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Populärvetenskaplig sammanfattning på svenska

Denna uppsats sammanställer sex forskningsstudier som undersöker teorin för återkoppling
och termodynamik i små system. Den mest centrala studien resulterade i en ekvation som
kan beskriva återkoppling i kvantmekaniska system. Många av de övriga studierna utgår
från den här ekvationen. Exempelvis studerades en implementation av Maxwells demon i
en dubbelkvantprick. Dessutom studerades hur återkoppling kan användas för att stärka
sammanflätningen i en mikroskopisk värmemaskin.

Orden ‘små system’ syftar på strukturer med storlekar i intervallet 1-100 nanometer. Sådana
system kan tillverkas på olika sätt. Ett sätt är att begränsa rörelsen hos elektroner i halvle-
darmaterial till mycket små områden. Sådana områden kallas kvantprickar. Ofta beskrivs
de som artificiella atomer eftersom de delar många egenskaper med vanliga atomer. Genom
att koppla två närliggande kvantprickar bildas en dubbelkvantprick – en artificiell molekyl.
Detta system spelar en stor roll i uppsatsen, eftersom kvantprickar kan kontrolleras och
mätas med hög noggrannhet. De är också tillräckligt små för att urskilja kvantmekaniska
effekter. Dubbelkvantprickar är därför utmärkta för att studera kvantfysik.

Kvantmekaniska effekter är beteenden som är unika för kvantfysiken och kan inte beskrivas
av den klassiska fysiken. En stor skillnad mellan kvantfysik och klassisk fysik är hur partiklar,
så som elektroner, atomer eller molekyler, antas bete sig. I den klassika fysiken ses partiklar
som små, solida sfärer eller sammansättningar därav. I kvantfysiken kan partiklar även ha
vågegenskaper, och det är dessa som ger upphov till kvanteffekter. Vanligtvis upplever vi
att kvanteffekter strider mot hur vi uppfattar världen omkring oss. Ett exempel på detta är
en elektron som i en dubbelkvantprick kan befinna sig i båda prickarna samtidigt. I den
verklighet som vi upplever har objekt alltid har en välbestämd plats – de existerar aldrig på
två platser samtidigt. Man kan undra varför vi inte observerar vågegenskaper i vår vardag.
Anledningen kallas dekoherens – en process där vågegenskaper störs ut. När en partikel
interagerar med sin omgivning (andra partiklar) förloras dess vågegenskaper. Ju större ett
objekt är, desto snabbare förloras de. Därför är det enklast att observera kvanteffekter i små
system som är välisolerade från sin omgivning.

Ett typexempel på en kvanteffekt är sammanflätning (entanglement på engelska). Det finns
både fundamentala och praktiska anledningar för att intressera sig för sammanflätning. Från
ett fundamentalt perspektiv är sammanflätning en speciell typ av korrelation som är unik
för kvantfysiken. Om vi har två sammanflätade partiklar, och mäter på den ena, kommer en
liknande mätning på den andra ge ett utfall som är perfekt korrelerat med utfallet från den
första mätningen. Sådana korrelationer kan även existera mellan sammanflätade partiklar
som har separerats långt från varandra. Det finns ingen motsvarande korrelation inom den
klassiska fysiken. Från ett praktiskt perspektiv är sammanflätning intressant eftersom det
kan utnyttjas i olika sammanhang. Detta är den grundläggande idén inom kvantteknologin,
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Figur 1: Illustration av termodynamikens andra lag och Maxwells demon.

där sammanflätning används för att utveckla teknologier som kan utföra vissa uppgifter mer
effektivt än vad dagens teknologi klarar av. Ett bra exempel är kvantdatorn. För att sådana
teknologier ska bli verklighet måste vi förstå hur sammanflätning kan skapas, kontrolleras
och stabiliseras.

Just kontroll och stabilisering är centrala koncept för återkopplade reglersystem. Idén med
återkoppling är att mäta ett system för att sedan använda den erhållna informationen i syf-
te att styra systemet. Denna kontrollstrategi har spelat en stor roll för utvecklingen av vårt
samhälle, både inom medicin och teknologi. Ett bra exempel är pacemakern, som hjälper
hjärtat att slå om det avviker från dess normala rytm. Eftersom små system, t. ex. kvantpric-
kar, kan mätas och kontrolleras med hög noggrannhet förväntas återkoppling spela en stor
roll för utvecklingen av kvantteknologier. Det finns dock en rad utmaningar innan sådana
teknologier kan bli en kommersiell verklighet. Till exempel, när ett kvantsystem mäts störs
dess vågegenskaper. För att bevara vågegenskaperna måste man interagera svagt med syste-
met. Under de senaste 30–40 åren har metoder för att göra sådana mätningar utvecklats.
Flera experiment har demonstrerat hur återkoppling kan användas för att manipulera och
stabilisera kvanteffekter. Detta är viktiga steg för utvecklingen av kvantteknologier.

Återkoppling kan också vara intressant i andra sammanhang. Ett bra exempel är Maxwells
demon – ett tanke-experiment formulerat av James Clerk Maxwell. Till en början var Max-
wells idé att utforska giltigheten hos termodynamikens andra lag. Den andra lagen säger att
entropin (oordningen) hos ett system antingen ökar eller är oförändrad. Den övre delen av
figur 1 illustrerar den andra lagen. Tänk dig en låda med två gaser, en varm och en kall, som
är separerade av en vägg. Om en dörr i väggen öppnas flödar värme från varmt till kallt tills
gaserna är blandade och nått en mellanliggande temperatur. Entropin, eller oordningen,
ökar. Detta betyder att den omvända processen inte kan ske spontant. Maxwell utmanade
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detta i sitt tanke-experiment (se nedre delen av figuren). Om en varelse (demonen) kan se
de individuella gaspartiklarna skulle den kunna öppna dörren varje gång en snabb (varm)
partikel närmade sig dörren från höger. På samma sätt kan demonen öppna dörren när en
långsam (kall) partikel närmar sig från vänster. På så sätt kan varelsen separera gasen i en
varm och en kall del, utan att manipulera gaspartiklarna. Entropin måste därför minska
i lådan. Betyder detta att processen bryter mot andra lagen? Svaret är nej. Det visar sig
att varelsens insamling och processering av information ökar dess entropi. Ökningen av
entropi i varelsen är större än minskningen i lådan, vilket medför att den totala entropin
ökar. I enlighet med den andra lagen. Maxwells tanke-experiment belyser att det finns ett
samband mellan information och termodynamik. Detta är särskilt intressant i små system,
t. ex. kvantprickar, där det går att manipulera och mäta enskilda partiklar. Under de senas-
te 15 åren har Maxwells demon gått från tanke-experiment till verklighet i en mängd olika
system, t. ex. i DNA-molekyler och i kvantprickar.

Resultaten i den här avhandlingen bidrar till förståelsen av små system. Speciellt i rela-
tion till återkoppling, termodynamik och sammanflätning. Återkopplingsekvationen som
härleddes i uppsatsens mest centrala studie är ett komplementerande teoretiskt verktyg för
att förstå återkoppling i kvantmekaniska system. Med hjälp av ekvationen går det att göra
kvalitativa förutsägningar som tidigare verktyg inte klarade av. Uppsatsens studier av Max-
wells demon bidrar med en teoretisk överblick av hur information kan användas för att
manipulera elektroner i dubbelkvantprickar. Studierna av sammanflätning i värmemaski-
ner breddar vår förståelse av hur sammanflätning kan skapas, kontrolleras och stabiliseras.
I sin helhet bidrar studierna i uppsatsen till fundamental förståelse av den mikroskopiska
världen. Ökad förståelse leder förhoppningsvis till nya verktyg och teknologier som kan
förbättra vårt samhälle och vår hälsa.
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Chapter 1

Introduction

The technological and scientific advancements over the last 30-40 years have paved the way
for fabrication of physical systems with sizes of 1-100 nm. At these length scales, fluctuations
and quantum effects, such as tunneling and superposition, become prominent elements of
the world. Small systems thus enable the exploration of these effects, and tremendous ef-
forts have been invested in this direction. On the one hand, fundamental aspects are of
great interest, with questions such as “How can thermodynamic concepts, such as heat,
work, and entropy, be defined in microscopic systems?”, “How can microscopic systems
be controlled and modeled?”, or “What are the energetics of a quantum measurement?”.
These questions are central in the fields of stochastic [1–10] and quantum [11–14] thermo-
dynamics, as well as in the field of quantum feedback control [15–17]. On the other hand,
it is interesting to explore how microscopic properties can be harnessed. This is central for
quantum technologies [18], in which quantum features are utilized to outperform classical
technologies. Prime examples are quantum cryptography and quantum computers [19].
The realization of quantum technologies partially relies on a good understanding of quan-
tum feedback control and the thermodynamics of small systems. In this thesis, we make
contributions to both of these fields, with a strong focus on feedback control.

The interest in thermodynamics in microscopic systems originates from the discoveries of
out-of-equilibrium relations during the 1990s [2]. From these emerged the field of stochas-
tic thermodynamics, extending conventional thermodynamics and statistical mechanics
from close-to-equilibrium macroscopic systems to microscopic systems operating far from
equilibrium. Typically, these systems, e.g., DNA molecules, colloidal particles, and nano-
sized electronic circuits, are well-described by classical models. At the heart of the field
lies fluctuation theorems, generalizing the second law of thermodynamics for microscopic
systems far from equilibrium. Another interesting discovery is the thermodynamic un-
certainty relations (TURs) [20], establishing trade-offs between precision and dissipation.
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TURs are particularly interesting when studying nanosized thermal machines, where tem-
perature gradients are used to perform useful tasks, such as producing work or cooling.

During the past 15 years, the increased ability to control and measure small systems has stim-
ulated the development of information thermodynamics [21]. This field extends stochastic
thermodynamics by including the thermodynamics of acquiring and processing informa-
tion. This is famously illustrated by Maxwell’s demon [22–24], where information is used to
rectify heat flows, seemingly violating the second law of thermodynamics. However, by ac-
counting for information in the thermodynamic book-keeping, a violation is not observed.
The demon has been realized in a wide range of systems, both in the classical [25–30] as well
as the quantum regime [31–34]. This progress has propelled the theoretical development of
information thermodynamics, including many generalizations of fluctuation theorems and
TURs for feedback-controlled stochastic systems, see, e.g., Refs. [35–37].

Quantum thermodynamics expands these ideas one step further, aiming at defining con-
cepts such as work, heat and entropy in the quantum realm. For instance, fluctuation
theorems [7] and TURs [38] have been generalized to quantum systems. The concept of
thermal machines can be transferred to the quantum domain as well. In addition to per-
forming “standard” tasks, such as cooling, producing work and keeping time [13], quantum
thermal machines can perform tasks that are inherently quantum, like generating entangle-
ment [39]. Therefore, they are interesting platforms for investigating fundamental aspects
of quantum physics. Furthermore, the last few years have witnessed an increased interest in
exploring the thermodynamics of measurements and feedback control, with various inter-
esting developments. This includes the thermodynamics of quantum measurements [40],
as well as the extension of fluctuation theorems [41] and TURs [42] to feedback-controlled
quantum systems.

While feedback control is of fundamental interest in thermodynamics, it extends beyond
Maxwell’s demon. The idea of feedback control is to measure a physical system and use the
acquired information to drive the system towards a desired state [43]. During the devel-
opment of modern society, this control strategy has been of great importance, with inven-
tions such as the pacemaker and ABS breaks. Feedback control can be carried over to the
quantum realm, with the aim of controlling quantum dynamics [15–17]. This introduces a
number of challenges. For instance, quantum measurements induce dephasing, and it is,
therefore, important to minimize backaction, to preserve quantum coherence. Addition-
ally, it is essential to develop accurate control techniques that can steer a system towards a
target state, preferably with long coherence times. Already numerous steps have been taken
in this direction, including deterministic entanglement generation [44], atomic clocks [45],
quantum state stabilization [46–48], and reversing quantum jumps [49].

Semiconductor quantum dots [50] are promising platforms for exploring feedback control
and thermodynamics in the microscopic domain [51]. Therefore, quantum dot systems are
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central for this thesis. A quantum dot can be thought of as an artificial atom, which can
host a single or a few electrons. Often quantum dots are interacting with adjacent electron
reservoirs, exchanging energy and particles. They are thus natural testbeds for experiments
in thermodynamics. Additionally, quantum dots can be accurately controlled and measured
in real time [52–54]. This makes them suitable for feedback experiments. Separating two
quantum dots with a tunnel barrier forms a double quantum dot. This platform features
quantum effects, such as tunneling and superpositions of charge states. These effects are
commonly suppressed by dephasing. However, the large tunability of tunnel barriers in
these systems offers the possibility to find a regime where the coherent dynamics is faster
than the dephasing. It is thus possible to maintain the quantum features of the system.
The double quantum dot thus provides fertile ground for exploring fundamental aspects of
quantum physics.

This thesis is a compilation of the six research papers included at the end of this document.
These papers explore feedback control and continuous measurements in small systems. An
exception is Paper V, which addresses entanglement generation in thermal machines. While
some papers consider systems in unspecified platforms, most of them focus on implemen-
tations in quantum dots. This includes studies of Maxwell’s demon as well as temperature
estimation. The main text of this document introduces the background theory required for
understanding and reproducing the results of the papers. Note that a substantial part of the
main text is adapted from the licentiate thesis by Björn Annby-Andersson [55]¹. The main
text covers four topics; stochastic processes and parameter estimation (Chapter 2), open
quantum systems (Chapter 3), continuous measurements and feedback control (Chapter
4), and the thermodynamics of small systems (Chapter 5).

¹The PhD thesis of Debankur Bhattacharyya (University of Maryland, College Park, Maryland, USA),
supervised by Christopher Jarzynski, treats similar topics as in this thesis. He will defend his thesis at the end
of the spring semester 2024.
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Chapter 2

Stochastic processes and parameter
estimation

The dynamics of physical systems are commonly described by differential equations. Two
important examples are Maxwell’s equations and the Schrödinger equation. These descrip-
tions are deterministic, such that if we (with precision) know the initial conditions of a
system, we can with certainty predict its future. This is no longer the case when exposing a
system to randomly fluctuating forces. The dynamics becomes stochastic and it is difficult
to predict its exact future.

A prime example of this is Brownian motion, where the spatial motion of a pollen grain
becomes random when suspended in a liquid. The thermal motion of the liquid molecules
kicks the pollen grain in random directions, making it impossible to predict its spatial tra-
jectory. Another example is noise in electronic circuits. Here we discuss two sources of such
noise, Johnson-Nyquist (thermal) noise [56, 57] and shot noise [58]. At finite temperature,
the velocities of electrons in any conductor are thermally distributed. At any instance in
time, there is thus a thermally fluctuating current in the conductor, even in the absence
of an external voltage source. The magnitude of these fluctuations scales with the square
root of the temperature of the conductor. The fluctuations can thus be reduced by cool-
ing. This is known as Johnson-Nyquist noise. Shot noise, on the other hand, is due to the
intrinsic properties of a conductor. For instance, consider a solid state device with a tunnel
barrier. With a train of electrons approaching the barrier, only a fraction tunnel through
it – the others are reflected. The arrival times of tunneling electrons are random, leading
to a fluctuating tunnel current with an average determined by the height and width of the
barrier. Another random process, central to this thesis, is measurements. The stochasticity
of measurements can arise because of various reasons. Here we discuss two. In quantum
mechanics, measurements are postulated to be inherently random. For instance, by mea-
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suring the position of a quantum particle, the observer obtains a random outcome and the
wavefunction collapses on the measured position. Another example, also relevant for clas-
sical systems, is the presence of Johnson-Nyquist noise in electronic measurement devices,
providing random outcomes.

To model stochastic processes, it is common to employ stochastic differential equations
(SDEs). In the physical sciences, SDEs are commonly written as Langevin equations – first
order differential equations describing both the deterministic and stochastic contributions
to the dynamics of a system. The stochastic contribution is commonly driven by white
noise. Later in this chapter, we will see that white noise is an idealization, and that the
Langevin equation, therefore, must be handled with care. With too naive mathematical
manipulations, one reaches erroneous results. To resolve this issue, one can introduce the
concept of Itô calculus, and rewrite the Langevin equation in Itô form. This provides a
sound framework for calculations. The Langevin (and Itô) equation typically describes the
dynamics of some random system variable. An alternative formulation of the situation is
provided by the probability distribution of the random variable. The dynamics of such a
distribution is governed by a Fokker-Planck equation – typically formulated as a second
order partial differential equation. We note that every Langevin (or Itô) equation has a
corresponding Fokker-Planck equation. That is, we can always describe the stochastic dy-
namics from two points of view – via the stochastic variable or its probability distribution.

The second topic of this chapter is parameter estimation, where the central aim is to use a
sequence of measurement outcomes to estimate the value(s) of some unknown parameter(s)
of a physical system. Typically, the measurement contains a random component, and the
sequence of outcomes thus resembles a stochastic process. The theory of stochastic pro-
cesses is, therefore, useful when studying parameter estimation. In the literature, one can
find various approaches for estimating parameters. Here, we introduce two; the classical
(frequentist) and the Bayesian approaches. In particular, we are interested in the Bayesian
approach, where the unknown parameter is treated as a random variable – this is central for
Paper VI. To provide a broader perspective, we also discuss the classical approach, where
the unknown parameter is assumed to be deterministic.

We begin this chapter by briefly discussing stochastic processes in Sec. 2.1. We introduce the
concepts of stochastic trajectories, trajectory averages, correlation functions, and Marko-
vian processes. Section 2.2 introduces Langevin, Itô, and Fokker-Planck equations on a
general level. We also provide two important examples of stochastic processes, Brownian
motion (Wiener process) and the Ornstein-Uhlenbeck process. In Sec. 2.3, we motivate
why it is necessary to introduce Itô calculus. Section 2.4 outlines the basics of Bayesian
parameter estimation, building on the framework introduced in Sec. 2.1.
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2.1 Stochastic processes

Above we introduced a few examples of stochastic processes in physical systems – it could,
e.g., be the position of a particle, the current in an electronic circuit, or the outcome of a
measurement. In this chapter, we typically denote the value of a random process at time t
by a capital letterX(t). The process can be continuous or discrete in time. Any observation
of X(t) over time results in a trajectory X = {x0, x1, . . . , xn−1}, where xj = X(tj) is
the value of the process at time t0 ≤ tj ≤ tn−1, with t0 and tn−1 being the initial and final
times of the trajectory, respectively. By observing a very large number of trajectories, we
can determine the probability P [X] = P [x0, . . . , xn−1] of following a specific trajectory
X . Integrating P [X] over all possible values except xj , we get

P [xj ] =

∫
dx0 · · · dxj−1dxj+1 · · · dxn−1P [x0, . . . , xn−1], (2.1)

where P [xj ] is the probability distribution of observing xj at time tj . Note that we will
use the notations P [xj ] = P [X(tj)] = ptj (x) interchangeably. With Bayes’ theorem, the
probability of observing trajectory X can be written as

P [x0, . . . , xn−1] =




n−1∏

j=1

P [xn−j |x0, x1, . . . , xn−j−1]


P [x0], (2.2)

whereP [xn−j |x0, x1, . . . , xn−j−1] is the transition probability to observe xn−j given that
the random process followed trajectory x0, x1, . . . , xn−j−1 up till time tn−j−1. With
the trajectory probability, we may calculate trajectory averages for functions f [X]. The
function could, for instance, be the work performed on a system along a trajectory X –
this will be the case in Chapter 5, where we define work, heat and entropy along stochastic
trajectories of microscopic systems. A trajectory average can be computed with a path
integral according to

⟨f [X]⟩ =

∫
D[X]f [X]P [X], (2.3)

where D[X] = dx0 · · · dxn−1. For functions f [X(tj)], depending only on the value of
X(tj) at any arbitrary time t0 ≤ tj ≤ tn−1, we get the trajectory average

⟨f [X(tj)]⟩ =

∫
dxjf [xj ]P [xj ] =

∫
d[X(tj)]f [X(tj)]P [X(tj)], (2.4)

where the two notations to the left and right of the second equal sign will be used inter-
changeably. We will use this in several parts of the thesis. Trajectory averages are, e.g.,
important when computing correlation functions, such as

CX(t, t′) = ⟨X(t)X(t′)⟩ − ⟨X(t)⟩⟨X(t′)⟩. (2.5)
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Compared to the average ⟨X(t)⟩ and the variance ⟨X2(t)⟩ − ⟨X(t)⟩2, the correlation
function CX(t, t′) provides additional information about the dynamics of a stochastic pro-
cess. In particular, it measures how the value of the process at time t, X(t), influences the
value X(t′) at a later time t′ > t. Typically, we are interested in the stationary state of the
correlation function, where it only depends on the difference in time τ = t′ − t, i.e., when
CX(t, t′) = CX(τ). It is useful to define the power spectrum of the stationary correlator
CX(τ) as

SX(ω) =

∫ ∞

−∞
dτeiωτCX(τ), (2.6)

which is the Fourier transform of the correlation function. This provides a spectrum of
the underlying frequencies present in the noise of the stochastic process. An important
example is delta correlated noise, with stationary correlation function CX(τ) = δ(τ),
where δ(·) is the Dirac delta function. Its power spectrum reads SX(ω) = 1. That is, the
spectrum is flat, and contains an equal weight of all frequencies. This is important when,
for example, studying Johnson-Nyquist noise [59]. The concept of correlation functions
and power spectra will be especially useful in Chapter 3, where we discuss Full counting
statistics.

Up to this point, the theory is completely general, and we have not made any strong as-
sumptions, except introducing the concept of having a stationary state. However, it is often
required to make assumptions in order to derive analytical results. A common assumption,
that is relevant for this thesis, is the one of Markovian dynamics. This means that the tran-
sition probabilities only are conditioned on the previous value of the process, rather than
the entire trajectory of the process, i.e., P [xj |x0, . . . , xj−1] = P [xj |xj−1]. This is the
definition of Markov processes. The trajectory probability for a Markov process [Eq. (2.2)]
can be written as

P [x0, . . . , xn−1] =




n−1∏

j=1

P [xn−j |xn−j−1]


P [x0]. (2.7)

This will be important in Chapter 5 when we derive fluctuation theorems. The probability
of observing three consecutive events xj−2, xj−1, and xj in any Markov process can be
written as P [xj−2, xj−1, xj ] = P [xj |xj−1]P [xj−1|xj−2]P [xj−2]. With Bayes’ theorem,
we find the Chapman-Kolmogorov equation [59]

P [xj |xj−2] =

∫
dxj−1P [xj |xj−1]P [xj−1|xj−2], (2.8)

stating that if the transition probabilities P [xj |xj−1] and P [xj−1|xj−2] are known, we
can always find the transition probability P [xj |xj−2]. This will be an important reference
when discussing Markovian dynamics of quantum systems in Chapter 3.
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2.2 Langevin, Itô, and Fokker-Planck equations

In the previous section, we studied trajectory probabilities of stochastic processes. Now we
change focus to stochastic differential equations, and study the dynamics of the random
process X(t). In the physical sciences, it is common to write the equation of motion of
X(t) as a Langevin equation [59]

Ẋ(t) = α[X(t)] + β[X(t)]ξ(t), (2.9)

where the dot aboveX(t) denotes the time derivative, α and β are real functions, and ξ(t)
is a time-continuous, rapidly varying random process (noise term) with mean ⟨ξ(t)⟩ = 0.
Here ⟨·⟩ denotes a trajectory average as defined in Eq. (2.3). We may assume that the mean is
zero as any non-zero mean can be baked into the functionα. The first term on the rhs of the
Langevin equation describes the deterministic dynamics of the process, and is commonly
referred to as a drift term as it describes the overall direction in whichX(t) is moving. The
second term describes how randomly fluctuating forces influence the dynamics of X(t),
and adds noise on top of the deterministic behavior. The noise term is assumed to be
stationary, such that its correlation function ⟨ξ(t)ξ(t+ τ)⟩ is invariant under translations
in t, and thus only depend on the distance τ between two points in time. We require that
the correlation function is normalized according to

∫ ∞

−∞
dτ⟨ξ(t)ξ(t+ τ)⟩ = 1. (2.10)

In this way, we assure that ⟨ξ(t)ξ(t+ τ)⟩ decays to zero for large τ , such that the present
state of ξ(t) is uncorrelated with itself in the distant past. In fact, we will concentrate
on Markovian processes, where the characteristic correlation time is so short that for any
ϵ > 0, we have ∫ ϵ

−ϵ
dτ⟨ξ(t)ξ(t+ τ)⟩ = 1. (2.11)

This implies that the noise term is delta correlated, with ⟨ξ(t)ξ(s)⟩ = δ(t−s). The power
spectrum [see Eq. (2.6)] is thus flat (as discussed above), and we refer to ξ(t) as a white noise
process, as it similarly to white light contains the same weight of all frequencies. In partic-
ular, we note that the variance of ξ(t) diverges, Var[ξ(t)] = δ(0). This is unphysical, and,
therefore, somewhat problematic, but the noise term still has physical meaning. For exam-
ple, it can serve as a good approximation, or be used to derive other stochastic processes.
Because of this, white noise should be considered as an idealization, or a limiting case of a
random process that is physical. For instance, the singularity of the variance may be derived
from another process η(t) with correlation function ⟨η(t)η(t+ τ)⟩ = τ−1

c e−|τ |/τc , where
τc is a finite characteristic correlation time. When τc is small, formally when τc → 0, we
get a delta correlation in accordance with the Markov assumption above. That is, if the
characteristic correlation time is very small, we approximate the process as delta correlated.
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It should be noted that this approximation can lead to peculiar results, as indicated with
the diverging variance above. Therefore, Langevin equations should be treated with care.
In general, one must introduce Itô calculus and rewrite the Langevin equation in Itô form,
as will be motivated in Sec. 2.3.

The Itô form of the Langevin equation (2.9) is given by

dX(t) = a[X(t)]dt+ b[X(t)]dW (t), (2.12)

where dX(t) = X(t+ dt) −X(t) is an infinitesimal increment of the stochastic process,
with dt being an infinitesimal timestep, while a and b are real functions related to α and β
via {

a(x) = α(x) + 1
2β(x)β′(x),

b(x) = β(x),
(2.13)

where the prime denotes differentiation with respect to x, and dW (t) is a Wiener in-
crement. The Wiener increment stems from the Wiener process (see Sec. 2.2.1), and is a
Gaussian random variable with mean ⟨dW (t)⟩ = 0 and variance Var[dW (t)] = dt. We
also note that dW (t) and dW (t′), for t ̸= t′, are independent. This implies thatX(t) and
dW (t) are independent as well, such that ⟨f [X(t)]dW (t)⟩ = 0 for any function f . This
is rigorously proven in Appendix A. The most important, and also most remarkable¹, prop-
erty of the Wiener increment is that [dW (t)]2 = dt. This property is the main result of
(Itô) stochastic calculus, and is often referred to as the Itô rule. In Sec. 2.3, we motivate the
origin of this rule and why it is necessary when manipulating SDEs. An important conse-
quence of the Itô rule arises when studying functions f [X(t)]. The infinitesimal increment
of the function is given by

df(X) =

[
a(X)f ′(X) +

1

2
b2(X)f ′′(X)

]
dt+ b(X)f ′(X)dW, (2.14)

where we omitted the time arguments for brevity. To obtain this equation, we expanded
f(X + dX) around X to first order in dt. To carry out this expansion, it is important to
note that the Itô rule implies that dW (t) scales as

√
dt, which means that f(X) must be

expanded to second order in dW (t) to obtain the correct expansion to first order in dt.

It is worth pointing out that the noise term of Eq. (2.12) not necessarily must be Gaussian.
If it is non-Gaussian, other rules of stochastic calculus apply [15, 60]. One example is the
point process, where dW (t) is replaced by a stochastic variable dN(t) = 0, 1. The point
process will be important in Chapter 3.4 when we discuss unravelings of quantum master
equations. Therefore, we introduce it in detail in that chapter, and focus our discussion on
Gaussian noise here, as it is the main process we will look at in this thesis.

¹That is, the square of the Wiener increment, a random variable, is not a random variable, but is determin-
istic.
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The Itô equation provides a useful tool for simulating trajectories of X(t) and for calcu-
lating the statistics of the process. However, solving it analytically is, in general, hard, but
there are a few cases where it is possible [60]. The solution of an Itô equation specifies the
probability distribution of X(t). One can also think of individual trajectories of X(t) as
solutions to the Itô equation. As the increment dW (t) can be chosen in an infinite num-
ber of ways, the Itô equation has infinitely many solutions – if all of them were known,
we could construct the probability distribution pt(x) = P [X(t) = x] at all times t. In
practice, this is a daunting task as a very large number of trajectories would be required
to correctly construct the tails of the distribution. Luckily, the distribution can be found
by alternative ways. In fact, every Itô (or Langevin) equation has a corresponding Fokker-
Planck equation – a partial differential equation determining the dynamics of pt(x). In
the remaining paragraphs of this section, we outline how the Itô equation (2.12) can be
transformed into a Fokker-Planck equation for pt(x).

