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Abstract

Two different sum rules for transmission of the coherent electromagnetic field
by a particulate slab are established. The particles are assumed spherical
and randomly located, and the slab is illuminated by a plane wave at normal
incidence. These sum rules are obtained assuming the particles are passive
scatterers, and satisfy energy conservation and causality conditions. The sum
rules are then employed to generate physical bounds on a combination of the
bandwidth and a given transmission level. A potential check of the accuracy
of the numerical computations is also admitted by the exact sum rules. A
series of numerical computations illustrates the results obtained in the paper.

1 Introduction
In recent years, many useful sum rules and physical bounds have been developed
for electromagnetic applications. Examples of these applications are radar ab-
sorbers [23], periodic structures (frequency selective surfaces) [7, 19], passive scat-
terers [25], antennas [5], metamaterials [4], near-zero material, and high-impedance
surfaces [2,6]. The underlying mathematical theory behind the sum rules is covered
by many authors [1,20]. These references also contain additional, relevant literature
on the topic.

The reflected and transmitted fields by a particulate slab consist of a coherent
(averaged) part and an incoherent part. In this paper, we develop two sum rules and
corresponding physical bounds for the coherent transmitted electromagnetic field by
a particulate slab. One main question of this paper is to find a limit or to predict
the bandwidth of the coherent transmitted field for a given transmission level. To
answer this question, we use the obtained physical bounds. The underlying theory
and the numerical implementation of the coherent reflected and transmitted fields
by a random collection of particles in a slab geometry are very well investigated in
a series of paper [8, 9, 12,15–18].

The calculation of the transmission coefficient by a slab is reviewed in Section 2,
and in Section 3, the analytic properties of the transmission coefficient are analyzed.
This section also contains two sum rules and physical bounds of the transmission
coefficient of the coherent field. A few numerical examples are presented in Section 4,
and the results are summarized in Section 5. A series of appendices concludes the
paper.

2 Coherent transmitted field by a particulate slab
The geometry of the problem is depicted in Figure 1, and for the application in this
paper, we specialize to an incident plane wave at normal incidence polarized in the
x-direction, i.e.,

Ei(z) = E0e
ikz = E0x̂e

ikz

For simplicity and to fix ideas, we assume all particles are identical. The particles
can be a homogeneous spherical particle or a radially layered dielectric particle.
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Figure 1: The geometry of the material region z ∈ [z1 − a, z2 + a]. In three
dimensions, the spheres do not intersect. However, in this two-dimensional graph
some of the projections of the spheres overlap. The yellow region denotes the region
of possible locations of local origins, i.e., the interval [z1, z2].

Optically active materials are excluded. The common radius of the particles is
denoted a. Generalizations of these assumptions are possible. The N particles are
assumed indistinguishable.

The material is confined to the slab z ∈ [z1−a, z2+a], and we adopt the notation
d = z2−z1 and D = d+2a. Note the difference between the slab containing the local
origins, [z1, z2] (thickness d), and the material confinement, [z1−a, z2+a] (thickness
D), see Figure 1.

The expressions of the total coherent (average) fields on both sides of the slab
for an incident plane wave are [12]

⟨Er(z)⟩ = r(k)E0e
−ikz, z < z1 − a, ⟨Et(z)⟩ = t(k)E0e

ikz, z > z2 + a

where r(k) and t(k) are the reflection and transmission coefficients of the slab,
respectively.

The transmission coefficient t(k) of the slab is [11, 12]1

t(k) = 1 +
2πn0

k3E0

2∑
τ=1

∞∑
l=1

i−l+τ−1

√
2l + 1

8π
yτl(k) (2.1)

1The reflection coefficient r(k) is computed in a similar manner [12], but we do not give the
details here, since focus is on the transmitted field.
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where

yτl(k) = k

ˆ z2

z1

e−ikz′fτl(z
′) dz′ (2.2)

The number density of the particles is denoted n0. The volume fraction of the
particles φ and the number density n0 are related by [17]

φ = n0
4πa3

3

(
1− 2a

D

)
= n0

4πa3

3

d

D
(2.3)

Under the assumption of the Quasi Crystalline Approximation (QCA), the co-
efficients fτl(z) satisfy the following system of integral equations [12]:

fτl(z) = tτli
l−τ+1

√
2π(2l + 1)E0e

ikz

+
n0

k2
tτl

2∑
τ ′=1

∞∑
l′=1

ˆ z2

z1

Kτlτ ′l′(z − z′)fτ ′l′(z
′) dz′, z ∈ [z1, z2]

(2.4)

where the transition matrix of the particles are denoted tτl, and the kernel Kτlτ ′l′(z)
has the form [11,12]

Kτlτ ′l′(z) =
l+l′∑

λ=|l−l′|+|τ−τ ′|

Aτlτ ′l′λIλ(−kz, 2ka) (2.5)

where the real numbers Aτlτ ′l′λ are calculated in [12], and the values are explicitly
given in Appendix A. The integrals Iλ(kz, η) are

Iλ(ζ, η) =

ˆ ∞

b(ζ)

g(
√
x2 + ζ2)h

(1)
l (
√
x2 + ζ2)Pl(ζ/

√
x2 + ζ2)x dx, ζ ∈ R

where

b(ζ) =

{√
η2 − ζ2, −η ≤ ζ ≤ η

0, |ζ| > η

and g(r) is the pair correlation function. These integrals have a closed form solution
for the hole correction (HC), i.e., when g(r) = H(r− 2a), see [13]. The exact
expression of the integral Iλ(ζ, η) is reviewed in boxed Note 1 below.

