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Abstract

An algorithm for high-performance path tracking for robot manipulators in the
presence of model uncertainties and actuator constraints is presented. The path
to be tracked is assumed given, and the nominal trajectories are computed using,
for example, well-known algorithms for time-optimal path tracking. For online
path tracking, the nominal, feedforward trajectories are combined with feedback
in a control architecture with a secondary controller, such that robustness to
uncertainties in model or environment is achieved. The control law is based
on existing path-velocity control (PVC), or so called online time scaling, but in
addition to speed adaptation along the tangent of the path, the algorithm also
comprises an explicit formulation and approach, with several attractive proper-
ties, for handling the deviations along the transversal directions of the path. For
achieving fast convergence along the normal and binormal directions of the path
in 3D motion, the strategy proposed has inherent exponential convergence prop-
erties. The result is a complete architecture for path-tracking velocity control
(PTVC). The method is evaluated in extensive simulations with manipulators
of different complexity, and PTVC exhibits superior performance compared to
PVC.

Keywords: path following, optimal path tracking, natural path coordinates,
robot-control architecture.

1. Introduction

The task considered in this paper is for a controlled mechanical system to
follow a predefined geometric path. A path is a curve in space, whereas for a
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trajectory the curve is time-parametrized, or alternatively, a corresponding ve-
locity profile is given. The fundamental difference between path tracking and
trajectory tracking is consequently that the velocity along the path can be mod-
ified in the case of path tracking. Path tracking, or equivalently path following,
is a fundamental control problem with many applications, and it is well-known
for robot manipulators in tasks such as machining, welding, gluing, and cutting.
In intelligent and/or autonomous systems it is customary with a decoupled ap-
proach, i.e., to segment motion control in the levels of path planning and path
tracking [1, 2] in a hierarchical structure to reduce the complexity of the com-
plete motion-planning problem. Therefore, path tracking is a major component
in new developments in intelligent robotics, unmanned aerial vehicles (UAVs),
and autonomous vehicles, and the current interest in robust algorithms for path
tracking is considerable [3, 4, 5].

1.1. Trajectory Tracking versus Path Tracking

One way of approaching path tracking is to consider it as the task of tracking
a sequence of trajectory points for a vector z(t) of position coordinates in space,
given as function of time ¢. This implies that path tracking is achieved by tra-
jectory tracking. Trajectory tracking in this context means that the time frame,
including the time when reaching the final state, is fully specified, and a common
method is model-based feedforward control combined with online feedback using
predefined trajectories.

In contrast, there are many examples where path tracking is possible but
trajectory tracking is not, and a typical situation is when an actuator reaches
its saturation limit. In all practical systems, there are always limitations on the
available control authority, and then the only possibility may be to adjust the
speed along the path, or phrased equivalently, to scale the time frame available
for completion of the task. As a concrete example, when driving a car and the
road exhibits high slip, the only way to stay on the road—i.e., on the desired
predefined path—may be to adjust the speed. Further, it is natural, as in the car-
driving example, to think in position along the path instead of time: The driver
turns at a bend (path tracking) not after a certain time (trajectory tracking).
In practice this means that the time frame is released, or equivalently phrased,
that the speed along the path is adjusted. Nevertheless, there must still be
coordination between the degrees of freedom (DoF) of the system to follow the
desired path, and early research in this spirit is by means of dynamic scaling of
the trajectories [6].

To utilize the freedom of velocity control along the desired path, it is clear
that there are two different problems to be solved. Ome task is to control the
traversal along the tangential direction of the path, where the objective typically
is some optimal performance, e.g., minimum-time or minimum-energy. The other
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task is to follow the path, i.e., to coordinate the different DoF of the system such
that the desired path is tracked. It is therefore natural to consider both the
control of tangential motion along the path and the motion toward the path
(along the normal or binormal directions). To this end, we use the concepts
x| and z, defined more precisely in Section 3, where the main idea is to have
largest possible control freedom along the directions of x| together with desired
convergence to the path along the directions of x| .

1.2. Previous Research on Path Tracking

Initial research on time-optimal trajectory generation for path tracking with
robot manipulators was presented in [7, 8, 9, 10, 11], and extensions with respect
to dynamic uncertainties and singular control were proposed in [12, 13]. Recently,
a convex reformulation of the trajectory-generation problem for time-optimal
path-tracking was suggested in [14, 15], together with efficient algorithms for com-
putation of the optimal trajectories. Extensions with respect to convex-concave
constraints were presented in [16]. Methods for online trajectory generation for
time-optimal path tracking were considered in [17, 18]. Further application areas
for the methods in [15] were investigated in [19].

As stated in the previous subsection, path tracking can be achieved by trajec-
tory tracking, conditioned on that sufficient control authority is available. Within
this class of approaches with a given time horizon, there are established algo-
rithms to adjust the control inputs to obtain path tracking in the cases that
there is some degree of repetitiveness of the path. Iterative learning control
(ILC) is one such successful strategy [20, 21, 22, 23]. The typical application
scenario of ILC is offline in a batch-oriented structure. Often, ILC methods are
limited to tasks where the trajectory is of fixed length, thus not permitting time
scaling. Methods for relaxing this requirement in learning were investigated in
[24, 25]. ILC for optimal path tracking was considered in [26]. Path tracking
for mobile platforms was investigated in [27, 28]. Feedback linearization for tra-
jectory planning was proposed in [29] and trajectory optimization in constrained
environments was considered in [30]. Control laws for path tracking with mobile
robots resulting in exponential convergence were proposed in [31]. The major
difference between manipulators considered in this paper and mobile robots is
the non-holonomic constraints that might be necessary to consider for the latter
category of systems.

The present research is a new approach to dynamic scaling of trajectories [6],
where the formulation is most related to the previous research in [32]. The algo-
rithm proposed in [32] was formulated as online time scaling of precomputed time-
optimal trajectories, but could equivalently be phrased as online velocity control
along the path and is here denoted path-velocity control (PVC) [33, 34]. Exten-
sions of the PVC algorithm in [32] and alternative approaches to high-accuracy
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path tracking have later been proposed in, e.g., [35, 36, 37, 38, 39, 40, 41], where
the extensions mainly are with respect to the constraints on the system that can
be accounted for and regarding developments for practical implementations of
the algorithms in industrial systems. In particular, important extensions with
respect to constraints in the robot workspace were proposed. Dynamic scaling
of trajectories for robots with elastic joints was considered in [42], and dynamic
time scaling for generating energy-optimal trajectories for robots was proposed
in [43]. Another approach to path tracking for position servos with actuator
limitations was considered in [44]. Initial research on an alternative formulation
of the path-tracking control problem with actuator constraints was presented in
[45], where control along the orthogonal directions of the path was introduced
and given priority over the control along the tangent of the path, thus not focus-
ing on the coordination of the DoF. Another approach to orbital stabilization for
nonholonomic underactuated systems based on transverse linearization, related
to the control architecture in this paper, was suggested in [46]. Moreover, a pre-
dictive path parametrization for online path tracking was considered in [47], with
a similar purpose as the PVC algorithm in [32].

1.3. Contributions

The main contribution of this paper is a complete and integrated control ar-
chitecture along the lines outlined in Section 1.1 for robust path tracking for robot
manipulators with actuator constraints. In the setting of x; and z|, the control
along x| utilizes PVC and builds on previous algorithms for time scaling 6, 32],
such that if the robot is on the path the controller is equivalent to the algorithm
in [32]. In addition, an extension of the controller is introduced that handles fast
convergence along the orthogonal directions of the path, x|, should the robot be
off the path. The result is a control architecture that employs coordinated feed-
back control both along x; and x), which is called path-tracking velocity control
(PTVC). This strategy, PTVC, achieves robust path tracking for a wide class
of mechanical systems and results in a substantial performance increase in the
achieved path-tracking accuracy compared to PVC, as demonstrated in Section 7.

