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ABSTRACT

This thesis is concerned with the finite element analysis of the small~amplitude coupled
vibration problem of an acoustic fluid enclosed in a flexible and/or rigid container structure.
The governing equations for linear elastic solids and inviscid acoustic fluids are derived by a
continuum mechanics approach. Modified equations for an acoustic fluid interpenetrating a
rigid incompressible porous material are given.

The coupled structure—acoustic vibration problem is discretized by a finite element technigue
resulting in eleven formally equivalent symmetric and unsymmetric systems of equations. The
advantages and restrictions connected to the use of various formulations are discussed with
respect to the undamped problem. Suitable formulation found for the coupled analysis is then
generalized to also incorporate various damping effects.

Non—modal reduction techniques that use a set of orthogonolized load—dependent Krylov
vectors are described and are successfully applied to proportionally or non—proportionally
damped structure—acoustic problems. The basic idea is that, in the case of spatially invariant
loading situations, the information of the loading distribution is used in a procedure where
the original system of equations is transformed into a much smaller system without solving
the corresponding eigenvalue problem.

Matrix—vector iteration schemes based on the Lanczos algorithm are used for the reduction
of the symmetric systems of equations, whereas for the unsymmetric systems an iteration
scheme based on the Arnoldi algorithm is developed. The applications of the Lanczos process
and the Arnoldi process respectively to harmonic and transient analysis of structure—acoustic
systems are new and are illustrated in numerical examples for both structural and fluid
loading.

Key words: Finite element method, coupled problem, fluid—structure interaction, structure-
acoustic interaction, acoustics, non~proportional damping, reduction methods, reduced basis,
Lanczos method, Arnoldi method.
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1 INTRODUCTION
1.1 Background

The present thesis has been carried out at the Division of Structural Mechanics at Lund
University and is a result of the ongoing research activities within the field of fluid—structure
interaction. These activities started in 1983 and has evolved to play a significant role in the
research within the division. The first thesis on this subject was presented by Sandberg in
1986 [66] and has been followed by a licentiate thesis by Carlsson in 1990 [9-11].

In the thesis by Sandberg, finite element formulations of the coupled fluid—structure
interaction problem were derived. Basic equations were assumed for an inviscid fluid, and the
choice of primary variables for the mathematical description of the fluid domain discussed.
Symmetric and unsymmetric systems of equations were given for the undamped problem and
numerical examples showed the characteristics of the solution to fluid—structure interaction
problems,

In [9], the governing equations for acoustic fluids were closely studied and compared to the
governing equations for linear—elastic sofids. Further, alternative finite element formulations
for the coupled structure—acoustic problem were added to those found in [66]. Finite element
results were compared favourably to analytical solutions to one— and three—dimensional
model problems. A large—scale structure—acoustic problem found in automobile design was
studied in [10] and revealed both the potential and the limitations of using finite element
analysis in this type of problems. As a result of that study, a non—modal solution strategy for
the coupled problem was proposed in [11], using a load—dependent reduction technigue in
order to minimize the computational effort.

The dynamic response of structures like marine platforms, ships and dams may be
significantly affected by the presence of the surrounding fluid. The primary interest in the
design process of these types of structures is their structural strength and stability, and no
particular interest is directed towards the fluid domain other than the fluid causing a loading
effect on the structure. Further, the geometry of the boundaries of the fluid is such that
pressure waves are radiated away to infinity and are not reflected back on the surface of the
structure to produce added fluid loading. A general background to research in this ares is
given below.
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The increased use of light—weight materials in automobiles and aircraft has created an
interest in not only studying the structural motion but also in predicting fluid pressure levels
and displacement fields in these vehicles to ensure passenger comfort. These systems differ
significantly from the unbounded systems, in that the structure is in contact with a fluid
contained within 3 finite volume, and by physical boundaries that wholly or partly comprise
the surface of the structure. The introduction of acoustic modes in the fluid volume may
require the two physically separated domains to be analyzed in a coupled analysis by
necessity, especially when considering smalf fluid volumes, measured in acoustic wavelength.
Coupling is important when a structural mode frequency is close to an acoustic mode
frequency and also if structural modes have frequencies below the lowest acoustic mode. In
this case, the cavity acts as an added stiffness. A review of current solution methods for the
structure—acoustic problem in general can be found in [26] and for the structure—acoustic
analysis of automobile compartments in particular in [10]. In principle, one can classify these
methods into analytical techniques (like Green's Function Analysis, Modal—Interaction Models
and Statistical Energy Analysis) and numerical techniques (like Finite Element Methods and
Boundary Element Methods).

One advantage of the analytical techniques is that they lend themselves to asymptotic
approximations, so that physical interpretation of the solutions may readily be achieved.
However, very often it is not possible to obtain analytical solutions to the problems in
question because of the material and/or kinematic complexity of the system modelled.
Visualizing structure—acoustic systems, the vibrational behaviour may generally be expressed
in terms of series—solutions to the governing equations, but it is generally not possible to
derive analytical expressions for the terms in the series, unless the systems and their
boundaries are particularly simple.

Numerical techniques are not restricted to particular models and can be performed to any
degree of precision desired, subject to the limitations of the computer precision, speed and
storage. The finite element method (FEM) is 2 highly systematized tool for discretization of
complex—shaped static and dynamic systems where the continuum problem is transformed
into 3 solvable matrix problem [79]. The method has been under continuous development
during the last 30 years and a brief review of its historical background and different fields of
application is given in reference [48]. '



1.3

The first paper on the application of finite element methods for the solution of problems in
acoustics was published in 1966 [33]. In this paper both fluid pressure and fluid displacement
formulations for calculating the modes of three—dimensional cavities with hard and flexible
walls were presented. This paper laid the foundation for more than twenty years of research
in FE—analysis of acoustic problems. A brief survey of this research is presented in [62].
Finite element techniques have been developed for, in principle, three types of acoustic
problems. These are:

- the prediction of the acoustic pressure in a cavity which is enclosed by
rigid /flexible walls (the interior problem)

- the prediction of the acoustic pressure radiated from a vibrating structure which
is immersed in an infinite acoustic medium (the exterior problem)

- the propagation of acoustic waves in ducts with and without mean flow.

The majority of papers on acoustic finite element analysis use a pressure formulation for
describing the fluid vibration, see [62]. This choice of primary variable in the fluid domain
gives unsymmetric systems of equations when coupled to a displacement—based structural
model. Unsymmetric systems of this form arise if two coupled, conservative mechanical
systems interact through conjugate variables like forces and displacements [30]. The
interaction effect between the fluid and structure domain may be studied in a decoupled
manner by transferring field variables from one field to another at each time step in a
so—called staggered solution. An overview of these techniques is given in (70] and is applied
to interior structure—acoustic systems in [71]. Equivalent symmetric formulations of the
coupled problem exist, and these forms are of great interest because computer—based
eigenvalue methods that take advantage of sparsity, are more highly developed and require
less computer storage than the unsymmetric counterpart [34]. The eigenvalues and their
corresponding eigenvector play an important role in analyzing mechanical systems. The
eigenvalues may be used as an error estimate for the discretization procedure, whereas the
eigenvectors may reveal physical insight into the mechanical behaviour of the studied system,
or may be used in a reduction procedure in order to decrease the number of unknowns in the
system of equations to be solved.
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Actually, a number of alternative formulations which produce symmetric systems of equations
have been suggested, based upon displacement, a velocity—potential or simultaneous pressure
and displacement—potential representation of the acoustic medium. Some of these
formulations have been incorporated in the major commercial general purpose FE~codes. A
velocity potential is used in ADINA [59], introducing a third system "damping" matrix. ASKA
utilizes a mixed two-—field formulation with both a pressure and displacement—potential
variable in the fluid domain [35]. All these implementations facilitate symmetric eigenvalue
calculations, although the first two lead to a non—standard quadratic eigenvalue problem.
The implementation in ASKA is, to the author's knowledge, the only implementation in the
major FE—codes leading to an eigenvalue of generalized form. This implementation was
suggested in the thesis by Sandberg [66].

Unsymmetric formulations using fluid pressure in the fluid region are implemented in
ABAQUS [1], ANSYS [2] and MSC/NASTRAN [42] and in the special purpose code
SYSNOISE [75]. In a previous study [10], ABAQUS was used to solve simultaneously the
acoustic pressure and structural displacement field due to harmonic structura! force excitation
of an idealized automobile compartment. Although the finite element mesh was rather coarse
from an engineering point of view, the model comprised approximately 20,000
degrees—of—freedom. Typically, to compute the response function for a given loading
configuration required 4.5 CPU minutes per frequency on a large—scale computer. An
unsymmetric eigenvalue solver is not available in ABAQUS and hence no modal reduction
could be performed. The analysis was performed without damping, thus allowing afl
calculations to be made in real arithmetic. In the case of damping the computational effort
would have increased considerably. It was concluded in [10] that an efficient solution
strategy, including the choice of primary variables in the fluid domain and a suitable
reduction technique, is of extreme importance to make the problem of interacting
structure—acoustic systems practically solvable by the finite element method.

A discretization procedure such as the finite element method results in the equations of
motion generally expressed as

Mi+ Cao+ Ku=1(t) (1.1)
in which M, C and K are the n x n mass, damping and stiffness matrices respectively. (?) is

the n x ! time—dependent external load and u is the n x I solution vector describing the
response of the system.
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The Rayleigh—Ritz approximation method [17] is widely used in large—scale finite element
analysis 10 reduce the number of equations into a smaller number before the dynamic
response is calculated. The method is a general formalism where the essential idea is to
express an approximate solution uy by a set of linearily independent vectors Yo=[y1,y2, ... yn|
as in

u(t) ~ uy(f) = Yox(2) (1.2)

in which the amplitude of these vectors stored in x({), are the generalized coordinates. The
m's are here less than n, the number of degrees—of—freedom in the unreduced system, and
the quality of the approximation depends entirely on the chosen set of vectors, Yo,

Because of their orthogonality properties the eigenvectors have been frequently used in the
matrix Yp. In particular, in the low frequency domain this choice of vectors is advantageous
since the dynamic response is dominated by the lowest modes of the system. However, it has
been shown that the use of load—dependent Ritz vectors [78], [6] or Lanczos vectors [50] can
yield even more accurate results, with fewer vectors, than if the exact (load—independent)
eigenvectors are used. The improvement in accuracy is gained due to the fact that in the
standard mode superposition procedure, eigenvectors which are orthogonal to the loading are
not excited even if their frequency is contained in the loading. In situations with spatially
invariant load distributions, the knowledge of this distribution can therefore be used to
incorporate in Yn, only those vectors that are non—orthogonal to the loading, thus improving
the quality of Yy and hence uy in Eq. (1.2).

Regarding finite element analysis of structure—acoustic systems, two observations can be
made. Firstly, the number of equations increases rapidly with the frequency of interest and
especially in 3—D applications. An accurate and computationally efficient reduction method is
therefore necessary for analysis of full-scale models. Secondly, typical tasks in the transient
case may be to study the wave propagation caused by a focal structural impact foad or by a
sudden discharge of mass in a fluid point. In the harmonic case the response function may be
calculated for a load function with a given spatial distribution and ultimately within a specific
frequency range.

In most structural and acoustic models presently employed, proportional damping of Rayleigh
type of medal damping is assumed for convenience and for lack of a more realistic
representation. The eigenvectors of the damped system are assumed to be the same as those
of the undamped system. These assumptions are invalid for structures and fluids with
non—proportional damping. For example, applying discrete viscous dampers to the structure
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or the frictional retardation to flow through a porous medium can hardly be described as
being proportional to the system mass and stiffness matrices.

Guided by these observations of the system at hand and the improved reduction methods
referenced above, the present thesis is concerned with formulations and solution techniques
for proportionally or non—proportionally damped coupled structure—acoustic problems.
Presently available finite element programs for structure—acoustic analysis are primarily
intended for harmonic analysis. Therefore, in this work we will give more general expressions
suitable also for transient analysis.

1.2 Aim and scope of the present work

This thesis is concerned with the finite element modelling of small—amplitude vibrations in
structure—acoustic systems, see Fig. 1.1. We assume the structure to be linear—elastic and
totally or partly filled with an inviscid or slightly viscous compressible fluid. Non-—proportional
damping is introduced through discrete mechanical devices, locally reacting surfaces and/or
by considering viscous flow in porous materials. Alternatively, proportional damping may be
considered. Various loading situations will be taken into account, such as harmonic and
transient structural and fluid loadings.

PRESCRIBED
PRESSURE Pp? FLEXIBLE
: WALL fixt] Kk SO m
o8 DISCRETE

MECHANICAL-
DEVICE

LOCALLY
REACTING
SURFACE
RIGID WALL
POROUS MATERIAL
Fig. 1.1 Linear—elastic structure filled with a compressibie fluid.

Fig. 1.1 also illustrates the scope of the present work with respect to application. We are
only concerned with the interior problem, i.e. an acoustic fluid enclosed in a flexible and/or
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rigid container structure. The possible effect of a surrounding fluid is not considered unless it
may be modelled by a locally reacting surface.

The aim of the present study is to find a framework for an efficient numerical technique
applicable to interacting structure—acoustic systems. This framework includes a complete
understanding of the mathematical description of both linear—elastic solids and acoustic fluids
and the approximations introduced. Considering the coupled system, different finite element
formulations leading to symmetric and unsymmetric systems of equations will be investigated.
Finally, efficient reduction techniques will be proposed for the dynamic analysis of damped
and undamped structure—acoustic systems.

Examples of applications are found in the analysis of

— fluid—carrying spacecraft

— aircraft fusefages

— launch vehicles

— rocket engines '

— fluid—carrying ground vehicles

— automobile cavities

— box—welded beams

— inflated tires

— mufflers

— liquid—filled tanks or containers

— nuclear power safety relief systems

— cavity—connected piping systems

— sound transmission between enclosures
— light weight floors and wall constructions
— small glass—fronted rooms

— sound insulation of windows

— sound insulation between small rooms
— loudspeaker design

— ear acoustics

~ ducts

— environmental effects of machinery

~ submerged structures

— transducers
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1.3 Summary of contents
The contents of the present work may be summarized as:

—  to derive structural and fluid governing equations suitable for small—amplitude coupled
vibration problems (Chapter 2)

—  to study various symmetric and unsymmetric finite element formulations, and their
connections, for damped and undamped interacting structure—acoustic systems

(Chapter 3)

~  to study different reduction techniques based on load—dependent vector algorithms
suitable for structure—acoustic analysis (Chapter 4)

—  to perform numerical studies on model problems (Chapter 5)
and finally

= to make concluding remarks on this work together with some suggestions for future
research and development (Chapter 6).
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1.4 Notations

Notations are explained in the text where they first occur. Most of the notations are also
listed in APPENDIX A. Some general remarks can be made however. Unless otherwise
stated, scalar functions are written in lowercase Greek p, % or italic p, g letters, whereas
vector—valued functions are written in lowercase italic letters with subscript, like uj, or in
boldface, like u. Further, vectors are written in boldface with lowercase sans serif roman u
and matrices in boldface with uppercase sans serif raman K,

Comparing computational effort in different algorithms we will use the notion of flop, i.e. a
single floating point operation. A dot product or saxpy operation of length = involves 27 flop
because there are n multiplications and n adds in either of these vector operations, see {34]
for further details.

For brevity, we will use the notation matriz pencil (K, M), referring to "a given pair of
matrices K and M" {60].
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2 GOVERNING EQUATIONS FOR SOLIDS AND FLUIDS
2.1 Introduction

A mathematical description and derivation of fluid equations for fluid—structure interaction
problems was given in [66]. The main effort was to describe the mathematics of the fluid
and the fluid—structure interaction, and only passing attention was given to the physics of
the structural and fluid parts, respectively. In this chapter we will enrich the mathematical
modelling of the structural and fluid components in structure—acoustic systems. We will
relate the approximations introduced in the theoretical fluid model to the approximations
introduced in the theoretical structure model. Further, we will exemplify the approximations
and limitations in the theory, in terms of physical data. The presentation in this chapter
follows mainly the one given in [9]; however, it is extended to include the description of
acoustic wave propagation in a porous medium.

The governing equations for solids and fluids will be derived, starting with particle kinematics
and deformation measures, Two laws of physics, the conservation of mass and the
conservation of linear momentum, are used to derive the continuity equation and the
equations of motion. These laws must always be fulfilled and are not restricted to any
particular material. By appropriate deformation measures and introduced constitutive
equations, the equations of motion for linear elastic solids and acoustic fluids can be stated.
In the case of small—amplitude vibrations, a spatial description is shown to be applicable for
both solids and fluids. The approximations introduced in the fluid and solid domains are both
based on 2 small displacement gradient assumption implying small density variations, and on
an assumption of small displacement velocities.

The discretized differential equations in Chapter 3 are due to the linear form of the governing
equations. Further, the reduced base techniques studied in Chapter 4 are based on
superposition principles. Therefore, it is of interest to recognize the limit for linear behaviour
in structure—acoustic systems. Many of the relations shown below can be found in books on
continuum mechanics; here reference [72] is usedin general. The resulting governing equations
for an undamped acoustic fluid derived below are identical to the equations given in [66].
However, in this study we also derive the governing equations for an acoustic fluid
penetrating a porous medium.
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2.2 Basic equations for a continuum
2.2.1  Particle kinematics and deformation measures

We introduce a fixed rectangular Cartesian coordinate system with base vectors e;. All
subsequent vector and tensor components refer to these base vectors.

The displacement vector u of a studied particle from its position X in the reference
configuration at time {=0 to its current position x at time ¢ may be expressed in material

description as

u (X)) =x(Xt) - X (2.1)

or in spatial description as
u (x,£) = x — X(x,£) (2.2)

Thus, the velocity vector vin material description is

v(xf) = 26X _ #(X) (2.3)
and the acceleration vector ais

a(x) = ZXX0 (2.4)

In spatial description the velocity of a particle which occupies the point x at time 1 is

v (X(x,2}.t) = ox,1) _ (2.5)

whereas the acceleration in the same point x at time ¢ is expressed as

il
a=30=90 4 (4v) (2.6)
where V = [f—l 3—2 %]. is the del operator and the operator g—'t-z {%+ (v-V):] the

material time derivative.

Studying motions of deformabie bodies, we will make use of the deformation gradient tensor
F defined by
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_odxy du s —_—
FiR=oxz = %R +taxy; (R=1.23) (2.7)

where ;5 is the Kronecker delta. Capital letter indices are used for components of vectors
and tensors related to the reference configuration. Various exact measures of deformation
exist in both material and spatial description. In material description the Lagrangian strain
tensor is defined by

G=LFTF-1) (2.8)
where | is the unit tensor.
In component form Eq. (2.8) is given by

GRS =3 W T Ty K (29)

For the problem studied in this work it is reasonable to adopt the small displacement
gradient approximation where we assume

<<1 (iR=1223) (2.10)

%_L

which enables us to simplify Eq. (2.9) to the infinitesimal strain tensor defined by

Ers = 2| o X (2.11)
We observe that the components ERS are linear in the displacement components iR Eq.
(2.10) also carries the implication of small rotations. It can also be shown that Eq. (:2.10)
implies that at the same order of approximation we get

du

R . o
Wg“ﬁi (2.12)

and thus Eq. (2.11) may be rewritten as

Q

e

Ejj =

O bt
=

uw; , Ou }

[Gu+gn

(2.13)
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Discussing the validity of neglecting viscous effects in the fluid region we will make use of the
rate—of—deformation tensor defined by

10 By, Oy
Dij =3 [&;“"&f] (2.14)
where v; is the velocity component in a fluid point. Thus, Dy is linear in the velocity
components and is measured in the current configuration. Djj is an exact measure of
deformation rate whereas E;; is an approximate measure of deformation.

222 Continuity equations

For later use we will formulate the continuity equation in both spatial and material form. We
start with the general case including a source function ¢ = ¢(x.1).

In spatial form we express the mass conservation in terms of the velocity components,

Consider an arbitrary region V fixed in space at time ¢ and with surface S. The mass
conservation can be stated as

i
j—‘;edV—mfpv-ndS+ [ qdV 2.15
vt s 14 (215)

where p = p(x,?) is the current density, v (x.2) the velocity field, n(x.t) the outward normal
to S and g = ¢(x,t} the added fluid mass per unit volume and time in V. Because of the
source function ¢ the Eq. (2.15) may actually be referenced as a mass balance equation
rather than a mass conservation equation.

By applying the divergence theorem to the surface integral we obtain
{/{g%+v-(pv)—q}dv=0 (2.16)
and because Vis arbitrary we get

B+ V(o0 = g (2.17)

which is seen to be the usual expression for conservation of mass in spatial form if the source
function vanishes (g=0).
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For convenience we may rewrite Eq. (2.17) using the identity

V(ov) = p(V-9) + (v V)p (2.18)
and get
—3% +o(V-v) = ¢ (2.19)

where g% is the material time derivative of the density p.

In absence of a source function g, the continuity equation in material form simply states that
the mass of the material in a (material) volume element remains constant during
deformation. It can be shown that the volume 4V of an element with volume dV in the
reference configuration can be expressed as

4V = det F dV, (2.20)

where F is the deformation gradient tensor defined by Eq. (2.7). Conservation of mass then
implies

po = det F p (2.21)

where p, is the density of the referential volume element and p the current density of the
deformed volume element. From Eq. (2.7) foliows that

detFadet[éiR+%—$}u1+5”‘+a[—%]2 (2.22)
X

Making use of the small displacement gradient approximation (2.10) and Eq. (2.12) we get

du

det Frsl+ 38 =14 Ej=1+Voun(l-Vu (2.23)

where Ej; = V- uis the dilatation or change of volume per unit initial volume of the element.

Hence, by Eq. (2.21) and (2.23) the continuity equation in material form approximately can
be written

p=pol -V u) (2.24)
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The material form Eq. (2.24) is derived in absence of a source function, and hence less
general than the spatial form Eq. (2.17). It is noted that Eq. (2.24) is applicable to both
solids and fluids when no source function has to be considered. In most cases this form is
impractical for fluids because it relates the current density to a reference state. However, for
fluid vibrations around a fixed point in such a reference state, Eq. (2.24) is suitable whenever
g=0.

2.2.3  Equations of motion

We consider a fixed region V at time ¢ containing a certain amount of particles and bounded
by a surface S. The conservation law of linear momentum states that the time rate of
change of linear momentum of the particles in V is equal to the vector sum of all surface
tractions or S and body forces in V. Thus, we instantaneously have

g%{/pvdl/:gt‘m dS+ 1 pbav (2.25)

where v = v (x,1) is the velocity field, #n) = #(n)(x,£) is the traction force acting on § and
b = b(x.t} is the body forces acting on the particles in V.

