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Abstract 
Background 
Medicine and technology have undergone massive developments and progress 
during the last decades with digitalization and advancement of medical technology 
(MedTech). The advancements have resulted in increasing amounts of data being 
collected for each patient: The data collected ranges from temperature, ECG, and 
blood work to settings and information from devices used such as ventilators and 
dialysis machines. Today, each specific patient will generate a lot of data that 
physicians and healthcare personnel need to consider in evaluation of treatment, 
determining changes in treatment - but also understanding the patient outcome.  

Method 
Scripts were developed in MATLAB 2020a/2022a (MathWorks®) for all parts 
which needed development of scripts.  

Results and significance  
1. Two sets of algorithms were developed to replace blood sample of post-filter 

ionized calcium.  
The algorithms were able to estimate in range post-filter ionized calcium values 
with great trueness (lower mean value) and precision (lower standard 
deviation). 

2. A diagnosis tool was developed for acid base.  
Works much faster and with greater accuracy than diagnosis by physicians. 

3. Net Buffer Load 
It is important to understand the effect of Continuous Renal Replacement 
Therapy (CRRT) on acid-base balance. Normalized net buffer load (nNBL) is 
a value that can be used to better understand the buffering effect of Regional 
Citrate Anticoagulated Continuous Renal Replacement Therapy (RCA CRRT). 
No instances of citrate toxicity or alkalosis could be seen due to RCA CRRT. 

4. Glucose and sodium levels 
We looked at the effect of using correction formula for sodium on intensive 
care unit (ICU) patients, with often deranged glucose levels, to see the potential 
change in clinical treatment.  A script was created of formulas on an existing 
clinical phenomenon and included a large amount of patient data in order to 
see what the formulas can bring forward.  
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Populärvetenskaplig sammanfattning 
Intensivvårdsavdelningen (IVA) tar hand om de mest kritiskt sjuka patienterna, ofta 
med multiorgansvikt. Denna patientgrupp kräver kontinuerlig övervakning av vitala 
funktioner som blodtryck, EKG och syremättnad. Varje patient på IVA kräver 
dessutom upprepad provtagning, ibland så ofta som var 15:e min. Denna ständiga 
övervakning leder till insamling av mycket patientdata som varje 
läkare/sjukvårdpersonal måste ha i åtanke då beslut skall fattas avseende behandling, 
men även för uppföljning av patienten efter given behandling. Sjukvårdpersonal 
måste ständigt kontrollera omfattande mängder data, men den avsatta tiden för att 
hinna analysera data har med tiden minskat. Det stora informationsflödet kan i sin tur 
leda till att misstag sker och att viktiga data missas.  

Syftet med mitt projekt är att försöka skapa ett beslutsstöd för läkare för att 
underlätta diagnosticeringen av sjukdomar, i detta fall syrabas-störningar. Detta 
genom att ersätta ett blodprov med en algoritm, hjälpa till att förstå det sanna 
natriumvärdet vid avvikande glukosvärden, men även ha ett värde, ”normalized net 
buffer load”(nNBL), som kan hjälpa till att förstå hur dialys (CRRT, continous renal 
replacement therapy) påverkar syrabas-balansen. Beslutstödet utgörs av olika 
algoritmer som utvecklats i MATLAB ®, vilket gjort det möjligt att analysera stora 
mängder data snabbt och systematiskt på ett sätt som en människa inte hade kunnat 
göra.  

Våra algoritmer har visat att det finns mycket mer att göra inom intensivvården som 
kan underlätta det dagliga arbetet för sjukvårdspersonal, men även för patienterna. 
Våra algoritmer har kunnat analysera data som hade tagit år och eventuellt varit 
omöjligt för den enskilda personen att genomföra.  
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Introdution 

Medicine and technology have undergone great development and progress during 
the last decades with digitalization and advancement of medical technology 
(MedTech). MedTech are tools/aids that can be used to support prevention of 
disease, aiding in diagnosis and treat diseases etc. The advancements have resulted 
in increasing amounts of data being collected for each patient. The collected data 
could be everything ranging from body weight, prescriptions, previous medical 
history (known diseases and family history), allergies, and temperature to ECG 
(electrocardiogram), and blood work, but also settings and information from devices 
used such as ventilators and dialysis machines etc. Today each specific patient will 
generate a large number of data that physicians and healthcare personnel need to 
consider in the evaluation of treatment, determining changes in treatment - but also 
to understand the patient outcome.   

The large amount of data has resulted in a lot of stress amongst healthcare personnel, 
but also safety issues due to data being disregarded. The constant stress of feeling 
that one has not been able to look at all data has also resulted in burnout amongst 
medical professions, for some so severe that they even consider changing jobs [1].  

The decision support tool developed by our group in Lund is a software, that could 
be integrated to the electronic medical record (EMR), that works in the background 
and asses large and relevant volumes of data in a fast and secure way. The software 
can be used on a computer or a smartphone and uses relevant data from the EMR. 
Specific algorithms, developed to help with decision making, highlight/suggest 
what laboratory test results should be considered first. The software analyzes the 
data and points out the areas of possible intervention, e.g., diagnose the acid-base 
disorder the patient has quickly, and helps with preliminary considerations in 
regards of the diagnosis. The decision support tool may give healthcare personnel 
more time for patients and, additionally, it is not affected by fatigue, or stress when 
handling data hence, it may increase accuracy as well as safety [2].   
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Introduction to the intersection of  
medicine and modeling 
It has for a long time been discussed that some kind of artificial intelligence/machine 
learning (AI/ML) will be used in healthcare. Machine learning could be used to help 
interpret medical scans, pathology slides, skin lesions, retinal images, 
electrocardiograms, endoscopic examinations, face recognition, and vital signs etc. 
The AI is typically compared with physicians’ assessments and has already been 
shown to have a place in medical companies such as CellaVision, being able to 
provide services such as automated and simplified process of performing blood cell 
differentials that previously was performed manually. CellaVision’s technology has 
been shown to be as good or better than manual microscopy [3]. Deep neural 
networks have also been used to diagnose and classify skin cancer, and have shown 
to be very accurate and fast [4].  

Different areas in medicine have been faster than others to adapt to the digitalization 
and at the forefront of this are the radiologists. In radiology, several image-
recognition studies have been conducted for different imaging modalities. but also, 
interpretation of the different organ systems. The accuracy of the interpretations 
varies; in some areas, deep neural networks have been shown to be faster in 
interpreting scans and often with higher accuracy than that of clinicians, especially 
during stressful situations [5].  

The intensive care unit (ICU) is a place that takes care of the most critical patients 
from all specialties with all kinds of medical underlying diseases needing 
surveillance and meticulous care. Often, the patients need support of multiple organ 
systems with machines such as ventilators, dialysis machines, or transcutaneous 
pacing. The data being collected for each patient during their ICU stay is significant 
and there is always a risk of data being missed. Artificial intelligence has not been 
developed as much in this specialty compared to other specialties. and there are a 
lot of things that can be done to improve this field [6].  

MATLAB's usage in the medical field  
with a focus on the ICU  
Development of algorithms in the medical field is on the rise and there are many 
ways to develop algorithms. MATLAB (Matrix Laboratory) has with time become 
one of the most used software for developing algorithms in different fields, ranging 
from engineering to medicine. The application of MATLAB in the medical field has 
emerged as a potential transformative force and could be particularly important in 
the context of medicine in for example aiding in diagnosis. This powerful 
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computational platform, known for its versatility and mathematical capabilities, 
could play a crucial role in bridging the gap between technology and healthcare. 
With its extensive toolset, MATLAB has made it easy for researchers to develop 
aids/algorithms to improve patient care and diagnostics of diseases. Open source 
(source code that freely can be modified and redistributed) has made it easy to access 
code developed by others, but also to find solutions to problems present in one’s 
own code. MATLAB is a powerful tool with many possibilities and is widely used 
amongst engineers today already. It is also a tool that easily can be understood and 
has many good and user-friendly interfaces, but also makes the user being able to 
create whatever interface they wish and for most applications. The tool is easily 
available, but at some cost, and to be able to access all the toolsets a substantial fee 
needs to be paid, which most institutions will assist with. There have been many 
discussions for several years of the need for algorithms in healthcare and some of 
the issues hindering the development is, e.g., the legislation that has not made 
development easy. 

The usage of MATLAB can be divided into different areas: 

1. Real-Time Data Analysis 

MATLAB's ability to process and analyze vast streams of real-time patient 
data is invaluable in ICUs. It enables healthcare professionals to monitor a 
patient’s vital signs, such as heart rate, blood pressure, and oxygen saturation, 
and instantly detect anomalies or trends. This is critical for early intervention 
and the prevention of life-threatening complications. One example of 
processing vast amount of patient data is e.g., diagnosis of acid-base 
disturbances. Managing acid-base balance is critical in the ICU. MATLAB's 
computational capabilities are particularly useful for analyzing complex acid-
base disorders, helping clinicians make precise adjustments to medications 
and interventions to maintain patient stability [7].   

2. Simulation and Modeling 

In the ICU, where patient conditions can change rapidly, MATLAB's 
simulation and modeling capabilities provide healthcare teams with helpful 
tools. These models can forecast patient outcomes, assist in treatment 
planning, and optimize resource allocation. The ability to simulate different 
scenarios aids in making informed decisions, particularly in complex cases. 
Physiological modeling has been done previously and has many times been 
cumbersome, but AI/ML could aid in simplifying the process of developing 
simulations [8].    