We begin by noting that the distribution is given by

pt(x) = ⟨δ[X(t) − x]⟩ =

∫
d[X(t)]δ[X(t) − x]P [X(t)], (2.15)

where ⟨·⟩ again denotes the trajectory average defined in Eq. (2.3). From Eq. (2.14), we find
the increment

dδ[X(t) − x] =
{
a[X(t)]δ′[X(t) − x] +

1

2
b2[X(t)]δ′′[X(t) − x]

}
dt

+ b[X(t)]δ′[X(t) − x]dW (t),
(2.16)

where primes denote derivatives with respect to X(t). By taking the average ⟨·⟩ over this
equation, we get

dpt(x) = −∂x[a(x)pt(x)]dt+
1

2
∂2

x[b2(x)pt(x)]dt, (2.17)

where we used that ⟨b[X(t)]δ′[X(t)−x]dW (t)⟩ = 0 asX(t) and dW (t) are independent
– see Appendix A. Since this equation is linear in dt, we find the standard form of the
Fokker-Planck equation

∂tpt(x) = −∂x[a(x)pt(x)] +
1

2
∂2

x[b2(x)pt(x)]. (2.18)

The drift term a(x) determines the deterministic evolution of the stochastic process, i.e.,
how the center of pt(x) evolves over time. The diffusion term b2(x) determines the mag-
nitude of the noise in the process, in other words the width of pt(x).

The three descriptions above – Langevin, Itô, and Fokker-Planck equations – are equivalent,
and can be used to describe the same process. We now briefly study two common processes
in terms of these three descriptions.
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2.2.1 Brownian motion (Wiener process)

Brownian motion can be defined via the Langevin or Itô equations

Ẋ(t) = σξ(t) and dX(t) = σdW (t), (2.19)

where σ > 0 is referred to as the diffusion constant. In the case of a particle subjected to
thermal fluctuations, σ is proportional to the temperature of its environment. If σ = 1, we
refer to the process as a Wiener process, even though its qualitatively identical to Brownian
motion. The Itô equation may be solved by integration,

X(t) = σ

∫ t

t0

dW (t) = σ lim
N→∞

N−1∑

j=0

δW (t0 + jδt), (2.20)

where we in the last equality discretized time intoN segments of length δt = (t− t0)/N ,
and introduced the finite Wiener increment δW (t), which is a Gaussian random variable
with mean 0 and variance δt. The integral object in this equation is referred to as a (Itô)
stochastic integral [59, 60]. In this thesis, we will not need this type of mathematical tools,
and will thus not dig deeper into it than this. Instead, we use the sum representation in
Eq. (2.20), together with the central limit theorem, to conclude that X(t) is a Gaussian
random variable with mean ⟨X(t)⟩ = 0 and variance Var[X(t)] = σ2(t− t0).

Equivalently, one can define Brownian motion via the Fokker-Planck equation
{
∂tpt(x) = σ2

2 ∂
2
xpt(x),

pt0(x) = δ(x),
(2.21)

where the second line defines the intial condition. The solution to this initial value problem
reads [59]

pt(x) =
e−x2/2σ2(t−t0)

√
2πσ2(t− t0)

. (2.22)

That is,X(t) is a Gaussian random variable centered at x = 0 with variance σ2(t−t0), just
as above. With the initial value used here, the process describes the position of a Brownian
particle moving in one dimension, starting at the origin at t0. As random, unbiased noise
is the only force acting on the particle, it stays at the origin on average. The variance of
the position grows linearly with time as the particle always has the possibility of moving
far from the origin if it is exposed to the random force for a long time. In Fig. 2.1(a), we
illustrate a typical trajectory of Brownian motion in one dimension.

As mentioned above, if σ = 1, we refer to this process as a Wiener process, and denote it
byW (t). A special property of this process is that all increments ∆W (t) = W (t+∆t)−
W (t) are independent of each other, and of W (t) for any ∆t > 0. Note that the Wiener
increment is Gaussian as well, with ⟨∆W (t)⟩ = 0 and Var[∆W (t)] = ∆t [59].
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Figure 2.1: (a) Typical trajectories of Brownian motion and the Ornstein-Uhlenbeck process. The Brownian motion
stays, on average, around 0, while the Onstein-Uhlenbeck process drifts towards an equilibrium position.
To simulate these trajectories, we used the Itô equations (2.19) and (2.23), together with the following
parameters, x0 = 0, σ = 30, k = 15 · 10−3,m = 2, and dt = 10−3. (b) Comparison of the power spectra
of a white noise process (black, dashed line) and the Ornstein-Uhlenbeck process [see Eq. (2.28)] for a few
choices of k (solid lines). Note that Eq. (2.28) tends to the white noise spectrum as k is increased. Here we
use σ = k, such that the maximum of SX(ω) is invariant of different choices of k.

2.2.2 The Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is a generalization of Brownian motion with an additional
drift term that drives the process towards a specific position. Its Langevin and Itô equations
are given by

Ẋ(t) = k[m−X(t)]+σξ(t) and dX(t) = k[m−X(t)]dt+σdW (t). (2.23)

Here k, σ > 0 are constants, with units of inverse time, and m determines the posi-
tion which the system is driven towards [m has the same unit as X(t)]. In practice, the
Ornstein-Uhlenbeck process describes the position of a Brownian particle with overdamped
dynamics in a harmonic potential, where the friction term proportional to Ẋ(t) dominates
over the acceleration term proportional to Ẍ(t), such that the latter can be neglected from
the equation of motion. The Ornstein-Uhlenbeck process thus describes a noisy relaxation
towards an equilibrium position. As we will see in Chapter 4, it can be used to model mea-
surement signals. In fact, the Ornstein-Uhlenbeck process has applications in a wide range
of situations, for instance, in financial mathematics, where it is used to model interest rates
[61].

The Itô equation in Eq. (2.23) can be solved analytically, see, e.g., Ref. [60], but to avoid
clutter, we present only the solution of the corresponding Fokker-Planck equation. The
solutions are equivalent anyway. The Fokker-Planck equation is given by

{
∂tpt(x) = k∂x[(x−m)pt(x)] +

σ2

2 ∂
2
xpt(x),

p0(x) = δ(x− x0),
(2.24)

13



where the initial distribution is centered at some arbitrary value x0. The solution reads

pt(x) =

√
k

πσ2(1 − e−2kt)
e
− k

σ2(1−e−2kt)
[x−m(1−e−kt)−x0e−kt]

2

. (2.25)

The Ornstein-Uhlenbeck process is thus a Gaussian random variable with mean ⟨X(t)⟩ =
m(1 − e−kt) + x0e

−kt and variance Var[X(t)] = σ2(1 − e−2kt)/2k. In the stationary
limit, we obtain

pss(x) = lim
t→∞

pt(x) =

√
k

πσ2
e−

k
σ2 (x−m)2 . (2.26)

The Ornstein-Uhlenbeck process thus reaches a stationary distribution – this was not the
case with Brownian motion. In fact, the Ornstein-Uhlenbeck process is the only single-
variable stochastic process which is Gaussian, Markovian, and has a stationary distribution
[59]. We also see that Eqs. (2.25) and (2.26) provide a nice illustration of the noisy relaxation
mentioned above. At t = 0, the process starts at the initial position x0 and makes a
random walk towards the equilibrium position x = m. The timescale of the relaxation is
determined by 1/k. The variance is 0 at time t = 0 (we know exactly where the particle
is), and grows towards σ2/2k at a rate given by 2k. We illustrate a sample trajectory of the
Ornstein-Uhlenbeck process in Fig. 2.1(a).

The stationary correlation function of the Ornstein-Uhlenbeck process is given by [59]

CX(τ) =
σ2

2k
e−k|τ |. (2.27)

That is, the correlation between two points in time separated by τ decays exponentially on
a timescale 1/k, as expected for a Markovian process. Its power spectrum [see Eq. (2.6)]
reads

SX(ω) =
σ2

k2 + ω2
. (2.28)

The spectrum thus has a Lorentzian shape with width 2k (full width at half maximum). In
Fig. 2.1(b), we compare Eq. (2.28) to the spectrum of white noise for different choices of k,
where we use σ = k such that the maximum of SX(ω) remains invariant under changes
of k. We observe that the width of the spectrum increases with k, and in the limit k → ∞,
we recover the white noise spectrum. This can also be seen from the correlation function,
CX(τ) → δ(τ) as k → ∞ for σ = k.

2.3 Motivation for stochastic calculus

In this section, we provide a motivation for why stochastic calculus and the Itô equation
are necessary for obtaining sensible results. In fact, the Langevin equation, or rather the
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white noise term ξ(t) in Eq. (2.9), is not rigorously defined – a too naive mathematical
treatment leads to the wrong results. We begin by motivating this, and then show how we
can go from the Langevin equation to the Itô equation. Note that the idea of this section is
to motivate why stochastic calculus is needed, rather than providing rigorous derivations.
We closely follow the discussions in Refs. [15] and [59].

We begin by assuming that X(t) and ξ(t) are statistically independent, and that Ẋ =
dX/dt. The latter assumption corresponds to what we would expect from conventional
calculus. We now show that these two assumptions cannot be true simultaneously, and that
one of them needs to be relaxed. To this end, it is illuminating to calculate the infinitesimal
increment dX(t) = X(t+dt)−X(t). The Langevin equation (2.9) provides the following
result,

dX(t) = α[X(t)]dt+ β[X(t)]ξ(t)dt. (wrong) (2.29)

We indicate already here that this result is wrong, and should not be used for calculations –
we only work with it in this paragraph to highlight the subtleties of the Langevin equation.
It yields the average increment ⟨dX(t)⟩ = ⟨α[X(t)]⟩dt, which is independent of the
noise term, as expected from the assumptions. For the variance of the increment, we get
Var[dX(t)] = ⟨[dX(t)]2⟩ = 0, where we used that all nonlinear terms in dt vanish. This
suggests that the increments are deterministic, and that the noise term does not induce
any noise to the process – quite contrary to what to expect from a stochastic process. We
understand that our two assumptions cannot be true simultaneously. Here we will relax
the second assumption. That is, the fluxion Ẋ will not be interpreted as dX/dt, but we
still assume independence between X(t) and ξ(t). Note that we are not required to make
this relaxation – one can still assume that Ẋ = dX/dt holds, but must then relax the other
assumption. Equation (2.9) is then referred to as a Stratonovich equation, and requires
computational tools that are not discussed here [15].

To further motivate why we relaxed this assumption, we will, in this paragraph, assume
that Ẋ = dX/dt holds, and show that we run into other problems than the one above.
Under this assumption, the solution to Eq. (2.9) would read

X(t) −X(t0) =

∫ t

t0

dt′α[X(t′)] +
∫ t

t0

dt′β[X(t′)]ξ(t′). (2.30)

For this to hold, the function

W (t) =

∫ t

t0

dt′ξ(t′) (2.31)

must exist. From the central limit theorem, W (t) can be shown to be a Gaussian random
variable with mean 0 and variance t− t0. In fact, W (t) is a Wiener process [59]. Because
of the fractal structure of W (t), see Fig. 2.2, it is impossible to linearize it as h → 0 in
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Figure 2.2: Illustration of the fractal structure of a Wiener processW (t). When zooming in, the Wiener process never
becomes linear. Therefore, it has no derivative.

[W (t+h)−W (t)]/h. Therefore, the derivative Ẇ (t), and thereby also ξ(t), does not exist
in a rigorous mathematical sense [59]. This provides further support why Ẋ ̸= dX/dt.
Despite being nonexistent in a mathematical sense, we will continue to use ξ(t) in our
discussion as it is commonly used in the physical sciences.

From the discussion in the preceding paragraphs, we understand that analyzing and solv-
ing the stochastic differential equation (2.9) raise several warning bells, indicating that the
equation must be treated with care. As conventional calculus does not apply as we are used
to, one way to proceed is to introduce Itô calculus, and rewrite Eq. (2.9) in Itô form. Itô cal-
culus provides computational rules that allow us to calculate and manipulate the increment
dX in a mathematically and physically sensible way.

To introduce Itô calculus, we begin by studying the Wiener process in Eq. (2.31), and note
that for t > s

W (t) −W (s) =

∫ t

s
dt′ξ(t′), (2.32)

implying that any Wiener increment ∆W (t) = W (t + ∆t) − W (t) is independent of
W (t), as discussed above. We also note that ∆W (t) is Gaussian with ⟨∆W (t)⟩ = 0 and
Var[∆W (t)] = ⟨∆W 2(t)⟩ = ∆t, as we expect for the Wiener process, see discussion
above. This gives us the infinitesimal increment dW (t) = ξ(t)dt, suggesting that ξ(t) is
the derivative dW (t)/dt. As noted above, mathematically this derivative does not exist,
but is still used here (and in the physical sciences) because of the convenient notation. The
increment should, as we stated above, satisfy [dW (t)]2 = dt.

To understand why, we make use of a small Wiener increment δW (t) = W (t+δt)−W (t)
and study it over a time period ∆t = t − t0. By discretizing ∆t into N intervals, δt =
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∆t/N . We now define a quantity

χ =

N−1∑

j=0

[δW (tj)]
2, (2.33)

where tj = t0 + jδt. The mean and variance of χ are given by
{

⟨χ⟩ = ∆t,

⟨χ2⟩ − ⟨χ⟩2 = ∆t
N/2 .

(2.34)

In the continuous limit, N → ∞, the variance vanishes and χ becomes deterministic –
more specifically, χ → ∆t. In this limit, we may interpret the sum in Eq. (2.33) as an
integral, and we get

∆t =

∫ t+∆t

t
dt =

∫ t+∆t

t
dW 2, (2.35)

where we omitted the time argument for brevity. This implies the Itô rule dW 2 = dt.
When we analyzed Eq. (2.9) above, we thought that dW = ξ(t)dt was scaling as dt. The
Itô rule teaches us that dW actually scales as

√
dt, and partly explains why our analysis of

Eq. (2.9) went wrong. At this point, it is tempting to replace ξ(t)dt with dW in Eq. (2.29),
but a little more care is needed to find the correct form for the infinitesimal increment
dX(t).

To find the increment dX(t) corresponding to Eq. (2.9), we Taylor expand X(t+ dt) as

X(t+ dt) = edt∂sX(s)
∣∣∣
s=t
, (2.36)

where we write the expansion as an exponential function for brevity. In fact, all terms in the
expansion are not needed, only the ones scaling as dt. To calculate the derivatives ∂n

sX(s)
(n > 1), we assume that

∂sX(s)
∣∣∣
s=t

=
(
α[X(s)] + β[X(s)]ξ(t)

)∣∣∣
s=t
. (2.37)

This assumption is based on the fact that ξ(t) in reality must have a small, but finite correla-
tion time τc over which it remains constant. That is, during an infinitesimal time increment
dt ≪ τc, ξ(t) is constant, and is not affected by time derivatives of Eq. (2.37). Using this,
as well as the first and second order terms in the Taylor expansion (2.36), alternatively to
first order in dt, i.e., second order in dW (t) = ξ(t)dt due to the Itô rule, we get the correct
increment (the Itô equation)

dX(t) = a[X(t)]dt+ b[X(t)]dW (t), (2.38)
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where the coefficients a[X(t)] = α[X(t)] + 1
2β[X(t)]β′[X(t)] and b[X(t)] = β[X(t)]

show the relation to Eq. (2.9). The prime in a[X(t)] denotes the derivative with respect to
X(t). We can now calculate the variance of the increment – it is given by

⟨(dX)2⟩ = ⟨b2(X)⟩dt, (2.39)

where we used that ⟨dX⟩ = ⟨a(X)⟩dt, and that X(t) and dW (t) are independent. That
is, the variance of the increment is nonzero, indicating that the noise term induces noise
in the process, as desired. This motivates why Itô calculus is required to obtain reasonable
results, and why the increment in Eq. (2.29) should be avoided.

2.4 Bayesian parameter estimation

In this section, we discuss parameter estimation. We introduce both the classical (frequen-
tist) and Bayesian philosophies. Especially the latter is important for Paper VI. However,
it is interesting to introduce both philosophies to provide a broader perspective. More
detailed discussions can be found in Refs. [62, 63].

The typical scenario of parameter estimation is the following. Consider a system with
an unknown parameter θ (temperature, chemical potential, mass, etc.) that we want to
estimate. We do this by recording n measurements of some system property, and put our
observations into a vector x = (x1, . . . , xn). The unknown parameter is estimated by
constructing an estimator θ̂(x), taking the measurement outcomes as input. The method
for constructing estimators and deciding their performance depends on the philosophy that
is employed.

Classical approach

In the classical approach, the parameter θ is deterministic, and has a true, but unknown,
value θ0. The measurement record x is random, and sampled from a distribution p(x; θ0),
depending on the true value θ0. We assume that all outcomes are independent, such that

p(x; θ0) =
n∏

j=1

p(xj ; θ0), (2.40)

where p(xj ; θ0) is the probability distribution of observing the outcome xj when θ0 is the
true value. An estimator θ̂(x) is a random variable depending on the recorded data. The
estimator is said to be consistent² if θ̂(x) → θ0 as n → ∞. The average of the estimator

²A more rigorous definition is that the probability P [|θ̂(x)− θ0| > ε] → 0 as n→ ∞ for any ε > 0.
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over all possible realizations of the measurement is defined via

E[θ̂(x)] =

∫
D[x]θ̂(x)p(x; θ0), (2.41)

which is similar to the average in Eq. (2.3). In general, E[θ̂(x)] = θ0+b, where b is referred
to as the bias. For b = 0, the estimator is said to be unbiased. The error of an estimator is
commonly defined as the mean square error (MSE)

MSE(θ̂) = E
[(
θ0 − θ̂(x)

)2
]

= Var[θ̂(x)] + b2, (2.42)

where E[·] and Var[·] are calculated with respect to p(x; θ0). For unbiased estimators, the
MSE coincides with the variance of the estimator, and obeys the Cramer-Rao inequality
[64, 65]

Var[θ̂(x)] ≥ 1

ni(θ0)
, (2.43)

where

i(θ0) = −E
[
∂2ln[p(x; θ)]

∂θ2

∣∣∣
θ=θ0

]
= −

∫
dx
∂2ln[p(x; θ)]

∂θ2

∣∣∣
θ=θ0

p(x; θ0) (2.44)

is the Fisher information for one observation. The Fisher information tells us how much
information we obtain, on average, by doing the measurement. Note that the Fisher infor-
mation is related to the curvature of p(x; θ) with respect to θ, and thus contains informa-
tion on how broadly peaked p(x; θ) is around θ0. For a broad (narrow) peak, i.e., when
i(θ0) is small (large), we obtain less (more) information. The Fisher information for the
entire measurement record is given by I(θ0) = ni(θ0) = −E{∂2ln[p(x; θ)]/∂θ2

∣∣
θ=θ0

}.
The Cramer-Rao inequality provides a universal bound on how small the MSE can be for
unbiased estimators. An estimator reaching the lower bound is said to be efficient. We
note that by letting n become large, the lower bound becomes very small, suggesting that
it is possible to estimate the unknown parameter arbitrarily close to θ0.

A common classical approach for obtaining estimators is the maximum likelihood (ML)
method. In general, the distribution p(x; θ) is known up to the unknown parameter θ.
The ML estimator is defined as

θ̂ = arg max
θ

p(x; θ). (2.45)

Often it is easier to find the maximum of ln[p(x; θ)] which coincides with the maximum
of p(x; θ). When n is large, the ML estimator approaches a Gaussian random variable
centered at the true value θ0, with variance 1/ni(θ0) [62]. Adding more data thus improves
the estimation.
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Bayesian approach

In the Bayesian approach, we assume that the unknown parameter is a random variable.
Often, we have some prior knowledge about θ, and we encode this into a prior distribution
p(θ). We could, for instance, know that the parameter is restricted to a certain interval θ1 ≤
θ ≤ θ2. Such knowledge often leads to more accurate estimations – especially for small
n [62]. By assuming a certain probability distribution p(x|θ) (likelihood function) for
obtaining the measurement record x, given that θ is the value of the unknown parameter,
we find, via Bayes’ rule, the posterior distribution

p(θ|x) =
p(x|θ)p(θ)
p(x)

, (2.46)

with p(x) =
∫
dθp(x|θ)p(θ). The posterior distribution tells us how likely it is for θ

to take certain values, given that we observed the record x. Here we assume that the
observations are independent, such that p(x|θ) =

∏n
j=1 p(xj |θ), where p(xj |θ) is the

probability to observe outcome xj given θ.

To define a Bayesian estimator, we must first introduce some additional quantities. First,
we define the error as ϵ = θ−θ̂, where θ̂ is an arbitrary Bayesian estimator, which, as we will
see below, is dependent on the measurement data x. In contrast to the classical approach,
we do not make use of the true (but unknown) value θ0 to define the error. Note that the
error is a random variable, as θ and θ̂ are random variables. Second, we introduce a cost
function of the error, C(ϵ). This function tells us how “costly” an error is. For instance,
if C(ϵ) = ϵ2, the cost of errors grow quadratically, penalizing large errors harder than
smaller errors. Below we explore a few different cost functions. Finally, we introduce the
risk function

R = E[C(θ − θ̂)] =

∫
D[x]

∫
dθC(θ − θ̂)p(x, θ)

=

∫
D[x]

(∫
dθC(θ − θ̂)p(θ|x)

)
p(x),

(2.47)

where the average is taken with respect to the joint distribution p(x, θ). In the second line,
we used p(x, θ) = p(θ|x)p(x). An estimator is found by minimizing the risk function
with respect to θ̂, which corresponds to

θ̂ = arg min
z

∫
dθC(θ − z)p(θ|x). (2.48)

The choice of cost function thus decides the form of the estimator. We now list a few
common cost functions and their corresponding estimators. We begin with the quadratic
cost function

CQ(ϵ) = ϵ2 ⇒ θ̂Q = E[θ|x] =

∫
dθθp(θ|x), (2.49)
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where the estimator is the mean of the posterior. For the quadratic cost function, the risk
function is referred to as the Bayesian mean square error (BMSE) due to its similarity to
the MSE defined above. The absolute value cost function

CA(ϵ) = |ϵ| ⇒ θ̂A = median[p(θ|x)], (2.50)

where the estimator is the median of the posterior. The hit-or-miss cost function

CHM(ϵ) =

{
0, |ϵ| < δ

1, |ϵ| > δ
⇒ θ̂HM = arg max

θ
p(θ|x), (2.51)

where the estimator simply is the argument that maximizes the posterior. Note that δ > 0.
This is often referred to as the maximum a posteriori (MAP) estimator. The notation θ̂MAP

is typically used for this estimator. Lastly, the squared relative error cost function

CR(ϵ) =
( ϵ
θ

)2
⇒ θ̂R =

∫
dθp(θ|x)/θ∫
dθp(θ|x)/θ2

. (2.52)

Often numerical methods are required to evaluate all of these estimators. However, a benefit
of the first three is that they are straightforward to evaluate analytically for simple models.
The squared relative error cost function does, in contrast to CQ and CA, not depend on
the absolute value of the parameter θ, but results in a more complicated estimator.

To determine the performance of an estimator, one may study the error ϵ = θ − θ̂. An
estimator is considered as good if the average of ϵ, with respect to p(x, θ), is zero. Addi-
tionally, one may evaluate the variance of ϵ. An estimator is said to be consistent (in the
Bayesian sense) if Var[ϵ] → 0 as n → ∞. Note that the average error can be written like
E[ϵ] =

∫
dθb(θ)p(θ), where we introduced the bias

b(θ) =

∫
D[x](θ − θ̂)p(x|θ). (2.53)

When the bias vanishes, E[ϵ] = 0, and we find that the variance of the error coincides with
the BMSE, which is lower bounded by the Cramer-Rao-like inequality [66]

Var[ϵ] = BMSE(θ̂) ≥
∫
dθ

p(θ)

ni(θ)
, (2.54)

where i(θ) = −
∫
dx∂2ln[p(θ|x)]/∂θ2p(x|θ) is the Fisher information for one single

observation for an arbitrary θ.

Finally, we introduce the Bernstein-von Mises theorem [67], which links the classical and
Bayesian approaches. For large n, the posterior p(θ|x) approaches a Gaussian distribution
centered at the true value θ0, with variance 1/ni(θ0), where i(θ0) is the Fisher informa-
tion for one single observation, evaluated at θ0 (see definition in the previous paragraph).
The theorem thus assures that the posterior distribution converges towards a narrow peak
around θ0 as n becomes large. We note that this is similar to the ML estimator above.
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Probe thermometry

To illustrate some of the theory introduced above, we look at a simple model of probe
thermometry. Imagine a heat bath with a well-defined, but unknown temperature T0,
which we aim to estimate. To this end, we let n independent, classical two-level systems,
with states 0 and 1, thermalize with the heat bath. By measuring the state of every probe,
we can estimate the temperature. It is assumed that the heat bath remains in thermal
equilibrium during the whole process. The probability to observe outcome x = 0, 1 when
measuring the state of any probe is given by the Boltzmann distribution

px(T ) =
e−Ex/T

e−E0/T + e−E1/T
, (2.55)

with E0 and E1 being the energies of state 0 and 1, respectively. Note that we put kB = 1
(Boltzmann constant) to avoid clutter. After measuring all probes, the outcomes are put
into a vector x = (x1, . . . , xn), where xj is the outcome for probe j. Out of all entries in
this vector, there will be k zeros and n− k ones.

To find the ML estimator, we begin by noting that the distribution to obtain x is given by

p(x;T ) = pk
0(T )pn−k

1 (T ) =
e[k(E1−E0)−nE1]/T

(
e−E0/T + e−E1/T

)n , (2.56)

where it is assumed that all measurements are independent. When E1 ̸= E0, the ML
estimator is given by³

T̂ML =
E1 − E0

ln
(

k
n−k

) . (2.57)

As k → n, T̂ML → 0. That is, when only observing zeros, our best guess of the temperature
is 0. As k → n/2, T̂ML → ∞, illustrating that if half of the observations are zeros, our
best guess of the temperature is ∞. Some caution must be taken with this estimator. If
k < n − k, T̂ML < 0, quite contrary to what we expect. Also, with k = 0, T̂ML → 0.
This is can observed for small n. However, for large n, we get k ≥ n − k, assuring that
T̂ML ≥ 0.

For Bayesian estimators, we use the uniform prior distribution

p(T ) =

{
(T2 − T1)

−1, if T1 ≤ T ≤ T2,

0 , otherwise.
(2.58)

³For large n, we can make an alternative derivation of this estimator. The probability of observing 0 can
be well approximated with the relative frequency p0 ∼ k/n. Similarly, we find p1 ∼ (n− k)/n. Therefore,
p0/p1 = e(E1−E0)/T ∼ k/(n− k). This results in T ∼ (E1 − E0)/ ln[k/(n− k)], just as above.
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Figure 2.3: Numerical results for the probe thermometry model. (a) Posterior distribution p(T |x) as a function of
T for a single realization of x. The distribution is plotted for various choices of n. As n increases, the
posterior converges towards the Bernstein-von Mises theorem. (b) Various estimators for the same real-
ization of x as in (a). Note that the ML estimator can diverge, as well as produce values outside of the
range [T1, T2]. (c) Mean square error of all estimators in (b), averaged over 500 realizations of x. The
error converges to the Cramer-Rao lower bound 1/ni(T0) for all estimators. Parameters: E0/T0 = 0,
E1/T0 = 0.5, T1/T0 = 0.5, T2/T0 = 1.75, n = 50000.

The likelihood function for observing x, given T , reads [it coincides with the ML method
above in Eq. (2.56)]

p(x|T ) = pk
0(T )pn−k

1 (T ). (2.59)

By using this, the posterior was calculated numerically with p(T |x) = p(x|T )p(T )/p(x).
The posterior is visualized in Fig. 2.3(a) for a specific realization of x. As n is increased, the
distribution goes from being flat to sharply peaked at the true value T0. This illustrates the
Bernstein-von Mises theorem. In Fig. 2.3(b), we plot the Bayesian estimators T̂Q, T̂MAP,
and T̂R, as well as the ML estimator T̂ML for the same realization of x as in (a). For small
n, the estimators returns quite different outputs. Note that the ML estimator has discon-
tinuities for small n, as it can diverge (see above). For large n, all estimators converge to
T0 as expected (Bernstein-von Mises theorem and asymptotic behavior of ML estimators).
Note that the ML estimator can return numbers outside the interval [T1, T2] as no prior
knowledge was incorporated into this estimator.

To get an idea of the performance of the estimators, we plot their MSEs

Ex|T0

[
(T0 − T̂ )2

]
=

∫
D[x](T0 − T̂ )2p(x|T0) (2.60)

in Fig. 2.3(c), where we use the true temperature T0. For unbiased estimators T̂ , i.e.,∫
dxT̂ p(x|T0) = T0, the MSE is lower bounded by the Cramer-Rao bound

Ex|T0

[
(T0 − T̂ )2

]
≥ 1

ni(T0)
, (2.61)

where the Fisher information for a single observation can be calculated analytically,

i(T ) =
(E1 − E0)

2 sech2(E1−E0
2T )

4T 4
. (2.62)
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In Fig. 2.3(c), the MSE for all estimators approaches the lower bound for large n. The noise
in each line is due to the average Ex|T0

[·] being taken over a finite number of trajectories
x. For the ML estimator, we observe several discontinuities for n ≲ 102. This happens as
T̂ML can diverge for small n. With the analytical expression of the Fisher information, we
find that the optimal gap that maximizes i(T ) is given by E1 −E0 ≈ 2.4T . For this gap,
the MSE goes to zero the fastest as n grows.
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Chapter 3

Open quantum systems

The textbook description of basic quantum mechanics is based on closed systems that are
completely isolated from their environment and described by pure states. Such a descrip-
tion can teach us a great deal about the foundations of quantum physics, but it is inevitable
that quantum systems never are isolated in reality. They always interact with their environ-
ment by exchanging energy and/or particles, and are thereby open.