1.4. Outline

A motivating example explaining fundamental ideas of the algorithm is pre-
sented in Section 2. The natural coordinates of a curve [48, 49] is an appropriate
framework for defining the tangential direction x| and the orthogonal directions
x| . This is described in Section 3, where also the definition of radius of curvature
that is used in the control law is provided. The mechanical systems under con-
sideration are given their mathematical formulation in Section 4. In this section,
trajectory generation for such systems is also discussed. Then, based on natural
coordinates, the control architecture PTVC with separate terms for tangential
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and orthogonal control is presented in Section 5. An advantageous property is
exponential convergence along the normal directions of the path, and an analysis
of convergence properties is presented in Section 6. The complete algorithm is
evaluated in Section 7 with extensive simulations on different manipulators. The
obtained results, possible extensions, and generalizations of the control architec-
ture are discussed in Section 8, and finally conclusions are drawn in Section 9.

2. A Conceptual Example

The following example introduces some of the main ideas for obtaining conver-
gence of the path tracking along the transversal directions by creating an inherent
attraction to the path, path stability, without hampering the control possibilities
tangential to the path, 7.e., the path-velocity control.

2.1. Tracking of a Circular Path

Consider the path-tracking task where the path to follow is a circle with
constant radius R in a two-dimensional space. Let x1 and xo be the positions
along the respective coordinate axis. Different descriptions of the path will be
valuable in the conceptual treatment of the task. The circle can be described by
an equation

g(x17x2):x%+x%_R2:()7 (1)

and it can be described in parametrized form as

x1 = Rcos(6), (2)
x9 = Rsin(6), (3)

where 6 is the angle with respect to the positive x1-axis. The latter relation is
put in vector form by defining f = (931 :UQ)T. Note that f here denotes the
coordinates in Cartesian space, while in Section 4 it will denote the path for the
generalized coordinates. Introduce the path parameter s as the length along the
path. Then, § = s/R and

_ (Rcos(s/R)
f(s) = <Rsin(s/R)) ' (4)
The motion along the circle can also be expressed as a state-space dynamic system

according to

1(t) = waa(t), (5)
2(t) = —wai(t), (6)



where w is the angular velocity, defined by the relations w = -0 = —$/R. In-
troduce r as the distance from the origin according to r? = z? + z3. The path-
tracking task is to keep r(t) = R. Considering (5)—(6), any model error or
disturbance leading to r(t) # R, will result in the system continuing to evolve
with a new faulty radius different from R.
To achieve path stability—i.e., the property that r(¢) will converge to R after

a disturbance—it is natural to introduce corrections orthogonal to the path. Here,
this means in the direction of the gradient to (1), which is denoted Vg. Justified
by the analysis following in Section 6, one choice is to introduce a path-stability
term according to

L oo o 2 2y (21 x1(R* —1°)

3 (7 = vg = (=) (1) = (267 1))). 7)
Introducing the compensation term (7) in (5)—(6) leads to the resulting dynamics
given by

21(t) = wra(t) + z1(¢) (R2 - r(t)Q) , (8)
io(t) = —wz1(t) + z2(t) (R? — r(t)?). (9)

Eliminating z; and xs from the relations (8)—(9) is made by multiplying the first
and second equation with x; and xzo, respectively, and then add and subtract
equations pairwise. Using that r7 = x141+xod9 for the first case and substituting
x1 = rcos(f), o = rsin(f) for the second case, this procedure leads to the
following decoupled set of differential equations

r(t) = r(t)(R? —r(t)?), (10)
0(t) = —w. (11)

The differential equations above are solved independently. Starting with (10),
the principle of separation of variables is used to obtain the positive solution,

which is given by
/ 1
r(t)=R 11 k2R (12)

where k is a constant determined by the initial value r(0). Here, it holds that
R—1 = O(e 2R°1) 50 it is clear that r(t) converges to R exponentially as ¢ — .
The second differential equation, (11), gives

(t) = 0] (13)

which is just a rephrasing of the definition. Consequently, (8)—(9) result in expo-
nential convergence to the path, while behavior along the path is still free to be
controlled by a separate control law. This tangential behavior is described by the

path parameter s and it can thus be used for tangential path-velocity control.
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2.2. Outline of Algorithm Ideas

The key idea in this paper is to use the separation principle, indicated in
the previous example by the independence of (10) and (11), between tangential
control and exponential path convergence along the directions normal to the
path. Then, for a given path, there needs to be a sequence of local coordinate
systems, defining the local variables corresponding to 1, z2, and the radius R. A
natural choice here is to use the well established mathematical concept of natural
coordinates for a path [48, 49], as will be described in Section 3. Conceptually,
the center of curvature will serve as the origin for the variables  and the radius
of curvature will serve as R. For a general path, a well established concept is to
reduce the multi-dimensional control problem to a one-dimensional problem by
using the correspondence to (4)—i.e., to parametrize the path f in a scalar path
coordinate s, and this has been used in optimal trajectory planning [7, 8, 9, 10]
and also in feedback architectures such as [32]. Conceptually, this means that the
path is a constraint in z, and that s and its time-derivatives are used to compute
the optimal velocity profile along the path. This parametrization is presented in
Section 4, and is used for tangential control, which is equivalent to control along
z|. The control architecture in Section 5 integrates the control along z) from
[32] with an approach to control along x| , similarly to the path-stability term in
(7) in the example described in Section 2.1.

3. Natural Path Coordinates

When studying motion along a path—i.e., a curve in space—the concept
of natural coordinates is often used. This formulation can be found in standard
textbooks both in mechanics [49] and in mathematics [48]. The main results used
later in this paper are briefly recapitulated in this section, but the proofs are to
a large extent omitted and the reader is referred to the mentioned references for
details. The important role of tangential motion and the role of curvature along
the normal direction should be noted.

3.1. Definition of Coordinate System

The natural coordinate system is usually derived by means of a trajectory,
which from the geometrical point of view is a parametrized curve in a three-
dimensional space. Thus, let the trajectory be given by the vector p(t) according
to

p(t) : [to,t1] CR and p € C*[to, t1], (14)

which means that the trajectory is a parametric curve that is two times contin-
uously differentiable on the parameter interval [tg,¢1]. Moreover, the unit vector
7 is the tangent to the trajectory at each point and is defined using the velocity

vector v(t) = p(t). The formal definition is:
7



Definition 1 (Tangent Vector). Given a trajectory p(t), the unit tangent vec-
tor to the trajectory is defined as

(Y

= ol (15)

T
This vector m is the first basis vector of the natural coordinate system. Since v
is a function of the parameter t, which describes the trajectory in the geometric
space, 7 itself is a function of the same parameter, so in general 7 is not constant
along the trajectory. Let s be the length of the curve traversed in the interval

[to, t], z'.e.,
s(t) = / o) d¢, <ty (16)

If v > 0, with equality only in isolated time instants, observe that the length is a
non-negative, monotonically increasing, and real function of the parameter ¢ and

that q
§= £ = VoTo = [Jv]|-. (17)

From this relation it follows that
dp dpdt v

ds — dtds |[[v|]

=T. (18)

This means that if the trajectory is parametrized in its length, then the velocity
vector is the unit vector 7, which is the tangent to the curve. The length of the
curve in space is usually referred to as the natural parameter [49].

The second unit vector of the natural coordinate system is a consequence of
an important property of w, which is given by the following theorem.