The procedure outline above solves the transmission problem for the coherent
(average) field exactly and includes all interaction effects between the particles. For
a given configuration (geometry, material parameters, and number density) com-
pute the solution fτl(z) to the system of integral equations in (2.4). Proceed by
computing the coefficient yτl(k) in (2.2), and, finally, sum the terms in (2.1) to get
the transmission coefficient t(k).
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1. Evaluation of the function Il(ζ, η)

Some effective ways to compute the integrals Il(ζ, η), ζ ∈ R, η ∈ R, l =
0, 1, 2, . . ., for the hole correction (HC), are presented in [13]. The definition
of the integral is:

Il(ζ, η) =

ˆ ∞

0

H(
√
x2 + ζ2 − η)h

(1)
l (
√

x2 + ζ2)Pl(ζ/
√

x2 + ζ2)x dx

The result is

Il(ζ, η) = ile−iζ , ζ ≤ −η, Il(ζ, η) = i−leiζ , ζ ≥ η

and

Il(ζ, η) = −ηh
(1)
l+1(η)Pl(ζ/η)

+

[l/2]∑
k=0

(−1)k(2l − 4k + 1)h
(1)
l−2k(η)Pl−2k(ζ/η), ζ ∈ (−η, η)

which is a finite sum of spherical waves.
A useful property of the Il(ζ, η) function is the parity property: Il(−ζ, η) =

(−1)lIl(ζ, η).

2.1 Low-frequency behaviour

The low-frequency expression of the transmission coefficient for spherical particles
of radius a is, see Appendix B

t(k) = 1 + 9φkD

(
t11

4(ka)3 + 6iφt11
D
d

+
t21

4(ka)3 + 6iφt21
D
d

)
+ ikHCorr (2.6)

where the transition matrix of the spherical particle is denoted tτl. The real-valued
coefficient HCorr is a small correction term,2 see (B.1) in Appendix B. In most
situations, the correction term has no practical importance, but becomes important
when high precision is required, see Section 4.2. Note that (2.6) is the low-frequency
expression of the transmission coefficient under the assumption of the hole correction
(HC) pair correlation function. Note also that the low-frequency limit in (2.6) is not
the identical to the homogenization limit, which also requires a/D → 0.

2.1.1 Non-magnetic dielectric sphere

If the spherical particles are non-magnetic, µ = 1, and with a permittivity ϵ1, then
t11 = 0 (to leading order in ka) and to leading order in powers of ka

t21 =
2i(ka)3

3
y +O

(
(ka)5

)
2In the numerical illustrations in Section 4 the contribution is approximately 0.3%.
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Spherical particle Coefficient H

Perfectly conducting
3φD

2

1 + 2φD
d

(1− φD
d
)(2 + φD

d
)
+HCorr

Non-magnetic dielectric
3φD

2

y

1− φyD
d

+HCorr

HCorr = 24φyDa
d

(´ 1

0
dt

4−φyD
d
(2+3t−t3)

− 1
4−4φyD

d

)

Table 1: The constant H for different spherical particles with HC. The small cor-
rection term is explicitly given in Appendix B.

where
y =

ϵ1 − ϵ

ϵ1 + 2ϵ

The constant y can also be written in terms of the polarizability γe of the particle [14,
Sec. 7.9].

γe = 4πa3y

To leading order in powers of ka, the transmission coefficients t(k) for spherical,
non-magnetic, homogeneous particles with HC is

t(k) = 1 +
3iφkD

2

y

1− φyD
d

+HCorr
2

To leading order in powers of ka, we summarize the behaviour of the transmission
coefficients t(k) as

t(k) = 1 + ikH +O((ka)2)

where H is a real-valued coefficient of dimension length, and its value for different
particles with HC is collected in Table 1. Numerical calculations show that the
difference between H in Table 1, obtained with the hole correction, and the Percus-
Yevick approximation is small, see also [17]. We neglect any differences of the effect
of the pair correlation function, and use the expression of H in Table 1. Note that
these low-frequency expressions are not the same as the homogenization expressions,
which corresponds to letting a/d → 0 (or D/d → 1). In the low-frequency limit
k → 0, the structure of the slab remains, i.e., a/d = constant, and the medium is
not homogeneous. In the homogenization limit, HCorr → 0 and D/d → 1.

3 Analytic properties of the transmission coefficient
In this section, the analytic properties of the transmission coefficient of a slab, filled
with passive particles, are investigated. Some relevant literature on the topic is
found in [1, 4, 6, 7, 19,20].
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3.1 Causality

In a time-domain setting, a general incident wave of fixed polarization x̂ impinges
on a slab z ∈ [z1−a, z2+a]. The background wave velocity is c and the wavenumber
is denoted k = ω/c. We have

Ei(z, t) = x̂

ˆ ∞

−∞
A(k)eikc((z−z1+a)/c−t) dk, z < z1 − a

We assume the incident field Ei(z1 − a, t) = 0, t < 0 and that A(k) ∈ L2(R). This
implies by Titchmarsh’s theorem [1, 21] that A(k) is analytic in the upper complex
plane C+ = {z ∈ C : Im z > 0}. The amplitude A(k) is not only in L2(R) for an
argument on the real axis. It is also in L2(R) on every line in the upper half plane
parallel to the real axis. The reflected and transmitted fields are

Er(z, t) = x̂

ˆ ∞

−∞
r(k)A(k)e−ikc((z−z1+a)/c+t) dk, z < z1 − a

Et(z, t) = x̂

ˆ ∞

−∞
eikDt(k)A(k)eikc((z−z2−a)/c−t) dk, z > z2 + a

where D = z2−z1+2a. The fields Ei(z, t), Er(z, t), and Et(z, t) are real quantities,
which imply

A(k) = A∗(−k), r(k) = r∗(−k), t(k) = t∗(−k), k ∈ R

Moreover, by causality, Er(z1 − a, t) = 0, t < 0 and Et(z2 + a, t) = 0, t < 0.3
This implies that r(k) and tD(k) = eikDt(k) have analytic continuations in C+ [21].

