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Abstract

Plasticity theory represents a fundamental continuum approach to the study of a great
variety of phenomena in the mechanics of inelastic solids. Basic to the theory is the
appearance of permanent deformation and its association with the phenomenologi-
cal concept of plastic deformation. The origin of plastic deformation in a solid may
be looked upon as the result of a complex interference of its microstructure with its
macrostructure. In a crystalline material it is the defects in its structure which cause
the permanent deformation, and especially, as far as metals are concerned, it is disloca-
tions which act as carriers of plastic deformation. Thus, in a general phenomenological
approach there must be an interplay between microstructural and macrostructural
scales. This leads us to the conclusion that plastic deformation is nonlocal in character
and hence a general theory of plasticity should be nonlocal.

The present work on nonlocal plasticity is based on a strain space formulation
where plasiic strain is regarded as a primitive variable, characterized by an appropriate
constitutive equation for its rate. Nonlocal constitutive variables are constructed from
a set of basic state functions, constituted by total (kinematical) strain, plastic strain
and a scalar measure of strain hardening. A rate-independent theory is formulated
where stress is assumed to be a function of the nonlocal variables.

A yield function in strain space is introduced, where the same set of independent
variables occurs as in the case of the stress response function. This is fundamental
for the theory. We recall that in classical plasticity the yield condition implies that
whether a state is elastic or plastic depends only on the plastic strain at the actual
stress point and not on plastic strain at neighbouring points, hence excluding any
dependence on gradients of plastic strain. From a physical view, however, it is hard to
find any support for rejecting long-range interactions in the yield criterion, keeping in
mind the complex interplay between microstructure and macrostructure with regard
to plastic deformation,

Yield criteria, flow rules, and loading conditions are formulated. The loading condi-
tions in strain space give rise to associated conditions in stress space of quite different
form (constrasting with local theory). This difference between stress space and strain
space is seen to favour the choice of strains over stresses as primary variables in nonlocal
plasticity.

Numerical techniques are developed for integrating the rate equations, subject to
the constraints implied by the consistency condition, in nonlocal plasticity, being rep-
resented by an integral equation defined throughout the region of plastic loading.

A strain softening problem is investigated by finite element analysis. Solutions are
obtained which converge properly and also show computational objectivity.

Keywords: nonlocal plasticity, plastic dissipation, strain softening, localization,
integration of elastic-plastic equations, finite element analysis
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Chapter 1

Introduction

This work!%~1 deals with nonlocal plasticity, the ultimate purpose being to investigate
strain softening and localization in golids. It is well known that conventional contin-
uum models have essential deficiencies if used to describe strain softening behaviour.
However, theories of nonlocal continua are seen to embrace excellent possibilities to
overcome these drawbacks, as will be discussed in Section 1.2 below.

Preliminarily we draw attention to the fact that the concept of strain softening
may afford a macroscopic approach fo distributed cracking in a wide variety of solid
materials, where in the special case of uniaxial stress, strain softening iz simply under-
stood as the decline of stress at increasing strain. Further aspects of strain softening
phenomena are discussed in Section 1.1.

Nenlocal theories are briefly discussed in Section 1.3, and some general features of
such theories are outlined in Appendix A, For the moment we merely notice that in
nonlocal continuum theories the principle of local action is not valid, i.e. the stress is
not only affected by an infinitesimal neighbourhood about the actual stress point but
by the entire body under consideration.

In Section 1.4 classical plasticity theory is shortly reviewed, with an emphasis on
features which become significant when the theory is generalized to include nonlocal
interactions. The result of such generalizations is presented in Chapter 2, which deals
with general nonlocal thermodynamic plasticity, and in Chapter 3, where the focus is
on a purely mechanical theory.

In Chapter 4 the main interest is devoted to numerical techniques in nonlocal plas-
ticity. A brief survey is given in Section 1.5 helow.

10-1The content of the first three chapters is based on Nilsson {1992).



1.1 Strain softening and localization phenomena

In experiments, a variety of engineering materials shows the characteristic feature of
increasing loss of stiffness and strength with increasing loading. This is the case for
certain classes of granular materials including concrete and rocks, and probably also for
ceramics, powder metals and many other materials. The micromechanical mechanism
of stiffness degradation is not fully understood, being the result of complicated mi-
crostructural processes involving nucleation and growth of microcracks and microvoids.
To indicate precisely one or ancther phenomenological effect on the macroscale to a cer-
tain microstructural source is of course not possible in general. B is common, however,
to consider stiffness degradation as damage and yield degradation (strain softening)
as an effect of inelastic deformation. This deteroriation of the material will eventually
lead to failure, which is then characterized as an accumulation of microcracks (local-
ization) into a fracture region rather then the result of the propagation of one single
crack. Since the crack distribution involves a large system of microcracks randomly
located and oriented, it seems natural to assume that the material can be treated as a
continuum, which leads to the concept of strain softening. In the special case of uniax-
ial stress, as already mentioned, strain softening is recognized as the decline of stress
at increasing strain. Several difficulties arise, however, when conventional continuum
mechanics is used - from a computational as well as a phenomenological point of view.

Here we have thought of localization as accumulation of cracking, but more generally
we understand that localization in solid materials is progressive deformation into a
narrow zone. Even i localization is a striking feature of strain softening, it should be
remembered that localization phenomena also occur in a hardening elastic-plastic solid,
exposing two different aspects of the relationship between localization and material
instability. In fact, questions about instabilities in the softening region have cast doubt
on the substance of the concept of strain softening. The question whether softening
behaviour represents a material property or a structural property has been intensely
discussed by researchers in the field for some years, but no general agreement has
been achieved. The reader is referred to discussions by Sandler and Wright (1984),
Read and Hegemier (1984}, Nemat-Nasser (1985) and Chen (1988). Some objectives
in this context have also been addressed in relation to the issue of ill-posedness of
initial-boundary value problems. The point that elastic waves cannot propagate in the
softening region of a rate-independent material is not completely relevant, however.
It is true that the wave velocity becomes imaginary and the differential equation of
motion changes type if the tangent moduli matrix ceases to be positive definite, but
it should be remembered that the unloading modulus remains positive also in the
softening range, so during unloading from an elastic-plastic state it may be possible for
elastic waves to propagate even in the softening region. It is important to note that
the discussion here concerns the phenomonological basis for strain softening, whereas
from a mathematical point of view a precise definition of the softening concept can be



uniquely given within the general theory of plasticity. It should also be pointed out
that even if it can be claimed that strain softening does not exist at a micromechanical
level, it is clear that the softening concept is useful at a macromechanical level, as
confirmed from an extensive number of theoretical as well as numerical investigations.

1.2 Strain softening models and finite element so-
lutions

Localization in a strain softening rate-independent material 1s associated with material
instability, as already mentioned, and loss of ellipticity in quasi-static problems. From
a computational point of view this appears to be a crucial problem due to numerical
instability and mesh sensitivity, When conventional continuum models are applied
finite element solutions show the feature of non-objectivity with respect to the mesh
when standard finite elements are used. As a consequence, the strain softening zone
localizes into a region of vanishing volume under zero energy dissipation, when the ele-
ments tend to be infinitely small. Objectivity can be achieved by different approaches.
One technique commonly used, probably first by Pietruszczak and Mroz {1981), modi-
fies the constitutive relation and makes it depend on the mesh size. Another approach
takes advantage of the concept of localization hmiters, which force the localized zone to
have a certain minimum finite size {(see Belytschko and Lasry 1989 for a recent survey).
These different methods can be combined, a possibility frequently used. The fictitious
crack model by Hillerborg et al. (1976) and the crack band model by Bazant and Oh
(1983) represent simple examples of the use of localization limiters. A general form of
localization limiters may be utilized within the theory of a nonlocal continuum. (Non-
tocal theories are briefly discussed in Section 1.3 below.) In fact a nonlocal approach is
well adapted o interpret strain softening as smeared distributed cracking. It provides
in a natural way for the introduction of a characteristic length as a material parameter,
and by the definition of a representative volume of a heterogeneous medium it appears
that the nonlocal concept represents a generalized form of a localization limiter. It is
important to note that the problem of achieving computational objectivity seems to
be inherently solved by the nonlocal approach. The work on strain softening phenom-
ena by Bazant and Lin (1988) within the theory of nonlocal plasticity seems to give
accurate results, but takes advantage of assumptions which are not consistent with a
general theory.

Rate-dependent models have been proposed to eliminate the problems due to change
of type of differential equations'?~1, e.g. by Sandler and Wright (1984) and Needleman
(1988). The inclusion of rate effects in the constitutive model causes stability in the
sense that no change of type of differential equation occurs. However, such models

1.2-18ee Section §.1.



probably cannot be applied efliciently for static {or nearly static) loading conditions.
Strain softening phenomena can be described within continuum models for materials
with gradient effects’*~? and for oriented media (micropolar theory). Various types of
discrete micromechanical models have also been proposed for the analysis of fracture
and localization in strain softening materials. The idea of using computer generated
discrete models to investigate the microstructural processes associated with localization
and fracture is important. Such models are usually based on concepts of probabilistic
networks (see e.g. the pioneering work of Burt and Dougill 1971), but fractal concepts
have also been utilized (Hermann and Roux 1990).

1.3 Nonlocal theories

It is evident that physical models or theories have a certain domain of applicability
outside of which they fail to predict relevant physical phenomena with reasonable
accuracy. This domain of applicability of the theory is a function of internal scales of
the medium to which it applies. When these scales are sufficiently small compared to
corresponding external scales, classical continuum theories give acceptable results, On
the other hand, the existence of characteristic length scales of the medium, common
in many areas of mechanics, disproves local theories.

Classical continuum mechanics is based on the principle of local action, and on
the assumption that the equations of balance are valid for every part of the body,
however small it may be. The principle of local action is not valid in nonlocal theories,
that is the stress at a point X is not only affected by the infinitesimal neighbourhood
about the same point X, but by the entire body under consideration. Thus long-range
interactions between a particle at X and a particle at Z may contribute to the stress
at X, Continuum theories including long-range interactions have been of considerable
interest for over twenty years (see e.g. Kunin 1982, 1983), Gurtin and Williams 1971
and Edelen 1976). A theory based on Fdelen and Laws (1971) and Edelen (1976) is
outlined in Appendix A. There are different approaches to the problem of describing
nonlocal interactions and they do not yield identical theories. It is common, however,
in nonlocal continwumn theories that global balance equations are postulated for the
entire body and not for an arbitrary part of it. Local equations can still be obtained,
but they then contain nonlocal residuals, which take the long-range interactions into

account.

1-2-28ome authors characterize materials with gradient effects as nonlocal. This terminology is not
adopted here; ¢f. Appendix A, Section 1.



1.4 Plasticity theories

Plasticity theory represents a fundamental continuum approach to the study of a great
variety of phenomena in the mechanics of inelastic solids. Basic to the theory is the
appearance of permanent deformation and its association with the phenomenological
concept of plastic deformation. Most researchers in the field introduce some measure
of plastic strain as an internal variable, but unfortunately there is no general agree-
ment as to how this measure should be defined and be introduced into a theory of
finite plasticity. No objections, however, can be raised against the idea of the origin
of plastic deformation in a solid as the result of a complex interference of its mi-
crostructure with its macrostructure. In a crystalline material it is the defects in its
structure which cause the permanent deformation, and especially, as far as metals are
concerned, it is dislocations which act as carriers of plastic deformation. Thusin a gen-
eral phenomenological approach there must be an interplay between microstructural
and macrostructural scales. This leads us to the conclusion that plastic deformation
is nonlocal in character and hence a general theory of plasticity should be nonlocal.
In this context it is worth mentioning that the principle of local action is a restriction
of a much more general concept (the principle of determinism)!4~, and consequently
theories of continuous media are basically nonlocal. The validity of corresponding lo-
cal theories is then a question of applicability as discussed in Section 1.3, We also
draw attention to the fact that extensive subregions of an elastic-plastic body during
loading may often respond elastically, while substantial plastic deformation occurs in
the neighbourhood or far away - a behaviour which in general also calls for a nonlocal
theory.

Usually strain softening models intended for three-dimensional problems during
general loading conditions are extended from physical understanding and mathemat-
ical representation in one dimension. Such extensions cannot generally be effected
unambiguously and are far from obvious. Consequently there is a need for a gen-
eral framework for the treatment of strain softening phenomena. Now the concept of
softening is well established in plasticity theory - at least mathematically. Hence it
is logical to try the possibility of treating strain softening in heterogeneous materials
within a general theory of plasticity. Taking into consideration the correspondence
between nonlocality and localization limiters, it surely can be argued that a theory
of nonlocal softening plasticity will be capable of describing the essential features of
strain softening, including that of localization.

In the present work we intend to construct a rather general nonlocal theory for
finitely deformable elastic-plastic materials, in which viscous effects can be neglected.
In Chapter 2 a thermomechanical theory is briefly outlined, while in Chapter 3 a purely

L4-1The principle of determinism merely states that past and present configurations given by the
motion of the material points in a body determine the stress field in its present configuration,




mechanical theory is derived. The nonlocal mechanical theory is based on works on
local finite plasticity by Naghdi and co-workers (see e.g. Casey and Naghdi 1984). Yield
criteria are introduced with reference to strain space as well as stress space, the yield
function in strain space taken as primary. Stress space and strain space formulations
are different in concept, and with regard to nonlocal theory a strain space formulation
turns out to be the natural choice. It is also noted that for computational purposes it
is convenient to use strains and not stresses as primary variables.

In this context we will draw attention to three rather recent papers in which plas-
ticity is critically reviewed, namely those of Drucker (1988), Cleja Tigoiu (1990) and
Naghdi (1990), representing different schools of plasticity. Additional references on
plasticity will be given in Chapters 2 and 3.

1.5 Numerical techniques in nonlocal plasticity

In engineering mechanics, numerical implementation of the elastic-plastic equations is
usually accomplished within the realm of the finite element method. The literature
attributed to this issue 1s extensive - as far as local plasticity is concerned. In the case
of nonlocal plasticity not much has been done, and no general concepts are known to

exist,

In Chapter 4 various numerical techniques commonly used in local plasticity are
extended to comply with the nonlocal concept. Thus, based on a weak form of the
equilibrium equation, a finite element formulation is derived, capable of treating non-
local constitutive assumptions. Also addressed is the intricate problem of integrating
the rate equations subject to the consiraints implied by the consistency condition - in
nonlocal plasticity expressed by an integral equation defined throughout the region of
loading points. It turns out that the rate equations in general cannot be integrated
pointwise as in local theory - in fact the integration procedure has to be performed
simultaneously for the whole set of loading poinis.

The potential of the nonlocal formulation is numerically demonstrated by the anal-
ysis of a strain softening bar. The material is isotropic, stress is assumed to depend
linearly on strain and to be independent of the strain hardening variable, and the yield
function is of von Mises type with nonlocal hardening/softening. Finite element solu-
tions converge properly and are computationally objective, and the size of the localized
zone depends, as expected, essentially on the characteristic length of the material.



Chapter 2

On general nonlocal plasticity

2.1 Introduction

We recall that the main purpose of this work is to derive a purely mechanical nonlocal
theory of a finitely deforming elastic-plastic body, and to deduce that such a theory
may serve as a natural basis for the description of strain softening materials. However,
in order to understand the origin of the basic differences between local and nonlocal
theory, it is instructive to start with a general thermodynamic theory. The purely
mechanical theory is then dealt with in the next chapter.

In Chapier 1 we have in a general sense discussed when {and why) it may be pre-
ferred to use nonlocal continuum theory instead of discrete or classical field theories.
More specifically, plastic deformation caused by nonlocal interactions has been some-
what investigated in relation to the discussion of the concept of strain softening. These
arguments will not be repeated here, but again it is emphasized that plastic deforma-
tions indeed generally are of nonlocal character, due to the micromechanical structure
of yielding materials. As may be understood from the brief discussion in Section 1.4
there is no unequivocal definition of the concept of plastic strain. This is, at least partly,
due to the fact that plastic strain cannot be defined on a purely kinematical basis - not
even in the infinitesimal theory of plasticity - but must be characterized through some
constitutive framework. Many theories of finite plasticity use an intermediate stress-
free (relaxed) configuration in order to introduce elastic and plastic deformation. The
deformation gradient F is then decomposed as a product of an elastic part F¢ and a
plastic part F? in the form F = F°FP. Total strain E (Lagrangian strain) is defined in
terms of F, while plastic strain E? and elastic strain E® are defined in terms of F* and
F?. Whereas E is unambiguously defined, there is no general agreement as to exactly
how the measures of plastic and elastic strain should be defined, nor with regard to how
total strain should be decompesed into elastic and plastic parts. It should be noted
that while in the theory of infinitesimal plasticity the decomposition E = E* + E? 1s
valid, this is not necessarily true in the case of finite plasticity. It is to be emphasized
that generally neither ¥ nor ¥? is the gradient of a deformation field, nor do they
necessarily satisfy any compatibility conditions.



An extensive hiterature exists concerning issues with relation to plasticity models
with intermediate relaxed configurations. In addition to the basic problems of existence
and uniqueness of the multiplicative decomposition, it can be noticed that the issue
of invariance properties of F* and F? under a change of frame has not been entirely
resolved. For a discussion we refer to the reviews of Naghdi (1990) and Cleja-Tigoiu
{1990} mentioned in Section 1.4. References to original papers, e.g. those of Kroner
(1960), Lee and Liu (1967) and Mandel (1973) are also found in these review articles.

Because of the difficulties attached to theories using relaxed configurations, many
authors of papers on plasticity avoid introducing F?, preferring to introduce a plastic
strain variable E? as a primitive quantity with certain prescribed characteristics (e.g.
being a symmetric second order tensor with the same invariance properties as E). This
will certainly circumnvent the problems related to the relaxed configuration concept, but
on the other hand it leaves the identification of E? with some ambiguity. It should also
be mentioned that the issue concerning the relationship between these two different
approaches has been intensely debated in the literature for many years, but has not

vet been satisfactorily resolved.
&

In this attempt to formulate a nonlocal plasticity theory we will regard plastic strain
as a primitive variable, characterized by an appropriate constitutive equation for its
rate. This was the approach in the papers of Green and Naghdi (1965, 1966). Also
thermodynamic arguments used in this chapter are similar to those in these papers of
Green and Naghdi, while the nonlocal formulation is based essentially on the works
of Edelen and Laws (1971) and Edelen, Green and Laws (1971). Whereas Green and
Naghdi used a stress space formulation, the treatment here is based on a strain space
formulation. In Section 3.1 we discuss some aspects of the main differences between
formulations in stress space and strain space.

In the case of nonlocal theory, it can additionally be noted that in a strain space
formulation it is not in general necessary to require that stress-strain relations be
invertible, a fact which is important in the case of unrestricted nonlocality as will be
discussed below. In this context it can be mentioned that theories of nonlocal plasticity
are developed in Eringen (1981} by use of a strain space formulation, and in Eringen
(1983) by use of a stress space formulation.

It is common in theories of elastic-plastic materials fo represent strain hardening
by one single scalar function. The list of inelastic variables may however be extended
to include an arbitrary number of scalar and tensor functions. However, we will not
add to the theory a complexity which would obscure the basic features of nonlocality,
without exposing anything fundamentally new in the theory of plasticity. Hence in
the development which follows, strain hardening is basically represented by a scalar
function.

In Section 2.2 below, we will introduce strain measures, consisting of the Lagrangian



strain tensor and a plastic strain tensor together with a scalar strain hardening variable.
This scalar and these tensors are basic state functions of the theory, from which will be
constructed nonlocal quantitites to be used as independent variables in the constitutive
theory. Balance laws and the nonlocal Clausius-Duhem inequality are presented in
Section 2.3, while Section 2.4 deals with the formulation of the constitutive equations.

Finally, as our objective is to make the treatment reasonably self-contained, some
arguments will be repeated in what follows, albeit they can be found elsewhere in the
Iiterature.

2.2 Kinematics

The motion of a material point of a body B is referred to a fixed reference configuration
of the body. The position of the material point in the present configuration at time ¢
is designated by x = x(X,?), where X is the position of the same material point in

the fixed reference configuration®?-1,

As strain measure we adopt the symmetric Lagrangian strain tensor, defined by

E= %(FTF —-1), _ (22-1)

where F = Grad x = 8x/0X is the deformation gradient tensor and 1 denotes the
second order identity tensor.

With reference to the discussion in Section 2.1 we assume the existence of a plastic

222 gecond order tensor-valued function EP =

strain tensor, which is a symmetric
Er(X,t), and a measure of strain hardening, which is a scalar-valued function & =
&(X,t). As for plastic strain, it is further assumed that E® has the same invariance
properties as E, being unaltered under a change of frame. Again it is emphasized that
E? is not derivable from the displacement field. As in local theory EP as well as % will

be described by constitutive equations.

The basic functions which are assumed to constitute the thermodynamic staite are
represented by U(X, t), where I is a collection of functions defined by

22-1801d lower and upper case letters are usually used to denote vectors and second order tensors,
respectively, but some exceptions will oceur. Standard vector and tensor notations are used as far as
possible. In most cases equations are written in coordinate-free forms, but it is understood that all
entities are defined with reference to a fixed system of rectangular Cartesian axes. Superposed dots
denote material time derivatives.

2:2-714 is to be noted that the symmetry of E? is an assumed property, which cannot be proved in a
general theory of plasticity.



U(X, t) = {E(X’t)’ EP(X, t): K(X,t),ﬂ(x,i)}, (2'2 - 2)

# being the absolute temperature.

This assumption manifests the nonlocal character of the theory in that we require,
in contrast to local theory, the thermodynamic state functions — not only their values
at X— to specify the dependent variables. If we take the Helmholtz free energy ¢ as
the basic thermodynamic quantity, this means that the value of 9 at X is determined
by the values of the thermodynamic state functions all over the body. In order to
provide for such dependence we construct guantities

<E> (X t) = [pa{X,2,UX,t), U(Z,1)}dV(E),
<E > (X, )= [por{X,Z,U(X,1), U(Z,1)}dV(Z), (223
< K> (X t) = [paMX,Z,U(X,t), U(Z,1)}dV(Z), '
< 0> (X,t)= [pof{X,Z,U(X,t),U(Z,t)}dV(Z),
<U>(X,1) = /B ofX, Z,U(X, 1), U(Z, £)}dV(Z), (2.2 —4)
where
a={af, o, o', o} (2.2 ~5)

is a collection of prescribed functions of the arguments indicated. It is assumed that o
preserves symmetry, i.e. < E > and < EP > are symmetric second order tensors. For
convenience the explicit dependency on X and Z is henceforth suppressed.

Remark 2.1. We use Z to indicate functional relationship in the sense that Z
represents all points of the body, while X represents an arbitrarily distinguished point.
Henceforth, when confusion does not arise, we will omit the dependence on X and £ in
the arguments.O

Remark 2.2. Note that < U > is a function symbol; the pointed brackets should
not be confused with the concept of averaging a function. 0

Remark 2.3. i we take a = U(X,t)/V(B), where V(B) is the volume of the body
in its referential configuration, we recover the original state functions, i.e.

<U>=U, a=U(X,t)/V(B). (2.2 -6)

Before specifying constitutive assumptions we will briefly discuss the equations of
balance in the next section.O
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2.3 Equations of balance

For a locally mass closed body (cf. Appendix A) with negligible long range gravita-
tional effects, we assume that the localization residuals for linear as well as rotational
momentum vanish. Then with § =0, f = 0 and M = 0 we find from {A-12), (A-18)
and (A-26) that the equation of conservation of mass and the equations of balance of
linear and rotational momentum read

ptp+x=0, (2.3 1)
+ THp(f-%)=0, (2.3 - 2)
T =TT, (2.3 -3}

where it is recognized that p is the mass density, T the Cauchy stress and f the specific
body force,

The reduced global nonlocal Clausius-Duhem inequality (A-42) takes the form

f ( ){——p(zj) +07) + T - grad x + %q - grad 8}dv > 0, (2.3 —4)
B(t

where ¢ is the Helmholiz free energy, n specific entropy, & absolute temperature, q the
external heat flux vector, and where B{#) denotes the image of the body B under the
motion x(X,t) defined by (A-1), (also cf. the beginning of Section 2.2).

2.4 Constitutive assumptions

To provide for a material deseription we introduce the symmetric second Piola- Kirch-
hoff stress tensor S defined by

T=(detF)'FSFT, (2.4 ~ 1)

and the material external heat flux vector Q defined by

g=(detF)"' F Q, (2.4 —2)

where

11



F = Grad x(X,1) (2.4 —3)

is the deformation gradient.

Using (2.3-4), (2.4-1), (2.4-2), (2.2-1) and {A-8); we conclude that the reduced
global nonlocal Clausius-Duhem inequality in material form reads

L{—po(¢+én)+S-E+éQ-Grad 6}dv > 0, (2.4 — 4)

where now X replaces x as independent variable, Grad is the gradient with respect to
X and pg is the mass density in the referential configuration.

As constitutive variables we choose < f > defined by (2.2-4), and assume that

8
h=P(< U >), (2.4 —5)
U)

where the explicit dependency on X is suppressed. The inequality (2.4-4) and the
constitutive equations {2.4-5) represent a nonlocal thermodynamic system. To evaluate
the restrictions on the functions in (2.4-3) imposed by the inequality (2.4-4) we need
the material time derivative of the Helmholtz free energy. Differentiating (2.4-5);, we
obtain

PD"L = PO%; < U >
AT u > / {au X t)”(X i)+ Bu?z t)a(z 1)}V (Z), (2.4 ~ 6)

where (2.2-4) has been used. Here po means po(X) and 84/8 < U > is some function
of <U > (X,1), say

i)
oS = Fl<u> (X0 (24 -7

Now define 8¢(Z)/0 < U > by

o B
8<u>(Z)_F[<Z/{>(Z,t)] (2.4 —8)

12



and o* by the relations

a= o{U(X,t), U(Z,1)}, }

of = ofU(Z,1), UK, 1)} (24-9)

Thus we get o* by interchanging X and Z in the arguments of .

With these definitions (2.4-6) can be rearranged and expressed in the form

Jo o o
x5 P8y >(Z)auoc :

pot = [ {p°a<a>au U0V (Z)

ALY s az,{?z ) U(Z:1) = pl)g jizi > )au(x U, av(2)

da

]{”"a <U>dauX, t)}

a9 dar
Tl >(Z)au(x 1)

} U(X, )V (Z) + Hy (2.4 — 10)

where

o da
o= [ (5 oyrs sz i

(X, 1) dV(Z) (2.4 — 11)

By interchanging X and Z and reversing the order of integration, we note that the
functional Hy identically satisfies the equation

/B My dV(X) =0 (2.4 — 12)

for arbitrary differentiable functions ¢ and a.
Remark 4.1. If the body B constitutes a local system, then

i3




Ja

iz =" (2.4 —13)

and hence (2.4-9) is reduced to

= Q{M(X: t)}’
ot = afU(z,0)}, (24 -14)
from which it follows that

da*
s =" (2.4 — 15)

Thus from (2.4-13), (2.4-15) and (2.4-11) we conclude that H, vanishes at each point
of B if the system is local. Likewise H, is identically zero in every static motion

(U =0).0

If we define a quantity (po%h)* by the expression

(o) = [ ol 50— (B aV () (2.4 16)

and note that

9(po J’) _ 3115

do
5= PEeas X,y P (24 -17)
we can write (2.4-10) in the form
= IS > (2.4 — 18)
POV = ¢ '
where we also have introduced the notation
< povp >= potp + (potp)”. (2.4 - 19)

When arguments are omitted it should be remembered that we understand X and t.

Remark {.2. In Chapter 3, time derivatives of stress and yield functions in strain
space and stress space, respectively, will be decomposed in the same way as the
Helmholtz free energy, as described in (2.4-18). Since the nonlocal quantity 8 < pgih >
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[0l does not depend on rates, it is seen that the rate dependence appears locally
(and linearly) in the first term of the right-hand side of (2.4-18). Accordingly, we call
(1/po)(8 < potp > [OUNA the quasi-local rate of the Helmholtz free energy at X, while
we will refer to Hy/po, defined by {2.4-11), as a functional rate.0

It is convenient to make the decomposition

{E, U, 8},
} (2.4 — 20)

o= {ae‘) a’? ae}‘}

where in view of (2.2-2) and (2.2-5)

{Ep? n}} } (2'4 — 21)

o = {a?, ot}

Upon substituting (2.4-18) into the reduced nonlocal Clausius-Duhem inequality
(2.4-4), using the decomposition {2.4-20) and the condition (2.4-12), we obtain

3< > : d< poth >, -
= CE > i (s - LSt )
3l
B<pop >, Q Gradd |
_ <0. 4 —
U T JdV(X) <0 (2.4 — 22)

Though (2.4-22) is general in concept we recall that B is an elastic-plastic body,
and hence the members of I are not completely independent. However, the inequality
must hold during loading as well as unloading. Now unloading corresponds to ! = 0
with any value of # and E inside some bounding surface, and since the inequality is
linear in § and E, it follows that

& < poyp >
= 2000,
) (2.4 — 23)
S d < potp >
or
and that
/B 9—'%@&/(}() >0 (2.4 — 24)

during unloading (or neutral loading).

15



We have tacitly assumed that expressions of the forms given by (2.4-5) hold during
unloading as well as loading. Hence, since 7 and § are independent of ', the results
given by (2.4-23) remain valid also during loading. (Note that n and S in (2.4-23) are
evaluated at fixed but arbitrary values ol U, i.e. each of Egs. {2.4-23) is valid for every
E? and k). Substituting (2.4-23) back into (2.4-22) yields

3<pgﬂ/)> Q Grad 6
[ =S 24 L0 v (%) 2 0. (2.4 - 25)

By considering an arbitrary homogeneous temperature motion we conclude from
(2.4-25) that during loading

0 < pnif)ﬂ >
— - =
f —U dV(X) > 0, (2.4 — 26)

an inequality which can be looked upon as an expression for plastic dissipation. If Q
does not depend on Grad § we note from (2.4-24) or (2.4-25) that Q vanishes identically.