Theorem 1 (Orthogonality). For the tangent vector m and its derivative with
respect to t, it holds that
r L. (19)

For the derivation and proof of this relation, see [48, 49]. From this theorem, the
following definition is natural:

Definition 2 (Normal Vector). Given a trajectory p, the unit vector normal
to the trajectory is defined as .
T
[17]2
The plane spanned by (m,n) is called the osculating plane [49], which will be
used later when deriving the controller in Section 5. Introduce the curvature s

by k = ||7||2. Then, it holds that x > 0, and it follows from (20) that

T =KN. (21)
8
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Figure 1: Axes of the natural coordinate system for an example curve p with constant radius R.

When a trajectory p is given and the curve is parametrized in the length s, then
it follows from (17) that ||v||2 = 1 and that © = kn, as a consequence of (21).
The physical dimension of x is the inverse of a length and it is the curvature of
the trajectory along the curve. This leads to the following central definition:

Definition 3 (Radius of Curvature). The radius of curvature R is defined as

1
R=—, if k>0 (22)

K
Since k > 0, the radius of curvature is non-negative. To complete the natural
coordinate system with its third basis vector, the following definition is adopted:

Definition 4 (Binormal Vector). For a given trajectory p, where m and n
have been defined, the binormal unit vector is defined as the vector product

b=m xn. (23)

The unitary of the vector b is a direct consequence of the fact that = and n
are perpendicular unit vectors. The natural coordinate system is depicted in
Figure 1.

3.2. Definition of x| and x

The framework of natural coordinates, with the moving coordinate system
(m,n,b), is not dependent on the original parametrization. Consequently, the
parametrization is an intrinsic property of a curve in space, and thus an intrinsic
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property of a path. Relating to Section 2.2, the direction z| is along the basis
vector m and the directions x| are the orthogonal subspace, here spanned by the
normal and binormal basis vectors (n,b). In a typical path-tracking task for a
mechanical system, the centripetal forces will be along the direction of the normal
vector n. As a consequence, control along the normal direction n is in general
more crucial than the corresponding control along the binormal direction b. The
radius of curvature R(s), obtained as part of the procedure of describing the path
in natural coordinates and in general varying along the path, is used as the key
local path descriptor as indicated in the example in Section 2.1.

4. Modeling Assumptions and Trajectory Optimization

This section defines the class of mechanical systems considered in this paper.
Moreover, the parametrization of the geometric path and nominal trajectory
optimization, or more generally trajectory planning, are discussed.

4.1. Dynamics

The dynamics of the considered class of mechanical systems are assumed to
be possible to write on the following form

T = M(q)i+ C(¢.q)q + D(q)d + G(q), (24)

where 7 € R™ are the input torques, ¢ € R™ are the generalized coordinates,
M (q) is the inertia matrix, C'(q, q) is the Coriolis/Centripetal matrix, D(q) is the
viscous friction matrix, and G(q) is the gravity vector [50, 51]. The form of the
dynamic equations in (24) is applicable for a large number of systems; important
examples include rigid-body robot manipulators (with a fixed rigid base) and
acceleration or torque-controlled position servos. It is assumed that the control

objective is the position x € R? of the mechanical system in a Cartesian space!.

Remark 1. The theory presented in this section can be extended to include
flezible-joint models with nonactuated DoF, see Chapter 3 in [33]. In practice,
this means that the model will require an increased number of states, and that the
system dynamics need to be represented using time-derivatives of the path param-
eter of higher order than two. The focus of the presentation in this paper is on
the rigid-body case.

!For a discussion on the case with both specified position and orientation, see Section 8.4.
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4.2. Path Parametrization

A path f € R™ is assumed to be available, defining the desired motion of
the ng generalized coordinates ¢ of the system. Note that this is the path for the
generalized coordinates of the system, in contrast to the path in Cartesian space
discussed in Section 2.1. The reason is that constraints on the control inputs
appear in the actuators, i.e., in the joint space in the examples in Section 7,
and then it is important for the time-scaling approach to define the path in this
space both in the motion planning phase and in the subsequent path-tracking
control. As in the definition of a curve in Section 3, the path is assumed to be
two times continuously differentiable. In general, the path is determined by a
high-level path planner in Cartesian space and subsequently described in natural
coordinates as outlined in Section 3. Hence, the inverse-kinematics relations
are necessary for transformation to corresponding generalized coordinates. This
procedure is in general not a problem, since it is performed offline. Note also that
specification of the generalized coordinates implies a full specification of the end-
effector position and orientation. The end-time ¢ of the time frame is in many
cases unknown a priori and should thus be computed as part of the trajectory-
planning procedure. In order to establish a time-invariant description of the
path, the path coordinate s € [sg, sf| from Section 3 is adopted, see, e.g.,[32] or
Chapter 3 in [33]. This is formalized as

f(s), s € [so,s¢] (25)

The interval for the path coordinate can be scaled to a nominal interval between
zero and one, but the default choice here is the Euclidean length of the path.
The corresponding time-derivatives of the path coordinate, $ and §, are referred
to as the path velocity and the path acceleration, respectively.?

4.8. Nominal Trajectory Optimization

In the control architecture proposed in Section 5, it is assumed that a nominal
trajectory is available. For task effectiveness, this nominal trajectory is natural
to compute using a time-optimal criterion, with the maximum available inputs
to the actuators as constraints. However, also other approaches to determine
the nominal trajectory are possible to use together with the considered control
architecture.

It is well-known in the literature [7, 8, 9, 10] that the time-optimal path-
tracking problem for systems of the format (24) can be efficiently solved by trans-
forming the original problem in the time-domain with an open interval [0,f] to a

2In the case of dynamic models with an increased number of states (such as the flexible-joint
model discussed in Remark 1), also time-derivatives of higher order of the path coordinate are
required.
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corresponding problem over the fixed horizon [sg, sf] with a significantly reduced
number of states. If the optimization criterion is chosen as the time for traversing
the path, the cost function can be reformulated as function of the path velocity
instead [52] as follows

ty sf sf1
b= / ar= [ Las= / Las, (26)
S0 S0

Employing the requirement that ¢ = f(s) along the desired path, it follows by
using the chain rule that

q = f/(S)é, (27)
= f"(s)8" + f'(s)3, (28)

where (-)" is the derivative with respect to s. Further, it is straightforward to
reformulate the system dynamics (24) as a function of the path coordinate and
its time-derivatives using (27)—(28), see, e.g., [8, 10, 52], according to

7 =T1(s)3 + Ta(3, 5), (29)

Introducing the state variable as 3(s) = 52 and the input a(s) = 5, see Chapter 3
in [33] and [15], the optimization problem for time-optimal path tracking is

mlnlmlze 32

nimiz ﬁ (32)

sibject 1o 7(s) — r1<s>a<s> T+ To(y/B(s),s), Blso) = Bls)) =0, (33)

/8/(8) - 204(8), /8(8) >0, Tmin < T(S) < Tmax- (34)

Finding a solution of the optimal-control problem corresponding to (32)—(34)

was originally performed by constructing the solution in the phase plane (s, $)
by utilizing the constraints on the path acceleration, see [8, 10]. For numerical
efficiency, the solution to (32)—(34) can directly be computed using parametric
optimization methods such as collocation [53, 54]—i.e., discretization of the com-
plete optimization problem and subsequent solution using general-purpose solvers
for large nonlinear programs (NLPs). Given certain constraints on the dynamic
model (24), the problem is convex and can thus be solved efficiently with guar-
anteed convergence to a global minimum [55]. More specifically, it is shown in
12



[14, 15, 16] that the optimization problem (32)—(34) is convex when D(q) = 0,
because in this case the system dynamics (29) are affine in the state § and the
input variable a, as can be seen from (30)—(31). Irrespective of the solution
method, the result of the optimization procedure is a discretized time-optimal
trajectory for tracking of the specified path f. The relation between the time ¢
and the path coordinate s is given by

dC? 80 <s< Sf, (35)

from which it is clear that there is a bijective relation between s and ¢.

