝒚 − 𝒚0, where 𝒚0 = 𝒈(𝒙0, 𝒖0), and repeat the above points
to approximate it with two hyperplanes in the same way as 𝒇 was ap-
proximated.

As a special case, let us see what happens if the function that we are
linearizing is already linear.

Example 4.8: Linearization of a linear function. Let us re-
turn to Example 4.7, and assume that there is also an output equa-
tion,

𝑦 = 3𝑥 − 2𝑢. (4.36)
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At the considered stationary point (𝑥0, 𝑢0) = (1, 3) we have that

𝑦0 = 𝑔(𝑥0, 𝑢0) = −3, (4.37)

and
Δ𝑦 = 𝑦 + 3. (4.38)

Furthermore we have that

𝜕𝑔
𝜕𝑥 = 3, (4.39a)

𝜕𝑔
𝜕𝑢 = −2. (4.39b)

The linearized output equation is thus

Δ𝑦 = 3Δ𝑥 − 2Δ𝑢 = 𝑔(Δ𝑥, Δ𝑢). (4.40)

In other words, the linearized output equations is the same as the
original, already linear, output approximation. This should not come
as a surprise: if a function that is itself defined by a (hyper)plane is
approximated with a tangenting (hyper)plane, then the approxima-
tion will be the function itself. While we have considered the output
equation here, the same result of course also holds for the function
𝑓 or 𝒇 defining the dynamics.

Now we know everything there is to know about Jacobian linearization.
Let us finish off with an example involving a system with vector-valued
state, and scalar valued output.

Example 4.9: Linearization. In this example we perform a lin-
earization of the dynamics introduced in Example 4.6. The state dy-
namics are given by (4.21), and we introduce a measurement accord-
ing to (4.41c):

̇𝑥1 = 𝑥2, (4.41a)

̇𝑥2 = − 𝑘
𝑚𝑥2

1 + 1
𝑚𝑢, (4.41b)

𝑦 = log(𝑥1 + 1). (4.41c)

Assume that we want to model how the system behaves when 𝑢 ≈
4. From Example 4.6 we see that this corresponds to stationary 𝒙
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candidates 𝒙0 = [±2/√𝑘 0]⊤. Let us assume that we are interested
in 𝒙0 = [2/√𝑘 0]⊤. We can then introduce the offset variables

Δ𝑥1 = 𝑥1 − 2
√𝑘

, (4.42a)

Δ𝑥2 = 𝑥2. (4.42b)

We also have that

𝑦0 = log(1) = 0, (4.43a)
Δ𝑦 = 1. (4.43b)

Next, we compute the Jacobians:

𝜕𝒇
𝜕𝒙 =

⎡
⎢
⎢
⎢
⎣

𝑓1
𝑥1

𝑓1
𝑥2

𝑓2
𝑥1

𝑓2
𝑥2

⎤
⎥
⎥
⎥
⎦

=
⎡⎢⎢
⎣

0 1
−2𝑘
𝑚 𝑥1 0

⎤⎥⎥
⎦

, (4.44a)

𝜕𝒇
𝜕𝑢 =

⎡
⎢
⎢
⎢
⎣

𝑓1
𝑢
𝑓2
𝑢

⎤
⎥
⎥
⎥
⎦

=
⎡⎢⎢⎢
⎣

0
1
𝑚

⎤⎥⎥⎥
⎦

, (4.44b)

𝜕𝑔
𝜕𝒙 = [ 𝜕𝑔

𝜕𝑥1

𝜕𝑔
𝜕𝑥2

] = [ 1
𝑥1 + 1 0,] , (4.44c)

𝜕𝑔
𝜕𝑢 = 0. (4.44d)

Evaluating the Jacobians at the stationary point, we obtain

𝐴 =
⎡
⎢
⎢
⎣

0 1
−4

𝑚√𝑘
0
⎤
⎥
⎥
⎦

, (4.45a)

𝐵 =
⎡⎢⎢
⎣

0
1
𝑚

⎤⎥⎥
⎦

, (4.45b)

𝐶 = [
√𝑘

2 + √𝑘
0] , (4.45c)

𝐷 = 0, (4.45d)
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that define our linearized system

Δ ̇𝒙 = 𝐴Δ𝒙 + 𝐵Δ𝑢, (4.46a)
Δ𝑦 = 𝐶Δ𝒙 + 𝐷Δ𝑢. (4.46b)

4.3 Solving linear differential equations

In this section we study the exact solution of LTI systems. In Chapter 2 we
used numeric integration techniques (such as forward and backward Euler)
to approximate the solution of ordinary differential equations on the form
(2.3). It turns out that for LTI systems, we can instead obtain the solution
using an explicit formula. Before presenting and verifying this formula, let
us start with a special-case example: a scalar autonomous LTI system no
output.

Example 4.10: Solution of scalar (first order) LTI system.
We consider an autonomous LTI system with scalar state:

̇𝑥(𝑡) = 𝑎𝑥(𝑡). (4.47)

We know from fundamental calculus that
𝑑 log 𝑥(𝑡)

𝑑𝑡 = 1
𝑥(𝑡)

𝑑𝑥(𝑡)
𝑑𝑡 = ̇𝑥(𝑡)

𝑥(𝑡) , (4.48)

where the last factor in the intermediate expression is the inner
derivative resulting from the chain rule. Dividing (4.47) by 𝑥(𝑡) and
integrating with respect to time, we thus obtain

∫ ̇𝑥(𝑡)
𝑥(𝑡) 𝑑𝑡 = log 𝑥(𝑡) + 𝑐1 = ∫𝑎 𝑑𝑡 = 𝑎𝑡 + 𝑐2, (4.49)

for any real constants 𝑐1 and 𝑐2. Letting 𝑐 = 𝑐2 − 𝑐1 we can write

log 𝑥(𝑡) = 𝑎𝑡 + 𝑐. (4.50)

Assuming the initial condition

𝑥(0) = 𝑥0 (4.51)

is known, we can write (4.50) as

log 𝑥0 = 𝑐. (4.52)
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Inserting this into (4.50) we have

log 𝑥(𝑡) − log 𝑥0 = 𝑎𝑡. (4.53)

Computing the exponent of both sides and re-arranging we finally
arrive at

𝑥(𝑡) = 𝑥0𝑒𝑎𝑡. (4.54)

To verify that (4.54) is indeed a solution of (4.47), we differentiate
(4.54) with respect to 𝑡:

̇𝑥(𝑡) = 𝑎𝑥0𝑒𝑎𝑡 = 𝑎𝑥(𝑡). (4.55)

We will not make a derivation of the general-case formula here. Instead,
we will present it, and then verify that it indeed constitutes a solution. For
a system on state space form (1.9), with 𝒙(0) = 𝒙0, the solution is given by

𝒚(𝑡) = 𝐶𝑒𝐴𝑡𝒙0 + 𝐶∫
𝑡

0
𝑒𝐴(𝑡−𝜏)𝐵𝒖(𝜏) 𝑑𝜏 + 𝐷𝒖(𝑡). (4.56)

Before verifying that (4.56) is indeed a solution to (1.9), we need to un-
derstand what is meant by 𝑒𝐴, where 𝐴 is a square matrix.

Any function 𝑓 that has a convergent Taylor series expansion is called
analytic. For analytic functions it therefore holds that

𝑓 (𝐴) =
∞

∑
𝑘=0

1
𝑘! ( 𝜕𝑘𝑓

𝜕𝐴𝑘 ) (0) 𝐴𝑘. (4.57)

That is, 𝑓 (𝐴) is a weighted sum of terms 𝐴𝑘. The weights are proportional
to the 𝑘th derivative of 𝑓 evaluated at 0, with proportionality constant 1/𝑘! =
1/(1 ⋅ … ⋅ 𝑘).

Since multiplication between square matrices is defined, we can com-
pute 𝐴𝑘, itself being a square matrix, by repeatedly multiplying 𝐴 by itself
𝑘 − 1 times. For the exponential function, we can compute

𝜕𝑓
𝜕𝐴 = 𝜕

𝜕𝐴𝑒𝐴 = 𝐴𝑒𝐴. (4.58)

Applying the chain rule to (4.58), we can thus also compute the higher-order
derivatives needed in the evaluation of (3.3a). Furthermore, since multipli-
cation between a square matrix and a scalar is defined, we can compute any
term of (4.57). These terms are also square matrix, and thus can be added
to form the sum defining 𝑓 (𝐴) through (4.57).
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The above provides a definition of functions of a square matrix, such as
𝑒𝐴 or cos(𝐴). You might object and say that it is impractical to evaluate the
infinite sum of (4.57). It is, but this problem also shows up when trying to
evaluate its scalar counterparts, such as 𝑒3. By including sufficiently many
terms of the Taylor series expansion, one can obtain an approximation of
𝑒𝐴 or 𝑒3 of sufficient accuracy. Luckily, we do not have to do these hand
calculations, as modern computer tools enable us to type things like exp(A)
or exp(3) to get numeric approximations that are valid down to machine
precision. It can also be mentioned that there exist more efficient related
methods to compute exponential matrices than straight-off truncation of
(4.57).

Anyway, we are now ready to verify that (4.56) is indeed a solution to
(1.9). To do this, we see that in order for (4.56) to be a solution, 𝒚 = 𝐶𝒙 + 𝐷𝒚
requires

𝒙(𝑡) = 𝑒𝐴𝑡𝒙(0) + ∫
𝑡

0
𝑒𝐴(𝑡−𝜏)𝐵𝒖(𝜏) 𝑑𝜏 (4.59)

to hold. We can differentiate the second right-hand-side term of (4.59) with
respect to 𝑡 using the Leibniz integral rule, taught in basic calculus courses.
It states that

𝜕
𝜕𝑡

⎛⎜
⎝
∫

𝑡

0
𝑓 (𝑡, 𝜏)𝑑𝜏⎞⎟

⎠
= 𝑓 (𝑡, 𝑡) + ∫

𝑡

0

𝜕
𝜕𝑡𝑓 (𝑡, 𝜏) 𝑑𝜏. (4.60)

Substituting
𝑓 (𝑡, 𝜏) = 𝑒𝐴(𝑡−𝜏)𝐵𝒖(𝜏) (4.61)

into (4.60) we obtain

𝜕
𝜕𝑡 ∫

𝑡

0
𝑒𝐴(𝑡−𝜏)𝐵𝒖(𝜏) 𝑑𝜏 = 𝐵𝒖(𝑡) + ∫

𝑡

0
𝐴𝑒𝐴(𝑡−𝜏)𝐵𝒖(𝜏) 𝑑𝜏. (4.62)

Adding the derivative of the first right-hand-side term of (4.59) with respect
to 𝑡 to the right-hand-side of (4.62) we obtain

𝒙(𝑡) = 𝐴𝑒𝐴𝑡𝒙0 + 𝐵𝒖(𝑡) + ∫
𝑡

0
𝐴𝑒𝐴(𝑡−𝜏)𝐵𝒖(𝜏) 𝑑𝜏, (4.63)

which we can finally re-write as 𝐴𝒙(𝑡) + 𝐵𝒖(𝑡) using (4.59). It is thus clear
that (4.59) indeed constitutes the solution to (1.9).

We close this chapter with an example of high practical importance, that
shows the usefulness of the solution formula (4.59)
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Example 4.11: Zero-order-hold sampling. Let us consider a
smart insulin pump. Once per second it reads off a blood glucose
sensor, decides on new insulin infusion rate, and ensures that the
pump delivers this rate until the next sample (sensor reading) ar-
rives. This is called zero-order-hold, since the control signal is held
constant (a function that can be described by a Taylor series of order
zero) between samples.
If we assume a simple LTI model that relates infusion rate 𝑢 to blood
glucose concentration 𝑦, we have that

̇𝒙 = 𝐴𝒙 + 𝐵𝑢, (4.64a)
𝑦 = 𝐶𝒙 + 𝐷𝑢. (4.64b)

Let us say that the system starts at 𝑡 = 0 in the state 𝒙 = 𝒙0, and we
have a sampling period of ℎ. We can then use the solution formula
(4.56) to compute the system state after one sampling period

𝒙(ℎ) = 𝑒𝐴ℎ𝒙0 + ∫
ℎ

0
𝑒𝐴(𝑡−𝜏) 𝑑𝜏𝐵𝑢(0). (4.65)

Note that since 𝑢 is constant between 𝑡 = 0 and 𝑡 = ℎ, we can write
𝐵𝑢(0) outside the integral. If we introduce the constant matrices

Φ = 𝑒𝐴ℎ, (4.66a)

Γ = ∫
ℎ

0
𝑒𝐴𝜏 𝑑𝜏𝐵, (4.66b)

we can write 𝒙(ℎ) = Φ𝒙(0) + Γ𝑢(0), and more generally for all
sampling times

𝒙(𝑘ℎ + ℎ) = Φ𝒙(𝑘ℎ) + Γ𝑢(𝑘ℎ). (4.67)

To evaluate the integral in (4.66b) we can use a little trick originat-
ing in the chain rule. Letting

𝑀 = ⎡⎢⎢
⎣

Φ Γ

0 𝐼
⎤⎥⎥
⎦

, (4.68a)

𝐸 = ⎡⎢⎢
⎣

𝐴 𝐵

0 0
⎤⎥⎥
⎦

, (4.68b)
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4.3 Solving linear differential equations

we see from (4.66) that 𝑑𝑀/𝑑ℎ = 𝑀𝐸, which means we can obtain
𝑀 by evaluating the matrix exponential 𝑀 = exp(𝐸ℎ).