3. Image Processing and Analysis: 

ICUs often rely on medical imaging for diagnosis and monitoring. 
MATLAB's image processing toolbox enhances the interpretation of medical 
images, such as X-rays, CT scans, and MRIs. Development has already been 
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done in regards of image interpretation and more can be done since these aids 
in the timely diagnosis of conditions and the assessment of treatment 
effectiveness. Different tools are readily available making development of 
algorithms easier, but also due to a lot of data being available for usage, 
making progress a bit faster [9].  

4. Machine Learning and Artificial Learning: 

The integration of machine learning and artificial intelligence is something 
that probably will come more in the future in the field of ICU care. 
MATLAB's extensive support for these technologies allows for the 
development of predictive algorithms that can anticipate patient deterioration, 
recommend treatment strategies, and assist in automating routine tasks, 
thereby reducing the workload on healthcare professionals [10]. 

 

Severity scores have for a long time been used to predict outcome, severity of the 
disease, and also to assess resource use. There are many scoring systems/early 
warning systems and some can take some effort to use, although online versions are 
available often manual insertion of data is necessary [11]. Here, AI/ML might 
present a way to have continuous assessment of the different scores and potentially 
be able to aid in fast detection of deterioration.  

With large amounts of patient data stored for each patient, information might easily 
be missed. Predictive modelling of medical records to improve healthcare quality 
has been a topic for a long time. Deep learning has become an important aid in 
simplifying the analysis of data, reducing the work needed for analysis of raw data 
but also making it possible to analyze a vast number of data. Studies have shown 
that deep-learning could achieve high accuracy in predicting in-hospital mortality 
and find patients with risk for prolonged hospital stay or re-admission. Deep 
learning can also be used for identification of relevant information from the patient 
chart/data, which has become important nowadays since large amounts of data are 
stored for each unique patient [12].     

Artificial Intelligence and Machine Learning are not the only efforts in medicine to 
improve healthcare. Everyday technology, such as mobile devices and tablets, are 
useful to help patients to adhere to their treatment regimens, for example, 
tuberculosis treatment where efforts were made to facilitate patient/provider contact 
and could be seen to improve patient commitment to medication [13].  
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Dialysis in the ICU  
Continuous renal replacement therapy (CRRT) is a dialysis modality used in the 
intensive care setting and is the most common renal support modality in the 
intensive care unit (ICU) [14]. It is often used to treat patients with acute kidney 
injury (AKI) with hemodynamic instability. The indications for CRRT are many 
and examples are correction of acid-base disturbances [15, 16], removal of toxic 
substances in the patient [16], sepsis, correction of electrolyte imbalance [17], and 
removal of excess fluid in hypervolemic patients. [18]. Continuous renal 
replacement therapy provides continuous solute clearance and fluid removal, during 
long periods, often days to weeks and presents a slower form of dialysis compared 
to, e.g., intermittent hemodialysis with a typical treatment period of 3 to 5 hours 
triweekly [19]. Continuous renal replacement therapy requires vascular access 
(central dialysis catheter), pumps to pump the blood and solutions used in the circuit, 
permeable membrane to filter the plasma water (part of the plasma not containing 
proteins/other big substances that cannot pass the filter) and solutions [20].  

Anticoagulation is very important during CRRT for the patency of the 
extracorporeal circuit. As soon as blood touches the tubing/circuit, a coagulation 
cascade will be triggered that will result in clotting and reduction of filter life [21]. 
Commonly, either heparin or citrate is used as an anticoagulant to avoid clotting of 
the dialysis circuit; however, in patients with a high risk of bleeding or other 
contraindications to anticoagulation CRRT may be conducted without 
anticoagulation. Anticoagulation-free CRRT procedures are generally less effective 
due to higher risk of filter clotting entailing increased down time [22].   

For a long time, unfractionated heparin was the first-hand choice anticoagulant for 
CRRT worldwide [23]. Critically ill patients admitted to the ICU most often have 
impaired coagulation and an increased risk of bleeding [24]. Studies have shown 
that as many as 12-15% of the ICU patients will have a platelet count of <50 x 109/L 
and prolonged activated partial thromboplastin time (APTT) in 14-28% [25]. Due 
to the increased bleeding risk seen in ICU patients, the usage of heparin as an 
anticoagulation method is frequently limited. Heparin anticoagulated CRRT has a 
bleeding incidence ranging from 4-25% [26, 27].  

Regional citrate anticoagulation (RCA) has gained popularity in recent years due an 
anticoagulant effect which is limited to the dialysis circuit without affecting the 
patient’s coagulation  [28]. Due to the benefit of citrate the KDIGO guidelines 
recommend RCA as the preferred anticoagulation method during CRRT in ICU 
patients that do not have contradictions to usage of citrate such as liver failure and 
shock with muscle hypoperfusion [24]. For patients having contradictions for both 
heparin and citrate then the only option is anticoagulation-free CRRT, and globally 
33-50% of patients do not receive anticoagulation [29-31]. Continuous renal 
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replacement therapy is often cumbersome and time-consuming, but also takes a lot 
of focus from the nurse due to circuit changes/change of solutions [20].  

There are different settings for CRRT treatment depending on treatment goal: 

Solutes will be removed from the patient with dialysis and the efficiency of the 
solute removal will be based on the molecular size of the solute compared to the 
filter pore size. Molecules can be divided into three sizes: small (<500 Da, e.g., 
electrolytes), middle (<60 kDa, most medication and vitamins), and large molecules 
(>60 kDa, e.g., albumin and Beta2-microglobulin) [32].  

Continuous venovenous hemofiltration (CVVH): This method uses hydrostatic 
pressure across a semipermeable membrane/filter to remove solutes using 
convection. Plasma water can move across the filter, i.e., no blood components or 
proteins since they are too large to move across the pores of the filter (the cut-off of 
the size of the molecules being able to pass the filter is dependent on the internal 
diameter of used filter). Solutes of different sizes are initially transported with equal 
efficacy until the radius of the molecule/solute exceeds the membrane poor size, 
e.g., albumin, which is a large solute that has a radius larger than the conventional 
membranes and will not be removed during dialysis. Since solutes will be removed 
by convection, substitute fluid is introduced to combat the increased 
hemoconcentration occurring during filtration, which can result in sludging and 
occlusion of fibers. The convection rate is determined by the fluid removal rate.  

Continuous venovenous hemodialysis (CVVD): This method uses diffusion via a 
transmembrane concentration gradient across the filter. The concentration gradient 
is created with a dialysate solution. The smaller the solute the faster and easier it 
will be transferred across the membrane compared to larger solutes. The larger the 
molecule is, the longer time it will take for it to be removed, a hindrance for CRRT 
is removal of large molecules due to the limitation in pore size compared to 
hemodialysis. This method is not dependent on high ultrafiltration (patient fluid 
removal) rates. This dialysis method is used more for removal of middle-sized 
solutes [33].  

Continuous venovenous hemodiafiltration (CVVHDF): Combines both 
convention and diffusion. Dialysate is used in combination with high ultrafiltration 
rates and usage of replacement solution. In this case both small and middle 
molecules are removed efficiently. In some cases, no substitute solution is used, 
e.g., when the focus is volume management, and in this case the treatment is called 
slow continuous ultrafiltration (SCUF) [34].  

Good vascular access is necessary for efficient CRRT treatment. There are different 
placements of a central dialysis catheter (CDC) and the most common and favorable 
is inserting a CDC in the right internal jugular vein due to it having a more direct 
pathway to the superior vena cava. In some cases, internal jugular vein access is not 
possible due to known underlying problems such as thrombosis. In this case the 



21 

femoral vein can be used as an alternative access site. In some cases, none of the 
previously mentioned sites can be cannulated which leaves the subclavian vein as a 
third but less preferable option due to a higher risk of stenosis of this vessel (a 
statement that is under discussion). The preferred location of the tip of the CDC 
inserted in the jugular or subclavian vein is at the junction of the superior vena cava 
and right atrium. It is important to test the flow in the CDC, since it needs to be able 
to meet minimum blood flow rates of 200-300 ml/min [33].      

Citrate works by binding free calcium, which is needed in many steps of the 
anticoagulation cascade (intrinsic and extrinsic), hence hindering the clotting 
process in the circuit. Since it binds calcium, it is important to control ionized 
calcium levels in the patient to not risk hypocalcemia, post-filter ionized calcium 
levels to control at the amount of citrate dosed is sufficient to reach adequate 
anticoagulation in the circuit but also does not risk the patient developing 
hypocalcemia. Citrate is not perfect and has side-effects, these include 
hypocalcemia, metabolic alkalosis, citrate toxicity etc. [35].   

The disturbances mentioned previously have been significantly reduced with 
meticulous monitoring of laboratory values, but also usage of structured protocols, 
such as the Flexicitrate protocol, in which one measures ionized calcium (iCa), post-
filter iCa, and systemic total calcium [36, 37]. Post-filter iCa ensures the efficiency 
of the anticoagulation of the extracorporeal circuit, i.e., that the circuit is 
anticoagulated enough and hence ensuring a longer dialysis filter life. Post-filter iCa 
together with systemic iCa ensures the safety of the patient, i.e., reducing risk of 
hypocalcemia in the patient and making sure the patients stay normocalcemic [38-
40]. A point of care blood gas analyzer (BGA) is commonly used for the 
measurement of post-filter iCa and systemic iCa, while the systemic calcium is 
measured in a clinical chemistry laboratory in or affiliated with the hospital. 
Sometimes systemic iCa can also be measured in the chemistry laboratory, but most 
often it is analyzed with BGA.   
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Table 1: The Flexicitrate protocol. PF is post-filter iCa measuremnt. Patient Ca2+ is systemic iCa. 