A typical example of this is the light-matter interaction between an atom (system) and
an electromagnetic field (environment) [68, 69]. Another relevant example, especially im-
portant for this thesis, is solid state quantum dots (system) [50] defined in semiconductor
materials (environment), where the quantum dots may exchange electrons and phonons
with its environment. A complete description of the physics in these examples requires a
full theoretical treatment of both the system and the environment. For instance, to un-
derstand all processes in the example of light-matter interactions, we must quantize the
electromagnetic field, and keep track of all possible photon states of the field. Similarly,
for semiconductor quantum dots, one needs to include all possible electronic (or phonon)
states in the theoretical description. As there are an infinite number of such states, it is, in
general, a formidable task to theoretically model such a problem. To this end, it is necessary
to develop a manageable theory for open quantum systems [19, 70, 71].

The joint unit of system and environment can be treated as a closed system, and by tracing
out the environment, we obtain a description of the system alone. By performing such
a trace operation, we lose information about the correlations between the system and the
environment, and introduce uncertainty about which state the system is in. The state of
an open quantum system is thus, typically, mixed. Often, it is interesting to study the
dynamics of these systems. By assuming a weak coupling between the system and the
environment, the dynamics follow a Markovian master equation – the Lindblad equation.
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This equation effectively describes how the environment influences the system, without
having to keep track of the environmental degrees of freedom. The Lindblad equation is
an important tool for modeling open quantum systems and is used in Papers II-V.

In this chapter, we discuss the basic theoretical tools required to describe open quantum
systems. We begin by reviewing the dynamics of pure states in closed systems in Sec. 3.1.
This acts as a reference for the remaining sections. Section 3.2 introduces mixed states and
the density operator. The latter is a valuable tool in the theory of open quantum systems. In
particular, we motivate the origin of mixed states. Section 3.3 is devoted to the dynamical
description of open systems. Most importantly, we introduce the Lindblad master equa-
tion. In Sec. 3.4, we unravel the Lindblad equation, and show that open systems also can be
described by stochastic master equations, resolving individual exchanges of energy/particles
with the environment. Section 3.5 discusses decoherence – a process induced by the envi-
ronment of an open system, degrading its quantum coherence. The effect of decoherence
is thus to push a quantum system to a classical representation that does not contain coher-
ence. In particular, we derive a model for the quantum-to-classical transition induced by
decoherence. We do this for a double quantum dot system, but note that the model can
be straightforwardly extended to other systems as well. Before concluding this chapter, we
introduce full counting statistics in Sec. 3.6 – a tool for gaining full statistical knowledge
of particle transport in nanoscale systems described by Markovian master equations. This
was a useful tool for Papers I-III.

3.1 Pure states

The state of a quantum system is said to be pure if it can be described by one single, nor-
malized state vector |ψ(t)⟩, for which ⟨ψ(t)|ψ(t)⟩ = 1. For a closed system, the time
evolution of this state is described by the Schrödinger equation

∂t |ψ(t)⟩ = −iĤ(t) |ψ(t)⟩ , (3.1)

where Ĥ(t) is the (possibly time dependent) Hamiltonian of the system. The time depen-
dence may stem from the interaction with an external driving field, such as in the semi-
classical description light-matter interactions. Note that we have absorbed the factor of
ℏ−1 into the Hamiltonian in Eq. (3.1) such that all energy units are given in inverse units
of time (alternatively known as the convention ℏ = 1). The solution to the Schrödinger
equation is given by

|ψ(t)⟩ = Û(t, t0) |ψ(t0)⟩ , (3.2)

where |ψ(t0)⟩ is the initial state vector of the system at time t0, with ⟨ψ(t0)|ψ(t0)⟩ = 1,
and Û(t, t0) is the time evolution operator given by

Û(t, t0) = T e−i
∫ t

t0
dsĤ(s)

, (3.3)
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where T is the time ordering operator. The time evolution operator is unitary, i.e., Û(t, t0)Û
†(t, t0) =

Û †(t, t0)Û(t, t0) = 1, such that the normalization of the state vector is preserved; ⟨ψ(t)|ψ(t)⟩ =
⟨ψ(t0)|Û †(t, t0)Û(t, t0)|ψ(t0)⟩ = ⟨ψ(t0)|ψ(t0)⟩ = 1. With the state vector, we may
calculate all moments of any observable Â at time t as ⟨Âk⟩ = ⟨ψ(t)|Âk|ψ(t)⟩.

3.2 Mixed states

The preceding discussion was concerned with pure states of closed quantum systems. We
now proceed with mixed states which cannot be described by a single state vector. Suppose
that we are dealing with a quantum system (closed or open), where we are uncertain about
the exact system state. This uncertainty can be expressed by a probability distribution pj ,
normalized with

∑
j pj = 1, specifying the probability that the system is in some state

|ψj⟩. The possible system states |ψj⟩ are not necessarily mutually orthogonal. Under
these conditions, the system state is said to be mixed, and is represented by the density
operator¹

ρ̂ =
∑

j

pj |ψj⟩⟨ψj | . (3.4)

The density operator is positive (and thereby Hermitian, ρ̂† = ρ̂), i.e., ⟨Φ|ρ̂|Φ⟩ ≥ 0
for any state vector |Φ⟩, and has trace tr{ρ̂} = 1. The latter property follows from the
normalization of the distribution pj , stating that the system must be in one of the states
|ψj⟩. Note that if pj=k = 1 for some j = k, and 0 for all j ̸= k, the state is pure
and has density operator ρ̂ = |ψk⟩⟨ψk|. If this is the case, the system is equally well
described by the state vector |ψk⟩. Regardless of being pure or mixed, the density operator
can always be written as a matrix in any orthonormal basis {|n⟩}n, where the diagonal
elements ρnn = ⟨n|ρ̂|n⟩ are referred to as populations and give us the probability to be
in state |n⟩, while the off-diagonal elements ρnm = ⟨n|ρ̂|m⟩ are referred to as coherences
and originate from superpositions of basis states. We note that if all coherences vanish,
there exist no superpositions of basis states. We will return to this point when discussing
decoherence and measurements in Sec. 3.5 and Chapter 4, respectively. Before continuing,
we note that all moments of an observable Â can be calculated with the density matrix as
⟨Âk⟩ = tr{Âkρ̂}.

As mentioned above, the density matrix must be used when we are uncertain about the
exact state of a system. Such uncertainty can arise in various situations – here we discuss
two cases. First, imagine that we are preparing a state vector for an experiment. Due to
imprecision in the lab equipment, it is not possible to know with certainty which state the

¹Note that the density operator is not uniquely generated by the set {pj , |ψj⟩}. By unitary transforma-
tions, this set can be transformed into other sets {qk, |φk⟩} that generate the same density operator [19].
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system is in. If this is the case, the system state is mixed, and needs to be described by a
density matrix.

Figure 3.1: Illustration of an open quantum system that interacts with its environment. The system, referred to as S in
the text, has a bare Hamiltonian ĤS(t) and density operator ρ̂S . The environment (E) has a bare Hamil-
tonian ĤE and density operator ρ̂E . The system and the environment interact by exchanging energy and
particles – this is described by the interaction Hamiltonian Ĥint(t). By the rectangular box we highlight
that the combined unit of system and environment constitutes a closed system which is described by the
Hamiltonian ĤSE(t) and density operator ρ̂SE .

As a second case, we consider an open quantum system S coupled to an environment E,
as visualized in Fig. 3.1. We assume that the state of the combined unit S + E is pure.
Therefore, it be written as

|ψ⟩ =
∑

jk

cjk |sj⟩ ⊗ |ek⟩ ,
∑

jk

|cjk|2 = 1, (3.5)

where |sj⟩ ⊗ |ek⟩ are orthonormal basis vectors for the composite state space of S + E,
while |sj⟩ and |ej⟩ are orthonormal basis vectors for S and E, respectively, and cjk =
( ⟨sj | ⊗ ⟨ek|) |ψ⟩ are complex coefficients for which |cjk|2 is the probability to obtain
outcome ξjk when measuring the observable Â =

∑
jk ξjk |sj⟩⟨sj | ⊗ |ek⟩⟨ek|. The cor-

responding density operator of S + E is given by ρ̂SE = |ψ⟩⟨ψ|. To find a description of
S alone, we trace ρ̂SE over the environment, and find the system density matrix

ρ̂S = trE{ρ̂SE} =
∑

k

⟨ek|ψ⟩ ⟨ψ|ek⟩ =
∑

k

|ψ̃k⟩⟨ψ̃k| , (3.6)

where trE{·} denotes the partial trace over the environment (here computed in the basis
|ek⟩), and |ψ̃k⟩ =

∑
j cjk |sj⟩ is a vector in the state space of S. Note that |ψ̃k⟩ is not

normalized as
⟨ψ̃k|ψ̃k⟩ =

∑

j

|cjk|2 < 1. (3.7)

We therefore introduce |ψ̃k⟩ =
√
p

k
|ψk⟩, for which ⟨ψk|ψk⟩ = 1, where pk = ⟨ψ̃k|ψ̃k⟩

is interpreted as the probability to be in state |ψk⟩. It follows that

ρ̂S =
∑

k

pk |ψk⟩⟨ψk| , (3.8)
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which coincides with the definition in Eq. (3.4). We see that by applying the partial trace
in Eq. (3.6), we lose all information encoded in the correlations between S andE, and thus
introduce uncertainty about the state of S. Therefore, open systems are prime examples
where we, in general, need the density matrix to describe the state of the system.

3.3 Dynamics

For a closed system described by a density matrix, as in Eq. (3.4), each state |ψj⟩ evolves in
time according to the Schrödinger equation (3.1). This implies that the density matrix can
be translated in time according to ρ̂(t) = Û(t, t0)ρ̂(t0)Û

†(t, t0), where ρ̂(t0) is the density
matrix at time t0, and Û(t, t0) is the time evolution operator in Eq. (3.3). Differentiating
with respect to time, we find the von Neumann equation

∂tρ̂(t) = −i[Ĥ(t), ρ̂(t)]. (3.9)

This equation determines the dynamics of ρ̂(t) for closed systems, and can be regarded as
the Schrödinger equation for mixed states. Due to the unitary time evolution, the eigen-
values of ρ̂(t) and the probabilities pj are stationary over time.

We now proceed with open quantum systems. As introduced above, an open system in-
teracts with its environment – see Fig. 3.1. By environment, we typically refer to one or
several thermal reservoirs, but it could also be a smaller system, such as a qubit. Due to
the possibly large dimension of the environment, it is difficult, or impossible, to carry out
calculations with the composite density operator ρ̂SE of S + E. For instance, for a bath
with infinitely many energy modes, the von Neumann equation (3.9) of ρ̂SE would result
in an infinitely large hierarchy of coupled differential equations, which, in general, does
not have an exact analytical solution. Instead, we aim to work with the reduced density
operator ρ̂S = trE{ρ̂SE} of S.

For the combined unit S + E, the total Hamiltonian reads

ĤSE(t) = ĤS(t) + ĤE + Ĥint(t), (3.10)

where ĤS(t) and ĤE are the bare Hamiltonians of S and E, respectively, and Ĥint(t)
describes the interaction betweenS andE. The total density operator ρ̂SE can be translated
in time with the unitary operator (3.3). If ρ̂SE(t0) is the initial state of S+E, and ρ̂S(t0)
is the initial state of S, the state of S at a later time t is given by

ρ̂S(t) = trE{Û(t, t0)ρ̂SE(t0)Û
†(t, t0)} ≡ K(t,t0)ρ̂S(t0), (3.11)

where K(t,t0) is referred to as a dynamical map, and is always dependent on the uni-
tary Û(t, t0) and the initial state of the environment, i.e., ρ̂E(t0) = trS{ρ̂SE(t0)}. As
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ρ̂SE(t0) might contain correlations betweenS andE, K(t,t0) is generally dependent on the
initial state of S as well. This is unsatisfactory as the map K(t,t0) depends on the state it acts
on – we would like to have a map that is universal and can take any input state ρ̂S(t0) as its
argument. In fact, by choosing an uncorrelated initial state ρ̂SE(t0) = ρ̂S(t0) ⊗ ρ̂E(t0),
we find a universal dynamical map (UDM)

ρ̂S(t) = trE{Û(t, t0)[ρ̂S(t0) ⊗ ρ̂E(t0)]Û
†(t, t0)} ≡ E(t,t0)ρ̂S(t0), (3.12)

where E(t,t0) only depends on Û(t, t0) and the initial state ρ̂E(t0) of the environment. This
map is independent on the initial state of S, and can, therefore, take any state ρ̂S(t0) as its
argument for a fixed ρ̂E(t0). As ρ̂E(t0) is a positive operator, it can be written in its spectral
representation ρ̂E(t0) =

∑
j λj |ej⟩⟨ej |, with eigenvalues λj , for which 0 ≤ λj ≤ 1 and∑

j λj = 1, and eigenstates |ej⟩. By computing the partial trace in Eq. (3.12) in this
eigenbasis, the UDM can be written as [19, 70, 71]

E(t,t0)ρ̂S =
∑

kj

Êkj(t, t0)ρ̂SÊ
†
kj(t, t0), (3.13)

with Kraus operators Êkj(t, t0) =
√
λj ⟨ek|Û(t, t0)|ej⟩, satisfying the completeness re-

lation
∑

kj Ê
†
kj(t, t0)Êkj(t, t0) = 1. The completeness relation ensures that E(t,t0) pre-

serves the trace of ρ̂S . We further note that E(t,t0) is linear and completely positive. Com-
plete positivity ensures that any map E(t,t0) ⊗1D, with 1D being theD-dimensional iden-
tity operator, acting on the composite system of S and any externalD-dimensional system
is also a positive map. Finally, a remark: In general, the initial state of S+E contains cor-
relations between the subsystems and cannot be written as a product state as in Eq. (3.12).
However, when experimentally preparing the initial state of S, it is common that all corre-
lations between S andE are destroyed, such that ρ̂SE(t0) = ρ̂S(t0)⊗ ρ̂E(t0) is no serious
restriction.

In general, it is desirable to find a Markovian equation of motion for ρ̂S , rather than trans-
lating the state in time with E(t,t0). To this end, we begin by noting that we typically
have the indivisibility condition E(t,t0) ̸= E(t,τ)E(τ,t0) for t0 < τ < t. The maps E(t,t0)

and E(τ,t0) are UDMs, but E(t,τ) is not a UDM as ρ̂SE(τ), the joint state of S + E at
time τ , can contain correlations between S and E. Therefore, E(t,τ) depends on the in-
put state ρ̂S(τ) = trE{ρ̂SE(τ)}. However, when the correlations between S and E are
weak, and have a negligible effect on the dynamics of S, we get the divisibility condition
E(t,t0) = E(t,τ)E(τ,t0), where all maps E(t,t0), E(t,τ), and E(τ,t0) are UDMs – compare to
the Chapman-Kolmogorov equation (2.8) for classical stochastic systems. The divisibility
condition is typically justified when the coupling between S and E is weak. We can thus
use the divisibility condition to write down a Markovian master equation [71]

∂tρ̂S(t) = lim
ϵ→0

ρ̂S(t+ ϵ) − ρ̂S(t)

ϵ
= lim

ϵ→0

E(t+ϵ,t) − 1

ϵ
E(t,t0)ρ̂S(t0) = L(t)ρ̂S(t),

(3.14)
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where we introduced the Liouville superoperator L(t) = limϵ→0[E(t+ϵ,t) − 1]/ϵ. Such a
Markovian master equation can always be written on Lindblad (or GKLS) form (named
after the persons that first derived it: Gorini, Kossakowski, Lindblad and Sudarshan) [70–
73] as

∂tρ̂S(t) = L(t)ρ̂S(t) = −i[Ĥ(t), ρ̂S(t)]

+
∑

k

γk(t)

[
L̂k(t)ρ̂S(t)L̂†

k(t) − 1

2
{L̂†

k(t)L̂k(t), ρ̂S(t)}
]
,

(3.15)

where Ĥ(t) is an Hermitian operator, the coefficients γk(t) ≥ 0, and L̂k(t) are referred to
as Lindblad operators. Typically, Ĥ(t) does not exactly coincide with the bare Hamiltonian
ĤS(t) ofS, but also contain terms originating from the coupling betweenS andE [70, 71].
If the extra terms are negligible, the first term of the Lindblad equation (3.15) corresponds to
the von Neumann equation (3.9), and describes the dynamics of S in the absence ofE. The
combinations of operators under the sum in the Lindblad equation are commonly written
on the compact superoperator form D[L̂k(t)]ρ̂ = L̂k(t)ρ̂L̂

†
k(t)− 1

2{L̂†
k(t)L̂k(t), ρ̂}, and

describes how the environment affects the system. Often, the Lindblad operators are ladder
operators of the system, describing how the system gets excited or de-excited by interacting
with the environment. In general, this interaction can be considered as incoherent, and
does not involve the off-diagonals of the density matrix. The coefficients γk(t) are transition
rates and can be expressed in terms of the properties of the environment and the coupling
between S and E. Below we study an explicit example; the double quantum dot.

The Liouville superoperator, or Liouvillian, L(t) is said to be a generator of the UDM
E(t,t0), and we can write

E(t,t0) = T e
∫ t

t0
dsL(s)

, (3.16)

where T is the time ordering operator. If L(t) is time independent, E(t,t0) = exp{L(t−
t0)} only depends on the time difference τ = t − t0, such that E(t,t0) = Eτ . This UDM
satisfies the semigroup property EtEτ = Et+τ [71]. Starting from this property, we may
show the converse, i.e., that the semigroup property leads to a time independent Liouvillian
L [71], where all time dependence in the Lindblad equation (3.15) can be removed. For
such a time independent Liouvillian, we are typically interested in the stationary state of
the dynamics when t → ∞ [a time dependent L(t) does not necessarily have a stationary
state]. To motivate why we focus only on the stationary state, we note that for quantum
heat engines or feedback-controlled devices, it is desirable that the system reaches a target
state that is stable over time. That is, we want to find the state ρ̂ss that satisfies Lρ̂ss = 0.
The total solution to the Lindblad equation can be written in the general form

ρ̂S(t) =
∑

j

cje
λj(t−t0)σ̂j , (3.17)
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where cj are coefficients determined by the initial condition ρ̂S(t0), and λj are the eigen-
values of L with corresponding (linearly independent) eigenstates σ̂j . To have a stationary
state, there must be one eigenvalue λ0 = 0 with c0σ̂0 = ρ̂ss. The other eigenvalues have a
negative real part such that only the j = 0 term survives in the long time limit.

The double quantum dot

An important open quantum system in this thesis is the double quantum dot (DQD).
Here we briefly introduce the absolute basics of nanowire quantum dots, and show how
the dynamics of a DQD can be described by a Lindblad master equation.

Quantum dots (QDs) are manmade structures where electrons are spatially confined in
all three dimensions. For such confinement, the electrons can, according to quantum me-
chanics, only have certain discrete energies. Therefore, QDs are often referred to as artificial
atoms. By putting two QDs in series, we form a DQD. Figure 3.2(a) depicts one way of
manufacturing DQDs, using a semiconductor nanowire where layers of different materials,
or crystal structures, form QDs. Note that the manufacturing can be done in alternative
ways as well, see, for instance, Ref. [50]. Figure 3.2(b) illustrates the effective potential
experienced by electrons traversing the nanowire. The layering of materials creates tunnel
barriers, forming QDs in between them. Here we consider the case where electrons can
only have the discrete energies ϵL and ϵR, for the left and right dot, respectively. These
energies can often be externally controlled by using electrode gates. The middle barrier
couples the left and right dots via the tunnel strength g. Electrons can also tunnel be-
tween the QDs and the metallic strips via the left and right barriers. This occurs with rates
ΓL and ΓR. Electrons in the metallic strips are distributed according to the Fermi-Dirac
distribution

n
(α)
F (ϵ) =

1

e(ϵ−µα)/kBTα + 1
, α = L,R, (3.18)

where kB is the Boltzmann constant, ϵ is energy, and Tα and µα are the temperature and
chemical potential of strip α. With these features, the DQD becomes a basic unit for
studying electron transport, including quantum effects such as tunneling and coherence.
In addition, DQDs can be accurately controlled and measured [53], and are thus promising
platforms for studying quantum feedback control.

Often, these systems can be tuned to a regime with large inter- and intradot Coulomb
repulsion, such that only one electron can reside in the DQD at any time. Under these
conditions, the DQD Hamiltonian reads

ĤDQD = ϵL |L⟩⟨L| + ϵR |R⟩⟨R| + g (|L⟩⟨R| + |R⟩⟨L|) , (3.19)

where |L⟩ (|R⟩) represents the state when one electron resides in the left (right) dot, while
the right (left) is empty. Both dots can also be empty, we denote this state by |0⟩. The first
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Figure 3.2: (a) Qualitative sketch of a nanowire double quantum dot. The white and orange regions in the wire
correspond to different materials or crystal structures. Typically, a wire has a diameter of roughly 10-100
nm and extends a few micrometers along the x-axis. The quantum dots (QD) are defined in the white
regions squeezed in between the orange regions. Electrons in the QDs are confined in all three spatial
dimensions. The two strips of metal lying on top of the wire act as electron reservoirs, providing and
absorbing electrons from the double quantum dot. (b) Sketch of the of the effective potential landscape
experienced by electrons in the nanowire. The orange regions correspond to tunnel barriers. In the
quantum dots (in between the barriers), electrons can have discrete energies ϵL and ϵR, respectively.
Electrons can tunnel between the dots with tunnel strength g. Electrons can additionally tunnel between
the dots and the metal strips with rates ΓL and ΓR. Electrons in the metal strips are distributed according
to the Fermi-Dirac distribution n

(α)
F , where Tα and µα are the temperatures and chemical potentials of

stripα = L,R. The Fermi-Dirac distributions are sketched in the boxes to the left and right of the leftmost
and rightmost tunnel barriers.

terms of the Hamiltonian correspond to the energy of the left and right dot, respectively,
while the third term describes coherent interdot tunneling. For a small interdot Coulomb
repulsion, both dots can be occupied simultaneously. If this is the case, the Hamiltonian
must be modified with an additional term U |LR⟩⟨LR|, where |LR⟩ represents the state
when both dots are occupied, and U is the repulsion energy between the electrons. This is
used in Paper IV and V, but here we solely concentrate on the case where U → ∞ and
|LR⟩ can be ignored.

The DQD is an open quantum system, where the metallic strips correspond to the envi-
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ronment in the description above. The dynamics of the DQD can thus be written as a
Lindblad equation. Depending on the hierarchy of timescales in the system, the Lindblad
equation can be written in local or global form. The local equation is obtained when the
coupling g is small, such that electrons mostly are localized in either the left or right dot.
In the global equation, g is large, such that electrons become delocalized over both dots.
Here we only concentrate on the local model². The local Lindblad master equation of the
DQD reads³

∂tρ̂(t) = −i[ĤDQD, ρ̂(t)]

+
∑

α=L,R

(
Γαn

(α)
F (ϵ̄)D[σ̂†

α] + Γα[1 − n
(α)
F (ϵ̄)]D[σ̂α]

)
ρ̂(t), (3.20)

where ϵ̄ = (ϵL + ϵR)/2 and σ̂α = |0⟩⟨α|. This equation is valid when

max{kBTα, |ϵ̄− µα|} ≫ Γα,
√

∆2 + g2, (3.21)

where ∆ = (ϵL − ϵR)/2. The master equation is derived in Appendix D. Note that the
Fermi-Dirac distributions are evaluated at ϵ̄, rather than at the local dot energies ϵα, which
are commonly used in the literature. Actually, Eq. (3.20) only gives reasonable results as
long as ∆ is small. If this is the case, we can replace ϵ̄ → ϵα without problems. For large
∆, the system can undergo interdot transitions that are thermodynamically questionable.
In Chapter 5, we continue this discussion when we study thermodynamics. The stationary
solution of the master equation, evaluated in the {|0⟩ , |L⟩ , |R⟩}-basis, reads

ρ00 =
{
4g2(κL + κR)2 + κLκR[16∆2 + (κL + κR)2]

}
/N ,

ρLL =
{
4g2(γL + γR)(κL + κR) + γLκR[16∆2 + (κL + κR)2]

}
/N ,

ρRR =
{
4g2(γL + γR)(κL + κR) + γRκL[16∆2 + (κL + κR)2]

}
/N ,

ρLR = {2g [4∆ + i(κL + κR)] (γLκR − γRκL)} /N ,

(3.22)

where ρab = ⟨a|ρ̂ss|b⟩, with a, b = 0, L,R, γα = Γαn
(α)
F (ϵ̄), κα = Γα[1−n

(α)
F (ϵ̄)] and

N = 4g2(κL +κR)[2(γL + γR) +κL +κR] + [16∆2 + (κL +κR)2](γLκR + γRκL +
κLκR). Note that the remaining matrix elements of ρ̂ss are zero as they are decoupled from
the elements in Eq. (3.22).

3.4 Unraveling quantum jumps

Many experiments exhibit stochastic evolution rather than the smooth, deterministic evo-
lution of Eqs. (3.9) and (3.15). Good examples of this are electrons jumping in and out of

²A discussion on local and global models can, for instance, be found in Refs. [74, 75].
³We have dropped the subscript ‘S’ on the density matrix for ease of notation, cf. Eq. (3.15). However, the

density matrix describes the reduced state of the DQD, and does not include the environment (metallic strips).
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quantum dots and photo-detection. Jumps, or detections, are observed at random times
that cannot be deterministically predicted. To recover the randomness of the dynamics in
a theoretic description, one can unravel the deterministic dynamics. The unraveling can
be seen as a quantum trajectory [76] resolving all stochastic events. In such a description,
the state of a system evolves according to a stochastic master equation and is conditioned
on the entire history of the quantum trajectory. As an example, consider a two-level atom
monitored by a photo-detector. If we observe a photon, we know that the atom must be
in the ground state just after the detection. That is, the state becomes conditioned on the
observation. Unravelings become interesting when trying to understand the dynamics of
an experiment, or system, on the level of single quantum trajectories. Typically, this is
common when studying feedback control or systems subjected to measurements. We note
that the deterministic description is recovered when averaging over all possible realizations
of quantum trajectories.

In this section, we unravel the Lindblad equation (3.15), and derive a stochastic master
equation that resolves jumps (such as in quantum dots or photo-detection). Our derivation
closely follows Refs. [15, 77]. The results of this section are relevant for Chapter 4 as well as
Papers I, II, and III.

For simplicity, we consider an open quantum system with a time-independent⁴ Hamilto-
nian Ĥ , such that the system density matrix at time t+ dt is given by

ρ̂(t+ dt) = eLdtρ̂(t) ≈ (1 + dtL) ρ̂(t)

= ρ̂(t) − idt
(
Ĥeff ρ̂(t) − ρ̂(t)Ĥ†

eff

)
+ dt

N∑

k=1

L̂kρ̂(t)L̂
†
k,

(3.23)

where ρ̂(t) is the density matrix at time t, and we defined the effictive non-Hermitian
Hamiltonian

Ĥeff = Ĥ − i

2

K∑

k=1

L̂†
kL̂k. (3.24)

To write the evolution in this form, we used the Lindblad equation (3.15) withK Lindblad
operators L̂k, and expanded the exponential to first order in the infinitesimal timestep dt.
As eLdt is a UDM, we can write [see Eq. (3.13)]

ρ̂(t+ dt) =
K∑

k=0

Êkρ̂(t)Ê
†
k, (3.25)

with the Kraus operators

Ê0 = 1 − idtĤeff ,

Êk =
√
dtL̂k, k = 1, . . . ,K.

(3.26)

⁴For a time-dependent Hamiltonian, the end results are the same, but the derivation requires time ordering.
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This choice ensures that
∑K

k=0 Ê
†
kÊk = 1 to first order in dt. The operators Êk ̸=0 can

be interpreted as jump operators, and we say that Êk ̸=0 describes a jump in channel k.
As an example, for the DQD, σ̂†

α describes an electron jumping into dot α from bath
α. The operator Ê0 corresponds to the dynamics when no jump occurs. We note that Ê0

describes non-unitary evolution, reflecting that our knowledge about the system is updated
even though no jump occurs.

When observing a jump in channel k = 1, . . . ,K , our state of knowledge updates accord-
ing to the map

ρ̂(t) → Êkρ̂(t)Ê
†
k

pk(t)
, (3.27)

where the normalization

pk(t) = tr
{
Ê†

kÊkρ̂(t)
}

= dt tr
{
L̂†

kL̂kρ̂(t)
}

(3.28)

is the probability of observing a jump in channel k. As pk(t) ∝ dt, it is not very likely
to observe a jump during the timestep dt. In fact, the probability to not observe a jump,
p0(t) = 1 − dt

∑K
k=1 tr{L̂†

kL̂kρ̂(t)}, tells us that nothing happens most of the time.
During timesteps of no jump, the state evolves as

ρ̂(t) → Ê0ρ̂(t)Ê
†
0

1 − dt
∑K

k=1 pk(t)
. (3.29)

As the state is normalized with the probability pk(t), k = 0, 1, . . . ,K , in both Eqs. (3.27)
and (3.29), the updated density matrix will be conditioned on the jump that occurred (com-
pare with Bayes’ rule). Thus, if the state is evolved over a time interval [t0, t], the density
matrix will be conditioned on the full history of jumps in that interval. Therefore, we in-
troduce the notation ρ̂c(t), indicating that the state is conditioned on all previous jumps.
Conditioned states are revisited in Chapter 4, where we discuss quantum measurements.