Remark 2. The relation (35) together with (27)-(28) can be used to transform
the resulting optimal joint trajectories from functions of the path coordinate to
functions of time.

5. Control Architecture

To execute a high-performance trajectory, such as the time-optimal resulting
from the procedure outlined in the previous section, a direct application of the
nominal trajectories as described in Remark 2 does not work satisfactory, as
has been observed in [32, 33, 35, 40] and also pointed out in the discussion in
Section 1.1. A major reason is that time-optimal path tracking implies that at
least one of the control inputs is at its limit at each time point [56], which means
that there is no control authority left to keep the system on the desired path
in case of modeling uncertainties or disturbances. Thus, there is a need for a
feedback scheme able to accommodate for this by adapting the velocity while
maintaining high-accuracy path tracking. The following sections describe the
components of the PTVC algorithm.

5.1. Basic Control

Besides a given path f, it is assumed that a controller for set-point control
and trajectory tracking is available. The controller acts on reference values g, G,
and ¢, for the generalized coordinates and their time-derivatives, and there are
several possibilities for this basic controller. The particular choice is not critical
here, but for illustration a common choice for mechanical systems, namely the
computed-torque controller [50, 51], is employed. This control law is stated as

T = M(Q) (QT + Kv(dr - Q) + Kp(‘]r - Q)) + C’(q, Q)q + ﬁ(q)q + G(Q)’ (36)

where K, and K, are controller parameters. Note that the control is based on
estimates M, C, D and G of the system parameters.
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5.2. Tangential Control

Introduce the path parameter o as the actual length traveled in the online
path traversal [32], i.e., analogously to (16) and the path coordinate in the
parametrization of the path (25). When the robot is on the path, the control
is performed along the tangent, and thus the reference values for the controller
are computed based on the geometric path f and the current value of the path
parameter and its time-derivatives. Hence, the reference values for motion along
the path are computed as follows

| (o(t)) = flo(t)), (37)
Gr (o (t)) = f'(a(t))d
Gr(o(t) = f

where the notation emphasizes that the reference values correspond to motion
along the tangent.

5.3. Transversal Control

When deviations from the nominal path occur during the motion, corrective
actions transversal to the path are required. Since the controller is based on
velocity control, the transversal control modifies the velocity references for the
generalized coordinates. The fundamental idea is to use a correction similar to
the control law (7) discussed in the example in Section 2. However, also the cases
of straight paths or paths with low curvature and motion in three dimensions
need to be handled. This is treated in the following subsections.

5.8.1. Nominal Transversal Control

The control law for the transversal control relies on the parametrization of
the path in its natural coordinates, see Section 3. This means that the moving
trihedral (7,n,b) has been defined along the path (compare with the definitions
in Figure 1), and the basis vectors are consequently considered as functions of
the path parameter in the controller. In addition to the Cartesian position = of
the system, introduce the instantaneous center of curvature z, in the Cartesian
space. Let r be the Euclidean length of the projection of x —x, onto the subspace
defined by 7 and n (i.e., the osculating plane defined in Section 3), where x, by
definition is located in this plane. Thus, the following expression holds for r

= [[a™" = o]y, (40)

where ™" is the projection of x on the osculating plane. Further, define the

vector ne, = ™" — x, in the osculating plane (cf. the vector used in the stabi-
lization (7) in the example in Section 2.1). Using these variables, the following
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term for the velocity reference along the orthogonal directions is introduced when
deviating from the nominal path

Gr,1(0(8)) = K1 ()" ((B? = r*)nop — ((z — 2,) - b) 1) , (41)

where K| is a matrix with parameters to be chosen, J(q) is the Jacobian of the
considered manipulator—i.e., the matrix describing the differential kinematics
of the robot—and - denotes the scalar product of two vectors. The Jacobian
is necessary for transforming the corrections required in Cartesian space to the
corresponding joint-velocity reference values. The control along the binormal
direction is computed as the projection of x — x, on the vector b and contributes
to the velocity vector along the direction defined by the binormal. Note that R
and the vector b in (41) depend on the current value of the path parameter o
and they are thus updated continuously along the path.

5.83.2. Path Segments with Low Curvature

If the path is straight or the curvature is close to zero for certain parts of the
path, the radius R is large or even infinite in the limit. Thus, the path correction
in these cases needs to be treated differently than what is defined in (41). It is
noted that the tangent 7 is a good local approximation of the path under these
circumstances. Therefore, the following velocity reference is used

Gr,1(0(t)) = K1 J(9) 7" (= ((z —2) -n)n — (& — ;) - D) b) (42)

in the case that the curvature xk < k;, where k; is a user-specified parameter for
the threshold value. In (42), z, is the current desired position along the path in
Cartesian space (corresponding to qr,”). Consequently, in this case the control
along the normal direction n is handled as the control along the binormal b.

Remark 3. The transversal control laws (41)—(42) assume, for notational con-
venience, a manipulator with three DoF and motion in 3D. The adaptation of the
control laws to 2D motion is obvious, since the control is performed only in the
osculating plane in that case. In the case of more DoF of the manipulator than
three, the pseudo-inverse of appropriate parts of the Jacobian for the manipulator
can be considered, see also Section 8.4.

5.4. Reference Values and Their Interpretation

Combining the control along the tangential and the transversal directions
leads to the following reference values for the generalized coordinates

4 (o (t)) = g, (o(1)), (43)
Gr(a(t)) = Gr (o (1) + ¢r (o (t)), (44)
(1)).

Gr(o(t)) = gy, (a(t))
15



The interpretation of the choice of reference values is as follows. For the general-
ized coordinates ¢, the reference values should always correspond to a point along
the geometric path and consequently no modification is introduced in the case
of path deviations. For the velocities ¢, compensation is introduced according
to (41)—(42) such that motion toward the desired path is obtained when devi-
ations arise. Regarding the corresponding accelerations ¢, the reference values
are chosen for motion along the nominal path. The reason for this being that
the path-velocity control, see Section 5.6, limits the path acceleration and scales
the nominal path velocity and acceleration trajectories based on the desired and
available input torques. Thus, a fundamental mechanism of the algorithm is that
the acceleration is adjusted automatically and therefore no modification of ¢, is
required.

5.5. Parametrization of the Basic Controller

By using the expressions (43)—(45) for the reference values, all variables in
the basic controller (36) can be parametrized in the path parameter o and its
time-derivatives. This leads to the expression

T = p1(0)6 + B2(6,0,4,q), (46)

where it is straightforward to verify that (36) can be written on the format (46)
and to derive the corresponding expressions for 5; and B5. Also other control
laws than computed torque have been parametrized according to this procedure
as discussed in Chapter 4 in [33], where examples include feedforward control
combined with feedback using PD control and controllers with integral action.

5.6. Path-Tracking Velocity Control

With the complete control law parametrized in the path parameter o, the
final step is to determine a scheme for online modification of ¢ utilizing (46).
The result is the algorithm called PTVC, and a graphical representation of the
algorithm is shown in Figure 2. The lower blocks in the figure have already been
defined, and the following sections describe the upper blocks for online control
of o, 0, and &. The trajectory scaling performed online using feedback from the
robot is based on the PVC strategy proposed in [32, 33, 57]. This algorithm
determines the rate at which the path coordinate, and consequently the reference
values ¢, and their time-derivatives, is updated to avoid actuator saturation.