 High PF-Ca2+ 
>0.50 mmol/l 

Normal PF-Ca2+ 
0.25-0.50 mmol/l 

Low PF-Ca2+ 
<0.25mol/l 

Low 
patient Ca2+ 
<1.0 mmol/l 

Increase citrate 
dose by 0.5 mmol/l 
and calcium 
infusion by 5-10% 

Increase 
calcium infusion 
by 5-10% 

Decrease 
citrate dose 
by 0.5 mmol/l 

Normal 
patient Ca2+ 
1.0-1.2 mmol/l 

Increase citrate 
dose by 0.5 mmol/l 

No change Decrease 
citrate dose 
by 0.5 mmol/l 

High 
patient Ca2+ 
>1.2 mmol/l 

Decrease calcium 
infusion by 5-10% 

Decrease 
calcium infusion 
by 5-10% 

Decrease 
citrate dose 
by 0.5 mmol/l 
and calcium 
infusion by 
5-10% 

 

 

 
Figure 1: Common CRRT setup with the different fluids used during RCA CRRT and with examples of 
realistic flows. The pre-blood pump fluid (QPBP) is the citrate containing fluid [41]. 

Efforts to model the effects of CRRT have been done but is not as established as for 
hemodialysis or peritoneal dialysis.     
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Dialysis modelling  
Dialysis is a treatment used to replace the kidney function in patients with 
oftentimes end-stage renal disease (ESRD).  Peritoneal dialysis, in which one uses 
the peritoneal membrane as a physiological semipermeable membrane, presents an 
alternative form of dialysis to the extracorporeal hemodialysis techniques described 
above  [42].   

Hemodialysis modelling has been available and known for a long time compared to 
modelling of CRRT. Modelling is needed to understand the effects of 
flows/solutions on blood composition. For a long time, modelling was used to 
mainly understand how solutions and filters should be manufactured to give the 
most optimal treatment without risking the patient trough unfavorable events, such 
as removal of e.g., large molecules needed in the body or having fluid composition 
that in turn would lead to unfavorable composition in the blood. With time, the need 
for modelling for everyday use has increased both in clinical work, but also in 
research. It is difficult to, in an intuitive way, understand how changes in flows or 
changes in solutions used during dialysis will affect the patient, and this leads to 
many changes in settings according to lab data, which can be reduced by using a 
model. The number of unnecessary changes in therapy and also number of blood 
samples taken could be reduced by using a dialysis model which can predict how 
the changes would affect the patient and how one should decide which setting is 
optimal for the patient’s blood composition and treatment goal.     

For modelling, clearance of toxins is used as a measure of efficiency and in the 
dialysis; urea is seen as a good measure of treatment effectiveness. Removal of 
unfavorable substances, such as uremic toxins and inflammatory mediators, are seen 
as waste products that if removed could improve outcome. Continuous renal 
replacement therapy dose today relates to measured removal of the small sized 
solute urea [43]. Urea is a preferable measure of efficiency of dialysis treatment due 
to it having a sieving coefficient (SC) close to 1, which indicate the potential of a 
solute to be able to pass across a semipermeable membrane [44]. Compared to urea, 
myoglobin has a value of 0.58 (indicating less removal), and albumin (large sized 
molecule) has a SC of <0.01 indicating almost no removal [44, 45].   

Development of one- and two-compartment models of hemodialysis treatment 
makes it possible to have continuous information about the progress of treatment 
and predict the effect of the prescribed dialysis. The benefit of modelling is that it 
assists physicians in personalizing the dialysis therapy with greater precision to the 
patients’ needs. Dialysis kinetics and dialyzer clearance have been described for the 
first time over 70 years ago [46]. Over the last seven decades, the modelling of 
dialysis has been improved and with greater computational powers the precision has 
increased. The first time a dialysis model has been used in clinical practice was 
already in the late 1970s, but unfortunately, since then progress has been slow [47]. 
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In recent years, several clinical and theoretical articles discussing the benefit and 
risk of usage of dialysis models have been published [48-50].   

 

 
Figure 2: Dialysis toxin flow according to (A) one-compartment model vs (B) two-compartment model 
[46].          

Figure 2A shows the flows of the waste products during dialysis treatment 
according to a one-compartment model. All fluids and plasma water (i.e., the part 
of the blood that can pass through the semipermeable membrane, everything smaller 
than the pore size of the filter) are considered as one volume of distribution [47]. 
This is a simplified dialysis model, assuming that the change of volume (V) during 
HD has little influence on modeling efficiency (how accurately a model can predict 
reality), and hence was neglected (simulations and verifications have shown it has 
little effect on improving the accuracy of the modeling). Another assumption is that 
urea generation and residual urea removal by the kidneys are very low/insignificant 
compared to dialyzer clearance (Kd). The one-compartment modeling only takes 
into account the most important phenomena and assumes that other less important 
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phenomena would cancel each other out. The one-compartment dialysis model can 
easily be described in the form of a differential equation.  

 
𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  −𝐾𝐾𝑑𝑑
𝑉𝑉
𝐶𝐶𝐶𝐶                                         (1) 

 

A simplified interpretation is that the rate of toxin concentration is decreasing with 
time, and the time variable toxin concentration (Ce) is negatively proportional to 
constant dialyzer clearance (Kd), distribution/compartment volume (V), and time 
(t), see equation 1.  

 

𝐶𝐶𝐶𝐶(𝑡𝑡) = 𝐶𝐶0𝐶𝐶−𝑑𝑑𝐾𝐾𝑑𝑑/𝑉𝑉                                      (2)                                          

 

Ce described the decrease of toxin concentration during hemodialysis. C0 is the 
initial toxin concentration, see equation 2.    

To be able to decide the optimal dialysis time a formula was developed, optimizes 
use of available resources for dialysis and adapts to each patient. Dialysis time 
calculation requires for volume distribution (V) to be known. The formula can be 
used for both deciding the optimal dialysis time, but also to calculate dialyzer 
clearance (Kd).  

 

𝑇𝑇 = 𝑉𝑉
𝐾𝐾𝑑𝑑

ln 𝑑𝑑0
𝑑𝑑𝑇𝑇

                                                   (3)                    

 

T is the dialysis time, CT is the toxin concentration at the end of dialysis, and ln is 
the natural logarithm. As previously defined, C0 is the initial concentration of the 
toxin. Formula (equation 3) introduced the factor T (time), T is the time needed to 
be able to go from C0 (initial concentration of toxin) to CT (final concentration of 
toxin after time T). The above formula can be of great clinical impact if the data for 
V, Kd, and C0 is available and unaffected by significant errors, which has been 
proved by simulation and testing.  

In the two-compartment model some new assumptions are made, and new aspects 
considered - the main consideration is the shift of molecules from the extracellular 
space to the intracellular space. In the two-compartment model, the main 
assumption is that body fluids are divided into two parts: one directly accessible to 
the dialyzer and the other indirectly assessable. The blood is directly accessible due 
to the direct contact with the semipermeable membrane, hence direct removal of 
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toxins via the blood. Removal of toxin from the blood pool will result in gradual 
solute transfer from interior body water (i.e., the second and indirectly accessible 
compartment), due to both fluid and solute shift.  

 
𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  −𝐾𝐾𝐶𝐶(𝑑𝑑𝐶𝐶−𝑑𝑑𝑑𝑑)
𝑉𝑉𝑑𝑑

− 𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑
𝑉𝑉𝑑𝑑

                                                                             (4) 

𝑑𝑑𝑑𝑑𝐶𝐶
𝑑𝑑𝑑𝑑

=  −𝐾𝐾𝐶𝐶(𝑑𝑑𝑑𝑑−𝑑𝑑𝐶𝐶)
𝑉𝑉𝐶𝐶

                                                                                         (5)   

 

Ce is the toxin concentration in blood, Ci is the toxin concentration in the interior 
water, Ve extracompartment volume, Vi intracompartment volume, and Kc is the 
intercompartment mass transfer coefficient, see equations 4-5.  

As previously described in the one-compartment model, the rate of toxin removal 
from the dialyzer is a linear function of the concentration of Ce. In the one-
compartment modeling formula, Ce is the toxin concentration value in the 
bloodstream entering the dialyzer; Ci is the toxin concentration value localized at a 
non-defined location in the patient’s body (but not in the intravascular compartment) 
that cannot be measured due to its inaccessibility.  

The initial concentration of the toxin C0 can be measured in the blood of the patient 
and constitutes the initial condition. Equation 6 describes the time-dependent 
function of Ce.  

 

𝐶𝐶𝐶𝐶(𝑡𝑡) = 0.5𝐶𝐶0𝐶𝐶𝑑𝑑𝑡𝑡1[(1 + 𝑎𝑎3)𝐶𝐶−𝑑𝑑𝑡𝑡2 + (1 − 𝑎𝑎3)𝐶𝐶𝑑𝑑𝑡𝑡2]                                  (6) 

 

The dialysis clearance (Kd) is based on data from the manufacturer and is dependent 
on blood flow rate (QB) and dialysis flow rate (Qd) (set of formulas for instances of 
different conditions in regards of the relationship between QB and Qd is available). 
Kd can be simplified to rate of solute removal [46].  