Figure 4.13 shows the measurement 𝑦 resulting from applying a
zero-order-hold input 𝑢 to continuous dynamics of the form (4.64).

0
0

𝑡

𝑦(𝑡)

0

0

𝑡

𝑢(𝑡)

Figure 4.13 Input 𝑢 and corresponding output 𝑦 from an LTI sys-
tem on the form (4.64) in solid. The dashed line shows the corre-
sponding output of the zero-order-hold sampled system (4.67).

The output from the corresponding ZOH system (4.67) is shown in
dashed. In particular, note that there is no approximation error in
the ZOH output at the sampling instances. This means that as long
as we do not care about the solution between sampling points, we can
compute an exact result without the need of using numeric solver
schemes as those introduced in Chapter 2. Note that this is possible
only because the dynamics we are considering are LTI.

Further reading. The books referenced from the corresponding
section of Chapter 3 constitute excellent further reading also for
the theory content of this chapter. For those who are interested in
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biomechanics—both constitutive models and more generally—the
book [Nordin and Frankel, 2001] can be recommended.

Nordin, M. and B. H. Frankel (2001). Basic biomechanics of the
musculoskeletal system. 3rd ed. Lippincott Williams & Wilkins,
Philadelpha,PA. isbn: 0-683-30247-7.
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5
Circuit models

Learning goals
After reading this chapter you should (be able to)

• Provide a physiological interpretation of the Windkessel model
elements.

• Interpret a circuit diagram as a muscle model, a cardiac after-
load model, or a respiratory model.

• Transition between circuit diagram and state space represen-
tation of a dynamical system.

• Know what is meant by over-fitting, and generalization.

• Be able to perform a correct dimension (or unit) analysis.

5.1 Vascular dynamics

Historic Note. Hemodynamics is the study of the dynamics of the
circulatory system, with hema being the latinized form of the Greek
word for blood. Some of the mathematical foundation of hemodynamics
was laid by German physiologist Otto-Frank (1865–1944), and his En-
glish colleague Ernest Henry Starling (1866–1927). Together they are
arguably most famous for the Frank-Starling mechanism, also referred
to as “the law of the heart”. Somewhat simplified, this “law” states that
the inotropy (contracting strength) of the heart is regulated through the
amount of venous filling of the atria. In other words: the heart adjusts
its pumping capacity to accommodate the amount of venous blood it re-
ceives.

Otto Frank is also famous for his work on the family of Windkessel
vascular models. When the heart pumps blood through the systemic and
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pulmonary arterial trees, their flow resistances are not constant, but
instead vary dynamically. There is of course a static resistive component,
but also some compliance due to flex in the arterial walls, and inertance,
due to the mass of the blood that is accelerated through the system in
each cardiac cycle. The family of Windkessel models formalizes these
properties, as we will see in this chapter.

The name “Windkessel” comes from the German word for a pres-
sure chamber, used for example to maintain water flow in old, manually
pumped, fire fighting equipment, as illustrated in Figure 5.1.

Water
reservoir

Pump

Pressurized
air

Figure 5.1 The Windkessel is a pressurized air vessel, used to main-
tain a steady flow of water. The compressible air provides compliance to
the system. It is this property that explains why the arterial dynamics
model bears the same name.

Let us take a look at a simple Windkessel model, consisting of a com-
pliance and a resistance. Since it has two constitutive components, it is
commonly referred to as the two-element Windkessel model.

In general, the Windkessel models are built by combining constitutive
components that model compliance, resistance and intertance. These are
properties of the vascular system that relate blood pressure to flow. As we
will look closer at in Section 5.2, there is analogy between these constitutive
components and those that we have used to describe tissue dynamics in Sec-
tion 4.1, and similar models from other domains: they can all be expressed
as electric circuits.

In the Windkessel case, the analogy is (with SI units)

• volumetric flow↔electric current (A),

• hydrostatic pressure↔electric potential (V).
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5.1 Vascular dynamics

Within this analogy, the component analogies are

• volumetric flow resistance↔electric resistance (Ω),

• flow compliance↔electric capacitance (C),

• flow inertance↔electric inductance (H).

Letting 𝜑 denote the flow through the component, and 𝑝 the pressure gra-
dient across it, we have

𝑝 = 𝜑𝑅, (5.1a)
𝜑 = 𝐶�̇�, (5.1b)
𝑝 = 𝐿 ̇𝜑, (5.1c)

for the three respective components, where 𝑅, 𝐶, and 𝐿 are positive param-
eters resistance, compliance, and inertance.

You are likely already familiar with Ohm’s law (5.1a), the definition
of capacitance 𝐶 (5.1b), and inductance 𝐿 (5.1c). To build some intuition
around (5.1) we can note that flow is a per-time change in mass (or volume).
The electric analogy of mass (or volume) is charge, commonly denoted 𝑄.
The capacitor equation (5.1b) can thus be written 𝜑 = 𝐶�̇�. Integrating this
both sides with respect to time thus results in 𝑄 = 𝐶𝑝. In terms of the elec-
tric analogy this states that the charge stored in the capacitor equals the
product of the voltage across it and its capacitance.

Using Kirchhoff’s current law—the net current into (or out from) a con-
nection point is zero—we can obtain a system of linear differential equa-
tions describing the combined dynamics, as will be illustrated in Exam-
ple 5.1 and Example 5.2.

In the literature, the analogies are used sloppily, and it is not uncom-
mon that, for example, a flow compliance is referred to as a capacitance. In
practice, this seldom poses any problem, as there is a one-to-one correspon-
dence.

The particular task of the Windkessel model is to describe the dynamics
between pressure and flow in the aorta. The heart is modelled as a time-
varying flow source, and this flow passes through a circuit of constitutive
components.

Example 5.1: The two-element Windkessel model. A concrete
example is shown in Figure 5.2, illustrating a two-element Wind-
kessel model.

93



Chapter 5. Circuit models

𝑝

+

−

𝜑

𝐶 𝜑𝐶 𝑅 𝜑𝑅

Figure 5.2 Two-element Windkessel model comprising of resis-
tance 𝑅 and compliance 𝐶. The heart is modeled as a flow source
(circle). Aortic pressure and flow are denoted 𝑝 and 𝜑, respectively.
We denote the flow through the resistor and capacitor 𝜑𝑅 and 𝜑𝐶,
respectively.

The physiological interpretation of the model is that the resistor
models the total resistance of the systemic arteries, while the ca-
pacitor models their compliance (elastic vessel walls).

The pressure gradient 𝑝 across the resistor equals the pressure gra-
dient across that capacitor. Each of Kirchhoff’s current law, the defi-
nition of the resistor (5.1a), and the definition of the capacitor (5.1b)
gives us (in that order) the three equations

𝜑 = 𝜑𝑅 + 𝜑𝐶, (5.2a)
𝑝 = 𝑅𝜑𝑅, (5.2b)

𝜑𝐶 = 𝐶�̇�. (5.2c)

We can eliminate the flows through the individual components to
obtain

𝜑 = 1
𝑅𝑝 + 𝐶�̇�, (5.3)

being an LTI ODE relating aortic pressure 𝑝 to aortic flow 𝜑.

Using recordings of pressure and flow, as those in Figure 5.3, one can
search for combinations of numeric values for 𝑅 and 𝐶 that (assuming the
initial condition is known) result in as good a data fit as possible. In addition
to recorded human data, Figure 5.3 shows simulations of two Windkessel
models. The blue curve corresponds to a two-element model with parame-
ters chosen to minimize the root-mean-square (RMS) error. As can be seen
there remains quite a bit of model mismatch. This is because the model is
overly simplistic. One way to fix this is to increase the model complexity
by adding more constitutive elements. This increases the parameter count,
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Figure 5.3 Representative human aortic pressure (top, black) and flow
(bottom) waveforms. The blue line shows the pressure waveform arising from
a 2-element Windkessel model driven with the flow waveform in the bottom
plot; the red line corresponds to a 4-element Windkessel model. The param-
eters of both models were chosen to minimize the root-mean-square (RMS)
error between simulated and actual (black) pressure.

making it possible to replicate a broader range of dynamics. However, it
also leads to an increase risk of over-fitting. An over-fitted model replicates
the behavior of the modeled system well for the particular data that it was
obtained for (also called trained on). However, it does not generalize well.
This means that when the same model is presented with a slightly differ-
ently shaped input signal, its output will differ more from the output of the
true system, subjected to the same input.

5.2 Circuit equivalents

In Example 5.2 we will consider a 4-element Windkessel model. Particu-
larly, we will see how we can transtion from a circuit diagram description
to state space description.

Example 5.2: The four-element Windkessel model. The four-
element Windkessel model consists of a resistor 𝑅𝑐 modeling the cen-
tral (aortic) flow resistance, another resistor 𝑅𝑝 modeling the periph-
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eral (arterial) flow resistance, a capacitor 𝐶 modeling the combined
compliance of the system, and an inductor 𝐿 modeling the inertance
of the blood within the system. A circuit diagram of such model is
shown in Figure 5.4.

𝑝

+

−

𝜑

𝑅𝑐

𝑅𝑝

𝑝1

𝜑1

𝜑3

𝐿 𝜑2

𝐶 𝜑4

Figure 5.4 Four-element Windkessel model comprising of central
resistance 𝑅𝑐, peripheral resistance 𝑅𝑝, compliance 𝐶, and inertance
𝐿. The heart is modeled as a flow source (circle). Aortic pressure and
flow are denoted 𝑝 and 𝜑, respectively. We have introduced named
variables for all flows and pressures within the model.

As in Example 5.1 we introduce help variables, that we then elim-
inate to arrive at an LTI ODE that relates 𝑝 and 𝜑. A good way
to do this is to name pressures at connection points. In our case,
let the pressure across 𝑅𝑝 be 𝑝1. We can also explicitly denote the
flows through 𝑅𝑐, 𝐿, 𝑅𝑝 and 𝐶 as 𝜑1, 𝜑2, 𝜑3, and 𝜑4, respectively.
Using Kirchhoff’s current law and the definition of the constitutive
elements as in Example 5.1 we thus arrive at

𝜑 = 𝜑1 + 𝜑2, (5.4a)
𝜑1 + 𝜑2 = 𝜑3 + 𝜑4, (5.4b)

𝑝 − 𝑝1 = 𝑅𝑐𝜑1, (5.4c)
𝑝1 = 𝑅𝑝𝜑3, (5.4d)

𝑝 − 𝑝1 = 𝐿 ̇𝜑2, (5.4e)
𝜑4 = 𝐶�̇�1. (5.4f)
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5.2 Circuit equivalents

We see that the time derivatives of 𝑝1 and 𝜑2 occur, and therefor
introduce the following two states

𝑥1 = 𝑝1, (5.5a)
𝑥2 = 𝜑2. (5.5b)

Note that we can consider either of 𝜑 and 𝑝 as outputs of the model.
In one case, we think of the heart as a pressure source, and model
the arising flow, in the other case we think of the heart as a flow
source and model the arising pressure.

Let us here consider the output to be 𝑝. Using (5.4c), then the defi-
nition of 𝑥1, and finally (5.4a), we arrive at

𝑝 = 𝑝1 + 𝑅𝑐𝜑1 = 𝑥1 + 𝑅𝑐𝜑1 = 𝑥1 + 𝑅𝑐(𝜑 − 𝜑2)

= 𝑥1 − 𝑅𝑐𝑥2 + 𝑅𝑐𝜑 = [1 −𝑅𝑐]⏟⏟⏟⏟⏟
𝐶

𝒙 + 𝑅𝑐⏟
𝐷

𝑢. (5.6)

Note that the matrix 𝐶 is not the same as the capacitance 𝐶. We
could have used different symbols here, but the risk of confusing the
two should be small in this case.