5.6.1. Bounds on Path Acceleration
In order to ensure that each control input is in the available interval [Tyin, Tmax],
bounds on & can be computed according to [32]. Using the parametrization (46)
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Figure 2: Structure of the PTVC algorithm. In addition to the information about the path f
and its derivatives, the generation of the local coordinate systems and the time-varying radius
R along the path is required (this is denoted path information (PI) in the block diagram).
The computations performed in the upper left block are defined by (47), (49), and (50). The
scaling of the trajectories with the parameter v in the upper middle block is governed by (48).
Moreover, the functions 81 and 2 in the middle block are given by the parametrization of the
controller defined in (46) and the reference values in the middle block are specified by (43)—(45).

of the control law for the basic controller, the bounds on & are for each input
i, 1=1,...,nq, as follows

Tmin — Bz ; Tmax — 52 i
, Bi <0 B <0
. B . B
&inax = Tmax — 52 5% >0 &inin = Tmin — 62 B:Z[ >0 (47)
C , B .
00, fi=0 —00, Bi=0

where, for notational convenience, it was assumed that all generalized coordinates
have the same limitations on their corresponding control inputs. The computa-
tions can straightforwardly be modified to the case with different constraints on
the input torques 7. To satisfy the constralnts on all inputs, the bounds on the
path acceleration are chosen as omin = max; oy,;, and Gmax = min; 6;,,,. Further,
non-constant torque limits 7. and 7y, in the algorithm can be used as it is.

This is illustrated in a simulation example in Section 7.2 (see Figure 9), where
17



state-dependent constraints are used to capture a decrease in maximum available
torque because of a velocity-dependent electromotive force in the joint motor.

5.6.2. Trajectory Scaling and Feedback from Path Velocity

Nominal values of the path velocity $ and the path acceleration §, as functions
of the path parameter, are obtained from the trajectory planning (see Section 4.3).
In the case of model uncertainty, downscaling of the nominal optimal trajectories
may be necessary. This is achieved by introducing a scaling parameter denoted ~,
0 < v <1, depicted in the upper middle block in Figure 2. In practice, this means
that the new nominal path velocity and path acceleration are y$(c) and +25(o),
respectively. This is equivalent to a scaling of the time frame, see Chapter 4 in
[33], thus implying that the time for the path traversal is increased when v < 1.
The scaling parameter is made adaptive by the update law proposed in Chapter 4
in [33], which prescribes that

e . .
5= EscO <$(0) ’y) , v$(0) > &, ¢ saturated (48)

0, otherwise

where & is a positive constant and the initial value of the scaling parameter is
~(0) = 1.

In addition to the trajectory scaling, feedback from the desired path velocity
is introduced according to [32, 33]. This feedback 1 (d,0) is given as function of
the path velocity and the path parameter according to

0(3,0) = L (a0 - %), (19)

where &g, is the gain of the feedback and $(o) is the precomputed nominal path
velocity. When the path acceleration is not saturated, this feedback law results
in asymptotic tracking of the desired path velocity, with the tracking time con-
stant specified by &g,, see Chapter 4 in [33]. Thus, based on the new nominal
acceleration v25(0) and the feedback in (49), the desired path acceleration wu, is
computed according to u, = (¢, 0) + v25(c). This desired path acceleration w,
is finally transformed to an achievable path acceleration & using

o= E(ura&min;&max)a (50)

where = is the saturation function, with the second and third arguments as the
lower and upper limit, respectively. These steps are represented by the upper left
block in Figure 2.
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5.7. Summary of the Control Architecture

To summarize the proposed path-tracking control architecture (see Figure 2),
the computational algorithm for the controller is as follows. Using the expressions
(43)—(45) for the reference values combining tangential and orthogonal control,
the quantities 81 and f2 in (46) are computed. Then, the desired path acceleration
u, is determined based on the (possibly scaled) nominal path acceleration and
the path-velocity feedback in (49). The constrained path acceleration G(t) is
finally obtained using (50), which by integration gives ¢(¢) and o(¢). The scaling
parameter v is simultaneously updated according to (48).

6. Analysis

The convergence properties of the developed control algorithm are analyzed,
both with respect to the trajectory control law and with respect to convergence
to the path.

6.1. Stability in the Nominal Case

Assuming that trajectory tracking is realized with the computed-torque con-
trol law in (36) and a correct model of the system, the resulting dynamics for the
tracking error e = ¢, — q are

Gr) — G+ Ko(Gr) — @) + Kplgy —q) =0, (51)

in the cases that ¢, | = 0. This means that in the nominal case of no deviations
from the path, (51) coincides with the standard differential equation for the
error dynamics with computed-torque control [51]. Hence, it is clear that the
dynamics of the closed-loop system (i.e., the dynamics for the tracking error e)
can be arbitrarily determined by choosing the parameters K, and K,. Hence,
given appropriate choices of the gain matrices, this guarantees stability of the
basic controller. The stability of the path-velocity control along the tangent of
the path, PVC, was analyzed in [57], see also Chapter 4 in [33], and the algorithm
has later been extended and verified in subsequent publications (see references in
Section 1.2). The convergence properties of the PTVC algorithm are the same
as those for the PVC algorithm when on the desired path. However, also an
investigation of the transversal behavior for the critical case when deviating from
the path is needed, which is treated next.

6.2. The n-Transversal Behavior

As just stated, the convergence properties of PVC have been established in
previous research, so when extending to PTVC the main question is the behavior
of the transversal convergence. Further, as discussed in Section 3.2, in a typical

19



path-tracking task for a mechanical system, the centripetal forces will be along
the direction of the normal vector n, and as a consequence, control along the
normal direction n is more crucial than the corresponding control along the bi-
normal direction b. Therefore, the convergence properties of the control along
the normal vector n are analyzed. It is implicitly assumed that the parameters
of the trajectory-tracking control law result in stable behavior (cf. the relation
(51)), and that the inputs are not exceeding their saturation limits. As a prelude
to the analysis, the example considered in Section 2 is revisited, where it was
assumed that the radius R and the angular velocity w were constant over time.
The fundamental observation for analyzing the n-transversal behavior is that the
transformation from (8)—(9) to (10)—(11) holds even if w and R are time-varying.
This is verified by differentiating » and using (8)—(9) in the obtained expression
as follows:

i d x2+x2_$1561+3?2562
= T\ 2= T H——
a NEET:
_ mwry + 22(R? — r?) — zowmry + 23(R? — 1?)
T

=r(R?—r?), (52)

_ (el +a23)(R? - r?)
T

which is independent of whether w and R are constant or time-varying. The step
in the example in Section 2 that does not hold in the general case is the solution
of (10), which for a time-varying R has a different solution than (12). It is
thus interesting to investigate the behavior of the fundamental path-convergence
equation (52), which states that

7(t) = r(t) (R()* —r(t)*), (53)

for reference functions having different frequency characteristics. To illustrate
the behavior of this equation for certain choices of the reference trajectory R(t),
(53) is simulated for

R(t) = 2 + sin(wt), (54)

using w = 0, 0.5, 1, and 2 rad/s. The results of the simulations are shown in Fig-
ure 3. The observation in the simulations is that if the path curvature R(t) varies
moderately (in the simulations interpreted as the choice of w), then the tracking
is very close. In the cases where the curvature varies quickly, path deviations
naturally occur (or equivalently, R(t) and r(t) start to differ). The interesting
question following this conclusion is, if this property can be quantified and to
some extent this is the case. Note that R(s) (here considered as a function of the
path coordinate) is given by the geometric properties of the specified path and is

consequently in general precomputed. The path-velocity control of § determines
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Convergence Properties for Sinusoidal Inputs
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Figure 3: Convergence of r(t) in the case of the reference trajectory R(t) = 2 + sin(wt), for
different values of the angular velocity w.
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how fast R(s) is to be updated, so any tracking accuracy can be obtained by
decreasing the speed of the system along the specified path. Consequently, the
following conclusion can be made. The variable w, or more generally the speed
along the tangent of the path, can always be controlled such that r tracks R
within any specified limit.