Dialysis modelling in regards of post-filter iCa 
Calculation of post-dialyzer iCa requires a model simulating the interactions of 
calcium with other substances in the blood. These interactions are defined by 
chemical reactions. The outcome is determined by the local concentration of the 
reactants, chemical equilibrium constants, and the total amounts of calcium and 
other participating substances. The total of a certain substance is the sum of all its 
forms, in other words both the substance in its free form and in its bound form (often 
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bound to albumin). The local concentrations depend on the composition of the blood 
that is pumped out of the patient and the fluids that are mixed into the extracorporeal 
circuit and transported over the dialyzer membrane [51]. 

The blood-chemistry includes free and bound calcium and, in our model, for 
calculation of post-filter ionized calcium, calcium bound to citrate, albumin, 
bicarbonate, phosphate, and carbonate are considered. Magnesium, sodium, and 
hydrogen are competition to calcium in regards of binding sites. The patient’s 
systemic concentration of calcium is measured either as a total concentration or as 
ionized (free) concentration. The other modelled substances are assumed to be at a 
constant level over time, with the exception of citrate, which is modelled over 
treatment time based on the supplied citrate for anticoagulation, which imposes a 
strong effect on the balance between free and bound calcium and is therefore 
important to the model. The body always tries to keep the ionized calcium as 
constant as possible, and it should be noted that normal equilibrium of calcium 
concentration is not reached during RCA CRRT due to the constant addition of 
citrate, the removal of substances, and addition of solutions during the dialysis itself. 
Addition of citrate into the dialysis solutions causes the equilibrium between bound 
and free calcium to change. The mass flow of each substance into the mixing point 
is simulated and gives the final concentration. Calculation of post-filter calcium is 
dependent on the amount of the total calcium which is free for transport over the 
dialyzer and protein-bound calcium which cannot pass the dialyzer. A large portion 
(30-70%) of the free calcium will bind citrate and citrate-calcium complexes and 
will be lost through the dialyzer [52]. In order to be able to derive the clearance, i.e., 
how much of a solute will be removed, the flow rates and the concentrations of the 
solute at the inlets of the dialyzer must be known [53]. 

The algorithms for dialyzer transport were based on the previous work done by 
Sternby et al. presenting mathematical models of the diffusive-convective mass 
transfer rates in dialyzers for solutes present on both sides of the membrane for 
uncharged solutes. In the report, the mass transport rate is assumed to be linear in 
both inlet concentrations, since the driving forces for diffusion and convection are 
linear [51]. 

Normally the systemic citrate (Csys) in the patient is low, 0.13 mmol/l, and during 
RCA CRRT the systemic citrate will increase to between 0.3–0.6 mmol/l or even 
higher, since some of the citrate given during the treatment will not be removed 
through the dialyzer and will be returned to the patient [37, 39]. 
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Acid-base disturbance and CRRT 
It is of great importance in clinical practice to diagnose the patients with the correct 
acid-base disorders, since it is not only the key for correct treatment but also for 
monitoring the progress of the given treatment [54]. In the ICU, the correct 
diagnosis of acid-base disorders is of outmost importance, since it can be a key for 
determining the next intervention i.e., should the patient be intubated or even should 
CRRT be started, nevertheless, the investigation of acid-base disorders in the ICU 
is often intricate and time consuming.  

The human body is striving towards homeostasis and pH is tightly controlled within 
defined limits, like other physiological parameters in the body such as temperature, 
blood pressure, and osmolality [55]. In the intensive care unit, the most critically ill 
patients are taken care of. Frequently these patients have complex acid-base and 
electrolyte disorders [56]. In most cases, the acid-base disorders are mild and self-
limiting; however, rapid changes may occur resulting in extreme blood pH with 
possibly detrimental effects on the patient’s organ function and health. As 
mentioned above, in these cases the correct diagnosis is of great importance for 
adequate treatment. There has been a lot of work in evaluating acid-base balance, 
and all this work has resulted in greater understanding of the impact of e.g., fluids 
on the disturbances and also on the critically ill patients [57].   

𝑝𝑝𝑝𝑝 =  𝑝𝑝𝐾𝐾𝑡𝑡 + log10
[𝐻𝐻𝑑𝑑𝑂𝑂3−]
𝛼𝛼 𝑝𝑝𝑑𝑑𝑂𝑂2

                                                                          (7) 

𝑊𝑊ℎ𝐶𝐶𝑒𝑒𝐶𝐶 𝑝𝑝𝐾𝐾𝑡𝑡 =  − log10 𝐾𝐾𝑡𝑡 = log10
[𝑝𝑝𝐻𝐻]

[𝐻𝐻−][𝑝𝑝+] (𝑤𝑤ℎ𝐶𝐶𝑒𝑒𝐶𝐶 𝑝𝑝𝐻𝐻 ⇌ 𝐻𝐻− + 𝑝𝑝+)  

𝑎𝑎𝑎𝑎𝑎𝑎  𝑝𝑝𝐶𝐶𝑂𝑂3 = (10𝑝𝑝𝐻𝐻−𝑝𝑝𝐾𝐾𝑎𝑎) ∗ 𝛼𝛼 𝑝𝑝𝐶𝐶𝑂𝑂2                                                       (8) 

 

The Henderson-Hasselbalch equation will give the formula for pH. The formula 
consists of various factors: pKa is the dissociation constant of carbonic acid, plasma 
concentration of bicarbonate ([HCO3]), pCO2 is partial pressure of carbon dioxide, 
and α is solubility of carbon dioxide in blood at 37oC. The above equation relates 
pH with ratio of concentration of undissociated acid HA to the concentration of 
conjugate anion A- (see equations 7-8) [58].  

Buffer is a solution that resists changes in pH, i.e., counteracts acidity or alkalinity. 
There are many buffer systems in the body (such as plasma proteins, hemoglobin, 
phosphate etc.), but most often one is seen as key and that is bicarbonate (HCO3) 
when wanting to understand acid-base disturbances.  

 

𝑝𝑝+ + 𝑝𝑝𝐶𝐶𝑂𝑂3−  ⇌ 𝑝𝑝2𝐶𝐶𝑂𝑂3  ⇌ 𝑝𝑝2𝑂𝑂 + 𝐶𝐶𝑂𝑂2                                                     (9) 
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The acidity of a solution is determined by the concentration of hydrogen ions (H+). 
There are several disorders that can result in an increase of hydrogen ions, resulting 
in the body becoming more acidic, such as increase in lactate, ketones, and kidney 
failure. The bicarbonate buffer system will resist this unfavorable change in pH [59-
63]. It does so by driving the above reaction to the right (equation 9), i.e., hydrogen 
ions will react with bicarbonate (thereby being consumed) to minimize the acidity 
in the body. Since bicarbonate is “consumed”, a supply of bicarbonate is needed. 
The kidneys are vital organs when it comes to maintaining acid-base balance and 
can both generate bicarbonate and resorb filtered bicarbonate in the proximal 
tubules [61, 64].  

 

𝑝𝑝+𝑖𝑖𝑖𝑖 𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝 𝑡𝑡𝑝𝑝 𝑃𝑃𝑡𝑡𝑑𝑑𝑂𝑂2
𝐻𝐻𝑑𝑑𝑂𝑂3−

                                                                       (10) 

 

Equation 10 is a simplified version of the acid-base reaction presented equation 9, 
illustrating the relationship between the hydrogen ion concentration in the body and 
the ratio of PaCO2 to bicarbonate. Ventilation controls PaCO2 levels (increase if 
hydrogen ions stimulate the respiratory center to increase the respiratory rate and 
hence decreasing PaCO2), and the kidneys regulate the bicarbonate level. This 
relationship explains that hydrogen ions can increase under conditions, firstly, in an 
increase in PaCO2 and secondly, if bicarbonate is reduced [54].  

Acid-base disorders can broadly be divided into problems involving metabolic or 
respiratory processes, or a combination of both. Simplifications of acid base 
disorders have been sought after, and one of these simplifications is that metabolic 
disorders can be seen as process effecting the bicarbonate levels and respiratory 
disorders as changes in PaCO2. The body will try to adapt and compensate for the 
acid-base disturbance in order to reach and maintain homeostasis. If the main 
problem is metabolic, then the compensation will be respiratory; this process can 
start within minutes. When the main issue is respiratory then the compensation will 
be metabolic, this process usually takes place over several days and will result in 
increase in bicarbonate levels [65].    

Table 2: Some important definitions regarding acid-base [54]. 

Acidaemia An arterial pH below the normal range (pH<7.35). 
Alkalaemia An arterial pH above the normal range (pH>7.45). 
Acidosis A process lowering pH. This may be caused by a fall in serum 

bicarbonate and/or a rise in the partial pressure of carbon dioxide 
(PaCO2). 

Alkalosis A process raising pH. This may be caused by a rise in serum 
bicarbonate and/or a fall in PaCO2. 
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The different acid-base disorders: 

Metabolic acid-base disorders:  

o Metabolic acidosis: Arise due to increase of organic anions (e.g., lactate), 
loss of bicarbonate or gain of exogenous anions.  

o Metabolic alkalosis: Arise due to loss of strong anions or administration of 
strong cations [48]. 

Respiratory acid-base disorder: 

o Respiratory acidosis: Increase of PaCO2 (partial pressure of carbon 
dioxide).  

o Respiratory alkalosis: Decrease of PaCO2 [66]. 

 

Acid-base disorders can be occurring simultaneously, i.e., a patient can have a 
combination of more than one acid-base diagnosis, and this is why good 
understanding of the diagnosis and disturbances is important for determining the 
correct treatment.  