On the real axis, energy conservation, |r(k)|2+|t(k)|2 ≤ 1, implies, |r(k)| ≤ 1 and
|tD(k)| = |t(k)| ≤ 1. In C+, we have by Cauchy’s theorem (note that tDA ∈ L2(R)
if A ∈ L2(R)) [21]

tD(κ)A(κ) =
1

2πi

ˆ ∞

−∞

tD(k
′)A(k′)

k′ − κ
dk′, κ ∈ C+

and
|tD(κ)| ≤

1

2π|A(κ)|

ˆ ∞

−∞

|A(k′)|
|k′ − κ|

dk′, κ ∈ C+

Let κ1 = k1+iς1, ς1 > 0, and A(κ) = 1/(κ−κ∗
1) = 1/(κ−k1+iς1), which is a causal

transform and belongs to L2(R).

|tD(κ1)| ≤
ς1
π

ˆ ∞

−∞

1|√
(k′ − k1)2 + ς21

dk′ = 1, κ1 ∈ C+

and we get
|tD(κ)| ≤ 1, κ ∈ C+ ∪ R

3This formulation of causality is unnecessarily strong. A weaker formulation is also adopted
below.
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The dispersion relation for a causal function f(ζ) (analytic and bounded in C+)
with one subtraction reads (for details, see [21])

f(κ) = f(0) +
κ

2πi

 ∞

−∞

f(k′)− f(0)

k′(k′ − κ)
dk′, Imκ > 0

f(k) = f(0) +
k

πi

 ∞

−∞

f(k′)− f(0)

k′(k′ − k)
dk′, k ∈ R

where
ffl

denotes the Cauchy’s principal value. Apply to tD(k). Since tD(0) = 1, we
get 

Re
(
eikDt(k)

)
= 1 +

k

π

 ∞

−∞

Im
(
eikDt(k′)

)
k′(k′ − k)

dk′

Im
(
eikDt(k)

)
= −k

π

 ∞

−∞

Re
(
eikDt(k′)

)
− 1

k′(k′ − k)
dk′

k ∈ R

We notice that the sum rule holds for tD(k) and not for t(k). This is due to the
necessary time shift eikD. If we assume the wave front velocity in the slab does not
exceed c, we can apply a weaker form of causality, Et(z2 + a, t+D/c) = 0, t < 0.4

Ei(z1 − a, t) = x̂

ˆ ∞

−∞
A(k)e−ikct dk

Et(z2 + a, t+D/c) = x̂

ˆ ∞

−∞
t(k)A(k)e−ikct dk

and we can proceed as above, but with t(k) instead of tD(k). We conclude that t(k)
is analytic in C+ and |t(κ)| ≤ 1 in C+ ∪ R. Since t(0) = 1, we get

Re t(k) = 1 +
k

π

 ∞

−∞

Im t(k′)

k′(k′ − k)
dk′

Im t(k) = −k

π

 ∞

−∞

Re t(k′)− 1

k′(k′ − k)
dk′

k ∈ R

We notice that knowledge of the imaginary part of the transmission coefficient on
the entire real axis determines its real part and vice versa. In the sections below,
we derive other, more useful, sum rules based upon the logarithm.

3.2 Sum rule with the logarithm

Construct a Herglotz function h1(κ), see Appendix D for definition, from the trans-
mission coefficient t(κ). Following [7], we obtain in an appropriately chosen branch
of the logarithm

h1(κ) = −i ln

(
t(κ)

N∏
n=1

1− κ/κ∗
n

1− κ/κn

)

4This assumption excludes the case with particles having internal wave speed higher than the
background wave speed.
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where κn, n = 1, 2, . . . , N , are the zeros of the transmission coefficient t(κ) in the
upper complex plane C+, i.e., Imκn > 0, n = 1, 2, . . . , N . The product is called a
Blaschke product [24]. Note that for real k, all terms in the product have modulus
one, i.e., ∣∣∣∣1− k/κ∗

n

1− k/κn

∣∣∣∣ = 1, k ∈ R

and

Imh1(k) = −Re ln

(
t(k)

N∏
n=1

1− k/κ∗
n

1− k/κn

)
= − ln |t(k)|, k ∈ R

and Imh1(k) is an even function of the real argument k.
The low-frequency behavior of h1(k) becomes

h1(k) = −i

(
ln t(k) +

N∑
n=1

ln (1− k/κ∗
n)−

N∑
n=1

ln (1− k/κn)

)

= −i

(
ikH + k

N∑
n=1

(
1

κn

− 1

κ∗
n

)
+ o(k)

)
= kH + 2k

N∑
n=1

Im
1

κn

+ o(k)

where H has dimension length. With the notation introduced in Appendix D, the
asymptotic expansion at z = 0 is of order N0 = 1, and a−1 = a0 = 0, a1 =
H + 2

∑N
n=1 Im

1
κn

.
At high frequencies, under the assumption that transmission has a limit value

t∞, we have
h1(k) = o(k)

With the notation of Appendix D, the asymptotic expansion at z = ∞ is of order
N∞ = −1, and b1 = 0.

Consequently, see Theorem D.2 in Appendix D

−2

π

ˆ ∞

0

ln |t(k)|
k2

dk =
2

π

ˆ ∞

0

Imh1(k)

k2
dk = H + 2

N∑
n=1

Im
1

κn

≤ H

The integral is well-behaved. This is the exact value of the sum rule. The sum rule
as an integral in λ = 2π/k reads

ˆ ∞

0

ln
1

|t(λ)|
dλ = −

ˆ ∞

0

ln |t(λ)| dλ = −2π

ˆ ∞

0

ln |t(k)|
k2

dk ≤ π2H (3.1)

In the next subsection, we use this sum rule to find bounds on the product of
the bandwidth and the prescribed transmission rate.
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3.2.1 Physical bound

Estimate the left-hand side of the wavelength integral in (3.1) from below. For a
given transmission level t0 ∈ (0, 1], let I(t0) be the interval of wavelength where
transmission is less than t0, i.e., |t(λ)| ≤ t0 ≤ 1, λ ∈ I(t0). The interval I(t0) can
consist of a union of disjoint parts. Then, since the integrand in (3.1) is a positive
function, a crude estimate is

|I(t0)| ln
1

t0
≤
ˆ
I(t0)

ln
1

|t(λ)|
dλ ≤

ˆ ∞

0

ln
1

|t(λ)|
dλ ≤ π2H

where |I(t0)| denotes the length of the interval I0(t0). We get the physical bound

|I(t0)| ≤
π
2H

ln 1
t0

=
π
2H

|ln t0|
(3.2)

A similar bound for a periodic array has been reported in [7]. A numerical example
of this physical bound is presented in Section 4.1.