In a given fixed rectangular Cartesian coordinate system with base vectors e;, there is a
traction vector #(1) associated with each one of the base vectors e;, and these traction
vectors can be written in component form

t{i) — O'ij Ej (i,J = 1' 2' 3) (2.26)

where the quantities ojj are the stress components. It can be shown that gij are
components of a second—order tensor, the Cauchy stress tensor, that completely describes
the state of stress of the body and that the traction on any surface with normal n in the
current configuration can be expressed in direct notation as

tn) =n.g, g=g° (2.27)

where the second—order tensor o is the Cauchy stress tensor, and where the second equality
can be proved by applying the conservation law of angular momentum to the body identified
by the region V considered above. Applying the divergence theorem to the surface integral in
Eq. (2.25) then yields
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qgipvdV=[VedV+ [ pbdV (2.28)
V V Vv

Using Reynold's transport theorem the left—hand-side of Eq. (2.28) takes the form
oy
fpodvV={ dV—1[pv(nv)dS (2.29)
iy v o s

Then using the divergence theorem to the surface integral and rearranging terms Eq. (2.28)
can be written as

i
g;z{/p vdV = {/{—g‘%—'ﬂ+v-(pv® v)}dV (2.30)

where the tensor v® wis the dyadic product of the two vectors. Noting that the integrand of
the right hand side can be written as

v[g’%+‘7-(p v)] +p[g%’+(vv‘7)v] (2.31)

and using Eqs. (2.6) and (2.17), Eq. (2.28) becomes
j{vq+pg—’§} dV=[VodV+ | pbdV (2.32)
v vV V

Because the region Vis arbitrary we find the equation of motion to be

Voot pb=p30+ qv (2.33)

expressed in spatial description. This equation is different from the corresponding equation
obtained in [66] with respect to the added fluid mass term go. In [66] the added mass was
considered as being 2 mass inflow with the velocity %, and the contribution to Eq.(2.33)
became g{v—uq) instead of gv. In the present study, however, we will think of the source
term as being just the increase of mass in fluid points.
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2.3 Constitutive equations
2.3.1  Constitutive equations for a linear elastic solid

For an isotropic linear elastic solid under isothermal conditions, the constitutive equations
may be expressed as

aij = A Exx 6 + 2 p Ey; (2.34)
where A and g are constants which satisfy

vE E

g e R (£ (23)

where E is Young's modulus, v is Poisson's ratios and G is the shear modulus. Typically for
steel, A and g are of order 101! Pa so that strain of order 10-3 are associated with stresses of
order 108 Pa. In other words, steel (and some other materials) support farge loads without
significant deformation and hence without significant density variations.

Eq. (2.34) may serve as an approximation for a variety of solid materials in motions with
small displacement gradients according to Eq. (2.10).

2.3.2  Constitutive equations for a linear viscous fluid

In contrast to solids fluids cannot support shear stresses when in eguilibrium. The
constitutive equation for a fluid relates stress to the rate—of—deformation tensor Ds; defined
by Eq. (2.14). In a linear isotropic viscous fluid the shear stress on the shear planes is
assumed to be proportional to the shear rate, and may be written in the form

oij = {—— p(p. 8) + Ap, 9) Dkk} 61 + 2u(p. 0) bij (2.36)

where p(p, 0) is the current fluid pressure, § the fluid temperature and where A and i are
material constants (to be determined by experiments). The pressure p is positive reflecting
that fluids in rest are unable to sustain hydrostatic tension. The dependence of the pressure
p on the density p and temperature ¢ is discussed in Section 2.3.3.

It is noted that Eq. (2.36) represents an exact expression for a linear viscous fluid, since no
approximation of the rate—of—deformation measure is involved. (In contrast to Eq. (2.34) for
a finear elastic solid).
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Eq. (2.36) can be rewritten as
g3j = {—P(P. o) + (A + %#) Dkk} 8 + 2u(Ds; —%‘Dkk 8i;) (2.37)

where () + %—,u) can be identified as the coefficient of volume (or bulk) viscosity and p the
coefficient of shear viscosity. Commonly, Stokes® relation

3A+24=0 (2.38)

is assumed, leading to

asj = =plp, 8) & + 2p{p, 0) (Dyj — %;Dkk &j) (2.39)
which is an adequate model for many liquids and gases and in particular for water and air.
The viscosity is sensitive to temperature but the dependence on density is usually negligible.

Some values of 4 are listed in Table 2.1.

Table 2.1  (Dynamic) viscosity s (Ns/m2) for air, water and glycerin [38].

Air at 00C 17.1 - 106
" at 200C 18.2 . 106
" at 600C 20.7 - 106

Water at 0oC 1.8 - 108
" at 200C 1.0 « 108
" at 600C 05 . 103

Glycerin at 00C 121
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2.3.3  Constitutive equations for a linear inviscid fluid

Under some flow conditions the shear stresses occurring in liquid and gases are small
compared with the normal stresses. In such circumstances we can neglect the shear viscosity
in Eq. (2.39), A = g = 0, and the constitutive fluid equation becomes simply

aij = — plp. ) & (2.40)

The function p(p, ) for gases and liquids will be studied next. For gases (over wide ranges
of temperature and density, we have

p=Rp8/m (2.41)

where R is the universal gas constant, m the mean molecular weight of the gas and # the
absolute temperature.

A barotropic model for both gases and liquids where the fluid is only dependent on the
density is preferable in our applications, i.e. p=p(p). Eq. (2.41) for gases under adiabatic
conditions, i.e. conditions when no heat transfer occurs in the fluid, may be written as

» = pol5)" (2.42)

where 7 is the ratio of specific heat at constant pressure to the specific heat at constant
volume, while po and p, are the reference pressure and density, respectively.

The barotropic and adiabatic model above is found by experiments to be more accurate than
an alternative isothermal model when studying sound propagation in gases. Local fluctuations
in temperature do occur during the propagation of the wave, but so rapidly that heat
liberated locally by gas compression is reabsorbed by the gas during the expansion phase
without any heat transfer into neighbouring regions.

Linearization of Eq. (2.42) using the first two terms of a Taylor expansion yields

p=po+ (P"‘Po)[ %g } p=po = Po T (p=po)c? (2.43)

where according to (2.42) and (2.41)
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o= (8] = =

where f, is the absolute temperature in the reference state. The constant ¢ is subsequently
identified as the speed of sound, and for air {7y = 1.40, m = 28.96 - 10-3 kg, R = 8.314
{1/MoleoK)) we get

C=20.047 §f  (m/s) (2.45)

Typically, for air at temperature 200C (4, = 293 °K} we get c = 343.1 m/s. For
comparison, the “isothermal" speed of sound is easily found from (2.43) and (2.41) to be

c= (Rﬂg/m)é and thus a factor of 7% less than the "adiabatic" speed. For air at

temperature 20 C the isothermal speed of sound will be ¢ = 343.1//1.40 = 290.0 m/s.

For liquids, p is well approximated by

2 = po + Ki(8)[p — po)l/po(6) (2.46)

where K;(6) is the isothermal bulk modulus and po(#) is the density in the reference state
with pressure p, and temperature 6. Typically K; is of order 109 N/m2 and this expression
for pis valid for values of (p — po) up to about 0.05 [38].

A barotropic model is easily achieved from Eq. (2.46) because Ky and p, are relatively

insensitive to th. In fact they are nearly identical and thus, the constitutive expression for the
pressure of liquids may be approximated by

P=po+ %(p = po) (2.47)

where now the bulk modulus K is temperature independent and p, and p, as before are the
reference values of pressure and density respectively,

The speed of sound in liquids can thus be approximated by the relation

_[de =K
= [ dp ]pzpo  Po (2.48)

For water, typical values are K=2.25.103 MPa and ¢=1500 m/s.



2.12

In summary, for a linear inviscid compressible fluid we use the constitutive equation
aij = — p(p) &; (2.49)
where p(p) is expressed by a linear equation of state

B(p) = po + X(p—po) (2.50)

and where in this last expression the speed of sound ¢ is estimated for gases by Eq. (2.44)
and for liquids by Eq. (2.48). It should be noted that the linear model of (2.50) is valid only
for small departures of p from p,, say within a 2 % variation of p around po.

24 Governing equations
2.4.1  Navier's equation of motion for solids

The equations used in classical elastodynamics are based on the equation of motion of a
continuum according to Eq. (2.33) (with no source function), the infinitesimal strain tensor
Eq. (2.13) and the constitutive equation (2.34). Thus, we have in tensor component notation

gf(’_;i +pbi = pg%‘ . Gij = 0ji {(2.51)

o L[ Oup . Ou
oij = A Exk 65 + 2 p Ej; | (2.53)

All quantities in Eqs. (2.51~53) are expressed as functions of spatial coordinates, which is
consistent with the small displacement gradient assumption used to derive the infinitesimal
strain tensor in Eq. (2.52).

The system of equations (2.51-53) provides 15 equations and 16 unknowns (o35, Eij ui, p).
However, we may replace the current density p with the density in the reference
configuration which is consistent with the small displacement gradient assumption according
to Eq. (2.10), and hence by Eq. (2.24)

p=po(l =V-u)wp, (2.54)
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The equation of motion in vector notation reads

Voot o b= po [ G4 (07) o (2.55)

where we have used Eq. (2.6) to rewrite the material time derivative on the right hand side
of Eq. (2.51). This equation is nonlinear in v due to the presence of the convection term
(v-V)v. However, if small displacement velocities are assumed this term can be neglected.
Thus we have

V-a+pob=p0§% (2.56)
where u = u (x.1) is the displacement vector field defined by Eq. (2.2).

In combination with Eqs. (2.52-53) we get Navier's equation of motion for an isotropic
linear elastic solid,

(A + 1) V(7). + 472 + pob = po ok (2.57)
where V2 = V.V is the Laplace operator.

The derivation above of Navier's equation for solids was made in order to identify the
approximations involved, i.e. the small displacement gradient assumption and the assumption
of small displacement velocities, and for later comparison with the fluid equations in
subsequent sections.

In practice the structures to be considered in fluid—structure interaction problems generally
have one small dimension like shells and plates or two small dimensions like beams. These
structures will thus be vibrating mainly in the transverse direction. The differential equations
for these types of structures can be found by imposing suitable boundary conditions on
Eq. (2.57) or by direct derivation from equilibrium equations, and they will not be stated
here.
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2.4.2  Navier—Stokes' eguation

Most current work in fluid mechanics is directed towards finding solutions to the so—called
Navier—Stokes' equation. These equations are readily found from the equation of motion for
a continuum according to Eq. (2.33), the rate of deformation tensor Eq. (2.14) and the
constitutive equations for a linear viscous fluid Eq. (2.39). Thus, we will combine the
following equations

g%;i+pbi*pﬂ—’,fi+qm (2.58)
1[0y, Oy ]

Dijj =5 | 52 2.59

=3[ g8+ gn (259)

o =~ p(p. 6) b + 2 u(Dy; — %Dkk 8y) (2.60)

Assuming p constant, independent of temperature, and a barotropic pressure i.e. 7 = p(p),
the Navier—Stokes' equation (here with source term) will be

——Vp+%~,uV(V-v)+,uV2»+ pb=pg—'—£+ qv (2.61)

and provides, together with the continuity equation in spatial form according to Eq. (2.17),
four scalar equations and four unknowns (v and p).

Comparing the equation of motion for fluids (2.61) with the corresponding equation for solids
(2.57), we note that they are identical in structure. Under certain circumstances (see Section
2.4.3) approximations similar to those found in Eq. (2.57) may be employed in Eq. (2.61),
i.e. the convective term on the right—hand side can be neglected and the current density p be
replaced by the reference value p,. These approximations are employed, in the following for
shorter expressions, when discussing dissipation of energy during wave propagation through
slightly viscous fluids like air and water. For simplicity we will study one—dimensional wave
propagation in which Eq. (2.61) (in absence of body forces and source function) becomes

_ﬁ #___po%% (2.62)



2.15

By the continuity equation, Eq. (2.17), and the linear equation of state, Eq. (2.50), one gets

L= (2.63)

Differentiating Eq. (2.62) with respect to x; and by use of Eq. (2.63) we achieve the
dissipative wave equation expressed in the fluid pressure p

a2 44,1 Fp 1 & (2.64)
2y 2y =5k :
a2 3P g gy PO

A solution of Eq. (2.64) can be written in the form [22]

. )
p(x,) = P cos (wt -—%xl)e"’?xi = Re [ B st + nx ]

where 7 is the attenuation coefficient, p the pressure amplitude and w the angular frequency.
Substituting in Eq. {2.64) and assuming 72 << (%)2 we may solve for 77 and get

ZM _uf?
=3i-Gn 263 1

The pressure drop € ! thus increases with frequency and dynamic viscosity u. lntroducing
in this expression the values of 4, po and ¢ we can estimate how small the viscous damping
is for different fluids at different frequencies, see Table 2.2.

Table 2.2 Pressure drop factor e T (-, for a distance of 100 meters {x,=100 m) and
at different frequencies, due to viscous damping.

f (Hz) 100 10000 20000
Air (200C) 1.0 09 067
Water (200C) 1.0 1.0 0.99
Glycerin (00C)V 0.99 048 0.05

1) For wave speed ¢ = 1500 m/s
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It is clear from Table 2.2 that the influence of fluid viscosity can be neglected studying free
spaces with air or water in the low frequency range. Wave propagation through a porous
material is discussed in Section 2.6,

2.43  Governing equations for an acoustic fluid

In this section we study the compressible flow of inviscid fluids. The approximations
introduced lead to a model for an acoustic fluid which is found to be reasonably valid for
small amplitude wave propagation in liquids and gases.

The governing equations for a compressible inviscid fluid are the equations of motion for a
continuum, Eq. (2.33), the continuity equation, Eq. {2.19), and the constitutive equation for
a linear inviscid compressible fluid, Egs. (2.49-50). In summary,

p % + Vp=pb—qu (2.65)
g—% + (Vo) = ¢ (2.66)
2= po+ Hp— p,) (2.67)

The first two equations can be simplified on the assumption of small particle velocities
compared to the wave propagation velocity, i.e. |l << c. We begin with the equations of
motion {2.65) and note that

-, (0T (2.68)
L=%+ @ (2.69)

Substituting these expressions in Egs. (2.65) and (2.66) respectively yields
Jv _
p(g7+(vV) o)+ Vp=pb—gv (2.70)

%% +(vV)p+p(Voy)=g¢ (2.11)
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Because Vp = c2Vp we rewrite Eq. (2.70)

p % + o{v- Vv + c2Vp = pb— ¢qv (2.72)

We multiply Eq. (2.71) by 2 and Eq. (2.72)~ by vand get

2 g% + 2(v-V)p + c2p(V-9) = 2q (2.73)
1 % + w(v-V)o+ v-cWp = v pb—v-qv (2.74)

Substituting Eq. (2.74) into Eq. (2.73)

c? g% + b — vgv— %— (v Vv + 2V v = c2¢ (2.75)
and rearranging

c? g-% + p(cV-v— v (V) — 1p % = —opb + (2 + v o)g (2.76)
For low particle velocities compared to the wave propagation velocity, i.e. |[v| <<c the
following terms can be neglected in Eq. (2.76); v-(v-V)vin comparison with ¢2V- v, and (v- v)

in comparison with c2, see also [66].

Thus, Eq. (2.76) can be written as

CQ[%-}-pV-v—q]:v(p%mpb) (2.77)

which by use of Eq. (2.71) on the left hand side and because »is arbitrary can be rewritten
as

X—Vp) = p 59— pb (2.78)

or equivalently

i)
o5+ Vp=pb (2.79)
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Comparing Eq. (2.79) with the original equation of motion (2.65) we have thus neglected the
convective term (v-V)v and the influence of the added fluid mass ¢ on the assumption of
lv] << c

The continuity equation, Eq. (2.71), can be simpliﬁed in the same manner. We multiply
Eq. (2.71) by v and add the approximative equations of motion, Eq. (2.79), to get

vg% + v (vV)+ w(V-u)+p g%’-i- Vo = vy + pb (2.80)

and rearrange to

v-g% + 0(V-9) ~vg+ (v(vV)p+ c2Vp) = —p gg+ ob (2.81)

Again, for low particle velocities |v| << ¢, we can neglect v(v-V)p, in comparison with
c2Vp.

Thus, Eq. (2.81) can be written as

u[g%+p(v-v)-q}=—p%~c2‘7p+pb (2.82)

where the right hand side is zero according to Eq. (2.78). Again, vis arbitrary and thus

g% +p(V-1) =g (2.83)

Comparing Eq. (2.83) with the original continuity equation (2.66) we have neglected the
convective term (2 V)p due to the assumption that |9} << c.

Further, we define functions pg and pg by the relations
p(xt) = po(X) + palx.t) (2.84)
p(x.t) = po(X) + pafx.2) - (2.85)

where po(X) and po(X) are referred to the initial (referential state) and pa(x.t) and pa(x.f)
are referred to a disturbed state satisfying the condition

pa(x )]y = palxB)] g = 0 (2.86)
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Frequently we will use the word "dynamic" in this study when referring to the disturbed
state.

We assume that the initial state is homogeneous, i.e.
Po(X) =po . pofX) = po (2.87)
where p, and p, are constants.

Substituting these definitions in Eq. (2.79), (2.83) and (2.67) we get

(o + pe)33 + Vo4 = (5o + pa)b (2:88)
%;'ﬂ + (00 + pa)(Vev) = ¢ ' (2.89)
Pd = pg (2.90)

By means of Eqs. (2.88) and (2.89) we have four equations for the four unknowns (v,p4).
We may note that both equations are nonlinear with respect to the terms pg dv/dt and
pa{V-v) respectively. However, to an approximation consistent with the linear equation of
state Eq. (2.50) these terms may be neglected as stated below.

For small departures of p from p,, i.e. if the dynamic density is far less than the reference
value, we may write

p= o+ pa=poll +E8) % po (2.91)

Substituting this result into the equations above we achieve the governing equations for an
acoustic fluid, see also [66]

) Vop =
Tt poVov=g (2.93)

pa = c?pq (2.94)
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The linearization of the fluid equations and the assumption of an inviscid fluid model made
above wili be discussed next. The equation of motion and the continuity equation are
simplified due to the assumption of small particle velocity compared to the wave propagation
velocity. This assumption may be justified by studying the particle velocity »in a plane wave
where w1 = pa/poc. For air poc~ 414 kg/m2s, and for water poc =~ 1.5-106 kg/m2s,
According to Subsection 2.3.3, linear relations between pressure and density are assumed for
density variations of up to a few percent. For liquids like water, a two percent variation in
density corresponds to a pressure variation of about 20 MPa (by Eq. {2.47)) and this is an
enormous pressure encountered in almost all practical situations. However, despite this high
pressure the maximal particle velocity would be only 13 m/s, which is far less than
c=1500 m/s.

For gases the case is somewhat different because a gas may behave in a highly compressible
fashion. A two percent density variation corresponds to a pressure variation of approximately
3 kPa by use of Eq. (2.43) for 7=1.4. The maximum particle velocity in a plane wave will
then be 7 m/s, and thus about 20 percent of the wave propagation speed (343 m/s). A
dynamic pressure of 3 kPa is about 161 dB expressed in sound pressure level and is beyond
the threshold of pain, but less than, for example, the maximum pressure in the vicinity of
exhausts of jet engines.

From this discussion we conciude that, for liquids, the density variation defines the limit of
the acoustic approximation, whereas for gases the convective term sets the limit. Further, we
may observe the meaning of the approximation in Eq. (2.91) when comparing it with Eq.
(2.24). The amount of the variation in density around the reference state can be expressed
by Eq. (2.24) as

fd
Po

%—99' = }V-u’<< 1 (2.95)

where the last comparison follows from Eq. (2.10). The assumption made in Eq. (2.91) is
thus consistent with the small displacement gradient assumption.
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25 Undamped fluid equations for structure—acoustic analysis
2.5.1  Nonhomogeneous wave equation in terms of dynamic pressure

In this section we will derive the undamped equations used for structure—acoustic problems.

Differentiating the mass balance equation, Eq. (2.93), with respect to time and making use
of Eq. (2.94) result in

Lo v (=Y (2.96)

Substituting Eq. {2.92) into this expression yields

%ﬁ g%gd + V- (pob ~ Vpa) = g‘g (2.97)

which rewritten is the nonhomogeneous wave—equation expressed in the dynamic pressure py

0 cavepg = 2 90— 2,7 (2.98)

where ¢ is identified as the speed of the propagating wave.

2.5.2  Mixed formulations in terms of fluid displacement—potential and fluid pressure

Taking the curl of both sides of the equation of motions, Eq. (2.92), yields

- Py -

V{ro o1+ Vpa) = V(po B) (2.99)
where ‘-7 is the curl operator.

The curl of a gradient is zero and hence ‘E’(Vpd) = 0. Further, if we assume the body force
to be derivable from a potential function §(x.t), that is

b="7p (2.100)
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then V6 = 0 and Eq. (2.99) results in

V(§H =0 (2.101)

We note that every velocity field which can be decomposed into one irrotational and one
equivolumal part such as

wx 1) =V o(xt) + ¥ i(x) (2.102)

is a solution of Eq. (2.101) since

72ty - g (v elxd) _ o (2.103)

If » (x2) is irrotational at some time V A(x) must vanish identically and the velocity field

(x,?) remains irrotational. Since we have assumed that v (x,£) = ity ’Lf't it follows from a
similar argument that the displacement field once irrotational also remains irrotational.

An irrotational fluid displacement field is automatically enforced by introducing a
displacement—potential ¥ such that

u = V¢ (2.104)

where up is the fluid displacement. In the finite element formulation, use of this
representation of the displacement field, will make sure that spurious modes associated with
unrestrained fluid rotations will be avoided.

Integrating the mass balance equation (2.93) with respect to time and assuming the initial

system to be undeformed and at rest, i.e. gﬁ-{(;t‘—tll = uf(x,t)]t_“o = 0, we get
=0 a

¢
pa+ p¥Veug =@ Q=éqdr {2.105)

where we also have used Eq. (2.86), and where we note that Q is the total added fluid mass
per volume during time t. Eq. (2.105) is equivalent to the continuity equation in material
form according to Eq. (2.24) if we omit the source term Q. Finally by substituting Eg.
(2.104) into
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Eq. (2.92) and further Egs. (2.94) and (2.104) into Eq. {2.105), we obtain the following
governing equations for an inviscid acoustic fluid

po¥ G + Voa = po¥h (2.106)
L oa+up=Lg (2.107)
poctd Po

These linear equations are the basis for the symmetric fluid—structure interaction models
used in this study. They have the advantage of giving a symmetric system of equations in
fluid analysis (with rigid walls) and in a coupled analysis where the fluid is interacting with a
flexible structure. Further, by integration of the continuity equation, Eq.{2.93), we avoid
working with velocity terms in the final equations and the associated eigenvalue problem will
be of a so-called generalized form.

253  Nonhomogeneous wave equation in terms of displacement—potential

Egs. (2.106) and (2.107) represent two useful relations between fluid pressure and fluid
displacement—potential. Firstly, Eq. (2.107) implies that

Pd = —poC?V29 + ¢ Q (2.108)

where poc? is identified as the bulk modulus described in Section 2.3.3. Secondly, Eq. (2.106)
may be written

V(eo 6?52 + pd — pof) = 0 (2.109)

or by use of Eq. (2.108)

V(oo %% = PoC?V2Y + ¢2Q — poff) = 0 (2.110)
where the function inside the brackets is independent of position and depends on time only,

Therefore, we can add an extra function of time to ¢ without changing the fluid
displacement field [66], and hence with no loss of generality rewrite Eq. {2.110) as

Po g%;,ﬁ — potV2) = —2Q + pof (2.111)
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which is the nonhomogeneous wave—equation for the fluid expressed in the
fluid—displacement potential. In the absence of source term and body forces we get by means
of Eq. (2.108)

pa = ~po 5% (2.112)
which is the spatially integrated form of the equation of motion, Eq. (2.106).

Other expressions for the wave equation using either the fluid density, the fluid velocity field,
or the fluid displacement field as the primary variable may be found in reference [66].

26 Damped fluid equations for structure-acoustic analysis
2.6.1  introduction

In Section 2.4.2 it was shown that the fluid viscosity can be neglected when studying wave
propagation in slightly viscous fluids like air and water in the low frequency range. The
undamped fluid equations based on this assumption were derived in Section 2.5. However, in
the analysis of wave propagation through a porous material, the frictional retardation of the
fluid flow is to be considered also for slightly viscous fluids. Fluid equations for an acoustic
fluid interpenetrating a porous medium are given in [47]. A discretized form of this fluid
model was used in an uncoupled (rigid wall) frequency analysis of mufflers in [16], and
simulated results were reported to agree perfectly well with experiments. Absorption elements
for rigid porous materials have aiso been developed in [19-21].