Our goal is to find a stochastic master equation resolving the quantum jumps. To this end,
we introduce random variables dNk(t) = 0, 1, k = 1, . . . ,K , which tell us whether a
jump occurred (1) or not (0) in channel k. The probability of a jump occuring in channel
k is given by p(c)

k (t) = dt tr{L̂†
kL̂kρ̂c(t)}, as above. Note that we added a superscript

“(c)” to indicate that this probability is conditioned on all previous jumps. By dN0(t) =
1−∑K

k=1 dNk(t), we describe a stochastic variable for the no jump event. The probability
of having dN0(t) = 1 is, as above, given by p(c)

0 (t) = 1 −∑K
k=1 p

(c)
k (t). We note that

the following relations hold,

dNl(t)dNk(t) = dNk(t)δlk,

dtdNj(t) = 0, j = 1, . . . ,K.
(3.30)
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The first of these relations tells us that only one channel can host a jump at a time, and
defines point processes [60]. In fact, this relation is the equivalent of the Itô rule for
point processes (see Chapter 2). The second relation can be motivated by noting that
E[dtdNj(t)] ∝ dt2 = 0, where E[·] denotes an ensemble average over all possible tra-
jectories of jumps. In Appendix E, we introduce a way of calculating such averages. We
can now write the update of the density matrix in the compact form

ρ̂c(t+ dt) =
K∑

k=0

dNk(t)
Êkρ̂c(t)Ê

†
k

p
(c)
k (t)

. (3.31)

By using Eq. (3.30) and the expansion 1/(1−adt) ≈ 1+adt to first order in dt, Eq. (3.31)
can be written as a stochastic master equation

dρ̂c(t) = −idt[Ĥ, ρ̂c(t)] +
K∑

k=1

dNk(t)


 L̂kρ̂c(t)L̂

†
k

tr
{
L̂†

kL̂kρ̂c(t)
} − ρ̂c(t)




+ dt
K∑

k=1

(
ρ̂c(t) tr

{
L̂†

kL̂kρ̂c(t)
}

− 1

2

{
L̂†

kL̂k, ρ̂c(t)
})

,

(3.32)

where dρ̂c(t) = ρ̂c(t + dt) − ρ̂c(t). We call this an unraveling of the Lindblad equation
(3.15). The unraveling can be seen as a fine-grained description of the dynamics, resolving
all jumps that occur. Therefore, the dynamical description is stochastic. Note that this
equation is nonlinear in ρ̂c(t) because of the second term in the first row, and the first term
in the second row. The nonlinearlity arises as we normalize the state after each timestep dt
[see Eq. (3.31)]. The Lindblad equation can be seen as an ensemble averaged description
of the stochastic dynamics, and is obtained by taking the average E[·] of Eq. (3.32) (see
Appendix E). Note that the Lindblad equation can be unraveled in many various ways, see
Chapter 4 for other unravelings.

As stated above, a natural example is the DQD. By chosing L̂1 =
√
γLσ̂

†
L, L̂2 =

√
κLσ̂L,

L̂3 =
√
γRσ̂

†
R, and L̂4 =

√
κRσ̂R, the jumps correspond to electron exchanges with the

baths. Unravelings are also useful when studying photo-detection. For a two-level atom
with states |0⟩ and |1⟩, the choice L̂ =

√
κ |0⟩⟨1| corresponds to a click in the detector,

with κ being the rate of spontaneous emission, see Ref. [15] for more details.

Typically, Eq. (3.32) is difficult to solve analytically and one has to resort to numerical
methods. In each timestep dt, we must draw a random number from the distribution
{p(c)

k (t)}K
k=0 to decide whether a jump occurs in any of the channels. This is followed by

updating the state according to Eq. (3.31) or (3.32). However, if the Hilbert space is large, it
can become difficult to store the trajectory of the density matrix on a normal computer. For
a Hilbert space of dimensionM , it takes ∼ M2 real numbers to store the density matrix at
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each instant of time. This can be circumvented for pure initial states, where one can work
with the stochastic evolution of state vectors |ψ(t)⟩, which require ∼ M real numbers to
store. In quantum dots, one can always manipulate the system to achieve a pure initial
state. The state vector evolves according to the stochastic Schrödinger equation [15]

|ψ(t+ dt)⟩ =
K∑

k=1

dNk(t)
L̂k |ψ(t)⟩√
⟨L̂†

kL̂k⟩(t)

+

[
1 −

K∑

k=1

dNk(t)

][
1 − dt

(
iĤ +

1

2

K∑

k=1

{
L̂†

kL̂k − ⟨L̂†
kL̂k⟩(t)

})]
|ψ(t)⟩ ,

(3.33)
where ⟨L̂†

kL̂k⟩(t) = ⟨ψ(t)|L̂†
kL̂k|ψ(t)⟩. The conditional density matrix is recovered via

ρ̂c(t) = |ψ(t)⟩⟨ψ(t)|, and the unconditioned density matrix via ρ̂(t) = E[|ψ(t)⟩⟨ψ(t)|].
For a very large dimensionM , it can also be useful to study the ensemble averaged evolution
of certain system observables [15, 78], see, for instance, Ref. [79].

3.5 Decoherence

In contrast to classical physics, quantum mechanics allows particles to be delocalized. A
good example illustrating this is the DQD, where an electron can be in superpositions of
|L⟩ and |R⟩, thus being delocalized over the whole system. However, delocalized states are
very fragile, and quickly decay into localized states due to interactions with the environ-
ment. One can think of the interactions as measurements, gradually collapsing delocalized
wavefunctions. This process is called decoherence, or dephasing [70, 80, 81]. Often this
process is fast, making it one of the main challenges in the development of quantum tech-
nologies, where delocalized effects, such as entanglement, are exploited to perform various
tasks. While being detrimental for quantum technologies, decoherence is interesting from
a fundamental point of view. For instance, when a quantum particle is dephased in the po-
sition basis, it gets a localized wavefunction, and a well-defined position – just as in classical
physics. Decoherence is thus the key process behind the quantum-to-classical transition,
from which the classical world emerges⁵.

In this section, we begin by introducing a simple model to understand how decoherence
can emerge through environmental interactions. Then we explore the quantum-to-classical
transition in the DQD, and derive a classical rate equation from the Lindblad equation
(3.20). The discussion of this section is important for later chapters and Paper III.

⁵The quantum-to-classical transition has, e.g., been observed in diffraction experiments [82]. By sending
fullerene molecules through a grating, one observes a diffraction pattern, demonstrating the (delocalized) wave
nature of the molecules. When increasing the ambient gas pressure, the diffraction pattern gradually disappears,
demonstrating the quantum-to-classical transition.
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Simple model with fluctuating levels

Here we consider a two-level atom with states |0⟩ and |1⟩. We assume that the atom is
immersed in a gas, where it scatters against gas molecules. During scattering events, the
potential of the atom gets perturbed, giving rise to random fluctuations in the level splitting
between the ground and excited states. The Hamiltonian of the atom reads

Ĥ(t) =

[
∆

2
+X(t)

]
σ̂z, (3.34)

where ∆ is the unperturbed level splitting,X(t) is a random variable capturing the effect of
the scattering events, and σ̂z is the Pauli-Z operator. The random variable has the following
properties,

⟨X(t)⟩ = 0, and ⟨X(t)X(t′)⟩ =
σ2

2
δ(t− t′). (3.35)

The first property tells us that there is no preferred perturbation direction on average. The
second property tells us that scattering events at different times are uncorrelated. Note that
both σ2 and δ(t− t′) must have the unit of inverse time. As [Ĥ(t), Ĥ(t′)] = 0, the atom
evolves according to the unitary evolution

Û(t) = e−i[∆t
2

+Y (t)]σ̂z , (3.36)

where

Y (t) =

∫ t

0
dsX(s) (3.37)

is the accumulated phase shift due all scattering events in the time interval [0, t]. The
accumulated phase shift is a Gaussian random variable with zero mean and variance σ2t
(follows from the central limit theorem). For an infinitesimal timestep dt, we can write
Y (dt) = σdW , where dW is a Wiener increment (see Chapter 2). The process Y (t) can
thus be decomposed as Y (t) = σ

∫ t
0 dW (s), which effectively is a sum of many Wiener

increments. An infinitesimal evolution of the atom is described by

Û(dt) = e−i[∆dt
2

+σdW ]σ̂z . (3.38)

If ρ̂c(t) is the density matrix of the atom at time t, conditioned on that the random phase
followed the trajectory {dW (τ), 0 ≤ τ < t}, the state at time t+ dt is given by

ρ̂c(t+ dt) = Û(dt)ρ̂c(t)Û
†(dt). (3.39)

By expanding the unitary operators to first order in dt, i.e., to second order in dW (ac-
cording to the Itô rule from Chapter 2), the evolution can be written as a stochastic master
equation,

dρ̂c(t) = −i
[
∆dt

2
+ σdW (t)

]
[σ̂z, ρ̂c(t)] + σ2dtD[σ̂z]ρ̂c(t). (3.40)

39



To obtain an equation that is independent on the history of the underlying noise process,
we average over all possible trajectories {dW (τ), 0 ≤ τ < t}. We denote this average as
E[·], and find E[ρ̂c(t)] = ρ̂(t) (unconditioned density matrix), and E[dW (t)ρ̂c(t)] = 0,
as the scattering event at time t is independent of the state of the atom. Averaged over all
possible realizations, the two-level atom evolves according to the master equation

∂tρ̂(t) = −i∆
2

[σ̂z, ρ̂(t)] + σ2D[σ̂z]ρ̂(t). (3.41)

The first term describes how the unperturbed atom evolves in time, while the second term
describes the decoherence effect induced by scattering. If the density matrix initially is
given by ρ̂(0) = ρ00 |0⟩⟨0| + ρ11 |1⟩⟨1| + ρ01 |0⟩⟨1| + ρ10 |1⟩⟨0|, the master equation tells
us that the state at time t reads

ρ̂(t) = ρ00 |0⟩⟨0| + ρ11 |1⟩⟨1| + e−2σ2t
(
ρ01e

−i∆t |0⟩⟨1| + ρ10e
i∆t |1⟩⟨0|

)
. (3.42)

The effect of the decoherence is thus to exponentially dampen the coherence of the atom,
at a rate proportional to σ2. At long times,

lim
t→∞

ρ̂(t) = ρ00 |0⟩⟨0| + ρ11 |1⟩⟨1| , (3.43)

which is a classical mixture. That is, the atom is either in the ground or excited state, but
never in a superposition of the two. This kind of exponential decay of coherences is general
for all quantum systems subjected to decoherence. More sophisticated decoherence models
can be found in Refs. [70, 80].

Quantum-to-classical transition in the DQD

Decoherence is the process through which the classical world emerges. A good system
to explore the quantum-to-classical transition is the DQD, which is simple to model and
offers quantum effects such as electron tunneling and superpositions of electron states.
Additionally, DQDs are subjected to decoherence induced by the electronic leads, as well
as electron and phonon scattering in the materials which the system is defined in. If the
decoherence effects are strong, the coherence is heavily suppressed (as we saw in the previous
subsection). Because of this, DQDs are often well-described by classical rate equations
[52, 83]. Here we derive such a rate equation for the DQD, starting from the full quantum
master equation (3.20). A similar derivation was done in Ref. [84].

To begin, we write Eq. (3.20) as

∂tρ̂t =
(
L0 + C + ΓφD[Â]

)
ρ̂t, (3.44)
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where L0ρ̂ = −i[ϵL |L⟩⟨L|+ ϵR |R⟩⟨R| , ρ̂]+∑α

(
γαD[σ̂†

α]ρ̂+ καD[σ̂α]ρ̂
)
, and Cρ̂ =

−ig[|L⟩⟨R|+ |R⟩⟨L| , ρ̂]. Note that we have added an additional term ΓφD[Â] represent-
ing environmental dephasing occurring at the rate Γφ, with Â = |R⟩⟨R| − |L⟩⟨L|.

We now introduce the Nakajima-Zwanzig superoperators [85, 86]

P ρ̂ =
∑

α=0,L,R

ραα |α⟩⟨α| , and Q = 1 − P , (3.45)

which singles out the diagonal (P) and off-diagonal (Q) elements of ρ̂ in the basis {|0⟩ , |L⟩ , |R⟩}.
As before, ραα = ⟨α|ρ̂|α⟩. Note that P2 = P and Q2 = Q. By explicit evaluation, we
find that [L0,P] = [L0,Q] = [D[Â],Q] = PD[Â] = D[Â]P = PCP = QCQ = 0.
With these relations, Eq. (3.44) can be split into two coupled differential equations,

∂tP ρ̂t = L0P ρ̂t + PCQρ̂t, (3.46a)

∂tQρ̂t =
(
L0 + ΓφD[Â]

)
Qρ̂t + QCP ρ̂t. (3.46b)

The solution to Eq. (3.46b) reads

Qρ̂t = e(L0+ΓφD[Â])Q(t−t0)Qρ̂t0 +

∫ t

t0

dse(L0+ΓφD[Â])Q(t−s)QCP ρ̂s. (3.47)

We note that L0 + ΓφD[Â] has negative eigenvalues in Q-space, such that the first term
decays exponentially, and can be ignored at long times (we are most often interested in the
stationary state). Alternatively, we may assume that Qρ̂t0 = 0. For the integral, we make
the substitution τ = t− s. Additionally, we assume that the exponential decays to zero on
a timescale during which P ρ̂t remains constant. The density matrix may thus be moved
outside the integral, and we replace P ρ̂s → P ρ̂t. Also note that the upper integration
limit can be extended to ∞ under these assumptions. Finally, we find

Qρ̂t = −
{(

L0 + ΓφD[Â]
)

Q
}−1

QCP ρ̂t, (3.48)

where we introduced the Drazin inverse [87, 88]
{(

L0 + ΓφD[Â]
)

Q
}−1

= −
∫ ∞

0
dτe(L0+ΓφD[Â])Qτ . (3.49)

By explicit calculation, one can show that −
{(

L0 + ΓφD[Â]
)

Q
}−1

QC = ξ
(
D[|L⟩⟨R|+

|R⟩⟨L|]
)
, with the classical interdot tunneling rate

ξ =
4g2 (κL + κR + 4Γφ)

(κL + κR + 4Γφ)2 + 16∆2
. (3.50)
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We note that this rate is suppressed when the external dephasing Γφ is large. In this limit,
interdot tunneling is heavily slowed down, which we expect for strong dephasing, as elec-
trons in the DQD get localized on either the left or right dot. As Γφ → ∞, the coherence
vanishes and ξ → 0, reflecting that tunneling is a quantum process which requires coher-
ence. However, for finite Γφ, we expect that tunneling is well-modeled by classical jumps
occuring at rate ξ. We also note that ξ has a Lorentzian profile in the splitting ∆, result-
ing from the lifetime broadening of the individual levels. As stated earlier, we expect the
equations to hold only for small ∆ (see also Chapter 5).

By plugging Eq. (3.48) into Eq. (3.46a), we find the classical equation of motion

∂tP ρ̂t = L0P ρ̂t + ξ
(
D[|L⟩⟨R|] + D[|R⟩⟨L|]

)
P ρ̂t, (3.51)

for the populations of the DQD. We may rewrite P ρ̂t as a vector P t = [ρ00(t), ρLL(t), ρRR(t)]T ,
and formulate this master equation as a classical rate equation,

∂tP t =




−γL − γR κL κR

γL −κL − ξ ξ
γR ξ −κR − ξ


P t. (3.52)

The approximations and assumptions leading to this equation are justified as long as Γφ ≫
ΓL,ΓR, ξ, where ΓL(R) is the tunnel coupling between the DQD and the left (right) reser-
voir.

3.6 Full counting statistics

The central idea of full counting statistics is to gain full knowledge about particle transport
in nanoscale systems. The probability distribution Pt(n) of having n transferred particles
during a time interval t can reveal intrinsic properties of these systems. For instance, in
electronic circuits on the microscopic scale, the role of current fluctuations becomes es-
sential for understanding a large variety of microscopic concepts [58]. Motivated by this,
we introduce full counting statistics with electronic transport [89] in mind, focusing espe-
cially on how Pt(n) can be obtained for systems described by Markovian master equations
[90, 91]. We note that this way of counting can be extended to any type of particles – for
instance, photons [92] and phonons [93].

We begin by studying the setup depicted in Fig. 3.3(a), where an open system S exchanges
particles with one or several reservoirs. Our main objective is to measure the statistics of
exchanged particles between S and the reservoir labeled by R during an arbitrary inter-
action time t. Such particle counting is, since roughly 20 years ago, possible to conduct
in electronic systems, where single electron transitions can be detected [52, 54, 94–98]. As
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Figure 3.3: (a) A standard setup for nanoscale experiments. A system (S) is coupled to one or several environments.
We are interested in investigating the intrinsic properties of S by measuring the particle exchange be-
tween S and the environment labeled by R. This exchange can be measured via the particle current I(t),
as marked in the figure. (b) A schematic sketch of how the current I(t) changes over time. The current
is a series of δ-peaks centered at the times at which the jumps occur. The positive (negative) peaks cor-
respond to jumps from S to R (R to S). (c) The probability distribution Pt(n) of the number of particles
n exchanged between S and R after time t. By relating n(t) and I(t) as in Eq. (3.53), we may find the
moments and cumulants of Pt(n) directly from the current correlations.

long as the response rate of the detector is much larger than the electron transition rate,
one can accurately infer the transport statistics. When the electron transition rate is similar
to, or larger than the detector response rate, it is no longer possible to resolve all electron
transitions, and the recorded data would give inaccurate transport statistics. Instead, one
could measure the current I(t) (here interpreted as a particle current rather than an elec-
tronic current) to infer something about the transport statistics⁶. In Fig. 3.3(b), we have
sketched a time trace of the current between S and R, which is a series of δ-peaks due to
the discrete nature of particle jumps. In Appendix G we provide more details on discrete
jump currents and how a diffusive current can emerge from this picture. Note that the
results of Sec. 3.6.1 hold for discrete jumps – a similar treatment for diffusion currents can
be found in Ref. [77]. The number of particles exchanged with R after time t is obtained
via

n(t) =

∫ t

0
dτI(τ). (3.53)

Here we use the convention that I(t) > 0 when the current flows from S towardsR, such
that n(t) > 0 when particles enter R. Since I(t) and n(t) are random processes, it is
difficult to draw general conclusions about the transport statistics from single trajectories
of these quantities. Instead, by repeating the experiment a large number of times N , and
keeping track of n(t) for each run, we can find the number of timesKn where we observe
n exchanged particles after time t. The relative frequency of observing n particles is given
by Kn/N , and in the limit of large N , we get

lim
N→∞

Kn

N
= Pt(n), (3.54)

⁶In this thesis, we interpret I(t) as a classical current. This allows for straightforward manipulations when
calculating higher order statistics as in Eq. (3.55). In a full quantum treatment, the current is introduced as an
operator Î(t). This raises some subtleties, such as time ordering. For instance, Eq. (3.55) does not, in general,
hold when the current is an operator. For a full quantum treatment, see, for example, Refs. [89, 99, 100].
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the probability of observing n exchanged particles after time t. Figure 3.3(c) illustrates a
typical distribution function Pt(n).

We can also use the current to find the moments of Pt(n). By taking an average ⟨·⟩ over
many experimental realizations [similar to Eq. (2.3)], we get

⟨nk(t)⟩ =

∫ t

0
dτ1 · · ·

∫ t

0
dτk⟨I(τ1) · · · I(τk)⟩, (3.55)

where we used Eq. (3.53). For k = 1, we get the average ⟨n(t)⟩. For long times t, the average
current ⟨I(t)⟩ reaches a stationary state, and becomes independent on time. In that case,
the average current can be moved outside the integral, and we get ⟨n(t)⟩ = ⟨I⟩sst. The
stationary current can thus be written on the intuitive form

⟨I⟩ss = lim
t→∞

⟨n(t)⟩
t

. (3.56)

We can further calculate the variance of Pt(n) using the current,

⟨⟨n2(t)⟩⟩ = ⟨n2(t)⟩ − ⟨n(t)⟩2

=

∫ t

0
dτ1

∫ t

0
dτ2 [⟨I(τ2)I(τ1)⟩ − ⟨I(τ2)⟩⟨I(τ1)⟩] .

(3.57)

From this, we find the second order current cumulant

⟨⟨I2(t)⟩⟩ = ∂t⟨⟨n2(t)⟩⟩ = 2

∫ t

0
dτ [⟨I(τ)I(t)⟩ − ⟨I(τ)⟩⟨I(t)⟩] . (3.58)

From these expressions, we can define a current correlator CI(t, t
′) = ⟨I(t)I(t′)⟩ −

⟨I(t)⟩⟨I(t′)⟩. We are interested in the stationary state of the current correlator, where it is
translationally invariant in time and only depends on the difference t− t′, i.e., CI(t, t

′) =
CI(t − t′). We further assume that the system is Markovian, meaning that the correlator
quickly decays to zero on some correlation time τc. Finally, we assume that the correlator
is symmetric under the exchange t ↔ t′, such that all points separated by t − t′ are cor-
related identically. When the measurement time t greatly exceeds the correlation time τc,
the variance of Pt(n) becomes linear in time,

⟨⟨n2(t)⟩⟩ = t

∫ ∞

−∞
dτ [⟨I(τ)I(0)⟩ − ⟨I(τ)⟩⟨I(0)⟩] . (3.59)

This implies the stationary second current cumulant

⟨⟨I2⟩⟩ss = lim
t→∞

⟨⟨n2(t)⟩⟩
t

=

∫ ∞

−∞
dτ [⟨I(τ)I(0)⟩ − ⟨I(τ)⟩⟨I(0)⟩] . (3.60)
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With the noise spectrum of the stationary current correlator [see Eq. (2.6)]

SI(ω) =

∫ ∞

−∞
dτeiωτCI(τ), (3.61)

we find that the zero frequency noise SI(0) coincides with Eq. (3.60). Therefore, we un-
derstand that the variance of n, in the long time limit, is given by

⟨⟨n2(t)⟩⟩ = SI(0)t. (3.62)

The variance thus grows linearly with time at a rate determined by the zero frequency noise
of the current correlator. This linear increase reflects that different trajectories ofn(t) will be
less similar the longer we measure. The uncertainty in the number of exchanged particles
should therefore grow with time. This is similar to the variance of Brownian motion in
Chapter 2.

3.6.1 Full counting statistics in Markovian master equations

In the previous section, we described how the moments of the distribution Pt(n) can be
calculated by measuring particle currents. Here we discuss how Pt(n), and its moments
and cumulants, may be calculated from a Markovian master equation.

Our starting point is the Markovian master equation

∂tρ̂t = Lρ̂t, (3.63)

where the Liouville superoperator L is assumed to be in Lindblad form [see Eq. (3.15)].
This superoperator can be decomposed as L = L0 + J+ + J−, where L0 describes all
dynamics that leaves the number of exchanged particles with R unchanged, and the jump
superoperators J± describe how one particle is added (+) or removed (−) from R [see
Fig. 3.3(a)]. We are interested in the n-resolved density matrix ρ̂t(n), representing the
system state when n particles have been exchanged with R. In particular, we note that
Pt(n) = tr{ρ̂t(n)} is the probability distribution of our interest, and that ρ̂t =

∑
n ρ̂t(n).

By taking the Laplace transform of the master equation (3.63), we can show (Appendix B)
that the number resolved density matrix evolves according to

∂tρ̂t(n) = L0ρ̂t(n) + J+ρ̂t(n− 1) + J−ρ̂t(n+ 1), (3.64)

providing an infinitely large system of coupled differential equations. Typically, the initial
condition is given by ρ̂t0(n) = δn,0ρ̂t0 , such that zero particles have been exchanged
initially. To solve this set of equations, we introduce the counting field χ via the discrete
Fourier transform

ρ̂t(χ) =
∑

n

ρ̂t(n)einχ. (3.65)
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Note that the system state is recovered for zero counting field, ρ̂t = ρ̂t(χ = 0). Fourier
transforming Eq. (3.64) results in

∂tρ̂t(χ) = L(χ)ρ̂t(χ), (3.66)

where the counting field dependent Liouvillian reads L(χ) = L0 + eiχJ+ + e−iχJ−,
and the initial condition is given by ρ̂t0(χ) = ρ̂t0 . This master equation has the formal
solution ρ̂t(χ) = eL(χ)tρ̂t0 .

Since Pt(n) = tr{ρ̂t(n)}, we can define a moment generating function

Mt(χ) = tr{ρ̂t(χ)} =
∑

n

Pt(n)einχ, (3.67)

such that the moments of Pt(n) can be calculated as

⟨nk(t)⟩ = (−i)k∂k
χMt(χ)

∣∣
χ=0

. (3.68)

In a strict mathematical sense, Mt(χ) is the characteristic function of Pt(n), but as the
characteristic function exists for all distributions, it is more beneficial to work with com-
pared to the conventional moment generating function, which does not exist for all dis-
tributions [101]. Note that the first moment conveniently can be calculated as ⟨n⟩ =
−it tr{L′(χ)|χ=0ρ̂t}, where the prime denotes the derivative with respect to χ. One can
further define a cumulant generating function

Ct(χ) = ln[Mt(χ)], (3.69)

which provides the cumulants of Pt(n) via

⟨⟨nk(t)⟩⟩ = (−i)k∂k
χCt(χ)

∣∣
χ=0

. (3.70)

As the moment and cumulant generating functions are related, one can write the cumulants
in terms of the moments. In particular, ⟨⟨n(t)⟩⟩ = ⟨n(t)⟩ is the mean of Pt(n), and
⟨⟨n2(t)⟩⟩ = ⟨n2(t)⟩ − ⟨n(t)⟩2 is the variance of Pt(n). In fact, the second and third
cumulants exactly correspond to the second and third central moments of Pt(n). We also
note that the third and fourth cumulants are related to the skewness and kurtosis of Pt(n).
The current cumulants are found by differentiating with respect to time,

⟨⟨Ik(t)⟩⟩ = ∂t⟨⟨nk(t)⟩⟩. (3.71)

With the definitions of the moment and cumulant generating functions, we can calculate
the probability distribution according to

Pt(n) =
1

2π

∫ π

−π
dχeCt(χ)−inχ. (3.72)
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In general, this must be calculated numerically, even if we know the cumulant generating
function. However, the saddle point approximation [102–104] is useful for finding analyt-
ical expressions in the long time limit.

In many cases, we can find an approximate expression for the cumulant generating function
in the long time limit. The solution of Eq. (3.66) can be written as

ρ̂t(χ) =

N−1∑

j=0

cje
λj(χ)tσ̂j(χ), (3.73)

where the coefficients cj are determined by the initial condition ρ̂0 (we use t0 = 0), λj(χ)
are the eigenvalues of L(χ) with corresponding eigenstates σ̂j(χ), andN is the dimension
of L(χ). We are interested in systems with a unique steady state. For such systems, there
exists one single eigenvalue for which λ0(0) = 0 (here labeled with j = 0), and where all
other eigenvalues λj(0) ̸= 0. Since the system tends to a stationary state, all eigenvalues
with j ̸= 0 must have negative real parts, such that all terms except j = 0 are vanishingly
small when t is large [see discussion below Eq. (3.17)]. For finite χ, we assume that all
eigenvalues have negative real parts, with the real part of λ0(χ) being the largest, such that
we, for large t, find

ρ̂t(χ) ≈ c0e
λ0(χ)tσ̂0(χ). (3.74)

The moment generating function now reads tr{ρ̂t(χ)} ≈ tr{σ̂0(χ)}c0eλ0(χ)t, and we
may approximate the cumulant generating function as

Ct(χ) ≈ λ0(χ)t, (3.75)

up to a correction term ln[c0 tr{σ̂0(χ)}] which has been neglected. In the long time limit,
it is justified to neglect this term as it is small compared to λ0(χ)t. Consequently, the
number cumulants will have an error determined by the χ-derivatives of ln[c0 tr{σ̂0(χ)}].
However, in the current cumulants, this error will not be present as we take a time derivative
in Eq. (3.71). We note that the approximate form in Eq. (3.75) reproduces the linear-in-time
behavior of the number cumulants in Eq. (3.62). We emphasize that this formalism can be
generalized to multiple counting fields, keeping track of the counting statistics in multiple
reservoirs simultaneously. In such a generalization, it is possible to calculate correlations
between different particle transitions.
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Chapter 4

Continuous measurements and
feedback control

Measurements and feedback control are the central themes of this thesis. In this chapter, we
introduce the basic theory of these concepts. In particular, we discuss the necessary theory
for understanding and reproducing the results of Paper II. Papers III, IV and VI later build
on these results.

Section 4.1 begins with a short review of von Neumann (projective) measurements, com-
monly discussed in basic courses on quantum mechanics. Since this is a special class of
measurements, we also introduce generalized quantum measurements, providing a general
framework describing any type of measurement. Section 4.2 is devoted to time-continuous
measurements, where a continuous flow of information is recorded. We begin by introduc-
ing a Gaussian measurement operator suitable to describe such measurements. We use this
operator to derive both deterministic and stochastic equations of motion for a continuously
measured quantum system. At the end of the section, we extend the theory to include a
realistic detector model. Section 4.3 discusses quantum feedback control, where a mea-
surement is used to control the dynamics of a system. In particular, we discuss two special
scenarios where it is possible to derive Markovian master equations for feedback-controlled
systems.