3.3 Sum rule with pulse Herglotz function

A more elaborate Herglotz function is the pulse Herglotz function [20].

h∆(z) = −1

π

ˆ ∆

−∆

1

z − t
dt =

1

π
ln

z −∆

z +∆
, Im z > 0

where ∆ > 0, and the branch cut of the logarithm is assumed along the negative
real axis. Details on this function are presented in Appendix E.

The asymptotes of h∆(z) are

h∆(z) =


i− 2z

π∆
+O(z2), z→̂ 0

−2∆

zπ
+O(z−2), z→̂∞

The symbol z→̂ 0 stands for the non-tangential limit |z| → 0 within some Stoltz
domain {z ∈ C+ : θ ≤ arg(z) ≤ π− θ} with the angle θ ∈ (0, π/2]. For more details,
see Appendix D.

The imaginary part of h∆(z) is non-negative and bounded by unity in the upper
half plane C+. Specifically, the inner part of the circle |z| = ∆ in the upper complex
half plane maps to 1/2 < Imh∆(z) < 1, see Figure 13. In the region outside the
circle |z| = ∆ in the upper complex half plane, we have 0 < Imh∆(z) < 1/2.

The Möbius transformation

w(z) = i
1 + z

1− z
⇔ z(w) =

w − i

w + i



10

Re t

Im t

1−1

1

1

t0

w(t)/∆

Rew/∆(t0)

Imw/∆(t0)

1−1

1

Figure 2: The Möbius transform w(t)/∆. The green circle is the image of |t(k)| ≤
t0 = 0.5.

maps the unit circle to the upper complex half plane. Moreover, a circle centered
at the origin with radius t0 ∈ (0, 1] in the z-plane is mapped to a circle centered at
w0 = i(1 + t20)/(1− t20) with radius r0 = 2t0/(1− t20) in the w-plane.

Define the Herglotz function h2(κ)
def
= h∆(w(t(κ))). The asymptotes of w(t(κ))

are

w(t(κ)) =


− 2

κH
+O(1), κ→̂ 0

i
1 + t∞
1− t∞

+O(|κ|−1), κ→̂∞

and

h2(κ)
def
= h∆(w(t(κ))) =


κ∆H

π
+O(|κ|2), κ→̂ 0

o(k), κ→̂∞

Note that w(t(−k)) = w(t∗(k)) = −w∗(t(k)) and h2(−k) = h∆(−w∗(t(k))) for
k ∈ R. Since h∆(−z∗) = −h∗

∆(z), we get h2(−k) = −h∗
2(k) for k ∈ R. With the

notation in Appendix D, the asymptotic expansion at z = 0 is of order N0 = 1,
and a−1 = a0 = 0, a1 = ∆H/π, and the asymptotic expansion at z = ∞ is of order
N∞ = −1, and b1 = 0.

We now determine the value of the scale factor ∆ = ∆(t0). The aim is to find
bounds on the bandwidth for transmission |t| ≤ t0 ∈ (0, 1]. The connection between
parameter ∆(t0) and the suggested threshold |t| = t0 ≤ 1 is found by

∆(t0) =
1 + t20
1− t20

+
2t0

1− t20
=

1 + t0
1− t0

> 0

This choice of ∆(t0) maps the circle |t| ≤ t0 to a circle in the w/∆-plane centered
at i(1 + t20)/(1 + t0)

2 with radius 2t0/(1 + t0)
2 (green discs in Figure 2).
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Consequently, see Theorem D.2 in Appendix D

2

π

ˆ ∞

0

Imh2(k)

k2
dk =

∆H

π
=

1 + t0
1− t0

H

π
(3.3)

The integral is well-behaved. The sum rule as an integral in λ = 2π/k reads

ˆ ∞

0

Imh2(λ) dλ = 2π

ˆ ∞

0

Imh2(k)

k2
dk = π∆H = π

1 + t0
1− t0

H (3.4)

This is the exact value of the sum rule with the pulse Herglotz function. Note
that for a given configuration, i.e., given constant H, the sum rule holds for all
transmission levels t0.

In the next subsection, we use this sum rule to find a bound on the bandwidth
given a certain transmission rate. The sum rule is exact and it can be used to
verify the numerical computations of the transmission coefficient. In fact, for a
given particle and transmission rate t0, the right-hand side of (3.4) is given, and the
integral on the left-hand side is determined.

3.3.1 Physical bound

We now apply the exact sum rule in (3.4) to get a physical bound on the bandwidth of
the transmission coefficient, given a certain threshold t0 ∈ (0, 1]. Let the wavelength
interval I(t0) denote the interval where |t| ≤ t0. The interval I(t0) can consist
of a union of disjoint parts. In this interval, the integrand is larger than 1/2 by
construction, and we get by estimating the integral

|I(t0)|
2

≤
ˆ
I(t0)

Imh2(λ) dλ ≤
ˆ ∞

0

Imh2(λ) dλ = π
1 + t0
1− t0

H

where |I(t0)|, which is related to the bandwidth of the problem, denotes the length
of the interval I(t0). In summary, we get

|I(t0)| ≤ 2π
1 + t0
1− t0

H (3.5)

A numerical example of this physical bound is presented in Section 4.2.

4 Numerical results
In a series of numerical examples, we illustrate the results in this paper.
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4.1 First physical bound

We start with the physical bound obtained in Section 3.2. In Figures 3 and 4, the
modulus and the negative logarithm of the modulus of the transmission coefficient,
respectively, are depicted as a function of the scaled wavelength λ/a. In all figures5

presented in this paper, the dielectric, spherical particles of radius a have permit-
tivity ϵ1/ϵ = 4, and permeability µ1/µ = 1, the slab has thickness D/a = 20, and
the volume fraction is φ = 15%.