6.3. The n-Transversal Error Dynamics

The employed control principle along the n-direction achieves convergence to
a path (specified by the time-varying radius of curvature) rather than to a specific
point in space. To further analyze the convergence properties of the n-transversal
behavior, the path deviation 4 is introduced as follows

r(t) = R(t) + 6(t). (55)

Differentiating (55) with respect to time, substituting (53) and (55) to eliminate
r, and finally solving for § gives the n-transversal error dynamics in form of the
following differential equation

o(t) = —R(t) — 3(t) (2R(t)* + 3R(t)3(t) + 6(t)?) . (56)
This equation can be approximated for small values of § according to
5(t) = —R(t) — 2R(t)%5(¢). (57)

The error dynamics—i.e., the dynamics of the path deviation §(¢)—are thus
driven by R(t) and R(t). Hence, the path tracking intuitively depends on the
amount of variation in R(t). If R(t) is piecewise constant, then the tracking
has exponential convergence because R(t) = 0, which for small § gives the path-
deviation dynamics 6(t) = —2R(t)?6(t). If R is time-varying, r(t) will track R(t)
with a deviation given by (56). To illustrate this property in simulations, the
reference trajectories were chosen as the functions R(t) = 24+ e and R(t) =
2 £+ 1/log(e + t), with the former exhibiting faster dynamics than the latter.
Figure 4 shows the results from the simulations of (53) for the different choices
of R(t). In the simulations, R(0) and 7(0) switch between 1 and 3 to illustrate
convergence both from an initial negative error and an initial positive error. As
expected from the approximate differential equation (57) for the dynamics of §(¢),
a larger R(t) should give faster convergence, and this is confirmed in the cases
when R(t) is approaching its final value from R(0) = 3, compared to starting in
R(0) = 1.

6.4. Design of the n-Transversal Error Dynamics
From a given path, f(s), the curvature R(s) can be precomputed. The transfer
of R(s) into R(t) is determined from the evolution of s(t), i.e., from the path-

velocity profile. Consequently, the analysis in the previous sections can be used to
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Convergence Properties for Different Initial Values
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Figure 4: Convergence of r(t) for different choices of the time-varying reference trajectory R(t)
and initial values 7(0).
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compute restrictions on the path velocity in order to ensure desired convergence
properties. It is quite intuitive that the path tracking can be excellent if the path
velocity is slightly decreased, and the previous sections provide a quantitative
method for this.

7. Simulation Results

To evaluate and quantify the performance of the PTVC architecture for path
tracking, extensive simulations were performed and three of these are illustrated
in this paper. The first two examples concern a manipulator with two DoF
moving in a two-dimensional plane, illustrating different paths and actuator con-
straints. The third simulation considers a manipulator with three DoF according
to Section 2.9.4 in [50], which enables arbitrary motions in a three-dimensional
space for the robot end-effector. The computed-torque strategy (36) is used in all
simulations as the basic controller, and the control law is parametrized in the nat-
ural frequency wp such that K, = diag(2wo, . . ., 2wo) and K, = diag(w?, . ..,wd),
where diag(-) is a diagonal matrix with the specified elements along the diagonal.
This choice makes the convergence of the error (51) to exhibit critical damping
[51]. In the simulations presented here, wy = 8 rad/s. In all simulation examples,
the complete PTVC algorithm with both adaptive trajectory scaling (48) and
path-velocity feedback (49) is used. The parameters in the algorithms are &. = 2
and ffb = 10.

For comparison, the path-tracking accuracy is evaluated in all examples using
both the previously presented existing PVC algorithm—i.e., based on the tan-
gential control only—and using the complete PTVC architecture with combined
tangential and explicit transversal control. Further, the high-performance aspect
is evaluated with the path-traversal time and the torque utilization.

7.1. Planar Robot Tracking a Circle

The planar robot in the first example has equal mass of the links according
to my = mo = 1 kg and the length of each link is [ = lo = [ = 2 m. Further,
the center-of-mass is located at a distance of [/2 from the joint rotational center
and each link has a moment of inertia about an axis through the center-of-mass
according to I = 1 kgm?. The gravity constant is ¢ = 9.81 m/s?>. The dynamics
of a planar robot (without friction in the joints) moving in a two-dimensional
plane subject to gravity are given by (compare with (24) and see [50, 51] for a
derivation)

™= M(q)§ +C(4,9)q + G(q), (58)
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where the elements of the matrices M and C and the vector G are as follows:

My, = miIQ + mol? <i + cos(q2)> + 21, (59)
My — m;l2 (; n Cos(q2)> +1, (60)
My = Mz, May = mZZQ + 1, (61)
and
c= _m;lQ sin(qa), 62

63
64

Cii =cg2, Ciz2=c(g1+ go),
Co1 = —cq1, Ca =0,

65

(62)
(63)
(64)
Gy = (% + mg) glcos(q) + mag! (65)

magl
Gy = ;g cos(q1 + q2). (66)

cos(q1 + q2),

The forward and inverse kinematics as well as the differential kinematics defining
the Jacobian J(q) of the manipulator are straightforward to derive, but are omit-
ted in this presentation to save space. The robot base is located at the origin,
(0,0) m, and the desired path is to move along a circle centered in (0.5, 1.5) m with
a radius of 1 m. The starting point is (0.5,0.5) m and the motion is performed
counter-clockwise. The inverse kinematics of the robot is used for transforming
the desired path in Cartesian space to joint positions ¢ defining the path f to
be used in the trajectory generation. The trajectory generation was performed
by solving the optimal control problem (32)—(34) using the convex optimization
method presented in [15], which is possible since viscous joint friction is neglected
in the model. When applying the nominal optimal trajectory in the PVC and
PTVC architectures, model errors were introduced in the path-tracking simula-
tions such that the actual link masses are m; = 1.1 kg and my = 1.1 kg, i.e.,
each link has 10 % higher mass than expected. The assumed maximum and min-
imum available torques in the trajectory planning were set to Tnax = 40 Nm and
Tmin = —40 Nm, respectively, for each robot joint. The allowed torque utilization
for each joint is the same in the simulations of the PVC and PTVC algorithms as
in the trajectory planning. The numerical implementation of the trajectory gen-
eration was made in MATLAB and the convex optimization problem was solved
using the CVX toolbox [58, 59]. Moreover, the parameter K| = 10I5x2 in the
simulation.

As pointed out earlier in Remark 2 and the first paragraph of Section 5, a

direct application of the optimal solution as reference values ¢,(t), ¢,(t), and
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Gr(t) to the basic controller (36) does not work satisfactory, but is nevertheless
presented as a reference solution in this first example. However, considering that
it is common practice in trajectory tracking to plan the trajectories slightly con-
servative using some margin for the actuator torques, the simulation of feedback-
based trajectory tracking allows, in contrast to the simulations of the PVC and
PTVC algorithms, an additional 5 % torque utilization compared to the trajectory
planning. The algorithms and the robot motion were simulated using MATLAB
Simulink.