The different components for diagnosis of acid-base disorders such as PaCO2, 
bicarbonate, pH, and base excess (BE) are measured by a blood gas analyzer (BGA). 
It is important to know that BGA measures two substances, which are hydrogen ion 
(from which pH is calculated), and PaCO2. From these two the rest of the parts 
needed for diagnosis of acid-base disorders will be calculated [54]. BE is defined as 
the amount of strong acid [mmol/l] needed to be added to blood sample to return the 
sample to pH 7.40 after equilibration while maintaining a PaCO2 of 40 mmHg, and 
at this condition BE will be 0 mmol/l [67].   

For a long time people have been looking at new approaches for acid-base diagnosis, 
and Stewart introduced a new way to see acid-base physiology and disorders [68]. 
Stewart introduced a method combining several principles of physical chemistry 
such as electroneutrality, conservation of mass, and dissociation of electrolytes. This 
was a reaction to the bicarbonate-centered approach, which is still one of the most 
used methods, that was seen as inadequate due to simplifications, but also confusing. 
In the model developed by Stewart, three variables are important: SID (strong ion 
difference, see equation 11), PaCO2, and total weak-acid concentration. The two 
most important ions in plasma are sodium and chloride. Stewart suggested that 
bicarbonate and BE can be used for determination of how deranged an acid-base 
disorder is rather than trying to understand the mechanism behind the disorder [68-
70].   

 

𝑆𝑆𝑆𝑆𝑆𝑆 = [𝑁𝑁𝑎𝑎+] + [𝐾𝐾+] + [𝑀𝑀𝑔𝑔2+]− 𝐶𝐶𝑝𝑝— [𝑝𝑝𝑡𝑡ℎ𝐶𝐶𝑒𝑒 𝑖𝑖𝑡𝑡𝑒𝑒𝑝𝑝𝑎𝑎𝑔𝑔 𝑖𝑖𝑝𝑝𝑎𝑎𝑖𝑖]        (11) 
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The Stewart approach can be used for not only understanding the mechanism behind 
acid-base disorder, but also management strategies which also include fluid 
management [71-73].  

There are many different approaches in regards of diagnosis of acid-base disorders. 
and there are still discussions about which one is the correct one. No consensus is 
present to this day and every approach is able to showcase their clinical benefit [74].   

Buffering effect of RCA CRRT and  
effect on acid-base disturbances 
One of the most common disturbances seen in ICU patients is respiratory 
disturbances. A possible indication for CRRT is amongst other things the correction 
of acid-base disorders. Commonly, the buffering effect of dialysis due to the 
bicarbonate content of the dialysis fluids is of interest. Today most physicians will 
try to evaluate the underlying acid-base disturbance by interpreting parameters 
derived from a blood-gas analysis and subsequently prescribe a, for the patient 
suitable, CRRT treatment.  

As mentioned previously, some kind of anticoagulation is needed during dialysis 
due to the clotting process being triggered in the blood as soon as it touches foreign 
material, i.e., the tubing/filter of the dialysis circuit. The most used anticoagulation 
method is citrate. Citrate binds calcium and inhibits several steps of the coagulation 
cascade, hence resulting in hindering the clotting process and prolonging the filter 
life. The citrate-calcium complex will be mostly removed through the membrane 
filter, resulting in risk for hypocalcemia in the patient. Systemic control of systemic 
ionized calcium is vital together with post-filter iCa to make sure the patient is not 
at risk of hypocalcemia but also to make sure the filter is coagulated enough. A 
fraction of the citrate-calcium complexes will reach the patient, and constitute a 
citrate load, citrate will be metabolized to bicarbonate by the liver, kidneys, and 
skeletal muscles. One citrate molecule will yield three bicarbonate molecules when 
metabolized [75]. 

In addition to hypocalcemia, citrate toxicity is a possible detrimental side effect of 
RCA CRRT. To avoid citrate toxicity and hypocalcemia, monitoring the systemic 
total calcium and systemic ionized calcium ratio, as well as using a structured 
protocol during RCA CRRT treatment is of importance. A ratio over >2.5 is 
suggestive of citrate toxicity. Mainly, citrate toxicity occurs due to two reasons: 1. 
Excessive citrate reaches the patient and is then metabolized to bicarbonate leading 
to metabolic alkalosis, or 2. Citrate that reaches patient surpasses the metabolic 
capacity and leads to accumulation of citrate and metabolic acidosis [76]. 
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The effect of RCA CRRT on systemic acid-base balance (i.e., total buffer load) can 
be impacted by several factors such as: 1. Citrate load, 2. Citrate metabolic capacity 
of the patient, 3. Bicarbonate from CRRT fluids, 4. Buffer from other sources, and 
5. Underlying disturbances from the patient’s underlying disease.  

CRRT has bicarbonate containing solutions (in dialysate and replacement), ranging 
from 22 to 30 mmol/l depending on manufacturer. Depending on the flow rates used 
during therapy; but also depending on specific solutions used, the concentration of 
bicarbonate can differ. The variability in the solutions used but also flows will lead 
to different amounts of bicarbonate reaching and entering the blood stream, which 
needs to be accounted for when looking at the total buffer load.  

Sodium and glucose, the need for correction 
Deranged sodium levels are commonly seen- at either side of the physiological 
range (normal range is 135-145 mmol/l) and is one of the most common electrolyte 
imbalance disorders seen in healthcare [77]. Hyperglycemia is associated with 
decreased serum sodium level concentration. Water homeostasis is mediated by 
thirst, arginine vasopressin, and the kidneys [78]. Glucose creates an osmotic 
gradient that will result in movement of water from the intracellular compartment 
to the extracellular compartment, resulting in the reduction of serum sodium levels. 
This is why most hyperglycemic patients are mildly hyponatremic [79]. However, 
there are instances where patients present with normal or sometimes even elevated 
serum sodium levels due to development of osmotic diuresis without fluid 
replacement. Commonly, this is the case in the elderly population with impaired 
thirst mechanism or no access to enough fluids [80].  

Hypo- and hypernatremia have both been associated with increased mortality in 
hospitalized patients. This is why correct understanding of the potential underlying 
reasons for deranged sodium levels are of outmost importance [81, 82]. Deranged 
sodium levels are also a negative prognostic factor in e.g., patients with CKD 
(chronic kidney disease), heart failure, liver disease, and even intracerebral 
hemorrhage. Due to sodium imbalance being a negative prognosis predictor, close 
monitoring of the shifts has been strongly recommended [83-87].   

It is known that hyperglycemia can depress sodium concentration, and in some cases 
patients with hyponatremia can be overlooked during episodes of severe 
hyperglycemia. Previous research in patients with hyperglycemia has shown that 
the corrected sodium level is a better indicator of prognosis compared to measured 
sodium, hence a correction formula should be used when treating these patients [88].  

The correction formula has been available for a long time and the usage of the 
formula clinically has varied. A study by Chuang et al. showed that if one only uses 
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measured sodium levels to predict clinical outcomes one may overlook the clinical 
impact of true hypernatremia (i.e., not having correct sodium levels due to not using 
correction formulas). In this study, they showed a higher risk of 90-day mortality 
irrespective of underlying disease when taking the true sodium levels in extremely 
hyperglycemic patients into account [88]. A further study by Anthanont et al., 
showed that hypernatremia on admission is as a strong predictor for mortality in 
patients with hyperglycemic crisis [89]. A reason for hypernatremia is lack of ability 
to compensate for osmolality and severe dehydration, especially in patients with 
osmotic diuresis and in combination with inadequate fluid replacement [90]. It is 
also important to note that dehydration by itself is a prognostic factor in mortality 
[89, 91].       

 

𝐶𝐶𝑝𝑝𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝑎𝑎 𝑆𝑆𝑝𝑝𝑎𝑎𝑖𝑖𝑆𝑆𝑆𝑆 = 𝑀𝑀𝐶𝐶𝑎𝑎𝑖𝑖𝑆𝑆𝑒𝑒𝐶𝐶𝑎𝑎 𝑁𝑁𝑎𝑎 + 1.6 𝑥𝑥 (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑−5.6)
5.6

                    (12) 

 

Katz’ formula considers only the increase in extra-cellular glucose and dismisses 
changes in body water and other monovalent ions, i.e., it characterizes only a closed 
system [92]. Patients with normal renal function and with free water intake governed 
by thirst represent an “open system”, where additional parameters such as osmotic 
diuresis and dilution will count.  

The measured, actual sodium level will be falsely low in hyperglycemia, and the 
true corrected, calculated sodium level is always higher (see equation 12). The 
greatest impact is seen in patients with hyperglycemic crises. However, in critically 
ill patients, blood glucose levels can also be elevated due to other circumstances. In 
addition, many critically ill patients have other sodium disturbances, as well as 
potassium imbalances, which are two of the most common electrolyte disturbances 
seen in the ICU. The measured, actual sodium level might be outside the normal 
range, making the correction calculation even more important [93-95].  
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Method 

The main program used for development of algorithms, drawing figures, analysis of 
data, and most other aspects of the PhD project was done in MATLAB 
2019b/2022b. Updates were continuously performed as soon as a new version was 
available, and different available packages in MATLAB were used that fitted the 
specific projects. Some pictures were developed in collaboration with experts in the 
area and Baxter employees, i.e., some pictures in the nNBL (normalized net buffer 
load) project were done in Minitab.  

Baxter international provided the main versions of some of the algorithms that were 
used and that were significantly developed during the course of this PhD project.  
For nNBL, no major changes were done to the actual original code since the purpose 
was more testing of the accuracy of the code on actual patient data.  