Remark 4.3. In a local theory, using (2.4-15), (2.4-16) and (2.4-19), we obtain that

5‘<pg¢> 81,0

_ posai (2.4 — 27)
and hence (2.4-23) reduces to
. %
o0 (2.4 — 28)
_
5 = POHE"a
Further, the corresponding local forms of (2.4-24) and (2.4-26) become
9,_;%&@ >0, (2.4 — 29)
O gy 3%0
B k>0 2.4-30
a5 b ( )

Finally if we take a = #(X,1)/V(B), which is in agreement with (2.4-14), we conclude
by virtue of (2.2-6) that

% =H(E, B, &, 0). (2.4 — 31)
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Then (2.4-28)-(2.4-31) constitute classical thermodynamical relations for elastic-
plastic continua, similar to those of Green and Naghdi (1966).0

Remark {.4. By including a set of damage variables in U4’ the set of equations
(2.4-23)-(2.4-26) constitutes the base for a general nonlocal thermodynamic damage-
plasticity theory.O

Remark 4.5. It is easy to prove that e.g. (2.4-5); may be replaced by a relation of
the form

P =9pU, <U>). (2.4 - 32)
Define namely
U=1U, vy}, (2.4 — 33)
<V > (X) = /B AIV(X), V(Z)}dV (D), (2.4 — 34)
and assume that
b =P(< U ). (2.4 — 35)
Then choose
V
b= yipy (2.4 - 36)
ie.
<V>=V, (2.4 --37)
in view of (2.2-6). Hence
=gV, <U>), (2.4 — 38)

and by the choice ¥V = I (2.4-32) is obtained O

We will not go on to derive a general thermodynamic theory here, since, as men-
tioned already, our main interest concerns a purely mechanical theory of plasticity.
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Thus we postpone to the next chapter a discussion of questions concerning loading and
unloading criteria, the definition of a yield function, and the evolution equations for
the plastic strain and the strain hardening function.

Though we are not making extensive use of the equations (2.4-23), (2.4-24) and
(2.4-26) resulting from the Clausius-Duhem inequality, we will take advantage of the
notions and the definitions introduced here, when we continue with the derivation of a
purely mechanical nonlocal plasticity theory in the next chapter, It is to be emphasized
that the thermodynamic statement in the form of the local Clausius-Duhemn inequality
is not equivalent to the work postulates used in classical plasticity theory, e.g. those
of Drucker (1952), 'yushin {1961) or Naghdi and Trapp (1975b). Cf. Section 3.4 in
the next chapter,
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Chapter 3

Nonlocal rate-independent
plasticity

3.1 Introduction

Classical mechanical plasticity theory must not be looked upon as merely a restriction
from a thermodynamic theory to a corresponding formulation at constant temperature.
This should be obvious since none of the various work postulates used in mechanical
theories of plasticity follows directly from any statement of the Second Law of Ther-
modynamics, as e.g. expressed in the form of the Clausius-Duhem inequality.

The nonlocal, purely mechanical and rate independent theory, which will now be
derived for an elastic-plastic body undergoing finite deformations, is, where applicable,
similar to a corresponding local formulation used by Casey and Naghdi (1984}, which
in turn is based on theories of Naghdi and Trapp (1975a,b) and Green and Naghdi
(1965, 1966).

In our development, strains and not stresses are taken as primary, as was the case
with the thermodynamic formulation in Chapter 2. Historically, theories of infinitesi-
mal plasticity have been derived using stress space formulations (yield surfaces defined
in stress space with loading criteria expressed in terms of stresses). The reason for this
is presumably that material behaviour appears to be easier to understand in terms of
stresses (applied loads) than in terms of corresponding strains. Most certainly strain
space and stress space formulations are equally permissible, but they are not entirely
equivalent and may not be equally convenient for all kinds of applications.

A strain space formulation within a general theory of finite plasticity was first pre-
sented by Naghdi and Trapp (1975a,b). In the opinion of Naghdi and Trapp the strain
space and the stress space formulations are not equivalent, and this nonequivalence has
beenr discussed by several authors (see e.g. the review article of Naghdi 1990). As a
main reason for a strain space formulation, authors on the subject usually refer to the
fact that it is always possible o relate plastic strain rate to the rate of strain but not
to the rate of stress, as is the case with perfect plasticity where plastic strain does not
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affect the stress at all. Other aspects of the difference between the stress space and the
strain space formulation (with regard to nonlocality) will be discussed below. Also cf.
Section 2.1.

In fact the theory of Casey and Naghdi (1984) takes advantage of stress space as
well as strain space in order to characterize strain hardening behaviour (hardening,
softening and perfectly plastic behaviour). Explicitly a yield function with reference to
strain space is first introduced and then, by use of a constitutive equation for strain, a
corresponding yield function in stress space is calculated. Loading criteria are defined
in strain space and associated conditions in stress space are derived. As in classical
infinitesimal plasticity, the theory allows for simple geometrical interpretations - with
respect to strain space as well as stress space.

In a corresponding nonlocal formulation it is possible to similarly introduce a yield
function and loading criteria in strain space, but it turns out that there is no un-
equivocal definition of the assaciated loading conditions in stress space. Moreover,
geometrical interpretations are not as obvious as in local theory.

The scope of this part of the work is indicated by the table of contents. The
chapter is divided into six sections, this introduction being Section 3.1. In Section
3.2 we introduce the basic state functions of the theory. Strains and not stresses are
primary variables, and plastic strain is regarded as a primitive variable, characterized
by a constitutive equation for its rate. Nonlocal constitutive variables are constructed
from a set of the basic state functions, constituted by total strain, plastic strain and a
measure of strain hardening. Nonlocal yield functions in strain space as well as stress
space are introduced.

In Section 3.3 two different types of elastic-plastic response functions are derived,
one general nonlocal and one which will be referred to as quasi-local. A nonlocal
function @ is defined, which characterizes the material response during loading, such
that the material is hardening if @ > 0, softening if & < 0 and is exhibiting perfectly
plastic behaviour if ® = 0. It is shown that ® equals the determinant of the general
nonlocal response function, which (like its quasi-local counterpart) is a fourth order
tensor. It appears that the general nonlocal theory can easily be restricted to describe
purely local behaviour, and that the resulting corresponding local formulation is in
agreement with classical theory.

Various work assumptions used in local plasticity, as e.g. the postulates of Drucker
{1952) and of Iiushin (1961} and the work assumption of Naghdi and Trapp (1975b)
are treated in Section 3.4. A generalization to nonlocal plasticity of the classical prin-
ciple of maximum dissipation is also discussed. A plastic potential function is defined
and the elastic-plastic response function is expressed in terms of the plastic potential.
The special case of associated plasticity is treated and comparison with local theory is
made. Results for perfectly plastic behaviour are derived and the relationship between
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loading directions and strain hardening behaviour is discussed.

In Section 3.5 we introduce an equivalent set of constitutive variables. Tt is used to
obtain results for a restricted class of elastic-plastic materials, for which the stress is
independent of the strain hardening measure.

In Section 3.6 the theory is illustrated by considering a special class of familiar
elastic-plastic materials, which belongs to the type of materials discussed in the previ-
ous section.

3.2 The strain space formulation

In this section will be presented the basic features of the nonlocal mechanical rate
independent theory. As in classical plasticity, we understand that rate independence
requires that constitutive equations be invariant under time rescaling.

The basic state functions are now E = E(X, )}, E?r = EP(X,t) and & = (X, 1),
each of which is discussed in Chapter 2. To simplify wordings we call these variables
local, while we reler to the corresponding quantities <E >, < E? > and <> as nonlocal,
Thus e.g. EP is local plastic strain and < EP > is nonlocal plastic strain. However, it

should be observed that these notations are somewhat misleading since the domain of
e.g. < EP> contains not only EP(Z,¢) but also B{Z,t) and «(Z,1).

In Subsection 3.2.1 a constitutive equation for stress is assumed. The notions of
unrestricted nonlocality and restricted nonlocality are introduced, and in that context
the requirement that the stress-strain relation be invertible and its consequences are
discussed.

In Subsection 3.2.2 a yield function ¢ with reference to strain space is introduced. It
is important for the development of the theory that g is a function of nonlocal variables
{the same set of variables as the stress function), and not merely local variables, as is
the case e.g. in the paper of Eringen (1981} on nonlocal plasticity, Loading conditions
are defined and evolution equations (flow rules) for the plastic strain function E? and
the strain hardening function & are established. In the end of the subsection an explicit
expression for a nonlocal consistency condition is derived.

A yield function in stress space is calculated in Subsection 3.2.3, and a relationship
between the loading conditions in strain space and the associated criteria in stress
space is derived.

21



3.2.1 Constitutive assumptions

In a purely mechanical theory, temperature drops out as constifutive variable and
(2.4-5); is replaced by

§(<U>) = S(<E>, <U'>), (3.2 1)

where <I{> in the first equation is defined by {2.2-2) and (2.2-4), while (2.4-20); has
been used to obtain the second equation.

Looking back at (2.2-4) we note that if Oa/0U(Z,t) vanishes for each member of
o, it follows that each member of < > is an ordinary function of #(X,¢), in which
case (2.4-5) reduces to the classical constitutive assumption. Hence we conclude that
the stress in (3.2-1} is local if

da da

0, (3.2 —2)

TEEZ) - T

for each member of the set (2.2-5). If neither (3.2-2); nor (3.2-2), holds true, we say that
the elastic-plastic material possesses unrestricted nonlocality. If (3.2-2); is identically
satisfied, but (3.2-2), is not, the material possesses restricted nonlocality**~*. Thus an
elastic-plastic body possesses restricted nonlocality if the total strain enters into the
stress response function (3.2-1} only in terms of its value at the stress point X.

As will be apparent in Subsection 3.2.3, it is essential that stress rather than strain
may be used as an independent state function. Now, if we refer to an elastic-plastic
body with unrestricted nonlocality, it is in a general case extremely difficult to invert
the stress-strain relation in order to establish the strain at the actual siress point as
a functional of the stress distribution of the body. H however, we refer to an elastic-
plastic body with restricted nonlocality (i.e. (3.2-2); holds but (3.2-2), does not), the
assumption that the stress-strain relation under some mild conditions be invertible is
reasonable. This point comprises a conclusive argument for turning our interest to the
case of restricted nonlocality. If we take (cf. (2.2-6))

af = B(X,t)/V(B) (3.2 -3)

in agreement with (3.2-2);, we obtain by {2.2-3);

<E>=E, (3.2 — 4)

3-2-1fdelen and Laws {1971) introduced the notion of restricted nonlocality for a thermodynamical
system. Here it is used in a slightly different sense.
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and the constitutive assumption (3.2-1) then reads

S = S(E <U'>). (3.2 —-5)

We recall that the basic state functions are B(X,t), E?(X,t) and «(X,1), each of
them discussed in Section 2.2. As before, we use the short hand notation (2.4-21}, i.e.
U = {E*, £} and o' = {a?, o'}, but the definitions of the members of the <’ > now
differ from (2.2-3)2 5 and read

<EP> (X,1) = [y a?{U(X,1), W(Z,1)} dV(Z),
(3.2 - 6)
<k> (X, 8) = [paMU(X, 1) U(Z,1)} dV(Z).

Note that we have retained the same function symbols o and o as in (2.2-3),, but
now with different meanings.

The fact that o' does not depend on E legitimates our assumption that § in some
range possesses an inverse of the form

E = E(S, <U'>), (3.2-1)

where the range is defined by a prescribed yield criterion, as discussed later on.

Apparently we have now taken a decision about level of generality, since the choice
(3.2-3) seriously restricts the theory. If we look at the case of purely elastic response,
we note that (3.2-3) is the condition for the stress to be local. In the elastic-plastic
case the notion of plastic strain is of course fundamental, and evidently the quantity
dee? [OBP(Z,t) will not vanish in a theory of nonlocal plasticity. Hence, with respect
to the microstructural differences between elastic and plastic deformation {(cf. Section
1.4}, it is not unreasonable to assume, somewhat vaguely, that for a certain range
of application elastic response is local, whereas plastic response is nonlocal. This
point does not really justify the condition (3.2-3) (since E is total strain and not
‘elastic strain’), so (3.2-5) is questionable even in the case when local elastic response
is assumed®?~2% No matter how, (3.2-5) represents a wide class of nonlocal elastic-
plastic materials, and it is believed general enough to be the starting-point of a theory
within which it will be possible to master a variety of essential problems concerning
strain softening phenomena in heterogeneous media, as discussed in Chapter 1.

Thus we will adopt (3.2-3) and its consequence (3.2-5). In what follows we will see
why 1t is essential to make this restriction of the general theory.

3.2-Note that in finite plasticity E — EP is not clastic strain, so the problem cannot adequately be

resolved by replacing E in the constitutive equation (3.2-3) by an elastic strain function E°(X, ) with
dat [OF(Z,1) being zero.
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3.2.2 Yield criterion and flow rules

We assume the existence of a sufficiently smooth yield (or loading) function g, which
is nonpositive for all admissible values of the constitutive variables,

g(B, <U'>)<0, (3.2 -8)

with < U’ > defined by (2.4-21) and (3.2-6). For fixed values of <’ > the equation
g(E, <U'>) = 0 defines an open region £ {g < 0) of six-dimensional strain space,
called the elastic region. Tts boundary 9€ (g = 0) is called the yield surface. A motion
defined by x = x(X,{) generates for each X a strain trajectory in strain space. Then
for each value of < EF > and < x>, states (F, <’ >) with ¢ < 0 are elastic, while
states with g = 0 are elastic-plastic,

We introduce a scalar function §, defined by

. _ 99 -
=L . (3.2 —9)
At a regular point of €, dg/JE is not zero and hence (3.2-9) can be interpreted
as the inner product between the outward normal to d€ and the tangent vector to
a strain trajectory in strain space. It is then evident that (3.2-9) affords definitions
of unloading from an elastic-plastic state (g = 0, ¢ < 0; E directed into &), neutral
loading from an elastic-plastic state (g = 0, § = 0; E tangent to ) and loading from
an elastic-plastic state (g = 0, § > 0; £ directed out of E).

Remark 2.1. Note that in (3.2-8) we have retained the same set of independent
variables as in (3.2-5). In fact the same list of independent variables will be employed
in all constitutive equations to appear in the subsequent derivation of the theory (i.e.
the principle of equipresence of continuum mechanics is invoked). It is our position that
each independent variable in (3.2-8) is admissible, in the sense that its presence does
not violate any fundamental principle of continuum mechanics, Nor from a physical
point of view can well-founded objections be raised against the choice of independent
variables in (3.2-8). Hence in a nonlocal plasticity theory it should be inappropriate to
replace the nonlocal variables in (3.2-8) with corresponding local ones, rendering the
vield criterion to the same form as in local plasticity. We recall that in clagsical plastic-
ity the yield condition implies that whether a state is elastic or plastic depends only on
the inelastic state at the actual stress point and not on corresponding states at neigh-
bouring points, hence excluding any dependence on gradients of inelastic variables.
However, considering the complex interplay between microstructure and macrostruc-
ture with regard to plastic deformation, it is hard to find any support for rejecting long
range interactions in the yield criferion. Thus there is no reason for replacing (3.2-8)
with a local formulation. This is in contradiction to results found in Fringen’s paper
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on nonlocal plasticity (1981), where it is argued that dependence on such long-range
interactions can in fact be discarded in the yield function. However, Eringen’s argu-
ment is rejected in recent works on plastic localization, e.g. by Mihlhaus and Aifantis
(1991) and Vardoulakis and Aifantis (1991), where second order derivatives of plastic
parameters appear in the yield functions. We also draw attention to a paper by Kra-
tochvil (1988) with a discussion of nonlocality and the microstructural origin of plastic
deformation.O

Along a strain trajectory we assume constitutive equations for the rates of E? and
& of the form

: AE, <U'>)E (g=0, §>0,
P — , -
E { 0 (otherwise), (3:2-10)
and
. [ B®, <U'>)E (=0, §>0, 3
"= { 0 (otherwise), (8:2—11)

where A is a fourth order tensor-valued function possessing minor symmetry (Agxrymn
= Arkmny = Acgwnr) and B is a second order symmetric fensor-valued function#—3,

Reduced forms of (3.2-10); and (3.2-11); are easily obtained if we assume that EP
and & are contintous functions of E at each point of the yield surface. Begmnmg with
EP we conclude by the contmuzty requirement that AK = 0 for every E with § = 0
(neutral loading), i.e. whenever E lies in the tangent plane of the surface g = 0. By an
argument used e.g. by Green and Naghdi (1965) and repeated in a similar way below,

it follows that
dg

A-arR@aE

(3.2-12)
where R(E, <’ >) is a symmetric second order tensor, and where the scalar function
7 = 7m(E, <l >) has been introduced for convenience. Trivially the result (3.2-12)
is sufficient for continuity. To see that this is also necessary we note that continuity
requires that

AE — 7R§ = 0, {3.2 — 13)

where the unknown Lagrange muftiplier #R is a symmetric second order tensor. Now
(3.2-13) can be written

3-2-3Gcript eapitals are used to denote fourth order tensors and, as before, boldface capitals to denote
symmetric second order tensors. We use the notation U .V = tr{U VT) for inner product, Le. for
the scalar UgpVrr. By AV we understand the symmeiric second order temsor with components
ArrunVyn, while U® V and AB denote fourth order tensors with components UgrVay and
AxrLroBroun, respectively.
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(A-7mR® gg)ﬂ =0, (3.2 - 14)

" and must hold for all E in the tangent plane. Since the fourth order tensor operating

on ¥ is independent of ¥ we then arrive at (3.2-12).
By the same argument we obtain
dg
B= SR (3.2—15)
where r is a scalar function of E and <’ >.

Substituting (3.2-12) and (3.2-15) into (3.2-10} and (3.2-11), respectively, gives us
the reduced flow rules

o | 7GR (g=0,§20), )
B { 0 (otherwise), (3.2—16)

and

| omgr (¢g=0, §>0), )
- { 0 (otherwise). (3.2-17)

Using the notation

N ={R, r}, (3.2~ 18)

the flow rules can be written in the form

yIa g A {g=0, §=0), -
U= { 0 (otherwise). (3.2~ 19)

Remark 2.2. Recall that in a corresponding local theory 0€ is stationary when
U'(X,t) =0 (ie. for fixed values of BF(X, ) and #(X,?}). From (3.2-19), then follows
that @€ is stationary in an elastic state. Our nonlocal formulation does not afford
that simple geometrical interpretation, due to the fact that, while in an elastic state
U'(X, t) still vanishes (as seen from (3.2-19),), <#’> (X,t) in general does not. Thus
OF is not necessarily stationary at X, but may change due to plastic deformation at
other parts of the body (i.e. Z(%,t) # 0 in some finite region).O

For future use we record below the explicit expression for the material time deriva-
tive of the yield function g. We recall that in an elastic state (g < 0) the value of § may

26



be of any sign, while in a plastic state {g = 0} the inequality (3.2-8) requires that g is
negative during unloading and zero during neutral loading or loading. This comprises
the consistency condition

920, (9207.&20)1 (32_20)

i.e. loading from a plastic state results in a new plastic state.

Looking back at the calculation of the material derivative of the Helmholz free
energy, we arrive at results similar to those of {2.4-6) and (2.4-18),

. . dg e’ .,
Pod = pogd + Pﬂa <u,> B{au,(x1 t)u (X'!t)
0 (2 0)AV(Z) = o+ LI g (3.2 —21)
t 5z, E 4 '

where § + (1/po)(8 < pog > JOUNU' is recognized as the quasi-local and H,/po as the
functional yield rate (cf. Remark 4.2in Section 2.4). To obtain (3.2-21) we have used
the following definitions

<pog>=po g+ (pog)", (3.2 —22)
(o 9)" = [ polB) (B aV (2), (3.2 - 23)
and
%
o= ]{”a “us g %)
_ 39 (e ) y _
with

fB H, dV(X) = 0. (3.2 - 25)
The consistency condition imphies that
/Bg dV(X) =0, (3.2 — 26)
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which with (3.2-21) and (3.2-25) gives

f{ + :05‘<£F>u}dv(x)w (g=0, §>0). (3.2 —27)

Explicitly, using (3.2-21), the consistency condition (3.2-20) has the form

Kl .
+~1—~ < pog > g 1 8<pog>.

o BB 0 K -I— 'H =0, (¢g=0, §=>0) (3.2 — 28)

or during loading, in view of (3.2-16) and (3.2-17),

18 <pmg> 1

1+ #7(——F—— R+ - )+'p_§%g=03 (9=0,§>0), (32-29)
0

po  OEP po Ok

where it is assumed that {3.2-19) has been used to express (3.2-24) in the form (the
time dependence suppressed)

M= [ o5 g BN @)

dg

~ 2y 50" ) av (@), (3:2 - 30)

ou'

7(Z) = 0 at non-loading points (g < O or ¢ = 0, § < 0). (Note that A(Z) in general is
assummed to be defined for all Z in B).

In concise form (3.2-29) has the form

19 <pog>

!
P77 A+

L+ , =0, (¢=0, §>0), (3.2 —31)

with H, given by (3.2-30). In the sequel we will refer to (3.2-31) in combination with
(3.2-30) as the general strain space statement of the consistency condition.

We note that, according to our basic assumptions, a nonlocal elastic-plastic body
is completely specified by 8, A/, = and ¢ as prescribed functions of E and < >
when in addition o is a given function of U'(X) and U'(Z). The functions g, = and
A" are subjected to the restriction {3.2-31) (or (3.2-29)). It should be noted that the
consistency condition in general cannot be used to solve for 7 analytically (as is the
case in local theory), since (3.2-31), due to the appearance of H,, is an integral equation
with regard to the function #. Of course the possibility remains at loading directions for
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which ‘H, vanishes (or in such a special case where 7 does not depend on Z). Since H,
is linear in U’(X) and U'(Z) we finally note that the quotient H,/§ is rate independent,
which is also evident from (3.2.31) or (3.2-29).0

Remark 2.8. During loading (g = 0, §> 0) it follows from (3.2-31) that the function
7 necessarily must satisfy the global condition

16<Pﬂg> i ~ -
fBL(1+;; T A)po § dV =0, (3.2-32)

32-4 (learly (and contrasting with local

where By, indicates the region at loading
theory) we may not conclude that 7 cannot vanish at X, i.e. plastic loading at X does
not imply =(X) # 0, or, since § > 0, that ¥(X) and #(X) are non-vanishing. (Of
course 7 cannot vanish identically.) Consequently an inequality of the type m > 0 is ad
hoc and does not follow from a purely mechanical theory. In Section 3.4 we will use a
generalization of the principle of maximum dissipation to prove that 7 in fact cannot
vanish during loading. For the time being, however, there is no need for restrictions

on 7 beyond what is imposed by (3.2-32).00

3.2.3 Yield function in stress space

The flow rules (3.2-16} and (3.2-17) (or equivalently (3.2-19)), together with (3.2-6)
constitute a system of integro-differential equations for the plastic strain and strain
hardening variables. For a given motion and an associated strain trajectory at each
point X in an assigned body B, this system of equations may be solved - appropriate
initial conditions prescribed - to obtain the inelastic functions U/(X,t) for all X in
B. Then, by (3.2-5) and (3.2-6), corresponding stress trajectories in stress space are
obtained. Furthermore, for a given yield funciion g, in view of (3.2-5) and (3.2-7}), we
define a corresponding yield function f in stress space by the relation

(B, <U'>)=g(B(S, <U'>), <U'>}=f(S, <U'>). (3.2 - 33)

It follows from (3.2-8) and (3.2-33) (sufficient smoothness conditions assumed) that

/S, <U'>)<0 (3.2 — 34)

for all admissible states. For fixed values of <’ > the equation f(S, <U’'>)} = 0 defines
an open region S (f < 0) of six-dimensional stress space, with boundary 48 {f = 0).
It is clear that the interior of & defines the elastic region in stress space, and that 98

8%-4n view of (3.2-30) and (3.2-25) it follows that [, H, dV =[5 Hy dV = 0.
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defines the yield surface in stress space. By (3.2-34), every stress trajectory must lie
inside § or on 98 ; positive values of f are impossible to reach.

In the next subsection the relationship between the loading conditions in strain
~ space and the associated conditions in stress space will be discussed. Preparatory to
that discussion a set of fundamental relations will be derived from (3.2-5), (3.2-7) and
(3.2-33).

As a first step we caleulate the material time derivatives of the stress response S
and the yield function f. Using the same arguments as in the derivation of (2.4-6) and
(2.4-18), we obtain an expression for pof of the same form as that of peg (cf. (3.2-21),
namely

; s O<pgf>
Pof:P0f+—5§{%fm"U'+Hf. (3.2 — 35)

Here f is given by the relation

f= f (3.2 — 36)

whereas < pg f> is defined as < po g> in (3.2-22) and (3.2-23) with g replaced by f,
and similarly, H; is defined as H, in (3.2-24). In (3.2-35) f+(1/p0) (8 <pof > [OU" Y
is identified as the quasi-local yield rate (in stress space), while H;/po is the functional
yield rate (in stress space).

Differentiation of stress yields

18 <ppS>, . 1
§ = LE + — T 4 —H,, 3.2-37
+Po aul’ Po ( )

where £ is the fourth order tensor-valued function defined by £ = 85/0E, with sym-
metries Lyrvrr = Lymrrn = Larvii, while the functionals < p0§> and H, are defined
similar to < pg g > and H,. The sum of the first two terms in (3.2-37) represents the
quasi-local stress rate, while H,/pg is the functional stress rate.

For the sake of clarity we give the explicit forms of Hy and H,,

f

/ {P“a <L{’> BU'(Z)ar(Z)

~ @) gt XLy ava) (3.2 - 38)

and
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o8 do!

— -~ rl
Ha= /5{"”3 s )
o8 e’y -,
pol @)oo ()20 1y av(z), (3.2 - 39)
where Hy and M, satisfy
jB H; dV(X) =0 (3.2 — 40)
and
fB H, dV(X) = 0, (3.2 — 41)
respectively.

Next we note, by the chain rule of differentiation, that

d9 _of _8f 88
d<U> d<U'> 88d<U>

(3.2 — 42)

holds separately for the members <EP > and < &> of <U'>. To get (3.2-42) we have
used (3.2-33), (3.2-5) and (3.2-7).

We want to establish a result corresponding to (3.2-42), but involving differentiation
with respect to the basic functions of the set I instead of those of < ¥’ >. Looking
back at (3.2-21) we recall that

o Pog <ur>auf

99 Ny av e, (3.2 — 43)

+ PO(Z)(’? <U'> (Z) A

and note that the same expression also applies when g is replaced by f. Then by use
of (3.2-24), (3.2-38), (3.2-39), (3.2-42) and (3.2-43) it follows that

31



d d
O (<p > - <po W+ Hy—Hy — O,
Cp, 8f 08 a8 95 aa)
f{""asa <U'> ! +polZ ) ( )8 <U'> O }dV(Z)

9f 5 oo, af 88 aa')
+ [ s gzgps apt (@ — B g5 (B g3 ()5 U V()

af 08 do’ - 88 ).,
”%L{Pﬂmau,(z)u( )= ro(B)5 s (L5 J}dV( )

95 o 08 a(a) .
] (g oo + p0(B) g (D V@ . (32-44)

Thus we have shown that

8f a <PQS>

! .
Frimyr U+H,).  (3.2-45)

7]

au’(<Pug>—<Pof>U +H, ~Hs=
The relation (3.2-45) can alternatively be derived by using the time derivatives of g

and f as the starting point. Accordingly, by aid of (3.2-21) and (3.2-35) it then follows

that

, o, O .
po(§— f) + 575(<po 9> = <po f>)U' + Hy —H; =0, (3.2 — 46)

where we have also used ¢ = f in view of (3.2-33). Further by (3.2-42) and by direct
calculation {without introducing H, and Hy) it easily follows that

af(a <PGS>

pold — f)+as 5 + H,) = 0. (3.2 — 47)

Thus (3.2-45) follows from (3.2-46) and (3.2-47). Conversely each of (3.2-46) and
(3.2-47) follows from (3.2-45) with the aid of (3.2-21) and (3.2-35). Consequently (3.2
45} and (3.2-46) together with (3.2-47) are equivalent statements. It is emphasized that
each of (3.2-45), (3.2-46) or (3.2-47) holds in elastic as well as plastic states, irrespective
of the type of loading conditions.
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As an illustration of the signification of the fundamental relation (3.2-45), we look
at the difference (H, — Hy). From the definitions (3.2-24) and (3.2-38) and by using
(3.2-42) we obtain explicitly

af a8 do! .,
/ ogsa s st @

- @ 2222 1y avim), (3.2~ 45)

If 3f/0S does not depend on Z we note by (3.2-39) that (3.2-48) can be written in

the simple form®2-%

'Hg—’f'{f=?'ts-%, (3.2 — 49)
while (3.2-45) is reduced to
b 6f 8 <PQS>
au,(*(po g> — <po f>)U' = 58 a3 it LSl (3.2 —50)

It is obvious that the case when 9f/0S is constant in space is too restrictive to
embrace a useful theory. Consequently (3.2-49) or (3.2-50) is of minor relevance, and
it is recalled that it is (3.2-45) which constitutes the general relationship between the
functionals Hy, Hy and H,.

We can also use (3.2-45) to obiain the stress space analogue of (3.2-31), which
correspondingly will be referred to as the general statement of the consistency condition
in stress space. Thus

18 <pof> 1
L4 == lg A+ —H
po U pog !
18 <pS> 1 8 .
(;,;“5%37“““"“‘“ ﬂé'Hs)a—g:O, g="0,§>0, (3.2 - 51)

where it is assumed that (3.2-19) has been used in combination with (3.2-38) and
{3.2-39), respectively, to express H; as well as H, in a form similar to that of H, in
(3.2-30). Alternatively, (3.2-51) may be derived with the expression for f in (3.2-35)
as the starting point. By use of (3.2-19), (3.2-20), (3.2-33) and (3.2-47), then (3.2-51)
follows.

82-5Note that (3.2-49) also applies at unloading points for general yield functions, as seen from (3.2-
453,
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Before ending this subsection we will make some additional comments on notations.
In (3.2-49) it has been emphasized (by the occurrence of the dot symbol) that H,
and 0f/08 are second order tensors, H, - 3f/88 being their inner product. Usually
however, in order to avoid unnecessary complications, operation symbols are omitted,
leaving to the reader to understand the precise meaning of the combinations of tensors,
vectors and scalars appearing in the equations. As an example, the second order tensor
(8f/8S)(0S/8 <EP>) is the result of a fourth order tensor operating on a tensor of
second order. Explicitly in compact notation

o 68 _( a8 \'or (3.2 — 52)
9Sd<Er> \d<Er>/ 88’ '

or in tensor component notations

(ga_é) B B8uw _( 2§ )T (gi) (32— 53)
S0 <Er> ). OSyn0<Br>ixr \O<Er>) . \88),v

Notice that the summation convention is always implied. For instance note the
double summation in the expression (08/9 <U'>)(0«' [OU'(Z))U'(Z), which explicitly

reads

a8 da! -,
o <U'> BL{’(Z)U (2)
88 dar - daP

= Temrs Gy T O ez EN

3g aah - aah )
8 <f€>{aEP(Z) B(Z) + gﬁ(—z)fﬂ(z)}- (3.2 — 54)
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3.3 Classification of strain hardening behaviour

In this section we will derive an elastic-plastic response function X, which turns out
{0 be of fundamental importance in the theory of nonlocal elastic-plastic materials,
The function X is a fourth order tensor with a determinant ® which classifies strain
hardening behaviour. This and other characteristic properties of X and & are discussed
below.