The value of the transmission coefficients in the complex plane as a function
of λ/a along the curve is shown in Figure 5. We notice that the curve circles
around the origin, which indicates that there are several zeros in the upper half
plane [10, Th. 4.10a]. The exact behaviour at the origin is hard to ensure due to
limited numerical precision at low transmission levels. Hence, the factor Im 1/κn is a
strictly positive factor, that makes the sum rule in (3.1) less precise. The area under
the entire curve in Figure 4 is approximately 20.8a while π2H = 24.1a. The gap
between these two numbers also indicates that there are zeros in the upper complex
half-plane. If we integrate over frequencies instead for over the wavelength, i.e.,

−
ˆ ∞

0

ln |t(k)|
k2

dk ≤ πH
2

we obtain by numerical integration of the integral on the left-hand side 3.45a, which
should be compared with the value πH/2 = 3.84a.

At a transmission threshold of t0 = 0.5, the right-hand side in (3.2) is calculated
to π2H/ |ln t0| = 34.8a. This value is much larger than the numerical value |I(t0)| ≈
5.3a obtained in the figure. However, this comes to no surprise, since the sum rule
has to hold for all possible configurations, which have the same value of H and
t0. This illustration shows that our configuration is far from the extreme value.
Whether this is good or bad depends on if the goal is high or low transmission rates
for a large wavelength interval.

The bandwidth of the peak in Figure 4 can be estimated by the equating a box
(red box in the figure) such that the area under the entire curve and of the box are
the same (≈ 20.8a). More examples of estimating the bandwidth are presented in
e.g., [25]. The length of the wavelength interval of the red box is 1.63 in units of a.

4.2 Second physical bound

The Herglotz function, defined in Section 3.3, is depicted as a function of λ/a in
Figure 6 for the same material data and geometry as in Section 4.1. Again, the
transmission threshold is t0 = 0.5. The argument w/∆ of the Herglotz function is
shown in Figure 7. Note that the argument in the Herglotz function approaches the
negative real axis from above as λ/a → ∞.

An upper bound of the wavelength interval from (3.5) is 2πH∆(t0) = 46.1a,
which is larger than the limit with the first physical bound in Section 3.2, and much
larger than the value |I(t0)| ≈ 5.3a obtained from the numerical example. Again,

5Figure 9 is an exception.
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Figure 3: The absolute value of the transmission coefficient t as a function of
the normalized wavelength λ/a for a slab of thickness D/a = 20, volume fraction
φ = 15%, permittivity ϵ1/ϵ = 4, and permeability µ1/µ = 1.
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ln(1/|t(λ/a)|)

Figure 4: The function ln(1/|t|) as a function of the normalized wavelength λ/a
for a slab of thickness D/a = 20, volume fraction φ = 15%, permittivity ϵ1/ϵ = 4,
and permeability µ1/µ = 1. The red box has the same area as the area under the
curve (≈ 20.8a).
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0.5
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λ/a = 62.8

λ/a = 25.1

λ/a = 10.5

λ/a = 5.2

Re t

Im t

Figure 5: The components of the complex-valued transmission coefficient, t, in the
complex plane as a function of the wavelength λ/a for a slab of thickness D/a = 20
and volume fraction φ = 15%. The curve starts at λ/a = 0 at the origin and ends
at 1 as λ/a → ∞.

this is not surprising, since the sum rule holds for all possible configurations having
the same value of H and t0. If this is good or bad depends on whether a high or low
transmission rate is requested.

Numerical integration of the area under the entire curve in Figure 6 gives a value
of approximately 21.3a. This value is smaller than the exact value πH∆(t0) = 23.0a,
which can be explained by loss of numerical procession at higher frequencies or the
choice of numerical integration by the trapezoidal rule. As an alternative, we can
instead integrate over normalized frequency ka, see (3.4), i.e.,

ˆ ∞

0

Imh2(ka)

(ka)2
dka =

∆(t0)H

2a

This form of the sum rule weights low frequencies higher and higher frequencies less,
see Figure 8. Low frequency data have higher numerical precision, which guarantee
a more accurate test of the sum rule. With the same data as above, the right-
hand side is ∆(t0)H/2 = 3.67a, and the left-hand side is by numerical integration
approximately 3.58a. This is less than a 3% discrepancy, which is sufficient for most
applications. A numerical test with different transmission levels t0 ∈ (0, 1) shows
that the agreement gets better for higher values of t0.

However, since the sum rule above is an exact identity, possible sources of error
are important to identify. Some potential sources of this discrepancy are listed
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Possible errors

Missing parts in the integration interval [0,∞)
Appropriate numerical quadrature
Numerical solution of the system of integral equations
Correct pair correlation function—boundary effects
Effect of QCA

Table 2: Possible explanations of the discrepancies in the sum rule.

in Table 2. The integration is performed by both the trapezoidal and Simpson’s
rule over the interval ka ∈ [0.00001, 8] (non-uniform points), which seems to suffice.
Moreover, potential convergence problems in solving (2.4) have been eliminated by a
comparison with an independent implementation [9]. Hence, with some confidence,
we can eliminate these causes to the discrepancy.

However, a more likely cause, we find in the choice of the pair correlation function
g(r). We assume the pair correlation function (the Percus-Yevick approximation is
employed) only depends on the distance between two particles, which definitely is an
approximation of the correct pair correlation function, which depends on two points,
i.e., g(r, r′). Moreover, close to the boundary, there are effects that are not included
in our choice of pair correlation function. How important these boundary effects are,
we cannot estimate. A thicker slab should make these effects smaller, since then the
boundary is a smaller portion of the slab geometry. Indeed, a computation with a
thicker slab, D/a = 100 (all other parameters the same), confirms this conjecture,
and the error is now 0.6%, see Figure 9.

The importance of the correct pair correlation is further emphasized if we com-
pare the sum rule evaluated by the hole correction (HC) and the Percus-Yevick
approximation (PY). The result is displayed in Figure 10, where numerical integra-
tion with the hole correction results in a large error in the evaluation of the sum
rule. The hole correction seems not to generate a transmission coefficient that com-
plies with energy conservation [16,17], which seems to be the cause of the this huge
discrepancy.

Finally, the Quasi Crystalline Approximation is assumed in the derivation of the
system of integral equations. How this approximation affects the result, and whether
the sum rule can be a test on this assumption is an open question.