Next, we write down the dynamics for 𝑥1 = 𝑝1 using (5.4f), then
(5.4b) and (5.4a), and finally (5.4c):

̇𝑥1 = 1
𝐶𝜑4 = 1

𝐶(𝜑 − 𝜑3) = 1
𝐶𝜑 − 1

𝐶𝑅𝑝
𝑥1. (5.7)

Using (5.4e) together with (5.6) we have that

̇𝑥2 = 1
𝐿(𝑝 − 𝑝1) = 1

𝐿(𝑥1 − 𝑅𝑐𝑥2 + 𝑅𝑐𝜑 − 𝑥1) = −𝑅𝑐
𝐿 𝑥2 + 𝑅𝑐

𝐿 𝜑. (5.8)

Combining (5.7) and (5.8) we thus have

̇𝒙 =
⎡⎢⎢⎢
⎣

− 1
𝐶𝑅𝑝

0

0 −𝑅𝑐
𝐿

⎤⎥⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴

𝒙 +
⎡⎢⎢⎢
⎣

1
𝐶
𝑅𝑐
𝐿

⎤⎥⎥⎥
⎦⏟

𝐵

𝑢 (5.9)

We have thus computed the 𝐴, 𝐵, 𝐶, and 𝐷 matrices of a state space
realization describing the model of Figure 5.4.
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Table 5.1 Examples of common electric circuit equivalents. The thermal
equivalents of inductance is seldom observed in physiological or physical
systems, and therefore omitted here.

Electric Mechanic Hydraulic Thermal

potential voltage force pressure temperature

flux current stress volumetric
flow rate

heat flux

𝑅 resistor damper flow
resistance

thermal
resistance

𝐶 capacitor spring compliance thermal
mass

𝐿 inductor mass inertance -

Q charge mass volume heat

The methodology introduced in Example 5.2 can be applied to obtain
state space representations of any constitutive model consisting of resistive,
capacitive and inductive elements. This representation is not unique, as
there are several ways to introduce the state variables. However, letting
each capacitor and inductor be associated with a state as in Example 5.2
will always work.

In Section 4.1 we described mechanical material models using circuit
diagrams, and just above we used circuit diagrams to describe a hydrody-
namic system. In fact, electrical circuits can be used to describe any system
that has (LTI) dynamics governed by a potential and a flux. In the electric
case, the potential is electrostatic voltage and the flux is electric current. In
the Windkessel case, the potential is hydrostatic pressure, and the flow is
volumetric flow. There is thus an analogy that enables us to analyze a va-
riety of seemingly different systems within the electric circuit framework.
Some examples of this analogy are shown in Table 5.1.

To give another concrete example of this analogy, let us consider the
so-called RIC respiratory model.

Example 5.3: RIC respiratory model. Much like the Wind-
kessel model relates aortic pressure and flow, one can use circuit
models to describe the relation between tracheal pressure and flow.
One such model is the RIC model, where the letters stand for Resis-
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5.2 Circuit equivalents

tance, Inductance, and Capacitance. The lungs are primarily mod-
eled as a compliance (due to their flexible nature). The resistor mod-
els the combined flow resistance of the airways, while the inductance
models the inertance of the gas residing within the airways.
A schematic illustration of the RIC model is shown in Figure 5.5.

𝑝

+

−

𝜑 𝑅

𝑝1

𝐿

𝑝2

𝐶

Figure 5.5 RIC pulmonary model comprising of resistance 𝑅, in-
ertance 𝐿, and compliance 𝐶. The circle models a pressure source,
for example a mechanical ventilator to support gas exchange during
intensive care. The pressure applied at the airway is 𝑝, and the as-
sociated flow 𝜑.

Following the methodology of (5.4) we can introduced named pres-
sures 𝑝1 between 𝑅 and 𝐿 and 𝑝2 between 𝐿 and 𝐶. This, together
with the definition (5.1) give us

𝑝 − 𝑝1 = 𝑅𝜑, (5.10a)
𝑝1 − 𝑝2 = 𝐿 ̇𝜑, (5.10b)

𝜑 = 𝐶�̇�2. (5.10c)

Again, introducing states representing differentiated variables

𝑥1 = 𝜑, (5.11a)
𝑥2 = 𝑝2, (5.11b)

and eliminating 𝑝1, we can write the dynamics in the standard state
space form

̇𝑥1 = −𝑅
𝐿 𝑥1 − 1

𝐿𝑥2 + 1
𝐿𝑝, (5.12a)

̇𝑥2 = 1
𝐶𝑥1. (5.12b)

By performing experiments and identifying parameters of the RIC
model that fit the response, it is possible to gauge for example the
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Chapter 5. Circuit models

flow resistance and compliance parameters, that are both known to
change in individuals with pulmonary diseases such as chronic ob-
structive pulmonary disease (COPD).

5.3 Dimension analysis

When dealing with systems that have signals and states spanning across
different domains, as exemplified by the entries of Table 5.1, it is easy to get
confused if some signals are reported in one set of units, while others are
reported in another. It is therefore important to perform thorough dimen-
sion analyses when working with dynamical systems. This is particularly
true for medical systems, where a unit-miss can even be lethal.

The key to dimension analysis is to realize that units have the same
algebraic properties as numbers. This means that when two entities are
multiplied, both their quantities and units are multiplied. For example

3 m ⋅ 4 kg s−1 = 12 kg m s−1. (5.13)

Division works similarly, for example

3 m/4 kg s−1 = 3
4 m s kg−1. (5.14)

Dimension-wise the addition of two entities with different units does
not make sense. For example, if an expression like 2 m + 7 kg shows up in
your computations, that is a sign of an error having occurred somewhere
upstream.

Some units are just scaled versions of each other. In the standardized
international systems of units, SI, prefixes are used to indicate scaling. For
example the prefix k as in kg is read “kilo” and amounts to a multiplica-
tion by a factor 103. Some of the more common SI prefixes are enlisted in
Table 5.2.

One can view prefixes as a form of unit conversion. For example the unit
m equals 10−3 times the unit km:

1 m = 10−3k⏟
=1

m. (5.15)

There also exists another type of unit conversion, namely that between unit
systems. For example 1 inch = 2.54 cm, where inch is the base unit for
length in the imperial unit system.

Finally, we have composite units, that can also be thought of as a type of
conversion. For example, the SI unit for force is the Newton, N, and 1 N =
1 kg ⋅ m/s2.
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Table 5.2 Common SI unit prefixes.

Quantity Symbol name
femto f 10−15

pico p 10−12

nano n 10−9

micro 𝜇 10−6

milli m 10−3

centi c 10−2

deci d 10−1

deca da 101

hecto h 102

kilo k 103

mega M 106

tera T 1012

giga G 109

peta P 1015

Dimension analysis is not hard, but it is important, and it is easily for-
gotten. At the same time it is an excellent way to debug computations, as
unit-mismatches are a clear sign that something is not right. We leave the
subject with a realistic example.

Example 5.4: Drug infusion units. The anesthetic drug propo-
fol is given intravenously. It is common to have a drug solution
of 10 mg mL−1. The delivery rate on the infusion pump is set in
mL h−1, and the patient should get 50 µg min−1 per kilogram of body
weight. What infusion rate should be set for a 75 kg patient?

The patient should receive

50 µg min−1 kg−1 ⋅ 75 kg = 3.75 ⋅ 103 µg min−1. (5.16)

Note that we have written the intermediate step in scientific nota-
tion: a number between 0 and 10, times an integer power of 10. It
is handy to stick to this format, particularly when dealing with very
large or very small numbers.

Breaking the computation down in small steps, we can continue with
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3.75 ⋅ 103 µg min−1 ⋅ 10−3 mg µg−1 = 3.75 mg min−1, (5.17a)
3.75 mg min−1 ⋅ 6 ⋅ 101 min h−1 = 2.25 ⋅ 102 mg h−1,

(5.17b)
2.25 ⋅ 102 mg h−1 ⋅ 1.0 ⋅ 10−1 mL mg−1 =, 2.25 ⋅ 101 mL h−1.

(5.17c)

Taking good care, we thus arrive at the correct answer of 22.5
mL h−1. Imagine doing this computation without explicitly keeping
track of the units. It would be possible, but very fragile.

Further reading. A comprehensive work on Windkessel dynam-
ics is [Westerhof et al., 2019]. To get more confident with circuit
analysis, it can be worthwhile to take on a course book in basic
circuit theory, such as [Hayt et al., 2011]. If you want to delve
deeper into unit analysis, there even exist entire books on the topic,
one example being [Lemons, 2017].

Westerhof, N., N. Stergiopulos, M. I. Noble, and B. E. Westerhof
(2019). Snapshots of Hemodynamics. 3rd ed. Springer Interna-
tional Publishing, Cham, Switzerland. isbn: 978-3-319-91931-7.

Hayt, W., J. Kemmerly, and S. Durbin (2011). Engineering circuit
analysis. 8th ed. McGraw-Hill Education, New York. isbn: 978-
0073529578.

Lemons, D. S. (2017). A Student’s Guide to Dimensional Analysis.
Cambridge University Press, Cambridge, England. isbn: 978-
1316613818.
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6
Laplace domain
representation

Learning goals
After reading this chapter you should (be able to)

• Understand what is meant by a transform.

• Be able to show basic properties of the Laplace transform, us-
ing its definition.

• Describe what a transfer function is.

• Move between time domain differential equation and Laplace
domain transfer function representations of linear dynamical
systems.

• Be able to represent dynamical systems, and their intercon-
nections, using block diagrams.

• Combine systems in series, parallel and feedback interconnec-
tions, and compute the corresponding transfer functions.

• Correctly characterize stability of an LTI system on state space
form, or represented by a transfer function.

• Know what is meant by static gain and how to compute it.
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Historic Note. If you have used a camera with manual settings, you
have probably adjusted the aperture to get an image that is neither
under- nor over-exposed. Many cameras have automatic aperture ad-
justments. This is achieved by measuring the intensity of light hitting
the camera, and adjusting accordingly.

This functionality in the camera is an almost verbatim implemen-
tation of what your eyes do all the time. When exposed to increased
light intensity, the pupil shrinks, and when light intensity decreases,
the pupil grows, as schematically illustrated in Figure 6.1.

Figure 6.1 Schematic illustration of the pupillary light reflex: the
pupil shrinks when the intensity of incoming light increases, and vice
versa.

The dynamics of the neuro-muscular feedback loop that make up the
pupillary light reflex were studied by Stark and Sherman in the 1950s.
By sending in light of sinusoidially varying intensity and recording the
pupillary reaction, they were able to determine an LTI model of the dy-
namics.

Their experiments constitute a classic example of how dynamical sys-
tem theory can be useful in basic physiology. In this chapter, we will
study the Laplace transform, and build a theoretic foundation that we
will then use in Chapter 7 to gain an understanding of why varying the
light intensity as a sinusoid was a particularly clever choice, and what
such an experiment reveals about the dynamics of the pupillary reflex.
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6.1 The Laplace transform

6.1 The Laplace transform

A transform is a mapping that can take us back and forth between two
equivalent representations. We have already seen a transform in for in-
stance Example 3.6, where the linear mapping and its inverse take us back
and forth between two state-space representations of the same system.

Let us consider a linear transform that we denote by L, and call it
the Laplace transform, after French mathematician Pierre-Simon Laplace
(1749–1827). Applied to a function of time—a signal—𝑓 (𝑡), it produces a
function 𝐹(𝑠), where 𝑠 is a complex variable:

𝑓 (𝑡)
L
−→ ∫

∞

0
𝑒−𝑠𝑡𝑓 (𝑡) 𝑑𝑡 = 𝐹(𝑠). (6.1)

Note that once we integrate the right-hand-side with respect to 𝑡, the re-
sulting function 𝐹 does no longer depends on 𝑡, but only on 𝑠.

It is conventional to denote signals in the time domain with small letters
(𝑓), and their Laplace domain counterparts with capital letters (𝐹). We will
stick to this convention most of the time, and when there are exceptions, it
should be obvious from the context if we are dealing with an object in the
time domain or in the Laplace domain.

While not visible at first glance, the transform (6.1) has very much in
common with the linear transform of Example 3.6. It will be possible to use
the Laplace transform for practical purposes without seeing this. However,
your understanding of what the Laplace transform is (other than an opaque
abstract formula) could be much aided by this analogy, that we explore fur-
ther in Example 6.1.

Example 6.1: Transforms as projections. Assume you have a
vector 𝒙 and left-multiply by a matrix 𝐴 to obtain

𝒛 = 𝐴𝒙. (6.2)

We can think of a vector 𝒙 with 𝑛 elements as a point in ℝ𝑛. Each ele-
ments is then a coordinate in some basis with basis vectors 𝒆1, … , 𝒆𝑛,
where 𝒆𝑘 is a column vector of 𝑛 elements, all zero, except element
𝑘, which is 1. This means that

𝒙 =
⎡⎢⎢⎢⎢
⎣

𝒆⊤
1

⋮

𝒆⊤
𝑛

⎤⎥⎥⎥⎥
⎦⏟

𝐼

𝒙 (6.3)
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Chapter 6. Laplace domain representation

We can thus view the coordinates in 𝒙 as the orthogonal projections
of 𝒙 onto the basis vectors 𝒆1, … , 𝒆𝑛, as illustrated for an example
with 𝑛 = 2 in Figure 6.2.