3.3.1 On elastic-plastic response functions

If we use the notation § for the quasi-local stress rate, i.e.

S=L B+, (3.3 1)

S =8+ ~H,. (3.3 —2)

Recall that the rate dependence in the right-hand side of (3.3-1) is local (and hinear),
and that, in view of (3.2-9) and (3.2-19), § = 0 whenever £ = 0.

Remark 3.1. By use of (3.2-41) we conclude that

/B (S~ 8)dV = 0. (3.3 —3)

Hence we may assert that the actual stress rate and the quasi-local stress rate coin-
cide in an average sense. Also note that the introduction of § affords an interpretation
of the functional ‘M, as is seen by the observation that M,/ py represents the deviation
of the quasi-local stress rate from the actual stress state.0l

We recall that H; in general will not vanish at a point which is elastic, unloading or
loading neutrally, due to the first term in the integrand in {3.2-39). Only if the body
as a whole behaves, say for example elastic, will H, identically become zero. Thus
(3.2-37) in general reduces to

§= LB+ —H, (3.3 - 4)
Po )

when loading does not occur at the point X (nonvanishing H,), while (3.3-1) reduces
to
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§ = LE. : (3.3 —5)

Note that £ in (3.3-4) and (3.3-5) is not reduced to a function of E only (as in
a corresponding local theory). This is obviously so, since in fact £ depends on the
members of < " >, which in general are not constants when &’ = 0.

Remark 5.2. Notice the nonlocal character of (3.3-5}. Zero strain at X does not
imply that the stress rate vanishes at X, as is the case in local rate independent
plasticity theories. From the condition E = 0 it follows that § = 0, or from (3.3-4)
that

o1
S——H,=0. (3.3-6)
Po

In view of (3.2-39) we thus conclude that § in general does not vanish at X, because
of the occurrence of plastic deformation at points Z throughout the body. Only special
loading directions at Z will force H, to vanish, and leave the point X with zero stress
rate. It should be noted that the function symbol £ has been used with different
meanings in (3.3-5) and (3.3-1), since in (3.3-5) £ is restricted by the condition that
U’ vanishes at X, while in (3.3-1) there is no such restriction.O

From (3.2-19) follows that (3.3-1) can be written in the form

S=LE+7§a, (3.3-1)
or by use of (3.2-9)
§=(L+ ”®—@—)E (3.3 - 8)
= T o®-s)E, .

where the symmetric second order tensor & is defined by

i6<pg§>

X } .
o= o O AL (3.3-9)
In view of (3.2-33) we have
dg _ r0f
2 = LT, | (3.3 ~ 10)

and noting that dg/0E does not vanish on the loading surface 9€ in strain space, we
conclude that then 8f/JS does not vanish on the corresponding loading surface 48 in
stress space.
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We introduce a fourth order tensor-valued function K defined by

K=J4+r &@%, (3.3 —11)

3.3—

where J is a fourth order unit tensor®3~! with (major) symmetries,

JIrrpg = Jirrg = Jrrop = Jrokr - (3.3 -12)

Upon substituting (3.3-10) into (3.3-8) and using (3.3-11) we obtain®3—*

S=K LE. (3.3 —13)

Using the relationship between the actual stress rate and the quasi-local stress rate,
given by (3.2-2), together with (3.3-13) we may write the stress rate in the form

1

S=KLE+—H,, (3.3 — 14)
Po
or, if loading (g = 0, § > 0) is presupposed,
§ = kee+ Lo B,
pog S
.1 af. .
= (K4 —H,® = LE, 3.3- 15
(k+-t03h) (3315

where again (3.2-9) and (3.3-10) have been used.

Hence

S=KLE, (3.3 — 186)
with K defined by

. 1 of
K=K+ —H,® = .
+Pﬂg I8

33-1Defined by the relation J = 1/2(éxplrg + fxgbrp), where the Kronecker symbol 675 denotes
the components of the second order unit tensor.

83-2f P is a fourth order tensor and if DT as before is defined by the relation DL pprny = Purnki
then note that A@BD = A@D?B for all second order tensors A and B,

(3.3 -17)
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We will refer to K as an elastic-plastic response function and to K - because of its
connection to 8§ - as a quasi-local elastic-plastic response function. There are funda-
mental differences between K and K, as is seen from (3.3-17) and from the definitions
of K and & given by (3.3-11) and (3.3-9), respectively. The tensor K is clearly rate
independent and involves all constitutive functions presented, namely S, A/, f and the
prescribed functions o' defined by (2.4-21) and (2.2-5). As for X it is seen from (3.3-17)
that it depends on the rate dependent functional H,.

It i1s assumed (since loading at X is presupposed) that (3.2-19); is used in the
expression for H, in (3.3-17). Hence, the second order tensor H,/(pog) in the right-
hand side of {3.3-17), using (3.2-39), explicitly becomes

1 a8
puﬁﬂs B fs{8<u'>8 (Z)
po(Z) 88 (Z)B(a')*

pa O<U > o

0 N (@)d (QZ)

7A'}dV(Z), (3.3 18)

where it is understood that #(Z) = 0 at non-loading points.

Clearly (3.3-18) is rate independent but only in a, say, weak sense since the strain
rates in the first term of the integrand cannot be cancelled out {unless § is uniform).
This means that X cannot be determined completely without knowledge of strain rates
in advance, which of course is not in agreement with properties normally expected from
an elastic-plastic response function {and contrasting with X). On the other hand, the
simplicity of (3.3-13)} should not obscure the fact that the actual stress rate S cannot
be determined from (3.3-13) unless the functional ‘H, is also known.

It is important to remember that loading is presupposed in the definition (3.3-17)
of the function X, which is left undefined when § < 0, and therefore does not equal
the unity tensor J during corresponding loading conditions, which obviously is the
case for K in {3.3-13). During elastic behaviour, unloading or nentral loading from a
plastic state, (3.3-16) consequently reduces to (3.3-4), while (3.3-13) reduces to (3.3-5)
as discussed in the beginning of the subsection.

3.3.2 Hardening, softening and perfectly plastic behaviour

A correspondence between the loading criteria of the strain space formulation and the
associated stress space conditions will now be established and, as in local theory, three
types of material response, namely hardening, softening and perfectly plastic behaviour
will be defined. To simplify, these distinct types of response will be collectively referred
to as strain hardening behaviour,

In view of (3.2-47) we conclude that
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.1 af .
— = H, = =g i =0. g1
f o 55 =4 1 U=10 (3.3-19)
The function f, defined in (3.2-36), is geometrically interpreted as the inner product
of the tangent vector 8 to the stress trajectory passing through the stress point in the
six-dimensional stress space and the normal vector 8f/88S.

We define a quantity f by the relation

J=fotn L

Mo g (3.3 — 20)

and conclude with the aid of (3.2-36) and (3.3-2) that (3.3-20) may be written as

. Of ~
f=555 (3.3~ 21)

where 8§ is the quasi-local stress rate defined by (3.3-1). Substituting (3.3-20) into
(3.3-19) yields

f=¢ v =0 (3.3 - 22)

Now, in an elastic state f = ¢ < 0. Then by (3.2-20) &' = 0, and hence f = § in
view of {3.3-22). Due to (3.2-19) and (3.3-22) it is seen that in an elastic state, during
unloading or neutral loading from a plastic state, the strain space conditions imply the
following corresponding stress space conditions :

g0<0 = f<0 } (3.3 23)

In view of (3.3-20) and (3.3-23) we alternatively conclude that the strain space
conditions {3.3-23); imply associated stress space conditions of the form

e

9=0, j<0=f=0,f<tm, A

Mo (3.3 — 24)

where the second inequality in view of (3.2-39) explicitly reads (note that H, is re-
stricted by the condition ¢’ = 0),

. Of 8 o
fs”é‘s‘/s{a<z.{f>aw(2)

W(Z)}dV (Z). (3.3 — 25)
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As seen from (3.3-25), it is clear that the inner product H, : f/8S may be of any
sign, and hence no statement can be made about the sign of f, which geometrically
establishes the orientation of the stress rate § in relation to the tangent plane to the
yield surface in stress space. Thus a trajectory in strain space intersects the yield
surface O, and is moving either in an inward direction (g =0, § < 0) or is tangent to
€ (g = 0, § = 0)*373. This, however does not apply to the corresponding trajectory
in stress space, since the function f may be positive and the stress trajectory directed
outwards, causing the yield surface 88 to move locally cutwards.

It remains to discuss the case of loading from a plastic state (¢ = 0, ¢ > 0). For
that purpose we define a dimensionless, rate independent function & by

18 <poS >1TA,Q_{

d=1+ PR 55 {3.3 —26)
where A’ is defined by (3.2-18), and note in view of (3.3-9) that
<i>:1+aré~-%. (3.3 -27)
Comparison with {3.3-11) shows that
det K = . (3.3 — 28)

The significance of the function ¢ will be discussed in Subsection 3.3.3. First
however, assuming loading (¢ = 0, § > 0), define a function @ by the relation

1 af

=0+——H, -2, 3.3 - 29
Pod 2 ( )
and note from (3.3-17), (3.3-11) and (3.3-26) that

det K = @. (3.3 — 30)

What was previously said about fundamental differences between K and K obviously
also applies for their determinants, i.e. @ being rate independent only in a weak sense,

From (3.3-29), (3.3-26) and (3.2-47) it follows that

b =

23 [y

(9=0,4>0) (3.3 - 31)

3-3-3Note that J§ in general is not stationary, as was discussed in Section 3.2.2, Remark 2.
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The function @, called the nonlocal strain hardening modulus, is used to characterize
the material response for an elastic-plastic body during loading. We state that the
material is

@) hardening precisely if ® >0,
b) softening precisely if ® <0, (3.3 -32)
¢) exhibiting perfectly plastic behaviour if ® = 0.

In view of {3.3-24), (3.3-31) and (3.3-32) the difference between stress space and
strain space formulations is highlighted, the loading criteria in strain space giving rise
to associated conditions in stress space of basically different form. We note that the
stress space conditions do not unambiguously imply those of strain space. For example,
the condition f = 0, f > 0 (and then necessarily 1/pH, - 3f/8S > 0 in view of (3.3
24), may represent unloading from an elastic-plastic state (g = 0, § < 0) as well as
hardening behaviour during loading (g = 0, § > 0). Hence the presence of the quantity
H, - 8f/ 08 leads to ambiguity in the associated stress space formulation, not only in

the softening region: (as in local theory), but also in the hardening regime®3-4,

Remark 3.3. Alternatively it is possible to use f to characterize the different types
of material response appearing in (3.3-32). However, it seems to be preferable in general
to use ® and not f, since the former is rate independent (in a weak sense), while the
Jatter is not.O

Other expressions for ® may also be useful. For example, using (3.2-51) and (3.3-81)
we conclude that

_ ia<p0f>ﬂ-[\’+ 1

o= .
po AU pod

Hs), (3.3 —33)
where it is understood that My should be expressed in a form similar to that of H, in
(3.2-30). (Ct. the related discussion in Section 3.2.3.)

Further, in view of (3.3-31) and (3.3-32), we conclude that during loading (g = 0,
§ > 0) in the hardening or softening regime the reduced flow rules (3.2-19); in terms
of § are given by

U = %A'. (3.3 — 34)

3.3-4 A enin it is emphasized that this nonequivalence does not mean that stress space should be ruled

out as a permissible base for the definition of the yield function, but obviously, as far as nonlocal
plasticity Is concerned, the loading criteria must accordingly be defined with regard to the direction
of loading. (Note that § by use of (3.3-5) may be written § = L7 9f/8S - E.) Also cf. the discussion
in Section 3.1.)
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In a region of perfectly plastic behaviour, it is of course not possible to express 4’
in terms of §: (3.2-19) must be used. The set of equations given by (3.3-34) should
be looked upon as flow rules for loading in stress space, to be employed e.g. in cases
where tractions and not displacements are prescribed as boundary values.

Returning to the definition of the elastic-plastic response function X we first note
by (3.3-11) and (3.3-27) that

7Of < Of -
Tw——fz e ——
K75 = ¥35, (3.3 — 35)

and hence by (3.3-17) and (3.3-29) that
af _ Lof
T"“_ — T . .
K 59 55 (3.3 —36)
Thus the normal to the yield surface in stress space is an eigenvector of K7 as well as
KT with eigenvalues & and ®, respectively.

From (3.3-36) we conclude that

of 9f
@:%}5—, (3.3 — 37)
85 88

from which it is clear that the scalar df/3S - K3 f /38 is positive when the material is
hardening, negative when it is softening and zero when it is behaving perfectly plastic.
For the case of perfectly plastic behaviour we alternatively note that

k2 _o

55 =0 (3.3 — 38)

as a direct result from (3.3-36).

3.3.3 © An equivalent formulation using quasi-local quantities

In the beginning of this section we defined the quasi-local stress rate S, and the corre-
sponding quasi-local response function K (see {3.3-1) and (3.3-11)). It is important to
note that (3.3-13) is merely an alternative way of expressing the stress rate - strain rate
relation (3.3-16) as is seen by imposing the conditions (3.3-2) and (3.3-17). Similarily,
through (3.3-29), we can use & (defined by (3.3-26)) instead of the strain hardening
modulus @ to define the different types of strain hardening. Because of its definition
and its connection to & we call ¢ the guasi-local strain hardening modulus. We also
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refer to f - defined by (3.3-20) - as a quasi-local quantity, and note that we may pro-
vide a geometrical interpretation of f similar to that of f given in Section 3.2.4. From
(3.3-21) namely, it is clear that f establishes the orientation of the quasi-local stress
rate relative to the tangent plane to the yield surface 88 in stress space.

The guasi-local quantities mentioned above and their nonlocal counterparts are
related to each other through simple relationships. For convenience they are repeated

below:

. . 1 A
§=6- ,T Ha, [(3.3-2)]
K=K-—H,® gsi [(3.3-17)]

1p of » (3.3 — 39)
f=f= Mg [(3.3-20)]
. 1 af
=0 H, =2, [(3.3-29

Py sy (3-3-29)] |

From (3.3-39)a, (3.3-39)4 and (3.3-31) it is seen that
$ = J;; (3.3 — 40)

loading (g = 0, § > 0) presupposed. It appears, in view of (3.3-23), that during unload-
ing it is the use of § (and not f } that maintaing a local structure of the relationship
between strain space conditions and corresponding stress space conditions. During
loading, however, this is not true. For example (3.3-32); should be replaced by

f+-3;'H gg->e (3.3 — 41)

as seen from (3.3-31) and (3.3-39); (or from (3.3-40) and (3.3-39)4).

For certain loading directions in elastic-plastic materials of special constitution it
may happen that the scalar product H, - 8f/8S vanishes, which by (3.3-39); happens
it

e Of
(8—8)- s =0. (3.3 — 42)

Then f = f, & = ® and the apparent local structure of the relationship between strain
space conditions and stress space conditions is preserved during unloading as well as
loading.
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Though extremely convenient, enforcing (3.3-42) would restrict the theory far be-
yond what is reasonable and will not be done here®**~5, However, in view of (3.2-39)
and {3.2-41}, H, may be regarded as some measure of the deviation of actual rates from
average ones due to plastic deformation throughout the body. If the components of
this tensorial measure are small, then each of the quasi-local quantities coincides with
its nonlocal counterpart in an approximate sense33-%. The corresponding approzimate
formulation with S, K, f and ® simply replaced by S, K, f and & will be referred to
as quasi-local. Notice that a quasi-local formulation in general is not local, not only
because of the nonlocal character of each of the quasi-local functions {as ascertained
e.g. by (3.3-1)), but also due to the fact that H, = 0 does not imply that H, or H; will
vanish. (Recall e.g. how the appearance of a nonvanishing functional H; in (3.2-31)
highlights the nonlocal character of the consistency condition.)

Remark 3.4. If M, happens o vanish identically, the material response is of a
quasi-local nature, but nevertheless the formulation is exact. A trivial case for which
‘M, vanishes identically, is when the stress-strain relation is of purely local form, as e.g.
when

S = L(E — E?), (3.3 — 43)

L being constant. Here (3.3-43) represents a new type of restricted nonlocality (cf.
Section 3.2.1), where not only kinematical strain but also plastic strain appears in local
form, leaving the strain hardening function as the only nonlocal variable to be present
in the constitutive expression for the yield function. The idea of treating vielding as
nonlocal but to keep stress local has recently been used in gradient plasticity theories;
see e.g. de Borst and Mihlhaus (1992). (It is recalled that gradient materials are not
really nonlocal according to our terminology, cf. Section 1.2).00

3.3.4 Inverse relations

In the preceding subsection we derived an expression for S, the quasi-local rate of stress
tensor, in terms of the rate of strain tensor (see (3.3-13)). Here we address our interest
to the guestion of the existence of an inverse relation, i.e. the rate of strain expressed
in terms of the quasi-local rate of stress. {Note that the stress rate - strain rate relation
(3.3-16) cannot be strictly inverted, since the response function K is independent of E
only in a weak sense.)

We conclude from (3.3-3) that, in an elastic state and during unloading or neutral

3-3-%For the class of general nonlocal materials considered in Section 3.6, (3.3-42) is satisfied (with
exceptions of no practical interest) only for homogeneous motions.
3.3-81¢ is basically assumed that the components of H, are bounded for all loading directions throughout

B,
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loading from a plastic state,

E = MS, (3.3 — 44)

where the fourth order tensor M satisfies

LM=MCL=J, (3.3 — 45)
with J defined by (3.3-12). Of course M, like £ in (3.3-5), is restricted by the condition
that 2{' vanishes at X.

During loading, if the quasi-local strain hardening modulus & does not vanish, it

follows from (3.3-8), (3.3-40) and (3.2-20) that

T r o, Of &

SWEE+$GE.S’ (33—"46)
or

b= (7 - T 09 -

LB=(J - +& ® 598 (3.3 — 47)

Hence, using {3.3-45), we can write {3.3-47) in the form

E = MNS, (3.3 — 48)

where

o7 T Of _
N=J 57 © 35 (3.3 — 49)

A simple calculation, using (3.3-49), (3.3-11) and (3.3-27), shows that
KN =NK=J. (3.3~ 50)

In correspondance with (3.3-35), we have

wrdf 105

35 " 598 (3.3 -51)

which follows immediately from (3.3-35) and (3.3-50) (or divectly from (3.3-49) and
(3.3-27)). Thus 8f/8S is an eigenvector of the transpose of A" with eigenvalue 1/®.
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From (3.3-48) we note that the strain rate vanishes with zero quasi-local stress
rate. Consequently, as long as (3.3.48) is valid, there is no direction of loading for
which the quasi-local siress rate vanishes. Conversely, if there indeed is a direction
of loading which results in zero quasi-local stress rate, then the material response at
X necessarily must correspond to zero quasi-local strain hardening modulus ¢, as is
also evident in view of (3.3-21) and (3.3-40). It is emphasized that these statements
apply to the quasi-local stress rate. It might also be possible to find a loading direction
at X, such that the actual stress rate indeed vanishes at this point. Then, it is seen
from (3.2-36) and (3.3-31) that the material response during loading (g = 0, § > 0)
necessarily must be perfectly plastic. In view of (3.3-2) such a loading direction exists
exactly if the strain rate field satisfies the integral equation (assuming (3.3-48) to be
valid)

B+ M H, =0 (3.3 — 52)

Po

or equivalently, by the aid of {3.3-45) and (3.3-50),

po K LE+H,=0. (3.3 — 53)

The last equation can of course be obtained directly from {3.3-13) and {3.3-2), and
applies also when & = 0. From (3.3-53) and (3.2-41) it follows that the strain rate field
must satisfy

pro]CCEdeo, (3.3 — 54)

as a necessary condition for the stress rate to vanish at some point, In an elastic
state and during unloading or loading from a plastic state, a possible loading direction
corresponding to a vanishing stress rate must satisfy (3.3-52) or (3.3-53) with A" and
K replaced by the unity tensor J.

We now turn our interest to the general stress rate - strain rate relation (3.3-16)
involving the reponse function X, which is rate independent only in a weak sense as
discussed previously. Then, to what extent can {3.3-16) be solved for the strain rate
11?7 Needless to say, we cannot expect a solution of the same type as the one given
by (3.3-48), where the strain rate is a linear function of the quasi-local stress rate.
However, we may proceed similarly to the derivation of (3.3-48), writing the stress rate
(3.3-2) in the form

T 0f o M. Of .

S=£E+60“8—S‘S+pog(§% 3

(3.3 — 55)
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where (3.3-7), (3.3-31) and (3.2-36) have been used. Loading is presupposed and @
must not vanish, i.e. (3.3-55) is not valid during perfectly plastic behaviour. Hence

e (T — Al 4 LZAY: —
LE = (J (I,(rw+p0§m)® 555 (3.3 — 56)
or
E=MANS, (3.3 — 57)

where (3.3-45) has been used and where

N = J———('fra'—i— ‘H)@af. (3.3 — 58)
Similarly to (3.3-50) and (3.3-51) it is seen that
KN=NK=J (3.3 — 59)
and that
wrdl _1of (3.3 — 60)

a8 @ a8’
df/0S being an eigenvector of the transpose of A" with eigenvalue 1/®.

It must be noted that (3.3-57) is still an integral equation for the strain rate E (as
is (3.3-16)}, since A is independent of strain rates only in a weak sense due to the
occurrence of the fanction (1/po§)H; in the right-hand-side of (3.3-58), (explicit as
well as implicit through the strain hardening modulus @).

We can arrive at expressions similar to {3.3-57) in several other ways. For example,
let us use (3.3-2) and write (3.3-48) in the form

B = MA(S — piﬂs). (3.3— 61)
0

We recall that & 5 0 in (3.3-61) (and of course that § > 0). If we also assume that
® +# 0 we conclude by the aid of (3.3-31) and (3.2-36) that

- oy 1 af

B o= MU= g - § Hy)
= MAN(J . H, 3f) 3.3- 62
- T pog® «® 555 (3.3- 62)
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aor

E = MAN'S, (3.3 - 63)
with
_ . 1 af
N = NMJT -~ ;;ﬁ'"a s @ 3_5-)
N ey e (3.3 64)
Dol a8’ )
where (3.3-51) has been used to obtain the second equality.
From (3.3-57) and (3.3-63) it is seen that
N = Nigo, (3.3 — 65)

where A, denotes the restriction of A to strain hardening behaviour with & % 0.
(Note that @ # 0 from the outset.) A direct proof (from (3.3-36) and (3.3-64)) of
(3.3-65) is straightforward and can be performed in various ways. Starting from the
expression for A found in (3.3-56), we may e.g. proceed as follows:

_ 1¢ . of 1 ar
Nd,;,gg = J‘g?};ﬁd@%—wﬂs@gg

_ 1.1 af z af 1 af

= J (i)(z p“tbﬂs as) T® o5~ pﬂ?{@as, (3.3- 66)

where (3.3-39), has been used. From (3.3-49) it then follows that
af
Hs -

N4 _ B8 of L of
Nio = N+ Y 7rcr®as P HS@BS

e 1 5 of T@f vy Of

= N+p0§¢)(é, & ®zgH. NT = —H, 0N as)’ (3.3- 67)

where (3.3-51) has also been used. Henced3-7

3-3-"Tg obtain (3.3-68) we have taken advantage of the second equality of the identity AQB C.D =
ARCD®B=A®D C® B valid for second order tensors A, B, C, D,
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& 1 af

d
(G50 5k~ M O N f

of
35’ (3.3- 68)

where (3.3-49) has been used again. We note that the right-hand side of (3.3-68) equals
N defined by (3.3-64), which completes the proof.

Remark 3.5. The result contained in (3.3-68) may also be obtained by direct inver-
sion of the response function K under the assumption that neither ® nor & vanishes.
From (3.3-39), and (3.3-59) and by use of elementary algebra®®~% we conclude that

d
Nci:;eo = @#0 “(}C'{’ H ® f)cIn,&O
. detX 1 . . af
- -1 _ -1 -nrYJs
= A -Gk N e 58
. y
- T .
= AN - pog(DNH QRN 35" (3.3- 69)

where (3.3-28), (3.3-30) and (3.3-50) have been used in deriving the last equality.

Remark 3.6. As long as (3.3-57) is valid, keeping in mind that A is assumed to
be bounded, it is evident that there is no direction of loading for which the stress rate
vanishes. Hence, as already mentioned (in relation to (3.3-52)), a direction of loading
resulting in vanishing stress rate necessarily corresponds to perfectly plastic behaviour
(loading (g =0, § > 0} presupposed).O]

3.3.5 Restriction to local theory

It may be enlightening to compare the basic equations derived so far in this chapter
with analogous relations obtained in a corresponding local theory. It follows from the
discussion in Section 3.2.1 that the constitutive assumptions for stress and yield in
(3.2-5), (3.2-8) and (3.2-34) become local if o satisfies the conditions

do’
—— =0 3.3—~70
(z,0 (33 -170)
3.3-8The inverse of C = J+A@B isgiven by C~1 = j—WAng detC=14+A B, TakeC=D"1¢

and A =P 1E,ie. § = D+ E®DB and conclude that §—1 = ¢-1D-1 = p-1 dfffg YE@eBYD .
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We recall that the set o/ = {®, a®} contains prescribed functions, which are used
to define the members < EP > and < & > of <U’ >, as explicitly shown in (3.2-6}.

We choose in agreement with (3.3-70),

WX, t)
V) (3.3 - 71)
and hence, as seen from (3.2-6), we recover the basic state functions, i.e.
<U >=U". {3.3-72)
It follows from (2.4-9) and (3.3-71) that
U'(Z,1)
fyk ASvnt -
and hence
AL
HoY _ o, (3.3 — 74)

ou’
Substituting (3.3-70) and (3.3-74) info (3.2-21} - (3.2-24) leads to the conditions

A pog)* _ _
S =0, H, =0, (3.3 — 75)

where the first equality implies that in fact it is possible to replace < pog > with pog
wherever it occurs. From (3.2-38) and (3.2-39) it follows similarly that

H, =0, H, = 0. (3.3 76)

Further it is easily seen that < pof > and < poS > should be replaced by pof and
205, respectively, and in view of (3.3-76) and (3.3-39),,

F=f8=88=0and k=K. (3.3 -77)

(Of course the quasi-local formulation coincides with the general formulation since
H,=0.)

Summarizing, we have shown that results valid in local theory are obtained from the
general nonlocal theory by simply discarding the < > symbols and equating to zero
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the H-functionals wherever they occur. Also note that the mass density po everywhere
cancels out.

As an illustration, consider the consistency condition (3.2-29). Following the dis-
cussion above we obtain immediately its local counterpart as

dg g
1 = R4+ 1) = 0. 3-

+ W(BEP + B&r) it (3.3 -18)
Here n cannot vanish, and without loss in generality we can adopt the inequality 7 > 0
as a basic condition in the local theory (contrasting with nonlocal theory as discussed
in Subsection (3.2.2}). Hence (3.3-78) can be used to calculate 7 in terms of the

constitutive functions r, R and g.

As another example, we look at the definition of the tensor & in (3.3-9), and note
that the corresponding local expression reads

.88 s .
where (2.4-21); and (3.2-18) have additionally been used. It should be noted that (3.3-
79) will be of interest in relation to the notion of normality conditions in local theory,

which will be discussed in Chapter 4.

With regard to the discussion of the inverse relation in Subsection 3.3.4 we note that
in restriction to local theory the response function A equals the quasi-local response
function A, and of course that the difference between A" and A disappears (see (3.3
64) and (3.3-65)). Hence the local counterparts of (3.3-49), (3.3-59) and (3.3-66) all

coincide, and each of them reads

ij——(%?r&@}%. (3.3 — 80)
Clearly A in (3.3-80) is rate independent. Hence, in the identical relationships (3.3-
48), (3.3-57) or (3.3-63), the strain rate is expressed as a linear function of the stress
rate (valid during hardening and softening but not during perfectly plastic behaviour).
As a consequence, a direction of loading that produces a zero stress rate necessarily
corresponds to perfectly plastic behaviour {cf. the discussion that precedes (3.3-52)).
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3.4 A plastic potential function and the principle
of maximum dissipation

Thermodynamic assumptions (like the Clausius-Duhem inequality) are in local, purely
mechanical plasticity theory replaced by a work assumption of some kind, such as the
postulate of Drucker (1952) or that of 'iushin (1961). Drucker’s postulate, concerning
the nonnegativity of work in a cycle of stress, is a stability condition valid for hardening
materials only, while the restrictions placed on the constitutive equations by invoking.
IPiushin’s postulate, which involves a cycle of strain, remain valid for hardening as
well as softening behaviour. From the postulate of either Drucker or II'iushin, each
formulated within the context of linearized theory and small deformations, conditions
on normality of plastic strain rate and on convexity of yield surfaces are obtained.
Another work assumption is that of Naghdi and Trapp (1975b), similar to Il'iushin’s
postulate but valid for finite deformations.

The work assumption of Naghdi and Trapp states that the external work done on an
elastic-plastic body in any sufficiently homogeneous cycle of deformation is nonunegative,

1.e.

jt’{ftﬂ-di+/ po £o% AV} dt >0 (34 — 1)
i JB B -

for all strain cycles beginning at time t; and ending at time {5. In (3.4-1) OB designates
the boundary surface of B, f the specific body force and £ the traction vector measured
per unit area of surface in the reference configuration.

The conditions on the motion, being a smooth homogeneous cycle of deformation,
imply that it is homogeneous and that each particle of the body has the same position
and the same velocity at ¢; and £;. We recall that in a homogeneous motion the strain
tensor E is independent of X and hence only a function of time. It is also assumed
that mass density po, plastic strain E? and strain hardening function « do not depend
on X at fime #;, nor do the constitutive functions for the material. Therefore, in a
homogeneous motion of an elastic-plastic body which is homogenecus at time ¢, E?,

& and 8, for ¢ > {1, are functions of ¢ only**~1.