5 Discussion and conclusions
Physical bounds on bandwidth and transmission rates are important tools in the
design of slab configurations with specific transmission performance. In this paper,
we have developed two different sum rules for the transmission coefficient. The
particles of the slab are assumed to be passive, and the system has to satisfy causality
and energy conservation. The sum rules are then employed to obtain physical bounds
on the a combination of bandwidth and transmission rates. The exact sum rule
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Figure 6: The function Imh2(λ/a) for t0 = 0.5 as a function of the normalized
wavelength λ/a for a slab of thickness D/a = 20, volume fraction φ = 15%, permit-
tivity ϵ1/ϵ = 4, and permeability µ1/µ = 1.
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Figure 7: The components of the complex-valued w/∆ for t0 = 0.5, in the complex
plane as a function of the wavelength λ/a for a slab of thickness D/a = 20 and
volume fraction φ = 15%. The curve starts at λ/a = 0 at i/3 and ends at −∞+ i/3
as λ/a → ∞.
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Figure 8: The function Imh2(ka)/(ka)
2 for t0 = 0.5 as a function of frequency ka

for a slab of thickness D/a = 20, volume fraction φ = 15%, permittivity ϵ1/ϵ = 4,
and permeability µ1/µ = 1.
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Figure 9: The function Imh2(ka)/(ka)
2 for t0 = 0.5 as a function of frequency ka

for a slab of thickness D/a = 100, volume fraction φ = 15%, permittivity ϵ1/ϵ = 4,
and permeability µ1/µ = 1.
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Figure 10: The transmission coefficient for the hole correction (HC) and Percus-
Yevick approximation as a function of frequency ka for a slab of thickness D/a = 20,
volume fraction φ = 15%, permittivity ϵ1/ϵ = 4, and permeability µ1/µ = 1.

also serves as an independent check on the numerical precision in the numerical
calculations. Numerical illustrations show that the physical bound is not obtained,
which shows that these constructions are far from extreme designs. The test of
numerical accuracy shows that the precision is satisfactory.
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Appendix A The expansion coefficients
In this appendix, the coefficients Aτlτ ′l′λ are reviewed [11,12].

Aτlτ ′l′λ = −2π

( τ ′=1 τ ′=2

τ=1 C −D
τ=2 D C

)
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where

C =
1

2
il
′−l+λ(2λ+ 1)

√
(2l + 1)(2l′ + 1)

l(l + 1)l′(l′ + 1)

×
(
l l′ λ
0 0 0

)(
l l′ λ
1 −1 0

)
[l(l + 1) + l′(l′ + 1)− λ(λ+ 1)]

D =
1

2
il
′−l+λ+1(2λ+ 1)

√
(2l + 1)(2l′ + 1)

l(l + 1)l′(l′ + 1)

×
(
l l′ λ− 1
0 0 0

)(
l l′ λ
1 −1 0

)√
λ2 − (l − l′)2

√
(l + l′ + 1)2 − λ2

and where
(
· · ·
· · ·

)
denotes Wigner’s 3j symbol [3]. Both C and D are real numbers,

due to the properties of the Wigner’s 3j symbol.

Appendix B Low-frequency solution
In this appendix, we solve the system of integral equations in (2.4) in the limit of
small ε = ka under the constraint that d/a (or D/a) is constant. Only l = 1 and
m = 1 contribute in this limit. Moreover, a polarization of the incident wave in the x̂
direction engages only {τ, σ} = {1, o}, {2, e}. Therefore, in the analysis, we suppress
the σ, m, and l indices, and the equations to solve are [12] (ζ = kz, ζ1 = kz1, ζ2 = kz2,
kd = ζ2 − ζ1):

fτ (ζ) = tτ1aτe
iζ +

n0tτ1
k3

2∑
τ ′=1

ˆ ζ2

ζ1

Kττ ′(ζ − ζ ′)fτ ′(ζ
′) dζ ′, ζ ∈ [ζ1, ζ2]

where
aτ1 = −i−τ

√
6π

and [11,12]

Kττ ′(ζ) =

( τ ′=1 τ ′=2

τ=1 2πI0(ζ, 2ε)− πI2(ζ, 2ε) −3πI1(ζ, 2ε)
τ=2 3πI1(ζ, 2ε) 2πI0(ζ, 2ε)− πI2(ζ, 2ε)

)
The explicit values of Il(ζ, ε), l = 0, 1, 2 are [11]

I0(ζ, 2ε) =


e−iζ , ζ ≤ −2ε

e2iεP0

(
ζ
2ε

)
, −2ε < ζ < 2ε

eiζ , ζ ≥ 2ε

I1(ζ, 2ε) =


ie−iζ , ζ ≤ −2ε

−ie2iεP1

(
ζ
2ε

)
, −2ε < ζ < 2ε

−ieiζ , ζ ≥ 2ε
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ζ ′ = ζ + 2ε
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Figure 11: The domain of integration in ζ ′ with the hole correction in yellow.

I2(ζ, 2ε) =


−e−iζ , ζ ≤ −2ε

e2iε
iP0

(
ζ
2ε

)
− (i + 2ε)P2

(
ζ
2ε

)
2ε

, −2ε < ζ < 2ε

−eiζ , ζ ≥ 2ε

The dominant terms of the kernel in the interval (inside the hole correction) |ζ| ≤ 2ε
are

Kττ ′(ζ) =
π

2iε

( τ ′=1 τ ′=2

τ=1 P0

(
ζ
2ε

)
− P2

(
ζ
2ε

)
+O(ε) O(ε)

τ=2 O(ε) P0

(
ζ
2ε

)
− P2

(
ζ
2ε

)
+O(ε)

)
and outside the hole correction the terms are of the order O(1) and therefore con-
tribute with higher orders powers in ε.