In this work we will adopt the theory presented in [16,47] and modify the linearized fluid
equations derived in Section 2.5 to include the effect of introducing a porous material in the
fluid domain. In the referred work the main interest was models for frequency analysis, In
addition, we will also consider the corresponding equations for transient analysis.

2.6.2  Fluid equations for a porous medium

The governing equations, Eqs. (2.92-94) for an acoustic fluid occupying a fluid domain were
derived in the previous section within a theory for continuous media. In this section we will
assume that the fluid is interpenetrating a perfectly rigid and incompressible porous solid.
The pores are randomly interconnected but in such a way that the medium can be looked
upon as isotropic. The irregularities of the size and orientation of the pores will average out if
the volume under consideration is large enough. Local variation in the fluid velocity as it
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passes through the pores will occur. The fluid velocity in this model will therefore be assumed
to represent the mean volume velocity, i.e. the mean volume of fluid passing across a unit
area normal to the flow, per second. In this way the velocity field will be continuous in the
normal direction at the intersurface between the porous medium and the free fluid.

The governing equations for an acoustic fluid were derived in Section 2.4.3 on the
assumption that |v|<<c, where vis the particle velocity and ¢ is the speed of sound. If this
restriction on the particle velocity is applied also to the mean volume velocity in a porous
medium, we may neglect the convective terms also in the porous model. Further, the space
occupied by the fluid is given by actual volume multiplied with a volume porosity factor,
defined as

£y = {{volume) — (volume of solid)]/volume. (2.113)

In the present notation, Eqs. (2.92—2.94) for the free medium will be modified with respect
to porosity and read

Po VI + Vpa = po b (2.114)
O, %4 pm B, (2.115)
pd = c2pg (2.116)

where we have introduced the volume porosity 3y in the continuity equation Eq.(2.115),
[16,47). For gases at low frequencies it is likely that the heat liberated locally by gas
compression will be absorbed by the fibre material and thus the isothermal speed of sound ¢
for the fluid in the pores (rather than the adiabatic speed) should be used in Eq. (2.116), see
Section 2.3.3.

in order to consider the frictional retardation of the fluid flow in the pores we will introduce
a velocity dependent body force as shown below. In this manner we are able to model a
viscous flow through the pores although the fluid is considered inviscid when the porous
material is removed. Hence, the constitutive equation for a linear inviscid compressible fluid
Eq. (2.49) is still used, and the derivations made in Section 2.4.3 will hold.
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We define a specific disturbance force by(x,f) referred to the disturbed state by the relation
b(x.0) = bo(X) + Ba(x,1) (2.117)
where b(X) is the specific body force at time t=0 and
ba(x)|,_g =0 (2.118)
We assume the initial state homogeneous and hence 5,(X) = 0.

The specific disturbance force by(x,f) is assumed to result from the interaction between the
fluid and the solid material in the porous medium. This contribution is expressed by the
refation

1
== 119

by =~r =Yy (2.119)

where r is a viscous flow resistance or "drag coefficient" and ¢(x,t) is the fluid velocity

potential, the fluid flow being assumed irrotational.

The flow resistance r for air penetrating a fibre material fike mineral wool is found to be
frequency dependent and may be calculated from the following expression given in [16]

r=rs max {0.6 + 0.55 yw/rg, 1} (2.120)

where w is the angular frequency, rg the static flow resistance, defined as the pressure drop
required to force a unit volume flow through the material [47]. For frequencies less than
1 kHz, r ~ rg, see also [7].

If Eq. (2.119) is used in Eq. (2.114) we get

V5L + 2 4 vpy =0 | (2.121)

The inertia term png%-? in Eq. (2.121) will be modified to include the change of inertia of
the fluid as it moves through the pores. In the fow—frequency range the velocity profile will
not be uniform within the pores. For a circular section in straight pores the profile will be
parabolic at low frequencies, and the fluid density g, should be increased to an effective
density pe = 4/3 p, [21].
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At high frequencies the velocity profile is nearly uniform and pe=p,. The effective density in
the direction of the pores may be defined by

pe = (min {1 + 0.46 yis/@, 4/3})-po (2.122)

where again rg is the static flow resistance and w is the angular frequency. For uniformly
distributed pores the ratio pe/po is multiplied by a factor of 3 [80]. The effective density pe is
frequency dependent. For a material with rg = 8000 Ns/m#4, the ratio pe/po is equal to 4/3
for f € 2.3 kHz and thus ps = 4p, is to be used in the calculations.

The governing differential equations were derived on the basis that the fibres do not move,
i.e. they were assumed perfectly rigid. ln practice, there may be some movement in the fibres
and this motivates a modification of Eq. (2.121). If both elastic effects and intertia effects in
the porous material are considered the model will be very complex due to the propagating
waves in the fibres. However, if only inertia effects are considered, these extra inertia forces
may be introduced in the fluid equations by additionally increasing the fluid density to what
was motivated by the nonhomogeneous velocity profile according to Eq. (2.122). The
effective density may in this case be calculated by means of a structure factor ks {80]
according to

pe = ks po (2.123)
and this factor may take values between 1.5 and 5 [47].

The effective density pe is introduced in Eq. (2.121) and by means of Eq. (2.116) we may
write

PV oL + 10 1 vy = 0 (2.124)
Q_l_pd_FV‘qu)ml—Q (2.125)
¥ poc? Po :

where Eq. (2.115) has been integrated once with respect to time assuming the system to be
initially at rest.

These equations are the basis in this study for the coupled structure-acoustic analysis
including fluid domains with porous materials.
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2.6.3 Damped nonhomogeneous wave equations

We take the gradient of Eq. (2.124) and yield

VTl 4+ e 1222 Ly =0 (2.126)

Differentiating Eq. (2.125} with respect to time and substituting in Eq. (2.126) gives

1 1 9 _
p[ p_??ﬁ Q"po@?ﬁgﬂ}ﬂ[v_o 'Q"poc25%d]+v2pd“o

(2.127)
and after rearrangement
a2 ra 1 po _ I i
B-Qsit + e —3%‘1“ Oy o 2V2pg = "Teczq + 2 _6% (2.128)
where the undamped speed of sound in the porous medium ¢, is identified as
= Lec (2.129)

For gases, c is likely to be the isothermal speed of sound in free air. This speed is thus
reduced by increased porosity £y and by an increased structure factor.

Alternatively we may derive the damped nonhomogeneous wave equation expressed in terms
of the fluid displacement—potential. Eq. (2.125) is equal to '

by = __é_v po €2 V24p + é_vcz Q (2.130)

and substitution in Eq. (2.124) results in

V(peaztz + g% - %;Po& V2g + ‘glz_‘ Q=0 (2131)
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With no loss of generality we can rewrite this equation to

* PO 1 poappy 1 C?
m_gz_lwpea% ?i'\?pec Vi) Ry pe (2'132)

where we observe the similarity to Eq. (2.128). However, the loading term is somewhat
simpler in this case.

2.7 Boundary conditions
2.7.1  Essential and natural boundary conditions

In the structural domain, prescribed displacements are essential boundary conditions whereas
quantities proportional to spatial derivatives of the displacements are natural boundary
conditions.

In the fluid domain a prescribed pressure is an essential boundary condition whereas
prescribed fluid displacements are natural boundary conditions.

At the rigid wall the fluid displacement (and its time derivatives) is zero in the normal
direction to the surface. Hence, the natural boundary condition is

u-n="V¢n=10 (2.133)

where us is the fluid displacement field and n the outward normal to the fluid domain, see
Fig. 2.1,

From Egs. (2.106) and (2.133) we obtain, in the absence of body forces,
Vpa-n =0 (2.134)
which expresses the natural boundary condition for the fluid in the pressure pq. The pressure

and displacement—potential themselves are free at the rigid wall and hence no essential
boundary conditions should be specified at the rigid wall.
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2.7.2  Fluid—structure interface, St
At the flezible wall the following kinematic boundary condition should be satisfied
un=V¢n=1u-n on S (2.135)

where us is the structural displacement field and n the outward unit normal vector to the
fluid domain, see Fig. 2.1.

That is, the normal motion of the fluid and the normal motion of the structure will coincide.

STRUCTURE

Fig. 2.1 The outward unit normal vector n to the fluid domain.

2.7.3  Surface with prescribed pressure, Sp

On a fized surface the displacements perpendicular to the surface are assumed to be zero
(rigid wall case) and we prescribe the dynamic fluid pressure on the surface by

Pa=py onSp (2.136)

or alternatively, if the fluid is modelled by a fluid displacement—potential, by

P
L B onsp (2.137)

according to Eq. (2.112). On a free surface, gravitational waves may be modelled by [66, 79]

Pd = pog{us-n} + pp  on Sp (2.138)

where g is the gravity acceleration and (us-n) is the elevation of the current surface relative
to the mean surface. In this way we are able to model both gravitational waves and a
superposed external pressure, see [66] for details.



3.1

3 FINITE ELEMENT FORMULATIONS OF THE COUPLED VIBRATION PROBLEM
31 Introduction ‘

In this chapter we derive the finite element equations through weak formulations of the
governing equations followed by the Galerkin choice of weighting functions, see [37].

The structural part is discretized by a conventional displacement—based finite element
method. For the discretization of the fluid, one is faced with various choices of primary
variable. The primary fluid variable may be a vector field of fluid—particle displacements or
velocities, or a scalar field such as the pressure, density, velocity—potential or
displacement—potential. Using, for example, a pressure formulation, the coupled equations for
structure—acoustic interaction analysis have unsymmetric matrices caused by the appearance
of a coupling term between fluid pressure and structural displacement [66].

A number of formulations of the coupled system which produce symmetric coefficient
matrices have been suggested. These formulations are based upon a displacement, velocity-
potential or simultaneous pressure and displacement—potential representation of the acoustic
medium. The use of 2 fluid displacement field leads directly to a symmetric vibration problem
of the conventional mass—stiffness form, see for example [66], and no coupling term needs to
be evaluated between the fluid and structural domain. However, the fluid
degrees—of—freedom is substantially increased compared to the scalar field formulations (3
freedoms/node instead of 1 freedom/node) and a large number of spurious modes are
introduced corresponding to rotational fluid motions at zero frequency. In order to prevent a
rotational fluid displacement field, a rotational stiffness term may be included in the
expression for the fluid stiffness matrix [66]. Another approach to avoid spurious
displacement modes is to use a reduced integration technique, see {15].

The use of scalar fields such as pressure, displacement—potential or velocity—potential
automatically enforces irrotationality of fluid motions, hence eliminating the spurious modes
and minimizing the number of degrees—of—freedom to one per acoustic node. The pressure
formulation has unsymmetric coefficient matrices due to the coupling as mentioned above,
and so has the displacement—potential formulation {66).

A fluid velocity—potential proposed in [25, 59] transfers the unsymmetric coupling terms in
the systems mass and stiffness matrices to a system "damping" matrix. All three system
matrices are symmetric.



32

A mixed formulation of the fluid domain with the simultaneous use of two scalar fields -
pressure and displacement—potential - was introduced for free vibration analysis in [46] and
for transient analysis in [66). The resulting three—field formulation has a state vector
consisting of three subvectors: us—structural displacement, W—fluid displacement—potential
and p—fluid pressure. This system leads to symmetric eigenvalue problems of generalized
form. An aiternative three—field form with the same subvectors, us, ¥ and p, but with
superior properties from a computational point of view was also given in [66].

Symmetrization of established unsymmetric systems of equations by a matrix—scaling
technique has been studied in [29] and by eigenvector augmentation in [30].

Lately, the alternative three—field form derived in [66] by a weak formulation was established
in [31} by a variational formulation, and used as a base for deriving ten formally equivalent
formulations of the coupled problem. This technique is also used in this chapter in order to
compare different formulations. The expressions given here have been modified to include a
fiuid source term. Further, the symmetric formulation based on the fluid velocity—potential
derived in [25, 59] is also easily found in the present notation. Thus eleven formulations are
given for the coupled structure acoustic system.

A comparison of different coupied systems of equations is made with respect to
computational efficiency and stability. The main interest is the interaction between the
structure and fluid domain, respectively. Hence, this comparison is made for the undamped
structure—acoustic system.

Finally, suitable symmetric forms found in this comparison will then be generalized to include
non—proportional damping effects recognized for example when introducing a porous medium
in the fluid domain.



33

3.2 Semidiscrete structural equations of motion

In order to formulate a general structure—acoustic interaction capability in our model we will
consider two types of structural "members". According to Fig. 1.1 the interaction between
the fluid domain and the structure domain is considered for a flexible wall and for a locally
reacting surface, respectively. The principal difference between these two structural members
is also illustrated in Fig. 3.1. Contrary to the continuous structure no wave propagation will
occur in the transverse direction to the motion of the locally reacting surface. These special,
locally reacting surface elements may be used to model vibrating panels, small in size
compared to the acoustic wave length, or acoustic absorbers, described by their specific
acoustic properties [42].

b)

Fig. 3.1 Structural members subjected to a dynamic fluid pressure field pa(x, ).
a) Continuous structure illustrated by a vibrating plate.
b) Locally reacting surface modelled as a set of individual single degree-
offreedom systems.
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3.2.1  Continvous structure
The motion of the continuous structure is governed by

L) = f(xt) + £(x.t) (3.1)
where L is a partial differential operator with respect to time and space, u is the structural
displacement field, which depends on the coordinate x and time ¢, and f; is an external time-

dependent structural load. At the fluid—structure interface Sg, the fluid loading f acting on
the structure is defined by

Fi(x.8) = pa(x.t) n (3.2)

where pq is the ambient dynamic fluid pressure and n is the outward unit normal vector to
the fluid domain, see Fig. 2.1.

The discretized formulation of the structure is based on the expansion of the structural
displacement as

4 = I N (x) ugi(?) (3.3)
7

where Ni(x) is the displacement shape function of the structure and ul(f) is the discrete
value of the structural displacement at a nodal point j.

The resulting semidiscrete equations of motion take the form

Msi.is -+ Cs l.ls -+ Ksus = fg -+ ff (34)

where Mg, C; and Kg are the symmetric mass,damping and stiffness matrices at the
reference state. The (tangent) stiffness matrix Ks may include structural prestresses through
the geometric stiffness. f¢ is the structure load vector due to externally applied forces on the
structure and fr is the structure load vector due to the coupling effects according to
Eq. (3.2). Using the shape function set {N;} in the structural domain gives

(fr)i = ‘{gfst* “ N pg dS (3.5)

where Sig is the wet surface of the structure and pa is the dynamic fluid pressure.
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3.2.2  Locally reacting surface

The equation of motion in an arbitrary point x can be expressed as

(X} irs(x. 1) + e(x)ites(x.8) + Hx)ues(x8) = pa(x.t)n (3.6
where m(x), ¢(x) and k(x) are the mass damping and stiffness distributions, respectively.
pa{x.t) is the ambient dynamic fluid pressure and n is the outward normal vector to the fluid
domain.
~ By definition, the displacement field uy in Eq. (3.6) along the locally reacting surface need

not be continuous. However, we will assume that the discontinuous displacement of the
surface can be described by

trs(x,2) = N, ul(7) (3.7)
J

where Ni(x) is the displacement shape function of the surface and ui (?) is the discrete
value of the displacement at a nodal point j see Fig. 3.2.

Fig. 3.2 Displacement shape function M;s(x) for a locally reacting surface

The corresponding weak form of Eq. (3.6) will be

J w A(x) G dS + SI we(x)irs 45 + [ w k(x) urs dS= [ wpandS (3.8)

rs s rs Is
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Following a Galerkin procedure and using w{x) = Ns(x) we get the matrix equations for a
locally reacting surface

Mrs ﬁrs + Crs I.Jrs + Krs Urg =~ ff (3'9)
where

(Mrs)ij = | Nni-s m(x) Nis s (3-10)
s

(Crs)i = o s ®x) N d (3.11)
s

(Kfs)ii = Sf Nll.'s Hx) Ng‘s ds (3'12)
rs

(fi= J Nign-pa dS (3.13)

Sts

For the type of shape functions shown in Fig. 3.2., Eq. (3.9) will be of diagonal form, For a
complete description of the locally reacting surface we need an infinite number of nodal
points.
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33 Transient equations for undamped coupled systems
3.31  Introduction

In this section we will derive the transient equations for the coupled structure—acoustic
system. The main interest here is the coupling between the structure domain and the fluid
domain, respectively. No damping effects will therefore be considered at this point.

For convenience we will make no notational distinction between the flexible wali and the
locally reacting surface with respect to the structure—acoustic coupling. The notation ug for
the structural displacement vector may thus also represent the displacement of the locally
reacting surface urs in the equations below. Likewise, the notation Ny(x) for the structural
displacement shape function may also represent Nyg(x), i.e. the displacement shape function
for the locally reacting surface. Since no direct coupling between the flexible wall and the
locally reacting surface takes place, the structural matrices and structural displacement
vectors below may always be partitioned into uncoupled structural submatrices and
subvectors if required.

3.3.2  Symmetric three—field forms

The linear undamped fluid equations (2.106—107) derived in Chapter 2 are discretized below.
The equations are based on the dynamic pressure pgq and the fluid displacement—potential 4.

For brevity we will use ' "' for time derivatives 8/8t. Thus the governing differential equations
are

Lona+myp=Ly (3.15)
PoC? Po ’

where b is assumed to be derivable from a potential function & = V3, according to Eq.
(2.100).

The corresponding weak forms of these equations above are established by using Vu(x) as a
weighting function for Eq. (3.14) and u(x) as a weighting function for Eq. (3.15), resulting
in the following integral equations

po [ Vw -V dV+ | Vuw- Vpg dV = p, {/Vw- bdv (3.16)
Vv v
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and

e [, wpa AV = [ Vw ¥y dV + [ ufy -0 dS = > [eaav @)

where Gauss's theorem has been used on the left—hand side of (3.17) and S is the boundary
of the fluid domain,

Expanding pq and ¢ in different shape function sets {Np} and {Nﬂb} such that

pa(x.?) = ? Ni(q) pi(?) (3.18)
and

W) = 2 ) 90 (3.19)

and running w over {Nw} in Eq. (3.16) and over {Np} in Eq. (3.17) results in

poKs ¥ + Bp = (3.20)
Ei—cf M p — BT + MT o, = 1, (3.21)
where
(M)i; = {/Ng N} dV (3.22)
(Ke)sj = {/VN;[} + WNj av (3.23)
(Me)ij = éfs N - n Nj dS (3.24)
(B)s; = %}VN& - YN} dV (3.25)
(foh = 33_0 {/Nf, Q dv (3.26)
(fo)i = po {/ N} - b v (3.27)

(i = row index, j = column index).
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The coupling between structure and fluid is taken into account in the fluid equations by the
boundary integral in Eq. (3.17), viz.

j wV ¢"n d3= f Np V w'“ as = f Np Ug 0t ds = f Np Ns'n dS ug (3.28)
Stg Sts Sts Sts

where we use the continuity condition Eq. (2.135) to replace Vi-n by u;-n, resulting in the
coupling matrix Mc, see Eq. (3.24). This matrix is thus evaluated along the wet surface Srg
and is simply a cross—integration of structural and fluid shape functions. M. is thus a very
| sparse pressure—to—displacement transformation matrix. The non—zero entries of M. depend
on the geometry of the fluid—structure interface and on the primary—variable shape functions
there.

Finally, using Eq. {3.24) in Eq. (3.5), resulting in ff = Mcp, and moving this term from the
right to the left hand side in the structural equations we achieve

Msi.is -+ KS“S - Mcp = fg (3.29)

Assembling the three matrix equations (3.29), (3.20) and (3.21) we get the coupled and
symmetric system of equations as

Ms 0 0 ijs + Ks 0 —Mc Ug = 'fg (3303)
0 poKe O] W 0 ¢ B o fs (3.30b)
o o0 ol p T BT - p—iﬁmf p -, | (3.300)

This system of equations was derived for the free vibration problem in [29] and for the
transient problem (as above) in [66].

Considering the fluid equations in this system, they are formulated by a so—called mixed
method. Since there exists a linear dependence between W and p, either one of these

variables can be eliminated as will be shown later in Section 3.3.2.

It is practical from a programming point of view (but not necessary) to use the same shape
functions for pg and 9, i.e.

NTIJ = Np (3.31)

and thus both vectors ¥ and p are of equal dimension and evaluated at the same nodes.
Then K¢ = B and the system of equations simplifies to
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MS 0 0 ﬁs + KS 0 ‘—Mc Ug = fg (3.323)
0 p,B 0f ¥ 0 0 B v fp (3.32b)
o o ol -mf BT - #Mf p | 4| (332

This form (and its condensed version shown in Section 3.3.2) is used in the aumerical
examples in Chapter 5. This system of equations (3.32) may also be used as a base for
deriving other symmetric three—field forms as reported in reference [31], afthough no fluid
loadings were taken into account in that study. The fluid source load f, included here in
Eq. (3.21¢c) will therefore be retained in the derivations below, resulting in more general
formulations compared to those found in {12].

Eq. (3.32b) is the discretized equation of motion for the fluid domain, cf. Eq. (3.14). We
rewrite Eq. (3.32b) and in the absence of body forces, fi, = 0, we obtain

B(poW + p) = 0 (3.33)

Two conditions may be considered regarding the sofution to the eigenvalue problem in Eg.
(3.33). Firstly, by Eq. {3.25) we note that the matrix B is generally singular and hence B!
does not exist. However, as will be discussed later in Section 3.4.1 a solution to Eq. (3.33)
exists and is a vector ae where e is a vector of all ones. The coefficient & can take on any
value expressing the indeterminacy of this zero—mode. In particular for & = 0 we get

p = —poW (3.34)

Secondly, if the fluid pressure is prescribed in any point in the fluid domain the singularity of
B in Eq. (3.33) is removed. In this case B! exists and Eq. (3.34) follows directly. Eq. (3.34)
is the discrete analog to the continuous relation Eq. (2.112) for the dynamic pressure.

In order to achieve an alternative form of Eq. (3.32), we differentiate Eq. {3.32¢) twice in

time and multiply by —p,, use Eq. (3.34) in (3.32) and premaultiply Eq. (3.34) by ;:l—EﬁMf to
0
obtain

MS pQMC 0 i:ls + KS 0 0 Ug |= fg" (3.353)
poMT —TOBT LM | 0 0 0 v pofq (3.35b)
0 '&“Q-Mf 0 p 0 1] me P 0 (335(.')
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This form was derived from a variational principal in [46] and by a weak formulation of the
governing equations in [66]. The latter derivation was the most general, whereas the final
expression inciuded both fluid source loads fq and fluid bedy forces fy,.

Two more symmetric forms can be derived. A third symmetric system is obtained by
integrating Eq.(3.32a) twice in time, assuming the initial system to be at rest, multiplying
Eq. (3.32c) by po and eliminating the pressure by using Eq. (3.34) and then adding the
trivial equation Kgug — Kgus = 0 as a third matrix equation

*%k
0 0 0 iis + - MS - poMc - Ks Ug |=|— fg (3.363)
0 M 0 || ¥ | |-pMT poBT 0 U | [-pofa]  (336b)
0 0 Ks Ug - Ks 0 0 g 0 (336C)

where superposed stars denote integration with respect to time.