Using (3.4-1) together with the fact that the kinetic energy takes on the same value
at t; and ¢ (due to the smoothness condition), leads to the inequality

34-1mplied e.g. by (3.2-10) and (3.2-11). Note, namely, that in any homogeneous motion of an
initially homogeneous elastic-plastic body, each nounlocal equation derived in the present work takes
on a purely local form. Thus (3.2-10) and (3.2-11) {or any other equation of relevance} may be applied
directly.
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/tjz{/BS-EdV}dtzo, (3.4 —2)

where we recall that S is the symmetric second Piola-Kirchhoff stress tensor. Since S
and E are independent of X, {3.4-2) can equivalently be written in the form34-2

2 i
S.Edt>0 (3.4 —3)

51
The inequality (3.4-3) has three important consequences, namely

(i) the existence of a scalar potential function ¥ = ¢H(If) for the stress, i.e.34-3

8 o¢

= w3t (3.4—4)

by which is observed that the fourth order tensor £ is symmetric;

(ii) convexity of the yield surface in stress space as well as strain space for a restricted
clags of elastic-plastic materials, including those for which the response function 1
satisfies 9 = (E — EP), i.e. being independent of & and dependent on EP only
through the difference E — E?;

(iii) a constitutive restriction on the function & of the form

8y

G = _’YB”E:

where the corresponding quasi-local function & is defined by (3.3-9) and its local form
recorded in (3.3-79). The result (3.4-5) is a normality condition for the tensor &, being
directed parallel to the inward normal to the yield surface € in strain space. For the
class of materials considered in (il), the condition (3.4-5) implies

R

EF = 'T”rg'a_s' ’

(3.4 - 6)

recognized as a classical result of (infinitesimal) plasticity.

The condition (3.4-5) was first proved by Naghdi and Trapp {1975b), while an
alternative and simpler proof was provided by Casey (1984). It is important to note that
each proof is carried out by invoking (3.4-3) for special choices of homogeneous strain
cycles. Hence the normality condition (3.4-5) is proved to hold true for homogeneous

3.4-21Pjushin’s postulate of plasticity has essentially this form (proposed in the context of linearized
theory and small deformations}.
3-4-3Notations agree with those used previously in this work.
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motions only. However, the result is in fact valid in e/l motions, since the constitutive
functions appearing in (3.4-5) depend only on the local variables U, and not on their
nonlocal counterparts (or their spatial gradients). Therefore it is sufficient to consider
homogeneous motions in order to obtain results valid in all motions.

So much for local theory. Ewvidently it would be highly ineffective to invoke the
work assumption of Naghdi and Trapp for nonlocal elastic-plastic bodies, since all
characteristic features of nonlocality vanish in homogeneous motions. This means that
the normality condition (3.4-5) can still be derived (for homogeneous motions), but it
cannot be extended to be valid in all motions, because of the constitutive dependence
on the nonlocal state functions.

Looking back at the condition (3.4-1), we note that it is a global statement valid
for the entire body, so it seems logical to take this inequality as a starting point for a
discussion of work assumptions in nonlocal plasticity. Hence we should require (3.4-1)
to hold true for general strain cycles, not only homogeneous ones, such that

E(Z,t,) = E(Z, t;) (3.4--7)

for all particles in B. The motion should still be assumed to be a smooth cycle of
deformation such that for each particle the velocity takes on the same value at ¢, and
to. Following this concept {3.4-2) can still be derived, but not of course (3.4-3). Thus
a plausible nonlocal work assumption should require (3.4-2) to be valid for all smooth
deformation cycles which satisfy (3.4-7). However, it is not believed that it will be
possible to derive a condition of the type (3.4-5) from such a general statement.

We leave for a moment the purely mechanical theory and look at thermodynamic
plasticity. If the Clausius-Duhem inequality {2.3-4) is invoked, the nonlocal counterpart
of (i) is represented by (2.4-23). It turns out that it is possible to derive restriciions
on the quasi-local function & which corresponds to (iii) by invoking a generalized form
of the principle of maximum dissipation in classical plasticity, (Hill 1948)%4~%. We
proceed as follows. For isothermal motion, assume U’ a given state. Define a set Ag
of admissible states of the Lagrangian strain B satisfying the yield condition,

Ag ={E| g (E, <U' >) <0} (3.4 —8)
The principle claims that the actual stress tensor E is the one for which the plastic

dissipation D? (per unit volume} adopts its maximum. In precise formulation, for given
u,

DYE, <U' >; U >y> DB, <U' >; ) (3.4—19)

3.4-48y Hill credited to von Mises {1928).

54



for any B € Ag.
Define

< pop >

L ', | (3.4 — 10)

e =

being a measure of the specific plastic dissipation at unit volume. Upon substitution
of (3.4-10) into (2.4-26) and using (2.4-12), it is observed that the total amount D? of
dissipation in the body is given by

= /B Dray = jB (D? + H,)dV, (3.4 —11)

where H, is defined by (2.4-11). If we split Hy into parts according to

Hy =M +HS, (3.4-12)

apparently D7 4 ’H,'j,' is another reasonable measure of specific plastic dissipation.

Being now at a point of departure, we assume as our basic postulate that

D >0, ' (3.4~ 13)

for every U’ at a given state U = U{X,t), X € B.

Remark {.1. It is noted that {3.4-13) implies (2.4-26) and hence is a sufficient
condition for the global Claustus-Duhem inequality to hold true, while needless to say,
it is not necessary.l

Remark 4.2. It is important to see that (3.4-13) does not imply any restriction
whatsoever on Hg, since it is not required that an inequality of the type Dr 4 Hﬁ' >0
shouald hold simultaneously.O

Now to the implications of the principle. Choose DP defined by (3.4-10) for D? in
(3.4-9) and construct a Lagrangian

LP(E, 3) = —DP 4+ Mg(B, <U'>), (3.4 — 14)

where A > 0 is a Lagrangian multiplier. The condition (3.4-9) is now enforced by
solving the associated minimization problem implied by (3.4-14), i.e.

are

ki \ > j ") = 0. 44—
G =0 A20, dg(B, <u'>)=0 (3.4 — 15)
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From (3.4-10), (3.4-14) and (3.4-15) it then follows that

P <php> ., 109
S U+ At =0, (3.4 — 16)
A0, (B, <U >) <0, Ig(E, <U >=0, (3.4 —17)

where (3.4-17) represents the loading/unloading conditions (in Kuhn-Tucker form).
The restriction on 1) implied by the condition (3.4-16) has a simple interpretation.
Firstly, note from (2.4-16), (2.4-17) and (2.4-19) that

8 < pci,b 9% da' A% ()"
TR ./{ PBEG < U > Gidi + pa(Z)BEB <U > (Z) au }av (2)
(3.4~ 18)
Secondly, assume that
%
O <U > B<U > OB (34— 19)
and use (2.4-23); to conclude that
& < potf > _if{ 88 oo
OEO<U'>  poJPa <l S U
(C‘f’)* _ LB < poé >

+0(Z)5— ur (B) =7 1aV{(B) = ——— (3.4 —20)

where we recall that < pS > is defined similar to < pgtp > (also ¢f. (3.2-37))34-5,
Using (3.2-19)1, (3.3-9) and (3.4-20) we note that (3.4-16) can be cast into the form

= dg
o + Aa—E 0. (3.4 —21)

Since not all components of 8g/0E are zero, we conclude from (3.4-21) that =
cannot vanish for X > 0. Without loss in generality, we assume that

w > 0. (3.4 — 22)

34-5Tq arrive at (3.4-20); we have in fact used p(Z} = pp. The assumption that the body is initial
homogeneous is however not essential, but is used merely to simplify notations. To write the right-
hand side of (3.4-20); as 8 < § > /8l would certainly lead to confusion. Anyhow we must have in
mind that {3.4-20) in this form is only valid for initial homogeneous bodies.
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Hence, (3.4-21) may be written as

X dg _ Og
95~ 35 (3.4~ 23)

o = ~

where v = y(E, < ¢’ >) is a positive function of the arguments indicated. Thus the
restriction (3.4-23) on the quasi-local function & has identically the same form as the
normality condition {3.4-5) in local theory®4-5.

Remark 4.8. Werecall (cf. the discussion in Section 3.2.2) that in nonlocal plasticity
the consistency condition cannct be used to solve for the function #, as is the case in
local theory. Neither does the consistency condition place restrictions on 7 of the type
recorded in (3.4-22). Needless to say, the global condition (3.2-32) does not imply
(3.4-22).

As noted previously the work assumption of Naghdi and Trapp in the form (3.4-3)
is not admissible with regard to nonlocal bodies in nonhomogeneous motions. Only by
using arguments based on thermodynamics has it been possible to derive restrictions
of the type {3.4-21) or (3.4-22) on the constitutive functions.3

We are not intended to restrict the general theory by merely considering such classes
of materials for which the principle of maximum dissipation applies. Hence we do not
require (3.4-21} to hold true for all rate independent elastic-plastic materials. However,
we will adopt (3.4-22)34-7.

A nonlocal plastic potential will be assumed to exist. In Subsection 3.4.1 below a
potential function is specified, by which reduced forms for the quasi-local elastic-plastic
response function and strain hardening modulus, respectively, are obtained.

Special results for perfectly plastic behaviour is obtained in Subsection 3.4.2, whereas
certain aspects on the relationship between loading directions and strain hardening be-
haviour is discussed in Subsection 3.4.3.

3.4.1 Definition of a plastic potential function

Guided by the results derived from the principle of maximum dissipation, we assume
the existence of a nonlocal plastic potential function p = p(E, < I’ >}, such that
during loading (¢ = 0, § > 0) *4#

34-8]y Section 3.5.3 we will derive (3.4-6) as the restriction of {3.4-23) to the class of elastic-plastic

materials addressed in (ii}).
3.4-Tqince we do not accept the principle of maximum dissipation as a general postulate in plasticity,

(3.4-22) is a postulate and not a proved statement.
3-4-51f we take p = g (associated plasticity) it is seen that (3.4-24) and {3.4-23) coincide.

57



= _7%, ¥=7E, <U'>)>0, (3.4—24)

where dp/JE and -y are evaluated on the yield surface in strain space.

If we substitute (3.4-24) into (3.3-11) we obtain the reduced form of the quasi-local

response function K as

y dp @
,'CmJ—an%@a—g) (3.4 -25)

whereas the corresponding form of the quasi-local strain hardening modulus & reads

é:lwmg—;-%. (3.4 — 26)

The analogue of (3.3-35) takes the form

~0p _ 5 Op

Kom =L, (3.4 27)
and follows from (3.4-25) and (3.4-26). Thus 8p/8E is an eigenvector of K with eigen-
value & given by (3.4-16).

Since we have adopted (3.4-22) and since y > 0 by assumption, we can define a
function ' by

¥ Y

¢ =7l . (3.4 — 28)

and conclude that the function T' is of the same sign as the quasi-local strain hardening
modulus and vanishes precisely when & = 0. On substituting {3.4-28) into (3.4-26) we
obtain

1

™= ap 9f
N p.i
U'+ 25 3s

(3.4 — 29)

Hence (3.4-25) can be written

o 0f
»_ 7_ _JE 08 -
k=g~ 203, (3.4 — 30)

I‘+BE'B§

whereas (3.3-13) takes the explicit form
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S
§={L- -@Ea———}ﬂ (3.4 — 31)

P
P-i-@ 35

or equivalently, by the aid of (3.3-10) and (3.3-45),

9p o 99
§={-—0E B 5 (3.4 — 32)
T + @ MT_QQ_
JE JE

The similarity of the fourth order tensor in the right-hand side of (3.4-31) or (3.4-
32) with the tangential elastic-plastic stiffness tensor used in classical non-associated
plasticity (with small sirains) is recognized, where in particular the function I plays
the role of the plastic modulus. Accordingly we refer to either of these tensors in (3.4-
31) or (3.4-32) as the quasi-local tangential stlffness tensor (in strain space) and to I’
as the quasi-local plastic modulus.

In associated plasticity, p is taken equal to g. Then (3.4-27) reduces to

~ 09 £ 0¢
Rt Yok A A —
JE 7} D 8 33)
i.e. Og/OE is an eigenvector of K with eigenvalue & given by (3.4-26) with p = ¢. If
additionally £ = £7 we conclude from (3.4-31) or (3.4-32) that the tangential stiffness
tensor is symmetric,

o ®£af

S — 1.0 08
§={c £r+caf af}E
s 3s

(3.4 — 34)

where (3.3-10) has been used to display the relationship in stress space form.

Reduced forms similar to (3.4-25), (3.4-27) and (3.4-33) in terms of the inverse quasi-
local response function A are easily derived. From (3.4-24) and (3.4-26) it follows that
(3.3-49) reduces to

o Ty dp _ Of B
N—J+—-———l T 0] 5% 355 (3.4 — 35)
ToR 58

and hence by (3.4-26)
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(o _ 1o
N5 =338 (3.4 — 36)

in associated plasticity replaced by

.0y 1 0g
N s = 5om (3.4 37)
similar to (3.4-33), i.e. dg/dF is an eigenvector of A" as well, corresponding to the

cigenvalue 1/®.

Remark 4.1. From the basic assumption (3.4-24) together with the restriction = > 0
used in {3.4-28), expressions for a quasi-local elastic-plastic tangential stiffness tensor
have been derived, (3.4-31) and (3.4-32). No approximations whatsoever are involved
in these derivations - the relationship for the quasi-local stress rate § in either (3.4-31)
or (3.4-32) is exact. As before, however, calculation of the actual stress rate § requires
use of (3.3-2) in conjunction with (3.3-18).0

Remark 4.2. Even though e.g. (3.4-30) is an exact expression for the quasi-local
elastic-plastic response function K at a point X, there is a substantial drawback in-
volved, to the extent that the quasi-local plastic modulus [ in the denominator does
not afford a simple description of the strain hardening behaviour at the very point X.
E.g. hardening occurs if

. 1 af

'+ S H.s' Y

T pPod a5

as is seen from (3.3-32), (3.3-39)4 and (3.4-28), H, being calculated by the aid of (3.3-
18). Obviously (3.4-38) is not generally fulfilled even if the quasi-local plastic modulus

satisfies the inequality T' > 0 (cf. the discussion in Section 3.3.2). However, within

> 0, (3.4 — 38)

the (approximate) quasi-local formulation (see Section 3.3.3) the amount of the second
term in the left side of (3.4-38) is small, and if ' itself is not close to zero, then the
sign of the quasi-local plastic modulus apparently determines whether the material is
hardening or softening at the actual point (leaving perfect - or nearly perfect - plastic
behaviour with some uncertainty in this approximation).O

3.4.2 Special results for perfectly plastic behaviour

In Subsection 3.3.4 we concluded that a direction of loading for which the stress rate
vanishes, during plastic loading (g = 0, § > 0), necessarily corresponded to perfectiy
plastic behaviour.

H was also noted that a direction of loading which results in zero quasi-local stress
rate necessarily corresponded to zero quasi-local strain hardening modulus. Here we
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will concern ourselves with the question of existence of such loading directions. When
do such directions exist and to what extent can they be specified explicitly? Qur general
nonlocal formmulation does not provide much answer to these questions. If, however, we
turn our interest to the corresponding problem with regard to zero quasi-local stress
rate, it will be seen that the introduction of the plastic potential function p (defined by
(3.4-24), in fact guarantees that a direction of loading for which the quasi-local stress
rate § vanishes always exists, necessarily corresponding to vanishing quasi-local strain
hardening modulus &, and is parallel with the vector Mdp/OE in six-dimensional
strain space (M defined by (3.2-37) and (3.3-45)).

To see this, we first observe that, for vanishing &, (3.4-27) is reduced to

dp 48f

.0 .
2P ., 0<4=1/(55" 55

e = (3.4 — 39)

where we have used (3.4-26). Thus dp/8E lies in the null space of £34~%. We note
that (3.4-39) by use of (3.4-25) can be written

Op Of Op _ Op

w7ﬁ®a—s-5—ﬁw—5-ﬁ, (3.4 — 40)

that is, for & = 0, 8p/OE is an eigenvector of the tensor my dp/OE @ 8f/0S corre-
sponding to eigenvalue unity. (Note that (3.4-28) implies I' = 0 if & =0.)

To prove that there is exactly one direction of loading for which § = 0, choose E
such that

. dp

B=h Mk, (3.4 — 41)
where b = (B, <l >, E) is a positive scalar-valued function, and note by (3.2-9)
and (3.4-39); that

g=— >0 (3.4 — 42)

2] =

Thus (3.4-41) specifies a direction of loading to which, in view of (3.3-13), corresponds
a quasi-local stress rate

< dp
S =hKL MBE . (3.4 —43)

From (3.4-39); then follows that

8-4-%Recall from (3.3-35) that 9f/8S belongs to the null space of KT when & = 0.
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§ =0, (3.4 — 44)

and hence M3p/0E represents a loading direction for which the quasi-local stress rate
vanishes for zero quasi-local strain hardening moduhus.

Next we prove that in fact there is no direction of loading other than that of
MO3p[IE, which results in zero quasi-local stress rate for vanishing quasi-local strain
hardening modulus. We set S = 0 and by using (3.3-13) and (3.4-25) we get

F] .
(T - aE P ® ag)ﬁE =0,y >0, (3.4 — 45)

which can also be written

LE =1 'y_g'r-g—g ) (3.4 — 46)

where we have used (3.3-10) and (3.2-9). Hence, in view of (3.3-45), the equation § = 0
has a solution of the form

dp

E-—w'ngaE

(3.4 — 47)

i.e. E has the same direction as Mdp/dE, which completes the proof.

For associated plasticity (p = g) and with £ = £T we deduce from (3.4-47) that
in the case of vanishing quasi-local strain hardening modulus, the only direction of
loading for which the quasi-local stress rate vanishes is that of the normal to the yield
gurface in stress space.

Remark 4.3. Referring to Section 4.3 we recall that in the restriction to local theory
the differences between quasi-local and general nonlocal quantities vanish since H, = 0.
Hence we may omit the check symbol in all entities except that of the stress rate, where
§ should be replaced by S. When further the independent variables are replaced by
U = {E, E?, x}, all equations in this section alse apply to local theory.

As a special case, taking p = ¢, we note that (3.4-24) reads

g
R v 0 A — 4

o=

corresponding to {3.4-5). Thus & is normal to the yield surface in strain space as
discussed previously.

Still assuming associated plasticity and additionally £ = £7, we also note that
(3.4-47), by use of (3.3-10) and (3.3-45), in local theory should be replaced by
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. af
E= . 3.4-—49
™Y i35 ( )
Hence we conclude that for perfectly plastic behaviour, the only direction of loading
for which the stress rate vanishes is that of the normal to the yield surface in stress

space.t]

3.4.3 On loading directions

In classical, infinitesimal plasticity it is commonly claimed that a material is of harden-
ing type if its constitutive response satisfies &;; é;; > 0 for any choice of nonvanishing
loading direction éij. If i = Diju ér it then follows that D,’jkj € € > 0 whenever
€&; # 0, Le. Dy is positive definite. Conversely a material is of softening type if
g €; < 0, and hence Dy is negative definite for a softening material. Also recall
that materials which satisfy Drucker’s postulate of stability, &;;¢; > 0, are not capable
of sustaining strain softening behaviour.

In a general theory of finite plasticity (local or nonlocal}, without constraints of the
type of Drucker’s postulate no restriction whatever is Iaid on the scalar S - E, which
may be of any sign (at least in principle) during loading, irrespective of the type of
strain hardening response. Below we will briefly discuss restrictions on § - E (or § - F)
for a familiar class of materials where £ = 8S8/0E is symmetric and positive definite.

In fact, not much can be said about arbitrary loading directions. However, it is
easy to show that the following statements hold true4-10,

(i) the cutward normal to the yield surface in stress space, 8f/08, is always a possible
direction of loading, and

(i1} i, in an elastic-plastic state (g = 0), loading is effected in the direction of the
outward normal to the yield surface in stress space, then the state is one of hardening
precisely if § - E > 0, one of softening precisely if § - E < 0 and perfectly plastic
precisely if § - E = 0.

Assume that

af

Ez&é‘ga

(3.4 — 50)

where ¢ is an arbitrary positive function of (B, < #’ >) and E. Since £ is symmetric
and positive definite, it follows from (3.2-9) and (3.3-10) that

34-18Arguments used are similar to those of Casey and Lin (1986).
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g= of Qf->0,

55 L3 (3.4 - 51)
which proves (i).
Further, using (3.2-36), (3.3-31) and (3.4-51), it is deduced that
a
S E=¢5. f =¢84, (3.4 - 52)

from which the conclusions listed in (ii) follow immediately in view of (3.3-32).

Substitution of {3.3-39); and (3.3-39), into (3.4-52), yields

§ E=¢dg. (3.4 — 53)

Hence (note that {3.4-51) still holds), if loa,dmg is effected along the outward normal
to the yield surface in stress space, then §-E > 0,8 - E <0 or S B = 0if and only if
the quasi-local strain hardening modulus accordingly is positive, negative or zero.

Finally, we consider materials for which a potential function exisis. Then, in the
case of associated plasticity, we note that (3.4-25) becomes

s af
K=J—n 8_E®BS’ 70, >0, (3.4 — 54)

during loading (¢ =0, § > 0). From (3.3-10), (3.3-13) and (3.4-54)

S-E:EAEE-W?’ gg] E<E.LE, - (3.4- 55)

where we also have taken advantage of the fact that £ is symmetric. In view of (3.3-39),
(3.2-9) and (3.4-55); we deduce that

S-E:E-ﬁ]&:-m(g)z«h%m-ﬁ:5E-£E+%HS-E. (3.4- 56)
0 ]

It is noted that the inequalities in {3.4-55) and (3.4-56} are the only restrictions on
S-E and S E, respectively, implied by the assumption of associated plasticity.
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3.5 An equivalent set of constitutive variables

In this section we draw attention to the fact that it may be advantageous to express
the constitutive equation (3.2-5) in terms of an equivalent set of constitutive variables
in the form

S=8§(E- <E >, <U' >)=5E-<E' >, <E> <xr>). (35-1)

In Subsection 3.5.1 we will discuss the consequences of (3.5-1) and derive expressions
for the quasi-local response function £ and the quasi-local strain hardening modulus
$ in terms of the new set of constitutive variables. In Subsection 3.5.2 a special case
will be considered, where 8 does not depend on its second and third argument, and in
Subsection 3.5.3 some results in the restriction fo local theory will be discussed.

3.5.1 Results in terms of the new set of variables

Using the chain rule of differentiation, we obtain from (3.5-1) and (3.2-5) that

as

BB <BS) (35 -2)
and
s 88 85 o8 8%
8<u’>_{6<EP>’6<K>}_{£+B<Ep>1a<n>}; (35-——3)

where L originally is defined in relation to the derivation of (3.2-37).
Next, results corresponding to (3.5-2) and (3.5-3) will be obtained, where the dif-

ferentiation involves derivatives with respect to ' instead of < ' >. It appears that
considerable simplifications can be achieved if we assume that the prescribed functions
o' = {aP, o"}, defined in (3.2-6), satisfy restricted constitutive equations of the form
P P (EP P

ah ah(E (Xit)i E (Z’t)1 (3'5 o 4)
ot = a*(s(X,1), k(Z,1)).

This restriction on ¢ is used throughout the rest of the chapter.

In view of (3.5-2) and (3.5-3) and with arguments similar to those used in the
derivation of (3.2-45), we obtain {also cf. (3.2-22) and (3.2-23))
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88 88
Ty
s Tl s

2 (<m§>) = [ {po (Z)(a)"}av(2)

__a _ 8 ., _ 08 v o
= 75 g + mlB) e (B)() )V (2)

a8 a8

— é‘%; /B{POWCEP + ,On(Z)a ap)*}dV(Z). (3.5 - 5)

(E— < Er >)(Z)(

If we write 8 < poS > /JEP for the first integral in (3.5-5); and 8 < poS > /
A{E — E?) for the second one we conclude that

8<pS> 8<pS>

dEr ok LD (3.5-6)
where
. 18< ,ong >
L mpr(E—Ep) . (3.5-17)

For the derivative with respect to the strain hardening function, we correspondingly
deduce that

8<pS>  8<poS>
a5 h Ok ’

(3.5 — 8)

where the influence of the restricted form (3.5-4); for a? is apparent, While < poS > is
unambignously defined by an expression similar to (3.2-22), it should be noted that this
is not true if § is replaced by S. Consequently we refer to (3.5-5) for an interpretation
of (3.5-6)-(3.5-8). Note that (3.5-6)-(3.5-8) have been established in such a way, that
they have exactly the same form as {3.5-3),.

We now continue as in Section 3.3.1 and define a second order tensor-valued funciion

by

Qe

i8<pgg>

/ —
Py A, (3.5—9)

o =

where A’ is defined by (3.2-18). Using {3.3-9), (3.5-6), (3.5-7) and (3.5-8) it follows
that
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F=6+LR, (3.5 —10)

so that {3.3-11) becomes

- * af x 6f
K=J- £R®68+ ®%. (3.5 -11)
The quasi-local strain hardening modulus & defined by (3.3-27) (cf. Section 3.3.3)
becomes similarly

=1-—7LR- g—}— 5. 91

5T (3.5 — 12)

or alternatively

dg - Of

@ml—'erﬁRaE—i— 7S

(3.5 - 13)

where (3.3-10) and (3.3-45) have been used.

For future use we also record the expression of the plastic potential in terms of &,

" —E*Rz—'yg—g , v >0, (3.5 14)

as is seen from (3.4-24) and (3.5-10).

The rate of stress can be calculated directly by differentiating the function 8 =
S(E— < E® >, < U' >) or alternatively from the expression for S in (3.2-37) by the
aid of (3.5-6) and (3.5-8). We use the second possibility and conclude that

8<pg§>

S —H, = po LE — po L*EP
Pa Po Po + T

U, (3.5 — 15)

where we understand that the function S is used in the calculation of H,. That is, in
view of (3.2-39),

- f{ o5 b 08 o/,
P GBS < T S a(E) T B < > T

u(z)

85 aary 88 . )
BEREAR TGRS S (O TR ST 7

WY dv(Z) (3.5 16)
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where the implication of (3.5-4) should be taken into consideration.

During loading, using (3.5-9), (3.2-18) and (3.2-19); we conclude that (3.5-15) can
"be written in the form

1 dg . 09
§— M, =(L—7 LR 99 v, 5
M= (L7 LRO L+ 6@ 5B (3.5—17)
or by (3.3-2)
§ = (£’+7r&®99—)1%} (3.5 —18)
B’
where £/ is defined by
C=f-ncRe (35— 19)
= m 3E - .

It is immediately seen that the fourth order tensor-valued function £’ has the same
symmetry properties as those of £ (first appearing in {3.2-37)). If (3.5-10) is used to
substitute for & in (3.5-17) it is noted that the result agrees with (3.3-8) as it should.

It is also noted that the inverse relation for the strain rate in terms of the quasi-local
stress rate is still valid in the form (3.3-48), where A now is given by

N=J+%((£*R—é)®g—§), (3.5 — 20)

as is seen from (3.3-49) and (3.5-10). Of course (3.5-20} is valid only if the quasi-local
strain hardening modulus &, now to be calculated by (3.5-12) or {3.5-13), does not
vanish.

3.5.2 A special case

In Section 3.5.1 we derived expressions for the quasi-local stress rate S, the quasi-local
response function K and the quasi-local strain hardening modulus $ in terms of the
response function §. We will here consider the special case when S does not depend on

its second and third argument. In view of (3.5-5) it then follows that 8 < poS > /OE?
and 8 < poS > /O« both vanish, and hence that (3.5-9) reduces to

5=0. (3.5 —21)

Thus (3.5-11) becomes
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F=g-rcrRedd (3.5 — 22)

a8’
while {3.5-12) and (3.5-13) become
-p. Of
b=1-rL R-SL, (3.5 — 23)
b=1-rMLR-D (3.5 — 24
a OB’ 52

respectively. If a plastic potential function is assumed to exist, then (3.5-14)} is reduced
to

LR = »yg%, 4> 0, (3.5 — 25)

and, if (3.4-29) is valid, (3.5-22) takes on the term (3.4-30). By substitution of (3.5-25)
into (3.5-23), (3.4-26) is recovered as should be expected.

If £* is not singular, (3.5-25) can alternatively be written in the form

.op
=y M 3E (3.5 — 26)
where the fourth 6rder tensor M* satisfies
LM =ML =7, (3.5 -27)

and where J is defined by (3.3-7)35-1,

By virtue of (3.5-21) we observe that the stress-strain relation (3.5-18) is reduced
to

§ = L', (3.5 — 28)

with £ defined by (3.5-19), while the inverse relation is given by

- T af
E=M(J+<LRE-Z)S, 3.5 —29
@ +Fere ) (3.5~ 29)
3:8-11f the principle of maximum dissipation is invoked, it is easily seen that (3.5-26) should be replaced
by R = yM*8g/9E, or equivalently (by use of (3.2-16}; and (3.4-23)}, B» = AM*9g/0E, being the
nonlocal counterpart of (3.4-6).
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where (3.3-48) and (3.5-20) have been used.

If the conditions (3.5-25) and (3.5-26) are valid we conclude from (3.2-19), (3.3-40)
and (3.4-28) that

op . _fr
T JE f‘*y’

=i
h-]
I
o] S
<
x
Il

(3.5 — 30)

constituting the flow rules in the case when the quasi-local plastic modulus does not
vanish. If ' = 0, using (3.2-16), gives

. Op
M5
~98p o

dE 0J8

B’ (3.5 —31)

where (3.4-29) and (3.5-26) have also been used.

3.5.3 Restriction to local theory

Below we make some comments concerning local counterparts of the nonlocal results
presented previously in this section. We refer to Section 3.3.5 (also cf. Remark 4.8)
and conclude that the quantity < poS > may be replaced by poS in a corresponding
local theory. Hence deduce from (3.5-2) and (3.5-7) that

L=, (3.5 — 32)
Also note that the restricted forms of (3.5-2) and (3.5-3) are equivalent fo the
corresponding restricted forms of (3.5-6) and (3.5-8}, respectively.

Specifically we observe that the quasi-local strain hardening modulus ¢ coincides
with ®, and hence that ' = T' represents the actual plastic modulus, describing the
three different types of material reponse, i.e. hardening when I' > 0, softening when
T' < 0 and perfectly plastic behaviour when I' = (.