The resulting path-tracking accuracy in Cartesian space is shown in Figure 5.
Pure trajectory tracking leads, as expected, to large deviations from the desired
path even though it was given extra torque margin during the evaluations. The
PVC, though without torque margin, manages to maintain control authority, and
the computed-torque controller can thus to some extent reduce the path-tracking
error even without explicit control along the orthogonal directions. However, it is
clear that the PTVC with explicit path corrections is significantly more effective
than the PVC in handling the path deviations occurring in the lower left corner
of the plane as a result of the model uncertainty. The input torques 7 are shown
in Figure 6 and it can be seen that, at all times, one input is close to its limit
demonstrating that the close tracking is not achieved by conservatively decreasing
the velocity and traversing the path slower than necessary. This preservation of
high performance is further visualized in Figure 7 showing the path velocity &
together with the nominal time-optimal solution. Observing the differences in
the path velocity for the considered algorithms, it is obvious that both PVC and
PTVC reduce the speed along the path in order to handle the model error. In
this example, PVC and PTVC require approximately the same time to complete
the path, but the path-tracking accuracy with PTVC is increased.

7.2. Planar Robot Tracking Circle Segments and Straight Line

The planar robot, considered in the simulation in Section 7.1, is further used
to demonstrate the behavior of the control architecture for another type of path.
This path is evaluated in the case when the robot has velocity-dependent actuator
limits, despite that the trajectory planning assumed constant limits. The tracking
task is a path composed of two circular segments with radius 0.8 m, joined by a
straight line (see Figure 8). Hence, the curvature is zero during parts of the path
and the transversal control needs to be handled using the alternative control law
defined in Section 5.3.2 for this path segment. The nominal model parameters
and the maximum and minimum input torques are the same as in the simulation
in Section 7.1. The parameter for the feedback in the transversal control is
K| = 10242 in the simulations. The time-optimal trajectory planning was
performed using the same procedure as for the example in Section 7.1.

In the evaluation, model errors are introduced such that m; = 0.8 kg and
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Time-Optimal Path Tracking of a Circle
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Figure 5: Robot end-effector positions z1 and z2 during time-optimal path tracking for a planar
robot moving along a circle in a two-dimensional plane, see Section 7.1. In the simulation with
trajectory tracking, the torque limits were 5% higher compared to in the trajectory planning
in order to allow some margin for the feedback control. The PVC and PTVC were not given
any such extra margin, but still exhibit better path-tracking accuracy. It is clear that PTVC
exhibits superior path-tracking performance.
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Motor Torques During Tracking of a Circle
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Figure 6: Input torques 7 during time-optimal path tracking for a planar robot, corresponding
to Figure 5. The torque limits are indicated by the horizontal blue lines.
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Figure 7: Path velocity ¢ during time-optimal path tracking for a planar robot, corresponding
to Figure 5.
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Time-Optimal Path Tracking of Circle Segments and Line
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Figure 8: Robot end-effector positions 1 and x2 during time-optimal path tracking for a planar
robot moving along a path composed of circular segments joined by a straight line, see Sec-
tion 7.2.

mg = 1.15 kg, i.e., one link is lighter and one link is heavier than what is assumed
in the model. Further, velocity-dependent constraints are introduced to model the
effect that the maximum torque decreases with increasing joint velocity because
of the electromotive force. These constraints are introduced as follows

Ti,max =45 — 5|qz|7 1= 1727
Ti,min = —45 + 5\qz\, 1= 1,2

The resulting paths in Cartesian space from simulations of time-optimal path
tracking are presented in Figure 8 for PVC and PTVC. In both cases, the path
starts in the upper left corner. The results show that both PVC and PTVC
achieve high accuracy, but that the transversal control in PTVC increases the
accuracy of the path tracking both in the circular parts and the straight part
of the path. The input torques 7 are shown in Figure 9. Note in particular
the state-dependent constraints on the actuators. Considering that the trajec-
tory generation is based on constant torque limits, scaling of the timing of the
time-optimal trajectories is necessary, and this is automatically performed by the
control architecture to satisfy the constraints of the actual system. The path
velocity in the respective simulation is visualized in Figure 10. Comparing the
obtained path velocity with the nominal time-optimal, it is clear that both algo-
rithms dilate the trajectories in time in order to handle the model uncertainty
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Motor Torques During Tracking of Circle Segments and Line
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Figure 9: Input torques 7 during time-optimal path tracking for a planar robot, corresponding
to Figure 8. The constant torque limits used in the trajectory planning (blue) and the actual
time-varying and velocity-dependent torque limits for simulation of the PTVC algorithm (green)
are indicated. The corresponding torque limits for the simulation of the PVC algorithm are not
shown for reasons of visibility, but are close to the limits in the PTVC simulation, though slightly

translated in time.
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Path Velocity During Tracking of Circle Segment and Line
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Figure 10: Path velocity ¢ during time-optimal path tracking for a planar robot, corresponding
to Figure 8.

and the state-dependent constraints. It can be observed that the differences be-
tween PVC and PTVC are minor with respect to the path velocity throughout
the maneuver, and that they require about the same time to finish the path.

7.8. Robot with Three DoF Tracking Path in 3D

In order to investigate the performance on a robot system with more complex
dynamics than the planar robot, the path-tracking algorithm is further evaluated
on a robot manipulator with three DoF, see Section 2.9.4 in [50]. The masses
of link two and three are mo = m3 = 1 kg and the lengths of link two and
three are | = 2 m. The moment-of-inertia matrices for the links are assumed
diagonal with elements I = 1 kgm?. The dynamic equations for this robot are
straightforward to derive using appropriate software for symbolic manipulations
of algebraic expressions, according to the strategy defined in textbooks on robot
dynamics, see [50, 51]. The format is the same as for the planar robot, see
(58), but the elements of the matrices are omitted to save space. Also in this
simulation, no viscous friction in the joints was assumed. The robot base is
located at the origin, (0,0,0) m, and the desired path consists of segments of
circles in three dimensions, starting in the point (1,0,1.5) m. The time-optimal
trajectories were generated using the same procedure as in Sections 7.1-7.2, with
the same maximum and minimum torque limits 7. and 7, being 440 Nm.
In the simulations, a modeling error was introduced such that ms = 1.2 kg, i.e.,
the mass of the third link is 20 % higher than what is assumed in the model. As
in the path-tracking example considered in Section 7.1, the same limits on the
available torque were used in the simulation of the PVC and PTVC algorithms
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and in the trajectory planning. The parameter for the feedback in the transversal
control is K| = 50I343 in the simulations.

The simulation results comparing the path-tracking accuracy of PVC and
PTVC in Cartesian space are shown in Figure 11. It can be observed that PTVC
exhibits good path-tracking performance for the considered path in three dimen-
sions. The input torques 7 during the motion are provided in Figure 12, together
with the actuator limits. As previously discussed, a necessary condition for time-
optimality of the path traversal is that at least one input torque is at its limit at
each time point [56]. Observing the results in Figure 12, this property is indeed
indicated since at least one motor torque is close to or at its limit. In addition,
the path velocity obtained for the PVC and the PTVC algorithms is visualized
in Figure 13. It can here be observed that the PTVC algorithm both achieves
higher path-tracking accuracy and requires slightly shorter time for finishing the
path traversal.

8. Discussion

As can be observed in the simulation results presented in Section 7, the con-
trol architecture for combined path tracking and path-velocity control, PTVC,
exhibits excellent results in terms of tracking accuracy. This is not obtained by
decreasing the velocity conservatively—instead high-performance character with
good torque utilization is preserved. It is thus in place to give a number of
remarks and observations regarding the generality of the method, as well as a
discussion of limitations and possible extensions of the control architecture.