4.1 Quantum measurements

Fundamental to measurements in quantum mechanics is the concept of von Neumann
measurements – or projective measurements. This type of measurement describes how the
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state of a quantum system is collapsed (projected) onto one of the eigenstates of the mea-
sured observable after performing a measurement. More precisely, any observable Â has
a diagonal representation in some orthonormal basis {|a⟩}N

a=1, i.e., it can be written as
Â =

∑N
a=1 ξa |a⟩⟨a|, where {ξa}N

a=1 are the (non-degenerate) eigenvalues of Â. In gen-
eral, the eigenvalues can be degenerate. If that is the case, the system is projected onto a
superposition of the corresponding eigenstates. In Paper IV, we exploit this to perform a
backaction-free measurement – we return to this below. However, for most of our purposes,
the eigenvalues will be non-degenerate, and we thus focus our discussion on that case. Note
that we assume that there is a finite numberN of eigenvalues, as this always will be the case
in this thesis. Consider that we carry out a measurement on an arbitrary quantum system,
whose state, when written in the eigenbasis of Â, is given by |ψ⟩ =

∑N
a=1 ca |a⟩, with

complex coefficients ca satisfying
∑N

a=1 |ca|2 = 1. Upon measuring, we obtain one of the
eigenvalues ξa′ with probability |ca′ |2, and the state collapses to |a′⟩. That is, the system
is, with certainty, in this state after the measurement. In terms of the density operator for-
malism introduced in Chapter 3, we note that the pre-measurement state is given by some
density operator ρ̂ (pure or mixed) but the post-measurement state will with probability
|ca′ |2 be in the pure state ρ̂′ = |a′⟩⟨a′|.

A von Neumann measurement does not fully describe a realistic procedure for quantum
measurements. In reality, an experimenter rarely interacts directly with the system of in-
terest, but rather measures on a probe that interacts with the system. In addition, the von
Neumann measurement does not add any classical noise to the measurement outcome. This
must be regarded as unrealistic as a measurement device typically adds noise to the recorded
signal. The idea of the system-probe model is to build up correlations between the system
and the probe, and then perform a von Neumann measurement on the probe, such that
we can infer something about the system without collapsing its state. As a first example of
this, consider a nanowire quantum dot for which we want to measure the charge state, i.e.,
if there is an electron or not in the dot. In general, this is done by placing a probe in the
vicinity of the dot – typically the probe is another quantum dot or a quantum point contact
– and measure the electrical current through the probe. If the system-probe interaction is
sensitive enough, the current will jump between discrete values when an electron jumps
on or off the dot, see for instance Refs. [94] and [54]. As a second example, consider an
atom interacting with an electromagnetic field. Here the field acts as the probe, and by
measuring the field, for instance with a photo-detector, we can infer something about the
state of the atom.

To find a mathematical description for the system-probe measurement, we consider the
following model. Assume that the system and probe initially are uncorrelated, and that
their joint state is given by ρ̂tot = |0⟩⟨0|⊗ ρ̂, where the probe is prepared in some state |0⟩
belonging to an orthonormal set {|m⟩}m of probe states, and the system is prepared in an
arbitrary state ρ̂. By letting the system and probe interact under some unitary transforma-
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tion Û , their states will become correlated. Now we make a von Neumann measurement
on the probe, projecting it onto one of the states |m⟩. After this procedure, the joint state
is proportional to

ρ̂′
tot ∼ (|m⟩⟨m| ⊗ 1) Û (|0⟩⟨0| ⊗ ρ̂) Û † (|m⟩⟨m| ⊗ 1) = |m⟩⟨m| ⊗ K̂mρ̂K̂

†
m, (4.1)

where we after the equal sign introduced operators K̂m = ⟨m|Û |0⟩ acting on the system
state. Note that the mathematical procedure above resembles how the UDMs were intro-
duced in Eq. (3.12). In fact, any operation on an open quantum system may be written like
this [19].

We can now define a generalized quantum measurement as follows. Consider a system
with state ρ̂ on which we perform a measurement described by a set of measurement op-
erators {K̂m}m (see definition previous paragraph), satisfying the completeness relation∑

m K̂†
mK̂m = 1. When observing outcome m, the state transforms as

ρ̂′ =
K̂mρ̂K̂

†
m

pm
, (4.2)

where pm = tr{K̂†
mK̂mρ̂} is the probability of observing outcomem. We emphasize here

that Eq. (4.2) is obtained by tracing out the probe in Eq. (4.1), i.e., ρ̂′ ∼ trP {ρ̂′
tot}, and

normalizing with pm. The completeness relation
∑

m K̂†
mK̂m = 1 ensures probability

conservation for pm, but also follows directly from the definition of K̂m. Sometimes, this
type of measurement is referred to as a POVM (positive operator-valued measure) measure-
ment [15, 16, 19], but in this thesis, we refer to it as a generalized quantum measurement.
We stress here that the measurement operators K̂m are completely general, and do not nec-
essarily represent projective measurements. Below, in Sec. 4.2, we will discuss the special
case of Gaussian measurements. However, by considering projective measurement opera-
tors K̂m = |m⟩⟨m| (where |m⟩ now represents basis states of the system), Eq. (4.2) boils
down to the von Neumann measurement discussed above.

It is important to note that ρ̂′ in Eq. (4.2) is conditioned on the measurement outcomem.
That is, it describes our state of knowledge of the system given that we observed m in the
measurement. Interestingly, this transformation is nonlinear in ρ̂. This is in contrast to
the von Neumann equation (3.9) and the Lindblad equation (3.15) which are linear. This
means that quantum measurements induce a nonlinear change in the system state. We
will return to this in Sec. 4.2. However, a linear description is obtained by multiplying
Eq. (4.2) by pm, but at the cost of introducing the un-normalized joint system-outcome
state ρ̂(m) = ρ̂′pm = K̂mρ̂K̂

†
m. By summing this state over all outcomes m results in

the post-measurement state ρ̃ =
∑

m K̂mρ̂K̂
†
m. This operation corresponds to averaging

the conditioned state ρ̂′ [Eq. (4.2)] over all outcomes. This is sometimes referred to as a
non-selective measurement [70], reflecting that the outcome effectively is ignored when

51



averaging over all possible outcomes. As an example, let us consider a two-level system
with density operator ρ̂ = p0 |0⟩⟨0| + α(|0⟩⟨1| + |1⟩⟨0|) + p1 |1⟩⟨1|, where p0 and p1 are
the probabilities to be in state |0⟩ or |1⟩, respectively, and α represents the coherence (here
taken as real for simplicity). By performing a projective measurement, with measurement
operators K̂0 = |0⟩⟨0| and K̂1 = |1⟩⟨1|, the post-measurement state, averaged over all
possible outcomes (0 or 1), is given by ρ̃ = p0 |0⟩⟨0| + p1 |1⟩⟨1|. That is, after the mea-
surement, the system will be in a statistical mixture of |0⟩ and |1⟩. This illustrates that the
measurement destroys all coherence, but we do not know the exact state of the system, as
we ignored the outcome.

Finally, we point out that quantum measurements induce a stochastic change to a system
state. To understand this, consider many copies of the same system on which we perform
identical measurements. The state transformation in Eq. (4.2) depends on the outcome m
that was observed, and since each outcome occurs with probability pm, the measurement
operator applied on a specific copy is random. Therefore, the post-measurement state will
not be the same for all copies. This implies that for a continuous measurement, the condi-
tioned state ρ̂′ evolves according to a stochastic master equation. This is further discussed
in Sec. 4.2.

4.2 Continuous measurements

In many situations, it is common to perform a time-continuous measurement, rather than
making one single measurement, and to use a measurement apparatus that outputs contin-
uous outcomes, rather than discrete ones. Even though one measures a discrete observable,
like a photon number operator, the measurement device adds noise to the signal, such that
a continuous outcome space is more appropriate than a discrete one. The type of mea-
surement, discrete or continuous in time, that is most suitable is determined by the type
of system and experiment one is studying. For instance, in electronic systems, such as
semiconductor quantum dots [52, 54, 105], it is possible to measure the charge occupation
continuously, which suggests that a time-continuous measurement is most suitable. As
another example, the state of superconducting qubits can also be monitored continuously
[48]. On the other hand, when distinguishing spin states in semiconductor quantum dots,
one is restricted to time-discrete measurements [106]. This is also the case when performing
quantum state tomography in rare earth ion qubits [107]. However, many control proce-
dures require continuous monitoring, such as certain schemes for quantum error correction
[108], stabilizing Rabi oscillations [48], reversing quantum jumps [49], or implementing an
electronic Szilard engine [27]. Therefore, we dedicate this section to time-continuous mea-
surements with continuous outcomes. We begin by replacing the discrete outcomes m
from the previous section by continuous outcomes z and introduce a Gaussian measure-
ment operator that is useful for mathematical modeling. The theory presented above for
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discrete outcomes still applies, but sums over m are typically replaced by integrals over z.
In the second part of this section, we discuss how time-continuous measurements can be
modeled, and how the quantum Zeno effect emerges from this description.

To describe a general measurement with a continuous outcome, we use the following Gaus-
sian measurement operator [16, 78, 109]

K̂(z) =

(
2λ̄

π

)1/4

e−λ̄(z−Â)
2

, (4.3)

where Â is the measured observable (note that Â† = Â), and λ̄ parameterizes the strength
of the measurement. In the limit λ̄ → ∞, Eq. (4.3) describes a projective von Neu-
mann measurement, where all initial quantum coherence is destroyed, and where the post-
measurement state is projected onto one of the eigenstates of Â. In the opposite limit, when
λ̄ → 0, Eq. (4.3) describes a weak, non-intrusive measurement, preserving all quantum co-
herence. The Gaussian operator thus provides the possibility of describing measurements
with a wide range of possible interaction strengths, and allows us to investigate how the
strength affects the measured system. Additionally, Eq. (4.3) implies that the measurement
noise is Gaussian (see discussion below). This is commonly the case due to many indepen-
dent random fluctuations in the electronic circuits of the measurement device. We also
note (this will be shown below) that Eq. (4.3) is suitable for analytical manipulations, as it
simplifies many calculations, while still providing general results.

To illustrate the strong and weak measurement limits, we study a simple two-level system
with states |0⟩ and |1⟩. In the {|0⟩ , |1⟩}-basis, the system density operator reads ρ̂ =
p |0⟩⟨0| + α(|0⟩⟨1| + |1⟩⟨0|) + (1 − p) |1⟩⟨1|, where p and 1 − p are the probabilities of
occupying |0⟩ and |1⟩, respectively, and α represents the coherence (here assumed to be
real for simplicity, but without loss of generality). When measuring Â = |1⟩⟨1| − |0⟩⟨0|,
i.e., whether |0⟩ or |1⟩ is occupied, the state transformation is, according to Eq. (4.2),
proportional to

K̂(z)ρ̂K̂†(z) =

√
2λ̄

π

[
pe−2λ̄(z+1)2 |0⟩⟨0|

+ αe−2λ̄(z2+1) (|0⟩⟨1| + |1⟩⟨0|) + (1 − p)e−2λ̄(z−1)2 |1⟩⟨1|
]
.

(4.4)
For simplicity, we neglect the normalizing factor p(z) = tr{K̂†(z)K̂(z)ρ̂}. The measure-
ment adds Gaussian weights, centered at −1,0, and 1, to the respective elements of ρ̂, and
the off-diagonal elements are suppressed by a factor e−2λ̄. The weights of the respective
elements are sketched in Fig. 4.1. For a weak measurement, a considerable amount of the
coherence is preserved when the outcome lies in the range −1 < z < 1. In the infinitely
weak limit, λ̄ → 0, the Gaussian weights become uniform distributions over all z, and
the coherence is preserved. As λ̄ is increased, the coherence is exponentially suppressed,
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and vanishes for strong measurements, where only the |0⟩⟨0| or |1⟩⟨1| matrix elements are
nonzero. Treating this rigorously by taking λ̄ → ∞, the diagonal Gaussian weights be-
come Dirac delta functions δ(z±1) centered at ±1, while the off-diagonal weights vanish,
corresponding to a projective measurement.

Figure 4.1: Qualitative sketch of how the Gaussian weights in Eq. (4.4) behave when going from a weak to a strong
measurement (from left to right with increasing λ̄). Note that for weak measurements, a substantial part
of the coherence is preserved for a larger range of outcomes than in the strong measurement case. This
is due to the factor exp

{
−2λ̄

}
on the off-diagonal elements in Eq. (4.4).

For the two-level system, the probability distribution of outcomes z is given by

p(z) = tr{K̂†(z)K̂(z)ρ̂} =

√
2λ̄

π

[
pe−2λ̄(z+1)2 + (1 − p)e−2λ̄(z−1)2

]
. (4.5)

In the strong measurement limit, λ̄ → ∞, the Gaussian weights become Dirac delta func-
tions δ(z± 1), indicating that the only possible outcomes are ±1. That is, for a projective
measurement, there is no uncertainty in the measurement – we know, for sure, the post-
measurement state. In the weak limit, λ̄ → 0, the Gaussian weights become uniform
distributions over all z. Therefore, the measurement can yield any value for the outcome z,
but we do not know much about the state of the system – our uncertainty is maximized. To
summarize, the strength of the measurement is a trade-off – a weak measurement preserves
quantum coherence, but gives large measurement uncertainty, while a strong measurement
destroys all quantum coherence, but gives low measurement uncertainty.

Equation (4.5) is a mixed distribution, and can be interpreted, or constructed, as follows
(this is useful for simulations). Consider a random variable x = −1, 1 for the system state,
following a two-point distribution with P (x = −1) = p and P (x = 1) = 1−p being the
probabilities of occupying |0⟩ and |1⟩, respectively. Given that we know the system state x,
the random variable z|x represents the measurement outcome conditioned on the system
state. This variable has a Gaussian distribution with mean value x and variance 1/4λ̄. By
applying the total law of probability, we obtain the unconditioned distribution (4.5) for z
via

p(z) =
∑

k=−1,1

f(z|x = k)P (x = k), (4.6)

54



where f(z|x) =
√

2λ̄/πe−2λ̄(z−x)2 is the probability density of z|x.

We now consider time-continuous measurements. These can be described by discretizing
time into segments of length dt, performing one measurement per segment, and finally
taking the continuous limit dt → 0. The strength of the measurements becomes particu-
larly important in this description, as each measurement acts back on the system, affecting
its coherence. In fact, to preserve the coherence over finite time intervals, each measure-
ment must be weak. Otherwise, the coherence is quickly destroyd, prohibiting coherent
interactions. This is known as the quantum Zeno effect [70, 110, 111]. The Zeno effect is
commonly introduced by considering repeated projective measurements of a Rabi oscilla-
tor. By continuously projecting the oscillator onto one of the eigenstates of the measured
observable, coherent transitions between eigenstates cannot occur. To circumvent this, we
postulate that the measurement strength in Eq. (4.3) is proportional to dt [16, 78, 109],
i.e., λ̄ = λdt, with λ being a fixed constant with units of inverse time, such that each
measurement becomes infinitely weak in the continuous limit λdt → 0. For a continuous
measurement, λ is referred to as the measurement strength.

Mathematically, this can be written as the following iterative map,

ρ̂c(t+ dt) = eLdt K̂(z)ρ̂c(t)K̂
†(z)

pc(z)
, (4.7)

where ρ̂c(t) is the state of the system at time t, conditioned on the full trajectory of
recorded outcomes. We denote this trajectory by z = [z(t0), z(t0 + dt), . . . , z(t− dt)],
where z(t) is the outcome observed at time t. The conditional state can alternatively be
written as ρ̂c(t) = ρ̂(t|z), which is useful for derivations. The denominator pc(z) =
tr{K̂†(z)K̂(z)ρ̂c(t)} = pt(z|z) is the conditional probability of observing outcome z,
given that the trajectory z was observed up to time t. The Liouville superoperator¹ L
describes the system dynamics in between measurements, and K̂(z) is given by Eq. (4.3).

We can now use Eq. (4.7) to understand the general effect of a continuous measurement. To
this end, we average Eq. (4.7) over all possible trajectories z and derive a master equation. It
is useful to write ρ̂c(t) = ρ̂t(z)/pt(z), where ρ̂t(z) is the joint system-outcome state, and
pt(z) is the probability of observing trajectory z. By averaging over all possible trajectories,
we obtain an unconditioned state ρ̂t = ⟨ρ̂c(t)⟩z , where ⟨·⟩z denotes the average over all
z. As discussed in Chapter 2, this average can be evaluated as

⟨ρ̂c(t)⟩z =

∫
D[z]ρ̂c(t)pt(z) =

∫
D[z]ρ̂t(z) = ρ̂t. (4.8)

Taking this average over Eq. (4.7), and expanding the rhs to linear order in dt, provides the
following master equation,

∂tρ̂t = Lρ̂t + λD[Â]ρ̂t, (4.9)

¹In this thesis, this superoperator is written on Lindblad form (see Chapter 3).
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where D[Ô]ρ̂ = Ôρ̂Ô† −{Ô†Ô, ρ̂}/2 for an arbitrary operator Ô, as introduced in Chap-
ter 3. The first term on the rhs describes the time-evolution of the system in the absence of
measurements, while the second term accounts for measurement backaction. That is, the
infinitely small backaction of each measurement accumulates over time, and collectively
they influence the dynamics of the system. Note that this master equation is not a con-
sequence of using the Gaussian measurement operator (4.3), but is rather a general result
that holds for all continuous quantum measurements² [15, 70, 111, 112].

To properly understand the effect of the backaction term in Eq. (4.9), we ignore the first
term of the master equation, and write the density matrix in the eigenbasis of Â. For
element ρaa′(t) = ⟨a|ρ̂t|a′⟩, we get

ρ̇aa′(t) = −λ
2
(ξa − ξa′)2ρaa′(t). (4.10)

The effect of the measurement is thus to exponentially dampen all coherences for non-
degenerate eigenvalues (ξa ̸= ξa′) at a rate proportional to the measurement strength λ.
For degenerate eigenvalues (ξa = ξa′), the element ρaa′(t) is not subject to backaction.
In fact, if [Â, ρ̂t] = 0 at all times, the measurement becomes backaction-free³. In Paper
IV, we exploit this to improve the entanglement of a quantum heat engine by using feed-
back control. What we learn from Eq. (4.10) is that a continuous measurement imposes
dephasing. To understand the impact of the dephasing, we study two limiting cases. We
begin by introducing g as the strength of the coherent interactions in the system⁴. For
g ≫ λ, coherent interactions can be maintained for a long time despite the presence of
dephasing. For g ≪ λ, the dephasing prevents coherent interactions, and the coherence
quickly vanishes. That is, we observe the quantum Zeno effect.

As we saw above, Eq. (4.9) describes the dynamics of a measured system when taking an
ensemble average over all possible trajectories z. In fact, we can unravel Eq. (4.9), and find
a stochastic master equation for the dynamics of ρ̂c(t), on the level of a single trajectory z.
To this end, we begin by noting that

⟨z⟩c =

∫
zpc(z)dz = ⟨Â⟩c (4.11)

is the average outcome at time t conditioned on the previously observed outcomes, where
⟨Â⟩c = tr{Âρ̂c(t)} is the average of the measured observable Â [see Eq. (4.3)] with respect

²Note that the master equation slightly changes in some scenarios. For instance, by measuring photons
leaking out of an optical cavity, the observable Â is replaced by the annihilation operator ĉ of the measured
cavity mode. The annihilation operator is not hermitian, and the description using Eq. (4.3) does not apply.
For a full treatment, see Ref. [15].

³This is always the case for incoherent dynamics.
⁴In this thesis, g has the unit of inverse time, as we choose ℏ = 1 in Chapter 3.
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to ρ̂c(t). This implies, for small dt, that the outcome at time t can be written as a random
variable as

z = ⟨Â⟩c +
dW√
4λdt

, (4.12)

where dW is a Wiener increment (see Chapter 2). In Appendix C, we motivate this relation.
The outcome is thus a Gaussian random variable with mean ⟨Â⟩c and two-time correlator
Cz(t, t

′) = δ(t− t′)/4λ, which we derived using Eq. (2.5) and the fact that dW (t)/dt =
ξ(t) is a white noise process when dt → 0 (see Chapter 2). Note that the strength of the
noise scales as 1/λ.

We now derive the stochastic master equation. By expanding Eq. (4.7) to first order in dt,
and using Eqs. (4.3), (4.12), and the Itô rule, we get [16, 78]

K̂(z)ρ̂cK̂
†(z)

pt(z)
= ρ̂c + λdtD[Â]ρ̂c +

√
λdW{Â− ⟨Â⟩c, ρ̂c}, (4.13)

where the time arguments were omitted for brevity. From this linearization, we find the
Belavkin equation [113] (see also Refs. [15, 16, 78])

dρ̂c = dtLρ̂c + λdtD[Â]ρ̂c +
√
λdW{Â− ⟨Â⟩c, ρ̂c}, (4.14)

which is a stochastic master equation because of the Wiener increment dW . This equation
is an unravelling of Eq. (4.9). The first term on the rhs describes the time evolution of the
system, the second term describes measurement backaction, and the third term describes
how the randomness of the measurement induces noise into the system. We note that
the equation is nonlinear in ρ̂c because of the average ⟨Â⟩c in the anti-commutator in the
noise term. This is in contrast to the von Neumann (3.9) and Lindblad (3.15) equations,
and is a result from the nonlinear transformation that describes a quantum measurement,
see Eqs. (4.2) and (4.7). Note that the Belavkin equation (4.14) reduces to Eq. (4.9) when
averaging over all possible trajectories of z. The last term drops out because the noise dW
at time t is independent of ρ̂c(t), see Appendix A.

While this theory accurately describes the dynamics of a continuously measured quantum
system, Eq. (4.12) is often a simplified description of the output of a detector. For instance,
z contains white noise, and its variance thus diverges, ⟨z2(t)⟩ − ⟨z(t)⟩2 = Cz(t, t) =
δ(0)/4λ, which is physically unrealistic⁵, see the discussion on white noise in Chapter
2. Note that the circuitry of any detector has a finite bandwidth, restricting the range of
frequencies in the noise of the observed signal. The bandwidth blocks higher frequencies
of the noise, resulting in a finite variance of the output. Additionally, the bandwidth in-
troduces a finite delay time in the output. To solve these issues, we introduce a realistic

⁵In some cases, white noise is a good approximation, and leads to reasonable results. For instance, see the
Wiseman-Milburn equation (4.19) below.
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Figure 4.2: (a) Time traces of the system state S(t) and the outcome D(t) as observed on the detector screen during
the state transition |0⟩ → |1⟩ for the example two-level system in Eq. (4.4). Due to the finite bandwidth
γ, the detector signal lags behind the system state [note the finite rise time of D(t)]. (b) Illustration of D
as a Browninan particle in a harmonic potential during the same state transition as in (a). As the transition
occurs, the potential moves from −1 to +1. The particle follows with speed γ.

detector model, including a finite bandwidth. By D(t), we denote the outcome observed
on the detector screen. This variable is related to z(t) via [15, 108, 114–119]

D(t) =

∫ t

t0

dsγe−γ(t−s)z(s), (4.15)

where γ is the bandwidth of the detector (see Fig. 4.4) and t0 is the time where the measure-
ment began. By differentiating Eq. (4.15) with respect to time, and employing Eq. (4.12),
we get the Langevin equation

Ḋ(t) = γ
[
⟨Â⟩c −D(t)

]
+

γ√
4λ
ξ(t), (4.16)

using that ξ(t) = limdt→0 dW/dt, as discussed in Chapter 2. That is,D(t) is an Ornstein-
Uhlenbeck process with Itô equation

dD = γ
(
⟨Â⟩c −D

)
dt+

γ√
4λ
dW, (4.17)

and thus describes a noisy relaxation towards ⟨Â⟩c on a timescale set by 1/γ, i.e., the
response time, or delay, of the detector. The two-time correlator of D(t) is given by
CD(t, t′) = (γ/8λ)e−γ|t−t′|, resulting in the finite variance ⟨D2(t)⟩−⟨D(t)⟩2 = CD(t, t) =
γ/8λ, see Chapter 2. In Fig. 4.2(a), we visualize D(t) for the example two-level system in
Eq. (4.4) undergoing the transition |0⟩ → |1⟩. Note the finite rise (response) time of the
detector. Figure 4.2(b) illustrates how the outcome D may be thought of as a Brownian
particle in a harmonic potential, see discussion in Chapter 2. When the system jumps
|0⟩ → |1⟩, the potential is moved instantly from −1 to 1, and the detector outcome fol-
lows with speed γ. Note that D(t) → z(t) by taking γ → ∞, i.e., when the bandwidth
becomes infinitely large, diverging frequencies will be present in the noise spectrum, and
the delay of the detector vanishes.

The Belavkin equation (4.14) together with Eq. (4.17) are the basic elements to model con-
tinuous measurements of quantum systems. Note that there are infinitely many realizations
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Figure 4.3: A solution to the Belavkin equation (4.14) and Eq. (4.17) for a qubit when measuring the Pauli-Z operator
σ̂z = |1⟩⟨1| − |0⟩⟨0|. The qubit has Hamiltonian Ĥ = gσ̂x, where σ̂x is the Pauli-X operator. (a) The
leftmost panel visualizes the diagonal density matrix elements ρaa = ⟨a|ρ̂c(t)|a⟩ of the conditioned
density matrix ρ̂c(t). (b) The middle panel shows the real and imaginary parts of the off-diagonal density
matrix element ρ01 = ⟨0|ρ̂c(t)|1⟩. (c) The rightmost panel is the corresponding time trace of the detector
signal D(t) [see Eq. (4.17)], and the expectation value ⟨σ̂z⟩c = tr{σ̂z ρ̂c}. Here we used γ/g = 2,
λ/g = 1/2, and dt/g = 10−3.

of the noise process dW , implying that there are infinitely many solutions to the Belavkin
equation. Each solution defines a quantum trajectory ρ̂c(t). In Fig. 4.3, we show such a
trajectory for a qubit, illustrating how noise is induced into our state of knowledge (the
density matrix) given that we observed the trajectory of D(t) in the rightmost panel.

4.3 Quantum feedback control

An important application of measurements is feedback control, where the recorded infor-
mation is used to control the dynamics of a system, see Fig. 4.4. Typically, this is referred to
as measurement-based feedback control, but we will simply use the term feedback control⁶.
The idea of controlling physical systems became particularly important during the indus-
trial revolution, and has numerous applications in mechanical and electrical engineering
[43]. The idea of using feedback control in quantum systems emerged during the 1980s,
and has lead to several theoretical and experimental developments [15–17]. With the fast
development and miniaturization of electronics during the past decades, quantum feedback
control is currently of substantial interest. On the one hand, feedback is expected to play
an important role in the development of quantum technologies, like quantum computers.
And on the other, feedback is interesting from a fundamental perspective, exploring the
limits of quantum control, e.g., in the field of quantum thermodynamics [11].

In this section, we introduce the basics of continuous quantum feedback control. We be-

⁶In fact, the term feedback can, for instance, refer to control strategies where the dynamics of one subsystem
is controlling the dynamics of another subsystem. In quantum systems, this is referred to as coherent feedback
control, see, for instance, Refs. [120, 121].
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Figure 4.4: A general setup for continuous feedback control. An open quantum system is continuously measured by
a detector with bandwidth γ. The measurement strength λ quantifies the backaction and uncertainty
of the measurement. Based on the measurement outcome D, feedback is continuously applied on the
system, controlling the system LiouvillianL(D). In the bottom, two typical trajectories of the system state
and the corresponding measurement outcome are visualized. Figure taken from Paper II.

gin by extending the Belavkin equation (4.14) to include feedback – this equation consti-
tutes the theoretical basis for modeling feedback in quantum systems. Then we introduce
Markovian feedback, discussing two special scenarios where it is possible to derive Marko-
vian master equations for feedback-controlled systems.

Mathematically, feedback is implemented by letting the dynamics depend on the measure-
ment, i.e., by replacing L → L[f(D)] in Eq. (4.7), where D is the full trajectory of
outcomes and f(·) is a function representing any arbitrary processing of the measured sig-
nal before being fed back to the system. The Belavkin equation (4.14) is modified by the
same replacement of the Liouville superoperator. Together with Eq. (4.17), the Belavkin
equation is the basic tool for modeling any continuous feedback protocol, and is useful
for simulating individual trajectories ρ̂c(t) of a controlled system. However, from such
trajectories it can be difficult to distinguish general trends in the dynamics. Such trends
are most easily understood by averaging the Belavkin equation over all possible trajectories
of D. In general, it is difficult to compute this average, as L[f(D)] can have a compli-
cated dependence on D. Therefore, we are often restricted to numerical simulations, giving
limited qualitative insight of the dynamics. However, for Markovian feedback, where the
feedback protocol only depends on the latest observed outcomeD, i.e., f(D) → D, there
are two scenarios where the average can be computed analytically. Both scenarios lead to
deterministic Markovian master equations for the unconditioned state [ρ̂t = ⟨ρ̂c(t)⟩D]
that often have analytical solutions.

The first scenario is linear feedback with infinite detector bandwidth (γ → ∞), resulting
in feeding back the outcome z [Eq. (4.12)]. In this scenario, the Liouville superoperator
depends linearly on z, L(z) = L0 + zK, where L0 describes the system dynamics in the
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absence of feedback, and K is a Liouville superoperator describing the feedback forces. The
Belavkin equation for this scenario is found by linearizing the time evolution in Eq. (4.7)
in dt (using the Itô rule), eL(z)dt ≈ 1 + dtL0 + ⟨Â⟩cdtK + dtK2/8λ + dWK/

√
4λ,

resulting in

dρ̂c = dtL0ρ̂c + λdtD[Â]ρ̂c +
dt

2
K{Â, ρ̂c}

+
dt

8λ
K2ρ̂c + dW

[√
λ{Â− ⟨Â⟩c, ρ̂c} +

1√
4λ

Kρ̂c

]
.