Using (3.5-32) and (3.3-45) we conclude that the local counterpart of (3.5-13) be-
comes

_ dg _af
Q_l_WR'Emﬁ+WU'_5§’ (3.5 —33)

while (3.5-15) may be written in the form
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a8 as

3 = LB — BP) 4+ — fip
S = L{B E)+6PE +8 (3.5 — 34)
In addition (3.5-24) by use of (3.3-45) reduces to
dyg
—1-7R. X 5
P TR o5 (3.5 —35)
and (3.5-25) (or equivalently (3.5-26) to
R=y M— o >0 (3.5 — 36)
TeE T ' )

If p = g (associated plasticity) and if in addition £ = £T, (3.5-36) by use of (3.3-10)
further reduces to

R = 1%, v >0, (3.5 —37)

i.e. R is parallel to the outward normal to the yield surface 95 in stress space. As
seen from (3.5-25) (or equivalently from {3.5-26) it is recalled that this result does not
generally follow for associated nonlocal plasticity.

As a final example we conclude that the flow rule (3.5-30); for the plastic strain
rate attains the local form

. f . B
B = FMBE (T =1, (3.5 — 38)

for hardening and softening plasticity, while for perfectly plastic behaviour we corre-
spondingly dednce from (3.5-31), {3.5-32) and {3.5-27} that

dp

EP = g?}?ﬁ%}u . (3.5 - 39)

JE 85
In view of (3.2-16); and (3.5-36) it is evident that (3.5-38) and (3.5-39) may be

replaced by the single condition
Er=x+y§ M= (3.5 — 40}

or by
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Eﬂ:mggzg,mpo, (3.5 — 41)

if (3.5-37) is valid®5~%. The last expression is identical with (3.5-41) and tells us
that the plastic strain rate is directed as the outward normal to the yield surface in
stress space (as in classical plasticity). Clearly (3.5-41) is not restricted to hardening
plasticity, but applies to soltening plasticity and perfectly plastic behaviour as well.

3.5-2The flow rule {3.4-6) also follows by invoking the principle of maximum dissipation (cf footnote
3.5-1).
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3.6 Illustrative example

In this section we will discuss some aspects of nonlocal plasticity theory with reference
to a special class of materials characterized by a stress-strain relation of the type briefly
discussed in Section 3.5.2.

In Subsection 3.6.1, constitutive equations are presented for an isotropic body with
linear stress-strain response and with a yield function of von Mises type.

In Subsection 3.6.2, the functions & and o are constituted by the aid of time
independent attenuation functions, which for fixed X are assumed to be rapidly decay-
ing with the distance from X. Further, to simplify notations, two types of averaging
operators - brackets and braces - are introduced.

In Subsection 3.6.3 we derive expressions for the quasi-local and the actual stress
rate. The general nonlocal consistency condition in strain space is established, decom-
posed into a quasi-local part and a part which vanishes in an average sense.

The classification of strain hardening behaviour is the subject of Subsection 3.6.4,
while in Subsection 3.6.5 the consequences of the existence of a plastic potential are
discussed.

In Subsection 3.6.6 a global form of the consistency condition is used to produce a
solution for the function = appearing in the flow rules. Then, explicit - however approx-
imate - expressions for the elastic-plastic response function and the strain hardening
modulus are obtained.

Finally, in Subsection 3.6.7, the principle of maximum dissipation is applied to the
class of materials defined in Subsection 3.6.1.

3.6.1 Constitutive assumptions

Consider an isotropic body B represented by a class of materials which satisfies (3.5-21)
and let

S =L(E- < E?>), (3.6—1)

and

2
L=ouT + (k- 2181, (3.6 - 2)

where 1 is the second order identity tensor, and the positive material parameters y =
w(X) and k = k(X) are the shear modulus and bulk modulus of elasticity, respectively.
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If the tensors E, E?, S are decomposed into deviatoric parts <y, 4%, r and spherical
parts €1, €71, 51, the stress response (3.6-1) may be written as

7= 2u(y— < 4" >), §=3k(e— < &) (3.6 — 3}

We choose a yield function f similar to that of von Mises type in local theory,

f=rmr—<k>. (3.6 —4)

Using (3.2-33) and (3.6-3) we then have

=4l y= <A >) (Y= <A >)= <k > (3.6 —5)

From (3.6-4) follows that

o5 o1 _,

55 =3 = 2T (3.6 — 6)

and hence by (3.3-10) and (3.6-2) (or directly from (3.6-5)) that

Oy _ 99 _ _
3B = By =4u T. 36-1)

In view of the definitions (3.2-9) and (3.2-6) we obtain from (3.6-6) and (3.6-7) that
G=tuT3 (3.6 9)
and

»

f=2r-7, (3.6 —9)

where advantage has been taken of the fact that 7-1 =+ 1 =0, which will be used
frequently below.

The relationship {3.3-2) between the actual and the quasi-local stress rate is split
into a deviatoric part

1
Po

and a spherical par
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1

+ =
Po

Lo

g =

Hs, (3.6~ 11)

where H, is the deviatoric and M1 the spherical part of H,, which in the general
form is given by (3.2-38). Hence (3.3-20) takes the form

.. 10f

f”=f+EaT-HT, (3.6 — 12)

where f (defined by (3.3-21)) may be written

_0f
f_"a T,

T

(3.6 —13)
and where df /871 should be replaced by 27 according to (3.6-6).
Fiow rules are assumed in accordance with (3.2-19). Specifically, we write
Fr=rgp (9=0, §20) (3.6 — 14)

where p is the deviatoric part of the second order tensor R in (3.2-16).

3.6.2 Attenuation functions

We now turn to the matter of selecting functions o and o®. With the restricted form
(3.5-4) as our starting point we assume '

P 1 P P
oh = Vhéx)wh(iz ~X|)x(Z), | (3.6 — 16)
where V, and V¥, are defined by
W(X) = [ (- X)) dv(2), (3.6 —17)
and
Va(X) = [ wh(|Z - X)) dv(Z), (3.6~ 18)
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respectively. Here wP and w" are scalar, time independent attenuation or influence func-
tions, by which are constructed representative volumes V, andV;,, being characteristic
measures for the assigned body B with volume V(B). From physical considerations
it is reasonable that the attenuation functions decay smoothly and rapidly with the
distance from X, as is the case when w? and w" are assumed to be of exponential form.
It is evident that the nonlocal feature of a certain material behaviour is considerably
affected by the choice of atfenunation functions. For the present purpose, however, it is

not necessary to specify w? and wh 36-1,

Before continuning it is convenient to introduce some new notations, Define attenu-
ation functions ®(Z,X) and w(X, Z)} by the relationship

(2, X) = V&jqu ~X)) (3.6 — 19)
and
B(X,Z) = _‘}%ﬁwux ~ 7D, (3.6 — 20)

respectively, where w(@®) stands for either w?(1W?) or w*(B"). We use brackets and
braces to denote two different types of averaging operators,

@ - [ (2, X)Q(z)av (), (3.6 — 21)

Q7 = fBﬁ;(X,Z)Q(Z)dV(Z), (3.6 — 22)

for every scalar, vector or tensor valued function ¢J. Since

T FE DBV (@) = s [ (X~ ZDQ()Y (2
~ fB ﬁ(Z,X)%%dV(Z), (3.6 — 23)
we conclude from (3.6-21) and (3.6-22) that
{@)/v =[Q/V] (3.6 — 24)

8.5-1The influence of the choice of attenuation functions on localization in a strain softening solid is
discussed in Chapter 4.
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The function fg ®(X, Z)}dV(Z) is simply denoted by 3, i.e.

8= [ (X, 2)v(z) = (i}, (3.6 — 25)
where the second equality is due to (3.6-22). Hence in view of (3.6-17), (3.6-18) and
(3.6-25)

i,=M=1 {},=p {1},=6" (3.6 — 26)

Also note that the time derivative of the nonlocal plastic strain variable may be
written

<FEF >

If

% ]B @ (Z, X)E?(Z)dV (Z)

It

jB (2, X)EP(Z)dV(Z) = [E7],, (3.6- 27)

where we have used the fact that the attenuation funciion ©P does not depend on
time, and where also (3.6-21) has been used to obtain the last equality. For the time
derivative of the strain hardening variable we write similarly

<h>= /B (2, X)i(Z)dV (Z) = TA],. (3.6 - 28)

In order to evaluate the quasi-local elastic-plastic response function K and the
corresponding quasi-local strain hardening modulus & we need the derivatives of the
functions a? and &". From (3.6-15) and (3.6-16) we deduce that

Sar? ot
55 = O = =0 (3.6 —29)
while
0o _ 1|z —X|\T = 0*(2,X)T (3.6 — 30)
OER(Z) — Vy(X) S '
and

Ao 1

@) = vy 1~ XI) =02, X), (3.6 — 31)

where J is the fourth order unit tensor, defined by (3.3-12), and where (3.6-19) has
been used to rewrite the right-hand side of (3.6-30) and (3.6-31). Further, in view of
(2.4-9), we observe that
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(@) = -z (X — ZDE(X) = (X, Z)BP(X)

and

1

(ah)* = mwh(lx - ZDK(X) = ﬁ’h(xi Z)H(X)a

where (3.6-20) has also been used. Thus

Yy hyx
while Bar) ng

oFr ' ’
and oty

—5 =Y (X, 7).

3.6.3 Stress rates and the consistency condition

(3.6 — 32)

(3.6 — 33)

(3.6 — 34)

(3.6 — 35)

(3.6 — 36)

With the prelirninaries worked out in the preceding section, we are ready to investigate
some characteristic features of material response due to the special choice of functions

a? and af, given by (3.6-15) and (3.6-16). Using (3.5-2), (3.5-5)3, (3.5-7) and (3.6-1)

we obtain

e = [ (w2 ooyl av ),

which in view of (3.6-29),, (3.6-35) and (3.6-22) reduces to

pol* = [ p(Z)L(ZYT (X, L)V (Z) = TpoL],.

If we construct quantities

poi™ = [ polZ)u(B)5 (X, 2)dV (2) = (pon},
and
pok™ “f po(ZYK(Z)i* (X, Z)dV (Z) = {pok},,

then (3.6-38) in combination with {3.6-2) takes the form
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I =2,u*J+(Ic*—§,u*)1®1. (3.6 —41)

Apparently 4* and k* are nonlocal measures of the elastic properties of the material.
However, due to the dependence on the representative volume V,, p* and &* cannot be
replaced by p and k, even if the body is initially homogeneous and the elastic moduli
are constants. In that case, ie. when g and k¥ do not depend on position (3.6-38),
(3.6-39) and (3.6-40) reduce to

c=L{1},= L,
p = p{l}, = Bp, ' (3.6 - 42)
k= k{1}, = Bk,

where (3.6-25) has also been used. Nevertheless we will refer to p* and k* as the
nonlocal shear modulus and the nonlocal bulk modulus, respectively.

From (3.5-14) we conclude that the quasi-local stress rate (originally defined by
(3.3-2)) becomes

S=LE-LEr, (3.6 — 43)

and hence in view of (3.6-41), allowing the decompositions

=2 — 2t AP, (3.6 — 44)

and

5 = 3ke — 3k, (3.6 — 45)

into deviatoric and spherical parts, respectively,

Remark 6.1 If (3.6-42) is valid (3.6-43) reduces to

§ = L(E — §°E?) (3.6 — 46)

(with similar expressions for + and §). The almost entirely local form of the quasi-local
stress rate is due to the simple constitutive assumption (3.6-1). The appearance of §7
in (3.6-46) may be looked upon as the result of boundary effects. If w? is a rapidly
decaying attenuation function, then at a distance from the boundary of the body, 57 is
cloge to unity, as is seen from its definition (3.6-25). However, a second look at (3.5-5)
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and (3.5-7) shows that for a general, nonlinear response, S will depend on the nonlocal
inelastic variables {(but of course not on their corresponding rates).0

From (3.6-1) and (3.6-29)—(3.6-36) we deduce that (3.5-16) becomes

H, = L{‘POE'LE”(Z,X)EP(Z) “} pg(Z)ﬁ(Z)tb?(X’ Z)Ep} dvV(Z), (3.6 _ 47)
and hence by (3.6-27) and (3.6-38)
M= L <> 4L (3.6 — 48)

Po
Then (3.3-2) in combination with (3.6-43) and (3.6-48) gives

§ = L(EP— < EP >), (3.6 — 49)

which of course follows directly from (3.6-1) by differentiation with respect to time.

Remark 6.2. Tt should come as no surprise that the term £*EP present in (3.6-43)
and (3.6-48) cancels out in (3.6-49). If, namely, we decompose the stress rate into two
parts according to

S = (LEP — L*EP) + (LFP — L < BP >), (3.6 — 50)

it is easily seen by use of (3.6-27) and (3.6-38) that

/B po(—L < BP > +LYEP)AV =0, (3.6 — 51)

Hence we may identify the second part of (3.6-50) with H,/po and the first part
with S, recovering the results contained in (3.6-43) and (3.6-48). (Recall that H,
according to {3.2-41) is defined such that [ H, dV = 0.) Needless to say, H, cannot
in general be obtained so easily, but must be evaluated from (3.2-39). The simple
argument used here to decompose the stress rate relies heavily on the fact that S is
linear in (E— < EP >), and o is linear in E».)O

It is also enlightening to evaluate the decomposition {3.2-21) of g and {3.3-35) of
f, respectively. From (3.2-22) and (3.2-23) in combination with (3.6-29) and (3.6-35)
we conclude that

d < pog > dg

aEr = Jp B 5 e 5 (B)"(X, 2)aV(Z), (3.6-152)
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and hence by (3.6-3), (3.6-5) and (3.6-22) that

a< > —_—
*ﬁﬁ%“‘=—ﬂmmfh- (3.6 — 53)
Similarly
d < > o
éo;g = / polZ )a — 7 (Z)N(X, 2)adV(Z) = ~{po},. (3.6 — 54)

Further, it follows from (3.2-24), (3.6-30), (3.6-31), (3.6-35) and (3.6-36) that

= [ Aol (2, X)) + 5202, X)k(2))

()5 (257 (X, 27

< Er >

+

dg .
5TES (Z)™(X, Z)k(X))}dV (Z). (8.6- 55)

Hence, again using (3.6-3) and (3.6-5), and additionally (3.6-27) and (3.6-28),

Hy = —4popr <BP > ~pg < it > +4{pop7}, - P + {po} . (3.6- 56)

A simple calculation shows that (3.6-56) satisfies the condition (3.2-41). If we now
insert (3.6-8), (3.6-53), (3.6-54) and (3.6-56) into (3.2-21) we obtain the result expected,
Gg=dpr -y —dur <A > — <k >, (3.6 — 57)

in agreement with (3.6-5). (We have also made use of the fact that < E? > may be
replaced by < 4 > in the second term of (3.6-57).)

For the yield function in stress space, expressions corresponding to (3.6-53), (3.6-54)
and (3.6-56) read h

0 < pof > B<pof>_ -+ B
and L
Hi = —po < &> +{po},r. (3.6 — 59)

Applying (3.2-35) then verifies that
f=2r 7= <i>. (3.6 — 60)
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From (3.2-19), (3.6-14), (3.6-53) and (3.6-54) it follows that the consistency condi-
tion (3.2-31) becomes

P — 1
1= —(#{pour}, p+{polyr} + —H, =0, (3.6 — 61)
Po Pod

where H,, recorded in (3.6-56), should be reduced by means of the flow rules (cf.
(3.2-30)). The corresponding global statement (3.2-32) becomes

L, 0= (6ToonT, - o+ TooTir)pod) dV =0, (3.6 - 62)

a condition which the function # necessarily must satisfy,

Substitution of (3.6-56) into (3.6-61) (or directly from {3.6-57)) gives the consistency
condition in strain space in the explicit form

lee— 1o .
1—dpr - E{nglp - E[ﬂ'gr]h =0, (9=0,3>0), (3.6 — 63)

where (3.6-21) has also been used and where § is given by (3.6-8), while the corre-
sponding expression in stress space reads (cf. (3.6-60))

2r -1 —[zgr], =0, (f=0,§>0) (3.6 — 64)

As a final illustration before leaving this subsection we verify (3.2-46) concerning
the relationship between the strain space formulation and the corresponding stress
space formulation. In view of (3.5-6) and (3.5-8), in combination with (3.6-8), (3.6-9)
and (3.6-6), it follows that the left-hand side of (3.2-46) can be written

pot -+ (dp & — 27) + 27(—po L*EP
_ . (3.6 — 65)
—poll < EP > +pg LBEFP) = —2pgr - (T~ 2u{y— < 5° >)).

By substituting (3.6-3); into (3.6-65); we conclude that (3.2-46) is satisfied.

3.6.4 Classification of strain hardening behaviour

The quasi-local elastic-plastic response function related to the quasi-local stress rate
(3.6-43) is recorded in (3.5-22) for the special case when & = 0. Hence by (3.6-6)

K=J-2L'R@ T, (3.6 — 66)
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where the explicit form of £* is given by (3.6-38). In view of (3.5-23) the corresponding
quasi-local strain hardening modulus becomes

b = 1—27L'R-T=1—dwp*p- T, (3.6- 67)

where the second equality is due to (3.6-41) and (3.6-14). Alternatively (3.6-67); may
be obtained by substitution of (3.6-8), (3.6-13), (3.6-14) and (3.6-44) into (3.3-40). Of
course {3.6-67) also follows from (3.3-28) i.e. by the use of the fact that & equals the
determinant of K.

The relationship between the general nonlocal elastic-plastic response function X
and K is given by (3.3-17). Hence by use of (3.6-48), (3.2-16), (3.6-6), (8.6-21) and
(3.6-66)

K=J- —;—25 [rgR], & T, (3.6 ~ 68)

with § given by (3.6-8). We recall that (3.6-66) and (3.6-68) are derived, presupposing
loading (g = 0, § > 0). However it is evident that (3.6-66) is valid also at unloading
conditions (x = 0), while K in general is not.

The fact that K is rate independent only in a weak sense is here manifested by the
appearance of § = §(Z) inside the averaging bracket in the right-hand side of (3.6-68).
Cf. the discussion in Section 3.3.1.

- The general nonlocal strain hardening modulus @ is defined by (3.3-29). Arguing
as in the derivation of (3.6-68), we use (3.6-67) to conclude that

o = 1- %ZL [(oR], 7 =1 _;.4# e, 7, (3.6- 69)

which of course also follows directly from (3.6-68) and (3.3-30). As mentioned in Section
3.3.2 the strain hardening modulus & may be expressed in various ways. By use of e.g.
(3.3-33) in combination with (3.6-58), {3.6-59) and the flow rules (3.2-19) we deduce
that

d = —(—— {po}hﬂ' r "i- ( Po[ﬂ'g'f“] + {Po}h"‘rgr) [ﬂ'g’"]h (3.6- 70)

Notice that this result also follows from (3.3-31) together with the stress space consis-
tency condition (3.6-64), apparently providing the easiest way to obtain (3.6-70).

Since we have adopted {3.4-22), i.e. w(Z) > 0 during loading at point Z, it follows
from (3.6-70) and (3.3-32) that
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r(Z) >0 = &(X) >0, hardening behaviour at X,
r(Z) <0 = &(X) <0, softening behaviour at X, (3.6 -71)
r(Z)=0 = &(X) =0, perfectly plastic behaviour at X,

where e.g. r(Z) > 0 means r(Z} > 0 for all points Z at loading. It is noted that the
sign of r at X does not necessarily determine the state of strain hardening at the very
point X (unless 7 is constant). For instance r(X) = 0 does not imply that ¢ vanishes
at X, and conversely, perfectly plastic behaviour at X (®(X) = 0) does not imply that
r(X)=0.

Later, in Subsection 3.6.6, an approximate formulation is outlined of the exact the-
ory with respect to the special class of materials involved here. We postpone until then
a discussion about the relationship between the quasi-local strain hardening modulus
¢ and the different types of strain hardening behaviour.

Finally we note that (3.6-70) is reduced to

o =rr (3.6 — 72)

in the restriction to local theory. Hence, since 7 > 0, the sign of r uniquely determines
the type of strain hardening behaviour.

3.6.5 Associated plasticity

We now presuppose the existence of a plastic potential. If we also assume associated
plasticity (p = g) it follows from (3.5-25), (3.6-2) and (3.3-10) that

LR = dypT, (3.6 - 73)

or in view of (3.6-4) that

p= 27-%r (=R). (3.6 — 74)

We note that (3.6-73) implies that R in fact is deviatoric. Hence (3.6-14), represents
evolution of the total plastic strain rate.

Substitution of (3.6-73) into (3.6-66) and {3.6-67) yields

K=J~8yurr &, (3.6 —75)
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and

~

®=1—8yurr T, (3.6 —76)

respectively. Due to (3.4-13), we note that (3.4-15) can be used to express (3.6-75) in
the form

. dpr @ T
Ko F oy dpr -7 (3.6 —77)
where
f=l g (3.6 — 78)
= preT 6 —

15 the quasi-local plastic modulus.

Upon substituting (3.6-74) into (3.6-68) and by use of {3.6-2) we note that we can
write the general nonlocal elastic-plastic function in the form

|
K=J- ESu[ﬁgv(a/p"‘)r]p ®T, (3.6 —79)

while correspondingly (3.6-69) yields

(N
o=1- E&Li‘frm(u/#“)‘r]p -7, (3.6 —80)

for the nonlocal strain hardening modulus.

Remark 6.3. For homogeneous materials the quotient p/u* appearing in (3.6-74),
(3.6-79) and (3.6-80) should be replaced by 1/87 in accordance with (3.6-42),. If we
choose 7 such that

Yp/u) =1, (3.6 — 81)
(3.6-74) becomes
cor= O _
p =27 = 5 (3.6 — 82)

— the second equality being due to (3.6-6) — hence rendering (3.6-14) the well-known
form '
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,Of

P — Ya
7 ﬂ-gari

(3.6 —83)
where 7§ may be identified as a (nonlocal) plastic multiplier. More generally, if we
assume

af
R=75 (3.6 - 84)
it is necessary {cf. (3.5-25)) that

*?i_ T
Kas =k

9f

= (3.6 — 85)

i.e. 0f/88 must be an eigenvector of the tensor (£~1)TL* with eigenvalue . Particu-
larly if £ is symmetric and £* = 8L, then v = 8.0

3.6.6 An approximate formulation

In local theory the consistency condition is represented by an algebraic equation, by
which the function = may be solved for, as discussed in Section 3.2.2 previously. Here
the nonlocal consistency condition is recorded explicitly in (3.6-63). This relationship
constitutes an integral equation for x which must be solved by numerical methods, an
issue that will be dealt with in Chapter 4. For the moment we will proceed by solving
(3.6-63) (or equivalently (3.6-61) only in an average sense - precisely by providing a
solution that satisfies (3.6-62). Trivially 362

== i), o+ ) (3.6 - 86)

T

is such a solution. Though (3.6-86} in view of (3.6-61) corresponds to H, = 0, note
that no such restriction is imposed, i.e. (3.6-86) is not in general an exact solution
of (3.6-61). Since H, {or correspondingly H;) may be considered as a measure of the
nonlocality of the yield function in strain space (stress space), it is clear that the less
the yield function deviates from its local counterpart, the more accurate is (3.6-86).

To make it easier to recognize typical features of nonlocal material behaviour and
to facilitate comparison with local theory, we restrict the class of materials defined by
(3.6-1) and (3.6-2) by the assumption that g and k& do not depend on position and
that the body in consideration is initially homogeneous. Further, we assume that the

3.6-2We recall that 7 cannot vanish at loading points (cf. (3.4-22)).
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constitutive function r is of the form

ﬂh { } 'ﬁ_}}“ﬁ“; 8’}’}!.!_{?—}—’] T, (36- 87)

where the second equality is due to (3.6-74) and (3.6-42);, and where p' is a material
constant subjeci to the condition

—p < (3.6 — 88)

Then from (3.6-86), (3.6-87); and (3.6-26) it follows that

= 4(u+ W){rT, - (3.6 — 89)

or by repeated use of (3.6-74) and (3.6-42),,

(wwv {7, T (3.6 - 90)

We note that the solution (3.6-90) requires that

{r}, - m>0 | (3.6 — 91)

at all loading points. Since mp = mp(X) represents an averaged measure of the
stress 7 at X due to nonlocal interaction, and since we tacitly assume rapidly decaying
attenuation functions, it is reasonable to suppose that (3.6-91) always holds true.

The quasi-local response function K and the corresponding quasi-local strain hard-
ening modulus ¢ are now obtained by substituting (3.6-90) into (3.6-75) and (3.6-76),
respectively. Similar expressions for K and @ follow from (3.6-79) and (3.6-79). As for
the quasi-local strain hardening modulus we conclude that

. P
b1~ PTT (3.6 — 92)
ptrp {r} T

while the general nonlocal strain hardening modulus becomes

I, The TN, T (3.6 —93)

b=1- .
+f

Recall that (3.9-92) and (3.6-93) are approximations. Another approximate expres-
sion for ¢ may be obtained by substituting (3.6-87) and (3.6-90) into (3.6-70). Note,
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however, that the result is not equivalent to {3.6.93), since the consistency condition is
not exactly fulfilled.

We observe that each of the above expressions for ® and ® reduces to

!
b=p=1
pt

(3.6 — 94)

in local theory, i.e. hardening, softening and perfectly plastic behaviour then occur in
accordance with whether

p >0, 4 <0 orp =0, (3.6 — 95)

respectively.

In the nonlocal case the sign of u' affords a corresponding simple classification of
the state of strain hardening - though not quite as immediately as in local theory. {CL.
the discussion in relation to (3.6-71)). Substituting (3.6-87) into (3.6-70) yields

o= 8#%[(7/(19” sy, 7., (3.6 — 96)

an expression in which no approximations are involved. Hence, adopting (3.6-91), we
conclude that u’ classifies the strain hardening behaviour in the same manner as in the
corresponding local formulation. Does the same conclusion apply with regard to the
approximate formulation? A look at (3.6-93) reveals that this is not the case. If we
consider the case i’ = 0, we note that ® apparently may be of any sign, in contradiction
to the fact that the material is behaving perfectly plastic.

Before further discussing this deviation of € from zero in the case of perfectly plastic
behaviour, we recall that (3.6-86) is justified as an approximate solution of the general
nonlocal consistency condition (3.6-61) if

1
Pod

|H,| << 1. (3.6 — 97)

If nothing else is stated we adopt (3.6-97)*%%. If we want a unified structure of
approximations we should also require that®%—*

1
pod

|H;l << 1 (3.6 — 98)

3.6-3previonsly we did not; only consistency in an average sense was required.
36-1In view of (3.2-45) it is evident that the conditions (3.6-97)-(3.6-99) are not completely
independent.
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and that

1
;)—051’}-(3 . %i << 1. (3.6 —99)

The scalars H,; and H; and the tensor M, are recorded in general forms in Section
3.6.3, Here, however, it will not be necessary to evaluate these inequalities exphicitly.

Due to (3.6-99) it follows from (3.3-29) that

&~ &| << 1, (3.6 — 100)

i.e. the quasi-local strain hardening modulus approximately equals the corresponding
general nonlocal modulus. Continuing the discussion with regard to perfectly plastic
behaviour, we note that (3.6.92) and (3.6-100) give rise to the inequality

|”{"?"}”P-rmﬁp~r-r| <<, (3.6 — 101)

substantially a condition of a form which should be expected. By virtue of (3.6-25) we
observe that the presence of the function B? lorces the left-hand side of (3.6-101) to
vanish for a homogeneous stress state.

In accordance with the discussion above, we may conclude that & uniquely deter-
mines the state of strain hardening - unless ¢ is close to zero, i.e. in the case of nearly
perfectly plastic behaviour. Evidently the same argument applies to the quasi-local
plastic modulus [', as discussed in general terms in Section 3.4.1.

Remark 6.4, Approximations of different significance have been involved here, We
recall that it is (3.6-97) alone that legitimates the approximate evaluation of 7 from
the general nonlocal consistency condition. The ad hoc condition (3.6-99) facilitates
the classification of strain hardening considerably and constitutes the base for the
quasi-local formulation discussed in Section 3.3.3.0

For the sake of completeness we also record the expressions for the response func-

tions K and K. Substitution of (3.6-90) into (3.6-75) and (3.6-79) yields

p__ FroT

Ny S 3.6 — 102
ptu At} T ( :
and
i | R
KT = E[QT/({"‘}p‘*")]p@ﬁ (3.6 —103)
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respectively. The corresponding stress rates (3.3-13) and (3.3-15) are easily derived by
the aid of (3.6-2) and (3.6-8) and become

- 2 - 3
§— R Py (3.6 — 104)
(p+pHrl,

and

1, [r-Ar/({r}, 7L, (3.6 — 105)

§ = [F - 2
i+

respectively. Of course these results may alternatively be derived using (3.6-46) and
(3.6-49) as the starting point.

In local theory, (cf. (3.6-94)) we note that

fé:K:j—;rEp?:?:, (3.6 — 106)
while
. v 2 * \
§=8=LF— @-%;—):—Tr. (3.6 — 107)

Remark 6.5. The explicit nonlocal character of the quasi-local stress rate does not
justify that the actual stress rate be replaced by its quasi-local counterpart. The case
H, = 0 represents restricted nonlocality of quite another kind than that induced by
(3.6-97)-(3.6-99), as discussed in Section 3.3.3, Most significant in the comparison
between the expressions above for S and 8 is of course the fact that the strain rate %
appears locally in the former, while the latter depends on 4 at every point subjected
to plastic loading throughout the body.O

Remark 6.6. Note that (3.6-103) as well as (3.6-105) are valid only during loading.
Obviously (3.6-103) cannot be reduced to incorporate elastic behaviour - contrasting
with (3.6-102) which reduces to K = 7 - while {3.6-105) can be written in the form

S = LB - 202 B(v/B7)rr - 4 7],

T =

{ L/(8(v/8°)u+ w7}, -7) ifg=0,§>0, [O (3.6 — 108)

0 otherwise.
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3.6.7 Maximum plastic work

In this subsection the principle of maximum dissipation will be applied to the class of
materials defined by (3.6-1). A potential which complies with the constitutive assump-
tions in Section 3.5.2 may be written in the form

poth = P(B— < EP >} + (< £ >). (3.6 — 109)

In particular

§= (B < B >)L(E- <E>) (3.6 — 110)

where £ is independent of E and < EP >, is a potential for the stress appearing in
(3.6-1), as is casily seen from (2.4-23),. We employ (3.5-21) and deduce from (3.5-10),
(3.4-23), and (3.2-16); that®6=5

i1 Og _
CB=hsg, (3.6 — 111)

where L* is defined by (3.5-7).