𝑒1

𝑒2

𝑥

𝑥2

𝑥1

Figure 6.2 The vector 𝒙 with 𝑛 = 2 elements, interpreted as pro-
jections onto basis vectors in ℝ𝑛.

We could just as well project onto another basis, defined by vectors
𝒂1, … , 𝒂𝑛 If these vectors are linearly independent, then we can ex-
press any 𝒙 in this new coordinate system with the coordinates de-
fined by 𝒛, where

𝒙 = 𝒂⊤
1 𝒛 + … + 𝒂⊤

1 𝒛. (6.4)

We can equivalently write this as

𝒙 =
⎡⎢⎢⎢⎢
⎣

𝒂⊤
1

⋮

𝒂⊤
𝑛

⎤⎥⎥⎥⎥
⎦⏟

𝐴

𝒛 (6.5)

The new basis vectors being linearly independent is equivalent to
the 𝑛 × 𝑛 matrix 𝐴 having full rank, which in terms is equivalent to
det(𝐴) ≠ 0. Since det(𝐴) ≠ 0 determines whether 𝐴 is invertible,
we have that 𝐴−1 exists only if the new basis vectors are linearly
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independent. In this case we have that

𝒛 = 𝐴−1𝒙. (6.6)

We can thus view 𝐴 as defining a transform between a coordinate
system with axes in the 𝒆1, … , 𝒆𝑛 directions, to another coordinate
system with axes in the 𝒂1, … , 𝒂𝑛 directions.

We can repeat the same reasoning where the basis vectors are scalar
functions, instead of scalar numbers, moving the scene from the 𝑛
dimensional space ℝ𝑛, to an infinite-dimensional function space. In
ℝ𝑛 we use the inner product (also known as the scalar product) for
projections, and relatedly, we use it to test if two vectors are parallel.
The inner product between vector 𝒆 and 𝒙 is defined by

< 𝒆, 𝒙 >= 𝒆⊤𝒙 =
𝑛

∑
𝑘=1

𝑒𝑘𝑥𝑘. (6.7)

You can think of a function 𝑓 (𝑡) as an infinitely long vector, where
each 𝑡 corresponds to one entry. Thinking of the integral as an infi-
nite sum of vertical slices, the following definition of the inner prod-
uct between the functions 𝑒(𝑡) and 𝑥(𝑡), defined for 𝑡 > 0, becomes
natural:

< 𝑒, 𝑥 >= ∫
∞

0
𝑒(𝑡)𝑥(𝑡) 𝑑𝑡. (6.8)

Just like we can define a transform as the projection of a real vector
𝒙 of dimension 𝑛 onto 𝑛 basis vectors, we can—using the definition of
the inner product—project a real-valued function 𝑓 (𝑡) onto infinitely
many basis functions.

This is exactly what was done in (6.1), with the basis functions being

𝑎(𝑡) = 𝑒𝑠𝑡, (6.9)

where 𝑠 is a complex number, and each possible value of 𝑠 corre-
sponds to one of infinitely many basis functions.

If the above example serves to build your intuition, that is great. If not,
do not worry about it too much. You will still be able to use the Laplace
transform, but without fully understanding how it works.

A key property that makes the Laplace transform of particular interest
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to us is what happens if we instead of 𝑓 (𝑡) transform its time-derivative:

𝑑
𝑑𝑡 𝑓 (𝑡)

L
−→ ∫

∞

0
𝑒−𝑠𝑡 𝑑

𝑑𝑡 𝑓 (𝑡) 𝑑𝑡 = [𝑒−𝑠𝑡𝑓 (𝑡)]∞
𝑡=0 − ∫

∞

0
(−𝑠)𝑒−𝑠𝑡𝑓 (𝑡) 𝑑𝑡

= 𝑠𝐹(𝑠) − 𝑓 (0),
(6.10)

where we have used the Leibniz integration rule (4.60) to arrive at the right-
hand-side expression.

Let us consider LTI systems that start at rest, such that all signals in-
cluding the internal state variables are zero at time 𝑡 = 0. While this might
seem limiting, it is in practice often not. If 𝑡 = 0 is designated to some
instance far back in time, then the influence of the state at 𝑡 = 0 at the cur-
rent state will be negligible as long as the system has stable dynamics. In
Section 6.3 we will provide formal definition of what is meant by stability
in this context, but for now it can be assuring to know that all the systems
we have considered so far have been stable ones. What this allows us to do
is to write

𝑑
𝑑𝑡 𝑓 (𝑡)

L
−→ 𝑠𝐹(𝑠). (6.11)

In words, this means that the Laplace transform of a derivative of a
function is 𝑠 times the Laplace transform of the function itself. So if 𝐹(𝑠) is
the transform of 𝑓 (𝑡) then 𝑠𝐹(𝑠) is the transform of 𝑑𝑓 /𝑑𝑡.

Consequently it also holds that

∫
𝑡

0
𝑓 (𝜏) 𝑑𝜏

L
−→ 1

𝑠 𝐹(𝑠). (6.12)

In words, (6.12) means that if 𝐹(𝑠) is the Laplace transform of 𝑓 (𝑡), then
𝐹(𝑠)/𝑠 is the Laplace transform of its time integral ∫𝑡

0 𝑓 (𝜏)𝑑𝜏.
We can sum up the properties (6.11) and (6.12):

• Differentiation with respect to time in the time domain corresponds
to multiplication by 𝑠 in the Laplace domain.

• Integration with respect to time in the time domain corresponds to
division by 𝑠 in the Laplace domain.

The Laplace transform has several other properties that are of interest
to use.

• Since integration is a linear operator, it follows that the Laplace trans-
form is linear: 𝛼𝑓 (𝑡) + 𝛽𝑔(𝑡)

L
−→ 𝛼𝐹(𝑠) + 𝛽𝐺(𝑠).
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• A delay 𝑑 in the time domain corresponds to multiplication with the
complex exponential exp(−𝑑𝑠) in the Laplace domain:
𝑓 (𝑡 − 𝑑)

L
−→ 𝐹(𝑠)𝑒−𝑑𝑠.

We will encounter yet another property of interest in Chapter 7 when
studying frequency responses. But first, let us see how the Laplace trans-
form can be of practical use to us in modeling physiological systems and
signals.

6.2 Transfer functions and block diagrams

We are now ready to introduce a representation of LTI systems in the
Laplace domain called transfer functions. Letting 𝑢(𝑡) be the input signal
to our LTI system and 𝑦(𝑡) the resulting output, the transfer function 𝐺(𝑠)
from 𝑈(𝑠) to 𝑌(𝑠) is defined as

𝐺(𝑠) = 𝑌(𝑠)
𝑈(𝑠) . (6.13)

We can use the transfer function to compute the response 𝑦(𝑡) of an LTI
system represented by a transfer function 𝐺(𝑠) to an input 𝑢(𝑡). This is
done by computing the Laplace transform 𝑈(𝑠), multiplying with 𝐺(𝑠) to
obtain 𝑌(𝑠) = 𝐺(𝑠)𝑈(𝑠) and then applying the inverse Laplace transform
to 𝑌(𝑠) to obtain 𝑦(𝑡). In principle we can already compute 𝑈(𝑠) using
the definition (6.1). But how do we determine the transfer function 𝐺(𝑠) of
an LTI system, and how do we apply the inverse transform to obtain 𝑦(𝑡)
from 𝑌(𝑠)? Let us begin with how to determine 𝐺(𝑠) for an LTI system. In
Example 6.2 we show how it is done if we have a state space representation
of the system.

Example 6.2: State space to transfer function. Assume we
have a SISO (scalar input, scalar output) LTI system in standard
state-space form (1.9). Since the Laplace transform is linear, we can
transform the state-space representation to obtain

𝑠X(𝑠) = 𝐴X(𝑠) + 𝐵𝑈(𝑠), (6.14a)
𝑌(𝑠) = 𝐶X(𝑠) + 𝐷𝑈(𝑠), (6.14b)

where we have used the property (6.11). Since 𝑠X(𝑠) = 𝑠𝐼X(𝑠), where
𝐼 is the identity matrix, we can re-write (6.14a) as

𝑠𝐼X(𝑠) = 𝐴X(𝑠) + 𝐵𝑈(𝑠), (6.15)
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and solve for
X(𝑠) = (𝑠𝐼 − 𝐴)−1𝐵𝑈(𝑠). (6.16)

Combining (6.16) with (6.14b), we this have that

𝑌(𝑠) = (𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷)𝑈(𝑠). (6.17)

But we know from the definition (6.13) of the transfer function 𝐺(𝑠),
that 𝑌(𝑠) = 𝐺(𝑠)𝑈(𝑠), which means that

𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷. (6.18)

We now know how to obtain the transfer function from the state space
representation of an LTI system.

The inverse of a matrix is the adjoint matrix divided by the determinant.
(Remember that the determinant is a scalar.) This means that we can write

𝐺(𝑠) = 𝐶 adj(𝑠𝐼 − 𝐴)𝐵
det(𝑠𝐼 − 𝐴) + 𝐷, (6.19)

where both 𝐶 adj(𝑠𝐼−𝐴)𝐵 and det(𝑠𝐼−𝐴) come out as polynomials in 𝑠. The
transfer function of an LTI system with state-space representation (1.9) is
thus a fraction of two polynomials in 𝑠. In Example 6.2 we have seen how
the polynomials can be determined from the state space matrices 𝐴, 𝐵, 𝐶,
𝐷.

In the transformed domain, we can thus obtain 𝑌(𝑠) through multiply-
ing 𝑈(𝑠) with the function 𝐺(𝑠). This function is referred to as the transfer
function from 𝑈 to 𝑌. Note that in the Laplace domain both signals and LTI
systems share the representation of functions in the complex variable 𝑠. If
𝑈(𝑠) is the input to a system 𝐺(𝑠), then the output of the system is simply
𝐺(𝑠)𝑈(𝑠). This comes in handy when combining several LTI systems into
a bigger one, as we will do shortly.

To make things a bit more concrete, we first see how we can compute
the transfer function for a model that we have already worked with, the
four-element Windkessel model (5.9) in Example 6.3.

Example 6.3: Transfer function of Windkessel model. Let us
return to the four-element Windkessel model of Example 5.2. Using
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the state-space matrices

𝐴 =
⎡⎢⎢⎢
⎣

− 1
𝑅𝑝𝐶 0

0 −𝑅𝑐
𝐿

⎤⎥⎥⎥
⎦

, (6.20a)

𝐵 =
⎡⎢⎢⎢
⎣

1
𝐶
𝑅𝑐
𝐿

⎤⎥⎥⎥
⎦

, (6.20b)

𝐶 = [1 −𝑅𝑐] , (6.20c)

𝐷 = [𝑅𝑐] , (6.20d)

derived in the example, we can compute the transfer function from
flow to pressure using (6.19).

First we compute

𝑠𝐼 − 𝐴 = ⎡⎢⎢
⎣

𝑠 0

0 𝑠
⎤⎥⎥
⎦

−
⎡⎢⎢⎢
⎣

− 1
𝑅𝑝𝐶 0

0 −𝑅𝑐
𝐿

⎤⎥⎥⎥
⎦

=
⎡⎢⎢⎢
⎣

𝑠 + 1
𝑅𝑝𝐶 0

0 𝑠 + 𝑅𝑐
𝐿

⎤⎥⎥⎥
⎦

, (6.21)

then
det(𝑠𝐼 − 𝐴) = (𝑠 + 1

𝑅𝑝𝐶) (𝑠 + 𝑅𝑐
𝐿 ) , (6.22)

and

adj(𝑠𝐼 − 𝐴) =
⎡⎢⎢⎢
⎣

𝑠 + 𝑅𝑐
𝐿 0

0 𝑠 + 1
𝑅𝑝𝐶

⎤⎥⎥⎥
⎦

. (6.23)
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Chapter 6. Laplace domain representation

We then use the outcome of these computations to evaluate

𝐺(𝑆) = 𝑃(𝑠)
Φ(𝑠) = 1

det(𝑠𝐼 − 𝐴)𝐶 adj(𝑠𝐼 − 𝐴)𝐵 + 𝐷

= 1

(𝑠 + 1
𝑅𝑝𝐶) (𝑠 + 𝑅𝑐

𝐿 )
[1 −𝑅𝑐]

⎡⎢⎢⎢
⎣

𝑠 + 𝑅𝑐
𝐿 0

0 𝑠 + 1
𝑅𝑝𝐶

⎤⎥⎥⎥
⎦

⎡⎢⎢⎢
⎣

1
𝐶
𝑅𝑐
𝐿

⎤⎥⎥⎥
⎦

+ 𝑅𝑐

=

1
𝐶𝑠 + 𝑅𝑐

𝐿𝐶 − 𝑅2
𝑐 𝑠
𝐿 − 𝑅2

𝑐
𝑅𝑝𝐶𝐿

(𝑠 + 1
𝑅𝑝𝐶) (𝑠 + 𝑅𝑐

𝐿 )
+ 𝑅𝑐.