Finally, a fourth symmetric three—field form is obtained by multiplying Eq. (3.32c) by g, and
eliminating the pressure from this equation and from Eq. (3.32a) by use of Eq. {3.34), and
then adding the trivial equation Mgus — Mgug = 0 as a third matrix equation, thus

0 0 -M 5 ﬁs + Ms 0 0 Ug [= 0 (3.373)
0 %M —poM; || ¥ 0 pBT 0 ¥ | |-pofy (3.37b)
—Ms 0o Mc -K 5 ug 0 0 0 s - fg (337(:)

In summary, including Eq. (3.19) that enables use of different shape functions for pressure
and fluid displacement—potential, five symmetric three—field forms have been derived. The
last four systems obtained above, Egs. (3.32), (3.35), (3.36) and (3.37), are found to be
formally equivalent for the choice of identical fluid shape functions N’l,b = Np.

3.3.2  Symmetric two—field forms

Studying the symmetric three—field forms above, we observe that all of them have a zero row
matrix in the system mass matrix or system stiffness matrix, and thus one field variable may
be eliminated in each one of these system of equations.

Assuming that all matrix inverses below exist, such a condensation process yields the
following symmetric two—field forms, formally equivalent to (3.32), (3.35), (3.36) and (3.37)
above.
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The pressure degrees—of—freedom can be eliminated from Eq. (3.32) by solving for p in Eq.
(3.32¢), i.e.

P = —poc? M [McTus — BT @ — £] (3.38)
Substituting the last equation in Eq. {3.32) results in
. - 1pal -1 T
MS 0 ug| + Ks+poC2Mch Mc _p0C2Mch B Ugi =
0 poB|| ¥ ~poc?B Mft MT poc?B MiBT| | W
= [f§ + poc?MM;'fy
(3.39)
fi, — pocZB M7,
We solve for ¥ in Eq. (3.35) and obtain
¥ =L BT (o MT i + L M b — po 1y 3.40
5o B [P M s + s Mi p—po ¥ (3.40)
Eliminating ¥ from Eq. (3.35) gives
T M | -1 .
Ms+poMcB Mc ‘C"i'McB Mf us| + Ks 0 Ugi =
1 ~1pgT - , 1
—c—ngB lMc p0C4MfB 1Mf P ¢ me p
= | f§ + poMcBTH, :
. 3.41)
imeBTE,
To eliminate the first row in Eq. (3.36) we solve for us in Eq. (3.36a), i.e.
4 *k k%
g = MS [—po MC P — KS ug -+ fg] (342)

resulting in
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BoMe 0 || ¥ |+ | poBT+ pIMTIMEIM:.  poMT MK, || ¥ | =

%k
0 Ks Ug poKsMglMc KsMglKS L
Typgt*
= | —pofq — poMIMTe
IR (3.43)
~KsM;Lfe
Finally, solving for us in Eq. (3.37¢) yields
us = K [Msus — poMF + £ (3.44)
and eliminating the third row in Eq. (3.37) results in
MSKQIMS poM5 K;IMC ijs + Ms 1] Uz =
poMEK 5 1M, 2M¢ + p2 MTKM,| | & 0 pB||w
3.45
~pofa+ poMCK:HE

3.3.3  Unsymmetric two—field forms

It was stated in Sections 2.5.1 and 2.5.3 that the governing equations for an acoustic fluid,
i.e. the equations of motion and the continuity equation, could be combined into the
(nonhomogeneous) wave equation expressed in the pressure field p Eq. (2.98) or the
displacement potential field ¢ Eq. (2.111). A weak formulation of the fluid domain described
in any of these scalar variables generates unsymmetric systems of equations when coupled to
a displacement-based weak formulation of the structure domain [66]. These unsymmetric
two—field forms can be found in the present notation without starting over with a weak
formulation of the single—field fluid equations.

In order to achieve fluid equations expressed in the fluid pressure we eliminate the fluid
displacement—potential from Eq. (3.32). We differentiate Eq. (3.32¢) twice in time and
premultiply the resulting equation with (—pg). Finally, we use Eq. (3.34) and get
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AP e et |l Il (3.46)

POM%‘ %ng p 0 Ks p pofq
In the same manner the fluid pressure may be eliminated from Eq. (3.32) by a direct

substitution of Eq. (3.34) in Eq. (3.32). The resulting system of equations expressed in
structure displacements and fluid displacement—potential thus reads

M: po M. ig) + Ks 0 ug | = fz

. (3.47)
o Lim|l¥| |-MT k||w 4,

Further, if the structure is considered non—flexible the last matrix equations in (3.46) is
simply

%ngﬁ + Kip = Po?q - POM%‘iis (3-48)

where iig is the prescribed structural acceleration vector.

Likewise, the last matrix equation of Eq. (3.47) is
LMo + Kt = — £, + MTi
Eg W + fq’—— q+ Mclls (349)

where @i; is the prescribed structural displacement vector.

The fluid response to a moving boundary can thus be determined by either Eq. (3.48) or Eq.
(3.49). For zero structural motion, i.e. the fluid is surrounded by rigid walls, the last term
vanishes in these equations and the discretized versions of the undamped nonhomogeneous
wave equation, expressed in the dynamic fluid pressure pd  and the fluid
displacement—potential 9 respectively, are obtained.
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3.34  Symmetric two~field form of quadratic type

A fluid velocity—potential has been proposed for the coupled structure—acoustic problem in
(25, 59]. The resulting coupled system of equation in this case may also be derived from Eq.
(3.47) by introducing a fluid velocity—potential vector @ defined as

o=V (3.50)

corresponding to the time derivative of the fluid displacement—potential field given by Eq.
(2.104). We differentiate the second matrix equation in Eq. (3.47) with respect to time,
multiply by (—po) and substitute Eq. (3.50) into the resuiting systems of equations to get

Ms 0 ﬁs + 0 pQMc |-'|s -+ Ks 0 Uy
0 —Zomel| b poM? o || & 0 —poKi|| @
z[fg} (3.51)
o“rq

Actually, this expression is more general than the expressions given in [25, 59] since no fluid
loading was considered in their work.

3.4 Computational considerations for undamped systems

It has been shown in the previous sections that the eleven fluid—structure interaction
formulations are formally equivalent. However, the various forms have different behaviour in
terms of numerical stability and computational efficiency. In this section we focus on some
circumstances that may affect the choice of form.

First, some general comments on the appearance of the coefficient matrix in dynamic
analysis. This matrix is formed as a combination of the system mass, damping and stiffness
matrices. In a transient analysis, an implicit time integrator can be used, such as the
Newmark method. The system of equations to be soived in each time step is, in this case, of
the principal form

[M + ’}’Atc + ﬂ(At)zK] Sl(n+1 = fn+1 - C ;nﬁ_ - K ;n-}] (352)
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where v and [ are the integrator parameters that determine the stability and accuracy

characteristics of the algorithm and At is the time step. x,4 and xq4 are predictor values of

xn+1 and xp.y respectively; see ref. [37] for more details, An explicit scheme is achieved for
f =0 and M and C diagonal.

Turning to the coupled eigenvaiue problems associated to the transient equations given
above, those are of so—alled generalized form, i.e.

AiMzi=Kz (3.53)

where )j is the m:th eigenvalue and z; the corresponding eigenvector. Premultiplying

Eq. (3.53) by zl; we may form the Rayleigh quotient

Zr{Kzi

A =
z'Ii‘Mzi

(3.54)

where the nominator and denominator are the generalized stiffness and generalized mass
respectively. The eigenvalue problem may be spectrally transformed [17], where the system
stiffness matrix K is replaced by

Ka = [K — oM] (3.55)
where ¢ is the frequency shift. By introducing a positive shift & the eigenvalues are decreased
by o. Most common eigenvalue solvers for sparse matrices, e.g. the Subspace lteration
Method or the Lanczos Method, see ref. [37] for details, require a nonsingular stiffness
matrix K and so do the reduced base techniques proposed in Chapter 4 in this study.
Depending on the structure of M, this condition may thus be satisfied by a shift.

3.41  Rigid—body structural modes and constant potential mode (CPM)

If the structure is not fully supported, Ks is singular and

Kiur =0 (3.56)
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where u; is a structural displacement vector corresponding to a rigid—body motion. It is clear
from the Rayleigh quotient that the eigenvalue becomes zero but finite for this rigid~body
structural mode. When Kj is singular, form (3.45) does not exist.

From Eq. (3.23) and {3.25) we note that the matrices K¢ and B are singular and
Kie=Be=10 (3.57)

where e denotes a vector of all ones eventually multiplied with a scalar @ This condition
expresses that a constant potential generates no pressure or displacements, i.e. under the
constant potential mode the potential is nonzero but all fluid displacements and dynamic
pressure vanish. This is in contrast with the rigid~body structural mode where the
displacements are nonzero but the strains vanish. Thus, compared to the rigid—body mode,
the CPM has no physical significance and is spurious.

Considering the three—field forms (3.32) and (3.35), those are both affected by the CPM
mode, i.e. the singularity of the B matrix. In these systems of equations the B matrix
appears in the system mass matrix and may cause a Rayleigh quotient of the form 0/0. This

is easily found by using the eigenvector 2f = [0 el 0] in the expression for the Rayleigh

quotient (3.54) and with system mass and stiffness matrices according to Eq. (3.32) and
Eq. (3.35). In both cases one obtains

_ 0 _0
A= —Tpo =0 (3.58)

which represents a so-called defective eigenproblem where every A is an eigenvalue, If one
attempts to solve such a problem numerically, nonsensical results can be expected [31].

For the case of a totally enclosed fluid, with no free surface, the remedy is easy using system
(3.32), while the CPM mode complicates the use of (3.35). In Eq. (3.32) we may avoid the
0/0-mode by simply setting W = 0 at one arbitrary node in the fluid domain, leaving the
pressure free. Eqs. (3.32b) and (3.32¢c) are the discretized weak formulations of the
governing fluid equations (3.14) and (3.15), containing only spatial derivatives of the
displacement—potential; therefore suppressing one degree—of—freedom in the potential in
(3.32b) does not change the eigenvalues of the system of equations. On the other hand,
using Eq. (3.35) and suppressing one degree—of—freedom in the displacement—potential
automatically enforces an invalid prescribed fluid pressure through Eq. (3.35¢), i.e. through
Eq. (3.34). This superior property of Eq. (3.32) as compared to Eq. (3.35) when analyzing a
totally enclosed fluid is overlooked in ref. [31] where Eq. (3.35) is proposed for the free
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vibration problem. However, the use of Eq. {3.35) in this case requires the introduction of a
Lagrange multiplier to avoid the 0/0—mode as shown in ref. [32].

When the fluid pressure cen be prescribed in a fluid point, the singularity of B is
automatically removed in Eq. (3.35). Because of Eq. (3.34) a prescribed pressure corresponds
to a prescribed displacement—potential and the CPM mode is removed by reducing the
numbers of equations in Eq. (3.35b) according to the vector of prescribed pressures. Using
Eq. (3.32) one degree—of—freedom is prescribed in the displacement—potential and the
prescribed pressures are conveniently introduced in Eq. (3.32¢).

Considering the two—field form (3.39), the indeterminacy of the fluid displacement—potential
is easily removed by suppressing the potential in one arbitrary fluid node. if no essential
boundary condition is applied to the fluid, e.g. when the fluid has no free surface, the inverse
to B does not exist on account of Eq. (3.57) and consequently the two-field forms (3.40)
emanating from Eq. (3.35) do not exist.

As mentioned above, the three—field forms are very sparse. Furthermore, the coefficients in
the system stiffness matrix in some of these forms show a substantial variation in magnitude.
For example, the system stiffness matrix in Eq. (3.32) includes both the structural stiffness
matrix Ks and the fluid mass terms according to 1/psc2 My. Typically, Ks is proportional to
Young's modulus and of order 1011, whereas the fluid terms are in the range between 10°6
(air) and 109 (water). The system stiffness matrix will thus have a very high condition
number, approximately 1020, and be ill-conditioned. However, in comparison, the condensed
two—field forms Eq. (3.39) are well—conditioned and they are therefore advantageous within
this respect.

The unsymmetric two—field systems (3.46) and (3.47) have two eigenvectors (left and right)
for each eigenvalue A. It is shown in [31] that these systems possess zero roots but are not
defective. These systems have the advantage of utilizing only one variable in the fluid domain
and being sparse.

Finally, it should be observed that ali eleven symmetric and unsymmetric algebraic
eigenproblems given above possess real eigenvalues, since a linear combination of the system
stiffness and mass matrices, that is positive—definite, can be found for all forms. A
positive~definite linear combination of K and M is a sufficient but not a necessary condition
for real eigenvalues [37]. Thus, despite the unsymmetric matrices in forms (3.46) and (3.47)
these systems also possess real eigenvalues [81]. Complex eigenvalues are normally
encountered for in physically non—conservative systems and they are not considered in this
comparison.



3.19

3.4.2  Computational efficiency and stability

The symmetry in the three—field systems of equations above is achieved at the cost of two
scalar unknowns instead of one at each node in the fluid domain and also a very sparse
structure of the coefficient matrices. The smaller size of the system of equations, in the
two—field forms as compared to the three—field forms, is achieved at the cost of either a full
system stiffness matrix, see Eqs. (3.39) and (3.41), or a full system mass matrix, see Egs.
(3.43) and (3.45).

Comparing the two condensed systems of equations (3.39) and (3.41), the former (3.39) has
a full system stiffness matrix, whereas the latter (3.41) has a banded stiffness matrix.
Therefore, Eq. (3.41) may be the most efficient of the two whenever this form exists, i.e.
when the fluid has a free surface. If a free surface does not exist, i.e. when the fluid is totally
enclosed by the structure, Eq. (3.39) has to be used instead. The tedious work of forming
the system stiffness matrix in this case may be limited by using a diagonal (lumped) fluid
mass matrix when suitable.

The structural and fluid mass matrices, Mg and Mg respectively, can often be made diagonal
by an appropriate lumping technique. A diagonal form of these matrices facilitates the use of
Eqs (3.39) and (3.43), since these systems require the inverse of Mg and M. Using an
explicit time integrator, the unsymmetric two—field forms (3.46) and (3.47) are especially
advantageous when Mg and My are diagonal. Substituting these equations in Eq. (3.52)
results in a coefficient matrix that is upper or fower triangular (for § = 0), and the equations
can be solved directly in each step by a forward or backward reduction without prior
factorization.

Further, in the transient case, the two—field forms Eq. (3.43) and Eq. (3.29) both require
additional matrix—vector operations on the applied structural forces. Additional matrix—vector
operations are also needed using form Eq. (3.39) and Eq. (3.41) if fluid loading is
incorporated. Furthermore, this fluid load needs to be two—times differentiable with respect
to time when used in Eq. (3.41). The pressure is not used explicitly in Eq. (3-39) and the
pressure needs to be resolved by Eq. (3.38), when requested.

Considering the two unsymmetric forms, we also make the following observation. The shifted
system coefficient matrix assembled as [K — oM], according to Eq. (3.55), can be made
symmetric by multiplying the last matrix row in Eq. (3.46) or the first matrix row in
Eq. (3.47) by (= 1/po). Thus, in a harmonic analysis we are able to form a symmetric
system of equations with respect to the coupling terms if the density is considered to be
equal in all fluid regions.
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3.4.3 Limit conditions

From the two—field formulations above we may identify four interesting fimit conditions
leading to four one—variable systems of equations. These forms, if applicable, are useful for
perturbation analysis, see also [3]. Starting with Eq. (3.39), we note that for a
hypercompressible fluid with a small bulk modulus (K = poc? - 0), this equation tends
towards

Msﬁs + Ksi.is = fg (359)

which is simply the in—vacuo structural problem. By Eq. (3.41) we can derive the limit
condition for an incompressible fluid (¢ - «) i.e.

(Mg + poMoBMQ )iis + Ksus = 2 + poMBT (3.60)

where we observe the presence of an "added mass" matrix. For the incompressible case the
fluid is thus acting like an extra mass attached to the structure. The contribution from this
extra mass increases when the fluid density p, increases. The B—matrix is singular and
cannot be inverted if the fluid pressure cannot be prescribed, e.g. on a free surface.

Studying Eq. (3.43) we get, for a hyperflezible structure (Kg = 0), the following equations
expressed in the fluid displacement potential

" ok
&8 Me & + (poBT + pEMTM;IM) O = —po f, — poMTMIT (3.61)

The fluid stiffness matrix (since B = K for the case of identical fluid shape functions) is
increased with an "added rigidity" matrix whose influence increases with fluid density and
decreases with structural mass. For a very heavy (although flexible) structure the fluid
eigenvalues thus approach the rigid wall values.

Finally, Eq. {3.45) can be simplified for cases with a hyperlight structure (Mg = 0) to yield
(% Mr + pAMIKMc) ¥ + poB W = —p, fot po MK £ (3.62)
In these cases, the fluid mass matrix Ms is increased with an "added compressibility" matrix,

whose influence increases with fluid density and decreases with structural stiffness. For a
light but very stiff structure the fluid eigenvalues are close to the rigid wall values.
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35 Transient equations for damped coupled systems
3.5.1 Introduction

In Section 3.3 and 3.4 eleven formally equivalent symmetric and unsymmetric systems of
equations were found for the undamped coupled structure—acoustic problem. The three—field -
formulation Eq. (3.30) and the corresponding statically condensed two—field formulation Eq.
{3.39) were found superior to the alternative symmetric forms in a coupled analysis.

In this section we introduce the porous medium in the symmetric fluid domain. Damped
discrete mechanical devices applied to the structure and damped locally reacting surfaces are
also introduced implicitly in the derivations below. We could have introduced these damping
effects also in the unsymmetric system of equations and those forms would have been easily
established by weak formulations of Eq. (2.128) or Eq. (2.132). However, the resulting
unsymmetric non—proportionally damped systems of equations may not be reduced by the
methods applied in Chapter 4 and we will concentrate here on the symmetric forms.

3.5.2  Symmetric forms

The linear damped fluid equations (2.124--125) derived in Chapter 2 are discretized below.

For brevity we will use '"* for time derivatives 8\t . The governing equations thus read
peVY + Vi) + Vpg = 0 ' (3.63)

1 . 1
Qy pocE Pa + Vitp = P Q (3.64)

Following the same procedure as in Section 3.3.2 we derive the weak forms of these
equations, viz.

[peVuw VP dV + [VwVdV + [V Vpa dV =0 (3.65)
v v v
and

{/p% wpa 4V — {/Vw-vwdv+£wv¢-nds='{/§gwq3dv (3.66)
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Continuity in volume displacement across boundaries of adjacent domains with different
porosity, {dy, is automatically fulfilled by the finite element formulation. The porous solid was
assumed rigid in Section 2.6.2 and therefore we assume that no porous material is attached
to the flexible wall, see Fig. 1.1. If that were the case the frictional retardation expressed by
Eq. (2.119) would be different. Actually, the dragforce would be related to the difference
between the fluid velocity and the velocity of the porous material, which is equal to the
velocity of the flexible wall.

We expand pg and ¢ in shape functions according to Eqs. (3.18—19) and make the same
choice of weighting functions as in Eq. (3.20-21). In order to show the structure of the final
matrix equations we keep the material properties outside the volume integrals in Eq. (3.66).
Of course, in programming of the element routines these properties may, although assumed
constant within each element, be different for different elements.

The weak forms thus read

pe K W+ rKeW+ Bp=10 (3.67)
;‘5% M;p— BT &+ MTu; = 4, (3.68)
where
(Mg = {/N;) N} aVv (3.69)
Ke)ij = [ VNI - VNj '
(Ke)s {/V g VNp v (3.70)
(Mc)ij = | N« n NE, as (3.71)
Sts
(B)ij = {/VN;}) - N} dV (3.72)
1 .
()i = 55 [ ¥ Q av (3.73)

(i = row index, j = column index).
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The coupling integral between structure and fluid is thus evaluated according to

[uVp -ndS= [ NV - ndS= [ Npus - ndS+ J NV% - ndS
S S fs fs

= f Npl\rg nds Ug + f vaw - ndS (3.74)
S 55

fs [

where the last integral vanishes at interelement boundaries. By the generally damped
structural equations of motion Eq. (3.4) and Eq.(3.9), respectively, and by using (3.71) in
Eq. (3.5) we get together with the fluid equations Egs. (3.67—68) the following coupled
system of equations

Ms O 0 iis + Cs 0 0 l-JS

0 pKi 0| ® 0 rKf o0} ¥
0 0 0| p 0 o0 ol p
+{ Ks 0 ~M][us] = #¢ (3.75)
0 0 B||lw 0
T T -0

We observe that the symmetry of Eq. (3.30) in the undamped case is preserved when
damping is introduced. Further, this system may be condensed to a two—field form similar to
Eq. (3.39). The last matrix equation gives

— 2
p = "H% M7t [Mlu; — BT - 1] (3.76)

and after substituting this equation in Eq. (3.75) one obtains

Ms 0 is] + [Cs O s
0 peKt W 0 rK¢|| ¥
2 1paT 1 1pT

1 -1 T 1 -1pT
—n—vpoc2 BMfIMC ﬂ—vpocz BMle

+ £

£+ poc?M M) (3.77)

5

These symmetric non—proportionally damped systems of equations may be programmed for
the general case inciuding fluid elements with and without a porous solid.

1 -
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4 REDUCED BASE TECHNIQUES

41 Introduction
411 Background

A finite element method was used in Chapter 3 to discretize the governing equations for
structure—acoustic systems. The accuracy in the response improves as the model is refined by
increasing the number of parameters (nodes in the finite element model). This refinement has
three different effects. First, it improves the description of the lower modes of vibration in the
discrete model. Second, it brings in crude approximations to higher modes that were not
present in the coarser model and third, the computational time is increased as the number of
equations is increased. By introducing global vectors that retain the improved description of
the lower modes while keeping out the crude approximations to the higher modes, the
.computational effort wilt be reduced.

The mode superposition procedure is frequently used in this context in the dynamic analysis of
linear structures. In this method an approximate solution of the original system of equations is
sought by an orthogonal projection into the space spanned by the complete eigenvectors. The
eigenvectors are first found by an eigenvalue analysis of the associated eigenvalue problem and
then used to transform the coupled equations of motion into an equivalent set of decoupled
equations, [5]. In practice, only a subset of the complete set of the eigem}ectors is needed to
find a satisfactory approximation, enhancing the computational efficiency by modal truncation.

An alternative approach to form a reduced base (or subspace) was proposed in [78] using a set
of load—dependent Ritz vectors to solve a class of problems where the applied load (1) is of
the form

() = T +(2) (4.1)

in which f is a space vector and (%) is a time function. The Ritz vectors were generated using
a static deflection vector as starting vector and found to produce better approximation than
the same number of eigenvectors. In addition, the Ritz vectors were less expensive to generate
than the eigenvectors.
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The procedure used above to generate a set of orthogonal Ritz vectors was later shown to be
identical to the Lanczos aigorithm applied with full reorthogonalization [50]. In that work, the
reduction of the original system of equations to tridiagonal form using Lanczos vectors as
reduced base vectors was shown. The equivalence is due to the fact that they span the same
subspace, a Krylov subspace. Krylov subspace methods are commonly used methods for solving
large linear systems of equations and eigenvalue problems [34); however, the direct application
to the dynamic equilibrium equation is new.

The Lanczos process has been applied recently to the symmetric fluid—structure interaction
problem [11, 58] using a dynamic deflection vector as starting vector. In addition, a procedure
based on the Arnoldi algorithm for application to unsymmetric systems of equations was
developed and preliminary results shown in [12].