We recall that the normality condition (3.6-111) together with the associated condi-
tion of convexity of the yield surface, are the only restrictions placed on the constitutive
equations by the principle of maximum dissipation in its classical form. However, by
employing the principle in a more restrictive sense (than is implied by (3.4-8) and (3.4-
9)) further restrictions will be laid on the constitutive functions, To see how, proceed
as follows. Replace (3.4-8) with

Ag = {(E, < U’ >)| (B, < U’ >) <0} (3.6 —112)
and claim that
DPE, <U > W)y 2 DP(E,<U >; U (3.6 — 113)
for any state (E, <u >) € Ag. Hence define a Lagrangian,

IPE,<U >3 = =D/ B, <U >; U)+ hg(B, <U' >), (3.6 — 114)

and conclude that the associated consirained minimization problem is solved by em-
ploying (3.4-15), when additionally

8-6-5Cf. (3.5-26) and foolnote 3.5-2.
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gLy alr

We will not carry out the differentiation implied by (3.6-115) for general functions
a? and o®, but restrict ourselves to those defined by (3.6-15) and (3.6-16).

In view of (2.4-16)-(2.4-19), (3.6-15)-(3.6-20), (3.6-29)-(3.6-36) and (3.6-109) it is
then seen that

8<,am/;> f{

T s (2)W(X, Z)dV(Z), (3.6 — 116)

8 < LI'
and hence (3.6-114) becomes

LPB,<EP >, <k >4 = P(X,Z)dV(Z) - BP

8< EP PPN

- -
d P . 6 —
+ e (X, Z}V(Z)Yk + Ag(E, < EP >, < £ >) (3.6 —117)

Employing (3.4-15), for the case when 1 satisfies (3.6-110) yields

wf P(X, Z)avV(Z) B + 32 = (3.6 - 118)

OE 0,
which, by the use of (3.6-38) reduces to (3.6-111) for mitial homogeneous bodies (as
expected).

In addition, substitution of (3.6-117) into (3.6-115); and (3.6-115),, respectively,
and repeated use of (3.6-109) and {3.6-110) will leave us with two additional restrictions
on the constitutive functions,

B —— b6—-11
o > +A8<EP> 0, (3.6 — 119)
and
0 ~h dg
_— = 6 —120
fBa<m>2( ) & (XZ)dV(Z)E-—i—/\a< = =0, (3.6 — 120)
respectively. From (3.6-111) and (3.6-119) we note that g must satisfy
9 ___9 (3.6 — 121)

6E - G <Er>’
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a restriction which in view of (3.6-1) is trivially fulfilled for yield functions of von Mises
type. Finally we observe that (3.6-120), in view of (3.6-5), can be written

k=Ar, r#0, (3.6 — 122)
where 7 == r(< £ >) satisfies

1 R

F_{8<n>2}' (36 ~128)

In summary, we conclude that a generalization of the classical principle of maxi-
mum dissipation may be used to derive the flow rules of assoctated nonlocal plasticity.
In addition, a restriction on the yield function in strain space is obtained, which is
consistent with the constitutive equations for materials of von Mises type.
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Chapter 4

Numerical aspects

4.1 Introduction

Analysis of the elastic-plastic response of real structures cannot successfully be per-
formed without reliable numerical techniques. In statically indeterminate problems the
constitutive equations of plasticity must be solved simultaneously with the equilibriom
equations,*?~! The final problem is constituted by a system of nonlinear partial dif-
ferential equations, to be solved numerically. In engineering mechanics this is widely
accomplished by means of the finite element method.

It should be noted that some basic knowledge of nonlinear finite element analysis
is a prerequisite®?~2. Accordingly we will concentrate on such features of the numer-
ical implementation as are primarily due to the nonlocal character of the constitutive
equations. Following this intention the finite element analysis will be performed in the
context of small deformations. Though it is rather straightforward to provide for large
deformations, the corresponding added complexity does not seem to be of essential
merit at this stage - no new characteristic features of nonlocality will emerge.

In Section 4.2. the basic features of the finite element formulation are outlined, while
in Section 4.3 a numerical algorithm of Newton-Raphson type for solving nonlinear
equations is presented.

In Section 4.4 we address the issue of formulating an elastic-plastic tangential staff-
ness matrix to be used in the numerical algorithm, which with regard to nonlocal
plasticity turns out to be a far from trivial problem.

In Section 4.5 simplified Newton-Raphsson schemes are discussed, whereas Section
4.6 deals with the problem of integrating the rate equations.

In Section 4.7 localization in a strain softening bar is numerically analyzed for two
iypes of yield functions, one linear and one nonlinear, the linear one chosen such, that

41-11p the context of the analysis provided here, only static problems will be recognized, inertia effects
being completely ignored.

4-4-2Consult e.g. Chen and Han {1988) or Criesfield (1991).
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it 1s also provides for an analytical solution. Finally, in Section 4.8, some concluding
remarks are made.

4.2 Finite element formulation

In a theory of small deformations, to leading order, the Piola-Kirchhofl stress reduces
to the Cauchy stress, and the Lagrangian strain tensor accordingly reduces to the small
strain tensor

E= %(F+FTMI), (4.2-1)

where we have retained the same notation for the strain tensor as in the large deforma-
tion theory. Likewise stress and plastic strain are still denoted 8 and EP, respectively.
This should not lead to confusion, since small deformations are assumed throughout
the chapter.

In finite element analysis it is convenient to use matrix notation - e.g. the symmetric
stress tensor is then represented by a column matrix,

ST = {S11, S22, Sss, Sz, Sis, Sasl}- (42 -2}

As can be seen, we use the same symbol for the stress tensor as for the stress in
matrix notation, commonly referred to as the stress vector in six-dimensional space.
The practice of not distinguishing between tensor and matrix notation will currently

be used. We leave to the reader to work out the details for the transcription of current

tensor expressions into matrix notation.

Based on a weak formulation of the equilibrium equation and a Galerkin approxi-
mation, the total equilibrium condition in standard notations becomes

]B BTS dV = F, (4.2 - 3)

where

_ T T —
F_faBN tdA+/BN £dv (4.2 — 4)

represents the external forces, Here IN is the shape function matrix, by which
u=NTU (4.2 -5)
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where 1 is displacement and U the displacement vector of nodal points. Further, in a
small deformation analysis, strains are related to displacements through

E=Lu=BTU, (4.2 - 6)

where L is the diflerential operator matrix, and

B=LN (4.2 ~7)

is the strain-displacement matrix present in (4.2-3).

Now assume that the state at load step n is completely known. The problem is
recognized as one of determining the state at load step (n+1) corresponding to external
forces 41 F. Hence we must solve the equation

fB B,1iS dV = nF (4.2 - 8)

for the unknown stresses 418, corresponding to the yet unknown displacements ., U.

Two separate types of numerical approaches are in fact involved in solving (4.2-8)
for the displacement increments

AU =,,U-,U (4.2 —9)

and the stress increments

AS = ﬂ+IS - nS. (42 —_ 10)

The one requires an algorithm for solving systems of nonlinear equations, and the other
an algorithm for updating the stresses by integration of the constitutive equations. The
first issue will be dealt with briefly in the next three sections, while the second one will
be discussed in Section 4.6.

4.3 The Newton-Raphson method

A variety of different approaches exists for solving nonlinear equations. It is common
in finite element analysis to use an algorithm of the Newton-Raphson type. Below we
outline the iterative scheme of a full Newton-Raphson algorithm for the case when the
stress-strain relation is generally nonlocal.
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Let

iU = U+ HAU) (4.3-1)

represent a first estimate of the unknown displacement ,,;U. Integration of the con-
stitutive equations provides the corresponding stresses

8 =48+ '(AS), (4.3 —2)

which henceforth are treated as known quantities. The corresponding external forces
are then given by

F = fB BT 1S dV. (43 -3)

By a second estimate

'ﬂ-'l'ls & n-{js - n+IS + Z(AS) (43 - 4)

we conclude from (4.2-8), (4.3-3) and (4.3-4) that

fB BT Y(AS) dV = o F — ,,!F. (4.3 - 5)

In view of (3.3-14) we may write*?-1

AS = RLAR + plns, 4.3 —6)
0

where H, by virtue of (3.2-9) is now understood to have the form (cf. (3.3-18))

s o
o=, {”°a<w>aw(Z) 23

% (7). ABZ)A(Z)
(4.3 —7)

a8 (e )* ,
—r 85> aE (AEATV(Z).

As usual it s assumed that « vanishes at non-loading points.

If the rate dependent functional in the right-hand side of {4.3-6) is approximated
in accordance with

43-INotice that we retain the symbol M, also when strain rates are replaced by strain increments in
the arguments of the functional.
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H. ~ VH,, (4.3 - 8)

the estimate of the stress increment may be written

- 1
H(A8) = 3 (KL) AE) + 7 w1 M. (4.3 -9)

Hence we conclude by substituting (4.3-9) into (4.3-5) and by use of (4.2-6) that

fBBT AELB V) HAU) = 4y F — P — fB BT, H,/po dV. (4.3 —10)

Due to its dependence on the quasi-local elastic-plastic response function X we refer
to

_ T 7 —_
K_/BB KLB dV (4.3 - 11)

as the structural quasi-local stiffness matriz. Using {4.3-3), (4.3-10) and (4.3-11) allows
us to write a general iteration scheme of the Newton-Raphson algorithm in the form

SKYAU) = . F— SIF, (i=1,2,...), (4.3 -12)
where
FE= [ BT SIS+ M) aV (4.3 13)
and
K= LK, = By fBBT wHo/ po dV. (4.3 — 14)

Of course the integral f5 BT ‘1M, /ps dV does not represent an actual contribu-
tion fo the external forces, but due to the way it appears in (4.3-13) we will refer to
T BTH,/po dV as {incremental) exfernal pseudo forces,

The iterations continue until some accurate convergence criterion is fulfilled. For
instance, until the residual forces approximately vanish,

I wtrF = o 3Fll < erll anrF = LF, (4.3 - 15)

where ep > 0 is a prescribed number and || || denotes some proper vector norm.
Obviously the equilibrium equation (4.2-8) is satisfactorily fulfilled if only {4.3-15)
is satisfied for a sufficiently small number ep. A convergence criterion involving the
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iterative strain increments and the iteration increments of the functional H, may be
expressed as (cf. (4.3-1)

| (AU < epll o4iU = WU, }
(4.3 - 16)

“ n+§ﬁ‘ - n+?1F“ < ﬁH“ a1 F — F”,

where the inequalities are required to be satisfied simultaneously. It is noted that the
left-hand side of {4.3-16); in view of (4.3-13) equals || fy BT i H./po dV]|, and hence

that the external pseudo forces must vanish if the condition of equilibrium is to be met.

Remark 3.1. Since, by virtue of (4.3-4) and (4.3-6),

L i- i (2085 Y i
- r:+:1[7'£s = n+fS _n-f-} 5 — ::+EUC£') ' I(AE)s (43 -17)

]

we note in view of (4.2-6) and (4.2-8) that the iterative scheme (4.3-12)-(4.3-14) may
be replaced by the procedure:

n+§K i+1(AU) = n%"lF -2 n+E.ILF + T:—;%F + ::-i_-IIK 1(&U): (2 =1,2,.. ')’ (43 - 18)

K YAU) = . F— F— jBBT WH,/po dV.0 (4.3 — 19)

Remark 3.2, The numerical procedure outlined in this section may apparently be
gimplified by altogether disregarding the influence of the pseudo forces (recall that
fgHs dV =0). Then

faF = IF (4.3 - 20)

and (4.3-12) becomes

;;%K 1(AU) = 'R+1F - ?:;%Fa (?' =1,2,.. ~); (43 - 21)

recognized as the usual form of the Newton-Raphson algorithm. The convergence
properties will surely change - how and to what extent is impossible to say at this level
of generality. Notice, however, that the computation of the pseudo forces is easy to
perform, since all quantities at the actual iteration step are known in advance. Anyhow,
if nothing else is asserted, we refer to (4.3-12)-(4.3-14) as the general iteration scheme
for systems with nonlocal interactions involved.
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4.4 The elastic-plastic stiffness matrix

In view of (3.3-8) the quasi-local tangential stiffness tensor can be written in the form

y : _ Og

)C£~£+7ra®éﬁ, {44 —-1)
where the secorid order tensor-valued function & is defined by (3.3-9). As discussed in
Section 3.2.2 and again in Section 3.6.6 the consistency condition cannot be used to
solve analytically for the function 7, which hence must be determined by a numerical
procedure - unless consistency is required only in an average sense, as was the case in
Section 3.6.6. The latter possibility will be considered in Subsection 4.4.2, while the
first one is discussed below.

Remerk 4.1. Attention has not been paid to the elastic-plastic response function K,
since it is in general rate independent only in a weak sense, and hence it is inappropriate
to employ L as the tangential stiffness matrix in a Newton-Raphson scheme. If,
however, K actually appears to be independent of rates, then of course XL may be
used for the tangential stiffness matrix in the equilibrium iterations. Nonlocal elastic-
plastic response functions of such type correspond, of course, to very special constitutive
assumptions. A special case, attributed to a class of familiar materials with linear
stress-strain relation and yield function of von Mises type, is discussed in Section
4.7.2.11

4.4.1 The incremental tangential stiffness matrix

It turns out to be convenient to introduce the plastic multiplier ) by the definition

»

A= E, §>0, 720, (4.4 —2)

dg
-_ ﬂ-é-—E— -
where advantage has been taken to (3.4-22) and where (3.2-9) has also been used.
As usual 7(X) = 0 corresponds to unloading at X. The flow rules (3.2-19) are then
replaced by

(A (g=0, A2,
U = (4.4 -3)
0 (otherwise),
where the first equation explicitly reads
EP=AR, i=Air, (g=0, }>0). (4.4 —4)

101



By use of (4.4-2) in incremental form, i.e.

dg
Al = ’.’F“é“}:g“ - AE,

L

> —
a5 AE>0, 720, (4.4 —5)

the quasi-local tangential stiffness matrix corresponding to the displacement ,f;r“}U can
be written as

z 8g ‘
an(RL) = L+ AA“(gg—i'E“), (44 —6)
a8 °F
where *'(AE) results from the preceding Newton-Raphson iteration, and *"1(AM)
correspondingly from the integration of the constitutive equations. To distinguish the
tangential stiffness tensor appearing in (4.4-1) from the matrix recorded in (4.4-6), we
will refer to the latter as the quasi-local incremental tangential stiffness matriz.

4.4.2 The continuous tangential stiffness matrix

In Section 3.6.6 we used the consistency condition to solve for 7 in an average sense.
In the special case discussed in Section 3.6 with lineat stress-strain response and yield
condition of von Mises type, the result is recorded in (3.6-86). Using the same argument
as in the derivation of (3.6-86) we conclude that

10 < pog>

1
= A
s o 32»{’
1,0 < pag > 0 < pog >
S R 4
PR + r} (4.4-7)
is a solution of (3.2-32)*4-1. Substitution of (4.4-7); into (4.4-1) then yields
. 0
. poo @ 5“%
’Cﬁ:ﬁ“8<pgg>_R+6<pog> ' (44-8)
OE? Ok

where again & is given by (3.3-9). When (4.4-8) is used for the elastic-plastic stiffness
matrix in the Newton-Raphson algorithm, we refer to KL as the quasi-local continuous
tangential stiffness matriz. The reason is of course due to its resemblance with local
theory. However, it is emphasized that the right-hand side of (4.4-8) - in contrast to

44-1Recall that {3.4-22) is valid at loading points.
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local theory - is an approximate expression for the quasi-local stiffness tensor KL, the
tacit assumption being that consistency is only required to be satisfied in an average
sense. If the consistency condition is not enforced otherwise, this means that the
yield condition in general will not be satisfied, but the final strains (after equilibrium
iterations) may lie outside the yield surface in strain space.

For further details concerning consistency in an average sense we refer to Section
3.6. With regard to the class of familiar materials presented there, it is noted that
the corresponding quasi-local continuous stiffness tensor is obtained from (3.6-102). Tt
should also be mentioned that a simplified integration procedure for the determination
of A, in which (4.4-T) is used as a predictor, is presented in Section 4.6.5.

4.5 Simplified Newton-Raphson schemes

Various modified Newton-Raphson approaches may be utilized in order to avoid eval-
uation and factorization of the structural tangential stiffness matrix [1K at each
iteration step. Difficulties in the iteration process due to singularities or ill-conditioned
behaviour may also call for a modification of the numerical scheme. In this respect the
differences between local and nonlocal appearance are not significant. As noted intro-
ductorily our main purpose is to describe features of the numerical implementation,
not present in local theory, but characteristic for nonlocal theory. Hence, the various
existing matrix update methods commonly used to reduce the computational effort
within each iteration in the Newton-Raphson algorithm will not be treated here. The
special case, however, when the tangential elastic-plastic stiffness tensor K.£ is replaced
by merely £, has certain important implications from a nonlocal point of view and will
be discussed in some detail below.

A straighforward and simple modification of the numerical scheme given by (4.3-12)-
(4.3-14) is of course to replace i, K by the tangential stiffness matrix of the structure
at an earlier load step, K, m < n. Especially if the quasi-local response function K
is replaced by unity in {4.3-11), i.e.

— T —
K_/BB LB dV, (4.5 — 1)

we obtain a modified Newton-Raphson method, which - as in local theory - may be
called the initial stress method, in which no updating at all of K is required if £ is
constant (or kept constant) 45-1,

It would be improper to employ (4.5-1) with (4.3-12) otherwise unchanged. Recall,
namely, that the general Newton-Raphson scheme (4.3-12)-(4.3-14) (through (4.3-6)) is

45-1Recall that £ = L{E, < EP >, < £ >), in general is not constant (cf. the discussion in Section
3.3.1).

103




based on the decomposition (3.3-2) of the stress rate into a quasi-local part (the quasi-
local stress rate S) and a general nonlocal part (the functional stress rate H,/po).
However, the stress rate may also be written (cf. (2.4-6))

. 05 o 0 |
R RN T R
98 oo’

reep 09 .
o s az)” AN Dgg B - B@} V(Z),  (45-2)

without introducing ‘H,, which evidently is of no benefit in a Newton-Raphson al-
gorithm, in which £ is employed as tangential stiffness matrix. In the initial stress
method, H, in (4.3-13) should therefore be replaced by the incremental form of the
integral in the right-hand side of (4.5-2) - or should be disregarded altogether.

Notice that (4.3-6) and the incremental form of (4-5-2) are identical expressions
for the incremental stress rate, but used in a scheme of the type (4.3-5) they will
give rise to two entirely disparate numerical procedures probably with quite different
convergence properties. On the whole it is impossible, at least at this stage of generality,
to make accurate predictions about the success of the iterations with respect to the
one numerical scheme or the other.

4.6 Integration of rate equations

Accurate calculation of the iterative external forces 3 F defined by (4.3-3) (for ¢ = 1),
is of decisive importance for a successful result of the Newton-Raphson procedure. Prior
to the evaluation of the integral in (4.3-3) (by some numerical integration techaique),
the stresses 1S must be calculated, which requires integration of the constitutive
equations for the rates of the plastic strain and the strain hardening function. Various
numerical procedures may be used for the updating of the stresses in agreement with
the consistency condition. The literature on this subject, with regard to local plasticity,
is comprehensive; for a full list of references, consult e.g. Criesfield (1991) or Chen and
Han (1988), previously cited.

Due to the long-range interaction between the particles in a nonlocal body, the in-
tegration of the rate eguations in nonlocal plasticity appears in general to be a far more
complex process than in a corresponding local theory. One difficulty, as discussed in
Section 3.2.2 and again in Section 3.6.6, is due to the fact that the consistency condition
in nonlocal plasticity is expressed by an integral equation expanded over all points at
loading throughout the body under consideration. As a consequence, integration of the
rate equations subject to the constraint implied by the consistency condition cannot
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be done pointwise at one point at the time, but must be performed simultaneously for
all Gauss points in a spatially discretized model of the body. Another difficulty, closely
related to the one already mentioned, is linked to the characteristic property of the
yield surface of not being necessarily stationary at a point X, even if the rates of the
plastic strain and the hardening function vanish at this very point X {since the yield
surface may change due to plastic deformation in regions outside X).

One strategy for the stress updating in nonlocal plasticity is easily identified; enforce
the consistency condition by solving the associated integral equation for the incremen-
tal plastic multiplier A), then use the flow rules (the incremental form of (4.4-4)} for
updating the inelastic variables, calculate the corresponding nonlocal quantities and fi-
nally use the constitutive assumption {3.2-5) to determine the new stresses. An entirely
explicit method, simple to grasp and simple to implement (at least in principle, using
some efficient numerical technique for solving the integral equation). Unfortunately
this method will fail unless the strain and stress increments are really small, so small
that the error made by replacing A by AX in the updating scheme is of no significance
whatsoever. This will, however, never be the case for real problems; strains will not
be infinitesimal, errors will accumulate and the yield condition will be violated in the
end of the integration step. To overcome the problem, measures should be taken to
adjust the yield surface in strain space to comply with the updated strains - or else an
essentlally different approach should be used. '

To simplify terminology, nonlocal integration strategies, which do not take explicit
advantage of solving the integral equation of consistency, will henceforth be called
implicit*®1, Explicit sirategies are not treated in this work, except for the special
case when the consistency condition is enforced only in an average sense. Although
general explicit strategies cannot be ruled out, it is believed that they are inferior to
the special type of implicit strategy described in Subsection 4.6.1 below, referred to as
a nonlocal generalized Fuler procedure, by which the rate equations are integrated by a
generalized Euler method, while consistency is enforced by equating to zero a truncated
Taylor series of the yield function in strain space. Due to the nonlocal interaction, this
must be done at all loading points simultaneously - instead of solving one equation at
a time, say g(z) = 0 (as would be the case in local theory), we must solve a system of
coupled equations, ge(zg) = 0, & and B representing Gauss points at plastic loading,
Finally, the inelastic variables at the end of the integration step are updated such that
the yield condition is satisfied at all Gauss points of the body.

In Subsections 4.6.2 and 4.6.3 two special cases of the nonlocal generalized Euler
procedure are derived - the forward and backward FEuler schemes, while illustrative
examples are provided in Subsection 4.6.3 with regard to a simple choice of yield
function in strain space,

48-1The noticns ‘explicit’ and ‘implicit’ are frequently used in computational plasticity without being
precisely defined. As can be seen, we are not anxious to stray too far from that tradition,
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Finally, in Subsection 4.6.5, we present the simplified (explicit) method mentioned
above. Tt is recognized as a quasi-local integration technigue being in particular char-
acterized by the fact that it entirely avoids the laborious process of enforcing the
consistency condition by solving a system of coupled equa.tlons as was the case for the
nonlocal generalized Euler procedure.

4.6.1 Nonlocal generalized Euler‘procedure

The rate equations to be integrated are given by (4.4-4). To simplify we introduce the
notations*5—2

= {Ep’ K;}T:
(4.6 — 1)
P= [R? T]T:
through which the flow rules are re-expressed as
P = Ap, (4.6 —2)
subject to the condition?®-3
>0, ¢<0, gh=0. (4.6 — 3)
We recall that
p=pE,<E > <r>)=pE, <P>)=p(}), (4.6 —4)

where (4.6-4); is a consequence of (4.6-1) and (4.6-4) is a definition. The differential
equation (4.6-2) may then be recast into the form

= p(N). ' (4.6 —5)

Some methods frequently used to integrate (4.6-5) are special cases of the generalized
Huler method, according to which, approximately,

1-5-2Notice that P corresponds to i’ defined by (2.4-21) and p to A’ defined by (3.2-18). Further it
must be noted that P and p in a strict sense are not elements in a seven-dimensional vector space. If,
e.g., we write F' = F(P) for a scalar function F', we do not assert that F is merely a function of the
invariants of the ‘vector’ P, in fact being a general function of the invariants of EP and &,

+6-3T¢ is tacitly understood that (4.4-2) is satisfied.
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AP = AN[(1 - n)p(X) + np(A + AN, (4.6 - 6)

where

pA+ AN =p(E+AE, <EP > +A<E > <k >+A <k >)
(4.6 —7)
=p(BE+AE, <P >4+A<P>),

and 7 is a parameter between 0 and 1. I we choose 5 = 0, (4.6-6) turns into the forward
FEuler method*®~* while 5 == 1 represents the backward Euler method and = 1/2 the
Crank-Nicholson method.

Assume now that the state corresponding to A is completely known for all Gauss
points related to the finite element discretization. Hence we know E()A), P(A) and p(A)
as well as the corresponding value of the yield function in strain space consistent with
the yield condition, i.e.

g{A) <0, (46 —8)

where

g(A) =¢(E, <EF >, <x>)=g(E, <P >). (4.6 — 9)

Assume further that AE = *(AE) has been calculated by the aid of the equilibrivm
iteration scheme (4.3-12)-(4.3-14), and hence is known at each Gauss point throughout
the body.

The problem to be solved may now be formulated as the one of calculating A for
all Gauss points, such that (at least approximately)

AXZ 0, g(A+AN <0, g(A+ANAX=0. (4.6 — 10)

Let d represent the difference between the current state P and the state P(A)+ AP,
i.e., in view of (4.6-6),

d =P — (P(\) + AX(L —9)p(A) +7p(A + AN)). (4.6 —11)

Keeping in mind that P(A) and p{A) represent a known (fixed) state, the expression
for d may be expanded by a truncated Taylor series,

48-15ince then AP disappears from the right-hand side of {4.6-6), the integration becomes ‘explicit’.
According to our terminology, however, the integration strategy as a whole {with due concern to the
consistency condition) is still implicit.
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dcx ~ do,a + 5Pa - (6)‘)0{(1 . W)Pa(/\) + ’TPQ(A + AA)]

ap (4.6 —12)

—{AN)g s 0 <P >y,
<P >, 44N

4.6—5

where &4 and 6P are iterative changes of AA and P, respectively , while dg repre-

sents a starting estimate for d (to be evaluated from (4.6-11) given a starting value of
AX). Subscript o emphasizes that (4.6-12) should be established for all Gauss points

(at loading).
Assume that the nonlocal inelastic variables may be calculated by
<P>(X)= fBﬁ:(Z,X)P(Z) dv(2), (4.6 — 13)

where the function  is defined by (3.6-19) #9-¢. A numerical approximation of (4.6-13)

is written as +8-7

<P >.mUpPs , o,f=12,...,N, (4.6 — 14)

where N is the total number of (Jauss points, and where summation with regard to g
is implied. Since w is independent of the state variables il then follows that

d<P>,= 'tf)a‘g 5Pﬁ. (4.6 — 15)

Substitution of (4.6-15) into (4.6-12) yields

do, = doo+ Py —n{AN)y

=(8X)al(1 = m)pa(A) + npa(A + AN (4.6 — 16)

= doa — (§0)al(1 — 7)pa(A) +1pu(A + AN + QupéPs,

where

+6-5Hence, if § = ii-(—(%ﬂ&, then §P = Eét =P(A+81) - P(A).

T
+6-6Note that BP = [HPEP, P&} = [ ‘ua £h } { ]-::",: ]

45-7 Alternatively, a standard finite element discretization may be applied to {4.6-13} to produce a
result similar to {4.6-14).
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ap
Qap = bapl — ANy 52— Wag, (4.6 —17)
d< P>, (AN

dap being the Kronecker symbol and 1 a unit matrix in seven-dimensional space. By
setting d, = 0 we obtain

QupbPp = —doa + (8A)a[(1 — m)po(A) + 1o, (A + AN, (4.6 —18)

Next calculate the value of the yield function g at point (E-+AE, < P > (A+AM)),

Go,a = Ga(Ba + AE;, <P >, (A4 AN)). (4.6 — 19)

For the sake of clarity, assume simply that6~8

Gooa>0 fora=1,...m, m <N, (4.6 — 20)

N being the number of Gauss points, and perform a truncated Taylor expansion for
these values of a,

3q4

+ — < WagbPg, (sumover f=1,...,N), (4.6 — 21)
<P >aly,a ’

o 79 Jo,e

where advantage has been taken of (4.6-15). Consistency then requires that

Yoo+ Gop - 6Ps=0 a=1,...m, (4.6 — 22)
where we have defined
99a . )
Gop = ——22 Dap. (4.6 — 23)
<P >alyay

Since, in agreement with {4.6-2) and {4.6-3),

Pp=0 for=1+1,...,N, (4.6 — 24)

*6-80f course it is convenient to collect all the (as)s in an ordered set (say in a matrix W of
dimension N x N') once and for all, and correspondingly all the (g5,q)8 in 2 vector of dimension N to
comply with W,
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the set of equations (4.6-18) and (4.6-22) provides as with an iterative scheme for the
calculation of A and éP.

~ Alternatively, explicit use of (4.6-18) leaves us with

5P = —[Qpo] o + Q] HEA( —m)p() + oA+ ANy, (46 25)

[Q]sy denoting a m x m matrix where the elements Q are quadratic matrices of di-
mension seven. (Summation in (4.6-25) with respect to -y is implied.) H we introduce
the notation

Apy = Qpp, (00 sum), (46— 26)
we can write (4.6-25) in the form

6P = ~[Qps] oy + (A1~ M Ag(N) + A5 (A + AN, (46- 27)

and hence (4.6-22) ends up with a system of m equations for the m unknown (§))s:

oo — Gap- [Qﬁ‘?]dldﬂﬁ
t Gog - [(1—n)Ag(})
+ A (A + AN](A)y =0 (sum over 3,7). (4.6- 28)

In matrix notation (4.6-28) becomes 69

go— G- Q7o+ G- [(1 - n)A) + 1A+ AN]((8X) =0, (4.6 —29)

where an overbar indicates matrices corresponding to m-dimensional space.

When (4.6-29) has been solved for 6}, a new AM is known, whereupon the updated
inelastic state is calculated by use of {4.6-6). Corresponding nonlocal quantities are
evaluated from (4.6-14), the constitutive function p is updated, a new value of the yield
function gp is calculated at all Gauss points, and the iterative scheme is repeated. As a
result of the nonlocal interaction it is emphasized that the number of points at loading
may have been changed, i.e. the new and the old m do not in general coincide.