(6.24)

We end this example here, but you can further simplify the trans-
fer function expression by for example collecting equal powers of 𝑠
in the denominator of the first term, or by writing the whole expres-
sion on a common denominator, or by performing a partial fraction
decomposition.

We could just as well have replaced all occurrences of 𝑑/𝑑𝑡 in (5.4)
with 𝑠 and computed the transfer function from the original equa-
tion system. This is a good exercise, and will likely be faster to
perform, than computing the transfer function using the formula
𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 as in this example.

As hinted at the end of Example 6.3, we do not necessarily need to set
up a state-space representation first, to obtain the transfer function of a
system. To see this, let us again consider the Voigt constitutive material
model of Example 4.1.

Example 6.4: Transfer function of the Voigt model.

We can take the Laplace transform of the constitutive equations of
which the model is assembled. Assuming that for each element the
displacement is 𝑋(𝑠), and that the corresponding force is 𝐹(𝑠), the
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spring, damper, and mass come out as:

𝐹𝑠(𝑠) = 𝑘𝑋(𝑠), (6.25a)
𝐹𝑑(𝑠) = 𝜂𝑠𝑋(𝑠), (6.25b)
𝐹𝑚(𝑠) = 𝑚𝑠2𝑋(𝑠). (6.25c)

(Here we have used subscripts to avoid the possible confusion that
could arise from using the same symbol 𝐹 to mean the force on the
spring, on the mass, and on the damper.)

Using the same reasoning as in Example 4.1, we can immediately
write out

𝑚𝑠2𝑋(𝑠) = −𝑘𝑋(𝑠) − 𝜂𝑠𝑋(𝑠) + 𝐹(𝑠). (6.26)

Assuming 𝐹 is the input and 𝑋 the output, we can solve (6.26) for

𝐺(𝑠) = 𝑋(𝑠)
𝐹(𝑠) = 1

𝑚𝑠2 + 𝜂𝑠 + 𝑘
. (6.27)

So far we have only dealt with transfer functions of SISO (single-input,
single-output) systems. Expanding to the MIMO case is possible by orga-
nizing several SISO transfer functions in a matrix so that entry 𝑖𝑗 denotes
the transfer function from input 𝑗 to output 𝑖. Having mentioned this, we
now stick to SISO transfer functions for the remainder of this book.

Graphically we can represent transfer functions as a block, like the one
shown in Figure 6.3.

𝐺
𝑈 𝑌

Figure 6.3 Block diagram schematic of a transfer function 𝐺 from input
𝑈 to output 𝑌.

If we connect two blocks in series, as in Figure 6.4, we have that the
output of the first block is 𝐺1(𝑠)𝑈(𝑠), making the output of the second
block 𝐺2(𝑠)𝐺1(𝑠)𝑈(𝑠).

If, instead, the two blocks are connected in parallel, as depicted in
Figure 6.5, the outputs 𝐺1(𝑠)𝑈(𝑠) and 𝐺2(𝑠)𝑈(𝑠) are added to produce
(𝐺1(𝑠) + 𝐺2(𝑠))𝑈(𝑠).
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𝐺1 𝐺2
𝑈 𝑌

𝐺

Figure 6.4 Series interconnection of two LTI systems with transfer func-
tions 𝐺1 and 𝐺2, resulting in the system 𝐺 = 𝐺2𝐺1.

∑

𝐺1

𝐺2

𝑈 𝑌

𝐺

Figure 6.5 Parallel interconnection of two LTI systems with transfer func-
tions 𝐺1 and 𝐺2, resulting in the system 𝐺 = 𝐺1 + 𝐺2.

The conclusion is that

• Series connection of (SISO) systems with transfer functions 𝐺1 and
𝐺2 results in a system with transfer function 𝐺 = 𝐺2𝐺1.

• Parallel connection of (SISO) systems with transfer functions 𝐺1 and
𝐺2 result in a system with transfer function 𝐺1 + 𝐺2.

Another frequently occurring interconnection is the feedback intercon-
nection, depicted in Figure 6.6. In the feedback interconnection, the input
of 𝐺1 depends on the output of 𝐺2, which in terms depends on the output
of 𝐺1. To break up this signal loop, we can introduce a named signal 𝐸 at
the output of the summation, so that

𝐸(𝑆) = 𝑈(𝑠) + 𝐺2(𝑠)𝑌(𝑠). (6.28)

We thus have an equation system comprising of

𝐸(𝑠) = 𝑈(𝑠) + 𝐺2(𝑠)𝑌(𝑠), (6.29a)
𝑌(𝑠) = 𝐺1(𝑠)𝐸(𝑠). (6.29b)
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∑ 𝐺1

𝐺2

𝑌𝐸𝑈

𝐺

Figure 6.6 Feedback interconnection between 𝐺1 and 𝐺2, resulting in the
system 𝐺 = 𝐺1/(1 − 𝐺2𝐺1).

Eliminating 𝐸 leaves us with the desired relation

𝑌(𝑠) = 𝐺1(𝑠)
1 − 𝐺2(𝑠)𝐺1(𝑠)𝑈(𝑠). (6.30)

In general, the approach is to name signals at the output of summations,
setting up an equation system, eliminating the same signals from the sys-
tem, and solving for the output signal. We illustrate it below in a somewhat
more complex example.

Example 6.5
Consider the system in Figure 6.7, where each letter denotes a trans-
fer function. How can we express the transfer function from 𝑈 to 𝑌
using these transfer functions?

∑𝐺1 𝐺2∑ 𝑌𝑈

𝐺

Figure 6.7 Block diagram with two blocks.

Denoting by 𝐸1 the output of the leftmost sum, and by 𝐸2 the output
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of the rightmost, we have that

𝐸1 = 𝑈 + 𝑌, (6.31a)
𝐸2 = 𝐺1𝐸1 + 𝑌. (6.31b)

𝑌 = 𝐺2𝐸2. (6.31c)

Inserting the expression for 𝐸1 from the first equation into the sec-
ond, and then the resulting expression for 𝐸2 into the third equation
gives

𝑌 = 𝐺2(𝐺1(𝑈 + 𝑌) + 𝑌). (6.32)

Solving for 𝑌 we obtain the transfer function

𝐺 = 𝐺2𝐺1
1 − 𝐺2𝐺1 − 𝐺2

(6.33)

from 𝑈 to 𝑌.

We have seen that the transfer function allows us to work with block
diagrams and build complex systems from less complex components, which
was more difficult when working with state-space representations. We have
also seen how to transition from state-space to transfer functions. But about
moving back? For systems in the form

𝐺(𝑠) = 𝐵(𝑠)
𝐴(𝑠) , (6.34)

where 𝐵 and 𝐴 are polynomials, this is quite simple. If the system input is
𝑈 and the output is 𝑌 we have that

𝐴(𝑠)𝑌(𝑠) = 𝐵(𝑠)𝑈(𝑠). (6.35)

As a concrete example, if 𝐵(𝑠) = 2 and 𝐴(𝑠) = 4𝑠2 + 1 we have

4 ̈𝑦 + 𝑦 = 2𝑢. (6.36)

Applying the inverse Laplace transform by replacing 𝑠 with 𝑑/𝑑𝑡 we thus
end up with an ordinary differential equation, and then transition to state
space as described in previous chapters.

A related and useful thing, that becomes evident when considering block
diagrams, is that we can treat signal paths as separate thanks to linearity
of the systems. For example, consider the system in Figure 6.8. Thanks
to the superposition principle that follows directly from the linearity of all
system components we have that

𝑌(𝑠) = 𝐺2(𝑠)𝑈(𝑠) + 𝐺2(𝑠)𝐺1(𝑠)𝑉(𝑠). (6.37)
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∑𝐺1 𝐺2
𝑉 𝑌

𝑈

Figure 6.8 A MISO system with two incoming signal paths 𝑈 and 𝑉, and
one output 𝑌.

If we set 𝑢(𝑡) to identically zero, it follows from (6.1) that 𝑈(𝑠) also becomes
identically zero. In this case 𝑌(𝑠) = 𝐺2(𝑠)𝐺1(𝑠)𝑉(𝑠). Similarly, if we set 𝑉
to zero, we have that 𝑌(𝑠) = 𝐺2(𝑠)𝑈(𝑠). We thus say that 𝐺2(𝑠)𝐺1(𝑠) is
the transfer function from 𝑉 to 𝑌, while 𝐺2 is the transfer function from 𝑈 to
𝑌. This means that as long as the components 𝐺1 and 𝐺2 are LTI systems,
we can consider these two transfer functions entirely independent of each
other.

6.3 Stability and static gain

A central concept in dynamical systems, applicable both within and outside
of physiology, is stability. Stability tells us what will happen to the system
state if we start in an initial state, set all inputs to zero, and wait. For an
LTI system one of three things could happen:

• All system states tend to zero. This happening is equivalent to the
system being asymptotically stable.

• All system states remain bounded, but at least one does not go to zero,
referred to as being marginally stable.

• At least one state goes to (plus or minus) infinity, referred to as being
unstable.

If we were dealing with a scalar system (𝒙 = 𝑥 and 𝐴 = 𝑎), the exact
solution formula (4.56) with 𝑢 = 0 would give us

𝑥(𝑡) = 𝑒𝑎𝑡𝑥0. (6.38)

Any 𝑎 < 0 would thus result in 𝑥 → 0 as 𝑡 → ∞. Conversely, 𝑎 > 0 would
result in 𝑥 growing unbounded. Finally, 𝑎 = 0 would result in 𝑥 = 𝑥0 indefi-
nitely. Here the stability classifications are decided by whether 𝑎 is strictly
negative, strictly positive, or zero.

Since we are concerned with the evolution of the state while the input
is identifically zero, (4.56) provides us with

𝒙(𝑡) = 𝑒𝐴𝑡𝒙0, (6.39)
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meaning that the stability property has to be determined by the 𝐴 matrix
also when the state is vector-valued.

Let us first consider the special case where 𝐴 can be diagonalized so that
𝐴 = 𝐷Λ𝐷−1, with Λ being a diagonal matrix with real diagonal elements
𝜆1, … , 𝜆𝑛. Then we have that

𝐴2 = 𝐷Λ𝐷−1𝐷Λ𝐷−1 = 𝐷Λ2𝐷−1. (6.40)

Since exp(𝐴𝑡) can be expressed as a Taylor series in 𝐴, we can thus write

𝑒𝐴𝑡 = 𝐷𝑒Λ𝑡𝐷−1, (6.41)

where exp(Λ𝑡) is a diagonal matrix with elements exp(𝜆1𝑡), … , exp(𝜆𝑛𝑡).
If all the 𝜆:s are negative, exp(Λ𝑡) will tend to zero, and thus also exp(𝐴𝑡)
will tend to zero. For this particular case, stability is determined by the
sign of the 𝜆:s, which are also the eigenvalues of 𝐴.

What about the general case? Let us start with an example.

Example 6.6: Voigt model stability. The Voigt model is shown
in Figure 6.9.

𝑚

𝑘

𝜂

𝐹

𝑥

Figure 6.9 Schematic drawing of the Voigt model, where the
spring and damper are connected in parallel to the mass element.

It is governed by LTI dynamics Alternatively we can provide the
equations of (4.5) in matrix form

̇𝒙 =
⎡⎢⎢
⎣

0 1

− 𝑘
𝑚 − 𝜂

𝑚

⎤⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟

𝐴

𝒙 +
⎡⎢⎢
⎣

0
1
𝑚

⎤⎥⎥
⎦⏟

𝐵

𝑢, (6.42a)

𝑦 = [1 0]⏟
𝐶

, (6.42b)
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as previously derived in Example 4.1.

Assuming we start in a state 𝒙0, and apply no input (𝑢 = 0), we can
use (4.56) to obtain the exact solution

𝒙(𝑡) = 𝑒𝐴𝑡𝒙0. (6.43)

Fixing 𝑚 = 1 and 𝑘 = 1 we have that

𝐴 = ⎡⎢⎢
⎣

0 1

−1 −𝜂
⎤⎥⎥
⎦

(6.44)

Simulating the system numerically for different damping 𝜂 we would
find that 𝜂 = 0 corresponds to a sustained sinusoidal oscillation.
This is not surprising as the system is now a mass-spring system
without damping. For 𝜂 > 0, kinetic energy is removed by the damp-
ing, and we have that 𝒙 → 𝟎 as 𝑡 → ∞. If, instead, the damping is
negative, 𝜂 < 0, kinetic energy is pumped into the system by the
damper, and 𝒙 will grow unbounded.