In this chapter an introduction to reduced base techniques is given and Krylov subspace
methods are discussed. Algorithms for reduction of symmetric and unsymmetric systems of
equations are developed. Further, a slightly modified Lanczos algorithm is derived in order to
reduce non—proportionally damped symmetric systems of equations.

412  Reduction by orthogonal projections

The semidiscrete dynamic equilibrium equations derived for the fluid—structure problem can be
expressed symbolicaily as

M ii(2) + Ci(t) + K u(t) = (2) (4.2)

where M, C and K are real n x n system mass, damping and stiffness matrices, respectively.

u(f} is the n x I state vector and a(#) and ii(#) are the first and second time derivatives of
u(f). f(2) is the n x 1 loading vector.

The exact solution to Eq. (4.2) can be expressed as

o)) = Iy x(= Y x(t) (43)
=1



4.3

where Y = [y1, y2, ..., yn| is a set of n linearly independent vectors and x(t) is a vector
containing the generalized coordinates. Theoretically, for a system of size n, any set of n
linearly independent vector can be chosen as a base for expressing the solution u(f). In

practice, however, it is convenient to use an orthonormal set of vectors in Y, satisfying Yoy =
I, where L is the » x n identity matrix. We seek approximate solutions ugn(t) to equation (4.2)
that can be expressed as

m
un{?) = I ¥ x5(2) = Yn xn(?) (4.4)
=1

where the subscript m indicates the numbers of vectors used in the reduced base Y. Thus,
u(t} is the projection of u(#) onto the subspace span{Yy}.

The residual vector dy(?) resulting from the approximate solution uy(2) is

da(t) = M iin(t) + Cisn(t) + K un(2) - (%) (4.5)

We seek an approximation un(2) to Eq. (4.2) by forcing the residual d,(#) to be orthogonal to
the reduced base Yy, i.e. we apply the following Galerkin condition

Yol da(t) = 0 (4.6)
An orthogonal projection method may thus be summarized by the following conditions

{um(t) € span{Yn} (4.7a)
dn 1 span{Yy} (4.7b)
By substituting Eq. (4.4) and Eq. (4.5) in £q. (4.6) we obtain a reduced system of equation

expressed in generalized coordinates xy(?) as

Mu () + Ca Xa(2) + Kn Xa(t) = fu2) (4.8)

where the projected m x m mass, damping and stiffness matrices and the m x 1 force vector
are given by
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Mo=YIMY, (4.9a)
Ca= YL CYa (4.9b)
Ko =YL KY, (4.9¢)
() = YL (1) (4.94)

We note that, for a given system of equations, the reduced system of equation (4.8) is
determined entirely by the chosen vector base Yy and that the quality of the approximate
solution found through Eq. (4.4) therefore depends entirely on the quality of Yn. From a
computational point of view the size of system (4.8) is reduced from size n to m.

4.13  Projection onto a subset of eigenvectors

For M and K being real symmetric and positive definite or positive semidefinite matrices it is
always possible to diagonalize M and K by the eigenvectors found as the solution to the
general linear eigenvalue problem [60]

K=XMz=0 (4.10)

where (A, z;) is the #th eigenvalue and eigenvector, respectively, to the matrix pencil {K, M').
However, it has been shown that several formulations for the fluid—structure interaction
problem derived in Chapter 3 have a singular system stiffness matrix caused by a constant fluid
potential mode (CPM). Additionally, we would like to analyze unconstrained or partiaily
constrained structures with respect to rigid—body displacements. Most commonly used
methods for solving the eigenvalue problem Eq. (4.10) for large sparse systems of equations
make use of the inverted stiffness matrix [37]. This is valid also for the reduced base
techniques studied in this chapter.

To avoid the singularity of the stiffness matrix we work with the spectrally transformed
problem. Introducing a real shift ¢ we define the shifted stiffness matrix K, as [17]

KU =K— oM (4.11)
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which transforms the eigenvalue problem in Eq. (4.10) to

K~ M) z=0 (4.12)

where we have introduced

#=(\~0) (4.13)

Although the eigenvalues of Eq. {(4.10) are uniformly changed (decreased) by the shift o, the
eigenvectors are unchanged by this transformation, which follows directly by substitution.

The eigenvectors of Eq. (4.12) are M—orthogonal and K _—orthogonal and are conveniently
scaled such that

z; Mz = 6; (4.14)
z; K, 2= 26y (4.15)

where §;; is the Kronecker delta.
Considering proportional damping of Rayleigh type [17], viz.
C=agM+ a3 K (4.15)

where ag and a; are the Rayleigh constants, the eigenvectors will also be C—orthogonal and the
damping matrix C thus shares the same eigenspace as KU and M and thus

z? Czj = (ap + a1(t3 + 0)) &y (4.17)

The orthogonal projection process will now be applied to the spectrally transformed system of
equations, viz.

M i(t) + C at) + (K _+oM)u(t) = (1) (4.18)
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An approximate solution un(f) may be expressed in a subset of the complete eigenvectors to
the pencil (K , M) such as

un(2) = Zp, xu(?) (4.19)

where Zy = (z;, 25, ..., zs]. If eq. (4.19) is substituted in Eq. (4.18) and the Galerkin condition
in Eq. (4.6) is applied we get

ZX (M Zy 3a(t) + C Zo 5a(f) + (K, + o M) Zy a8} — (1)) = 0 (4.20)

By Eqs. (4.14-4.17) we get a reduced set of m uncoupled (proportional damping is assumed)

equations to be solved. By introducing 72 for (12 + ¢) and 2¢; fi; for {ag + aji?), the ith
equation reads

%i(8) + 26 i %(8) + B xa(t) = 21 K(1) (4.21)

where the right hand side is the projection of the force vector on the ith eigenvector. For a
force of the type Eq.(4.1) the right hand side will be

z; () = 2} T 9(8) = pi o(9) (4.22)

where p; is the participation factor, generally used to measure the extent to which z;
participates in synthesizing the total load on the system. The solution to Eq. (4.21) may be
expressed by Duhamel's integral [17]

xi(f) = B {:”( rye 6 Bi(ET) g Ri(t-7)dr (4.23)
i

where fi; = ﬁi(l—.f;)% and where we have assumed u(0) = 0(0) = 0.

From Eq. (4.23) it is observed that the modal response is influenced by the participation factor
p; defined by Eq. (4.22). Moreover, modes corresponding to eigenvalues far from the shift
point o will have a lower weight because of the factor 1/p. For a zero shift strategy these are
the higher modes.
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The method of orthogona!l projection has been used above to derive the standard procedure of
mode superposition. For proportional damping we have projected the solution u(t) onto a
subset of the complete eigenvectors to the matrix pencil (K, M). The decoupled equations
may be conveniently solved for different types of load functions +(£), without changing the
base and the approximate solution found by Eq. (4.23) and Eq. (4.19). The problems
associated with the traditional mode superposition are numerous [44]. Firstly, the generation of
eigenvectors for large systems is very time consuming. Secondly, it is difficult to automatically
select the required number of eigenmodes a priori for satisfactory convergence. Normally, the
eigenvectors are calculated first and the participation factors estimated afterwards. When the
loading vector is sufficiently represented in the eigenbase the eigensolution is halted. Thirdly,
the eigenbase ignores the information of the loading situation related to specified loading
characteristics such as spatial distribution.

For non—proportional damping, a projection onto the eigenspace will not diagonalize the
damping matrix C as in Eq. (4.17) and consequently the reduced system of equations will be
coupied through the projected damping matrix Cy. This coupled system of equations may be
solved by an iterative technique where the off-diagonal damping terms are moved to the
right—hand side, as proposed in [39, 40]. The undamped modes are thus used as a reduced
base in this case. A solution strategy for the non—proportionally damped system of equations,
where the damping terms will be used in the construction of the reduced base, will be
discussed in Section 4.2,

4.1.4  Krylov subspace methods

The reduced base techniques that will be introduced in Section 4.2 and 4.3 are examples of
Krylov subspace methods. By Krylov subspace methods we will refer to orthogonal projection
methods where the reduced base in Eq. (4.4) is chosen to be a set of orthogonalized Krylov
vectors. To illustrate the reduction procedures used later we will first emphasize some basic
properties of the Krylov vectors. A more detailed discussion is given in {60].

The Krylov vectors are the sequence of m column vectors in the Krylov matrix X defined by a
matrix D and a single nonzero starting vector ro [60],

(D, ro) = [ro, D rg, ..., D™ 1] (4.24)

The Krylov sequence generally converges to the eigenvector of D corresponding to the largest
eigenvalue of D, a property used for example in the power method where each column vector
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in Eq. (4.24) is overwritten by its predecessor and only the latest vector is retained. However,
in the following we will save all the Krylov vectors generated and use them as a base for the
Krylov subspace defined by

(D, o) = span{f™ (D, r0)} (4.25)

The Krylov vectors are assumed to be linearly independent and thus the Krylov subspace has
the dimension m according to

dim(X™) = m (4.26)
Consider the spectrally transformed eigenvalue problem of Eq. (4.12), viz.

[Ka ~ (A —o)Mjzz =0 (4.27)
By premultiplying with K; we get

=X - a)K&‘M}zi =0 , (4.28)
or

{K;M ~Blz=0 (4.29)

where | is the n x n identity matrix and

# = (4.30)

-1
)\i—a
and thus

1
Ai=o+= 4.31
i P (4.31)

Applying the power method to the eigenvaiue problem Eq. (4.29) will thus produce a set of

Krylov vectors defined by the dynamic matrix K;M. see [17], and a starting vector 1.
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Substituting

D=K;'M (4.32)

in Eq. (4.24) yields the Krylov matrix

(KoM, 10) = [r0, KM 16, .., (K=1M)™1 1] - (4.33)

This sequence of vectors will converge to the eigenvector, non—orthogonal to rg, corresponding

to the largest eigenvalue # of K;‘M. By Eq. (4.30) it follows that this eigenvalue of the
inverted problem corresponds to the eigenvalue of the original problem, closest to the shift
point o, i.e. the smallest eigenvalue of the matrix pencil (K, M}. The eigenvalues A; of the

original system (K, M) are related to 6% through Eq. (4.31).

If ro is orthogonal to an eigenspace, such an eigenspace is also orthogonal to the space
span{k™(D, ro)} for all m [60].This property of the Krylov vectors may require a restart of the
iteration with a new starting vector in eigenvalue solvers based on the Krylov subspace, e.g.
the Lanczos method [34]. However, this limitation in using the Krylov subspace when we want
to find all the eigenvectors (possibly within a specific frequency range) to a matrix, is turned
into an important feature in the load—dependent vector—algorithms discussed later, where we
want to find a set of base vectors non—orthogonal to the actual loading configuration.
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42 Tridiagonalization by Lanczos vectors
4.2.1 Introduction

The Lanczos method, proposed in 1950 [43], was intended for computing a few of the extreme
eigenvalues and corresponding eigenvectors of a general matrix. The eigenvectors are
constructed by forming a linear combination of a set of vectors, known as Lanczos vectors,
computed in the course of the algorithm. These Lanczos vectors were used to transform the
original problem to tridiagonal form. Intensive research in the past ten years has resolved a
number of difficulties concerning the stability of the Lanczos process [24, 52, 53, 69] and the
algorithm has been extended to symmetric generalized eigenproblems. [t is now widely
accepted as the method of choice for determining a few eigenpairs of large sparse problems
[37. 49]. In [49] it was demonstrated that the Lanczos algorithm is more efficient than the
subspace iteration for the generalized eigenvalue problem.

As suggested in Section 4.1.3 the eigenvectors found for the generalized eigenvalue problem
may be used as base vectors in a modal analysis. However, recently it has been shown that for
a given level of accuracy the reduced system obtained using Lanczos vectors is smaller than
that using vibration modes [40, 44, 50, 78]. In other words, the Lanczos vectors do a better
job at capturing the characteristics of the response than the mode shapes. This approach has
been used in dynamic analysis of structures [6, 40, 44, 50, 51, 55, 56, 78], in transient heat
conduction analysis [54] and in uncoupled acoustic analysis [18].

The direct use of Lanczos vectors in the dynamic system of equations is described in this
chapter for proportionally and non—proportionally damped systems. For proportionally damped
systems the Lanczos process is applied to the original second—order system of equations,
whereas in the case of non—proportional damping the original equations are first transformed
to an equivalent first—order system.

In both cases we use Lanczos iterations to generate a set of Lanczos vectors Qg for use in a
reduced base procedure. An approximate solution to u(%) is constructed through

u(f) ~ un(t) = Qu xn(?) (4.34)

in which the components of x, are the generalized Lanczos coordinates. As before, index |
indicates the number of vectors used in the base.
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42.2 Symmetric definite matrix pencil
Considering proportional damping, the coupled vibration problem expressed by the three—field

form Eq. (3.32) or by the two—field form Eq. (3.39) will be reduced to tridiagonal form.
Symboiically, we write these coupled systems of equations as

Mi+ Ci+ Ku=13) (4.35)
where M, C, and K are symmetric # x n matrices and u is the state vector consisting of
different numbers of subvectors depending on the formulation used. The stiffness matrix in the
three—field form Eq. (3.32) is singular. However, by using the shifted stiffness matrix
Ka = K—oM in the reduction procedure this form has what we will call a symmetric definite
matrix pencil (K , M). Considering the two—field form, it has a symmetric definite pencil also
for a zero shift. The matrix M may be positive definite or positive semidefinite in the
derivations below. '

Orthogonalization of Krylov vectors

in the following we will work with the transformed problem
KIMi+KICa+(1+ oK Mu= K- H(2) (4.36)
where we have implicitly multiplied Eq. (4.35) by KC}‘.

Given the dynamic matrix K;M. the mass matrix M and a starting vector 1y, the Lanczos
process generates an M—orthonormal base for the Krylov subspace

Km(Kt;lM,ro) = span{ro, K;M 10, ... (K";M)Hﬂ'1 rno} (4.37)

At a typical step, the algorithm orthogonalizes the next vector in the Krylov sequence and
M-—normalizes the resulting vector; see [53] for details. The process is summarized in the
three—form recurrence formula

-1
= Bt = K Maj — qj0) — gj1f; (4.38).
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where
-1
aj.= q;MK_'Mq; (4.39)
T -1
where 3; may also be determined by
A
Byt = (rjMry)? (4.41)
After m steps in the algorithm the quantities obtained so far can be arranged in matrix form as
..1 T

where 1, is the residual vector, e, = [0, 0, ..., I]T. Qu an 7 x m matrix containing the Lanczos
vectors qi, #=1.2,...,m as column vectors and Ty, is a m x m tridiagonal matrix of the form

e
B2 az f3
s - -
Tm = * (4.43)
B
L ﬁm G |
The matrix form of the three—term recurrence formula is illustrated in Fig. 4.1.
-1
Kg M || = [lQmfl Tm =
mel,
Fig. 4.1 The matrix form of the three~term recurrence formula for the generalized

symmetric definite problem.
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The Lanczos vectors obtained in this way are M—orthonormal, i.e. QgMQ,,FIm and this can be
used in Eq. (4.42). After pre—multiplying with QgM we obtain

QMK 'MQy = T, (4.44)

A pedagogical discussion of the Lanczos process applied to the symmetric generalized
eigenvalue problem is given in [53] and the three—term recurrence formula is derived. For
brevity, we will spare the derivation of this formula until we look at the indefinite matrix pencil

in the next section. Here it is sufficient to observe that the matrix MK;M is symmetric, when
Ka and M symmetric, and hence a tridiagonal form may be obtained by projection on an
orthogonal matrix [60].

Reduction of system of equations to tridiagonal form

To continue with the dynamic problem we use the approximate solution in terms of the

Lanczos vectors defined by Eq. (4.34) in the transformed equations of motion Eq. (4.36) and
form the residual dn(¢) as

da(t) = K 'MQukn + K 1CQuitw + (In+ oK IM)Quxn — K1 £(2) (4.45)

To take advantage of symmetry we will multiply the residual with M and require the resulting
vector to be orthogonal to the set of Lanczos vectors

QIMd, =0 (4.46)
Actually, in this manner the residual is M~orthogonal and we get
QMK MQuitn + QEMK-1CQq %n + (QLMQ + oQuMK - MQp)xy =
-1
= QMK_f(%) (4.47)

Although we eventually multiply by a singular matrix M, as in the case of using Eq. (3.32),
equation (4.47) is still valid, see [50].
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The damping matrix in the reduced problem QTMK;CQ,,, is generally not symmetric. If
m
Rayleigh damping is assumed such as
C=aM+aK (4.48)

then we can rewrite this term as
QuMK:1CQn = QEMK ! (aoM + a(K_ + oM))Qp =

= 20Q;MK IMQ, + 2:QuMQ; + 210QLMK"IMQ, (4.49)

By the M—orthonormality and the expression for Ty in Eq. (4.44), (4.47) reduces to the
tridiagonal form

where

fu(t) = QMK (1) (4.51)

The starting vector ry can be chosen arbitrarily. Indeed, when computing the eigensolution a
random starting vector is often the best choice. When the starting vector is orthogonal to an
eigenvector all the generated Lanczos vectors will also be orthogonal to that eigenvector. This
is an important and desirable property of the Krylov subspace methods. When the right—hand
vector of the equations of motion has no component along an eigenvector, the response of the
system will also be orthogonal to the same eigenvector. Thus, the choice for this starting
vector that produces the best solution with minimum computational efforts is the right—hand
side. Accordingly,

=K' (4.52)

where we assumed that the applied load is of the form

(1) = ¥4(2) (4.53)
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f is a normalized vector representing the spatial distribution of the load and is independent of
time, while 4{¢) is the scalar time dependent amplitude of the applied load vector. This choice
for the starting vector simplifies the right—hand side of Eq. (4.50) to

fat) = QuMK:1ix(1)
= Qngg’r(t)
= QEMq81(1) (4.54)

= Q;{MQmelﬁl A1)
= e 1)

where e; = [1, 0, ..., 0]. Finally, Eq. (4.50) takes the form

ToXn + [(30+310')Tm + 31|;n]5(m + (lm + O'Tm)xm = elﬁi'?“) (4'55)

When the starting vector differs from that in Eq. (4.52), then the Lanczos algorithm is less
than optimum and Eq. (4.51) must be used to evaluate fy. Such a case arises when the same
problem needs to be solved with a new forcing function, i.e. the spatial distribution is changed.

The tridiagonal system of equations in the transient case might be solved either by
step—by—step integration methods such as the Newmark method, or the eigenvectors of T
can be calculated to be used in the mode superposition procedure as discussed below. Due to
the fact that the system is only slightly coupled by its tridiagonal form, the computational cost
of either of these methods is small compared to the factorization of Ko' If an implicit methed
is used, a direct solution with a symmetric tridiagonal coefficient matrix requires 8m flops in
each time step, in comparison to the number of operations of order 13 to factorize Ko,.

In the harmonic case (1) is of the form e’a"t, where & is the loading frequency. Equation
(4.55) can then be written as

[l + (0—22)Tn + ((a0+a10)Th + a1hy)i|%u(®) = Biey (4.56)

where i = =T and X, is the frequency dependent response function expressed in Lanczos
coordinates. From Eq. (4.56) it is clear that the choice of o affects the required number of
Lanczos vectors for evaluating the harmonic response. Studying the response at a single
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frequency @, the exact solution for the undamped case is ii = (K—E%M)‘ii‘. Choosing o to be

" @? in Eq. (4.56) gives the exact solution using only one Lanczos vector, m = 1, since the

elements in X will be zero for m > 1. If o differs from @2, as in a frequency sweep, more
Lanczos vectors will be required to express the response function accurately within the
frequency interval of the sweep.

Ritz vector base

In order to study the characteristics of the reduced system of equations we return to the
transformed eigenvalue problem in Eq. (4.29), viz.

[K M — £ l]z; = 0 (4.57)

We are seeking approximate eigenvectors, or Ritz vectors zj,, to the exact eigenvectors z,
that may be expressed as linear combinations of Lanczos vectors, viz.

zi,m - Qm si:m (4.58)
where s; 5, contains the generalized coordinates in the base Q.

We will now look for the properties of s;5. Substituting Eq. (4.58) in Eq. (4.57) we may form
the residual

di:m = K.;.iMQmsi,m - G%stmsi:m (459)

where 6, is an approximate eigenvalue, or Ritz value, to the matrix K(;}M, associated with m
Lanczos vectors in the reduced base. We multiply by M in order to take advantage of
symmetry and apply the Galerkin condition Eq. (4.6) to obtain

QoM dip = 0 (4.60)

and by Eg. (4.59)

QM K 1M Qqsin — &, QoM Qusin = 0 (4.61)
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or equivalently

{Tm - B?I,m im]si,m = D (4.62)

Thus, the coefficients in the eigenvector to the tridiagonal matrix Ty, are the generalized
coordinates in Eq. (4.58). Thus, by solving the tridiagonal eigenvalue problem Eq. (4.62) we

obtain approximate eigenpairs (., zim) to the inverted (and spectrally transformed)

eigenproblem of Eq. (4.29). Approximate eigenvalues, or Ritz values to the general eigenvalue
problem Eq. (4.10) are found by the relation

’\i'm = g+ — (4.63)

and approximate eigenvectors by Eq. (4.58). It should be observed that when m gets larger the

eigenvalues of Ty, converge to the eigenvalues 8, of K- 1M and that the eigenvalues A of the
original system can be recovered by the inverse transformat:on in Eq. (4.63), see [34]. If the
starting vector is chosen according to Eq. (4.52), only eigenvalues corresponding  to
eigenmodes that are non—orthogonal to the loading distribution are f0und The eigenvalue
closest to the shift point o converges first.

Diagonalization by Ritz vectors

The tridiagonal system of equations derived in the transient case, Eq. (4.50) will now be
decoupled. The Ritz vectors expressed as Zp = QuSa satisify M-orthonormality and

MK_!M-orthogonality, viz.

ZiMZy=S51QTM QS = ST, = I, (4.64)
T - T T AT - T
ZmM Kal M Z[!] = SQOM KUIM Qm Sm - sm Tm Sm = 0]11 (4.65)

where the last equation results from Eq. (4.62). It is easy to verify that either we express the
approximate solution to the transformed problem Eq. (4.36) by the Ritz vectors

un(?) = Zn yn(t) = QuSnyn(t) (4.66)
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or we use the eigenvectors Sy of the tridiagonal matrix Ty, to diagonalize Eq. {(4.50) and we
obtain

0 9n(8) + [(a0+210)82 + athalyn(?) + (I + ocB)yn(t) = SEQEM K1 Fo(f) (4.67)

With a starting vector according to Eq. (4.52) the right—hand side reads, by use of Eq. (4.54),

SaQaM K1 15(1) = STeifin(t) = simBir(t) (4.68)

where sy, is the first row vector in Sy. Solving the jth equation in Eq. (4.67) gives

Yim(8) + [a0 + a1 (o + E)]Vim(8) + (6%, + o)yjm(Y)
= 82, St HA(2) (4.69)

The indices m is used to emphasize that these equations will change if more Ritz vectors are
appended to the Krylov space, and thus m is increased, which is different from the modal
equations Eq. (4.21). Further, if we introduce 9}?:“ for (Bj‘?m + o) and 2!;“;,,,,?}1,51 for
(ao+a13§?m) we rewrite Eq. (4.69) as

¥im() + 265m 8 1m Vim{t) + & ,m Yim = -?m SitmB (1) (4.70)

By direct use of Duhamel's integral in Eq. (4.23) we obtain a solution to Eq. (4.70)

9",m m
yJ,m(t) = __,__if.___ﬁifpr( )e é‘]’mg—lm(t T)smt?‘i,m(t—f)df (471)

J’m

where %, = B2, (1-¢2, ), and where we observe the factor & on/ 0. For a zero shift o=0
this factor is equal to one and hence contrary to the modal equations the higher modes have
equal weight as the lower modes. By this result we may expect high—frequency oscillations in
the response due to unconverged Ritz vectors. This is equally true when using the Lanczos
vectors since the Lanczos vectors and the Ritz vectors span the same subspace,
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Comparing with a reduced base where a subset of eigenvectors is used the mechanism is quite
different when approximating the dynamic solution by Lanczos (or Ritz) vectors. The
conventional criterion for deciding how many vectors to be used by studying the representation
of the loading vector has no meaning when using Lanczos vectors. Although the load vector in
the transformed problem Eq. (4.36) is completely represented in the Lanczos space (actually it
is parallel to the first Lanczos vector), it does not follow that the exact solution is obtained in
this base. A termination criteria when using a Ritz vector base is discussed in [41]. An
alternative measure is given below for a Lanczos vector base.