Patient data was extracted from the electronic medical records (EMR) in two parts, 
one used for the acid-base and sodium/glucose project, and the other part contained 
dialysis data and was used for development of post-filter iCa algorithm and nNBL. 
The data was analyzed to find outliers and out-range-data, but also to get a better 
understanding of the collected data and patient clientele in the ICU in Lund. Data 
of 120 patients treated in the ICU at Skåne University Hospital in Lund during 2010-
2017 was extracted from the EMR (Philips ICCA system), this data was used for 
the post-filter iCa and nNBL projects.  

Ethical approval was received from the Regional Ethics Board of southern Sweden 
(Dnr 2017/618), used for post-filter iCa and nNBL. Another ethical application was 
sent for acid-base diagnosis and sodium/glucose projects, in which data was 
extracted for patients being admitted to the ICU at Skåne University Hospital in 
Lund during 2011-2021 for a large number of data (>300k unique data points). The 
second ethical permission was accepted by the Swedish Ethical Review Authority 
(Dnr 2020-04642).  
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Post-filter ionized calcium 
Two algorithms were developed in MATLAB to calculate post-filter iCa and were 
compared to real blood gas analysis from patients. 57 patients were finally included 
after exclusion of patients due to, e.g., missing data or being part of another study. 
The total number of measurements compared was 1,034.  

The difference between the two algorithms is that in one systemic calcium used as 
an input comes directly from a measurement made in a chemistry laboratory, while 
in the second algorithm it is converted from a formula from measured systemic iCa 
from a point-of-care blood gas analyzer. The reason for having two formulas is due 
to systemic calcium analyzed by a chemistry laboratory can be measured from once 
every 24 hours to every 72 hours, while systemic iCa needs to be measured much 
more often.  
 

𝑃𝑃𝑝𝑝𝑖𝑖𝑡𝑡 − 𝑓𝑓𝑖𝑖𝑝𝑝𝑡𝑡𝐶𝐶𝑒𝑒 𝑖𝑖𝐶𝐶𝑎𝑎 = 𝛽𝛽0 + 𝛽𝛽1 ∗ �𝐶𝐶𝑎𝑎𝑃𝑃𝑃𝑃 − 𝐶𝐶𝑎𝑎𝑟𝑟𝑑𝑑𝑟𝑟� + 𝛽𝛽2 ∗ (𝐶𝐶𝑖𝑖𝑡𝑡𝑃𝑃𝑃𝑃 − 𝑖𝑖𝐶𝐶𝑖𝑖𝑡𝑡)          (13) 

 

The linearized formula for post-filter iCa calculation (see equation 13), where β0 
and β1 and β2 are constants given by the linearization of the full model. 

Table 3: Algorithm 1 used systemic total calcium and Algorithm 2 used an initial blood gas as input.  

 Algorithm 1 Algorithm 2 

Patient parameter 
inputs 

The most recent measured 
systemic total calcium value from 
hospital laboratory 

Systemic iCa from BGA 
pH from BGA 
Bicarbonate from BGA 
Albumin (fixed or from laboratory) 

Machine parameter 
inputs 

Blood flow,  
Dialysis fluid flow 
Post-filter replacement fluid flow 
Calcium replacement flow 
Patient fluid removal rate 
Pre-filter replacement fluid flow 
Citrate dose 
Composition of solutions used (i.e. concentration of calcium, 
bicarbonate, citrate, hydrogen phosphate, sodium, magnesium, 
potassium) 
Filter Elapsed treatment duration (blood pump running time) 
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Acid-base diagnosis 
A tool to diagnose acid-base disturbances was developed in MATLAB in 2020. The 
theories applied were the Boston and Copenhagen approach, while the Stewart 
approach was in this version disregarded. The analysis was done on 8,875 initial 
blood gases of patients admitted in the ICU.  

The model can be divided into four parts: 

1. Initial input variables are pCO2 and pH. Based on those two variables a primary 
disturbance will be determined.  

Table 4: Flow sheet for determination of the most likely primary disturbance in the first evaluation level.  

 

2. Compensation will be determined based on the primary diagnosis. 
Compensation variables: pCO2 for metabolic and HCO3 for respiratory 
disorders are determined. Compensation is defined according to the Boston 
formulas. If compensation is partial, then a secondary disturbance is present.   

3. If the diagnosis is metabolic acidosis than the script will calculate the anion 
gap (AG) and delta ratio (DR) (equations 14-15) to determine the presence of 
a tertiary disturbance.  For instances in which AG > 16, then a Delta ratio was 
calculated to determine potential tertiary disturbance present. Normal AG was 
defined as 12 and normal bicarbonate as 24 mmol/l.  

 

𝐻𝐻𝑎𝑎𝑖𝑖𝑝𝑝𝑎𝑎 𝑔𝑔𝑎𝑎𝑝𝑝 (𝐻𝐻𝐴𝐴) = [𝑁𝑁𝑎𝑎+]− [𝐶𝐶𝑝𝑝− +𝑝𝑝𝐶𝐶𝑂𝑂3−]                                      (14) 

 

𝑆𝑆𝐶𝐶𝑝𝑝𝑡𝑡𝑎𝑎 𝑒𝑒𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝 = ∆𝐴𝐴𝐴𝐴
∆𝐻𝐻𝑑𝑑𝑂𝑂3−

                                                                       (15)  

Where  ∆𝐻𝐻𝐴𝐴 = 𝑀𝑀𝐶𝐶𝑎𝑎𝑖𝑖𝑆𝑆𝑒𝑒𝐶𝐶𝑎𝑎 𝐻𝐻𝐴𝐴 − 𝑁𝑁𝑝𝑝𝑒𝑒𝑆𝑆𝑎𝑎𝑝𝑝 𝐻𝐻𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 

∆𝑝𝑝𝐶𝐶𝑂𝑂3− = 𝑁𝑁𝑝𝑝𝑒𝑒𝑆𝑆𝑎𝑎𝑝𝑝 𝑝𝑝𝐶𝐶𝑂𝑂3—𝑀𝑀𝐶𝐶𝑎𝑎𝑖𝑖𝑆𝑆𝑒𝑒𝐶𝐶𝑎𝑎 𝑝𝑝𝑂𝑂𝐶𝐶3− 

 

4. The fourth and final level is an evaluation filter that will present the final results 
in written graphical form. It will combine the results from all the previously 
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mentioned layers and provide a final output. The final level is not fully 
developed, and many features are in need of improvement. A graph will be 
drawn, where pH is placed on the X-axis, bicarbonate in the Y-axis. The graph 
has a superficial layer consisting of pCO2 isopleths, created using Henderson-
Hasselbach equation solved for bicarbonate. The isopleths will be drawn by 
having the Henderson-Hasselbach formula have pCO2 as a constant input (e.g., 
20, 40, 60, and 80) and solving it for bicarbonate instead of pH, see formula 8.   

Net buffer load 
60 patients were left after application of inclusion and exclusion criteria from the 
120 patients extracted. The algorithm for net buffer load was developed in 
MATLAB 2022b. Prismaflex dialysis machines equipped with ST-150 filters were 
used for all patients with the modality of CVVHDF. The Flexicitrate protocol was 
used for all patients. 

Some definitions are introduced in the development of the algorithm for nNBL, such 
as steady state which is assumed to be reached after 48 hours. Steady state needs a 
time period to reach equilibrium, i.e., effect of bicarbonate to alter the metabolic 
component of an acid-base disturbance needs time, the body needs time for 
compensation. Time is also needed due to the low intensity of CRRT therapy 
compared to, e.g., hemodialysis.   

Net buffer load (NBL25) was determined as a function dependent on concentration 
of bicarbonate and/or bicarbonate precursors generated from the citrate metabolism 
(Jmetcit), bicarbonate infused from CRRT solutions during therapy (JHCO3bal) 
according to equation 16, but also CRRT treatment settings. The citrate load is 
multiplied by three since citrate will be metabolized to three bicarbonate and this 
will provide the value for Jmetcit.  

 
𝑁𝑁𝑁𝑁𝐿𝐿25 = 𝐽𝐽𝑚𝑚𝑑𝑑𝑑𝑑𝑔𝑔𝐶𝐶𝑑𝑑 + 𝐽𝐽𝐻𝐻𝑑𝑑𝑂𝑂3𝑏𝑏𝑡𝑡𝑔𝑔 = 3 𝑥𝑥 𝐽𝐽𝑔𝑔𝐶𝐶𝑑𝑑𝑟𝑟𝑡𝑡𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔𝑡𝑡𝑑𝑑 + (𝐽𝐽𝐻𝐻𝑑𝑑𝑂𝑂3𝐶𝐶𝑖𝑖𝑟𝑟 − 𝐽𝐽𝐻𝐻𝑑𝑑𝑂𝑂3𝑑𝑑𝑟𝑟𝑟𝑟)          (16) 

 
The bicarbonate concentration at the filter inlet is a result of patient HCO3

- (assumed 
venous blood values of 25 mmol/l in the model, hence NBL25), and the predilution 
from the prefilter replacement solution. The citrate concentration of the prefilter 
replacement solution is dependent on the prefilter replacement solution dilution. 