Computing the eigenvalues of 𝐴 for our special case by solving the
characteristic det(𝑠𝐼 − 𝐴) = 𝑠2 + 𝜂𝑠 + 1 = 0, we find that they are

𝜆 = −𝜂
2 ± √𝜂2

4 − 1. (6.45)

From our insights into the dynamics, we know that the system is
asymptotically stable for 𝜂 > 0, marginally stable for 𝜂 = 0, and un-
stable for 𝜂 < 0. We can relate this to the real part of the eigenvalues.
When the eigenvalues have strictly negative real part, the system is
asymptotically stable, and when at least one eigenvalue has positive
real part, the system is unstable. Marginal stability arises when the
real part of the eigenvalues are zero.

While mathematically somewhat outside the scope of this introductory
book, it can be shown that it is indeed the real part of the eigenvalues of
the system matrix 𝐴 that determine stability of the system. If they all have
strictly negative real part, the system is asymptotically stable. If at least one
has strictly positive real part, the is unstable. Testing for marginal stability
in the vector-valued case is a bit trickier, and we will not go into it here,
since for most cases of physiologic relevance, it is sufficient to distinguish
between asymptotic stability and instability.
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According to (6.22), det(𝑠𝐼 − 𝐴) is also the denominator of the transfer
function from system input to output. This is referred to as the characteris-
tic polynomial. We can therefore equivalently determine stability of a sys-
tem by equating the transfer function denominator to zero. The solutions,
being equal to the eigenvalues of the 𝐴 matrix, are in this context referred
to as the poles of the system.

In an asymptotically stable system, the state goes to zero in the absence
of input. But what happens if there is a constant input? To answer this, let
us consider a SISO system with 𝑢(𝑡) = 1 for all positive times. According
to (4.56) the output at time 𝑡 is

𝑦(𝑡) = 𝐶𝒙(𝑡) + 𝐷𝑢(𝑡) = 𝐶𝑒𝐴𝑡𝒙0 + 𝐶∫
𝑡

0
𝑒𝐴(𝑡−𝜏)𝐵𝑢(𝜏) 𝑑𝜏 + 𝐷𝑢(𝑡). (6.46)

After long time the term 𝐶 exp(𝐴𝑡)𝒙0 will be small as a consequence of the
system being asymptotically stable. In particular

lim
𝑡→∞

𝑦(𝑡) = 𝐶 lim
𝑡→∞

∫
𝑡

0
𝑒𝐴(𝑡−𝜏) 𝑑𝜏

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
−𝐴−1

𝐵 + 𝐷 = −𝐶𝐴−1𝐵 + 𝐷. (6.47)

Here we have used that 𝑢(𝑡) = 1, and that

lim
𝑡→∞

∫ 𝑒𝐴(𝑡−𝜏) 𝑑𝜏 = lim
𝑡→∞

[−𝐴−1𝑒𝐴(𝑡−𝜏)]𝑡
𝜏=0 = −𝐴−1 + 𝐴−1 lim

𝑡→∞
𝑒𝐴𝑡, (6.48)

where the left term goes to zero of 𝐴 is the system matrix of an asymptoti-
cally stable system.

When enough time has passed for the initial condition transient term
𝐶 exp(𝐴𝑡)𝒙0 to have faded away, we can thus obtain the associated station-
ary output

𝑦∞ = −𝐶𝐴−1𝐵 + 𝐷. (6.49)

Since the system is linear, letting 𝑢(𝑡) = 𝛼⋅1 instead of 𝑢(𝑡) = 1, results
in a corresponding scaling of 𝑦 by a factor 𝛼. Thus the input 𝑢(𝑡) = 𝛼 results
in the stationary output 𝑦∞𝛼. The fraction between output and input of a
system is called the gain of the system, and the static gain is therefore 𝑦∞
in this case.

You may already have noticed the resemblance between (6.49) and
(6.18). Indeed, the former is what you get from the latter by setting 𝑠 = 0.
For an asymptotically stable system we can thus obtain the static gain 𝑦∞
directly from the transfer function as

𝑦∞ = 𝐺(0). (6.50)
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Note, however, that 𝐺(0) is only the static gain if the system is asymp-
totically stable. Otherwise, the system never reaches stationarity, and al-
though 𝐺(0) might still be finite, it no longer has the interpretation of being
the static gain of the system. Let us illustrate how to compute the static gain
using a by now familiar example.

Example 6.7: Static gain of the Voigt model. In Example 6.4
we derived the transfer function from force 𝐹 to elongation 𝑋 of the
Voigt constitutive material model:

𝐺(𝑠) = 1
𝑚𝑠2 + 𝜂𝑠 + 𝑘

. (6.51)

Assume we have a tissue that we describe with this model, and that
we want to know what the elongation becomes if we keep pulling
with a steady force 𝐹0.

First we check that the system is stable by solving the characteristic
polynomial

𝑚𝑠2 + 𝜂𝑠 + 𝑘 = 0. (6.52)

Assuming that 𝑚, 𝜂 and 𝑘 are all strictly positive, the poles are then

𝑝 = −𝜂
2 ± √ 𝜂2

4𝑚2 − 𝑘
𝑚. (6.53)

If the expression under the root is negative, the real part of either
pole is −𝜂/(2𝑚), and thus negative. If the expression under the root
is positive, it is always larger than 𝜂/(2𝑚), and therefore the poles
will have negative real parts also in this case. The system is thus
asymptotically stable. This should not come as a great surprise: if
you stop pulling on the tissue, it will return to its resting state.

We thus know that the stationary elongation corresponding to 𝐹 = 1
is

𝐺(0) = 1
𝑘, (6.54)

end hence that the stationary elongation corresponding to the con-
stant force 𝐹0 is 𝑥 = 𝐹0/𝑘. This looks like Hooke’s law. Indeed, in
stationarity, the damper has no effect since nothing is moving, and
there is no acceleration force of the mass, for the very same reason.

We end with an important remark. What does it mean that a state goes
unbounded (to infinity or negative infinity)? In fact, this typically does not
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Chapter 6. Laplace domain representation

occur. Instead, what happens in practice is that a state grows very rapidly
until it exits the region in state space where the model constitutes a good
approximation of reality. This could be because of some subtle nonlinearity,
or it could simply be because the real-world system breaks in one way or
another. A physiological analogy here could be a cancer. If the state that we
are tracking is the number of cells in a tissue, a cancer could be modeled
as an unstable, exponential growth. If not mitigated by the immune system
or otherwise treated, our simple model of exponential growth would break
down when the combination of size and growth rate would require more
metabolic components than can be delivered by the blood.

Further reading. An introduction to mathematical transforms
used throughout engineering is provided in [Özhan, 2022]. The book
[Janisse, 1974] comprises a collection of scientific texts covering
pupil dynamics. Block diagrams are used extensively throughout
control system engineering, and to some extent covered in most
control system textbooks, including [Åström and Murray, 2020].

Özhan, O. (2022). Basic transforms for electrical engineering.
Springer, Berlin, Germany. isbn: 978-3-030-98845-6.

Janisse, M., (Ed.) (1974). Pupillary dynamics and behavior.
Springer, New York, NY. isbn: 978-1-4757-1642-9.

Åström, K. J. and R. Murray (2020). Feedback systems. 2nd ed.
Princeton University press, Princeton, NJ. isbn: 978-
0691135762.

122



7
Linear model responses

Learning goals
After reading this chapter you should (be able to)

• Compute the time domain step and impulse response of a lin-
ear system using tabulated Laplace transforms.

• Account for different methods by which the time response of a
linear system can be obtained.

• Be able to characterize step responses of first and second-order
systems from their step responses in terms of static gain, time
constant, and damping.

• Understand that the response to a sinusoidal input signal is
the sum of a sinusoid and an initial state transient.

• Know what magnitude (gain) and argument (phase) mean.

• Be able to account for what the Bode diagrams show.
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Historic Note. The oral glucose tolerance test (OGTT) is clinically em-
ployed to diagnose a variety of conditions, most notably diabetes type 2.
The standard test comprises of dissolving 75 mL of glucose into 250-300
mL of water. The patient drinks this in one sweep, in effect making it a
bolus dose of glucose delivered to the stomach. The stomach can be mod-
eled as one compartment that communicated (directly or indirectly) with
the blood plasma (modeled as another compartment). In order to ensure
comparability between test results, it is common that the test dictates
a fasting episode of 10 hour or more prior to ingesting the glucose solu-
tion. In dynamic modeling terms this can be understood as bringing the
subjects to a shared initial state prior to delivering the bolus.

By taking one or several blood samples, typically at the finger tip,
and analyzing them for glucose concentration, it is then possible to iden-
tify parameters of a simple compartment model that models glucose
metabolism. Diabetes 2, and some other conditions, are indicated by the
dominating time constant of the identified dynamics differing signifi-
cantly from that expected in a fully healthy individual.

While the test itself is simple, interpretation of its outcome re-
lies heavily on dynamical modeling concepts. In particular, it relates
strongly to the concept of impulse response, which we will study more
in-depth in this chapter.

7.1 Step and impulse responses

The step response
In Chapter 6 we have seen that both signals and systems can be modeled in
the Laplace domain, as functions of a complex variable 𝑠. When modeling
physiological systems, and a wide range of other dynamical systems as well,
two special input signals are of particular interest: the unit step and the
unit impulse.

The unit step signal, shown in Figure 7.1 is zero for all negative times,
then one for all non-negative times:

𝜃(𝑡) =
⎧{
⎨{⎩

0, 𝑡 < 0,
1, 𝑡 ≥ 0.

(7.1)

Applying the Laplace transform (6.1) to the unit step, we get

𝜃(𝑠) = ∫
∞

0
𝑒−𝑠𝑡𝜃(𝑡) 𝑑𝑡 = ∫

∞

0
𝑒−𝑠𝑡 𝑑𝑡 = [−1

𝑠 𝑒−𝑠𝑡]
∞

𝑡=0
= 1

𝑠 . (7.2)

The Laplace transform of the unit step function is thus 𝑠−1, and if we ap-
ply a unit step to the input of an LTI system with transfer function 𝐺, the
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7.1 Step and impulse responses

resulting output—the unit step response—becomes

𝑌(𝑠) = 𝐺(𝑠)1
𝑠 . (7.3)

Let us consider the step response of the first-order system

𝐺(𝑠) = 𝑘
𝑠𝑇 + 1. (7.4)

We can obtain the time-domain expression by inverse-transforming

𝑌(𝑠) = 𝐺(𝑠)1
𝑠 , (7.5)

using a Laplace transform table, as exemplified further below in Exam-
ple 7.3. Alternatively, we can re-arrange (7.5) with 𝑈(𝑠) = 𝑠−1 as follows

𝑌(𝑠)(𝑠𝑇 + 1) = 𝑘𝑈(𝑠), (7.6a)

𝑠𝑌(𝑠) = − 1
𝑇𝑌(𝑠) + 𝑘

𝑇𝑈(𝑠), (7.6b)

and apply the inverse Laplace transform to obtain the time-domain relation

̇𝑦 = − 1
𝑇𝑦 + 𝑘

𝑇𝑢. (7.7)

Introducing the state 𝑥 = 𝑦, we can write (7.7) on state-space form (1.9),
with

{𝐴, 𝐵, 𝐶, 𝐷} = {− 1
𝑇, 𝑘

𝑇, 1, 0} . (7.8)

1
𝜃(𝑡)

𝑡

𝑦(𝑡)

Figure 7.1 The unit step function 𝜃(𝑡), sometimes referred to as the Heav-
iside step function after Oliver Heaviside (1850–1925).
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0 𝑇
0

𝑘(1 − 𝑒1/𝑇)

𝑘

𝑡

𝑦(𝑡)

Figure 7.2 Step response of the first-order system (7.4), with static gain 𝑘
and time constant 𝑇.

Inserting the state-space matrices into the explicit solution formula (4.56)
we obtain

𝑦(𝑡) = 𝑒−𝑡/𝑇𝑥(0) + ∫
𝑡

0
𝑒

−
1
𝑇 (𝑡−𝜏) 𝑘

𝑇 𝑑𝜏 = 𝑒−𝑡/𝑇𝑥(0) + 𝑘 [𝑒(𝑡−𝜏)/𝑇]𝑡
𝜏=0

= 𝑒−𝑡/𝑇𝑥(0) + 𝑘(1 − 𝑒−𝑡/𝑇). (7.9)

The unit step response, often simply referred to as the step response, is de-
fined as thew response to the unit step, with the responding system starting
in its rest state 𝒙 = 𝟎. For (7.4), we thus have from (7.9), with 𝑥(0) = 0, that
the step response is

𝑦(𝑡) = 𝑘(1 − 𝑒−1/𝑇). (7.10)
The step response (7.10) is shown in Figure 7.2.