Error Estimate
The time—dependent residuat vector dn(t) in Eq. (4.55) may be used to get an indication of

the error in the approximate solution un(t). We substitute the Lanczos relation Eq. (4.42) in
Eq. (4.45) and yield

dm(t) = (Qme + rmez)*m + K;CQm*m + Qme + O'(Qme + fme;[l‘)xm — K;lff,r(t)

(4.72)
For Rayleigh damping according to Eq. (4.48) the damping force reads
K;.ICQm*m = (30+310)K;1MQm*m + a1Quxy =
= (20+210)(QuTn+weL )in + a;Quin (4.73)
Substituting the last expression in Eq. (4.72) gives
du(t) = rﬁeﬁim + (ao+a1a)r$er£im + ar;l;egi‘(m +
Qu[ Tk + ((a0+210) Turtaghs)kn+(In+0 T )xa — e1fo(8)] (4.74)

where we have used K;i"y(t) = 1oAt) = QuerBir{t).

The term inside the square brackets becomes identically zero, cf. Eq. (4.55) and hence

dn(t) = rne(%n + (30-+210)kp + o%n) (4.75)
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Computing the M—norm of this residual results in
”dm(t)“M = ”"m§|M | Xm + (a0+a1o)xm + oxm)i (4.76)

where Yo, X and xn are the bottom elements of %, %, and x,. respectively and
”"”HM = fn«1. This error is a measure of the unbalance force, during the course of time
integrating, due to the reduced base introduced in Eq. (4.36).

We define an error function e(¢), see [54], relating the norm of the residual to the norm of the
loading function in the transformed equation such as

dzzal - . o

When the solution vector is completely represented in the current space spanned by the m
Lanczos vectors, the residual 8+ vanishes and the error function will be zero. The residual in
Eq. (4.76) may also be used as a termination criterion during the Lanczos iterations, as shown
in [54].

in summary, the Lanczos vectors are load—dependent and are generated directly from the
right-hand side force vector. The components of the first residual vector are the actual right-
hand side forces in the transformed problem Eq. (4.36) and the first Lanczos vector is the
normalized dynamic deflection due to this force vector. The following Lanczos vectors are a
sequence of normalized dynamic deflections associated with a residual force vector. These
residual vectors are the unbalance forces in the governing equations associated with the
approximation achieved from the previous set of Lanczos vectors. At any given step j, the
Lanczos algorithm computes a vector that is parallel to the residual vector associated with the
approximate solution using the current m Lanczos vectors as its bases. This residual vector is
then used to obtain the next Lanczos vector, and hence the the Lanczos algorithm may be
viewed as implicitly performing a sequence of orthogonal projections onto a growing subspace,
At the end of each step a new Lanczos vector is appended to the current subspace. An
important property of the Lanczos algorithm is that the reduced matrix has a tridiagonal
structure. Typicaily, the number of Lanczos vectors and hence the size of this tridiagonal
matrix, m, is considerably smaller than n.
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423  Symmetric indefinite matrix pencil

Non—proportional damping was introduced in the finite element models in Chapter 3.5. In
order to reduce the size of these systems of equations we will apply a modified Lanczos
algorithm for symmetric indefinite matrix pencils [13, 40}. The eigenvectors to these pencils are
generally complex. However, the Lanczos vectors derived below are real. Therefore we will use
the same notation for these vectors as for the Lanczos vectors generated in the case of a

definite matrix pencil, although the Lanczos vectors derived below have length 2n.

By introducing a new variable

V=i (4.78)

we rewrite the equation of motion to
Mv+Cv+ Ku=1() (4.79)

By adding the trivial equation, K & = K v to Eq. (4.79), we obtain

R RN

Alternatively by substitution for i and adding Mia = Mv we get

HEENAR R

Symbolically, both systems are of first—order and have the form

Ay+By=g(t) (4.82)

This system has 2n unknowns as compared with n unknowns in the second-order system. The
M, C and K matrices are symmetric and hence the matrices A and B are also symmetric
although neither is definite, i.e. the pencil (B,. A) is indefinite. Depending on the properties of
the M, C and K matrices we may choose a suitable form. The only assumption we make beside
symmetry is that a linear combination of M, C and K is nonsingular.
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Orthoegonalization of Krylov vectors
We first transform Eq. (4.82) by multiplying by B: and yield

-1p -1A)y = R-1
B,/Ay+ (I +¢B_'Aly=B_'g() (4.83)

where Bg = B—oA. We will now use a Krylov subspace method to find an approximative
solution to Eq. (4.83). The technique follows closely the one used for the definite problem

above.

Given the dynamic matrix B‘;}A, the A matrix and a starting vector ro, the Lanczos process
generates an A—orthonormal base for the Krylov subspace

X=(B_'A, ro) = span {r, B_'r. ..., (B 'A)n-ir} (4.84)

Next we will derive the Lanczos algorithm for indefinite problems. Assume that the first J
Lanczos vectors (qi, gz, .., q;) have been found and that they satisfy A—orthogonality in the

sense that q?Aq; = £14ij, as a consequence of A being an indefinite matrix. The next Lanczos

vector qj41 will be obtained by computing a preliminary vector T from the previous vector in
the Krylov sequence

This vector may be expressed as a linear combination of all the previous Lanczos vectors and a
residual vector r; orthogonal to all previous Lanczos vectors

i =0+ oiq; + Bigia + g2 + : (4.86)

The amplitudes oj, §;, 75, ... are evaluated by imposing A—orthogonality, i.e. we premultiply

Eq. (4.86) by q}‘A and get

q}‘A T= q?A rj + aqu'jjrAq; + ﬁjq?qu.l + 7 q}‘qu_g + .. (4.87)



4.23

The first term on the right—hand side vanishes by definition and all terms after the second
vanish due to A—orthogonality. We are now ready to estimate the component of q; built up

along ¥ by
Ta-
g, AT;
o = ;—i (4.88)
q;Aq;

The component of g;.; along ¥; may be found in a similar way by premultiplying Eq. (4.86) by

qr‘}-[‘_IA‘ In this case we get

T A
q; -, AT;

=t ) 4.89)
J T (
q5-1AQ5-

Similarly, the component of g;_p along T; is obtained by

T -
q;.oAT;

% (4.90)

= ——
q; 2AQj2

However, by Eq. (4.85) the nominator reads

QAT = qrf-zA B_'Aq; = q;A (B 'Agj0) = q'fA Ti-2 (4.91)

where we have used the symmetry of the matrices A and B. Expanding the result in Eq. (4.67)
according to Eq. (4.85) we get

ajA Fio = GjA (12 + G52 2 + 2 Qs + 72 Gt + ) (4.92)

where all forms on the right—hand side vanish due to A—~orthogonality.

It can be shown [53] that all further terms in Eq. (4.86) will vanish and hence Tj can be
expressed as a combination of the previous two Lanczos vectors and the residual vector r.
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This condition leads to the three—form recurrence formula for the indefinite matrix pencil

= 45;11 Bivt Qjur = B(;IA ¢ —qj & = qj-1 Jj (4.93)
where
— 51 Tam-1p ..
o =6 q;AB_'Aq; (4.94)
fi = 6 4 1A B;'A g (4.95)
1
By = |r{AG|? (4.96)
bjs1 = sign (r}‘A r;) (4.97)

After m steps in the élgorithm ali the quantities obtained so far can be arranged in a single
matrix equation of the form

B!A Qo= Qq Di! Ta + 1u €5 (4.98)

where Ty is a symmetric tridiagonal matrix according to Eq. {4.43) and
m = diag(d1, &, ..., 6n) with values +1 or —1, see Fig. 4.2.

NN

Fig. 4.2 The matrix form of the three—term recurrence formula for the generalized
symmetric indefinite problem.

The Lanczos vectors stored in Qp are A—orthonormal in the sense that

QIA Q, =D, (4.99)
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Premultiplying Eq. (4.98) by QVUI;A results in
TAB'AQ,=Q~ LT (4.100)
QuABAQu=Q,AQD; Ty :
and thus by Eq. (4.99)

Tn=QuAB;'AQ, (4.101)

Reduction of system of equations to tridiagonal form

We express the approximate solution to Eq. (4.82) by Eq. (4.34) and form the residual d,{?)
as

dn(2) = B_'A Quiy + (In + oB_A)Qn xu - B; 'g(1) (4.102)
We multiply by A and apply the Galerkin condition Eq. {4.6), i.e.
T
Qu Adp(t) =0 (4.103)

We combine Eq. (4.102) and Eq. (4.103) and obtain

EB;A Quin + (QnAQn + GQ?R‘AB;AQm)xm - QEAB;g(t) =0 (4.104)

By the expressions in Eqs. (4.99) and (4.101) we get the tridiagonal form

Tuxn + (Dn + 0Tn)xn = gu(?) (4.105)

where

gn() = QIAB;‘z(t) (4.106)

i the loading function is of the form

g(t) = g A7) (4.107)
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we choose the starting vector ro in the direction of B>'g and thus

gn(f) = QEAB 'gx(1)
= QrAr(?)
= QFAq 5 811(D) (4.108)
= QEAQue: & A11(1)

= Dpes§ilii7(t)
= ¢ ()

and finally we obtain

Tukn + (Dm + UTm)xm = eiﬁi'}’(t) (4.109)

In comparison with the Lanczos procedure for definite systems we only need to define an extra

array Dy = diag(éy,62,...,0n) of length 2n to store the sign of the indefinite norm q?Aqi. The
algorithm works equally well for symmetric definite matrices, in which case Dy = I,,.

Real and compler Ritz vector bases

All matrix and vector operations in the suggested reduction method are done in real arithmetic
and the resulting matrices are all real. Complex arithmetic need only be used in the case where
we want to diagonalize the tridiagonal system of equations resulting from the reduction of
non-proportionally damped systems [45]. A diagonal form of the reduced equations may be
preferable for certain types of loading functions, like piecewise linear functions for which an
analytical solution is obtainable for each generalized coordinate. However, the accuracy of the
approximate solution is determined by the first step; the reduction to tridiagonal form.

A corresponding eigenvalue solver would use a random starting vector, and generate the T,
and Dy, matrices respectively and solve the complex eigenvalue problem. This approach has
been used in [13] where the Lanczos algorithm was found considerably more efficient than the
subspace iteration algorithm.
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424  Numerical implementations

The load—dependent Lanczos algorithm for a definite matrix pencil is summarized in Table 4.1
for the spectrally transformed problem. The computational effort in each step involves a
matrix—vector multiplication by M, the solution of a system of equations with K, as the
coefficient matrix, two vector~vector (inner) products and four saxpy operations, where saxpy
stands for a scalar times a vector x plus a vector y. The algorithm requires storage for Ka and

M, and four vectors of length n, to store rjy, Pj1, T; and qj1. The orthogonalization
coefficients & and [ are stored in an array of length 2m to be used in the solution of the
reduced problem.

From Table 4.1 we note that the M—orthogonality imposed for the Lanczos vectors does not
require additional multiplications by M. Instead an extra array p is introduced to compute the

next vector both in the Krylov sequence by 7; = K(}‘qu = K(;‘pj and in the orthogonalization
procedure step 2.e and 2.h. The algorithm is similar to the one derived in [63] for the
associated eigenvalue problem.

The linear equation solving within the algorithm may take advantage of the sparsity of the
matrices Kcr and M. Profile—stored solvers for symmetric systems of equations are discussed in
[28]. A discussion on substructuring techniques may be found in [27, 61].

A slightly different Lanczos algorithm derived in the previous section in order to tridiagonalize
indefinite matrices is given in Table 4.2, This algorithm is a modified version of the algorithm
derived in (53] and a similar algorithm is used in [13, 40].

From the operation count we note that the number of vector operations is increased from 12n
to 24n in each iteration compared with the definite algorithm. The additional operations
required to solve with Ba and to compute Ar, compared to the first-order systems, will depend
on to what extent the sparsity of Ba and A can be exploited. Generally it will not be doubled
as in the case of the vector operations. Considering the memary requirement we need an exira
array of length m to store the values of (&, &, ..., 6y).
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Tabie 4.1 The load—dependent Lanczos aigorithm for a symmetric definite matrix
pencil (KU,M) with operation count in flop.

Given a load vector f: Op. count

1. initialize

factorize K | (K,
G =0
- K-1F
¢ 1=K #K )P
d. pop= Mry M)
%
e. b= (rrgMn;))2 = (Brgro)é 2n

LK)+ KK )} + (M) + 2n

2. forj=1,2,.., m;

. g = G4/ 2n
b. p; = Pj-1/5; 2n
C. Ty o= K;pj R(Ka)m
d. T = Tj — qj4f 2n
e. o = q?MFj = p?‘rj 2n
o =15 - qjo 2n
g Pj = My w(M)3)
he B = (FM)? = (]} 21

L os(K)) + p(M) + 127
end

LA KU) represents number of operations to factorize KU
2 n(Ka) represents number of operations to solve with K,
3) (M) represents number of operations to compute Mr
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Table 4.2 The load—dependent Lanczos algorithm for a symmetric indefinite
matrix pencil (B ,A) with operation count in flop.

Given a load vector g: Op. count
1. initialize

a. factorize B | (B,

qQ = 0
= B-1a
¢ nn=B]g W(Ba)m
d. pg = Arp H(A)®
£ i
e B = [rgArg|® = |porgl® 4n

f. & = sign (pro)

L ((B,) + (B ) + 1A} + 4n

3. q; = 4{5/f) 4n
b. p; = Pju(6i/5;) 4n
= . nt
c. 7 =B_pj ,;(Ba)m
d. ¥ = T — qj4(B/ 1) 4n
e a = q?A?j = p?fj 4n
.o =1~ qi(a/8) 4n
g P; = An #(A)®
i _ 4
ﬁj*’i E 'E?Al'jlz = Ip,jrrji2 4n

L b = sign (pyn)

¥ K.(BO_) + p{A) + 24n
end

bog( BJ) represents number of operations to factorize B o
2) x(BU) represents number of operations to solve with BU
3} i{A) represents number of operations to compute Ar
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Some remarks should be made concerning the computer implementations of the algorithms in
Table 4.1 and 4.2. In exact arithmetic (no round—off errors) the orthogonality between all the
Lanczos vectors is obtained by orthogonalization with respect to the two preceding vectors at
each step in the algorithm. However, due to the round—off errors introduced in finite precision,
the orthogonality with respect to earlier vectors might be lost, and this is discussed next,

We define the unit round—off error ¢ as the smallest positive number recognized by the
computer to satisfy the relation 1 + ¢ > 1. The value of ¢ is computer-dependent; however, a

typical value in double precision is 10714,

We introduce a measure of orthogonality such that for the algorithm in Table 4.1 we define

hij=q; Mg (4.110)

or in the case of an indefinite matrix in Table 4.2

hi=a; Aq (4.111)
In exact arithmetic we expect the value of hsj to be such as
| hsj | = éij (4.112)

where 8;; is the Kronecker delta. In finite precision arithmetic we would have

1 i=j
| hyy | = . (4.113)

However, due to accumulated round-off the output from the algorithm might be such as

1 i=j;
P hij | = o (4.114)
>nei it f

Various reorthogonalization schemes have been formulated to maintain near global
orthogonality of the Lanczos vectors. A straightforward method to implement is a full
reorthogonalization (FRO) at each step of the Lanczos iteration, i.e. the vector rj, computed
with the three~term recurrence, is explicitly orthogonalized with respect to all previous Lanczos
vectors using a modified Gram—Schmidt process [34].
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In the definite algorithm we apply a modified Gram—Schmidt process to force r; orthogonal to
the previous set of vectors qi, ... qj according to

fori=123 ..j
ti= qTM!I =q’:f‘BJ (4115)
rj = fj = CiG;

end

which in the algorithm for an indefinite matrix pencil will read

fori=1,2,3 .. 7
T T—
¢i = G Arj =q;p; (4.116)

rj =1~ (ci/di)a
end

In this way the Lanczos vectors are orthogonal up to round—off level according to Eq. {4.113).

These orthogonalization schemes are appended at the end of the algorithm in Table 4.1 and
4.2 (after step 2.h and 2.i) respectively. Each orthogonalization with respect to a single
previous set of j vectors consists of j dot products and j saxpy operations, or in total {4n)
floating point operations. The cumultative cost of a full reorthogonalization grows as the
iteration number squared, viz. (1 + 2+ ... + 7)(4n) ~ 22n and can be quite burdensome for
large problems. For example, for n = 10 000 and j = 100, a full reorthogonlization will require
200 Mflop.

However, recent research shows that semi-orthogonality between Lanczos vectors is

sufficient, i.e. maintaining the A's at ¢ level [69]. By maintaining semi—orthogonality the
resulting Ritz values, according to Eq. (4.63), are as accurate as with full reorthogonalization.
Following this approach also for the load—dependent algorithms we thus require

| & {1 = (4.117
il = 4,
A Soe i #] )

It has been observed that the growth of round—off errors follows a regular pattern in terms of
hi; and that we do not need to compute all these quantities explicitly. In fact at the end of
iteration jwe may check the orthogonality state between the previous set of j Lanczos vectors

and the new Lanczos vector qj. = rj/Bjs1, by a recurrence formula derived in [69]. For the
definite problem we may define a {#+1)x(j+1) matrix such that
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Hiv = Q] MQjut ~ lja (4.118)

where in exact arithmetic Hj.y = 0. We monitor the growth of round—off error during the
course of the Lanczos process by

1
hjur 2 g [Ti-thy — ajhy ~ Bihy4] (4.119)

where the orthogonality state given by coefficients in the vector hj,, may be computed by the
elements of Tj4 and the two previous columns in H, i.e. h; and hj_y, see [53, 69] for details.

In the present implementation we have adopted the partial reorthogonalization scheme similar
to the one used in [69]. The reorthogonalization needs only to be performed with respect to
those vectors q; for which (hj.1)i indicates loss of semi—orthogonality. However, we will simply
reorthogonalize qj.1 against ol previous Lanczos vectors if any of the elements of h;.s exceeds

ve. Then the value of hj and hj.y is reset to eyn and the Lanczos algorithm is continued. Full
orthogonalization is performed again as round—off errors accumulated by equation (4.119) are

built up to the level of /. For more details, see [53, 69].

This scheme has been found to accurately compute the desired solution for the definite
problem in our applications. By combining the semi-orthogonality condition and partial
reorthogonalization (PRO) the resulting response is as accurate as the one obtained with the
full reorthogonalization scheme {FRO). But a great many of the reorthogonalization steps are
eliminated.

A similar relation to Eq. (4.119) may be found for the indefinite algorithm in Table 4.2 [13].
However, for simplicity we choose to use a full reorthogonalization (FRQ) in this case.
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43 Hessenberger reduction by Arnoldi vectors
4.3.1  Introduction

The symmetric systems of equations on generalized form derived in Chapter 3 were achieved at
the cost of either a very sparse coefficient matrix with two fluid degrees—of—freedom per fluid
node or a full coefficient matrix with one degree—of—freedom per fluid node, cf. Egs. (3.32)
and (3.39). The unsymmetric systems Eq. (3.46) and Eq. (3.47) have a sparse matrix
structure with one single degree—of-freedom per node in the fluid domain, although
unsymmetric.

In this chapter we will study the reduction of unsymmetric systems of equations. We will
extend the method of Arnoldi [4, 34] to a generalized problem with unsymmetric matrices K
and M. The resulting Arnoldi vectors are used to reduce the system of differential equations to
a smaller set of equations of upper Hessenberg form. A similar method has been used recently
for a convection—diffusion problem with a symmetric M and an uasymmetric K matrix, see
{57]. Krylov subspace methods for solving unsymmetric linear systems of equations are
discussed in {64, 65].

4.3.2  Unsymmetric definite matrix pencil

The unsymmetric systems of equation (3.46) and (3.47) may be written symbolically in the
form

M i+ Ku=1(f) : (4.123)

in which M and K are nx n unsymmetric matrices and f(1) is the time-dependent external
load. The solution vector u thus includes the structure subvector ug and either of the fluid
vectors p or W,

Orthogonalization of Krylov vectors
We transform the problem to
KM + (1+ oK M)u = K 1f(1) (4.124)

by multiplying with the inverse to K, =K-oM.
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The Arnoldi algorithm performs a sequence of matrix—vector operations using the unsymmetric

dynamic matrix K;M and a starting vector 1o to produce a set of orthonormal Arnoldi vectors
as the base for the Krylov subspace

.Ifm(K;M, ro) = span{ro, K_'Mro, ..., (K M)zt ro} (4.125)

The resulting Arnoldi vectors may then be used to approximate a solution u(¢) to Eq. (4.124)
through

u(t) ® un(t) = Vipxa(t) (4.126)
in which x, contains the generalized Arnoldi coordinates.

At a typical step j the algorithm orthogonalizes the next vector in the Krylov sequence

K_!Mv; against all the previous j Amoldi vectors, thus

I = Nj+1,j Vju = K;MVj - ‘é]_m,j"i (4.127)
=
where
— ol -1 ‘
i = vi K My (4.128)
v = I 1 || (4.129)

After m steps in the Arnoldi algorithm we have obtained

K:'MVp = VoHy + reor (4.130)

where Vo = [vy, ws, ..., vp] is a matrix holding the Arnoldi vectors and Hy is an upper
Hessenberg matrix that holds all the coefficients in the orthogonalization procedure such that

M M2 M3 - - . Nm
a2z . . . Mo
M2 33 . . . M
Hp = 4,3 (4.131)

Mmam-1 Tmsm
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N

Kg M Voll = Ve[l Hn
Fmeh

Fig. 4.3 The matrix form of the recurrence formula for the unsymmetric definite problem
The Arnoldi vectors satisfy the orthogonality condition

viv,=1, (4.132)
We premultiply Eq. (4.130) by V;E and get

VKMV, = VoVoHy + 0 (4.133)
and by Eq. (4.132) it follows that

Hy = VoK 1MV, (4.134)

Reduction of system of equations to upper Hessenberg form

We express the apprbximate solution to the transformed equation by using the Arnoldi vectors

according to Eq. (4.126). Substituting this approximate solution in Eq. (4.124) we form the
residual as

dn(?) = K_'MVyity + (1 + oK MV K (1) (4.135)

where the free parameter in xy is calculated by applying the Galerkin condition in Eq. (4.6), i.e.

VIida(t) =0 (4.136)
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Substituting Eq. (4.135) in (4.136) results in

. - . J P
VoK IMVgi + (Vo Vi + oVa K MVp)in = VEK1f(1) (4.137)

which by use of Eq. (4.132) and (4.134) can be rewritten as

Hxkn + (Im + O'H;g;)xm = fzn(t) (4.138)
and hence the transformed equation (4.124) has been reduced to upper Hessenberger form.