(4.18)

Averaging over all possible trajectories z, we get the Wiseman-Milburn equation [15, 122]

∂tρ̂ = L0ρ̂+ λD[Â]ρ̂+
1

2
K{Â, ρ̂} +

1

8λ
K2ρ̂, (4.19)

which is a central result in the field of quantum feedback control. The first and second terms
on the rhs correspond to Eq. (4.9). The third term describes how the feedback forces act
on the system. The fourth term, originating from the noise term dW in L(z), describes
how measurement noise is fed back to the system and causes diffusion in the dynamics
[15]. When λ is large, this diffusion effect is reduced, as the detector noise becomes small
– the magnitude of the noise scales as 1/λ as discussed in Sec. 4.2. This equation has
been applied in numerous contexts, including stabilizing qubit states [123], manipulating
entanglement [124–129], retarding decoherence [130, 131], producing squeezed states [132–
135], and charging quantum batteries [136].

The second scenario is a generalization of the first, using an arbitrary L(D), where the
dependence on D is arbitrary (it can be nonlinear as well as linear). This scenario assumes
a finite bandwidth, and, therefore, the Liouvillian depends on D instead of z. For book-
keeping purposes, we assume that L(D) ∼ Γ, where Γ has the unit of inverse time. With
a large separation γ ≫ Γ, λ, i.e., when the response time of the detector is much faster
than the system, we find the following Markovian master equation,

∂tρ̂ =
[
L0 + λD[Â] + γ−1Lcorr

]
ρ̂, (4.20)

where L0 is the feedback-controlled dynamics in the limit of an infinitely fast detector,
and Lcorr is a correction term for a small but finite response time γ−1 of the detector. This
master equation is one of the central results of Paper II, and we refer the reader to that paper
for a detailed derivation and discussion. In that paper, we also provide general formulas
for calculating L0 and Lcorr. We stress that this equation can describe any Markovian,
continuous feedback protocol. Finally, we note that this equation reduces to the Wiseman-
Milburn equation (4.19) when L(D) depends linearly onD and γ → ∞, highlighting the
relation between the two equations.
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Chapter 5

Thermodynamics of small systems

Thermodynamics was established as a theory during the 19th and early 20th centuries,
largely driven by the desire to optimize steam and heat engines. The theory describes trans-
fers of energy and matter in large macroscopic systems close to equilibrium. In particular,
the theory provides bounds on what can be observed in nature. Typically, the systems
consist of ∼ 1023 particles, which makes it impossible to model the motion of every par-
ticle. Instead, the theory is formulated in terms of macroscopic variables such as volume,
conductivity, temperature, pressure, etc. Thermodynamics was later complemented with
statistical mechanics, providing a link between microscopic and macroscopic variables.

During the past 30 years or so, the theory of thermodynamics has been expanded to small,
non-equilibrium systems on the micro- and nanoscale. The expansion contains mainly
three components; stochastic, information, and quantum thermodynamics.

Stochastic thermodynamics [1–10] deals with small, fluctuating systems far from equilib-
rium. Building on the prominent discoveries of the Jarzynski relation [137, 138] and Crooks’
fluctuation theorem [139, 140], the last 30 years have resulted in many general laws appli-
cable to non-equilibrium systems. As such, stochastic thermodynamics extends its con-
ventional (macroscopic) counterpart beyond close-to-equilibrium scenarios. By defining
quantities such as work, heat, and entropy at the level of single microscopic trajectories, it
is possible to understand how fluctuations affect the thermodynamics of small systems. In
particular, the second law is generalized in terms of fluctuation theorems, stating that en-
tropy production is a fluctuating quantity which only needs to be non-negative on average.
This stands in contrast to classical thermodynamics, where entropy should always increase,
and where fluctuations are negligible. Stochastic thermodynamics is thus particularly good
at describing the thermodynamics of small systems such as colloidal particles [141], DNA
molecules [142], molecular motors [143], and nanosized electronic systems [144, 145], where
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fluctuations play an important role.

With the increased ability to control and measure small systems in real time [146] came the
possibility of exploring measurement-based feedback control. In fact, the acquisition and
processing of information come with a thermodynamic cost. This is famously illustrated by
Maxwell’s demon [22–24], where the acquisition of information about the velocities of gas
molecules can be used to rectify their thermal fluctuations, seemingly violating the second
law of thermodynamics. By considering the thermodynamics of information processing,
i.e., accounting for the energy and entropy required to gather, store, and erase information,
one finds that Maxwell’s demon does not violate the second law. This was first realized
by Bennett [147], who argued, based on the Landauer principle [148], that the apparent
violation is resolved when the demon erases its memory, increasing the entropy of its envi-
ronment, thus restoring the second law. During the past decades, the thermodynamics of
information [21, 149, 150] has been incorporated into stochastic thermodynamics. This has
resulted in several generalizations of the second law, showing that processes like Maxwell’s
demon are not thermodynamically forbidden. In fact, several experimental implementa-
tions of the demon have been demonstrated over the last decade [25–29, 31–34, 54, 151].

Quantum thermodynamics (QTD) [11–14] deals with quantum systems coupled to ther-
mal environments. At its core, the theory aims at defining work, heat, and entropy in the
quantum realm. Interestingly, as shown below, the laws of thermodynamics may be derived
from quantum theory. Similar to stochastic thermodynamics, QTD deals with questions
regarding the fundamental bounds of nature, including fluctuation theorems [7] and ther-
modynamic uncertainty relations [38], which hold far from equilibrium. In addition to
this, the thermodynamics of quantum measurements and feedback control has recently at-
tracted interest [40–42]. While QTD is closely linked with the fundamental properties of
nature, the field is expected to play an important role in the development of new tech-
nologies. With constant miniaturization and the development of quantum computers, it is
likely that future technologies must take quantum thermodynamic aspects into account in
their design. Relevant for both the fundamental and applied point of views are quantum
thermal machines [13], where temperature biases are used to perform useful tasks, such as
cooling [152] or generating entanglement [39].

In this chapter, we begin by introducing some of the results from classical thermodynamics
in Sec. 5.1 that will be important for comparison in the subsequent sections. Section 5.2 is
devoted to stochastic thermodynamics, and defines entropy, work, and heat on the level of
single microscopic trajectories. Especially, we introduce fluctuation theorems. Section 5.3
introduces information thermodynamics, and we discuss a selection of results that are im-
portant for understanding the thermodynamics of Maxwell’s demon. Section 5.4 introduces
quantum thermodynamics. We show how the first and second law emerge from quantum
theory, discuss open quantum systems, and introduce the absolute basics of entanglement.
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5.1 Classical thermodynamics

With classical thermodynamics, we can describe the energetics and dynamics of macro-
scopic systems that are in equilibrium. With linear response theory, it is possible to get
some insights into non-equilibrium thermodynamics, but the results are only valid close to
equilibrium. In this section, we shortly review the laws of thermodynamics as a reference
for the discussion in the upcoming sections.

The zeroth law of thermodynamics states that if two systems (A and B) are in thermal
equilibrium with a third system (C), then A and B are in thermal equilibrium with each
other.

The first law of thermodynamics reads

∆E = W +Q, (5.1)

stating that a change in internal energy ∆E of a system can be decomposed into work W
and heat Q. While work is energy that is provided macroscopically, heat is energy that is
transferred by microscopic degrees of freedom. Here we use the sign convention W > 0
(W < 0) when work is done on (by) the system. Similarly, Q > 0 (Q < 0) when heat is
absorbed (released) by the system.

The second law of thermodynamics states that the entropy S of an isolated system (not
exchanging energy or particles with its environment) never decreases. Mathematically, we
write

∆S ≥ 0. (5.2)

If the system makes a transition between two states for which ∆S = 0, the process is
said to be reversible, and the system can jump back and forth between these states without
restriction. A system transition with ∆S > 0 is said to be irreversible. That is, if the
transition x0 → x1, between system states x0 and x1, increases the entropy, the reverse
process, x1 → x0, is prohibited by the second law, and will never be observed. This
notion of reversibility will be widened in Sec. 5.2 when we study thermodynamics on the
microscopic scale.

An equilibrium state can be described by the function E(S, V,N) for the internal energy
E, where S is entropy, V the volume of the system, and N the number of particles of a
given species. To avoid clutter, we only write out these three variables, but E could, in
principle, depend on other variables as well. Let us assume that we perform an experiment
where we cannot measure the entropy, but only have access to the temperature T , as well
as V and N . In this case, it is difficult to describe our observations with E(S, V,N).
Instead, we can make use of the Legendre transform [153] to make the following change of
variables, S, V,N → T, V,N . Mathematically, this is done by introducing the Helmholtz
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free energy (typically referred to as the free energy) as

F = E − ST, (5.3)

where F (T, V,N) depends on the temperature instead of the entropy. The free energy is a
thermodynamic potential, which means that it can be used to reconstruct all information
that we can derive from E(S, V,N). Note that the second law implies that the free energy
should be minimized in an isolated system, i.e., ∆F ≤ 0. Another example of a thermo-
dynamic potential is the Gibbs free energy G = E − ST + pV which depends on T , p
(pressure), and N .

Before closing this section, we write down an alternative formulation of the second law. We
consider a system that is in contact with an equilibrium heat bath at constant temperature
T . By assuming that the bath is much larger than the system, the system can only weakly
perturb the bath. Additionally, we assume that the bath relaxation time (to return to equi-
librium) due to a small perturbation is much faster than the system timescale, such that
the bath effectively remains in equilibrium at all times. We now drive the system between
two equilibrium states. Since the bath effectively is in equilibrium, the bath and system are
uncorrelated, and the total entropy change can be written as ∆Stot = ∆Ssys +∆SB ≥ 0,
where ∆Ssys and ∆SB are the entropy changes associated to the system and the bath, re-
spectively. As the bath is much larger than the system, the entropy production associated
to the bath can be written as ∆SB = −Q/T , with Q being the heat absorbed or released
by the system. By using the first law, we can express the second law as

W ≥ ∆F. (5.4)

This establishes a minimal bound on the work that we need to do on the system to drive
it between the two states. Alternatively, by defining the extracted work as Wext = −W ,
having a positive sign when the system does work on its environment, we find the upper
bound Wext ≤ −∆F . The change in free energy thus puts a fundamental limit on how
much work that can be extracted from a system. Note that equality only holds for reversible
processes, where the driving is quasistatic.

5.2 Stochastic thermodynamics

In this section, we discuss stochastic thermodynamics by studying systems described by
Markovian rate equations [154], but the results are general, and are typically applicable for
other systems as well – for instance, systems obeying Langevin dynamics [4]. The content
of this section is relevant for Papers I, II, and VI.

We consider a system with discrete states x, each with an energy εx and number of particles
nx. For the purposes of this thesis, we involve only one particle species, but the results can
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be extended to include several species. The energies can be controlled by an external, time
dependent control variable λ(t), such that εx = εx[λ(t)]. The control variable could, for
instance, be an electric field. Here we assume that nx is fixed for all states x, and cannot be
controlled externally. The system is coupled to an arbitrary number of equilibrium reser-
voirs, labeled with indexes ν, having well-defined temperatures Tν and chemical potentials
µν [see Fig. 5.1(a)]. The system exchanges energy and particles with the reservoirs. The
reservoirs are assumed to be so large that the system can only perturb the reservoirs weakly,
and that their thermal relaxation time is so short compared to the system timescale that the
reservoirs effectively remain in equilibrium at all times. To describe the system dynamics,
we will use the following Markovian rate equation,

ṗx(t) =
∑

x′

∑

ν

[
M

(ν)
xx′px′(t) −M

(ν)
x′xpx(t)

]
, (5.5)

where px(t) is the probability to occupy state x at time t (typically, we will not write out
the time dependence unless necessary), and M (ν)

xx′ = M
(ν)
xx′ [λ(t)] is the transition rate for

the transition x′ → x mediated by reservoir ν. As indicated, the transition rates will, in
general, be dependent on λ(t), but to avoid clutter, we will only write out the explicit
dependence on λ(t) when necessary.

Figure 5.1: (a) A microscopic system in state x coupled to an arbitrary number of equilibrium reservoirs with which
the system can exchange energy and particles. Each reservoir has a well-defined temperature Tν and
chemical potential µν . (b) Example trajectory of the system state [see trajectory definition in Eq. (5.10)].
Each state transition xj−1 → xj is mediated by a reservoir νj for a fixed control parameter λj . Note that
the control parameter can vary continuously between transitions.

To incorporate thermodynamics into our model, we assume that the transition rates obey
local detailed balance, i.e.,

ln

(
M

(ν)
xx′

M
(ν)
x′x

)
=
εx′ − εx − µν(nx′ − nx)

kBTν
, (5.6)

where kB is the Boltzmann constant. This assumption is justified as long as the timescale of
λ(t) is much slower than the thermal relaxation time of the reservoirs, such that the system
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effectively interacts with equilibrium reservoirs at all times. To understand the origin and
physical meaning of local detailed balance, we begin to consider the case where the system
only interacts with one single reservoir. In the long time limit, the system thermalizes with
the bath, and reaches an equilibrium distribution

p(eq)
x =

e−(εx−µνnx)/kBTν

Z
, Z =

∑

x

e−(εx−µνnx)/kBTν , (5.7)

with Z being the partition function. In equilibrium, there should, on average, be no net
flow of energy or particles. The probability current J (ν)

xx′ = M
(ν)
xx′px′ − M

(ν)
x′xpx should,

therefore, vanish, giving the detailed balance condition

M
(ν)
xx′p

(eq)
x′ = M

(ν)
x′xp

(eq)
x , (5.8)

and we recover Eq. (5.6). We thus see that the local detailed balance condition leads to
a proper description of thermalization¹, where we recover the equilibrium (Boltzmann)
distribution from statistical mechanics.

In the presence of several reservoirs, all with different temperatures and chemical potentials,
the situation is different. All reservoirs will try to impose an equilibrium distribution on the
system, but will fail due to the presence of the other reservoirs. Because of this, there will,
on average, be a net flow of energy and particles between the system and the reservoirs, and
the stationary probability currents J (ν)

xx′ ≠ 0. This is referred to as a non-equilibrium steady
state. As we, on a general level, do not know either the stationary distribution p(st)

x nor the
stationary currents J (ν)

xx′ , it is at this point difficult to justify that the local detailed balance
condition holds also for non-equilibrium scenarios. For now, we claim that it holds, and
show in the upcoming paragraphs that it leads to a thermodynamically consistent definition
of a non-equilibrium entropy, motivating why local detailed balance should hold for both
equilibrium and non-equilibrium scenarios.

Once we know the distribution px(t), we can calculate the average energy E =
∑

x εxpx

and the average number of particles N =
∑

x nxpx of the system. The average energy
changes at a rate

Ė = Ẇ + Ẇchem + Q̇, (5.9)

where Ẇ =
∑

x px(t)∂tεx[λ(t)] =
∑

x px(t)λ̇(t)∂λεx[λ(t)] is the external work applied
on the system, Ẇchem =

∑
ν

∑
xx′ µνnxJ

(ν)
xx′ is the chemical work rate associated with

the particle exchange between system and reservoirs, and Q̇ =
∑

ν

∑
xx′(εx −µνnx)J

(ν)
xx′

is the system heat current. Equation (5.9) thus shows that the first law of thermodynamics
holds for the average system energy E. Note that the additional chemical work term was
baked into one single term in Eq. (5.1).

¹This corresponds to the zeroth law of thermodynamics.
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We now define system trajectories. Since the state of the system fluctuates randomly over
time, two separate measurements of the state trajectory would yield different results, see
the example trajectory in Fig. 5.1(b). To fully understand how these fluctuations affect the
thermodynamics of the system, we need to properly define work, heat, and entropy on the
level of single system trajectories. We define a trajectory starting in state x0 at time t0 with
control parameter λ0 and ending in state xn−1 at time tn with control parameter λn as

X = {(tj , λj , νj , xj)}n−1
j=1 , (5.10)

where tj specifies the time when the system jumps to a new state xj , by doing the transition
xj−1 → xj , λj is the value of the control parameter when the transition occurs, and νj

is the reservoir responsible for the transition. Note that the control variable λ(t) varies
continuously between transitions, but as we will see, we only need to care about its value at
the times the system undergoes transitions. The rate of external work applied on the system
at time t is given by ∂tεx[λ(t)] = λ̇(t)∂λεx[λ(t)] if the system is in state x. If the system
remains in this state during the interval [t, t+∆t], the work applied on the system is given
by
∫ t+∆t
t dsλ̇(s)∂λεx[λ(s)] = εx[λ(t+ ∆t)] − εx[λ(t)]. That is, we only need to know

the initial and final position of the energy level. The external work applied along trajectory
X may thus be written as

w[X] =

n−1∑

j=0

[
εxj (tj+1) − εxj (tj)

]
. (5.11)

For transition xj−1 → xj mediated by reservoir νj at time tj , the system heat is given by
εxj (tj) − εxj−1(tj) − µνj (nxj − nxj−1), and along X , we get the trajectory heat

q[X] =
n−1∑

j=1

[
εxj (tj) − εxj−1(tj) − µνj (nxj − nxj−1)

]
. (5.12)

With this definition, we follow our convention that q[X] > 0 when the system absorbs
heat, and q[X] < 0 when releasing heat. The chemical work done on the system along X
reads

wchem[X] =

n−1∑

j=1

µνj (nxj − nxj−1). (5.13)

Adding these contributions together, we get the first law of stochastic thermodynamics,

w[X] + wchem[X] + q[X] = εxn−1(tn) − εx0(t0), (5.14)

resembling Eq. (5.1)².

²The definitions in Eqs. (5.11)-(5.13) agree with the definitions of conventional thermodynamics. Close to
equilibrium, a small change of energy can be written as dE = TdS − pdV + µdn, where we may define
heat dQ = TdS, mechanical work dWmech = −pdV , and chemical work dWchem = µdn. Note that the
heat can be calculated as dQ = dE − µdn, when the volume is constant (dV = 0), which corresponds to
the situation where λ(t) is constant in the description above (during heat exchanges with the bath).
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Next we want to define a non-equilibrium entropy for the system. We aim to use the
Shannon entropy

Ssys(t) = −kB

∑

x

px(t) ln[px(t)], (5.15)

and show that it gives reasonable results. If we interpret Ssys(t) as the system entropy at
time t, averaged over all possible trajectories X , we can define a stochastic entropy [155]

ssys(t) = −kB ln[px(t)], (5.16)

evaluated at time t when the system state is x. Averaging over all possible trajectoriesX , we
recover the Shannon entropy Ssys(t) = ⟨ssys(t)⟩X . To evaluate whether these definitions
give sensible results, it is useful to study the entropy change related to a single transition
x′ → x mediated by reservoir ν. During this jump, the system exchanges heat with the
reservoir, which can be calculated as q(ν)

xx′ = εx − εx′ − µν(nx − nx′). As the reservoir is
in equilibrium, the change of entropy in the reservoir is given by

∆s
(res)
xx′ = −q

(ν)
xx′

Tν
= kB ln

(
M

(ν)
xx′

M
(ν)
x′x

)
, (5.17)

where we used the local detailed balance condition in Eq. (5.6). From our definition of
stochastic entropy (5.16), the change in system entropy can be written as

∆
(sys)
xx′ = kB ln

(
px′

px

)
, (5.18)

and we find the total change of entropy

∆s
(tot)
xx′ = ∆s

(sys)
xx′ + ∆s

(res)
xx′ = kB ln

(
M

(ν)
xx′px′

M
(ν)
x′xpx

)
. (5.19)

From the definition of the Shannon entropy (5.15) and the definition of the rate equation
(5.5), the average system entropy production may be written as

Ṡsys(t) =
kB

2

∑

ν

∑

xx′
J

(ν)
xx′ ln

(
M

(ν)
xx′px′(t)

M
(ν)
x′xpx(t)

)
− kB

2

∑

ν

∑

xx′
J

(ν)
xx′ ln

(
M

(ν)
xx′

M
(ν)
x′x

)
, (5.20)

where the factor of 1/2 accounts for counting each jump twice in the double sums. With
the help of Eqs. (5.17) and (5.19), we identify the total entropy production rate

Ṡtot(t) =
kB

2

∑

ν

∑

xx′
J

(ν)
xx′ ln

(
M

(ν)
xx′px′(t)

M
(ν)
x′xpx(t)

)
, (5.21)
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and the reservoir entropy production rate

Ṡres(t) =
kB

2

∑

ν

∑

xx′
J

(ν)
xx′ ln

(
M

(ν)
xx′

M
(ν)
x′x

)
, (5.22)

such that Ṡtot(t) = Ṡsys(t)+Ṡres(t). First, we note that J (ν)
xx′ and ln[M

(ν)
xx′px′(t)/M

(ν)
x′xpx(t)]

always have the same sign, implying that Ṡtot ≥ 0 at all times. Second, when all reservoirs
have the same temperatures and chemical potentials, i.e., being in thermal equilibrium,
we get the stationary condition in Eq. (5.8), and Ṡtot(t) vanishes in the long time limit
when the system has thermalized to the reservoirs. Finally, the detailed balance condition
in Eq. (5.6) implies that the entropy production rate in the reservoirs reads

Ṡres(t) =
1

2

∑

ν

∑

xx′
J

(ν)
xx′

(
−q(ν)

xx′

)

Tν
, (5.23)

as we would expect for a set of equilibrium reservoirs. These results show that the Shannon
entropy (5.15) is a sensible candidate for being a non-equilibrium entropy, and that the
assumption of local detailed balance (5.6) leads to a reasonable expression for the reservoir
entropy production.

We can now define a trajectory entropy production for X in Eq. (5.10) as [155]

∆stot[X] = kB ln

[
px0(t0)

pxn−1(tn)

]
+ kB

n−1∑

j=1

ln

(
M

(νj)
xjxj−1

M
(νj)
xj−1xj

)
, (5.24)

where we used Eqs. (5.17) and (5.18).

With the definitions from the previous paragraphs, it is possible to introduce a non-equilibrium
free energy. To this end, we consider a system exchanging energy with a single reservoir
at temperature T – we neglect particle exchanges between the system and the reservoir
for simplicity. With the first and second law for averages, Eqs. (5.9) and (5.21), we get
that Ẇ ≥ Ḟ , where we introduced the (trajectory averaged) non-equilibrium free energy
F = E − SsysT . By integrating over time, we get the non-equilibrium inequality

W ≥ ∆F, (5.25)

resembling the classical equilibrium case in Eq. (5.4). This motivates us to define a stochastic
free energy f = εx − Tssys, with εx being the energy of the occupied system state x,
and ssys = −kB ln(px) the stochastic entropy of the system. In equilibrium, we have
px = exp{(F (eq) − εx)/kBT}, where F (eq) is the equilibrium free energy of the system,
implying that f (eq) = F (eq), such that the stochastic equilibrium free energy coincides
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with the equilibrium free energy. Driving the system along an arbitrary trajectory X thus
gives us the total trajectory entropy production

T∆stot[X] = w[X] − ∆f [X], (5.26)

where w[X] is the work applied along the trajectory, and ∆f [X] is the difference in
stochastic free energy between the initial and final states of trajectory X . To obtain this
relation, we used Eqs. (5.6), (5.11), (5.14), (5.18), and (5.24). If the initial and final states
are in thermal equilibrium, we get ∆f [X] = ∆F (eq), which is independent on the initial
and final states – note that the equilibrium free energy F (eq) = −kBT ln(Z), such that
∆F (eq) = kBT ln[Z(t0)/Z(tn)], which only depends on λ(t) at t0 and tn.

We have now reached the heart of stochastic thermodynamics; fluctuation theorems. To
begin, we define a forward trajectoryX of the system as specified in Eq. (5.10). To carry out
calculations, we discretize time intoN steps and define a time increment δt = (tn−t0)/N .
Between two system transitions, let us say tj−1 and tj , we get Nj = (tj − tj−1)/δt time
increments. Since time is discretized, the jump xj−1 → xj occurs at tj − δt, such that
the system dwells in xj−1 during Nj − 1 timesteps before making the transition. By
using the definitions of Markov processes (see Chapter 2), and that transition probabilities
can be calculated as P (xj |xj−1) = M

(ν)
xjxj−1δt, the probability of observing the forward

trajectory reads

P [X] = [P (xn−1|xn−1)]
Nn




n−2∏

j=0

M
(νj+1)
xj+1xj (λj+1)δt[P (xj |xj)]

Nj+1−1


 px0(t0),

(5.27)
where P (x|x) is the probability to dwell in state x during a time interval δt, and px0(t0)
is the probability to initially occupy x0. To derive a fluctuation theorem, we must define
a time reversed trajectory as well, where we consider the time reversed versions of both the
system state and the control protocol. The time reversed trajectory of X is given by

Xtr = {tn−j , λn−j , νn−j , xn−j−1}n−1
j=1 , (5.28)

starting in xn−1 at tn with control variable λn, and ending in x0 at t0 with control variable
λ0, passing through the same system states and values of the control parameter as in the
forward trajectory, but in reversed order. Note that this corresponds to a scenario where
both x and λ are even under time reversal. The trajectory work and heat are odd under
the time reversed operation, i.e., w[Xtr] = −w[X], q[Xtr] = −q[X]. The probability of
observing the time reversed trajectory reads

P tr[Xtr] =




n−2∏

j=0

[P (xj |xj)]
Nj+1−1M

(νj+1)
xjxj+1(λj+1)δt


 [P (xn−1|xn−1)]

Nn p̃xn−1(tn),

(5.29)
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where the superscript ‘tr’ on P tr expresses the fact that we consider a time reversed ex-
periment. Note that the initial distribution p̃xn−1(tn) of Xtr not necessarily coincides
with the final distribution pxn−1(tn) to be in xn−1 at time tn in the forward trajectoryX .
Experimentally, these distributions are typically different as the experimenter first runs a
series of forward experiments, and then performs a series of backward experiments (time-
reversing the driving). The distributions thus depend on the preparation of the experiment.
The special case where the distributions coincide can, for example, be achieved by either
letting the forward (backward) trajectory end (start) in a stationary state for a fixed control
parameter, or letting the system thermalize to some environment after (before) the driving
in the forward (backward) experiment.

Here we consider the situation where p̃xn−1(tn) = pxn−1(tn), and use the definitions of
Eqs. (5.27), (5.29), and (5.24) to find the detailed fluctuation theorem

P [X]

P tr[Xtr]
= e∆stot[X]/kB . (5.30)

This theorem relates the probabilities of observing the forward and time reversed trajectories
with the entropy production of the forward trajectory ∆stot[X] as defined in Eq. (5.24).
For trajectories where P [X] = P tr[Xtr], ∆stot[X] = 0, and there is no bias towards
either of the trajectories, implying full microscopic reversibility. For ∆stot[X] > 0,
P [X] > P tr[Xtr], and there is a bias towards observing the forward trajectory. We
stress that there still is a finite probability to observe the time reversed trajectory, but it
is less likely. When ∆stot[X]/kB ≫ 1, P tr[Xtr] becomes vanishingly small compared to
P [X], indicating absolute microscopic irreversibility. By averaging over all possible trajec-
tories X , the detailed fluctuation theorem (5.30) implies an integral fluctuation theorem

〈
e−∆stot[X]/kB

〉
= 1, (5.31)

where the average is taken with respect to P [X], and
∑

X P tr[Xtr] = 1. Jensen’s inequal-
ity further provides the second law of stochastic thermodynamics,

⟨∆stot[X]⟩ ≥ 0. (5.32)

That is, averaged over all possible trajectories, the entropy must be non-negative. This
coincides with the conventional second law of thermodynamics. Further note that as
0 < e−∆stot[X]/kB < 1 for all trajectories with ∆stot[X] > 0, it is necessary that
there exist trajectories with ∆stot[X] < 0 such that the average in Eq. (5.31) holds. We
thus understand that these fluctuation theorems are generalizations of the second law that
hold for microscopic systems far from equilibrium. In particular, we note that the second
law is probabilistic on the microscopic scale, allowing for observations of trajectories with
negative entropy production. It is only on average that the entropy production must be
non-negative.
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When driving a system coupled to a single reservoir between two equilibrium states³,
Eqs. (5.26) and (5.31) can be used to recover the Jarzynski relation [137]

〈
e−w[X]/kBT

〉
= e−∆F (eq)/kBT . (5.33)

The power of this relation lies in its ability to determine the free energy difference ∆F (eq)

between two equilibrium states by performing measurements on a non-equilibrium system.
The Jarzynski relation further implies (by Jensen’s inequality) that ⟨w[X]⟩ ≥ ∆F (eq), a
generalization of Eq. (5.4).

Finally, we make some remarks. First, fluctuation theorems can be obtained by considering
alternative time reversed trajectories as well. The scenario discussed here, when restricting
ourselves to a system and a driving that are even under time reversal, is a special case. In
fact, it is possible to derive fluctuation theorems for systems and control protocols that are
odd under time reversal [10]. Note that this introduces several subtleties in the derivations.
The reason for studying the special case of even functions under time reversal is because of
its direct applicability on the results derived in Paper II. Second, during the course of the
last decades, many of the non-equilibrium theorems of stochastic thermodynamics have
been verified in various experimental platforms, see Ref. [146] for a review.