8.1. Definition of the Geometric Path

The only requirement on the geometric path to be tracked is the smoothness,
as defined in Section 4.2. Should there be sharp corners, where the tangent to the
path is not defined, there are two options. The trajectory planning may in this
case be allowed to locally modify the path such that the corners are smoothed
according to predefined specifications. An example here is a spline description
with limits on the path deviation. The other possibility is to be strict on the
path tracking and then the strategy is to move to the corner and stop, restart,
and then continue. With these strategies, any realistic geometric path can be
tracked.

Both paths in the examples in Sections 7.2-7.3 consist of different segments,
as seen in Figures 8 and 11. In line with the presentation in Sections 2.2 and 3,
each part of the path has its own local coordinate axes in the osculating plane
corresponding to that segment. The pieces of the path are connected directly,
without any smoothing, and thus it is noteworthy how well the tracking is per-
formed for interconnected segments.
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Time-Optimal Path Tracking of Circle Segments in 3D
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Figure 11: Robot end-effector positions x1, 2, and x3 during time-optimal path tracking for a
robot with three DoF moving along a path in a three-dimensional space, see Section 7.3.

33



Motor Torques During Tracking of Circle Segments in 3D
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Figure 12: Input torques 7 during time-optimal path tracking for a robot with three DoF,
corresponding to Figure 11. The torque limits are indicated by the horizontal blue lines.

34



Path Velocity During Tracking of Circle Segments in 3D
T T T T T T T

8
- =—=== Nominal
6L N - - PVC i
— PTVC RN

-
Pl FRGRESL

Path Velocity [-]

0 0.2 0.4 06 0.8 1 1.2 14 16
Time [s]

Figure 13: Path velocity ¢ during time-optimal path tracking for a robot with three DoF,
corresponding to Figure 11.

Regarding the convergence to the path in the case of a deviation, there is
no strict requirement that all points along the path must be visited. Rather,
the approach taken here is to return to the path as soon as possible, given the
limitations on the control inputs.

8.2. Generality Regarding the Trajectory Planning

In the simulation examples considered in Section 7, the trajectory planning
was performed using a time-optimal criterion, see Section 4.3. It should be
stressed that any trajectory-planning algorithm can be used with the PTVC.
The only requirement is that the computed trajectory can be specified by the
path velocity as function of the path coordinate (i.e., the distance along the
path). This is in almost all cases possible by using the transformations (27)—
(28), or if needed also time-derivatives of higher order. Naturally, time-optimal
path tracking is of interest in many applications in order to maximize task ef-
fectiveness. However, due to potential wear of the actuators, modified criteria
with combinations of time-optimal and energy-optimal can be used instead [14].
PTVC has no limitations with regard to this, so any trajectory planning can be
used provided the monotonicity/bijectivity between the path coordinate s and
time t.

8.3. Controller for Trajectory Tracking

The computed-torque control law was used for tracking of the computed ref-
erence values for the generalized coordinates when simulating the experiments
presented in Section 7. However, in principle any reasonable controller can be
used. The only requirement is that the chain rule can be applied as in (37)—(39),
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such that the controller can be parametrized on the desired form (46). This is in
general not a restrictive assumption, as already discussed in Section 5.5.

Insights have been gained in the tuning of the parameters in the trajectory-
tracking controller, such as the PD-controller parameters K, and K, in the
computed-torque control law (36). An advantage with the PTVC algorithm is
that high gains are not necessary for path tracking, since this is obtained by the
scheme itself. Instead, it is sufficient to tune the controller parameters as usual
for sufficient set-point control and disturbance rejection, with consideration to
noise in the measurement signals.

8.4. Additional Degrees of Freedom

For robot manipulators, it is common that not only the path of the tool
is specified, but also its orientation. Even though the 3D path has been the
primary objective of the control in this paper, it is straightforward to extend
the path-tracking algorithm to also achieve tracking of the desired orientation
of a coordinate system associated with the system (important examples include
the robot tool). Such an extension requires the consideration of the full 6D
motion. For 3D motion, the path is a sequence of positions, whereas for 6D it
is a sequence of positions and orientations. Using the inverse kinematics, the
path f(s) for the generalized coordinates (now 6D) is defined exactly as in (25).
The parallel direction x| along the tangent of the path defines a one-dimensional
manifold where PVC is applied as before. For the orthogonal dimensions x|,
now typically 5D, the deviations from the desired path are handled similarly as
defined in (41)—(42) in Section 5.

Even though it is outside the scope of this paper, another situation that
could be considered is the case where the robot has more DoF than tracking of the
specified path requires, i.e., the case of redundant manipulation. In this scenario,
the path in Cartesian space does not unambiguously define the joint coordinates.
However, once the path for the generalized coordinates have been determined, the
trajectory planning is analogous to the case of non-redundant robots in the key
aspect that time-optimal path tracking would imply that at least one actuator
is at the limit. Consequently, the potential benefits of online trajectory scaling
are immediate. An interesting extension of the PTVC architecture in this paper,
would be to investigate if the possible nullspace motion could be utilized.

8.5. Additional Sensors in Workspace

Another interesting feature of PTVC is the ability to include workspace po-
sition measurements in the motion controller. It is well-known in manipulator
robotics, where the joint motor positions typically are the only sensors available,
that the accuracy of the tool position is limited by the accuracy of the kine-
matic calibration and dynamic properties such as joint and link flexibilities in
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high-speed motions. Inclusion of explicit workspace measurements thus has high
potential. This can easily be incorporated in the proposed architecture, since
the path-tracking corrections in (41)—(42) in Section 5.3 could be based on ac-
tual workspace measurements instead of the estimates provided by the forward
kinematics.

8.6. Extensions to other Mechanical Systems

An interesting extension of the PTVC algorithm is to consider other mechan-
ical systems such as ground vehicles and mobile robot platforms. Since the main
requirements are the bijectivity between s and ¢ for the planned trajectory, and
that the controller can be parametrized using the chain rule, which is almost
always the case, the basic formulation is straightforward. The main difficulties
remaining are those related to non-holonomic constraints and combined longi-
tudinal and lateral wheel friction, i.e., the dynamics can not be written on the
form (24). For certain non-holonomic systems, this is not a problem and this was
remarked in Section 4 for the flexible-joint manipulator. In other cases, questions
remain to be resolved, and more specifically, what needs to be done in an exten-
sion concerning mobile platforms and vehicles is to ensure that the path-velocity
control avoids exceeding the maximum possible interaction forces between the
wheels and the ground.

9. Conclusions

A control architecture, path-tracking velocity control (PTVC), has been de-
veloped, analyzed, and evaluated in simulations. The control algorithm is based
on existing path-velocity control (PVC), but in addition to velocity adaptation
along the tangent of the path, the algorithm also has an explicit mechanism,
with inherently attractive properties, for handling deviations transversal to the
path. Consequently, the tangential direction is treated differently than its or-
thogonal directions, a fact that is conveniently described using the framework
of natural coordinates, which also handily provides the radius of curvature of
the path. The dynamics for the motion along the orthogonal directions are by
feedback constructed such that the convergence to the path does not hamper the
velocity control along the path. The actual velocity along the path influences the
convergence to the path wvia the radius of curvature as a time function, and for
iterated design of this aspect a framework of quantitative convergence analysis
was presented in Section 6. Compared to trajectory tracking or existing PVC,
the results in Section 7 show that the PTVC exhibits much better path-tracking
behavior. Still, it maintains the high-performance character with high torque
utilization, such that the traversal time is in the same order as for the PVC, or
in some cases even better. In conclusion, PTVC exhibits superior performance
compared to PVC.
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