To make optimum use of the information about the problem to be solved we start the Arnoldi
algorithm with a vector in the direction of the right—hand side in Eq. (4.124), i.e.

ro =K1 (4.139)

where f is the spatial variation of the load f(t) = f9{(t). In that case the right—hand side in the
reduced system of equation Eq. (4.93) may be simplified as

fut) = VaK-1H()
= VIK 1ia(2)
= VIgi4(0) (4.140)
= Vo)

= V}:Vmelm,o?'y(t)
= e1M,07{1)

where 7y,0 is the norm of the starting vector rg and e is the first column in the identity matrix.
Thus Eq. (4.138) takes the simple form

Hnkn + (I + oHu)xg = em,07(1) (4.141)

This equation of size m x m may be solved by a suitable time integration scheme or through a
modal decomposition. An implicit method requires the solution of a linear system of equations
with an upper Hessenberg coefficient matrix.
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Error estimate

The time—dependent residual vector dy{f) in Eq. (4.135) may be used to derive an error
estimate similar to the one given in [57]. By substituting Eq. (4.133) in Eq. (4.135) we obtain

du(f) = (VaHu + ey )5 + Vaxa + o(VaHn + el )xn — K 1(1) =

Va[Hukn + (In + oHu)xn — e11,07(8)] + rn(€Lkn + ceixy) (4.142)

where we have used K;f:f'y(t) = 1oY(t) = Vnefor (1)

The Arnoldi coordinates kept in x, were calculated to satisfy Eq. (4.141) and thus the term in
the square brackets becomes identically zero. The Eq. (4.142) now reads

dn(?) = fuel (%n + o%a) (4.143)

We compute the norm of dy(?) such as

lldn|l = |ral im + OXn| = Tm+tom | Xa + Ol (4-144)

where ¥y and yn are the bottom elements of the vectors %, and Xp, respectively. Thus, the
norm of the residual may be monitored in the course of the time integration. An error function
relating the norm of the residual to the norm of the loading function in the transformed
equation (4.124) would read

— dpf( — m+l,m Ypteo
e(i)li%ro 0T = %1‘0 J-‘f"“—(—%-'-,y 7 (4.145)

This function may then be used to monitor the error in the transient response in the reduced
system of equations, compared to the response expected from a direct solution of the original
unreduced system of equations (with an identical time integrator). We observe that if the
norm of the residual vector vanishes, i.e. goes towards the round—off level ¢, the error in the
solution will be zero, implying that the computed Arnoldi vector have spanned the whole
solution space.
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The term | ¥(f)| may be set at the maximum value max (| %(¢}]) in order to ensure a proper
error function also for (¢) = 0. One solution strategy would be to generate a chosen number
of Arnoldi vectors, solve the reduced problem Eq. (4.141) and monitor the value of ¢(¢}. Once
this value exceeds a given tolerance the Arnoldi algorithm is restarted to extend the subspace
spanned by the Arnoldi vectors. After that more Arnoldi vectors are added to this space and
the time integration is started over.

4.3.3  Numerical implementation

The load—dependent Arnoldi algorithm is shown in Table 4.3. The algorithm is provided with

the matrices M and KU and a load vector f. After the initialization stop the Arnoldi vectors are
computed. Typically, one matrix multiplication with M and one solution with Kcr as the
coefficient matrix are performed in each iteration. These calculations may be performed by
calls to subroutines that take full advantage of the structure of these matrices. In the
unsymmetric formulations of structure—acoustic systems, see Eqs. (3.46) and (3.47), the
unsymmetric terms are the coupling matrices whereas the main part of the system matrices is
symmetric. Unsymmetric equation solvers are discussed in [76, 77, 79].

A modified Gram—Schmidt procedure is applied in order to orthogonalize the new Krylov
vector in each iteration. Loss of orthogonality among the Arnoldi vectors is an issue also in this
algorithm. We therefore suggest that the orthogonalization procedure in step 2.d and 2.e is
performed twice in each iteration.

The Arnoldi method may be seen as an extension of the Lanczos algorithm for unsymmetric

matrices. In the case of Lanczos, the symmetry of MK;‘M resulted in the three~term
recurrence formula. When K{;r and M are not symmetric one alternative to the Arnoldi method
is to generate two subspaces, the left and right Krylov subspace, respectively. This approach,
leading to the unsymmetric Lanczos method, has been used recently in structure—acoustic
applications [63]. The unsymmetric Lanczos method requires two solve in each iteration and
orthogonalization against two sets of vectors, the left and right Lanczos vectors, respectively,
see [34] for details.
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The load—dependent Arnoldi algorithm for an unsymmetric definite

matrix pencil (K M) with operation count in flop.

Given a load vector f:

1. initialize
a. factorize K o
b Vp = 0
C = K(}l‘?
d. o= (r’orm)l/Z

2, forj=1, 2., m

a.

ead

Vi = Mt/ 0.4
P; = My

-1
r = KJ [

fori=1,2, .., j

T
?]ilj = virj

o= 0 = v

end

T \1/2
Mg = (rjr) /

Op. count

(K )

K{Ka)z)
2n

I (K, + KK ) + 2n

2n
#{M)D
K( Ka)m

i (4n)

2n

L (M) + n(Ka) + j(4n) + 4n

b g‘(!(a) represents number of operations to factorize K o
2 k(K a) represents number of operations to solve with K,
3 (M) represents number of operations to compute Mv
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5 NUMERICAL EXAMPLES
51 Introduction

In this chapter we apply the reduced base techniques described in Chapter 4 to one— and
two—dimensional structure—acoustic prablems. The Lanczos process is applied to symmetric
systems of equations with a positive definite matrix pencil (K o M) or alternatively to
systems with an indefinite matrix pencil (B - A) in the case of non—proportional damping.
The Arnoldi process is applied to unsymmetric systems of equations and a comparison with
the Lanczos resuit is given with respect to accuracy and computational effort.

The numerical studies presented in this chapter have been performed utilizing the computer
program CAMFEM (Computer Aided Modelling based the the Finite Element Method) [23].
CAMFEM is based on a command language, i.e. the computational procedure is defined by
commands given by the user. The problem independent program structure includes
commands for facilities needed in most computations. By supplementing the problem
independent program structure with problem dependent program modules a special purpose
program can be rapidly obtained.

Both transient and harmonic analysis are performed in order to show the characteristics and
applicability of the reduced base techniques. In transient analysis the time integration can be
performed with implicit, explicit or mixed implicit—explicit methods [37]. In this study we will
use an implicit scheme of Newmark type for the second—order systems of equations and a
central—difference scheme for the first-order systems. The fluid mass matrix is made diagonal
in all calculations by a lumping technique proposed in [36}.

The first numerical example is a fluid—filled pipe with spring supported piston for which an
exact analytical solution can be obtained. This one—dimensional example has been used
extensively in previous work for verification of eigenfrequencies and response functions
obtained by a direct solution of the finite element equations [8, 9]. We will first refer to
some results from these studies in order to illustrate the solution to a simple coupled
structure—acoustic problem.

We consider a tube of length L and unit cross-sectional area A, terminated by a rigid,
movable plug of mass m and supported by a spring with stiffness k see Fig. 5.1. The tube is
filled with water.
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Fig. 5.1 Rigid wall cylinder filled with water and with a spring supported piston.
¢ = 1500 m/s, pp = 1000 kg/m3, L =3 m, A = 1 m2, m = 200 kg,
k = 493.48 MN/m
The eigenfrequencies of this system can be analytically determined by
cA Al k
A%—[&%mcot(%)]).im;n—zo (5.1)

with notations from Fig. 5.1, derived from [74].

With parameters chosen according to Fig. 5.1 we have a hard—coupled system with a very
clear separation of eigenfrequencies, see Table 5.1.

Table 5.1 Analytical coupled and uncoupled eigenfrequencies in (Hz)

Uncoupled Coupled
250.01) 143.974
250.0%) 362.44
500.0%) 594.07
750.02) 830.18

1) Structural mode

2) Fiuid mode
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Transfer functions that refate a harmonically varying force f(t) = § sinit, applied to the
structure, and the resulting piston displacement or fluid pressure at the surface of the piston
were derived in {9]. The transfer function Hy for the displacement of the piston is defined by

fis = Hy f (5'2)

where Ui is the piston displacement amplitude and

k—o2m + pocAEcot(%wL—)

Hy = { 1 (5.3)

The transfer function for- the dynamic fluid pressure amplitude p at the piston surface is
defined by

p=H,f (5.4)
where
Hp = 1 (5.5)
k—@2m
—pocAcot (%’L)

Clearly, for a unit amplitude force f = 1 it follows that g = Hy and p = Hp.

The result from a frequency analysis with a resolution of 1 Hz is shown in Fig. 5.2 where a
comparison with the analytical transfer function can also be made. The fluid domain was
discretized in the finite element analysis by five one—dimensional three—node elements with
quadratic shape functions approximating the fluid pressure. An  unsymmetric (ug,
p)—formulation according to Eq. (3.46) was thus used in Fig. 5.2. Identical results were
obtained by the symmetric (us, ¥, p)—formulation Eq. (3.32) and by the symmetric (us,
W)—formulation according to Eq. (3.39). It is clear from Fig. 5.2 that the finite element
approximation is very good both in frequency and in magnitude. Actually, with five fluid
elements the four lowest eigenfrequencies were captured within an error of less than 1
percent compared to the analytical solution. For more details, see references (8, 9.



54

P
~

TRANSFE
=
:
”
:uooooo-—vd‘
o3
Y

ceoeo oae°°9‘

(2]
i

[ —

R o e o A RIS e n s e s e s
0 1CI|0 260 300 40C 500 600 700 800 900 10Q0
FREQUENCY (HZ]

— PIFEM[-~~ P/A [—-—UIFEM| voo U/a |

Fig. 5.2 Comparison between finite element (/FEM in the legend) and analytically (/A
in the legend) calculated transfer functions H, Eq. (5.3) and H, Eq. (5.5).
The data are adjusted along the y—axis in the following manner:
Pressure (P): y = Wlog{H,| + 10
Displacement (U): y = Wlog|H,| + 18

5.2 Fluid-filled pipe with spring supported piston

In this section we illustrate the use of Lanczos vectors in one—dimensional structure—acoustic
problems. For simplicity, all numerical examples are based on the same model, the rigid wall
cylinder shown in Fig. 5.3. The cylinder with a unit cross sectional area is filled with water
and closed by a spring supported piston at one end. '

The fluid domains were discretized in the finite element analysis by one—dimensional fluid
elements with quadratic interpolation functions in both fluid pressure and fluid displacement—
potential. To capture the four lowest eigenfrequencies within an error of less than 1 percent
compared to the analytical solution, only five fiuid elements are necessary, as shown above.
However, in the present study we are also interested in the high frequency content of the
solution and therefore we use a model with 50 fluid elements, see Fig. 5.4. This results in a
system of 201 degrees—of—freedom when Eq. (3.32) is used and 101 degrees—of—freedom
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when Eq. (3.39) is used (after suppressing one degree—of—freedom in the displacement
potential, i.e. setting W==0 in any arbitrary chosen node in the fluid domain.)

We apply different loads to the system in Fig. 5.3. In the transient case we study the
response to a structural load and to a fluid load, see Fig. 5.5. In the harmonic case we
estimate the harmonic response function for a structural load in a certain frequency interval.

[

/
.

| |

Fig. 5.3 Rigid wall cylinder with spring supported piston. ¢ = 1500 m/s,
po = 1000 kg/m3, L = 3 m, A =1m? m = 200 kg, k = 493.48 MN/m.

Fig. 5.4 The finite element mesh with 50 quadratic fluid elements.
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Fig. 5.5 a) Triangular pulse load applied to the piston. b) Fluid source function located

at a distance 3L/4 from the piston end.

The time integration scheme in the transient case is the Newmark method [37] with 3=0.25
and 7=0.5 (undamped) at the time step is 0.01 ms. The transient response curves are
calculated in 600 time steps from 0—6 ms. In the harmonic case a resolution of 1.0 Hz is
used to calculate the response function.

5.2.1  impulsive structural load

A triangular pulse load is applied to the piston according to Fig. 5.5a. This is a typical wave
propagation problem where a large number of vectors have to be used to trace the wave
front accurately.

Fig. 5.6 compares the fluid pressure at the piston surface, obtained by direct solution of the
two—field condensed system Eq. (3.39) with solution of the same system first reduced to the
tridiagonal form (4.55), by using 25, 30, 35 Lanczos vectors respectively. No damping is
considered and no frequency shift was used in this case (0=0). The pressure was recovered
in both methods by a back-substitution in each step according to Eq. {3.38).
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). d) Piston displacement (

We can readily follow the propagating wave in the system by studying the response in

Fig. 5.6. The first peak at the piston is due to the impulsive load. This incident wave reaches
the rigid end, is reflected, and returns at the "soft" end at 4.0 ms.

If we tridiagonalize the whole system of equations (m=101) we get identical results

comparing the direct method with the Lanczos method. From Fig. 5.6 we see that this is not
necessary; in fact we obtain accurate results with only 35 Lanczos vectors (m=35) in the
pressure response. With 30 Lanczos vectors {m=30) the error in the peak values is less than

10 %. With only 25 vectors (m=25) the pressure response at the piston end shows some

instability due to high—frequency oscillation of unconverged Ritz vectors, see Section 4.2.2.
The corresponding displacement of the piston, see Fig. 5.6, is achieved accurately, however,
for the same number of Lanczos vectors.
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522  Impulsive fluid load

The excitation in this case is a sudden mass discharge in a section (we assume
one—dimensional wave propagation) of the pipe located at a distance 3L/4 from the piston.
The source function for this load is drawn in Fig. 5.5b. In this case the piston acts like a

locally reacting surface with m and k given above and with € = 0.

We use the uncondensed three—field form Eq. (3.32). We apply a frequency shift not too far
from zero (0=200 Hz) to remove the singularity of the original system of equations but
allowing the fundamental modes to participate in the solution. The actual shift does not
affect the solution as long as the same Lanczos vectors are obtained. A too large (positive)
shift may cause the lowest modes to be missed, and these have in general a large
participation factor in the superposed solution. The direct solution of Eq. (3.32) is compared
to the results obtained when (3.32) is first reduced to tridiagonal form (4.55), by using 15,
20, 25 Lanczos vectors respectively. No damping is included.

In this case too we can readily follow the propagation of the disturbance through the pipe;
see Fig. 5.7. The left-going wave hits the rigid end and is reflected. The direct right-going
wave hits the piston after 1.5 ms followed by the oncereflected wave that arrives at 2.5 ms.
Due to the direct wave and the once-reflected wave impinging on the piston after each other
the piston displacement reaches its peak after 3.0 ms.

Only about 25 load—dependent Lanczos vectors are required to get the accurate pressure
response. The accurate displacement response is captured with less than 15 Lanczos vectors.
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vectors (— — — -).

Harmonic structural load

We now make use of the simple form Eq. (4.56) to calculate the piston displacement versus
frequency for an applied unit structural force. Let us assume that we are interested in the
response in the frequency interval between 4.2 kHz and 5.2 kHz. We pick a shiftpoint inside
the interval (actually the midpoint) o = 4.7 kHz. Fig. 5.8 compares the direct harmonic
solution of the condensed system Eq. (3.32) and the result obtained by Eq. {4.56) using only
5 Lanczos vectors (m = 5).

We see that the accurate response is achieved between 4.4 kHz and 4.9 kHz due to the two
converged eigenvalues of Ty, that can also be identified in the figure.
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From Fig. 5.8 we can also identify the characteristics of the method. The eigenvalues closest
to the shiftpoint converge first. With m = 5 we have five eigenvalues of the reduced system
(4.56) (three of these can be found inside the interval shown above). Two of these
eigenvalues of (4.56) have converged to the true eigenvaiues of the (unreduced) system of
equations (3.32). When m is increased the number of converged eigenvalues will also be
increased.
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Fig. 5.8 Comparison of computed piston displacement versus frequency for an applied
unit structural force obtained by the harmonic solution of Eq. (3.32) ( )
and the solution of the reduced form Eq. (4.56) for five Lanczos vectors

(===

5.3 Fiuid—filled box with one flexible wali

fn this section we apply the Lanczos process to a two—dimensional structure—acoustic
problem. For simplicity, both transient and harmonic calculations are performed on the same
model; the two—dimensional box shown in Fig. 5.9. The box is filled with water and has g
flexible wall at the top. Taking advantage of symmetry of the box and the loading
configuration, 5 beam elements with cubic interpolation and 75 fluid elements are used in the
finite element calculation.
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In this two—dimensional example, a Bernoulli—Euler beam theory is used modelling the flexible
wall. Piecewise cubic Hermite shape functions are used to interpolate the structural
displacements [37]. For the fluid elements quadratic interpolation functions in both fluid
pressure and fluid displacement— potential are used. One—to—one element coupling is used
and the coupling matrix Mc Eq. (3.24) is evaluated by numerical integration [37]. This
discretization results in a system of 278 active degrees—of—-freedom when Eq. (3.32) is used,
after suppressing one degree—of—freedom in the displacement potential, i.e. setting ¥=0 in
any arbitrary chosen node in the fluid domain.

We apply different loads to the system in Fig. 5.9. In the transient case we study the

response to triangular pulse load, see Fig. 5.10. In the harmonic case we estimate the
harmonic response function for a structural load in a certain frequency interval.

7 {1.1}

Fig. 5.9 Fluid—filled box with one flexible wall. Cavity: H=15m, W= 10m,
¢ =1500 m/s,  po = 1000 kg/m3.  Steel  plate: E = 2.1 - 101 N/m?,
p = 7800 kg/m3, thickness t = 0.01 m.
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kN fit)

1

Fig. 5.10 Triangular pulse load applied to the midpoint of the plate.

The time integration scheme in the transient case is the Newmark method with g = 0.25
and 7= 0.5 (undamped) and the time step is 0.1 ms. The transient response curves are
calculated in 200 time steps from 0-20 ms. In the harmonic case a resolution of 1.0 Hz is
used to calculate the response function.

5.3.1  Impulsive structural load

The triangular pulse load with a peak force 1.0 kN and a duration of 2 ms, see Fig. 5.10, is
applied to the plate.

Fig. 5.11 shows the plate midpoint displacement and the fluid pressure at the bottom surface
of the box (midpoint), obtained by direct integration of the condensed system Eq. (3.39)
and by solution of the same system reduced to the tridiagonal form Eq. (4.55) by different
numbers of Lanczos vectors. No frequency shift was used in this case (:=0). The pressure
was recovered in both methods by a backsubstitution in each step according to Eq. (3.38).
The structural response is captured with only 4 Lanczos vectors. The pressure response
required 6 iterations to converge,
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5.3.2  Harmonic structural load

We now make use of the tridiagonal form Eq. (4.56) to calculate the plate displacement
versus frequency for an applied unit structural force. Let us assume that we are interested in
the response in the frequency interval between 400 Hz and 800 Hz. We pick a shiftpoint
inside the interval (actually the midpoint) ¢ = 600 Hz. Fig. 44 compares the direct
harmonic solution of Eq. (3.39) (with no shift) and the result obtained by Eq. (4.58) with
¢ = 600 Hz using only 3 Lanczos vectors (m = 3).

From Fig. 5.12 we can again identify the characteristics of the method. The eigenvalues
closest to the shiftpoint converge first. Two of the eigenvalues of the tridiagonal system
Eq. (4.56) have converged to the true eigenvalues of the (unreduced) system of equations
(3.39). When m is increased the number of converged eigenvalues will also be increased and
the dashed line converge to the solid one.

PLATE MIDPOINT DISPLACEMENT VERSUS TIME

~

P

TRANSFER FUNCTION {lugi/ifl}

— T T T T T T 1 T T
0.10 0.20 030 0.40 Q50 060 070 0.80 0.90 1.00
FREQUENCY (kHz]

Fig. 5.12 Comparison of computed plate displacement versus frequency for an applied
unit structural force plate midpoint obtained by the harmonic solution of
Eqg. (3.39) (o == 0) ( ) and the solution of the reduced form Eq. (4.56)
for three Lanczos vectors (o = 600 Hz) (— — — -).
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5.3.3 A comparison between Lanczos and Arnoldi reduction

In Chapter 3 we derived formally equivalent symmetric and unsymmetric systems of
equations for the undamped structure—acoustic problem. In this section we will compare the
solution obtained by direct integration of these systems of equations with the solution
obtained from the reduced systems, after the Lanczos process and Arnoldi process has been
applied. For this comparison we will use the same model as described in Fig. 5.9.

Studying different choices of symmetric forms, it turns out that the coefficient matrix in the
three—field form Eq. (3.32) has a very high condition number, defined as the ratio between
the largest and smallest eigenvalue [34]. This was already indicated in Section 3.4, and for
the model in Fig. 5.9, we get a condition number of order 1020 when using Eq. (3.32). Thus,
we may expect large roundoff errors in each iteration of the Lanczos process if we try to
reduce that problem by the algorithm in Table 4.1. However, the condensed two—field form
Eq. (3.39) has a condition number of order 109 for the model in Fig. 3.9, and is preferable
within this respect. This form was also used in the previous example.

Turning to the unsymmetric problem we may choose either Eq. {3.46} or Eq. (3.47).
Interestingly we may note that, although these forms are quite similar in structure, their
condition number is of different order. The pressure formulation used in Eq. (3.46) gives a
condition number of order 1017 whereas we get a number of order 103, when using the
displacement—potential formulation Eq. (3.47). Therefore we choose Eq. (3.47) to be
reduced by the Arnoldi method.

We may now compare the results achieved when Eq. (3.47) is transformed to upper
Hessenberg form according to Table 4.3 with the results obtained by the Lanczos process
applied to Eq. (3.39). The transformed equations are solved for the loading function
according to Fig. 5.10. The result is shown in Fig. 5.13 for different numbers of Lanczos and
Arnoldi vectors respectively. The Lanczos results have converged to the solution obtained by
direct integration with m = 4 (structural displacement) and m = 6 (fluid pressure), where m
is the number of vectors in the reduced base. The convergence rate towards the direct
solution is a bit slower in the unsymmetric case. An accurate solution is obtained with
m = 7 (structural displacement) and m = 10 (fluid pressure).
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( ) and Eq. (3.47) is reduced to Eq. (4.141) by Arnoldi vectors
(= ——-). [a-b) Plate displacement, c—d) Fluid pressure at bottom surface
{midpoint)].

Thus, we need more vectors in the reduced base when using the Arnoldi method compared
to the number of vectors required by the Lanczos process. However, although more iterations
are required in the Arnoldi algorithm than in the Lanczos algorithm, the computational effort
is far less using the Arnoldi method, in this example. Actually, the number of operations
required to obtain 10 Arnoldi vectors is a factor 16 lower than the number of operations
required to obtain 6 Lanczos vectors. A frequency shift (¢ = 100 Hz) was used in Eq. (3.47)
to avoid the constant potential mode (CPM).
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5.3.4  Non—proportionally damped system.

In our final example we will apply the indefinite Lanczos algorithm in Table 4.2, to a
non—proportionally damped structure—acoustic system. In order to introduce a porous
material we change the material data in our two—dimensional model, see Fig. 5.14, The
cavity is thus filled with air and closed by a gypsum board. At the bottom of the cavity we
have placed an porous absorber.

W

Fig. 5.14 Fluid—filled box with one flexible wall and an acoustic absorbent,
Cavityy H=15m, W=10m, c=340 m/s, po= 1.2 kg/m3. Gypsum
board: E = 2.2.10% N/m2, p = 840 kg/m3, thickness t = 0.023 m.
Absorbing material: Qy = 1, r; = 8000 Ns/m+, ks = 4, ¢ = 340 m/s.