The iteration procedure comtinues until the condition (4.6-10) is approximately
satisfied, say

gl <e, if AX>0, (4.6 — 30)

4.6-9T0 avoid confusion between GT and G we use dot notation instead of transpose of a matrix to
indicate the scalar product appearing in (4.6-29) and elsewhere.
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where €, is a prescribed tolerance. Alternatively, a criterion on the iteration vector d
of the type

fldll < eq, (4.6 — 31)

may be used.

Remark 6.1. The restriction of the generalized Euler procedures to local theory
is easy to perform. Choose s = dup in (4.6-14) and in subsequent equations, and
deduce that {4.6-17), (4.6-23) and (4.6-26) should be replaced by

dp
Q=1-AA
g<P> (A +ax) ,
oo 99 (4.6 — 32)
I<P>|niay
A =Qp, )
while (4.6-28) may be written in the form (using matrix notation)
TO-1d, —
6\ = G Q7 do — g0 (4.6 — 33)

T A= pGTAN) + 9GTA T+ AN

As expected, the final result is represented by one single equation for the unknown

$A.0

4.6.2 Nonlocal forward Euler procedure

The choice 7 = 0 in (4.6-6) represents the forward Euler method. The iteration vector
d now vanishes identically. Hence (4.6-6) and (4.6-11) coincide, and leave us with the
single relationship

AP =P — P(}) = Adp(}) (4.6 — 34)

for the incremental inelastic variable. All equations subsequent to (4.6-11) are easily
seen to comply with the forward Euler method, if we merely set AA = 0 and replace
6A and 6P by AX and AP, respectively. Especially, we note that also (4.6-18) (or
equivalently (4.6-25)) becomes identical with (4.6-34), since the second term in the
right-hand side of (4.6-17) now vanishes.

As for the final result, we conclude that (4.6-28) by use of (4.6-6) becomes
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®

go.a T Gog - (PAN)g =0, (4.6 — 35)

or
Jo, + Uq'g(A)\),@ = 0, (4.6 — 36)
where
Uap = Gap * pg, (0 sum). (4.6 - 37)
In matrix form
go+ U(AX) =0, (4.6 — 38)

which of course also follows directly from (4.6-29) by using (4.6-26) and (4.6-37).

Based on the solution of (4.6-38) we may construct a N-dimensional vector, con-
sistent with the loading conditions (4.6-10), of the form

(AN = {ANF, (AN, ..., (AN, 0,..., 017, (4.6 — 39)

where

AX i AX >0,
(AN)* = (4.6 — 40)
0 if Ax<O.
From (4.6-34) we obtain the increments of the inelastic variables,
(AP)o = ((AN*p, a=1,...N, (4.6 — 41)

while the corresponding nonlocal quantities are calculated by use of (4.6-15).

The forward Fuler integration is then completed. However, the updated state
(9,< P >) does not necessarily satisfy the conditions (4.6-10) and (4.6-30) for all
Gauss points. Not even for points being elastic at the beginning of the increment (i.e.
at state A). If e.g. ga(A) < 0 at X (Gauss point @), we cannot ignore the possibility
that go(A + AX) > 0 at the same point X, due to plastic deformation outside X. The
forward Euler procedure may therefore be extended to include iterations in order to
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fulfill the loading conditions®6~1. Thus the above integration scheme is repeated, now
recognizing (g, B, P)atax as the known state. Calculate new values gy of the yield
functions at all Gauss points. Then for all 1gg o > 0, (4.6-34) (or (4.6-38)) is employed
again. Calculate

HAN o = HANE +(6))a, a=1,...N, (4.6 — 42)

where the iterative changes §A are the new solution of (4.6-36), and then construct a
new vector (AX)" with elements 2(AX)* satisfying (4.6-40)*8-11,

The procedure may be repeated until agreement with (4.6-10) and (4.6-30) is ob-
tained.

Remark 6.2. For restriction to local theory, proceed as in Remark 6.1 and conclude
from (4.6-35) or directly from (4.6-33) (with # = 0) that

o
Al = — . 46—4
5 (4.6 - 43)

N5 ps
A

4.6.3 Nonlocal backward Euler procedure

With the choice n = 1 in (4.6-6) we obtain the backward Euler method for the integra-
tion of first-order ordinary differential equations. We need starting values of AA and
the iteration vector dy. These may conveniently be established by use of the forward
Euler procedure, explicitly by employing (4.6-38)-(4.6-41) in the preceding subsection.
Then, knowing *(AX)* and Y{AP), we use (4.6-11) to obtain the starting value *d, of

the iteration vectorf®-12

1= P - °P— 1(AN'p= (AN(Cp— 'p) (1.6 - 44)
where
op == P(A),
(4.6 - 45)
P = 0P 4 YHAP),
and

46-101y fact justifying the notation ‘implicit’ strategy,

4-8-ilNote that §) in {4.6-42) may be negative. Also note that the iterative procedure outlined above
corresponds to a Newton-Raphson solution of the nonlinear equation g{z) = 0.

48-12Por simplicity we write 1(A)) instead of *(AX)*.
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°p=p(}) = p(E,< P >},
. (4.6 — 46)
1p= p(\+ (AX) = p(B + AE, (< P )

Hence, from (4.6-17) we obtain

1Qag = gl ~ HAN) 1(___“2!294_%)@ (4.6 — 47)
e o o <P > oy
and from (4.6-26)

1Ay = ['Qp) "  1p,, (1o sum), (4.6 — 48)

Finally, (4.6-28) provides us with a system of equations for the unknown {(8})s,

190,a - 1Gm.@ ) [lqﬂw]_l 1d0,a + lGaﬂ ) 1A.@7(5)\)'r =4, (4.6 — 49)

where we understand that G,g has been calculated by use of (4.6-23). In matrix
notation

DEXN) = G- Q7 do) — oo, (4.6 — 50)

where

D=G-A. (4.6 — 51)

Remark 6.3. We recall that the number of equations to be solved equals the number
of points at plastic loading, i.e. m according to (4.6-20). It is seen that (4.6-49) can
be solved by means of the proposed technique, only if the matrix Q has been inverted
in advance. This may be a ecritical drawback if the number m is large. In many
applications, however, yielding is confirmed to a region which is small compared to the
entire body in consideration, and hence m << N.O

Solving (4.6-50) for (61} and using (4.6-42) provides us with a new set of increments
2(AM)a of the plastic multiplier, from which we construct the vector 2(AX)t with
elements defined by (4.6-40). Then proceed, following the scheme of the nonlocal
generalized Euler procedure in Subsection 4.6.1 (cf. the discussion subsequent to {4.6-
29)).

Remark 6.4. The local form of the backward Euler procedure is obtained by choos-
ing n =1 in (4.6-33), i.e.
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GTQ'dy ~go

A= TTAGT AN

(4.6 — 52)

The result (4.6-52) is derived within a strain space formulation. A result of similar
form also applies with regard to siress space, and is then recognized as a backward
Euler return, cf. e.g. Criesfield (1991).0

4.6.4 Yield functions of von Mises type

The integration technique derived in the preceding subsections will be demonstrated
with regard to the yield function in the illustrative example of Section 3.6, though, due
to the apparent complexities, we will confine ourselves to the corresponding, degenerate
problem in one dimension. Prior to this, however, we look at an even simpler problem,
also in one dimension, which in familiar notations is stated as

o=FEle—<e>), o>0
f=o—oy,~H<k> E4+H>0 (4.6 — 53)

L df
P = “3;———)\

From (4.6-1) and {4.6-53) is deduced that

P=[e«", p=[11], (4.6 — 54)
and
g=FEe—o,—F- <P >, (4.6 — 55}
where?6-13
F =[E H". (4.6 — 56)

By virtue of (4.6-54); we note that (4.6-6) becomes

AP = Adp, (4.6 — 57)

4.6-13Gince g depends linearly on < € »P and < k >, it is obvious that P here may be treated as a
proper element in a two-dimenstonal vector space. Cf. footnote 4.6-2.

115




and hence that the nonlocal generalized Euler procedure in fact turns into a corre-
sponding forward Euler procedure.

By use of (4.6-55) and (4.6-56) we note that (4.6-23) becomes

phs 0 E E &
=_~0Fa:_ Wag = — af 65—
e = s { 0 ﬁ’ﬁﬂHH] {H "ffﬁﬁ} (1.6~ 58)
and hence it follows from (4.6-37) and (4.6-56) that
Unp = —(Eiity + HiZy). (4.6 — 59)

In view of {4.6-36), the final system of equations to be solved now becomes*®-14

Gour — (B + Hikg)(AX)g =0, (4.6 — 60)

where

go=Ele+ Ae}—a,—F- %< P >), (4.6 — 61)

%(< P >) being defined by

U< P>)=<P > () (4.6 — 62)

Then, proceed in accordance with the general scheme outlined in Subsection 4.6.2.

Remark 6.5. The choice 1}, = 6,5 converts (4.6-60) into the equation

Jo,o — B(AN)o — HOE5(AN)g = 0, 46— 63
<

representing the special case of restricted nonlocality, discussed in Remark 3.4 in Sec-
tion 3.3.3.0

We now return to the problem discussed initially. In the one-dimensional case
‘deviatoric’ stress and ‘deviatoric’ strain become actual stress and strain (say, o and ¢).
Hence (3.6-3)1, (3.6-4) and (3.6-5) should be replaced by the following set of equations,

4.6-1474 chould be noted that the left-hand side of (4.6-60) is an ezact expression for the Taylor expansion
of g at the state (¢ 4+ A¢, < P > (A)), since g is linear in < P >,
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o=FEle~ < e >), E=2u,
f=0'~ <>, (4.6 — 64)
g=EYe~ < >)P—< k>

If we assume that (3.6-84) is valid, we note that (4.6-1) becomes

P =[¢ &7,
} (4.6 — 65)
p=[Rr]T,
where
R = -g—i- =2B(e— < eF >) (4.6 — 66)

and where it is assumed that r is a constant (independent of < P > and X)*6~15,

Continuing, we perform the nonlocal backward Euler procedure, outlined in Sub-
section 4.6.3, to the problem stated by (4.6-64)s, (4.6-65) and (4.6-66).

To begin with we introduce notations in agreement with those in Subsection 4.6.3,

0p = P()) = P %), (4.6 — 67)
°R=R(\) =2E("e— %< & >)), (4.6 — 68)
°p=p(\) =R, (4.6 — 69)
and
Py = g(A) = E*("e~ (< € >))? ~ <k >) (4.6 —70)

The first step is then to use the nonlocal forward Euler method derived in Subsection
4.6.2 $o produce a start solution. From (4.6-64)s we obtain

0ga .
_5““2“%“;‘; = “[ER HT, (46 - 71)

5T ence the sign of » determines uniquely the state of strain hardening. Cf the disenssion in
Section 3.6.4.

4.6
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and hence (4.6-23) becomes {set Al = 0),

E°R, EOR, it
I: } =— { } , (nosum). (46~ 72)

1 Bl

@y 0
Gap = —

0 Bl

Then, by use of {4.6-69) and (4.6-72) we conclude that {4.6-37) becomes

Usg = —(°Ro "R Wy + 1 k), (no sum), (4.6 - 73)

or, in matrix notation,

OR) ORy &%y +r ity .- ORy R, @, +r wh,
U= : : (4.6 —74)

OR, ORy &P, +rat, -« °R, °R, &P, +r ok,

Calculate the vector gy from (4.6-70), use the result together with (4.6-74) and solve
(4.6-38) for the unknown vector (AX). Construct the corresponding vector (AX)*
defined by (4.6-39) and (4.6-40) and use {4.6-41) to determine the increments of the
plastic strain €® and the hardening variable .

Now we know }{AM*t and (AP) and may proceed as in Subsection 4.6.3, calcu-
lating 1d, from (4.6-44), with 'p given explicitly by

lp=pA+ HAN) =R ¥ = RE(c+ Ae~ Y< & >) r]7, (4.6 — 75}

where Ae = {Ag) is iterative strain, consistent with the equilibrium iteration scheme
(4.3-12)-(4.3-14).

In the next step, when we now know dg and (AX), - as in (4.6-44) we write
L(A}) instead of 1{(AX)t - we calculate the matrix Q.pg, defined originally by (4.6-17)
and again recorded in (4.6-47) for the initial integration step of the backward Fuler
procedure.

From (4.6-65) and (4.6-66) we observe that

—2E 0

ap

o : (4.6 — 76)
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and hence

Qc!,G =

[ bop + 2B (AN 0 }

In matrix notation
[ 14+ 2E(AN) %% 0 2E(AN @,

0 1 g

2B(AN it 0 14 2E(AN) i,

0 G 0

The inverse of Q is a 2m X 2m matrix, which may written in the form

qlm
q;nl . qmm
where g7 is the 2 x 2 matrix,

Ay By

&y iy
q.@*r — i
a1 22

Substitution of {4.6-79) and (4.6-80) into {4.6-26) then yields (no sum)

AP

g R+ g
Aﬂ’r = qﬁﬁP‘y =

R + g Ay

—2E 0

0

1»

¥

where we also have used (4.6-65);. In matrix form (4.6-8) reads
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AR A
Al Alm
A=| S N (4.6 — 82)
A;nl Aiinm
apt A
where AP and AS" are defined by (4.6-81)a.
We also need the matrix G, which in view of {4.6-72) has the form
| ERYY, ERV,, |
{[)5‘1 TD;lm
G=-— : : (4.6 — 83)
ER™ih, ER™p?
ﬁ):llll ﬁ;m

Now we can calculate 1Q~! (by (4.7-78)-(4.6-80)), * A and *G. Further, the vector
gy is easy to perform, keeping in mind that (cf. (4.6-19) and (4.6-70))

Yoo = go(A + AN = 2 (Pe + Ae— ' < > — <k >)), (4.6 — 84)

and hence we are ready to employ (4.6-50) and solve for (§1). Then proceed as described
in Subsection 4.6.1 with regard to the nonlocal generalized Euler procedure.

Remark 6.6. The local counterpart of §A is obtained by emplyoing (4.6-52). Using
(4.6-78)-(4.6-83) it is straightforward to deduce that

14 2B(6)) 0
Q=[ | (16— 50
0 1
(14 2E@E)) 0
Q! = , (4.6 — 86)
0 1 }
A =[R(1 4+ 2E(AMT 1T, (4.6 — 87)

and
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G =-~[ER 1}V (4.6 — 88)

Further, it follows from (4.6-44) and (4.6-65) that

1dy = YAN[E 0T (4.6 — 89)

where

14 = Y(AN)(R - 'R). (4.6 — 90)

Substitution of (4.6-86)-(4.6-90) into (4.6-52) then gives

sy = ER(L+2BE(AN)™ df + go
T ERM142E(AN) T +r

(4.6 — 91)

The forward Euler solution is obtained from {4.6-91) by setting df = AX =0 and
replacing 6\ by AJ, Le.

AA = 1(A')\) = P _fURZ ¥ 90 = DgO ) -R = OR- (4.6 - 92)

With AX known, 1d} is determined by (4.6-90).C

4.6.5 Quasi-local integration technique

In this subsection a simplified method for the updating of the plastic multiplier will be
derived. It corresponds to a certain extent to the approximate formulation discussed
in Section 3.6.6, and is closely related to the type of Newton-Raphson algorithm that
uses (4.4-8) as elastic-plastic stiffness matrix (see Section 4.4.2). We recall that the
quasi-local continuous tangential stiffness matrix, defined by (4.4-8), is detived by use of
(4.4-7), which represents a trivial solution of the ‘global’ consistency condition (3.2-32).
The method is iterative, but simple to implement numerically, since the calculations
at each iteration step do not involve a system of equations to be solved simultaneously,
as was the case for the integration technique of the preceding subsections.

The basic idea of the guasi-local integration technigue to be derived below is easy
to grasp: use the function 7 approximately determined by (4.4-7) as a predictor in an
iterative process to update the incremental plastic multiplier *(A)) in order to finally

obtaintf-18

4.6-16The loading/wnloading conditions {4.6-93) are recorded in (4.6-10) and (4.6-30) in a similar form.
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fg<0 if AN =0,
(4.6 — 93)

gl <e, if (AN >0,

for all Gauss points. In (4.6-93) ¢, is a prescribed tolerance with respect to the yield
function ¢ in strain space.

We continue using P and p, defined by (4.6-1), for the inelastic variables and for

the constitutive functions R and r, respectively. Hence, (4.4-7) becomes* 17

1 1 8< pog >
- 0 4.6 — 94
- 0 OP p, w>0, (4.6 — 94)

where < pog > is defined by (3.2-22)46-18, An explicit form of (4.6-94) is given by
(3.6-86), in which the yield function is of von Mises type, defined by (3.6-5).

‘We use notations similar to those employed in Subsection 4.6.1, but for the sake of

clarity they are repeated below. Thus, for ¢ = 1,2..., we define**-1°

E(\) = °E, (4.6 — 95)
P — PO+ THAN), %AA) =0, (4.6 — 96)

po= p(hi4 THAN)) = p(°E + AE, TH<P >)),
(4.6 — 97)

% = p(A) =p(°E, (<P >)),
gy =g*E+ AE, "1 < P ), (4.6 — 98)
g = t~1( &) AE, H( )= g% (4.6 - 99)
 -1(AN)
and
T V4, 0<pg> i -

o= (~5) e (4.6 — 100)

4.6-17Again it is noted that (4,6-94) reflects the consistency condition only in an approximate sense.

1.6-18Though similar in form it must be remembered that e.y. < & > and < pyg > are defined quite
differently,

4.6-19We recall that A corresponds to a known state and that AE has been calculated by equilibrium
iterations, using {4.4-8) for the elastic-plastic stiffness matrix in the Newton-Raphson scheme.
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Remark 6.7. The notations are in accordance with those of Subsection 4.6.1. It is
noticable, however, that the presence of gy in (4.6-21) indicates that a Taylor series of
¢ has been used, whereas such an expansion is not necessary to perform here.[1

After these preliminaries we are ready to present the iterative scheme. Assume that
P, < P > and p are known for all Gauss points at iteration step i — 1. Then calculate
the incremental plastic multiplier in accordance with
. i-l ialéa (:'-—lgu > 0, i—lg > 0, :'»«-1,”. > 0),
(AN = (4.6 — 101)
0 (otherwise).

That is, calcﬁlate =1g, for all Gauss points and for those with ~'g, > 0 (corresponding
to plastic loading) calculate {AA) in agreement with (4.6-101).

Now when *(A)) is known at all points, the increments of the inelastic variables
are calculated by a forward Euler technique,

I(AP) = (AN ip. (4.6 — 102)

Updated values of P are calculated,

‘P = "P 4+ ‘AP, (4.6 - 103)

as well as the corresponding nonlocal quantities ¥ < P >, The state is now known for
all Gauss points at iteration step 7, and a new iteration may be performed to produce
a new set of {AX)s. Repeat until (4.6-93), if possible, is satisfied.

Remark 6.8, In local theory the counterpart of (4.6-94) is an exact solution of
the equation ¢ = 0 (the continuous strain space form of the consistency condition).
Hence, for infinitesimally small increments of strain, a local procedure corresponding
to the proposed quasi-local integration technigue certainly will provide a correct so-
lution. However, increments are not infinitesimal and the theory is not locall Since
the consistency condition is not properly enforced (by currently solving the equation
g = 0), it cannot be asserted that {(4.6-93) can ever be satisfied simultanecusly for all
points*6—20.0

If the proposed quasi-local integration method tends to violate the yield condition
significantly, use of sub-incrementation technique will probably reduce the errors. Im-
proved accuracy and convergence properties may also be obtained by employing the
strategy outlined below.

4.6~ 20Thig argument also applies to local theory.
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Replace the initial step (z = 1) of the integration scheme above by the following
procediare. Define

ilg=g(®°E+4 "Ir AE, %< P>)), (4.6 — 104)

where i1 is a scalar parameter which satisfies®®-?!

0< ¥r<t , % =0 (4.6 — 105)

We recall that g represents an admissible state and hence ®g < 0. Calculate ®g, defined
by (4.6-98) and assume that %y > 0. For fized P = °P at all Gauss points, solve the

equation

¢(°E + rAE),%(< P >)) =0, (4.6 — 106)

for the unknown parameter r. In general (4.6-106) is a nonlinear equation which must
be solved iteratively. Expand g = g(r) into a truncated Taylor series

igee i7tg 4 jml(g%) - AE (6r), (4.6 — 107)

ig defined by (4.6-104) and = (dg/OE) by

4, 0g dg
99y 2 99 (4.6 — 108)
oK OB (Bt i-1r AE),

and solve the equation /g = 0 for (ér). The solution is
i1
(8r) = ——p e,
Higg) AR (4.6 — 109)
ip = J=1p g 3(§r),

where in particular, in view of (4.6-105), we note that

0
1 = 1(5’\)2“%&“' (4.6 — 110)
o2y,
(55) AE

46-21Fqr § = 1 we note that °g = g(°E, * < P >) = g(}) in agreement with notations used in Section
4.6.3.
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If r denotes the final solution of (4.6-109), then (A)) may be calculated from
(4.6-101);, if we just replace AE by (1 — r)AE, ie. :

YAr) = °r U(g%) .AE (1 -7), (4.6 — 111)

whereas the updated value of P is calculated by using (4.6-102) and 4.6-103).

In particular, if the initial estimate of r is used, it is noted that from (4.6-110) and
(4.6-111} that

Hax) = n(% + ”(g%) - AE). (4.6 — 112)

Performing this procedure for each Gauss point at loading produces a set of pa-
rameters r, by which P and (< P >) can be calculated at all points. The state
is now known for all Gauss points at iteration step ¢ = 1, and hence a new iteration
may be performed to obtain a new set of (AA)s in accordance with the general scheme
(4.6-101)-(4.6-103).

Remark 6.9. On condition that the parameter r is accurately calculated, the scheme
propesed above corresponds to a reliable {and commonly used) technique in local plas-
ticity., Clearly, in local theory, incremental strain rAE corresponds to purely elastic
deformation (AP = 0), whereas plastic deformation takes place during the increment

(1—r)AE, (AP #0).

Estimating the location of the intersection of the strain increment with the yield
surface in strain space produces parameters r which differ from point to poini through-
out the digcretized model of the body. Assume, e.g. AP, = 0 during increment r, AE
and AP = 0 during rgAE. Then, if rg < r,, plastic deformation along (1 — rg)AE
contributes to the increment of the nonlocal inelastic variable Py, 1.e. A < P >, does
not vanish in general®®~%2, Hence < P >= %< P >) in (4.6-104) corresponds to a
virtual motion of the yield surface during the strain increment rAE, which coincides
with the actual one for homogeneous motions.

Nevertheless, if the quasi-local integration technique is augmented by the procedure
of locating the intersection of the strain increment with the yield surface, it is believed
that it becomes more efficient than if it is not.ld

Remark 6.10. In general, not much can be said about accuracy and convergence
properties with regard to the quasi-local integration technigne. If convergence is not
obtained the idea behind the simplified integration technique must be abandoned for
the general technique derived in Section 4.6.1.

46-22The general consequences of this behaviour have been examined briefly in Chapter 3. Also cf. the

introductory discussion in Section 4.6.
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Obviously the strength of nonlocality is highly affected by the choice of attennation
functions, say w(X,Z). Hence - independent of the type of integration procedure -
it may be conjectured that accurate convergence properties are obtained if w decays
smoothly and rapidly with the distance from X {on condition that solutions to the
corresponding local problem converge).O]

4.7 Numerical examples and analytical solutions

In Section 4.6.4 the general nonlocal integration technique was applied to two different
yield functions of von Mises type, one linear and one nonlinear, with regard fo stress.

In this section localization in a strain softening bar will be analyzed for these two
types of yield functions. The bar has length L = 0.1 m, Young’s modulus E = 20000
MPa (for the entire bar) and is loaded in uniaxial tension. The initial yield stress is
oy = 2 MPa, except for a small region in the middle of the bar, where the corresponding
vield stress is reduced with a certain amount.

The linear problem is easy to treat analytically which will be demonstrated in
Subsection 4.7.1 below, whereas finite element solutions for both problems are presented
in Subsection 4.7.2.

4.7.1 Analytical solutions

The linear problem, defined by {4.6-53) will here be solved by analytical methods.

To start with we discuss briefly the choice of attenuation functions; the necessity
of their being smooth and rapidly decaying has been emphasized already. Functions
of the type w(x) = exp(—k®z?/{*) obviously satisly these demands. Also w(z) =
ezp{—klz|/£), though not smooth, will certainly prove to be efficient.

Consider first the Gaussian function

k*(z — z)*
w=w(lz—z|}=e £ . (4.7 1)
The corresponding representative volume (length) is defined by (3.6-17) or (3.6-18) and .
becomes
YSRRY
14 “fm _k(zfzw)d 472
(z) = et z. (4.7—2)

If we require the parameter £ to satisfy
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Jim V(0)=¢, (4.7 -3)

then

ko= VT, (4.7 —4)

as is seen from (4.7-2).

Hence, if we choose k in agreement with {4.7-4) the representative volume recorded
in (4-7-2) has the characteristic property of attaining the value £ at the centre of a bar
of infinite length.

The function @(z,z) defined by (3.6-19) is graphically shown in Figure 4.7.1 for
£ = 0.0157 m. Clearly, in view of (4.7-3),

Vo)~ ¢ (4.7 — 5)
if

£ << 1 (4.7 — 6)

7 . .

In Figure 4.7.2 is shown the dependency of V(0) on £/L. For £/L < 0.4 it is seen
that (4.7-5) affords a good approximation to V(0). We also recall that the function &
by definition satisfies [(z,z)dz = 1, i.e. the area under each graph always has unit
value.

oo\ - - SRR SO NS SO N N £
cool- V. S PP P SR SN O SRR SRS SO NS
sob -\ SRR SRS RO NN SRR POE SO SO

60 ...................... . PP SRR VPN R : Tpr—_— A.“...é

A

o ] j :
-0,05 ~004 ~D03 -0.02 ~D,01 0 001 o002 003 004 005
z{m)

20

Figure 4.7.1. The function ¥(z,z) = 1/V(z)exp(—n(z — z)*/¢%).
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(FER

Figure 4.7.2. Representative volume V(0) = f exp(—x2*/£?)dz.

As for the attentuation function

mk|z — x|
w=e £ (4.7-17)
we find that
V(e) = 12— cap(— 5 (% +2)) = ean(S(5 ). (47-8)

and hence the choice k = 2 complies with (4.7-3). The function %(z, =) is illustrated
in Figure 7.4.3 for the same value of £ as was used for the corresponding Gaussian
parameter, i.e. { == 0.0157m, whereas V(0)/£ is shown in Figure 4.7.4 as function of
2/L. For £/L < 0.2 it is seen that V(0) is accureately approximated by (4.7-5)
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Figure 4.7.3. The function ®(z,z) = 1/V(2)exp(-2|z — z|/4).
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Figure 4.7.4. Representative volume V{0)/{ =1 — exp(—L/¥E).
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After these preliminaries we return to the strain softening bar. The strain hardening
modulus is taken as H = —(0.01E, while the reduced mitial yield stress in the middle
of the bar is 0, = 1.4 MPa.

Assume that strain softening is initiated at a point ze, such that
&(2) = i(e) = Az) = Bé(z — o), (4.7 -9)

where §() is the Dirac delta function and where B depends only on time. By choosing
w? = w" = w the nonlocal plastic strain rate becomes

. b3 .
<& = BfL/ (2, 2)6(z — zo)dz = Bib(zo, z), (4.7 — 10)
—Lj2

where @(z,z) is defined by (3.6-19). Since f = 0 at zo, we observe in view of (4.7-9)
and (4.7-10) that

&=H < &> (zg) = H Bi(xo,z0) (4.7 —11)

and hence (assuming that w(0) = 1)

B= V(a:o)%. (4.7 - 12)
Using (4.6-53)1, (4.7-11) and (4.7-12) we note that the relationship between strain rate

and stress rate becomes

NS R RN
£ = J(E + EV(wo)w(mg,:c)), (4.7~ 13)
valid for all @ € [-L/2, L/2].

Remark 7.1. Again using that @(zo, o) = 1/V (o) we conclude from (4.7-13) that

H

Foam ——— [ ¢ 4.7 -1
& E+HE6 (4.7 — 14)

during loading. Hence the general nonlocal elastic-plastic response function reduces to

(4.7 — 15)

in this degenerated case.Ol
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Localization is initiated at the centre of the bar, 1.e. at g = 0. The width of the

localized zone 13

b=2 T,

where z; is a solution to the equation é = 0, i.e.

V(0)i(0,2) + %

0,

(4.7 - 16)

(4.7~ 17)

according to (4.7-13). By the choice (4.7-1) of attenuation function, it is seen that

(4.7-17) explicitly reads

voy -2 g
YO & H_
V(z) T
n{z —z)?
Ljz ——m—
- [

dz,

(4.7 - 18)

in accordance with (3.6-17) and (3.6-19). The solution of {4.7-18) is graphically shown

in Figure 4.7.5 for £ = 0.0157 m.
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0.005
c

0.4 0.5

0.6
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Figure 4.7.5. Width of localized zone.
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If £/L < 0.3, then V(z) = V(0) almost everywhere (but for a narrow zone close to
the boundary) and hence (4.7-18} in view of (4.7-3) has the closed form solution

Ty = iﬂ(%ln%)”z. (4.7 —19)

Since here £/L = 0.157, clearly {4.7-19) will be an acceptable solution, as is easily
checked by comparison with the graph in Figure 4.7.5. For —-H/E = 0.05 it is found
that 6= 0.0314 = 2¢.

Integration of (4.7-13) for o = 0 provides us with the total displacement rate of
the bar

Ai= a(-éi) - a(—g) -
L | . Y
=0 j:-L/2 Rl ﬁV(G)w(O,m))dm = G(E- + 1—,{—), (4.7 — 20)
where
£ v “ d 4 2
ch =™ (U) [_lew(oam) Z, ( N 1)

is a characteristic length which, for a given length of the bar, depends on the charac-
ter of the attenuation function alone. Since the representative volume V(x) deviates
appreciably from V(0) only at the boundary,

o dr =1 4
f_wzw(ﬁ,w) T R~ (4.7 —22)

for very rapidly decaying atienuation functions (¢/L << 1). For the exponentially
decaying functions (4.7-1) and (4.7-7) it turns out that (4.7-22) is in fact accurately
satisfied if £/ L < 0.3, as seen from Figure 4.7.6 for the Gaussian distribution function.
In that case (4.7-21) may be replaced by

Lo = V(0). (4.7 —23)
and hence, since also (4.7-5) applies (cf. Figure 4.7.2),
L = ¢, (4.7 — 24)
independent of length of the bar.