5.3 Information thermodynamics

The purpose of this section is to introduce and review some of the results from information
thermodynamics to clearly motivate why Maxwell’s demon does not violate the second law.
Maxwell’s demon is a central topic of Papers I and III, but is also relevant for Paper II.

To begin, we will shortly review some key concepts from information theory that will be
useful throughout this section. Our average uncertainty of a random variable X with
distribution p(x) can be quantified via the (information theoretic) Shannon entropy

H[p(x)] = −
∑

x

p(x) ln[p(x)]. (5.34)

We call this the “information theoretic entropy” since it differs by a factor of kB from the
one defined in Eq. (5.15). In the case where p(x) = 1 for one specific x, our uncertainty
vanishes. That is, we will always know the value of X . When X is uniformly distributed
overN different values, each with probability p(x) = 1/N , the Shannon entropy is maxi-
mized, corresponding to maximal uncertainty aboutX . Second, for two distributions p(x)

³In fact, we only need to require that the initial state of the forward trajectory and the initial state of the
backward trajectory are equilibrium states. Above we stated that also the final state of the forward trajectory
needs to be in equilibrium – we did this to simplify the derivation.

74



Figure 5.2: Illustration of the Szilard engine. A container with a single gas particle is in contact with a heat bath at
temperature T . (left) Initially, the gas is in thermal equilibrium. (middle) A demon (experimenter) inserts
a partition in the middle of the container, and measures on which side the particle is. Depending on the
outcome, the demon applies feedback by attaching a weight on the same side of the partition as the
particle is located. Via isothermal expansion, the gas can lift the weight, extracting kBT ln(2) of work
from the bath (dashed arrow). (right) As the expansion finishes, the gas returns to its initial state.

and q(x) defined over the same outcomes x, we introduce the Kullback-Leibler divergence

D(p||q) =
∑

x

p(x) ln

[
p(x)

q(x)

]
. (5.35)

We note that D(p||q) ≥ 0, with equality if p(x) and q(x) are the same distribution. The
Kullback-Leibler divergence can thus be used as a measure of how similar two distributions
are. It vanishes for identical distributions and takes finite values otherwise. Finally, we
define the mutual information between two random variables X and Y as

I[X : Y ] =
∑

x,y

p(x, y) ln

[
p(x, y)

p(x)p(y)

]
, (5.36)

where p(x, y) is the joint distribution of the random variables, and p(x) and p(y) are the
marginal distributions for X and Y , respectively. By definition, the mutual information
coincides with the Kullback-Leibler divergence for p(x, y) and p(x)p(y), and we thus get
that I[X : Y ] ≥ 0. The mutual information gives a measure on how correlated the
variables X and Y are. If they are completely uncorrelated, p(x, y) = p(x)p(y) and
I[X : Y ] = 0. Therefore, the mutual information is useful in measurement theory where
the correlation between a system observable X and the measurement outcomes Y is of
interest.

We now turn to Maxwell’s demon. To illustrate the issues of apparent violations of the
second law, we will study the Szilard engine – a simplified version of Maxwell’s demon. Its
working cycle is visualized in Fig. 5.2. A single gas particle is trapped inside a container
of fixed volume, and is in contact with a heat bath of temperature T . That is, the gas
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is initially in thermal equilibrium. A demon (or experimenter) inserts a partition in the
middle of the container, and measures whether the particle is on the left or the right side of
the partition. Based on the outcome, the demon performs feedback by attaching a weight
to the partition. By quasistatic, isothermal expansion, the gas particle can lift the weight,
extracting work

Wext = −W =

∫ Vtot

Vtot/2
pdV = kBT ln(2), (5.37)

where Vtot is the volume of the container, and p = kBT/V is the pressure of the gas
at volume V and temperature T (ideal gas law for one particle). Finally, the demon re-
moves the partition, and lets the particle return to its initial state. As the container returns
to its initial state, the first law ensures that the bath must have provided an amount of
heat Q = kBT ln(2) to the container, implying that the change of entropy in the bath
∆SB = −Q/T is negative. Since the gas returns to its initial equilibrium state, the en-
tropy of the container does not change, and the total entropy, of both bath and container, is
negative, appearing as a clear violation of the second law. To resolve this issue, the demon
must be treated as a physical system whose entropy increases by an amount that at least
matches the decrease in the bath. To motivate why this is the case, we will now discuss the
thermodynamics of measuring, storing, and erasing information.

In the Szilard engine, the gas particle is initially in an equilibrium state with probability
distribution p(x = L) = p(x = R) = 1/2 (x denotes the state of the gas). That is, we
find the particle with equal probability on either side of the container. By measuring the
state of the gas, we obtain an outcome y = L,R, and update our knowledge of the gas
according to Bayes’ rule,

p(x|y) =
p(y|x)p(x)

p(y)
, x, y = L,R, (5.38)

where p(y|x) is the likelihood function to get outcome y given that the state is x, p(x)
is the initial equilibrium distribution from above, and p(y) is the probability to obtain
outcome y. As p(x|y) does not necessarily coincide with the equilibrium distribution, a
measurement typically drives the system out of equilibrium. Therefore, the act of measuring
should be considered as a non-equilibrium process. To calculate the change of system
entropy due to the measurement, we use the Shannon entropy (5.34). Since H[p(x|y)] −
H[p(x)] depends on a specific value of y, we average this over all possible outcomes, and
get

∆Ssys = kB

∑

y

p(y)
(
H[p(x|y)] −H[p(x)]

)
= −kBI[S : M ], (5.39)

where I[S : M ] is the mutual information between the system and the measurement
outcome. Since the mutual information is non-negative, ∆Ssys ≤ 0, implying that by
measuring, our uncertainty of the system must, at least, stay the same or decrease. Assuming
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that the measurement does not change the internal system energy, i.e., ∆E = 0, the free
energy change in the system becomes

∆F = ∆E − T∆Ssys = kBTI[S : M ] ≥ 0, (5.40)

whereT is the temperature of the environment of the system. The effect of the measurement
is thus to increase the free energy of the system, increasing the amount of work that can
be extracted isothermally. In fact, for a system initially at equilibrium and coupled to a
reservoir at temperature T , the following inequality holds true when feedback-controlling
the system based on a single measurement [156]

W ≥ −kBTI[S : M ] + ∆F. (5.41)

HereW is the average system work, and ∆F the change in free energy of the system. This
generalizes the result in Eq. (5.25) to feedback-controlled systems. If ∆F = 0, we get the
following upper bound for the extracted work,

Wext = −W ≤ kBTI[S : M ]. (5.42)

That is, the decrease in uncertainty about the system sets the limit on how much work that
can be extracted by doing feedback. For the Szilard engine, we have p(x = L) = p(x =
R) = 1/2 in thermal equilibrium. For an error free measurement, the likelihood function
is given by p(y = L|x = L) = p(y = R|x = R) = 1, and p(y = L|x = R) =
p(y = R|x = L) = 0. We thus get that I[S : M ] = ln(2). That is, the measurement
obtains one bit of information. In the end of the cycle, the system returns to its initial
state and ∆F = 0. Therefore, the work that can be extracted by the Szilard engine obeys
Wext ≤ kBT ln(2), providing an upper bound on how much work that is possible to
extract. This inequality was saturated in Eq. (5.37).

We now consider the work required to do a measurement. The information acquired during
the measurement will be stored in a memory M . Again, we obtain some outcome y that
has probability distribution p(y). The memory is in contact with a heat bath at temperature
T . Initially, the system, the memory, and the bath are uncorrelated, and the memory is in
thermal equilibrium. To perform the measurement, the memory interacts with the system.
By assuming that this interaction does not involve any heat exchange, the average work
[with respect to p(y)] performed on M during the measurement is bounded by [157]

W
(meas)
M ≥ −kBT (H − I[S : M ]) + ∆FM, (5.43)

where H = H[p(y)] is the Shannon entropy for the measurement outcome, and ∆FM is
the change of free energy in the memory during the measurement. This inequality states
that the work on the memory must, at least, be the change of free energy in the memory,
as expected from Eq. (5.25), plus an additional energetic cost due to the information ac-
quisition. The first term obeys the inequality 0 ≤ H − I[S : M ] ≤ H , where the lower
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bound is obtained for an error free measurement, and the upper bound when no informa-
tion is extracted, i.e., when I[S : M ] = 0. We note that when H = I[S : M ] (error free
measurement) and ∆FM = 0, W (meas)

M ≥ 0. There are thus scenarios when no energy is
needed to do the measurement. Note that there also exist scenarios where the lower bound
on the work is negative, meaning that work can be extracted from the memory by doing
the measurement.

By assuming that M is in thermal equilibrium with its environment before resetting it to
the standard state, i.e., erasing it, the average work [with respect to p(y)] required to erase
the memory is bounded by [157]

W
(eras)
M ≥ kBTH − ∆FM . (5.44)

It is interesting to study the case for which ∆FM = 0. For a measurement with two
outcomes where p(y = 0) = p(y = 1) = 1/2, W (eras)

M ≥ kBT ln(2). That is, to erase
the memory, at least kBT ln(2) of energy is required – this is the Landauer principle [148].

Combining Eqs. (5.41), (5.43) and (5.44) results in

WSM = W +W
(meas)
M +W

(eras)
M ≥ ∆FS, (5.45)

where WSM is the average work for the combined unit of system and memory. This in-
equality is in agreement with the conventional second law (5.4). We thus understand that
the apparent violation of the second law for the Szilard engine only appears when con-
sidering the thermodynamics of the system alone. The information processing must be
performed by a physical system (demon), which must be included in the thermodynamic
book-keeping. By doing accordingly, no violations of the second law are observed.

The above discussion focused on feedback processes where only one single measurement
was made, and illustrated how information processing comes with a thermodynamic cost.
As this thesis concentrates on continuous measurement and feedback, we will now review
a few important fluctuation theorems valid for continuous information processing.

In the absence of measurement and feedback, backward or time reversed trajectories are
rather straightforward to define. However, when including measurement and feedback, it
is not clear how to define a backwards trajectory. In Fig. 4.2(a), we visualize a trajectoryX
[marked as S(t)] of a two-level system together with a trajectory Y [marked asD(t)] of the
measurement outcomes from a continuous measurement. We note that the time reversed
trajectories of X and Y , going from right to left in the figure, yield an unphysical picture;
the measurement outcome will predict a system transition before it happens. Similarly, a
feedback protocol, with measurement dependent trajectory Λ(Y ), will therefore be able
to act before a system transition occurs. This motivates why there is no clear definition of
backward dynamics under feedback control. In fact, the backward trajectory can be defined
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in different ways. This implies that each definition leads to a different fluctuation theorem
[158]. It is, however, possible to always write down a general detailed fluctuation theorem
for continuous feedback control [158]

PB[Xtr, Y tr]

P [X,Y ]
= e−σ[X,Λ(Y )]−(It[X:Y ]−Itr

t [Xtr:Y tr]), (5.46)

whereP [X,Y ] is the probability following the forward trajectoriesX and Y ,PB[Xtr, Y tr]
is the probability for the (undefined) backward experiment following backward trajectories
Xtr and Y tr, σ[X,Λ(Y )] is the unitless entropy production along the forward trajectory
when applying feedback protocol Λ(Y ), It[X : Y ] is the transfer entropy for the forward
experiment, and Itr

t [Xtr : Y tr] is the transfer entropy of the backward experiment. The
power of Eq. (5.46) lies in that it is valid for any choice of backward experiment. This
indicates that each choice of backward experiment implies a choice-dependent fluctuation
theorem, rather than a universal theorem that holds for all scenarios.

As an instructive example, we consider the backward trajectory of Ref. [35]. The experiment
is executed as follows. First, we perform the forward experiment with feedback protocol
Λ(Y ). Then, we run the backward experiment by randomly choosing an outcome trajec-
tory Y , and applying the time reversed protocol of Λ(Y ), but do not perform any feedback.
For this type of experiment, one can derive the integral fluctuation theorem [35]

〈
e−σ−It

〉
= 1. (5.47)

Jensen’s inequality implies that
⟨σ⟩ ≥ −⟨It⟩. (5.48)

This is a generalization of the second law, showing that under continuous measurement
and feedback, it is possible to observe a negative system entropy production. As mentioned
above, including the thermodynamics of the feedback-controller would give a non-negative
total entropy production. One may also find a generalized Jarzynski relation [35]

〈
e−(w−∆F )/kBT−It

〉
= 1, (5.49)

where w is the system work, and ∆F the free energy change of the system. For the average
work, we get

⟨w⟩ ≥ −kBT ⟨It⟩ + ∆F, (5.50)

resembling the single measurement inequality in Eq. (5.41).

Before closing this section, we review the special case where the presence of feedback control
modifies the local detailed balance as [159]

ln

(
M

(ν)
xx′

M
(ν)
x′x

)
=
εx′ − εx − µν(nx′ − nx)

kBTν
+ f

(ν)
xx′ . (5.51)
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Here f (ν)
xx′ is a feedback parameter assumed to be independent on the system energies εx.

In the absence of feedback, f (ν)
xx′ = 0, we recover the standard local detailed balance. It

is assumed that the timescale of the feedback is much faster than the system, but much
slower than the thermal relaxation time of the reservoirs. Again, so that the system always
interacts with equilibrium reservoirs. This type of modified local detailed balance condition
may arise in various situations, for instance in Paper II for the classical toy model. It was
also was observed in Ref. [160]. A difference from the cases discussed above is that we
do not consider any trajectory for the measurement outcomes or the control protocol –
measurement and feedback are effectively incorporated into the rates M (ν)

xx′ . The modified
local detailed balance (5.51) leads to the integral fluctuation theorem [159]

〈
e−(∆Stot+I)/kB

〉
= 1, (5.52)

where I is an information term depending on the feedback parameters f (ν)
xx′ . In the ab-

sence of feedback, the information term vanishes, and we recover the standard fluctuation
theorem for non-equilibrium systems (5.31). With Jensen’s inequality, we get

⟨∆Stot⟩ ≥ −⟨I⟩, (5.53)

similar to Eq. (5.48). Again, the entropy production is bounded from below by an infor-
mation term.

5.4 Quantum thermodynamics

In this section, we begin by showing how the laws of thermodynamics emerge from quan-
tum theory. We closely follow the lecture notes of Ref. [161]. This is followed by a discus-
sion on how to calculate work and heat in open quantum systems, and we use the double
quantum dot (DQD) as an example. Finally, we briefly discuss quantum thermal machines
and entanglement. The results of this section are important for the theoretical modeling in
Papers II-V.

Emergence of thermodynamics from quantum theory

In this section, we show how the first and second laws of thermodynamics emerge from
quantum theory. We begin by introducing a few concepts that will be important through-
out the chapter; the von Neumann entropy, the quantum relative entropy, and the thermal
state.

The von Neumann entropy of a state ρ̂ is given by

SvN(ρ̂) = −kB tr{ρ̂ ln(ρ̂)} ≥ 0, (5.54)
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and can be seen as a quantum extension of the Shannon entropy (5.34). In fact, in the
eigenbasis { |λj⟩} of ρ̂, where ρ̂ |λj⟩ = λj |λj⟩ with 0 ≤ λj ≤ 1 and

∑
j λj = 1,

the von Neumann entropy reduces to the Shannon entropy for the distribution {λj}, i.e.,
SvN(ρ̂) = −kB

∑
j λj ln(λj) = kBH[{λj}]. For a state that changes over time accord-

ing to a unitary transformation Û(t, t0), with ρ̂(t) = Û(t, t0)ρ̂(t0)Û
†(t, t0), the von

Neumann entropy is stationary,

∂tSvN[ρ̂(t)] = 0,
(
SvN[ρ̂(t0)] = SvN[ρ̂(t)]

)
. (5.55)

This property follows from the fact that the eigenvalues of the density matrix do not change
over time⁴. Thus, the information (or unceratinty) in the distribution {λj} is preserved.
However, for dissipative dynamics (non-unitary), the eigenvalues do change over time,
reflecting that information is lost during the evolution.

The quantum relative entropy is defined as

S(ρ̂||σ̂) = tr{ρ̂ ln(ρ̂)} − tr{ρ̂ ln(σ̂)} = −k−1
B SvN(ρ̂) − tr{ρ̂ ln(σ̂)} ≥ 0 (5.56)

for density matrices ρ̂ and σ̂. This quantity provides a measure of how similar the two states
are. For ρ̂ = σ̂, S(ρ̂||σ̂) = 0. If [ρ̂, σ̂] = 0, the density matrices share the same eigenbasis,
and the quantum relative entropy coincides with the Kullback-Leibler divergence (5.35),
i.e., S(ρ̂||σ̂) = D({pj}||{qj}), where {pj} and {qj} are the eigenvalues of ρ̂ and σ̂,
respectively.

A system with Hamiltonian Ĥ and particle number operator N̂ is in a thermal state, in the
grand canonical ensemble, if its density matrix is written as

τ̂ =
e−(Ĥ−µN̂)/kBT

Z
, (5.57)

where T is temperature, µ chemical potential, and Z = tr
{
e−(Ĥ−µN̂)/kBT

}
is the parti-

tion function. Note that the thermal state maximizes the von Neumann entropy for fixed
⟨Ĥ⟩ and ⟨N̂⟩ [12, 161]⁵.

Here we study the thermodynamics of scenarios similar to Fig. 3.1, where an open quantum
system weakly interacts with several large heat baths in thermal equilibrium. The Hamilton

⁴If ρ̂(t0) =
∑

j λj(t0) |λj(t0)⟩⟨λj(t0)|, we find ρ̂(t) =
∑

j λj(t0) |λj(t)⟩⟨λj(t)|, where |λj(t)⟩ =

Û(t, t0) |λj(t0)⟩, with δjk = ⟨λj(t)|λk(t)⟩ given that ⟨λj(t0)|λk(t0)⟩ = δjk. That is, under a unitary
transformation, the eigenvalues of a density matrix do not change.

⁵The following proof is provided by Ref. [161]. Consider an arbitrary state ρ̂ for which ⟨Ĥ⟩ = tr{Ĥρ̂} =
tr{Ĥτ̂} and ⟨N̂⟩ = tr{N̂ ρ̂} = tr{N̂ τ̂}. By using the quantum relative entropy, we find SvN(ρ̂) ≤
− tr{ρ̂ ln(τ̂)} = SvN(τ̂). The last equality follows from explicit calculation, showing that the thermal state
maximizes the von Neumann entropy.
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operator of the total setup (including both system and baths) reads

Ĥ(t) = ĤS(t) +
∑

α

(
Ĥα + ĤαS

)
, (5.58)

where ĤS(t) is the Hamiltonian of the system, Ĥα the Hamiltonian of bath α, and ĤαS

the interaction Hamiltonian of the system and bath α. The time evolution of the setup is
determined by Eq. (3.9). In addition, we have the particle number operators N̂S and N̂α

for the system and bath α, respectively. To make sure that particle conservation holds, we
assume that

1. [N̂S +
∑

α N̂α, Ĥ(t)] = 0 (global conservation),

2. [N̂S , ĤS(t)] = 0 (local conservation system),

3. [N̂α, Ĥα] = 0 (local conservation baths).

For weak system-bath couplings, it is reasonable to assume that changes of energy in the
system-bath couplings are negligibly small compared to changes of energy in system and
baths. Therefore, we put

∂t⟨ĤαS⟩ = −i tr
{

[ĤαS , ĤS(t) + Ĥα]ρ̂(t)
}

= 0, (5.59)

where ρ̂(t) is the density matrix of the total setup, and we used ⟨Ô⟩ = tr{Ôρ̂(t)} for an
arbitrary operator Ô. For open systems that weakly interact with their environment, it is,
as we saw in Chapter 3 and Appendix D, reasonable to work with an effective description
where correlations between system and baths are negligible, i.e.,

ρ̂S(t)
⊗

α

τ̂α, (5.60)

with ρ̂S(t) = trE{ρ̂(t)} being the reduced state of the system (the ‘E’ denotes a partial
trace over the bath degrees of freedom), and τ̂α = e−(Ĥα−µαN̂α)/kBTα/Zα the thermal
state of bath α with temperature Tα and chemical potential µα. In reality, this description
might not be fully accurate, as weak correlations between system and baths can build up.
However, it is often a good approximation due to the weak coupling. At the initial time
t0, we assume that no correlations exist, such that ρ̂(t0) = ρ̂S(t0)

⊗
α τ̂α.

The energy of the total setup is given by

E(t) = ⟨Ĥ(t)⟩ = ⟨ĤS(t)⟩ +
∑

α

(
⟨Ĥα⟩ + ⟨ĤαS⟩

)
. (5.61)
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By taking the time derivative, we find

Ė(t) = PS(t) + tr{ĤS(t)∂tρ̂(t)} +
∑

α

∂t⟨Ĥα⟩, (5.62)

where PS(t) = ⟨∂tĤS(t)⟩ is the external power provided to the system, the second term is
the change of energy due to internal changes of the system, and the last term is the change
of energy in the baths. We note that the two last terms must cancel, as the energy of the
whole setup only can change due to the external driving (that is, system and baths cannot
create or destroy energy, only exhange it). The last two terms can thus only differ by a sign,
reflecting that the energy that flows between system and baths must be conserved. The
energy current associated with bath α can be written as

∂t⟨Ĥα⟩ = ∂t⟨Ĥα − µαN̂α⟩ + µα∂t⟨N̂α⟩. (5.63)

Here we identify the heat current Q̇(B)
α = ∂t⟨Ĥα − µαN̂α⟩ and the chemical power

P
(B)
α = µα∂t⟨N̂α⟩. This interpretation of heat current and power can be motivated by

Eq. (5.9) from stochastic thermodynamics. The superscript ‘(B)’ indicates that Q̇(B)
α ,

P
(B)
α > 0 when energy enters the bath. By explicit calculation, the second term of

Eq. (5.62) can be written as

tr{ĤS(t)∂tρ̂(t)} = −i
∑

α

(
⟨[ĤS(t) − µαN̂S , ĤαS ]⟩ + µα⟨[N̂S , ĤαS ]⟩

)
, (5.64)

where we identify Q̇(B)
α = i⟨[ĤS(t) − µαN̂S , ĤαS ]⟩ and P (B)

α = iµα⟨[N̂S , ĤαS ]⟩.

The first law of thermodynamics for the system can now be stated,

∂t⟨ĤS(t)⟩ = PS(t) +
∑

α

(
Pα + Q̇α

)
, (5.65)

where we introduced Pα = −P (B)
α and Q̇α = −Q̇(B)

α , such that Pα, Q̇α > 0 when
energy enters the system. In accordance with the conventional first law of thermodynamics
(5.1), changes of energy are due to work

(
PS(t), Pα

)
or heat (Q̇α).

For entropy, it is tempting to use the von Neumann entopy for the entire setup (including
both system and baths). However, as shown in Eq. (5.55), the von Neumann entropy is
stationary for unitary evolution, suggesting that all processes of the setup are reversible. This
is not realistic. As an example, we consider a quantum dot coupled to electron reservoirs
at a low temperature T , see Fig. 5.3. When applying a large voltage bias µL − µR = eV
across the system, electrons will flow unidirectionally from the left to right reservoir. The
reversed process is never observed, meaning that the entropy of the setup must increase.
According to the definitions in stochastic thermodynamics, the entropy production rate
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Figure 5.3: Quantum dot coupled to electron reservoirs at a low temperature T . By applying a large voltage bias
µL − µR = eV , electrons are unidirectionally transported from left to right. As the reversed process is
not observed, the entropy must increase.

reads Ṡtot = −(Q̇L + Q̇R)/T (in steady state), see Eqs. (5.21) and (5.23). The indexes ‘L’
and ‘R’ refer to the left and right reservoir. It is desirable to find a similar relation for a
quantum version of the second law.

This can be achieved by using the quantum relative entropy. The second law may be defined
with the quantum relative entropy as (proof in Appendix F)

∆S(t) = kBS(ρ̂(t)||ρ̂S(t)
⊗

α

τ̂α) = SvN[ρ̂S(t)]−SvN[ρ̂S(t0)]−
∑

α

Q̇α

Tα
≥ 0, (5.66)

which is ensured to be positive by the definition of the quantum relative entropy. The
heat exchanged with bath α is given by Q̂α = − tr{(Ĥα − µαN̂α)[ρ̂(t) − ρ̂(t0)]}. The
change of entropy can thus be interpreted as the distance between the true system state and
the effective state (5.60). This choice of entropy production is satisfying, as it resembles
the definitions in stochastic thermodynamics, where the first two terms correspond to the
change of entropy in the system, while the last term corresponds to the change of entropy
in the baths.

From Eq. (5.66), we find the entropy production rate

Σ = ∂t∆S(t) = ∂tSvN[ρ̂S(t)] −
∑

α

Q̇α

Tα
. (5.67)

In contrast to Eq. (5.66), Σ is not ensured to be non-negative. Note that ∆S(t) not nec-
essarily increases monotonically over time, as system-bath correlations in ρ̂(t) may change
with time. This means that ρ̂(t) sometimes gets closer to the uncorrelated effective state
ρ̂S(t)

⊗
α τ̂α, giving rise to the non-monotonic behavior. However, for large, weakly cou-

pled baths, ∆S(t) is expected to increase monotonically, ensuring Σ ≥ 0 [162].

Open systems

In Chapter 3, we remarked that it is a formidable task to model the combined dynamics of
both an open system and its environment. Typically, we only know the dynamics of the
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system density matrix ρ̂S(t). Therefore, our definitions of heat and work in the previous
subsection are hard to calculate, as many of the computations rely on knowing ρ̂(t). Here
we show how these quantities may be calculated when only having access to ρ̂S(t).

An open system, weakly coupled to a set of heat baths, evolves according to the Lindblad
equation

∂tρ̂S(t) = −i[ĤS , ρ̂S(t)] +
∑

α

Lαρ̂S(t) ≡ Lρ̂S(t), (5.68)

where Lα describes the coupling to bath α. Here we consider the case where the Hamil-
tonian is time independent (a time dependent Hamiltonian does not necessarily imply a
stationary state of the Lindblad equation). We further assume there is a unique stationary
state ρ̂ss for which [ĤS , ρ̂ss] = 0 and Lαρ̂ss = 0.

If all baths are in equilibrium, all having the same temperature T and chemical potential
µ, the system should thermalize, and the stationary state would be the thermal state⁶

ρ̂ss → τ̂ (S) =
e−(ĤS−µN̂S)/kBT

Z(S)
. (5.69)

This establishes the zeroth law of thermodynamics.

The average energy of the system reads E(t) = tr{ĤS ρ̂(t)}. By explicit calculation, we
find the first law [cf. Eq. (5.65)]

Ė(t) =
∑

α

(
Pα + Q̇α

)
, (5.70)

where we identified the chemical power and heat current exchanged with bath α as

Pα = µα tr{N̂SLαρ̂S(t)}, Q̇α = tr{(ĤS − µαN̂S)Lαρ̂S(t)}. (5.71)

As before, for Pα, Q̇α > 0, energy is entering the system. For a time dependent Hamil-
tonian, we get an additional term in the first law for the external power [cf. Eq. (5.65)].
With the thermal state τ̂ (S)

α = e−(ĤS−µαN̂S)/kBTα/Z
(S)
α , for temperature Tα and chem-

ical potential µα, satisfying Lατα = 0, we can write ĤS − µαN̂S = −kBTα[ln(τ̂
(S)
α ) +

ln(Z
(S)
α )]. The heat current can thus be written as

Q̇α = −kBTα tr{ln(τ̂ (S)
α )Lαρ̂S(t)}, (5.72)

where we used that Lα is trace preserving.

⁶The superscript ‘S’ refers to the system, to distinguish it from the thermal state for the baths, see previous
pages.
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For the second law, we use the entropy production rate in Eq. (5.67). We find that

Σ = ∂tSvN[ρ̂S(t)] −
∑

α

Q̇α

Tα

= kB

∑

α

tr
{

Lαρ̂S(t)
(
ln(τ̂ (S)

α ) − ln[ρ̂S(t)]
)}

≥ 0,

(5.73)

where we used ∂tSvN[ρ̂S(t)] = −kB tr{Lαρ̂S(t)ln[ρ̂S(t)]} [70] and Eq. (5.72). The
entropy production rate is ensured to be non-negative by Spohn’s inequality [163], which
relies on that Lατ̂

(S)
α = 0. We note that the second law may be violated when using local

Lindblad equations [164], but is ensured to hold for global Lindblad equations [74]⁷. As
the local approach is widely used and is central in this thesis, it is desirable to understand
when it is valid. Several studies have addressed this question [74, 165–168]. Trushechkin
and Volovich showed that the local model emerges from the global model as its zeroth
order contribution when treating the couplings between subsystems perturbatively [165].
In particular, they showed that no violations of the second law for the local model are
observed as long as higher order terms in the perturbation scheme can be neglected. Hewgill
et. al. note that the definition of heat current in Eq. (5.72) gives rise to terms that are
responsible for the violation of the second law [166]. By redefining heat, in accordance with
a collisional framework, the authors argue that the problematic terms can be identified as
work, and should thus not enter the second law (5.67), ensuring that no violations occur.
Potts, Kalaee, and Wacker introduce a framework for deriving local master equations that
are thermodynamically consistent [74]. Finally, Kalaee and Wacker show that non-negative
entropy production is ensured by introducing effective energy levels at which the transfer
of energy occurs [167, 168]. There is thus no general consensus yet on how to treat this
problem, but up to every individual researcher.