The two—field form Eq. (3.77), extended to include porous materials is used in this case.
This system of equations is transformed to the equivalent first—order form Eq. (4.81). The
number of unknowns is thus increased from 278 active degrees—of—freedom in the
second—order system to 556 in the first—order system. By considering a loading configuration
according to Fig. 5.14 the first—order system is tridiagonalized by the algorithm in Tabie 4.2
(¢ =0).
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A central difference scheme with a = 0.5 and a time step 0.5 ms is used to solve the
tridiagonal equations. The transient response shown in Fig. 5.16 and Fig. 5.17, is calculated
in 280 time steps from 0—140 ms. An accurate response is achieved with 8 Lanczos vectors
in this case and thus the time-integration performed in a considerably smaller system of

equations, than the first—order system.

N f(t)

100

10 ms

Fig. 5.15 Triangular pulse load applied to the midpoint of the gypsum board.
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Fig. 5.16 Computed response versus time for the triangular pulse load according to Fig.

5.15. Plate midpoint displacement. m = 8.
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6. CONCLUDING REMARKS
6.1 Conclusions

In Chapter 2, the governing equations for an acoustic fluid are shown to be of the same
order of accuracy as the corresponding equations for a finear elastic solid. Navier's equation
of motion for an isotropic linear elastic solid is derived on the assumption of & linear
constitutive equation, small displacement velocities and small displacement gradients. For the
fluid domain, the Navier-Stokes' equation is derived on the assumption of a linear
constitutive equation. After neglecting fluid viscosity, the equation of motion and the
continuity equation are further simplified on the assumption of small particle velocities.
Finally, the time—varying density is neglected in comparison with the density in the reference
state. This last approximation is found to be consistent with an assumption of small
displacement gradients used in the solid equations.

In Chapter 3, the discretized weak forms of the equation of motion and of the
time—integrated continuity equation, for an acoustic fluid, are combined with the discretized
weak form of the equation of motion for a linear—elastic structure. Coupling is ensured by
force equilibrium and a kinematic continuity condition, in the normal direction to the
fluid—structure interface. The resulting symmetric system of equations, Eq. (3.32), has been
previously derived in [29] for the free vibration problem and in [66] for the transient problem.
Based on the system Eg. (3.32), eleven formally equivalent fluid—structure interaction
formulations are derived. The resulting coupled systems of equations have been previously
reported in different versions and derived in different ways, most of them by a variational
principle. However, Eq. (3.32) is found to be the most general since this form includes both
fluid source loads and fluid body forces, and since all other forms are derivable from this
particular system of equations.

The practical use of the different forms is briefly discussed in terms of suitability and
computational efficiency. Contrary to what is stated in [31], the use of Eq. (3.32) for the
case of a totally enclosed fluid is straight forward, which is clear from this study. This form
was also successfully used in [67] and recently in [68].

A mathematical description and a corresponding finite element model for transient acoustic
analysis, including a porous medium, has been developed. The frictional retardation of the
fluid flow through the pores is introduced through a velocity-dependent body force. The
model for a porous medium is easily introduced in the symmetric three—field formulation Eq.
(3.32), and the static condensation process resulting in- the symmetric two—field form may
still be applied.
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In Chapter 4, non—modal reduction techniques based on load—dependent Krylov vectors, are
discussed. A Lanczos process is suggested for symmetric and proportionally damped
structure—acoustic systems. For symmetric and non—proportionally damped systems a variant
of the Lanczos algorithm applicable for a pair of indefinite matrices is proposed. A new
algorithm is developed for the reduction of unsymmetric, undamped systems of equations.
Although this procedure is applied to the snsymmetric system of equations, it is found to be
considerably more efficient than the Lanczos procedure, when applied to the
structure—acoustic models studied in this work. Both symmetric and unsymmetric systems of
equations are thus reduced without solving the associated eigenvalue problem. In the case of
non—proportional damping, the second-order system of equations is transformed to a first-
order system. This system is then reduced to tridiagonal form.

Further, the proposed reduction techniques utilize a load—dependent starting vector in order
to make optimal use of the information about the problem to be solved. The special choice
of a starting vector, in the direction of the loading gives accurate but simple expressions for
the reduced system of equations in both transient and harmonic analysis.

Numerical examples are given in Chapter 5, in order to illustrate the characteristics of the
proposed methods. An interesting application, shown in the examples is the study of
transient acoustic problems including a porous medium.
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6.2 Future developments

Because of the advantage of diagonal structural and fluid mass matrices associated with
certain coupled forms, numerical studies of different lumping techniques used for evaluating
these matrices are of great interest.

Further, it is of interest to study the influence of using non-matching finite element meshes
in the structural and fluid domains, i.e. not using a one—to—one element coupling at the
interacting surface. Considerable savings in computational time can be made if the finite
element discretization is made optimal in each domain.

Structure—acoustic systems are generally ill—conditioned. An unsymmetric profile solver
suitable for structure—acoustic analysis is under development. One possibility to retain the
profile structure of the coefficient matrix is to use a method of iterative refinement.

Finally, the loading function considered in this work may be seen as a special case of the
more general expression, viz.

¢
(1) = El?m(t) (6.1)

where the loading is written as a linear combination of a set of time—independent vectors f;.
The block Lanczos method has been proposed for this type of loading [51] and a block
version of the Arnoldi method is of great interest.
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APPENDIX A: Notations

ag, a1 Rayleigh constants

a acceleration field

A "capacity" matrix in first—order system of equations
b bedy force

B fluid pressure to fluid displacement—potential coupling matrix
B "conductivity" matrix in first—order system of equations
c speed of sound

C system damping matrix

D rate—of—deformation tensor

e(t) error function

e a vector of all ones

e; unit base vector

E Young's modulus

E infinitesimal strain tensor

f frequency

f load amplitude

f spatial distribution of load constant in time

i fluid load vector due to the body force

5 structure load vector due to fluid interaction

14 structure load vector due to external time—dependent load
ok

L f; integrated twice with respect to time

1y fluid load vector due to added fluid mass

F deformation gradient tensor

% structure load due to fluid interaction

k external time dependent structural load

G shear modulus

G Green strain tensor

Hp pressure transfer function

Hy displacement transfer function

Hy m x m upper Hessenberg matrix

I unit tensor

In m x m identity matrix

ks structure factor for porous material
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Qn

fo

¥s

Si;m

A-2

bulk modulus

system stiffness matrix

fluid stiffiess matrix
structure stiffness matrix
shifted system stiffness matrix

Krylov subspace

Krylov matrix

partial differential operator with respect to time and space
mean molecular weight

system mass matrix

structural displacement to fluid pressure coupling matrix
fluid mass matrix

structure mass matrix

unit vector

outward unit normal to the fluid domain

fluid displacement—potential shape function

fluid pressure shape function
structural displacement shape function
current fluid pressure

pressure amplitude

pressure in reference state

pressure field in disturbed state

fluid pressure vector

source function, added fluid mass per unit volume and time
added fluid mass per unit volume

set of Lanczos vectors

starting vector

viscous flow resistance

static flow resistance

universal gas constant

eigenvector of the tridiagonal matrix T,
fluid—structure interface

surface with prescribed pressure

point reacting surface

time

traction force

tridiagonal m x m matrix
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A-3

state vector

fluid displacement field

approximate solution

structural displacement vector corresponding to a rigid—body motion
structural displacement amplitude

structural displacement field

structural displacement vector

us integrated twice with respect to time
prescribed structural displacement vector

prescribed structural acceleration vector
velocity field

set of Arnoldi vectors

weighting function

vector (x3, xz, x3)

generalized coordinate

frequency dependent response function
vector (Xl, Xo, X3)

set with m linearly independent vectors
eigenvector of system of equations
approximate eigenvector, Ritz vector, to the system of equations
body force potential b = V3

ratio of specific heat at constant pressure to the specific heat at constant
volume

time function

the Kronecker delta

unit roundoff error

attenuation coefficient

temperature

temperature in reference state
eigenvalue of K;M

eigenvalue of the Ty matrix and approximate eigenvalue of the K;M matrix

elastic constant

eigenvalue of system of equations

elastic constant

dynamic viscosity

shifted eigenvalue of system of equations
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v Poisson's ratio
current density

Po density in reference state

pd density field in disturbed state

Pe effective density field

o frequency shift

o the Cauchy stress tensor

@ fluid velocity—potential

$ fluid velocity—potential vector

w angular frequency

W angular loading frequency

2, volume porosity for a porous material
¥ fluid displacement—potential

v fluid displacement—potential vector

{ surface integral

S

[ volume integral

Vv

g_t material time derivative, [gT + (v V)]

v the del operator, [—5% . 3% , 3%]
¥ the curl operator, 0 - 3:?—3 3%
o, _.9
m X1
I
Gxg  Oxg
+) scalar product
5—'5 partial time derivative

span{ay, ag, ..., an} subspace spanned by the vectors ay, ag, ..., a,



APPENDIX B: References

[5]
[6]

[7]

[8]

[9]

[10]

[11]

ABAQUS, User's Manual, Version 4.9, 1990.
ANSYS, User's Manual, Swanson Analysis Systems Inc., 1987,

Antoniadis 1., Kanarachos A.: Decoupling Procedures to Fluid—Structere Problems,
Comp. Meth. Appl. Mech. Eng., Vol. 70, pp. 4-25, 1988.

Arnoldi W.E.: The Principle of Minimized lteration in the Solution of the Matrix
Eigenvalue problem, Quarterly of Appl. Math., Vol. 9, pp. 17—29, 1951,

Bathe K.J.: Finite Element Procedures in Engineering Analysis, Prentice—Hall, 1982.

Bayo E.P., Wilson E.L.: Use of Ritz vectors in wave propagation and foundation
response, Earthquake Eng. Struct. Dyn., Vol. 12, pp. 499-505, 1984,

Beranek L.L.: Acoustic impedance of commercial material and the performance of
rectangular rooms with one treated surface, Journal of Acoustical Society of America,
Vol. 12, pp. 14-23, 1940.

Carlsson H., Sandberg G.: Fluid—structure interaction, Finite element analysis in a
hydroacoustic application, Part 1, Report TVSM—7045, Lund Institute of Technology,
Division of Structural Mechanics, Lund, Sweden, 1988.

Carlsson H.: Structure—Acoustic Interaction: Finite Element Formulations and Modal
Problems, Part A in Finite Element Analysis of Interacting Structure—Acoustic
Systems, Licentiate thesis, Report TVSM—3013, Lund Institute of Technology,
Division of Structural Mechanics, Lund, Sweden, 1990.

Carlsson H.: Structure—Acoustic Interaction: Finite element analysis of an idealized
automobile compartment, Paper B in Finite element analysis of interacting
structure—acoustic systems, Licentiate thesis, Report TVSM—3013, Lund Institute of
Technology, Division of Structural Mechanics, Lund, Sweden, 1990,

Carlsson H.: Structure~Acoustic Interaction: Harmonic and Transient Response using
Lanczos Coordinates, Part C in Finite element analysis of interacting structure-
acoustic systems, Licentiate thesis, Report TVSM—3013, Lund Institute of
Technology, Division of Structural Mechanics, Lund, Sweden, 1990.



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Carlsson H.: Lanczos and Arnoldi Reductions of Symmetric and Unsymmetric
Fluid—Structure Interaction Problems, Proceedings Inter—Noise '91, pp. 1217-122¢,
Sydney, Australia, 1991,

Chen H.C., Taylor R.L.: Solution of eigenproblems for damped structural systems by
the Lanczos method, Report UCB/SEMM-—88/01, Department of Civil Engineering,
University of California, Berkeley, USA, 1988.

Chen H.C., Taylor R.L.: A discussion of Lanczos vectors and Ritz vectors for
computing dynamic responses, Report UCB/SEMM-88/15, Department of Civil
Engineering, University of California, Berkeley, USA, 1988.

Chen H.C., Taylor R.L.: Vibration analysis of fluid—solid systems using a finite element
displacement  formulation. Report UCB/SEMM-88/17. Department of Civil
Engineering, University of California, Berkeley, USA, 1988.

Christiansen P.S., Krenk S.: A recursive finite element technique for acoustic fields in
pipes with absorption, J. Sound Vib., Vol. 122, pp. 107—118, 1988.

Clough R.W., Penzien J.: Dynamics of Structures, McGraw—Hill, 1975.

Coyette J.P.: Numerical treatment of damped acoutic finite element models using
modal and non—modal approaches, Inter~Noise '90, pp. 877—882, Gothenburg, 1990,

Craggs A.: A finite element model for rigid porous absorbing materials, J. Sound Vib.,
Vol. 61, pp. 101111, 1978,

Craggs A.: Coupling of finite element acoustic absorption models, J. Sound Vib.,
Vol. 66, pp. 605—613, 1979.

Craggs A.: A finite element model for acoustically lined small rooms, J. Sound Vib.,
Vol. 108, pp. 327337, 1986,

Cremer L., Miiller HA.: Principles and Applications of Room Acoustics, Vol 1,
Applied Science Publishers, 1978.

Dahlblom O., Peterson A.: CAMFEM — Computer Aided Modelling Based on the
Finite Element Method, Report TVSM—3001, Lund Institute of Technology, Division
of Structural Mechanics, Lund, Sweden, 1982,



[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32)

[33]

[34]

[35]

B-3

Ericsson T., Ruhe A.: The Spectral Transfarmation Lanczos Method for the numerical
solution of large sparse generalized symmetric eigenvalue problems, Mathematics of
Computation, Vol. 35, No. 152, pp. 1251-1268, 1980.

Everstine G.C.: A symmetric potential formulation for fluid—structure interaction, J.
Sound. Vib., Vol. 79, pp. 157160, 1981.

Fahy F.: Sound and Structural Vibration: Radiation, Transmission and Response,
Academic Press, 1985,

Farhat C., Wilson E.. Modal Superposition Dynamic Analysis on Concurrent
Multiprocessors, Eng. Comput., Vol. 3. pp. 305-311, 1986.

Felippa C.A.: Solution of Linear Equations with Skyline—Stored Symmetric Matrix,
Computers & Structures, Vol. 5, pp. 13—29, 1975.

Felippa C.A.: Symmetrization of the contained compressible—fluid vibration
eigenproblem, Comm. App. Numer. Meth., Vol. 1, pp. 241247, 1985,

Felippa C.A.: Symmetrization of Coupled Eigenproblems by Eigenvector
Augmentation, Comm. Appl. Numer. Methods, Vol. 4, pp. 561-563, 1988.

Felippa C.A., Ohayon R.: Mixed variational formulation of finite element analysis of
acoustoelastic/slosh fluid—structure interaction, J. Fluids and Struct., Vol. 4.
pp. 3537, 1990,

Geradin M., Roberts G., Huck A.: Eigenvalue analysis and transient response of
fluid—structure interaction problems, Eng. Computations, Vol. 1, pp. 151-160, 1984,

Gladwell G.M.L., Zimmermann G.: On energy and complementary energy formulations
of acoustic and structural vibration problems, J. Sound Vib., Vol. 3, pp. 233-241,
1966.

Golub G.H., Van Loan C.F.: Matrix Computations, Second Edition, The John Hopkins
University Press, 1989

Goransson P.: ASKA—Acoustics. Theory and applications. FFA TN 1988—13, FFA,
The Aeronautical Research Institute of Sweden, Bromma, Sweden, 1988.



[36]

[37]

(3]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

B4

Hinton E., Rock T., Zienkiewicz O.C.: A Note on Mass Lumping and Related
Processes in the Finite Element Method, Earthquake Eng. Struct. Dyn., Vol. 4, pp.
245249, 1976,

Hughes T.J.R.. The Finite Element Method: Linear Static and Dynamic Finite
Element Analysis, Prentice—Hall, 1987.

Hunter 5.C.: Mechanics of continuous media, Second edition, Ellis Horwood, 1983,

Ibrahimbegovic A., Wilson E.L.. Simple numerical algorithms for the mode
superposition analysis of linear structural systems with non—proportional damping,
Comp. Struct., Vol. 33, pp. 523-531, 1989. '

Ibrahimbegovic A., Chen H.C., Wilson E.L., Tayiof R.: Ritz method for dynamic
analysis of large discrete linear systems with nonproportional damping, Earthquake
Eng. Struct. Dyn., Vol. 16, pp. 877-889, 1990.

Ibrahimbegovic A., Wilson E.L.: Automated truncation of Ritz vector basis in modal
transformation, Journal of Eng. Mech., Vol 116, pp. 2506—2520, 1990.

lzadpanah K., Harden R.L., Kansakar R., Reymond M.: Coupled Fluid—Structure
Interaction Analysis, Finite Element in Analysis and Design, Vol. 17, pp. 331342,
1991.

Lanczos C.: An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators, J. Res. Nat. Bur. Standard, Vol. 45, pp. 255--282,
1950.

Léger P., Wilson E.L.: Generation of Load—dependent Ritz Transformation Vectors in
Structural Dynamics, Eng. Comput., Vol. 4, pp. 309318, 1987.

Meiravitch L.: Computational methods in structural dynamics, Sijthoff & Noordhoff,
1980.

Morand H., Ohayon R.: Substructure variational analysis for the vibrations of coupled
fluid—structure systems: finite element results, Int. J. Num. Meth. Eng., 14,

pp. 741-755, 1979.

Morse P.M., Ingard K.U.: Theoretical Acoustics, McGraw—Hill, 1968.



[48]

[49]

[50]

[51]

[54]

[55]

[56]

[57]

[58]

Martensson A., Carlsson H.: The development of the finite element method. Report
TVSM-7040, Lund Institute of Technology, Division of Structural Mechanics, Lund,
Sweden 1987,

Nour—Omid B., Parlett B.N., Taylor R.L.: Lanczos versus Subspace iteration for
solution of eigenvalue problems, Int. J. Num. Meth. Eng., Vol. 19, pp. 859871,
1983.

Nour—Omid B., Clough R.W.: Dynamic analysis of structures using Lanczos
co—ordinates, Earthquake Eng. Struct. Dyn., Vol. 12, pp. 565-577, 1984,

Nour-Omid B., Clough R.W.: Block Lanczos method for dynamic analysis of
structures, Earthquake Eng. Struct. Dyn., Vol. 13, pp. 271275, 1985,

Nour—Omid B., Parlett B.N., Ericsson T., Jensen P.5.: How to implement the
Spectral Transformation, Math. Comp., Vol. 48, No. 178, pp. 663673, 1987,

Nour—Omid B.: The Lanczos algorithm for solution of large generalized eigenproblems,
pp. 582-629 in The Finite Element Method: Linear Static and Dynamic Finite
Element Analysis by T.J.R. Hughes, Prentice—Hall, Englewood Cliffs, 1987.

Nour-Omid B.: Lanczos method for heat conduction analysis, Int. J. Num. Meth.
Eng., Vol. 24, pp. 251-262, 1987.

Nour—Omid B.: Applications of the Lanczos method, Comput. Phys, Comm., Vol. 53,
pp. 157168, 1989.

Nour—Omid B., Regelbrugge M.E.: Lanczos method for dynamic analysis of damped
structural systems, Earthquake Eng. Struct. Dyn., Vol. 18, pp. 1091-1104, 1989,

Nour—Omid B., Dunbar W.S., Woodbury A.D.: Lanczos and Arnoldi Methods for the
Solution of Convection—Diffusion Equations, Comp. Mech. Appl. Mech. Eng., Vol.
88,pp. 75-79, 1991.

Nour-Omid B., Carlsson H.: Lanczos Reduction of Interacting Structure—Acoustic
Systems, Proceedings Iterative Equation Solvers for Structural Mechanics Problems,
pp. 37—46, ASME Winter Annual Meeting, Dec 1-6, Atlanta, USA, 1991,



[59]

[60]

[61]

[62]

[64]

165]

[66]

[67]

[68]

[69]

B8

Olsson L.G., Bathe K—J.: Analysis of fluid—structure interactions. A direct symmetric
coupled formulation based on the fluid velocity potential, Comput. Struct., Vol. 21,
pp. 21-32, 1985.

Parlett B.N.: The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cliffs,
1980,

Petersson H., Popov E.P.: Substructuring and Equation System Solutions in Finite
Element Analysis, Computers & Structures, Vol. 7, pp. 197206, 1977.

Petyt M.. The use of acoustic finite elements in a university environment, ANSYS
1989 Conference Proceedings, pp. 11.2—15, 1989,

Rajakumar C., Rogers C.R.: The Lanczos Algorithm Applied to Unsymmetric
Generalized Eigenvalue Problem, Int. J. Num. Meth. Eng., Vol. 32, pp. 1009-1026,
1991.

Saad Y.: Krylov Subspace Methods for Solving Large Unsymmetric Linear Systems,
Mathematics of Computation, Vol. 37, No. 155, pp. 105126, 1981.

Saad Y.: Practical use of Some Krylov Subspace Methods for Solving Indefinite and
Nonsymmetric Linear Systems, SIAM, J. Scientific and Stat. Comput., Vol. 5,
pp. 203228, 1984,

Sandberg G.: Finite element modelling of fluid-structure interaction, PhD thesis,
TVSM—1002, Lund Institute of Technology, Division of Structural Mechanics, Lund,
Sweden 1985,

Sandberg G., Goransson P.: A symmetric finite element formulation for acoustic
fluid—structure interaction analysis, J. Sound Vib., Vol. 123, pp. 507-516, 1088.

Sandberg G.: Fluid—structure interaction, Finite element analysis of piping systems,
Report TVSM—7051, Lund Institute of Technology, Division of Structural Mechanics,
Lund, Sweden, 1089.

Simon H.D.: The Lanczos algorithm with partial reorthogonolization, Mathematics of
Computation, 42, no. 165, pp. 115-142, 1984.



[70]

[71]

[72]
[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80}

[81]

Singh R.K., Kant T., Kakodbar A.: Coupled Shell-Fluid Interaction Problems with
Degenerate Shell and Three—dimensional Fluid Elements, Comput. Struct, Vol. 38, pp.
515-528, 1991.

Singh R.K.; Kant T., Kakodbar A.: Efficient Partitioning Schemes for Fiuid—Structure
Interaction Problems, Eng. Comput., Vol. 7, 1990.

Spencer A.J.M.: Continuum mechanics, Longman, 1980,
Strang G.: Introduction to Applied Mathematics, Wellersley—Cambridge Press, 1986.

Svensson |.: A study of a dynamic system involving fluid—structure interaction,
Department of Mathematics, 1987:4, Lund University, Sweden, 1987.

SYSNOISE, Users Manual, Dynamic Engineering, 1989.

Taylor R.L.: Solution of Linear Equations by a Profile Soiver, Eng. Comput., Vol. 2,
pp. 344350, 1985.

Wiberg N.—E.: System Analysis in Structural Mechanics by use of mixed force and
displacement variables, Ph.D. thesis, Chalmers University of Technology, Goteborg,

Sweden, 1970.

Wilson E.L., Yuan M., Dickens J.: Dynamic analysis by direct superposition of Ritz
vectors, Earthquake Eng. Struct. Dyn., Vol. 10, pp. 813--829, 1982.

Zienkiewicz Q.C., Taylor R.L.: The Finite Element. Method. Fourth Edition,
McGraw—Hill, 1691,

Zwikker C., Kosten C.W.: Sound Absorbing Materials, Elsevier, 1949,

Sandberg G.: Spectral Properties of Finite Element Formulations in Analysis of
Structure—Acoustic Interaction, Svenska Mekanik—dagar, Stockholm, 1992,






	Tom sida