We see from (7.10) that if 𝑇 > 0, the step response 𝑦(𝑡) → 𝑘 as 𝑡 → ∞.
But we know from Chapter 6 that 𝑇 > 0 is also the asymptotic stability
condition for (7.4), since 𝐴 = −1/𝑇 has the (real) eigenvalue −1/𝑇, which is
smaller than zero exactly when 𝑇 > 0. In the case 𝑇 > 0 we thus have that

𝐺(0) = 𝑘
0𝑇 + 1 = 𝑘. (7.11)

This holds true in general: the unit step response of an asymptotically stable
LTI system converges to the static gain of the system.

Since the system (7.4) has one pole (zero of the denominator polynomial),
in 𝑠 = −1/𝑇, we refer to it as a first-order system. The number 𝑇, with unit
of time, is referred to the time constant of the first-order system. When
𝑡 = 𝑇 we have from (7.10) that

𝑦(𝑇) = 𝑘(1 − 𝑒−1) ≈ 0.63𝑘. (7.12)
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7.1 Step and impulse responses

The time constant is therefore a measure of how fast the step response con-
verges to the static gain of the system, as we investigate closer in Exam-
ple 7.1

Example 7.1: Time constant of first-order system. Assume we
have a system with transfer function

𝐺(𝑠) = 𝑏
𝑠 + 𝑎𝑒−𝑠𝐿 (7.13)

that models the nervous system responding to a stimulus. We issue
the stimulus at time 𝑡 = 0, and obtain the response shown in Fig-
ure 7.3

In order to obtain a useful model of the system, we want to estimate
the parameters 𝑏, 𝑎, and 𝐿 of the model (7.13). In Section 6.1 we
found that multiplication with exp(−𝐿𝑠) in the Laplace domain cor-
responds to delaying by time 𝐿 in the time domain. From (7.13) we
thus see that 𝐿 = 2 time units is a good approximation of the delay.

We also see from the figure that the static gain is 𝑘 = 3, and that the
time 𝑇 it takes the response to reach 𝑦(𝑇) = 𝑘𝑒(1 − exp(−𝑇/𝑇)) =
𝑘(1 − exp(−1)) ≈ 0.63𝑘 is roughly 𝑇 = 5. Note that this time ex-
cludes the delay. That is, the time constant of a system is defined so
that it remains un-changed if the delay of the system is changed.

0 𝐿
0

𝑘(1 − 𝑒1/𝑇)

𝑘

𝐿 + 𝑇 = 𝐿 + 1

𝑎
𝑡

𝑦(𝑡)

Figure 7.3 Step response of a system with transfer function (7.13),
with delay 𝐿 = 2, time constant 𝑇 = 5, and static gain 𝑘 = 3.
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Next, we re-write the un-delayed part of (7.13) as

𝑏
𝑠 + 𝑎 = 𝑏/𝑎

1
𝑎

𝑠 + 1
, (7.14)

which reveals to us that 𝑏/𝑎 = 𝑘 = 3 and 1/𝑎 = 𝑇 = 5. This is
an equation system with two equations and two unknowns, that we
easily solve for 𝑎 = 1/5 and 𝑏 = 3/5.

Next, let us study second-order systems. One way of obtaining a second-
order system is to simply connect two first-order systems in series, as we do
in the following example.

Example 7.2: Series interconnection of first-order systems.
Many physiological systems respond to a step change in input with
a corresponding stop change in output, that is smoothed and scaled.
Such systems can often be adequately modeled using the first-order
transfer function

𝐺(𝑠) = 𝑏
𝑠 + 𝑎 = 𝑘

𝑠𝑇 + 1, (7.15)

where the static gain is 𝑘 = 𝑏/𝑎, while the time constant is 𝑇 = 1/𝑎.
It makes sense to talk about static gain and time constant as long
as the system is asymptotically stable, which is equivalent to 𝑇 > 0
or 𝑎 > 0.

If we connect the two first-order systems

𝐺1(𝑠) = 𝑏1
𝑠 + 𝑎1

, (7.16a)

𝐺2(𝑠) = 𝑏2
𝑠 + 𝑎2

, (7.16b)

in series, we obtain the system

𝐺(𝑠) = 𝐺2(𝑠)𝐺1(𝑠) = 𝑏1𝑏2
(𝑠 + 𝑎1)(𝑠 + 𝑎2) . (7.17)

If we are interested in the step response of 𝐺(𝑠), we could use a
Laplace transform table and hope to find it there. But we could also
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perform a partial-fraction decomposition by asserting

𝐺(𝑠) = 𝑏1𝑏2
(𝑠 + 𝑎1)(𝑠 + 𝑎2) = 𝑐1

𝑠 + 𝑎1
+ 𝑐2

𝑠 + 𝑎2
. (7.18)

Putting the right-hand-side on a common denominator, and match-
ing equal powers of 𝑠 results in the following system of equations:

𝑏1𝑏2 = 𝑎2𝑐1 + 𝑎1𝑐2, (7.19a)
0 = 𝑐1 + 𝑐2, (7.19b)

with solution

𝑐1 = 𝑏1𝑏2
𝑎2 − 𝑎1

, (7.20a)

𝑐2 = 𝑏1𝑏2
𝑎1 − 𝑎2

, (7.20b)

and thus

𝐺(𝑠) = 𝑏1𝑏2/(𝑎2 − 𝑎1)
𝑠 + 𝑎1⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐺′
1

+ 𝑏1𝑏2/(𝑎1 − 𝑎2)
𝑠 + 𝑎2⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐺′
2

. (7.21)

This means that (in this particular case) we can interpret the series
interconnection of 𝐺1 and 𝐺2 as a parallel interconnection of 𝐺′

1 and
𝐺′

2. The step response of 𝐺 is this the sum of the step responses of
𝐺′

1 and 𝐺′
2.

There are also second-order systems that cannot be viewed as the series
(or parallel) interconnections of two first-order systems. This is the case
when the poles are complex. We have already seen example of such sys-
tem when studying constitutive tissue models, such as the Voigt model in
Example 6.4, with transfer function

𝐺(𝑠) = 1
𝑚𝑠2 + 𝜂𝑠 + 𝑘

, (7.22)

that we can write in the form

𝐺(𝑠) = 𝑏
𝑠2 + 𝑎1𝑠 + 𝑎0

, (7.23)

with 𝑏 = 1/𝑚, 𝑎1 = 𝜂/𝑚, and 𝑎0 = 𝑘/𝑚.
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We see that if the system is asymptotically stable, its static gain will be

𝐺(0) = 𝑏
𝑎0

= 1
𝑘. (7.24)

The condition for asymptotic stability is that the poles of the system, being
the zeros of the denominator polynomial, both have negative real part. The
poles of (7.23) are the solutions to

𝑠2 + 𝑎1𝑠 + 𝑎0 = 0, (7.25)

namely

𝑠 = −𝑎1
2 ± √𝑎2

1
4 − 𝑎0. (7.26)

The real part of 𝑠 is strictly negative if and only if 𝑎1 > 0, and the square
root is real and smaller than 𝑎1/2. The latter is the case whenever 𝑎0 > 0.
The condition for asymptotic stability of (7.23) is thus that both 𝑎0 and 𝑎1
be strictly positive. In our example this corresponds to 𝜂/𝑚 and 𝑘/𝑚 both
being positive. If we assume that mass is positive, 𝑚 > 0, the condition for
asymptotic stability is that both 𝑘 > 0 and 𝜂 > 0 hold.

In the following example we investigate the step response of second-
order systems, and the Voigt model in particular

Example 7.3: Step response of second order system. Using a
Laplace transform table we find that

𝑌(𝑠) = 𝐺(𝑠)
𝑠 = 𝛼

𝜔2
0

(𝑠2 + 2𝜁𝜔0𝑠 + 𝜔2
0)𝑠

L−1
−−−→ 𝑦(𝑡) (7.27)

with

𝑦(𝑡) = 𝛼 ⎛⎜⎜⎜
⎝

1 − 1
√1 − 𝜁2

𝑒−𝜁𝜔0𝑡 sin (𝜔0√1 − 𝜁2𝑡 + 𝜙)⎞⎟⎟⎟
⎠

, (7.28a)

where

𝜙 = cos−1 𝜁 (7.28b)

for the case 0 < 𝜁 < 1, corresponding to complex poles. The response
is illustrated in Figure 7.4.
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0
0

𝛼

2𝜋
𝜔0√1 − 𝜁2

𝑡

𝑦(𝑡)

Figure 7.4 Step response (7.28a) of a second-order system (7.27)
with complex poles.

We see from (7.22) that

𝜔0 = √ 𝑘
𝑚, (7.29a)

𝜁 = 𝜂
2√𝑘𝑚

, (7.29b)

are required for the denominator polynomials to match, and that
this imposes

𝛼 = 1
𝜔2

0
= √𝑚

𝑘 . (7.29c)

For a second-order system on the form (7.28a), the value 0 ≤ 𝜁 ≤ 1
is referred to as the relative damping of the system.

In the extreme case 𝜁 = 1, (7.27) turns into

𝐺(𝑠) =
𝛼𝜔2

0
(𝑠 + 𝜔0)2 , (7.30)

which is a special case of the system studied in Example 7.2. Since
the response is the sum of two first-order system responses, it lacks
oscillations, and thus systems on the form (7.27) with 𝜁 = 1 are
referred to as fully damped.

131



Chapter 7. Linear model responses

For the other extreme, 𝜁 = 0, (7.27) turns into

𝐺(𝑠) =
𝛼𝜔2

0
𝑠2 + 𝜔2

0
. (7.31)

In this case, we can look up in a Laplace transform table that the
step response 𝑦(𝑡) = L−1(𝐺(𝑠)/𝑠) is the undamped offset sinusoid

𝑦(𝑡) = 𝛼(1 − cos(𝜔0𝑡)). (7.32)

Thus a system on the form (7.27) with 𝜁 = 0 is referred to as (fully)
undamped.

Returning to the Voigt model, we see from (7.29b) that it approaches
a fully undamped system when 𝜁 → 0 (i.e. 𝜂 ≪ 𝑘) and is fully
damped when 𝜂2 = 4𝑘𝑚.

We have now seen examples of second-order system step responses. Of
course a similar analysis can be conducted for higher-order systems. How-
ever, a lot of dynamic behaviors in physiology can be modeled using low-
order models. This explains why we have put this emphasis on first and
second-order systems.

Before moving on, we present a simple relation between pole location
and step response characteristics for second-order systems. For the system

𝐺(𝑠) =
𝜔2

0
𝑠2 + 2𝜁𝜔0 + 𝜔2

0
(7.33)

the poles will be complex-conjugated and located as shown on the left in
Figure 7.5. It is straightforward to show that the magnitude of either pole
is 𝜔0, and that they form an angle 𝜙 to the negative real axis, that relates
to the relative damping through cos 𝜁 = 𝜙.

The right side of Figure 7.5 shows how changing pole locations affects
the step response of (7.33): the smaller the distance 𝜔0 to the origin from
the poles, the slower the response, and the larger angle 𝜙 to the negative
real axis, the less damped the system becomes. When the poles lie on the
imaginary axis, the system is fully undamped, and when the poles lie on
the negative real axis the system is fully damped, as already explained in
Example 7.3.

The impulse response
Imagine you inject one unit of drug evenly between time 𝑡 = 0 and 𝑡 = 𝜏.
The injection rate is then 1/𝜏. As we let 𝜏 → 0, the injection rate will go
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Figure 7.5 Pole locations (left) for (7.33) and corresponding step responses
(right). The bottom plots show what happens when the relative damping 𝜁
is varied (for a fixed natural frequency 𝜔0), while the top plots shows what
happens when the natural frequency 𝜔0 is varied (for a fixed relative damp-
ing).
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to infinity, while the total injected mass remains 1. In the limit, we obtain
the signal that we refer to as the impulse, and denote by 𝛿(𝑡), where the
argument denotes that the impulse takes place at time 𝑡 = 0. It has the
defining properties

𝛿(𝑡) = 0, 𝑡 ≠ 0, (7.34a)

∫
∞

0
𝛿(𝑡) 𝑑𝑡 = 1. (7.34b)

If the injection is very fast, you can model this by all drug being injected
at 𝑡 = 0, using the input signal 𝑢(𝑡) = 𝛿(𝑡). If there would be a second
injection at 𝑡 = 5 with three times as much drug mass, we would model
that as 3𝛿(𝑡 − 5), and the combined input signal would then be 𝑢(𝑡) =
𝛿(𝑡) + 3𝛿(𝑡 − 5).