132



1.1

1.08

1.68

1.04

1.02

P! S S S ST S S SO SN S
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.7.8. Characteristic length £, for Gaussian distribulion funclion,
L/ V(0) = [9(0, 2)dz.

By its construction it is observed that the integral of @(0, z) in fact deviates very little
from unit value. hence (4.7-22) is approximately valid even if £/L is close o one.

It has been assumed that localization is initiated at the centre of the bar (zp =
0). Clearly (4.4-17), (4.7-20) and (4.7-21) remain valid if V(0)%(0,x) is replaced by
V(wg)d(o, ). In Figure 4.7.7 the function £/ V (z0) = [ 0(xo, )dz is shown for five
different values of the quotient {/L. For small values of £/L (very rapidly decaying
Gaussian function), we observe that the integral of @(zg, z) deviates from unity only
in small regions close to the boundaries.
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Ly /V () 1/L=[0.1,03,0507,08]
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005 -0.04 -003 -002 -001 0 001 002 003 004 005
X% {m)

Figure 4.7.7. The function [ ®(zo,z)dz.

Remark 7.4. We recall that the function [{zo,z)dz, graphically illustrated in
Figure 4.7.7, appears frequently in Section 3.6, where it is simply denoted by § = {1},
cf Remark 6.1 in Section 3.6.3.0

From (4.7-20) is obtained the stress-displacement relation

E Lo
I/_\u, 0<Au< Ty’
o= B L L (4.7~ 25)
oyt g (Bu= ), Au> T,
Mt g

where o, is the reduced initial yield stress at the centre of the bar. The stress-
displacement relation (4.7-25) is shown in Figure 4.7.8 for £ = 0.0157 m.
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Figure 4.7.8. Stress versus total displacement (£/L = 0.157).

Using (4.7-13) and (4.7-25) the strain distribution can now be determined for dif-
ferent values of total displacement of the bar. The result is shown in Figure 4.7.9 for
values of stress corresponding to Au = (0.8, 1.0, 1.2)x 1075 m.
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Figure 4.7.9. Strain distribution along the bar for three different values of total
displacement (£/L = 0.157).

For £/L = 0.157 the width of the localized zone has been calculated by solving
numerically the integral equation (4.7-18) for different values of —H/E. In particular
b=0.0314 m (= 2¢) it —H/E = 0.05, which is verified by the strain distribution shown
in Figure 4.7.9. As expected, the width of the zone remains constant when the loading
is increased.

Remark 7.3. The analysis above highlights the difference between permanent de-
formation and plastic flow in nonlocal plasticity. We recall that the stress point never
reaches the yield surface except for the single point at z = 0. Yet it appears clearly
that permanent deformation remains within the entire localized zone if stress is relaxed
to zero.l] -

As discussed previously, and in view of (4.7-17} it is evident that the width of the
localized zone (for given L) depends merely on the quotient H/E and the parameter
£. For a specific material and a given choice of attenuation function (say Gaussian), it
is therefore the parameter £ which determines the width of the zone. In other words £
is a constitutive parameter, the value of which is related to the physical properties of
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the material.

In view of (3.4-10), (3.6-109), (3.6-110) and (3.6-116), the specific dissipation per
unit length is determined by

pr = W{(f af%(z)qﬁ(m,z)dz)ép + (j 3 fi >(z)1ﬁ(w, z)dz)k}, (4.7 - 26)
where now

poll‘Z:éE(E“<6p>)2+%H <k>*, E+H>0, (4.7 - 27)

Hence, by virtue of (4.6-53),

@) =4[

Lﬂ(am%ﬂww_QEZH<m>@@ﬁmm@

= (/_I;/; Wz, 2)oydz) Mz), (4.7 —28)

since f = 0 during loading. Using (4.7-9), (4.7-28) and (3.4-11), it then follows that
the total dissipation in the bar is given by

Lf2 pLf2
P = anylejL/z 8z — zp)dadz = ony wW(zp, z)dz.  (4.7- 29)

Hence, for zo = 0 and with the use of (4.7-12},

o

v -
77 o> (4.7- 30)

Tyo

Lj2 .
?V(O) j;sz w(O,z)dz =

Dr =

where (4.7-21) has been used to obtain the second equality.

At failure, the total amount of dissipation at separation is given by 2G.,, where G,
is the fracture energy per unit area. Hence, since ¢ = —o, at failore,

2
a,
) —
Yobor = 26, (4.7 - 31)

or
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Ly = WEW,\C, (4.7 - 32)
where
2G.
Ae = 5 (4.7 —133)
Ty

is the characteristic length of the material (see Gustafsson 1985)47-1. If (4.7-24) is
valid £ = £, if not we must solve the integral equation (4.7-21) (for a given length of
the specimen) to obtain the value of the parameter £ corresponding to the given value

of £ = —H/EA,.

4.7.2 Numerical examples

In Section 4.6.4 the nonlocal generalized Euler procedure was demonstrated for two
types of yield functions of von Mises type. Here the integration technique will be
applied to the problem of the strain softening bar, solved previously by analytical
methods for the case when the yield function varied linearly with stress.

Only forward Euler technique has been employed. The final system of equations to
be solved is given by (4.3-36) (or equivalently by (4.3-38)).

The linear yield function is constituted by {4.6-55), for which the explicit form of
(4.3-36) is given by (4.6-60), whereas for the nonlinear yield function defined by (4.6-
64)s, the corresponding system of equations to be solved is obtained by substituting
(4.6-73) into (4.6-36).

The quasi-local continuous tangential stiffness matrix defined by (4.4-8} is used for
the elastic-plastic stiffness matrix in the Newton-Raphson scheme (4.3-12)-(4.3-14).

With regard to the constitutive assumption (4.6-53), we observe that (3.5-22) ap-
plies. Upon replacing R by 8 f/8c we thus obtain® "2

2
K=1—-=zpE (?j) , B =2u, (4.7 — 34)
do

where we have also used (3.6-2), (3.6-41) and (3.6-42),.

47-15ince (4.7-24) is valid for the bar under consideration (—H/E = 0.05, £/L = 0.157), it follows
from {4.7-32) that X, = 0.3 m. For mortar A, is typically 0.25 m, for concrete 0.2 m — 2.0 m and for
wood 0.02 m.

47=2The function AP in the right-hand side of (4.7-34) is defined by (3.6-25), and shown graphically
in Figure 4,7.7 for an attenuation function of Gaussian type.

-
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For linear g we thus obtain

K=1-nprE,

. (4.7 — 35)
- =E+ B"H,

where (3.6-52) and (3.6-54) has been used to evaluate the function 7. If wf = wh = w,
(4.7-35) is replaced by

B} E H
K_l_E+H_E+H'

(4.7 — 36)
Hence the quasi-local continuous tangential stiffness matrix may be written in the form

KL=E(l—-78E),

1

—_ Hg=0 6 A 47— 37
i ETH fg=0,§>0 (A>0), { )
0 otherwise, (A = 0).
Similarly, for nonlinear g,
K =1-4prr02,
1 (4.7 — 38)
L 4B+ B,
while the correspondence of (4.7-36) reads
KL = E(1L ~ m4p? o),
1 .
I SN ) (4.7 - 39)
x={ 4E{o} o+ Bt
0 if A=0

Remark 7.{. If we disregard the boundary effecis induced by the attenuation func-
tions (B = B* ~ 1), #? and B* may be omitted in (4.7-38) and {r}, replaced by
.[;]'p'D

From (3.6-48) we obtain finally the functional stress rate,
1 . .
;Hs = B(fPéP— < & >), (4.7 — 40)
0
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appearing in the integrand of the external psuedo forces defined by (4.3-13).

The Gaussian distribution function (4.7-1) has been used for two different values of
the quotient £/L (= 0.157 and 0.134, respectively).

The value of the constant function r (corresponding to the strain hardening mod-

~ ulus) has been taken as r = —1.6 - 10 (N/m?)® and the reduced initial yield stress at

the centre of the bar as o, = 1.7 MPa.

Loading is effected by successively increasing the displacement at one end of the bar,
the other end kept fixed. The result of the computations is demonstrated graphically;
in Figures 4.7.10-11 with regard to the linear yield function and in Figures 4.7.12-14

with regard to the nonlinear onet7-3,

Figure 4.7.10 shows stress versus total displacement of the bar for £/L = 0.157 and
£/L = 0.314. The number of elements in the finite element discretization is n = 100.
Figures 4.7.11 show the corresponding strain distribution for increasing values of total
displacement Awu of the bar. Convergence is very accurate.

Discretization with n = 200 produces curves impossible to distinguish from those
presented here. In addition, for £/ = 0.157 the result is in perfect agreement with the
analytical solution (see Figures 4,7.8-9).

Figure 4.7.12 shows the stress-displacement curves when the yield function depends
quadratically on stress, again for the two values £/L = 0.157 and £/L = 0.314, while
the corresponding strain distribution is illustrated in Figure 4.7.13. For £/ = 0.157
the width of the localized zone does not seem to differ appreciably from that obtained
for the linear yield function, i.e. &~ 2{. For £/L = (.314, however, we observe that
the width of the localized zone is less than 24.

Figure 4.7.14 demonstrates the excellent convergence properties of the finite element
solutions, clearly being objective with respect to the mesh.

47~3The computational work has been performed by L. Stromberg, Division of Solid Mechanics at
Lund University.
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Figure 4.7.10. Lincer yield function. Stress vs totel displacement of the bar
(n =100): (a) £/L = 0.517; (b) {/L = 0.314.
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Figure 4.7.11. [Linear yield function. Strain distribution along the bar (n = 100):
{a) £/L = 0.157; (b) £/L = 0.314.
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Figure 4.7.12. Nonlinear yield function. Stress vs. total displacement of the bar
(n =100} (a} £/L = 0.157; (b) £/L = 0.314.
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Figure 4.7.18. Nonlinear yield function. Strain distribution along the bar (n = 100):
(a) /L = 0.157; (b) £/L = 0.134.
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Figure 4.7.14 Nonlinear yield function. Strain distribution elong the bar
{n =200 /L =0.134.

4.8 Concluding remarks

Localization in a strain softening solid is associated with material instability and loss of
ellipticity in quasi-static problems. From a computational point of view this appears to
be a crucial problem due to numerical instabilities and mesh sensitivity. Conventional
continuum models have essential deficiencies, if used to describe strain softening be-
haviour. One main drawback is that the amount of dissipation at failure, nonphysically
is predicted to vanish, another that finite element solutions become nonobjective with
respect to the mesh size.

Only results?3-! from one dimensional analysis are available, but nethertheless some
important conclusions may be drawn.

It iz claimed that nonlocal plasticity models are well adapted to describe the essen-
tial features of strain softening, imcluding that of localization. The nonlocal approach
provides in a natural way for the introduction of a constitutive characteristic length,
being that material parameter which mainly controls the development of the local-
ized zone. It is also important to note that the problem of achieving computational
objectivity seems to be inherently solved by the nonlocal concept.

48-1Tn agreement with those by e.g. Bazant and Feng-Bao Lin {1988) and Belytschko and Lasry
(1989).
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4.8.1 Discussion and conclusions

Various numerical techniques commonly used in local plasticity have been extended
to comply with the nonlocal concept. The crucial problem is that of satisfying the
consistency condition, which in nonlocal plasticity corresponds to an integral equation
defined throughout the region of loading points. As a consequence, the integration of
the rate equations must be performed simultaneously for a set of interacting loading
points.

The quasi-local integration technique in Section 4.6.5 may be regarded as an un-
corrected forward Euler procedure, which will probably lead to a violation of the yield
criterion. A safe integration technique cannot avoid the problem of simultaneously
solving a coupled system of equations to comply with the consistency condition.

At present the numerical experience is not comprehensive enough to provide for
accurate predictions of the reliability of the one integration technique or the other.
It is conjectured however, that the nonlocal backward Euler procedure outlined in
Section 4.6.3 will converge very fast, possibly providing accurate results after only the
first iteration, and hence there will be no need for repeatedly updating the matrix Q,
which else appears to be a crucial problem.

Equilibrinm iterations should be performed by employing the general Newton-
Raphson scheme (4.3-12)-{4.3-14). It is believed that the convergence rate will not
change considerably if n’;}f‘ is replaced by the actual external forces /71 F alone, the
contribution from the external pseudo forces being neglected.

The quasi-local tangential stiffness tensor KL should be used for the elastic-plastic
stiffness matrix in the Newton-Raphson algorithm, evaluated either incrementally as
in Section 4.4.1 or, as in Section 4.4.2, by using the consistency condition to solve for
the function v in an average sense.

The analytical solution to the problem of the strain softening bar implies that the
width of the localized zone depends on the length of the bar, although this size effect
is negligible if £/L «< 0.3, { being the non-local parameter and L the length of the
bar. For such values of the quotient £/, the width of the localized zone is entirely
determined by the nonlocal constitutive parameter £, Young’s modulus and the strain
hardening modulus, which is in agreement with the results from the finite element
analysis.

The analytical solution predicts a finite amount of total dissipation, although plastic
loading is confined to a region of vanishing size at the centre of the bar. Comparison
with the total separation work at failure provides a relation between the nonlocal
parameter £ and the characteristic length A of the material (in general expressed by
an integral equation for £},
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4.8.2 Future developments

The numerical strategies and algorithms proposed in Chapter 4 have merely been
treated tentatively, and only resuits from one-dimensional analysis are available, Full-
scale models based on these numerical procedures may certainly be applied to general
two- or three-dimensional structures. However, the next step in the future development
should involve a systematic evaluation of the nonlocal generalized Euler procedure as
well as the quasi-local integration technique. In addition the convergence properties
of the Newton-Raphson algorithm should be investigated for different choices of the
elastic-plastic stiffness matrix, by analysing simple one- or two-dimensional equilibrium
problems.

We recall that the nonlocal theory is derived for finitely deforming elastic-plastic
bodies, and accordingly the finite element formulation should be extended to be capable
of handling large deformations.

Ever since the pioneering work of Hill {1958) on uniqueness and stability in elastic-
plastic solids and of Rudnicki and Rice (1975) and Rice (1976) on localization of plastic
deformation, considerable interest has been focused on theories which treat localization
as bifurcation from a state of homogeneous deformation. Investigating the possibility
of finding analytical expressions for critical bifurcation directions in nonlocal strain
softening solids would certainly be a challenging issue for future development.

The occurence of elastic-plastic coupling is an interesting feature of nonlocal plas-
ticity. However, elastic-plastic coupling in nonlocal plasticity cannot alone explain the
striking effect of material stiffness degradation (damage) for a material such as concrete,
especially not in the softening region where the effect is even more pronounced. The
idea of combining theories of damage and plasticity seems logical and is used by many
researchers in the field of fracture mechanics, but a general nonlocal plasticity - damage
theory has not yet been derived, and is thus another issue for future development.
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Appendix A

Equations of balance in nonlocal
continuum mechanics

This appendix contains a derivation of the equations of balance for nonlocal continua
which leads to (2.3-1)-(2.3-4). Nonlocal constitutive theory is not treated here - we
refer to Section 2.4 for a brief survey of the subject with respect to nonlocal elastic-
plastic continua. As mentioned in Section 1.3 the formulation presented here is based
on works of Edelen and Laws (1971) and Edelen (1976). For a detailed account of
background and history we refer to Edelen (1976), where an extensive list of references
is provided.

As stated in Section 1.3 the principle of local action is not valid in nonlocal contin-
uum theories, #%~! that is long-range interactions between a particle at place X and
a particle at place Z contribute to the stress at X. In linearized theory this may be
exemplified with a nonlocal Hooke’s law of the form

0i§(X) = Ciju(X) en(X) + / ciiu(X, 2) e(Z} dV(Z),
where the integration is extended all over the body.

Equations of balance will be postulated for the entire body (global relations), and
will in general not be valid for arbitrary parts of the body (as is the case in local
theory). Relations valid only for the body as a whole are called nonlocal and relations
valid for arbitrary parts of it are called local

A.1 Conservation of mass

Consider a body which occupies a region B of three-dimensional Euclidean point space
at an initial time ¢ = 0. We identify the body with the region and refer to the body

4-0-1In our terminology nenlocal continuum mechanics comprises theories which admit long-range
{(nonlocal} interactions. Accordingly, such categories of generalized continua as micropolar media or
materials with gradient effects are not nonlocal.
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itself as B. A material point (particle) is identified with its position X in the Euclidean
point space at initial time. Hence the initial configuration of the body is taken as the
reference configuration.

The motion of the material point is defined by

x= X(X,t), X= X_l(xa t)) (A - l)

where x is assumed to be a continuous function of its arguments and differentiable as
much as desired. We interpret (A-1} as usual, that is x is the position of the material
point with position X in the initial configuration. The deformation gradient associated
with the motion is defined by

_ _ x(X%,t)
F= Gradx= X (A -—2)

and it is assumed that the Jacobian

J=det F (A-3)

is strictly positive for all £, The velocity is defined by

x(x,1) = X1 (A1)
ot
and the velocity field is given by
x(x,t) = x(x 7%, 1), ). (A-35)

The boundary of B is denoted 8B, and B(t) and dB(t) denote the images of B and
dB, respectively, under the motion given by (A-1).

Let pg = po(X) denote the mass density in the initial configuration of the body B
and correspondingly p = p(x,t) the mass density at time ¢ in the configuration of the
body specified by the motion (A-1). Global conservation of mass implies that

d
- dV = A—
dt Je(y V=0 ( 6)

at any time ¢, while local conservation of mass implies that

) E
& Iy 9V =0 _ (A=T7)
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at any time t for arbitrary parts P of the body B. We recall from local theory that
(A-7) is equivalent to the statements 4-1-1

a

and

p+ pdiv x = 0, (A —9)

representing material and spatial forms, respectively, of local conservation of mass. We
emphasize that (A-T) is a local statement, although the equation involves an integral
(in accordance with our previous discussion).

If we reject the assumption (A-T), then the global condition (A-6) is a nonlocal
statement. To see what conclusions can now be drawn from the global statement of
conservation of mass, we write (A-6) in the equivalent form

]B c7‘3}(1(”7)051/: 0, (A — 10)

where the integration in the original formulation has been converted to an integration
over the initial configuration. Since the integration in (A-10) is over a fixed region the
result given in (A-8) can no longer be deduced. However, we may replace the single
nonlocal statement given by (A-10) with a set of two statements, one of those being
local and one nonlocal, of the form

d . .
5 (pT) = B, prJ dV =0, (A —11)

or equivalently, in spatial form

b4 p div x = p, f pdv = 0. A—12
prpdivi=4 [ b ( )

The quantity g introduced in (A-11) will be referred to as the localization residual
for mass. In order to get some physical interpretation of 5, we integrate (A-12}; over
an arbitrary part P(t) of B(t} and obtain the local statement

. TN » _
/P(t)(,o—i—p div x)dv L(t)p v, (A—13)

At=1Converting the integration in (A-7) {o an integration over the initial configuration leads to (A-8)
and using the formula for differentiating » determinant leads to {A-9). Note that p in (A-8) designates
a function of X and ¢, i.e. p(x,t) = p[x(X,t),#] = p(X, ) where we, with abuse of notations, have
retained the same function symbol for the density.
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or equivalently

d " .

dt Jry” dv = P(2) puv = = Bet)-r()” d, (A-14)
where we have used {A-12); to derive the second equality. In view of (A-14); we may
interpret the localization residual j as the rate of production of mass of a ‘particle’ at
place x due to the presence of the rest of the body. Since p has zero mean on B(t)
there is no net generation of mass for the body as a whole (in accordance with (A-6)).
Hence, if there are regions within the body with production of mass, then there also
must be regions with compensating destruction of mass.

Evidently the local relations {A-12)-(A-14) are not statements about conservation
of mass in a usual sense, since {A-12}, must hold for every choice of j with zero mean
on B(t). Rather we may consider (A-12); as an equivalence class of local statements for
conservation of mass with respect to each integrable function p, which satisfies (A-12},.

It is a matter of fact that mass usually is locally conserved in continuum theories,
that is each part of a given body satisfies {A-T) and accordingly the localization resid-
ual p vanishes identically (locally mass closed system). This means that e.g. cavitating
fluids are excluded and so are cavitation phenomena in various micromechanical con-
tinuum models of damaging materials. Although it is not difficult o treat the general
case with 4 # 0, we choose for the sake of simplicity to consider only locally mass
closed systems in what follows.

A.2 Balance of linear momentum

The global statement of balance of linear momentum reads

d

2z e dv = fd f t da, A—15
di B(s)PX b fB(t)p vt aB(H) “ ( )

where £ = f(x,t) is the external body force field per unit mass (specific bbdy force)
and t = t(x,%)|x . » By is the surface traction per unit area applied on the boundary
of the body at time 2.

In classical local theory it is assumed that {A-15) also holds for an arbitrary part
P(t) of the body, where then t = t(x,1)|x . o pq) represents the traction vector on the
boundary surface of the arbitrary part P(t). Hence t = t{x, ) is defined throughout
B(t) for all t. This assumption leads to the existence of the Cauchy stress tensor with
properties providing for local balance of linear momentum.

In nonlocal theory we must start with the global statement {A-15), where t is
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defined only on the actual boundary dB(t) of B(t). We assume that 85(t) constitutes
a regular surface with a unit normal vector field n = n(x,t}|x  » (), which is taken to
be oriented from the interior to the exterior of B(t). Clearly there exists a tensor field
defined on 8B(t) such that its transvection with n gives the surface traction t. What
we need, however, is a tensor field defined for all x (and for all ¢) throughout B(z)
with such properties that it provides us with the possibility of converting the surface
integral in (A-15) into a volume integral over B(t). To comply with this, we therefore
assume the existence of a tensor field T(x,t) defined on all of B(t) such that

T(x,t)[x e 5 B2 = t(X,t)|x c 3 BY- (A —16)

Since t is only defined on @B(t), it is obvious that this tensor field cannot be
unique. Irrespective of this fact we refer to every tensor field T, which satisfies (A-186)
as a Cauchy stress tensor.

Using (A-16) and imploying the divergence theorem, we can write (A-15) in the
form

{(px —pf —~ divT)dv =0, (A —17)
B{t}

where it has been assumed that the body is locally mass closed 42-1. The staterent
{A-17) can be localized by setting

pk—pf— divT=pf (A —-18)

for every localization residual f which satisfies

fdv=0 A-19
o TP ({ }

Integration of (A-18) over an arbitrary part P{t) of B(t) gives

d A .
4 -d_f £ d'Td:/ fdv=— fdv, (A-20
~dt fP(t)p * P(a‘.)(p + div T)dv P{t}p v jB(t)mP(t)p o :

where {A-19) has been used to establish the second equality. The formulation (A-20),
provides us with an interpretation of the localization residual field f as a specific body
force field acting upon a particle at place x because of the presence of the rest of the

4-2-1Recall that d/di([ 4 pdv} = f $pdy for locally mass closed systems, where the time dependent
function + may be a scalar, vector or tensor of any order.
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body. We emphasize that the collection of vectors f represents an internal body force
field (e.g. mutual gravitational forces), while it is recalled that f represents an external
body force field arising from sources outside the body.

A.3 Balance of rotational momentum

In the absence of external couple densities, the global equation of balance of rotational

momentum is given by 431

d

hl pikd =f £ d / At da, A—21

dt fs(z){x pxay B(t)XAp vt 8B(3)x “ ( )
where the origin of the position vector x may be arbitrarily chosen, but such that it

is stationary in the referential configuration (being an inertial frame). Using {A-16) to
convert the surface integral into a volume integral, we conclude that

- ){x/\pi’c —xApf — div (xAT)} =0, (A—22)
t

where we have also taken advantage of the fact that the system is locally mass closed.

Localization of (A-22) gives
xAp% — xapf — div (xAT) = pM, (A —23)
where
Mdy = 0. A—24
[y PN (A-24)
It is a routine matter to prove the identity

div (xAT) = TT — T 4+ xn div T. (A — 25)

Using (A-18) and (A-25), the relation (A-23) can be written in the form

xApf + T — T = pM. (A —26)

Integration of (A-23) over an arbitrary part P(f) of B(t) yields

A3-1The skew symmetric tensor aAb = a®b — b ® a is the wedge product or exterior product of the
vectors a and b.
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d
i cdy — ;
yr L(t)x/\px v ./F’(f){XAPf+ div (xAT)}dv

= VI dv = — v -
fp(t) pM dv -/B(t)~P{‘~‘} #M dv, (A —27)

where we again have used the assumption of local conservation of mass, and in addition
{A-24) to obtain the second equality. In view of (A-27); we interpret the localization
residual M as an internal torque tensor which acts upon a particle at place x because
of the rest of the body.

A.4 Balance of energy

In order to make a global statement of balance of energy, a set of nonmechanical
quantities must be introduced. To this end, let r(x,t) denote the rate at which nonme-
chanical energy is supplied to the body per unit mass (specific energy supply) and let
q(x,t)|x « 5 By denote the rate at which nonmechanical energy is supplied to the body
at its boundary per umnit area. These supplies arise entirely from sources external to
the body. Finally, let e(x,t) denote such energy density per unit mass that || B() PE dv
is the total internal energy of the body. The global equation of balance of energy then
reads

d 1
s Sk 3 d:f £ %d t-xd f d
dt L(;)P(Qx X+ e)dv B(t)p x U+faa(t) X da+ B(t)pr Y

da. A - 28
+ ]B s ¢ { )
With arguments similar to those used when the Cauchy stress tensor was introduced
(cf. (A-16)), we introduce a heat fluz vector q(x,t) defined for all x in B(¢) such that
q(x,t)x e 0B - 0 = ¢(X,t)|x ¢ 4B@)- - {(A—-29)

Since n is the outward normal vector, we may interpret q(x, )}y . a5 as the flux
of nonmechanical energy that comes out of the body.

Proceeding as in the previous sections, we use the divergence theorem to rewriie
(A-28) in the form

fB(t){p()'( K4 &) - plf k4 7) — div (TTk 4+ q)}do = 0, (A — 30
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which can be localized by setting

p(x-%4+é) —p(f-x+r)— div(TTx+q)} = pib (A—31)

for every w which satisfies

b dv =0. -
o~ pth dv =10 (A —32)
Using (A-18) and the identity
div (TT%) = div T %+ T grad x, (A —33)
it follows that (A-31) can be written
pé — T - grad x — div q— pr + pk - f = pab. {A - 34)

When (A-31) is integrated over an arbitrary P(t) of B(t) and (A-32) is used, it
follows that

d 1. . . o T
?ﬁj)‘g(t)p(ix-x-{—e)dv——/P(t){p(f-x+r)+ div (T x+ q)}dv

_ u‘;dv:-—] B dv A—35

oM Be-re ( )
and hence we interpret the localization residual 1 as the rate at which energy is supplied
to a particle at place x due to the presence of the rest of the body.

A.5 Entropy

In all thermodynamic theories some statement of the Second Law is made 45-1, In the
mathematical theory of thermodynamics, one version or another of the Clausius Duhem
inequality is usually chosen to express the basic ideas of the law. A global statement of
the inequality may be written in the form

d q T
2 do— [ g f T, -
di B{t)pn v /E;P{z) e B(f)pf) i (A - 36)

A-8-1The reader may consult Truesdell (1984) for a discussion of the origins of mathematical
thermodynamics.
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where (X, 1) is the specific entropy field and 8(x,t) > 0 the lemperature field As for
the physical meaning, we note that {A-36) is a statement about the nonnegativity of
the internal production of entropy of the entire body at any time.

As will soon be seen the global statement (A-36) has an essential deficiency as a
starting point for a nonlocal theory of the type considered here. To understand this we
postpone for a moment the development of the nonlocal formulation and look at local
theory. If we apply (A-36) to strictly local bodies and use (A-29) and the divergence
theorem, we obtain

>0, (A —37)

i

pi ~ div (5) = p

Multiplication by # gives the equivalent inequality

6(pi — div (3) = pz) 20, (A~ 38)

which integrated over the region B(t) yields

s div (D — T vde > -
]B o 61 = v ()= p)dv 2 0. (A - 39)

We note that (A-36) and (A-39) are of course not equivalent statements (unless the
temperature field is uniform). The physical meaning of (A-39) is also basically different
from that of {A-36). While {A-36) was a statement of the nonnegativity of entropy
production, (A-39) is a statement of the nonnegativity of the internal production of
heat (nonmechanical energy rate) of the entire body at any time.

Since this is not the place to discuss what physical idea the Second Law should
give expression to (no general agreement exists), we refer to both {A-36) and {A-39)
as statements of the Clausius-Duhem inequality.

The nonlocal thermodynamic theory considered here will be based on the equality
(A-39). We recall that the Clausius-Duhem inequality (in one form or another) is of
vital importance for the development of any constitutive thermodynamic theory. As
mentioned already, we refer to Section 2.4 for a discussion of nonlocal constitutive the-
ory (with respect to a special class of elastic-plastic materials). However, in order to
motivate the choice of (A-39) as the fundamental inequality, we will complete this ap-
pendix by deriving a reduced global Clausius-Duhem inequality.4~2 For that purpose
we use the localized equation of balance of energy, (A-31), to eliminate the specific
energy supply = from the lefi-hand side of (A-39), and obtain

A5-24 corresponding local reduced Clausius-Duhem inequality is froquently used as the starting point
for constitutive thermodynamic theoriss.
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E(t)(ﬂpﬁ — pé+ gw;m%ﬂd—g + T grad x — px - f)dv > 0, (A — 40}

where (A-32) has also been used. If we introduce the Helmholz free energy

P =e—On, (A—41)
we can write (A-40) in the form

B(t)~{—p(¢3+6"n)~t~3'—%}”—5‘5—(2 +T- grad % — px - )dv > 0. (A — 42)

We note that the corresponding genuine local form reads

—p(i/:v—e—én)—l—g——‘—ﬁg——ade-{—’l'-gradkzm (A —43)

which is the form of the reduced Clausius-Duhem inequality usually derived preparatory
to the treatment of local constitutive theory. Hence (A-42), which was derived from
{A-39), reduces to the usual reduced Clausius-Duhem inequality when the body is
strictly local. This observation, together with the fact that the localization residual
dropped out in the derivation of (A-40), are the main reasons for the choice of {A-39)
as the basic axiom of our nonlocal thermodynamic theory.
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