Divide the integration interval in a singular hole correction part ζ−ζ ′ ∈ [−2ε, 2ε]
and the remaining interval outside the hole correction. The integrals over the latter
interval contain higher order contributions in ε and are omitted. We have to leading
order

fτ (ζ) = tτ1aτe
iζ +

n0tτ1
k3

ˆ
|ζ−ζ′|≤2ε

Kττ (ζ − ζ ′)fτ (ζ
′) dζ ′, ζ ∈ [ζ1, ζ2], τ = 1, 2

where the domain of integration is depicted in yellow in Figure 11.
In the integral, we replace fτ ′(ζ

′) → fτ ′(ζ) — the difference contributes with
higher order terms. We have

fτ (ζ) = tτ1aτe
iζ +

n0tτ1
k3

fτ (ζ)

ˆ
|ζ−ζ′|≤2ε

Kττ (ζ − ζ ′) dζ ′, ζ ∈ [ζ1, ζ2], τ = 1, 2
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Integration over the yellow area in Figure 11 contributes with

I0(ζ) =
π

2iε

ˆ ζ+2ε

ζ−2ε

P0

(
ζ − ζ ′

2ε

)
− P2

(
ζ − ζ ′

2ε

)
dζ ′ = −iπ

ˆ 1

−1

P0 (t)− P2 (t) dt

= −2iπ, ζ1 + 2ε ≤ ζ ≤ ζ2 − 2ε

The two remaining parts at the ends of the slab are

I1(ζ) =
π

2iε

ˆ ζ+2ε

ζ1

P0

(
ζ − ζ ′

2ε

)
− P2

(
ζ − ζ ′

2ε

)
dζ ′

= − iπ

2

{
3
ζ − ζ1
2ε

+ 2−
(
ζ − ζ1
2ε

)3
}
, ζ1 ≤ ζ ≤ ζ1 + 2ϵ

and

I2(ζ) =
π

2iε

ˆ ζ2

ζ−2ε

P0

(
ζ − ζ ′

2ε

)
− P2

(
ζ − ζ ′

2ε

)
dζ ′

= − iπ

2

{
2− 3

ζ − ζ2
2ε

+

(
ζ − ζ2
2ε

)3
}
, ζ2 − 2ε ≤ ζ ≤ ζ2

The set of integral equations simplifies to leading order to

fτ (ζ) = tτ1aτe
iζ +

n0tτ1
k3

fτ (ζ)


I1(ζ), ζ1 ≤ ζ ≤ ζ1 + 2ϵ

I0(ζ), ζ1 + 2ϵ ≤ ζ ≤ ζ2 − 2ϵ

I2(ζ), ζ2 − 2ε ≤ ζ ≤ ζ2

with solutions

fτ (ζ) =



tτ1aτe
iζ

1− CτI1(ζ)
, ζ1 ≤ ζ ≤ ζ1 + 2ϵ

tτ1aτe
iζ

1− CτI0(ζ)
, ζ1 + 2ϵ ≤ ζ ≤ ζ2 − 2ϵ

tτ1aτe
iζ

1− CτI2(ζ)
, ζ2 − 2ε ≤ ζ ≤ ζ2

where the constant Cτ is

Cτ =
n0tτ1
k3

=
3φtτ1
4πε3

D

d
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Finally, we can calculate yτ for l = 1.

yτ =

ˆ ζ2

ζ1

fτ (ζ)e
−iζ dζ

= −i−τ tτ1
√
6π

(ˆ ζ1+2ε

ζ1

dζ

1− CτI1(ζ)
+

kd− 4ε

1 + 2iπCτ

+

ˆ ζ2

ζ2−2ε

dζ

1− CτI2(ζ)

)

= −i−τ tτ1
√
6π

(
kd− 4ε

1 + 2iπCτ

+ 4ε

ˆ 1

0

dt

1 + iπ
2
Cτ (2 + 3t− t3)

)

= −i−τ tτ1
√
6πε

(
d/a

1 + 2iπCτ

+ ACorr
τ

)
where the correction term ACorr

τ is

ACorr
τ = 4

ˆ 1

0

dt

1 + iπ
2
Cτ (2 + 3t− t3)

− 4

1 + 2iπCτ

The remaining integral can be solved analytically by finding the roots of the denom-
inator and a partial fraction of the integrand.

ˆ 1

0

dt

a+ 3t− t3
=

ˆ 1

0

dt

(t− a1)(t− a2)(t− a3)

=
3∑

n=1

ˆ 1

0

An dt

t− an
=

3∑
n=1

An ln
an − 1

an

where an, n = 1, 2, 3 are the roots of the denominator, and

A1 =
1

(a1 − a2)(a1 − a3)
, A2 =

1

(a2 − a1)(a2 − a3)
, A3 =

1

(a3 − a1)(a3 − a2)

In an numerical illustration, it is more convenient to numerically compute the inte-
gral than to try to find the analytic solution.

The constant H can now be determined from the low-frequency limit of the
transmission coefficient in (2.1). The result is

H =
2πn0

ik4

2∑
τ=1

iτ−2

√
3

8π
yτ =

3πn0

ik4

2∑
τ=1

tτ1ε

(
d/a

1 + 2iπCτ

+ ACorr
τ

)

= −3iπa
2∑

τ=1

Cτ

(
d/a

1 + 2iπCτ

+ ACorr
τ

)
= HAppr +HCorr
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where

HAppr = −3iπ
2∑

τ=1

Cτd

1 + 2iπCτ

= −9iφD
2∑

τ=1

tτ1

4ε3 + 6iφtτ1
D
d

HCorr = −3iπa
2∑

τ=1

CτA
Corr
τ

= −36iφ
D

d
a

2∑
τ=1

(ˆ 1

0

tτ1 dt

4ε3 + 3i
2
φtτ1

D
d
(2 + 3t− t3)

− tτ1

4ε3 + 6iφtτ1
D
d

)
(B.1)

Appendix C Titchmarsh’s theorem
The Titchmarsh’s theorem is used in this paper and for convenience, we state the
theorem in this appendix [21]. Parts of this theorem is related to the Paley-Wiener
theorem.