Using the definition (6.1) of the Laplace transform, we find that the unit
impulse transforms to

𝛿(𝑡)
L
−→ ∫

∞

0
𝑒−𝑠𝑡𝛿(𝑡) 𝑑𝑡 = 1. (7.35)

The unit impulse response of a system with transfer function 𝐺(𝑠) is
thus

𝑌(𝑠) = 𝐺(𝑠)1 = 𝐺(𝑠). (7.36)
Remembering from (7.5) that the step response of the same system is

𝐺(𝑠)/𝑠, and that multiplication by 𝑠 in the Laplace domain corresponds to
differentiating with respect to time in the time domain, we arrive at the
following conclusion: If a system has step response 𝑦(𝑡), the corresponding
impulse response is

ℎ(𝑡) = ̇𝑦(𝑡). (7.37)
The impulse response is thus the derivative of the step response. Con-

sequently, since the step response of a system with transfer function 𝐺(𝑠)
is 𝐺(𝑠)/𝑠 in the Laplace domain, and since division by 𝑠 in the Laplace do-
main corresponds to integration with respect to time in the time domain,
we have that

ℎ(𝑡)
L
−→ 𝐺(𝑠). (7.38)

In words: The transfer function is the Laplace transform of the impulse
response.

The impulse response also has an interpretation as a weighing function
in the time-solution of an LTI system starting at rest. According to (4.56)
the impulse response is

ℎ(𝑡) = 𝐶∫
𝑡

0
𝑒𝐴(𝑡−𝜏)𝐵𝛿(𝜏) 𝑑𝜏 + 𝐷𝛿(𝑡) = 𝐶𝑒𝐴𝑡𝐵 + 𝐷𝛿(𝑡), (7.39)
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and the general solution to the system can be written as

𝑦(𝑡) = 𝐶𝑒𝐴𝑡𝒙(0) + 𝐶∫
𝑡

0
ℎ(𝑡 − 𝜏)𝑢(𝜏) 𝑑𝜏, (7.40)

which we can easily verify by combining (7.39) and (4.56). The impulse re-
sponse thus serves as a weight by which the input is multiplied at each
time point. The relation (7.40) can be intuitively understood if we think of
the input 𝑢(𝑡) as the infinite sum (thus linear combination) of impulses is-
sued at times 𝜏, and spaced 𝑑𝜏 from each other. In the limit 𝑑𝜏 → 0 This
sum becomes

𝑢(𝑡) = ∫
∞

0
𝑢(𝜏)𝛿(𝑡 − 𝜏) 𝑑𝜏. (7.41)

7.2 The frequency response

Let us investigate the special case when the input to an LTI system is a
sinusoid

𝑢(𝑡) = sin(𝜔𝑡), (7.42)

with angular frequency 𝜔. With ℎ(𝑡) being the impulse response of our sys-
tem, which we assume to be asymptotically stable, let us see what happens
to the response after the initial-state transient has faded away. In absence
of the initial state transient, the response to the input (7.42) is

𝑦(𝑡) = ∫
𝑡

0
ℎ(𝑡 − 𝜏)𝑢(𝜏) 𝑑𝜏 = [𝑟 = 𝑡 − 𝜏]

= ∫
𝑡

0
ℎ(𝑟)𝑢(𝑡 − 𝑟) 𝑑𝑟

= ∫
𝑡

0
ℎ(𝑟) sin(𝜔(𝑡 − 𝑟)) 𝑑𝑟

= Im 𝑒𝑖𝜔𝑡 ∫
𝑡

0
ℎ(𝑟)𝑒−𝑖𝜔𝑟 𝑑𝑟 (7.43)

where we have made a change of integration variable and used Euler’s for-
mula

𝑒𝑖𝜔 = cos(𝜔) + 𝑖 sin(𝜔), (7.44)

that enable us to write
sin(𝜔) = Im 𝑒𝑖𝜔. (7.45)
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In the limit 𝑡 → ∞, the last integral of (7.43) defines that Laplace trans-
form of ℎ at 𝑠 = 𝑖𝜔. And since we have shown in Section 7.1 that the Laplace
transform of the impulse response is the transfer function, we have that the
response to 𝑢(𝑡) = sin(𝜔𝑡) converges to

𝑦(𝑡) = Im 𝐺(𝑖𝜔)𝑒𝑖𝜔𝑡, (7.46)

which, using the polar form, we can re-write as

𝑦(𝑡) = |𝐺(𝑖𝜔)| Im (exp(𝑖𝜔𝑡) exp(𝑖 arg 𝐺(𝑖𝜔)))
= |𝐺(𝑖𝜔)| sin(𝜔𝑡 + arg 𝐺(𝑖𝜔)). (7.47)

While the derivation was quite long, the result is simple and states that
if the input signal to an asymptotically stable system is sin(𝜔𝑡), the result-
ing output will converge to |𝐺(𝑖𝜔)| sin(𝜔𝑡 + arg 𝐺(𝑖𝜔)) once initial state
transient has faded away, where |𝐺(𝑖𝜔)| and arg 𝐺(𝑖𝜔) are the magnitude
(gain) and argument (phase) of the transfer function at input frequency 𝜔.
Let us illustrate how this can be used, using a practical example.

Example 7.4: Frequency response. Let

𝐺(𝑠) = 3
(𝑠 + 1)(𝑠 + 2) (7.48)

be a transfer function describing the dynamics between light falling
onto the pupil, and the pupil’s resulting aperture deviation. If light
is varied according to

𝑢(𝑡) = 4 sin(5𝑡), (7.49)

what will the response of the system be after initial transients have
died out?
First we conclude that the system is asymptotically stable, since both
poles 𝑠 = −1 and 𝑠 = −2 have strictly negative real part.
The transfer function gain (magnitude) at 𝑠 = 𝑖𝜔 = 5𝑖 is

|𝐺(𝑖𝜔)| = 3
|5𝑖 + 1||5𝑖 + 2| = 3

√52 + 12√52 + 22

= 3
√26 ⋅ 29

= 3
√754

≈ 0.11, (7.50)

and the corresponding argument, also known as phase angle, is
arg 𝐺(𝑖𝜔) = arg 3 − arg(5𝑖 + 1) − arg(5𝑖 + 2)

= 0 − tan−1(5) − tan−1(5/2) ≈ 10.5∘. (7.51)
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Since the input was not sin(5𝑡) but 4 sin(5𝑡), we need to multiply
the output with the scale factor of 4, resulting in

𝑦(𝑡) ≈ 0.44 sin(5𝑡 + 0.18), (7.52)

where we have used 10.5∘ ≈ 0.18 rad.

In words: after a possible initial-state transient fades, the response
of the system (7.48) to the input (7.49) is given by (7.52).

7.3 The Bode diagram

Using the Fourier series, closely related to the Laplace transform, it is pos-
sible to decompose most practically meaningful physiological signals into
(infinite) sums of sinusoidal components. This means that we can, at least
in principle use (7.47) to simulate the response of a system, by first comput-
ing the input signal Fourier transform, feeding the individual components
through, and recomposing the output. It also means that the magnitude
|𝐺(𝑖𝜔)| and the phase arg 𝐺(𝑖𝜔) carry all information about the system
that we need in practice.

A compact graphical representation of a transfer function 𝐺 therefore
consists of plotting magnitude and phase as functions of 𝜔. In the Bode
diagram, also referred to as the Bode plot, and named after Hendrik Bode
(1905–1982), magnitude is plotted in log-log scale, while the phase is plotted
in log-lin scale, as illustrated in Figure 7.6, showing the Bode plot of

𝐺(𝑠) = 3
𝑠 + 2. (7.53)

For the transfer function (7.53), the logarithm of the magnitude is given
by

|𝐺(𝑖𝜔)| = log ( 3
|𝑖𝜔 + 2|) = log(3) − log √𝜔2 + 4, (7.54)

and the phase is given by

arg 𝐺(𝑖𝜔) = 0 − tan−1(𝜔/2) = − tan−1(𝜔/2). (7.55)

By reading off the magnitude and phase plots for a particular angular
frequency 𝜔 in the Bode diagram of a transfer function 𝐺, one recovers
|𝐺(𝑖𝜔)| and arg 𝐺(𝑖𝜔). Using (7.47) it is thus possible to answer what the
response (output) to a sinusoidal input sin(𝜔𝑡) will be after the initial state
transient has died out, as long as 𝐺 is asymptotically stable.
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Figure 7.6 Bode plot of the the transfer function 𝐺(𝑠)𝑘/(𝑠𝑇 + 1) = 3/(𝑠 +
2)..

By now you have gained a rich set of tools from dynamical modeling,
that can be applied to a vast set of applications in physiology, and also out-
side of physiology. We have tried to look at the same thing, or at least simi-
lar things, from many angles. To most this is at first confusing and it takes
some re-reading, doing exercises, thinking, and discussing, to finally realize
how all the topics fit together. You can certainly use the methods introduced
in the book without ever reaching that point, but grasping the underlying
principles and mechanisms will make things much easier and put less re-
quirements on you to remember things by heart.

Further reading. As a closing suggestion, we recommend [Ljung
et al., 2021], a book that provides additional perspectives on
dynamic system modeling. We also include a reference to computer-
control systems [Åström and Wittenmark, 1984]. Grasping these
additional topics will enable you both to model physiological dynam-
ics from data, and construct cyber-physical control systems within
the context of medical devices.
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Ljung, L., T. Glad, and A. Hansson (2021). Modeling and identifica-
tion of dynamic systems. Studentlitteratur, Lund, Sweden. isbn:
9789144153452.

Åström, K. J. and B. Wittenmark (1984). Computer-controlled sys-
tems: theory and design. Prentice Hall, Hoboken, NJ. isbn: 978-
0486486130.
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active transport, 45
adaptive step length, 40
adjacency matrix, 46–47
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analytic function, 86
analytic solution, 34
anatomy, 9
autonomous system, 15

backward Euler method, 37
block diagram, 19
block diagrams, 113–116

feedback interconnection,
115

parallel interconnection, 114
series interconnection, 114
to transfer function, 115

Bode diagram, 137

catabolism, 27
characteristic polynomial, 120
circuit analogy, 98
compartment models, 43

closed, 47
open, 47
general LTI model, 51
mass balance equation, 50

compartment topologies, 45
catenary, 45
cyclic, 46
mamillary, 46

compartmental matrix, 54–55
component diagram, 68
constitutive equation, 66
constitutive material models,

65–68

damping, 131
difference equation, 38
diffusion, 45
digital twin, see simulation
dimension analysis, 100–102
discrete time model, 39
dynamical model, 12

enzymatic reaction, 28
enzyme dynamics, 28
enzyme-substrate complex, 28
equilibrium, 17
explicit Euler method, see for-

ward Euler method

filtration, 45
finite-difference approximation,

35
first-order systems, 126–128
forced system, 16
forward Euler method, 35

gain, 136
generalization, 95

Hill muscle model, 72
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homeostasis, 10
Hooke’s law, 65

implicit Euler method, see back-
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impulse response, 134–135
in silico, 11
in vitro, 11
in vivo, 11
initial condition, 34
initial value problem (IVP), 34
input, 16

Jacobian, 79

Laplace transform, 105, 107
law of mass action, 29
linear diffusion, 55
linear function, 74
linear time-invariant (LTI) model,

19, see also state space
models, see also stability

solving LTI systems, 85–89
linearization, 77

basic steps, 82
of a linear function, 82
of a scalar system, 80

Lineweaver-Burk plot, 32

Maxwell model, 70
measurement signal, 18
metabolism, 27
Michaelis-Menten kinetics, 30
MIMO, 19, 113
MISO, 19, 117
model, 11
model predictive control (MPC),

22

Newton’s second law, 68
nonlinear functions, 74
numeric approximation, 34

operating point, 77

output, 18
over-fitting, 95

pharmacokinetics (PK), 43, 51
propofol, 55, 101

phase, 136
physiology, 9
poles (of an LTI system), 120, 126,

130
production rate, 31

rate constant
elimination, 53
in compartment models, 54
in enzymatic reactions, 29
indexing, 50

RIC respiratory model, 99
Runge-Kutta methods, 39

second-order systems, 128–132
pole location vs step re-

sponse, 132
signal, 20
SIMO, 19
simulation, 20
SISO, 19, 113
stability

asymtotically stable, 117
from eigenvalues, 119
from step response, 126
marginally stable, 117
unstable, 117

state, 13, 14
state estimation, 21
state space models, 58

from transfer function, 116
to transfer function, 109
variable transformations,

58–61
static gain, 120–121
static model, 13
stationary points, 77
step response, 125, 130
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superposition, 76
system, 9

Taylor series, 39
time constant, 126
time-invariant system, 17
time-varying system, 17
transfer function

definition, 109
from block diagram, 115
from differential equation,

112
from state space, 109–110
of a Voigt model, 112–113
of a Windkessel model,

110–112
transform, 105–107, 109
transport processes, 45

unit analysis, see dimension anal-
ysis

unit step, 124

viscous damper, 66
Voigt model, 68–69, 112, 118, 121
volume of distribution, 43

Windkessel models, 92–95, 97
four-element, 95, 110
two-element, 93

Zero-order-hold sampling, 88–89
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