Citrate load is defined as infusion rate of citrate to the patient, this is calculated by 
the difference between citrate infusion rate from citrate containing fluid in the 
prefilter replacement solution (JcitPBP) and the removal rate to the effluent (Jciteff), see 
equation 17. 
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𝐽𝐽𝑔𝑔𝐶𝐶𝑑𝑑𝑟𝑟𝑡𝑡𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔𝑡𝑡𝑑𝑑 = 𝐽𝐽𝑔𝑔𝐶𝐶𝑑𝑑𝑃𝑃𝑐𝑐𝑃𝑃 − 𝐽𝐽𝑔𝑔𝐶𝐶𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟                                                                  (17) 

 
Bicarbonate balance (JHCO3bal) is dependent on the net infusion/loss of bicarbonate 
in the extracorporeal circuit, a product of infusion of bicarbonate (dialysate and/or 
replacement fluids, i.e. JHCO3inf) containing solution and bicarbonate removal rate 
through effluent (JHCO3eff), according to equation 18.  

 
𝐽𝐽𝐻𝐻𝑑𝑑𝑂𝑂3𝑏𝑏𝑡𝑡𝑔𝑔 = 𝐽𝐽𝐻𝐻𝑑𝑑𝑂𝑂3𝐶𝐶𝑖𝑖𝑟𝑟 − 𝐽𝐽𝐻𝐻𝑑𝑑𝑂𝑂3𝑑𝑑𝑟𝑟𝑟𝑟                                                                  (18)                                                    

 
The following important assumptions were made: 1. Citrate metabolism is 
proportional to the body weight, and patient citrate concentration is computed at 
steady state, with a typical metabolic clearance of 700 ml/min; 2. A constant 
bicarbonate concentration of 25 mmol/l was assumed to be present in the patient 
when steady state was reached; and 3. Lactate was ignored. 

The computed NBL25 does not match to the actual balance of running therapy, but 
instead to steady state, when patient venous bicarbonate is assumed to stabilize at 
25 mmol/l, which is seen after 48 hours of uninterrupted therapy. These 48 hours 
were not only needed for compensation of the acid-base disorder, but also the high 
distribution volume of bicarbonate and the low intensity of the CRRT therapy. 

Sodium/glucose correction 
297,714 simultaneous sodium and glucose measurements were obtained from 9,863 
ICU patients measured from a blood gas analyzer. A script was developed in 
MATLAB 2022a for correction of sodium based on most recent glucose levels.  

Our cohort consists only of critical care patients with no free oral intake and tightly 
controlled fluid balance, and thus represent a “closed system”. Subsequent 
mathematical models in outpatients have confirmed that Katz’ formula is very exact 
[96, 97]. 

Data was sorted to form simultaneous sodium-glucose pairs according to the 
timestamp from when the analysis was done. A maximum of 2 minutes time 
difference between sodium and glucose measurement was allowed (although in 
most of the instances the measurements were performed simultaneously).  

The correction formula used is: 

 

𝐶𝐶𝑝𝑝𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝑎𝑎 𝑆𝑆𝑝𝑝𝑎𝑎𝑖𝑖𝑆𝑆𝑆𝑆 = 𝑀𝑀𝐶𝐶𝑎𝑎𝑖𝑖𝑆𝑆𝑒𝑒𝐶𝐶𝑎𝑎 𝑁𝑁𝑎𝑎 +
1.6 𝑥𝑥 (𝑔𝑔𝑝𝑝𝑆𝑆𝐶𝐶𝑝𝑝𝑖𝑖𝐶𝐶 − 5.6)

5.6
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Results 

The general result is that a lot more can be done in the area of algorithm 
development in the ICU. Promising results were seen from each project, and as most 
times some more work is needed but the work has shown potential in improving 
healthcare. My PhD work can be just a beginning in the development of tools to 
improve and simplify everyday life for physicians/healthcare personnel. 

Post-filter ionized calcium 
The algorithms were able to estimate in range postfilter iCa values with great 
trueness and precision. However, there were difficulties to estimate out-of-range 
postfilter iCa values. More work is needed to improve the algorithms especially in 
citrate-modelling. 

Algorithm 1’s deviation from the BGA was 0.0079 ± 0.0709 mmol/l and for 
Algorithm 2’s deviation was -0,0351 ± 0.0727 mmol/l. Algorithm 1 had better 
trueness (lower mean value) and better precision (lower standard deviation). 
Algorithm 2 had a tendency to underestimate post-filter iCa compared to Algorithm 
1.  

Both algorithms had issues detecting the 5 instances of too high post-filter iCa 
values (i.e., >0.5 mmol/l) and missed the intervention that should have followed. 
All the 3 instances of low post-filter iCa (< 0.25 mmol/l) were correctly detected.  

Acid-base disorder diagnosis 
Theories are developed on ideal models and are always approximations. Critically 
ill patients experience significant disturbances in the blood homeostasis and are thus 
far from an ideal situation with many unfavorable changes occurring in the body 
having negative effects on the patient. All exact inputs for the models are not 
available in real life.  

On our cohort it is difficult to develop a working script based on Stewart (SID 
method), whereas Boston (bicarbonate method) and Copenhagen (base excess 
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method) work better. Some scenarios are impossible to describe using only one 
theory, due to the complexity in the patients, but also since not all underlying 
diseases effect on acid-base disorders can be taken into account. Blood in normal 
state is already alkalotic and there is more room for acidosis to deviate compared to 
alkalosis. The first version of the script worked well, gave reasonable output and 
also understandable output for all blood gases calculated. 

The script calculated a single blood gas instantly, compared to manual calculating 
which required 1–10 min for a simple and a complicated disturbance, respectively. 
The time frame for the script to calculate all 8,875 blood gases in the cohort was 
30.3 s. The script contains ~500 rows, there is 1 calculation per row, giving 8,875 × 
500 = 4,437,500 calculations for the complete cohort. To do the same calculation 
maneuver manually is almost impossible. 

Of the 8,875 blood gases analyzed 4,111 (46.3%) were considered normal. 
Respiratory acidosis was the primary disturbance in 2,753 (31.0%) patients and 
metabolic acidosis in 464 (5.2%) patients. Respiratory alkalosis was the primary 
disturbance in 1,501 (17.0%) patients and metabolic alkalosis in 46 (0.5%) patients. 

4,764 (53.7%) blood gases showed an acid–base disturbance. Of these a majority 
presented a mixed disturbance; 3,558/4,764 (74.7%) patients had a primary + 
secondary disturbance and 100/4,764 (2.1%) patients had a mixed situation with a 
primary + secondary + tertiary disturbance. 

The result of all the calculations resulted in graphical representation of the acid-base 
disorder, see figure 3. 

 
Figure 3: The graphical illustration of the results with a text part placed in a box at the left corner.  
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Net Buffer Load 
The nNBL25 is a useful static safety parameter which can alert the operator about 
the impact of the CRRT circuit on the patient’s acid base status. During the period 
of the first 72 hours of CRRT treatment the mean of all nNBL25 values was 0.09 ± 
0.04 mmol/h/kg (comparable with previously studies) [75, 98, 99].  

In the present study we could not show correlation between nNBL25 and steady state 
bicarbonate. The element with highest impact on nNBL25 is citrate containing pre-
blood pump (PBP) replacement fluid infusion rate (QPBP). No citrate toxicity was 
seen amongst the 60 included patients, the total calcium/ionized calcium ratios were 
kept within the normal range (< 2.5). No severe instances of metabolic alkalosis (pH 
> 7.6) were seen amongst the study population.   

 

 

Table 4. Suggested normal range for nNBL25 and high/low deviations including suggestions how to 
manage a nNBL25 deviation. 

Normalized net buffer load 
(nNBL25)  [mmol/h/kg] 

Status of patient and CRRT Suggested action 

< 0 mmol/h/kg Predicted net removal of HCO3 
of the CRRT therapy. Patient’s 
HCO3 state is expected to be 
less than 25 mmol/l. Moving 
towards acidosis. 

Revise the prescription: 
increase QB or Dcit, decrease 
CRRT dose. 

0.1-0.2 mmol/h/kg Predicted net infusion of HCO3 
of the CRRT treatment. A 
positive net infusion (when 
patient is at 25 mmol/l) exists, 
which balances proton 
generation rate from patient’s 
metabolism. 

No changes needed. 

> 0.3 mmol/h/kg Predicted positive net HCO3 
infusion surpassing the proton 
generation of the CRRT 
treatment. Patient’s HCO3 is 
expected to be greater than 25 
mmol/l. Moving towards 
alkalosis. 

Revise the prescription: 
decrease QB or Dcit, increase 
CRRT dose. 
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Sodium/glucose correction 
Correction should be mandatory for higher glucose values (>10 mmol/l) in order to 
make decisions on true sodium levels. A significant number of Na+ measurements 
in a large ICU cohort from the ICU in Skåne University hospital at Lund required 
correction. 

We wanted to use the computational capacities of MATLAB to better understand 
the effect of glucose on sodium levels in a systemic way but also for the first time 
ever to evaluate the correction formula for such a large cohort. Patients with 
deranged glucose levels are commonly seen in the ICU and often sodium is 
evaluated by looking at the measured value.  

Correction formulas taking deranged glucose into account when evaluating sodium 
is not often done, resulting in physicians only looking at measured values of sodium 
which would give a wrong picture of the patient’s state. The goal of the study is to 
understand the effect of using a correction formula for sodium for ICU patients, 
something that has not been used in the ICU, or as systemically before.  

In our study, we found that 33 patients were wrongly treated due to them having 
deranged glucose levels and the treating physician only looking at the measured 
sodium level from the blood-gas analyzer, showcasing that mistreated occurred 
when not using correction formula for sodium. 