Theorem C.1 (Titchmarsh). Denote the Fourier transform of the function f(t) by
f̂(ω). If f̂(ω) is square integrable on the real axis, i.e., f̂ ∈ L2(R), the following
three conditions are equivalent:

1. The inverse Fourier transform f(t) of f̂(ω) vanishes for t < 0, i.e.,

f(t) =

ˆ ∞

−∞
f̂(ω)e−iωt dx = 0, t < 0

2. f̂(ω) is, for almost all ω, the limit as ζ → 0+ of an analytic function f̂(ω+iζ),
which is holomorphic in the upper half-plane and satisfiesˆ ∞

−∞
|f̂(ω + iζ)|2 dω < ∞, ζ > 0

3. The real and imaginary parts of f̂(ω) = f̂r(ω)+if̂i(ω) satisfy Plemelj’s formulas
f̂r(ω) =

1

π

 ∞

−∞

f̂i(ω
′)

ω′ − ω
dω′

f̂i(ω) = −1

π

 ∞

−∞

f̂r(ω
′)

ω′ − ω
dω′

Appendix D Herglotz functions and integral iden-
tity

In this appendix, we investigate the Herglotz functions and some integral identities
with these functions. More technical details can be found in [1, 14, 20,26].

A Herglotz function is defined as [20]
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Definition D.1. A function h(z) is called a Herglotz function if

1. h(z) is defined and analytic everywhere in the upper complex half-plane, C+ =
{z ∈ C : Im z > 0}

2. Imh(z) ≥ 0 for all z ∈ C+

If h(z) is a Herglotz function, then −1/h(z) is a Herglotz function, and if h(z)
and g(z) are Herglotz functions, the composition h(g(z)) is a new Herglotz function,
provided g(z) does not attain real values for z ∈ C+.

We adopt the following definitions [20]:

Definition D.2. If the Herglotz function h(z) satisfies h(−z∗) = −h∗(z), z ∈ C+,
the Herglotz function is symmetric.

Definition D.3. If for N ≥ −1, the Herglotz function h(z) satisfies

h(z) =
N∑

n=−1

b−nz
−n + o

(
z−N

)
, as z→̂∞

where the constants b−n, n = −1, 0, . . . , N are all real, then h(z) admits at z = ∞ an
asymptotic expansion of order N . The symbol z→̂∞ stands for the non-tangential
limit |z| → ∞ within some Stoltz domain {z ∈ C+ : θ ≤ arg(z) ≤ π − θ} with the
angle θ ∈ (0, π/2].

Definition D.4. If for N ≥ −1, the Herglotz function h(z) satisfies

h(z) =
N∑

n=−1

anz
n + o

(
zN
)
, as z→̂ 0

where the constants an, n = −1, 0, . . . , N are all real, then h(z) admits at z = 0 an
asymptotic expansion of order N . The notation z→̂ 0 stands for the non-tangential
limit |z| → 0 within some Stoltz domain {z ∈ C+ : θ ≤ arg(z) ≤ π − θ} with the
angle θ ∈ (0, π/2].

The following two theorems are instrumental [1]:

Theorem D.1. Let h(z) be a Herglotz function. Then for some integer N∞ ≥ 0 the
following integral

lim
ε→0+

lim
y→0+

ˆ
ε<x<1/ε

x2N∞ Imh(x+ iy) dx

exists as a finite number if and only if h(z) admits an asymptotic expansion of order
2N∞ + 1 at z = ∞. In this case

lim
ε→0+

lim
y→0+

1

π

ˆ
ε<x<1/ε

xn Imh(x+ iy) dx =

{
a−1 − b−1, n = 0

−b−n−1, 0 < n ≤ 2N∞

holds.
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Theorem D.2. Let h(z) be a Herglotz function. Then for some integer N0 ≥ 1 the
following integral

lim
ε→0+

lim
y→0+

ˆ
ε<x<1/ε

Imh(x+ iy)

x2N0
dx

exists as a finite number if and only if h(z) admits an asymptotic expansion of order
2N0 − 1 at z = 0. In this case

lim
ε→0+

lim
y→0+

1

π

ˆ
ε<x<1/ε

Imh(x+ iy)

xn
dx =

{
a1 − b1, n = 2

an−1, 2 < n ≤ 2N0

holds.

Appendix E The pulse Herglotz function
In this appendix we analyze the pulse Herglotz function.6

h(z) = −1

π

ˆ 1

−1

1

z − t
dt =

1

π
ln

z − 1

z + 1
, Im z > 0

where the branch cut of the logarithm is assumed along the negative real axis (prin-
cipal branch cut, −π < arg z ≤ π).

We focus on the imaginary part of this function in the upper complex half plane,
z = x+ iy, y > 0.

Imh(z) =
1

π
arg

z − 1

z + 1

Points z = x+ iy with constant phase θ of the expression (z − 1)/(z + 1) satisfy

tan θ =
2y

x2 + y2 − 1
, θ ∈ [0, π]

This is the equation of a circle with center z0 = x0 + iy0 and radius r, where
x0 = 0

y0 =
1

tan θ

r =

√
1

tan2 θ
+ 1

Imh(z) = θ/π

The imaginary part of h(z) is bounded by unity in the upper complex half plane,
0 ≤ Imh(z) ≤ 1. Moreover, inside the unit circle (π/2 < θ < π, see Figure 12) in

6An alternative expression of the pulse Herglotz function is [22]

h(z) = i− 2

π
arctanh(z), z ∈ C \ (−∞,−1] ∪ [1,∞)

where the values on the real axis are taken as limits as y → 0+ (upper side of the branch cuts).
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Re z

Im z

1-1

z

θ1
θ2

θ

Figure 12: The argument arg z = θ = θ1 − θ2 as a function of the angles θ1 and θ2.

the upper complex half plane, 1/2 < Imh(z) < 1, see Figure 13. On the real axis
z = x we have, see Figure 14

Imh(z) =

{
1, −1 < x < 1

0, (−∞,−1) ∪ [1,∞)

The asymptotes of h(z) are

h(z) =


i− 2z

π
+O(z2), z→̂ 0

− 2

zπ
+O(z−2), z→̂∞

We also notice that h(z) is a symmetric Herglotz function. In fact, for the
principal branch, we have outside the branch cut

ln(z∗) = (ln z)∗, ln
1

z
= − ln z

which leads to

h(−z∗) =
1

π
ln

z∗ + 1

z∗ − 1
=

(
1

π
ln

z + 1

z − 1

)∗

= −
(
1

π
ln

z − 1

z + 1

)∗

= −h∗(z), z ∈ C+
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