Correction of sodium is evaluated during 24 hours and is defined as 
increase/decrease of sodium no more than 8 mmol/l during that time period. ΔNa+ 

is Corrected Na – Measured Na.   ΔNa+ > 8 mmol/l for 24 hours is seen as 
unfavorable. We identified 602 patients that showed a ΔNa > 8 mmol/l over 24 h 
when looking at actual measured Na and 635 instances when using the correction 
formula for sodium. This means that 33 patients were missed and overcorrected 
when only looking at measured sodium and not using the correction formula for 
sodium.  
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Figure 4: The red linear graph shows the difference [corrected Na] – [measured Na] with increasing 
glucose level. A histogram of all the 297,714 glucose values is inserted in a graph. For a majority 
(95.3%) of the glucose values (hyperglycemia > 5.6 mmol/l) need a correction.  



44 

Discussion 

Post-filter ionized calcium 
Both algorithms could predict a single unique value well with high trueness (mean 
difference) and precision (standard deviation) compared to a measured blood gas 
analysis as a reference.  

Algorithm 1 showed better trueness and precision compared to Algorithm 2. 
Algorithm 1 did a better overall estimation compared to Algorithm 2. Most likely a 
systemic confounding factor in the mathematics, predicting the citrate concentration 
in the patient could explain our systematic difference to the measured post-filter iCa 
values. The citrate model was modeled after previous work done [38, 39] and the 
trueness of that model can be discussed especially since the model is based on 
healthy individuals and not ICU patients that may experience deranged 
physiological processes. Testing of the citrate model would be preferable and 
possibilities of eventually measuring citrate concentration in the patient to be able 
to have better understanding.  

Correct conclusions are also limited due to the lack of many instances of out-of-
range post-filter iCa values. In this study, there were only five instances of high 
post-filter iCa and only three instances of low post-filter iCa values measured. More 
out-of-range data would be preferable, at least 10 of each when doing power 
calculations. It is also important to note that the high instances of post-filter iCa 
were all seen at the start of dialysis/soon after start of dialysis and none were seen 
in, e.g., the middle of CRRT treatment.  

It is also important to note that comparison is made to a blood gas analyzer which 
is unsuitable to measure very low calcium levels or analysis of samples with very 
high citrate levels. BGAs are not approved for ionized calcium levels 0.2-0.5 
mmol/l. BGAs have a typical deviation range of ± 7.5%, however, the deviation can 
be larger in certain models [39, 40, 100].  Studies have showed that BGAs have a 
great distribution range, reflecting in uncertainty in BGA measurements [100]. The 
outliers seen could be a result of the sample being outside the approved range, or 
sampling error. A study by Schwarzer et. al. indicated that as many as 70% of the 
post-filter samples could lead to incorrect therapy interventions due to measurement 
errors caused by the BGA [40].  
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Improvements to the script could be better if increases in the resolution of the data 
was done, since our extracted data had a resolution of updates once every hour, and 
a lot of information about interruptions in the CRRT treatment were lacking. It is 
known that interruptions in CRRT for as long as 18 min would lead to 50% drop of 
citrate concentration in the patient due to the high metabolization rate [53].  

Acid-base disorder diagnosis 
We created a mathematical script that can interpret blood gas results on an 
individual as well as on a cohort level, using all the available theory, and delivered 
a clinically meaningful result.We argue that a physician in a clinical situation does 
rarely have the time to manually calculate complex acid–base disturbances, and the 
risk that the result is not correct is considerable. 

A total of 8,875 blood gases were included. The script was evaluated by comparing 
100 randomly chosen blood gases calculated and determined by two experienced 
intensivists, to the output of the script, and the diagnoses were the same in all 
instances. The script was stable and could easily calculate 8,875 blood gases. In fact, 
it was tested successfully on 300k blood gases. 

Net Buffer Load 
In this study we introduced the parameter normalized net buffer load (nNBL25) and 
computed it during 60 CRRT treatments for the first time. The nNBL25 will also be 
included in PrisMax V3 (software version 3, Baxter, Deerfield, USA). 

Review of published data revealed that the most optimal (normal) range is 0.1-0.2 
mmol/h/kg, i.e., a slight positive net bicarbonate balance opposing the metabolic 
acidosis originating from the acute kidney injury state. nNBL25 values >0.3 
mmol/h/kg imply a risk of developing metabolic alkalosis, whereas negative values 
imply a risk of developing metabolic acidosis [75, 98, 99].  

The top underlying problems affecting the nNBL25 to steady state acid-base balance 
correlation in the present cohort were sepsis, cardiac arrest, ARDS (Acute 
respiratory distress syndome), and high ketones and/or lactate. In a critically ill 
patient, the acid-base status is complex and multifactorial, and the impact of the 
CRRT circuit comes on top of existing disturbances, a phenomenon also described 
by Lee et al. [101]. The outliers were often seen in non-surviving patients, where 
CRRT could not correct the acid-base disturbances, and these patients showed 
deranged underlying acid-base statuses. 
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The net infusion of buffer is expected to neutralize the proton (H+) generation rate 
GH+ from the metabolism. According to literature, GH+ is 0.04 mmol/h/kg for an 
average human. The production of protons from the metabolism is strongly 
dependent on the patient´s protein catabolism, and it is 2-3 times less than the 
optimal nNBL25 steady state of 0.1-0.2 mmol/h/kg. Critically ill patients most 
probably will have a higher proton generation rate, and a greater variability [55, 
102]. 

Arterial blood samples are used in this study, while the net buffer load equations are 
based on venous samples. There might be a slight difference of 1 mmol/l in 
bicarbonate level between arterial (lower) and venous blood [103].  

If nNBL25 surpasses the proton generation rate (nNBL25> GH+), steady state 
equilibrium above venous HCO3

- 25 mmol/l will occur and thus result in alkalosis. 
If nNBL25 < GH+ the patient will become acidotic since the buffer infusion cannot 
compensate for the GH+ at steady state [104].  

The range of nNBL25 was relatively narrow in the cohort, due to the strict 
prescription protocol in use, compared with nNBL25 values calculated in the historic 
cohorts. 

Sodium/glucose correction  
In our analysis we show that the error in the measured sodium value can lead to 
potential iatrogenic and even dangerous over-substitution of sodium. If no 
correction calculation is carried out, several erroneous sodium values on a time scale 
will be decided on for the same patient. Even if the correction factor is small, 
repeated errors on a timescale can accumulate. Normally a safety level for sodium 
concentration normalization in a patient is maximum 0,5 mmol/L per hour or 
maximum 8 mmol/L per 24 hours [105-107]. 

Hyperglycemia itself will also be corrected during the treatment and the requirement 
of a correction factor of the sodium level will change. In our cohort we could show 
that 5.0 % (p=0.02) of the patients had too fast sodium corrections per 24 hours (the 
normal change is set to increase/decrease no more than 8 mmol/L in sodium). In 
these 5% the correct intervention will be missed due to the lack of usage of 
correction formula for sodium during the evaluation time. 

Limitations of this study were possibly inaccurate measurements of the blood gas 
analyzer; however, the device is accredited for clinical use in Sweden. Also, the 
analysis of the enormous data amount could include erroneous values. Finally, the 
Katz' formula itself is an approximation [92]. 



47 

Conclusion and future  

With the increased burden on healthcare and on healthcare staff, the need for 
simplification/reduction of workload will be needed.  

My PhD work is focused on developing a software that will help with analysis of 
all the patient data for admitted patients and with the aim to reduced workload and 
have more time for physicians to take care of the patients. The need for a tool that 
can reduce the workload has been confirmed repeatedly.  Especially, during the 
Covid-19 pandemic, physicians did not have time to look at all the massive patient 
data due to large numbers of patients and the high complexity of disorders the 
patients presented with. The lack of time to consider all the available data and 
possibly also exhaustion may have led to avoidable mistakes. There is a need to 
make healthcare more effective but also reduce the workload to prevent burnout. 
The societal impact may be significant, since it will result in increased patient safety, 
but also improvement of the period of stay for the patient. Patients could benefit 
from having more time to connect with the treating doctor, instead of the physician 
only being focused on the patient data. The goal is to create a software that accesses 
all the data and analyzes it and prioritizes it. The benefit would be increased 
effectivity but also safety. The further benefit might also result in healthcare 
personnel that will feel more fulfilled in their ability to do their work without 
unnecessary stress and reduce risk for burnout. The competition is quite large due 
to many companies/researchers aiming at developing tools to automate work in 
medicine and increase efficiency. Machine learning/artificial intelligence is a 
growing field with a lot of possibilities. The issue today that limits the possibilities 
to reach further in the development of such tools is the acceptance amongst 
healthcare personnel, but also the laws that have yet to be adapted to the fast 
development of these tools.  

The sustainable development goals of relevance for my PhD are good health and 
wellbeing, quality education, gender equality, decent work, economic growth, and 
reduced inequalities. A software will be able to reduce the inequality on several 
aspects since a software should not have any kind of biases in regards of gender, 
religion etc. A tool can improve the education and giving physicians time to learn 
and develop their skills. Workload will be reduced, and economic growth can be 
achieved since efficiency can be increased, reduced risk for mistakes, and achieving 
better care. Reducing the workload may also result in reduction of long-term sick 
leave.  
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There are many possibilities for collaboration with both hospitals, other researchers, 
and also companies. The limitations of developing a product in the hospital is the 
need for funding, but also having means to further develop the product. The benefits 
of developing a tool in the hospital/with other researchers is that one will be close 
to the end user, and also closer to those benefiting from the products. Collaboration 
with a company will lead to a greater reach for the tool but the limitation is of course 
that a company will have the commercial benefit in mind and might put pressure on 
protecting IP.   
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