Thermodynamics of the DQD

As an example of the thermodynamic consistency of local master equations, we study the
DQD (see Chapter 3). In particular, we show that the local dynamics of the DQD de-
termined by Eq. (3.20) are compliant with the laws of thermodynamics, provided that the
equation is used in its regime of validity.

We begin by noting that the transition rates for electrons to enter and leave the DQD
[see Eq. (3.20)] are evaluated at ϵ̄ = (ϵL + ϵR)/2, rather than at the bare local energies
ϵL and ϵR. For large detuning |ϵL − ϵR|, this is not physically sensible – it appears as if

⁷Often a system is made up of many coupled subsystems. In a local description, the baths couple to the local
states of the subsystems. Typically, this description is valid when the couplings between subsystems are weak.
For global descriptions, the baths couple to the delocalized eigenstates of the entire network of subsystems.
This description works well if the couplings between subsystems are strong.
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Figure 5.4: A DQD where the electron reservoirs couple locally to the respective dot levels. We visualize two ther-
modynamically inconsistent electron trajectories for large detuning |ϵL − ϵR|. In (a), energy appears to
be created, and in (b), energy appears to be destroyed. The figure suggests that ϵL ≃ ϵR is required for
thermodynamic consistency.

electrons are being transported at energies far from the local levels. This suggests that the
master equation (3.20) only give reasonable results when the detuning is small, i.e., when
ϵL ≃ ϵR. An additional argument for this is depicted in Fig. 5.4, where it appears as energy
can be created or destroyed in the local description when having a large detuning⁸. We
thus expect that Eq. (3.20) is valid when the levels are close to each other. We now show
that this leads to a thermodynamically consistent description.

To be compliant with the zeroth law, we expect that

τ̂ (DQD) =
e−(ĤDQD−µN̂)/kBT

Z(DQD)
(5.74)

is the stationary state of Eq. (3.20) when TL = TR = T and µL = µR = µ. Here
N̂ = |L⟩⟨L| + |R⟩⟨R| is the number operator of the DQD. As [ĤDQD, N̂ ] = 0, we find
that [ĤDQD, τ̂

(DQD)] = 0. Additionally, we find, for ϵL = ϵR,

Lατ̂
(DQD) = O(g/kBT ), (5.75)

where Lα = γα(ϵ̄)D[σ̂†
α] + κα(ϵ̄)D[σ̂α]. This means that τ̂ (DQD) is the stationary state

of (3.20) if g ≪ kBT . Note that this coincides with Eq. (3.21) when ϵL = ϵR. For
ϵL ̸= ϵR, we find that Lατ̂

(DQD) ̸= 0. In conclusion, the master equation (3.20) correctly
describes thermalization when ϵL = ϵR and g ≪ kBT . Therefore, we continue to work
with ϵL = ϵR = ϵ.

For the first law (5.65), the chemical power reads

Pα = µαṅα, (5.76)

where µα is the chemical potential of bath α, and

ṅα = γα(ϵ)ρ00 − κα(ϵ)ραα (5.77)

⁸We note that it is reasonable to expect some transport for disaligned levels in the local description due to
the lifetime broadening of the levels.
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is the particle current between dotα and bathα, with ρab being the density matrix elements
in Eq. (3.22). Note that the current is positive (negative) when electrons enter (leave) the
DQD. The heat current (5.71) is given by

Q̇α = (ϵ− µα)ṅα. (5.78)

For ϵL ̸= ϵR, an additional term, proportional to Re{ρLR}, appears in the heat current.
This term can give rise to violations of the second law [166]. In total, the first law (5.65)
tells us that the energy of the DQD changes due to particle exchanges with the baths.

The second law can be proven by making use of Spohn’s inequality as in Eq. (5.73). This
proof relies on the fact that Lατ̂

(DQD)
α ≃ 0, with τ̂ (DQD)

α = e−(ĤDQD−µαN̂)/kBTα/Z
(DQD)
α ,

as long as g ≪ kBTα.

To summarize, with ϵL = ϵR and g ≪ kBTα, the local master equation (3.20) is ther-
modynamically consistent. Additionally, we stress that local master equations, in general,
should be treated with care as they may violate the laws of thermodynamics.

Thermal machines and entanglement

An interesting type of system in quantum thermodynamics is the thermal machine. Similar
to conventional thermodynamics, such machines make use of heat flows to perform useful
tasks, such as cooling, producing work, or keeping time [13]. An important difference from
the conventional machines is that the systems are quantum. Therefore, they can perform
tasks that conventional machines cannot. For instance, generating entanglement.

In Ref. [39], it was shown that a simple autonomous machine⁹, with two coupled qubits
interacting with thermal baths at different temperatures, could generate weak entanglement
in its stationary state by letting a heat current [169] flow through the machine. Several
studies have later shown how to amplify the entanglement, including population inversion
in the baths [170], heralding the stationary state [171, 172], and using feedback control [173]
(Paper IV). It has also been shown that using a voltage bias, rather than a temperature
bias, can be beneficial [174]. However, non of these studies showed that it is possible to
deterministically generate maximal entanglement in autonomous machines. In fact, Paper
V does show that this is possible for a specific setup. In the remainder of this section, we
introduce the basics of (bipartite) entanglement. This is important for Papers IV and V.

As mentioned above, entanglement is a special type of state that is unique to quantum
physics. It can be seen as a form of correlation that cannot be described by classical models.

⁹The terminology ‘autonomous machines’ refers to systems whose Hamiltonian is time independent. Co-
herent interactions are spontaneous rather than externally driven. Interdot tunneling in DQDs is an au-
tonomous process.
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Figure 5.5: The source S prepares particles A and B, and sends them to observers 1 and 2. Observer 1 (2) measures
observable A (B) and obtains outcome a (b).

As such, entanglement acts as a hallmark highlighting the fundamental differences between
quantum and classical physics. Besides being a fundamental curiosity, entanglement is the
central resource for many applications in quantum information processing, including su-
perdense coding [175], quantum teleportation [176], and quantum cryptography [177]. The
remainder of this chapter is structured as follows. We begin by introducing the definition
of entanglement and the Bell states. This is followed by a motivation of why entanglement
is different from classical physics. At last, we discuss various ways of quantifying entangle-
ment.

A pure bipartite system, with subsystems A and B, is entangled if its state vector cannot
be written as the product

|ψA⟩ ⊗ |ψB⟩ , (5.79)

where |ψA⟩ and |ψB⟩ are the state vectors for the individual subsystems. If the state takes
the form of Eq. (5.79), it is said to be separable. Similarly, mixed bipartite systems are said
to be entangled if they cannot be written as

∑

j

pj ρ̂
(j)
A ⊗ ρ̂

(j)
B ,

∑

j

pj = 1, (5.80)

where ρ̂(j)
A and ρ̂(j)

B are density matrices for subsystems A and B, respectively.

An important set of entangled states in bipartite systems consisting of two qubits, A and
B, are the Bell (or maximally entangled) states,

|Ψ±⟩ =
|01⟩ ± |10⟩√

2
, |Φ±⟩ =

|00⟩ ± |11⟩√
2

, (5.81)

with |jk⟩ = |j⟩A ⊗ |k⟩B

(
j, k = 0, 1

)
, where |j⟩A(B) is a basis state for qubit A (B). It

can be verified by explicit calculation that these states cannot be written as in Eq. (5.79).

To understand why entanglement is inherently quantum, we consider the thought experi-
ment illustrated in Fig. 5.5. A source (S) prepares two particles, A and B, and sends them
to the spatially separated observers 1 and 2. Observer 1 obtains A, while observer 2 ob-
tains B. Observer 1 (2) randomly chooses an observable A (B) to measure, performs the
measurement, and obtains outcome a (b). Note that the observers choose observables in-
dependently. By repeating the experiment many times, we can calculate the probability
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distribution p(a, b|A,B) for obtaining a and b given that A and B were measured. Any
correlations between the outcomes are encoded in this distribution.

To describe the experiment classically, the model must take local realism into account. This
corresponds to two criteria [19]:

1. Physical systems are only directly (instantaneously) influenced by their immediate
environment¹⁰ (locality).

2. Physical systems have definite properties that exist independent of observation (re-
alism).

Criterion 1 tells us that the choice of observable and the action of measuring by either
observer cannot influence the other observer’s measurement. Therefore, if we observe cor-
relations between a and b, they must originate from the preparation of the particles. To
encode this into the model, we introduce a local hidden variable λ that pre-determines
what outcomes that will be observed (criterion 2). The distribution of outcomes can be
calculated according to

p(a, b|A,B) =

∫
dλp(a, b|A,B, λ)p(λ)

=

∫
dλp(a|A, λ)p(b|B, λ)p(λ),

(5.82)

where p(λ) is a probability distribution for the hidden variable λ. Note that we assumed
independence of the measurements in the second equality (locality). This means that all
correlations between the measurements are caused by the hidden variable. Note that if there
was no dependence on λ, we would get p(a, b|A,B) = p(a|A)p(b|B), indicating that the
outcomes are uncorrelated. To test whether this model accurately describes the physics of
the experiment, one can use p(a, b|A,B) to derive bounds on the correlations between a
and b. Violations of these bounds in an actual realization of the experiment imply that
the model is inaccurate. Such bounds are referred to as Bell inequalities [178]. The most
famous one is the CHSH (Clauser, Horne, Shimony, Holt) inequality [179]. It is given by

S = ⟨A1B1⟩ + ⟨A1B2⟩ + ⟨A2B1⟩ − ⟨A2B2⟩ ≤ 2, (5.83)

where A1,A2 are observables of particle A, and B1,B2 are observables of particle B, all
with outcomes ±1. The expectation values are calculated as

⟨AB⟩ =
∑

a,b=±1

ab · p(a, b|A,B). (5.84)

¹⁰Environments far away can still influence the system, but their forces cannot propagate faster than the
speed of light, and are thus influencing the system with a delay (rather than instantly).
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We now study the thought experiment from a quantum perspective. Imagine that the
source produces the Bell state |Ψ+⟩. By using the formula ⟨AB⟩ = ⟨Ψ+|Â ⊗ B̂|Ψ+⟩,
together with the observables Â1 = σ̂x, Â2 = σ̂z , B̂1 = (σ̂x + σ̂z)/

√
2, and B̂2 =

(σ̂x−σ̂z)/
√

2 [180], one can show that S = 2
√

2, demonstrating a violation of the CHSH
inequality¹¹. The assumptions of local realism are thus not obeyed by quantum mechanics,
showing that quantum and classical theory are fundamentally different. Entanglement is
a hallmark highlighting this. Realizations of the thought experiment have shown similar
violations of the CHSH inequality, and strongly confirm the predictions of quantum theory
[181].

We close this section by discussing how entanglement can be quantified. The definitions in
Eqs. (5.79) and (5.80) tell us how to distinguish entangled and separable states. However,
it can be hard to use these definitions in practice, especially for mixed states. To this end,
it is useful to introduce entanglement monotones. A general monotone E(ρ̂) takes a state
ρ̂ as input and returns a numerical value. Besides this, the monotone should obey various
properties, and among these, it is common to mention [81]

1. E(ρ̂) = 0 for separable states,

2. E(ρ̂) > 0 for entangled states,

3. E(ρ̂) does not increase by performing local operations and classical communication
(LOCC).

A more detailed discussion on properties can be found in Ref. [81]. Various monotones can
be found in the literature, but here we focus on a bipartite monotone called concurrence.
The concurrence is calculated via [182]

C(ρ̂) = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4}, (5.85)

where λ1 > λ2 > λ3 > λ4 are the eigenvalues of the operator ρ̂(σ̂y ⊗ σ̂y)ρ̂
∗(σ̂y ⊗ σ̂y),

with ∗ denoting the elementwise complex conjugate in the {|00⟩ , |01⟩ , |10⟩ , |11⟩}-basis.
Note that 0 ≤ C(ρ̂) ≤ 1, where 0 corresponds to separable states and 1 to the Bell states.

While the concurrence can correctly identify all entangled states, it does not provide any
information about how useful the entanglement is from an operational point of view [170].
To this end, one can test whether the entanglement can violate the CHSH inequality or per-
form quantum teleportation. Let us focus on bipartite qubit systems with density matrices

¹¹This is the largest possible violation of the CHSH inequality in quantum mechanics, and is achieved by
all Bell states.
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on the form (see Paper IV)

ρ̂ =




ρ00 0 0 0
0 ρ01 α 0
0 α∗ ρ10 0
0 0 0 ρ11


 , (5.86)

in the {|00⟩ , |01⟩ , |10⟩ , |11⟩}-basis, with ρ00+ρ01+ρ10+ρ11 = 1 and |α| ≤ √
ρ01ρ10.

For this state, the lhs of the CHSH inequality can be computed with [170]

S = 2
√

8α2 + (2∆ − 1)2 − min{4α2, (2∆ − 1)2}, (5.87)

where ∆ = ρ01 + ρ10. For S > 2, the state is said to be nonlocal, as the correlations
cannot be reproduced by a classical model obeying local realism. For the Bell states |Ψ±⟩,
we get S = 2

√
2 as expected (see above). To quantify how well ρ̂ can perform quantum

teleportation, one can calculate the teleportation fidelity [170]

f(ρ̂) =
1 + 2F (ρ̂)

3
, (5.88)

where

F (ρ̂) =

{
α+ ∆

2 , if 1 + 2α− 2∆ ≤ 0,

max{α+ ∆
2 ,

1−∆
2 }, otherwise.

(5.89)

For maximally entangled states, f(ρ̂) = 1, meaning that the teleportation works perfectly.
A classical implementation of the teleportation protocol can at best achieve f(ρ̂) = 2/3,
implying that ρ̂ contains useful entanglement when F (ρ̂) > 1/2 [170].
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Chapter 6

Outlook

In Paper II, we derived a quantum Fokker-Planck master equation (QFPME) – a general
tool for describing continuous, Markovian feedback control in quantum systems. Cur-
rently, there is limited knowledge on the thermodynamic consistency of this equation. A
first investigation can be found in Ref. [183]. Establishing a thermodynamically consistent
framework for the QFPME would strengthen its position as a reliable tool for modeling
quantum feedback control. For instance, using the equation for deriving a second law of
thermodynamics including both system and detector would be an interesting avenue to
pursue. This could provide complementary insights into information thermodynamics, es-
tablishing bounds on the entropy production in feedback-controlled systems. In Paper III,
we explored various energetic contributions in the QFPME. However, we did not find a
simple analytical method for calculating the work performed by applying feedback. Instead,
we inferred the work numerically from energy conservation. Future studies should inves-
tigate if a simple analytical method exists. Recently, thermodynamic uncertainty relations
for feedback-controlled quantum systems were presented [42]. The relations were derived
for continuous quantum jump detection as well as continuous noisy measurements. An
interesting extension would be to include a noisy detector with finite bandwidth, similar
to the QFPME.

Until now, the QFPME has been used by assuming that the dynamics of the system obeys
a Lindblad master equation. It is thus not clear for what hierarchy of timescales that this
assumption holds. For instance, does the type of dynamics, i.e., local or global, put re-
strictions on the measurement strength or the detector bandwidth? Such a study would
clarify the regime of validity of the QFPME. Another open question revolves around the
description of performing measurements in a local basis when the dynamics of the system
is global. The measurement would necessarily drive the dynamics towards a local descrip-
tion. It is not clear how to model such a cross-over within the QFPME formalism. Finding
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answers to these questions would clarify what scenarios the QFPME can be applied in. Ad-
ditionally, the QFPME has not yet been used to describe experimental data. This would
strengthen the credibility of the equation.

The QFPME describes Markovian feedback scenarios where the latest measurement out-
come is directly fed back to the system. A natural extension would be to derive a similar
equation for a non-Markovian setup, where the whole signal of outcomes is used. Addi-
tionally, one may add a processing stage in the loop, where the signal is manipulated before
being fed back. For instance, one could design feedback protocols relying on estimates of
system properties. This could be useful for studying adaptive estimation strategies as the
one proposed in Paper VI.
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Appendix A

Proof: ⟨f (X)dW ⟩ = 0

In Chapter 2, we introduced the Itô stochastic differential equation

dX(t) = a[X(t)]dt + b[X(t)]dW (t), (A.1)

where the stochastic process X(t) and the Wiener increment dW (t) at time t are statis-
tically independent. Due to this independence, we argued that averages ⟨f [X(t)]dW (t)⟩
should vanish as ⟨dW (t)⟩ = 0. Here, we show that this is true. We evaluate

⟨f [X(t)]dW (t)⟩ =

�
D[X]f [X(t)]dW (t)P [X]

=

�
dxjdxj+1f(xj)dWjP [xj , xj+1],

(A.2)

where we used that t = t0 + jdt, with 0 < j < n − 1, can be any time in between t0 and
t0 + (n − 1)dt. Note that we need to integrate over both xj and xj+1 under the integral
in the last equality as xj+1 is dependent on dWj . To proceed, we make use of Bayes rule
to rewrite P [xj , xj+1] = P [xj+1|xj ]P [xj ], and get

�
dxjdxj+1f(xj)dWjP [xj , xj+1]

=

�
dxjf(xj)P [xj ]

�
dxj+1dWjP [xj+1|xj ].

(A.3)

The conditional probability P [xj+1|xj ] may be found since we know that the probability
distribution of dWj is (see Chapter 2.3)

P [dWj ] =
e−dW 2

j /2dt

√
2πdt

, (A.4)
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and that xj+1 = xj + a(xj)dt + b(xj)dWj from the Itô equation. The conditional
probability is obtained via

P [xj+1|xj ] =

�
d[dWj ]δ

�
xj+1 − [xj + a(xj)dt + b(xj)dWj ]

�
P [dWj ]

=
e
−(xj+1−[xj+a(xj)dt])

2

2b2(xj)dt

�
2πb2(xj)dt

,

(A.5)

where we used that the delta function is an even function, and that δ(αx) = δ(x)/|α| for
a constant α. We understand that once xj is known, xj+1 is a Gaussian random variable
with mean xj + a(xj)dt and variance b2(xj)dt. This mean and variance agrees with what
we find from the Itô equation assuming X(t) = xj at time t. The rightmost integral in
Eq. (A.3) can now be evaluated using dWj = [xj+1 − xj − a(xj)dt]/b(xj),

�
dxj+1dWjP [xj+1|xj ] =

�
dxj+1

xj+1 − xj − a(xj)dt

b(xj)
P [xj+1|xj ] = 0, (A.6)

and we get ⟨f [X(t)]dW (t)⟩ = 0.
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Appendix B

n-resolved density matrix

To derive the n-resolved master equation (3.64), we begin by introducing the Laplace trans-
form of the density matrix,

ρ̃z =

� ∞

0
dte−ztρ̂t, (B.1)

where the hat and tilde indicate whether the density matrix belongs to the time domain or
the Laplace domain. In Laplace space, the master equation (3.63) reads

ρ̃z = Ω(z)ρ̂0, Ω(z) =
1

z − L0 − J+ − J−
, (B.2)

where Ω(z) is the Laplace space propagator. Making use of the Neumann series, we can
write the Laplace space propagator as an expansion in J+ + J− as

Ω(z) =
∞�

N=0

Ω0(z)[(J+ + J−)Ω0(z)]N , (B.3)

where Ω0(z) = 1/(z − L0). By investigating the sum, term by term, we identify

N = 0 : Ω0(z),

N = 1 : Ω0(z)J+Ω0(z) + Ω0(z)J−Ω0(z),

N = 2 : Ω0(z)J+Ω0(z)J+Ω0(z) + Ω0(z)J−Ω0(z)J−Ω0(z)

+ + Ω0(z)J+Ω0(z)J−Ω0(z) + Ω0(z)J−Ω0(z)J+Ω0(z),

...

(B.4)

We see that the first term (N = 0) leaves the number of particles in the reservoir un-
changed. The second term (N = 1) contains one part increasing the number of par-
ticles in the reservoir by one, and one term decreasing the number of particles by one.
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The third term (N = 2) contains two parts where the reservoir particle number is ei-
ther increased or decreased by two, and two terms where the net particle number is left
unchanged. By using Eqs. (B.2) and (B.3), we note that different combinations of the
terms in the sum can be interpreted as number resolved states ρ̃z(±n). We write ρ̃z(0) =
[Ω0(z)+Ω0(z)J+Ω0(z)J−Ω0(z)+Ω0(z)J−Ω0(z)J+Ω0(z)+ . . . ]ρ̂0, and ρ̃z(±1) =
[Ω0(z)J±Ω0(z) + . . . ]ρ̂0, where ‘. . . ’ denotes all possible combinations of Ω0 and J±
that results in 0 or ±1 particles in the reservoir. By using this recursively, we may write
down similar expressions for a general ρ̃z(±n), and we obtain the following Laplace space
relation for the number resolved density matrix,

ρ̃z(n) = Ω0(z)J+ρ̃z(n − 1) + Ω0(z)J−ρ̃z(n + 1). (B.5)

By transforming this back to the time domain, using the initial condition ρ̂0(n) = δn,0ρ̂0,
we get Eq. (3.64).
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Appendix C

Motivation Eq. (4.12)

In this appendix, we motivate why Eq. (4.12) can be used for small dt. To simplify the
discussion, we restrict ourselves to an observable with two eigenvalues, ξa1 and ξa2 . The
probability distribution for observing outcome z reads

p(z) =

�
2λdt

π

�
pa1e

−2λdt(z−ξa1 )2 + pa2e
−2λdt(z−ξa2 )2

�
, (C.1)

where |aj⟩ (j = 1, 2) is the eigenstate corresponding to eigenvalue ξaj , and paj =
⟨aj |ρ̂|aj⟩ is the probability of finding the system (ρ̂) in state |aj⟩. We also note that
the average of the measured observable is given by ⟨A⟩ = tr{Âρ̂} = ξa1pa1 +ξa2pa2 . We
now consider two limiting cases.

First, we assume that pa1 ≫ pa2 , where ⟨A⟩ ≈ ξa1 . In this limit, the second term of p(z)
barely contributes to the distribution, and it is reasonable to use

p(z) ≈
�

2λdt

π
e−2λdt(z−⟨Â⟩)2 . (C.2)

Second, we assume that pa1 ≈ pa2 , where ⟨Â⟩ ≈ (ξa1 + ξa2)/2. If dt is small, the two
Gaussians in p(z) greatly overlap, and we can again use the approximation

p(z) ≈
�

2λdt

π
e−2λdt(z−⟨Â⟩)2 , (C.3)

which is a Gaussian centered in between ξa1 and ξa2 .

199



From these limiting cases, we understand that z, for small dt, is a Gaussian centered at ⟨Â⟩
with variance 1/4λdt. Therefore, we can write

z = ⟨Â⟩ +
dW√
4λdt

, (C.4)

where dW is a Wiener increment with mean 0 and variance dt (see Chapter 2).
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Appendix D

Derivation Eq. (3.20)

We begin by writing out the full Hamiltonian of the DQD and the baths,

Ĥ = ĤDQD +
�

α=L,R

�
Ĥα + ĤDQD,α

�
, (D.1)

where ĤDQD is given in Eq. (3.19). TheDQDHamiltonian can be diagonalized as ĤDQD =
E0 |E0⟩⟨E0| + E1 |E1⟩⟨E1| + E2 |E2⟩⟨E2|, where

E0 = 0, E1 = ϵ̄ +
�
∆2 + g2, E2 = ϵ̄−

�
∆2 + g2, (D.2)

with ϵ̄ = (ϵL + ϵR)/2 and ∆ = (ϵL − ϵR)/2. The corresponding eigenvectors are

|E0⟩ = |0⟩ , |E1⟩ = a |L⟩ + b |R⟩ , |E2⟩ = c |L⟩ + d |R⟩ , (D.3)

where



a =
∆+

√
g2+∆2

√
g2+

(
∆+

√
g2+∆2

)2
, b = g√

g2+
(
∆+

√
g2+∆2

)2
,

c =
∆−

√
g2+∆2

√
g2+

(
∆−

√
g2+∆2

)2
, d = g√

g2+
(
∆−

√
g2+∆2

)2
.

(D.4)

The bare bath Hamiltonians are given by

Ĥα =
�

k

ωαkâ
†
αkâαk, (D.5)

with the fermionic annihilation (creation) operators âαk (â†
αk), annihilating (creating) an

electron in mode k with energy ωαk. These operators obey the following anti-commutation
relations, �

â†
αk, âαk′

�
= δkk′ ,

�
âαk, âαk′

�
= 0. (D.6)
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The coupling between the DQD and bath α is described by

ĤDQD,α =
�

k

�
hαkσ̂

†
αâαk + h∗

αkσ̂αâ†
αk

�
, (D.7)

with coupling elements hαk. We note that the coupling Hamiltonian can be written as

ĤDQD,α =
�

j=0,1

Ŝαj ⊗ B̂αj , (D.8)

where

Ŝα0 = σ̂†
α, Ŝα1 = σ̂α, B̂α0 =

�

k

hαkâαk, B̂α1 =
�

k

h∗
αkâ

†
αk. (D.9)

This compact form simplifies the notation during the derivation.

The time evolution of the DQD and the baths is given by the von Neumann equation (3.9)

∂tρ̂tot(t) = −i[Ĥ, ρ̂tot(t)], (D.10)

where ρ̂tot(t) is the total density matrix of both DQD and baths. To make progress, we
transform the von Neumann equation to the interaction picture,

∂tρ̃tot(t) = −i
�

α

�
H̃DQD,α(t), ρ̃tot(t)

�
, (D.11)

where operators in the interaction picture are defined as Õ(t) = ÛIPÔÛ †
IP for operators

Ô in the Schrödinger picture and the unitary operator

ÛIP = ei(ĤDQD+
∑

α Ĥα)t. (D.12)

The solution to Eq. (D.11) reads

ρ̃tot(t) = ρ̃tot(0) − i
�

α

� t

0
ds

�
H̃DQD,α(s), ρ̃tot(s)

�
. (D.13)

By plugging the solution back into (D.11), and tracing over the baths, we get

∂tρ̃(t) = −i
�

α

trB

��
H̃DQD,α(t), ρ̃tot(0)

��

−
�

α,β

� t

0
ds trB

��
H̃DQD,α(t),

�
H̃DQD,β(s), ρ̃tot(s)

� ��
,

(D.14)
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where trB{·} denotes the partial trace over the baths, and ρ̃(t) = trB{ρ̃tot(t)} is the
reduced state of the DQD (in the interaction picture). We now make two assumptions.

At time t = 0, we assume that there are no correlations between the DQD and the baths,
such that ρ̂tot(0) = ρ̂(0)

�
α τ̂α, where τ̂α = exp

�
−(Ĥα − µαN̂α)/kBTα

�
/Zα is

the thermal state of bath α, with the chemical potential µα, number operator N̂α =�
k â†

αkâαk and partition functionZα = tr
�
exp

�
−(Ĥα − µαN̂α)/kBTα

��
. It is com-

mon to put tr{B̃αk(t)τα} = 0, which eliminates the first term on the rhs of Eq. (D.14)
[70, 91] (note that this equality holds for the operators B̂αk defined above). While this
appears to put restrictions on the B̂αk operators, it can always be constructed by replac-
ing B̂αk → B̂αk − g

(α)
k 1 and ĤDQD → ĤDQD +

�
α,k g

(α)
k Ŝαk ⊗ 1, with g

(α)
k =

trB{B̂αk τ̂α} [91]. Note that these replacements do not change the total Hamiltonian.

We also assume that ĤDQD,α ∼ O(λ), where λ is a book-keeping parameter representing
the strength of the interaction between the DQD and the baths. To obtain a Markovian
master equation, this parameter must be small, such that correlations between the DQD
and the baths are weak (see Chapter 3). The density matrix on the rhs of Eq. (D.14) can
thus be written as ρ̂tot(t) = ρ̂(t)

�
α τ̂α + O(λ), where all DQD-bath correlations are

contained in O(λ). We now plug this into (D.14) and keep all terms up to O(λ2). This is
known as the Born approximation, and results in

∂tρ̃(t) =
�

α

�

kk′

� t

0
ds

�
C

(α)
kk′ (t − s)

�
S̃αk′(s)ρ̃(s)S̃†

αk(t) − S̃†
αk(t)S̃αk′(s)ρ̃(s)

�

+C
(α)
kk′ (s − t)

�
S̃αk′(t)ρ̃(s)S̃†

αk(s) − ρ̃(s)S̃†
αk(s)S̃αk′(t)

��
,

(D.15)
where we introduced the bath correlation functions

C
(α)
kk′ (t) = tr

�
B̃†

αk(t)B̂αk′ τ̂α

�
, (D.16)

and used that [C
(α)
kk′ (t)]∗ = C

(α)
k′k (−t). To find a Markovian description, we introduce

τ = t − s, and assume that C
(α)
kk′ (t) decays to zero on a timescale τB that is much faster

than the timescale of ρ̃(t), such that ρ̃(t) remains constant over τB . This allows us to
replace ρ̃(t − τ) → ρ̃(t) and extend the upper integration limit to ∞. This is known as
the Markovian assumption, and yields the Markovian master equation

∂tρ̃(t) =
�

α

�

kk′

� ∞

0
dτ

�
C

(α)
kk′ (τ)

�
S̃αk′(t − τ)ρ̃(t)S̃†

αk(t) − S̃†
αk(t)S̃αk′(t − τ)ρ̃(t)

�

+C
(α)
kk′ (−τ)

�
S̃αk′(t)ρ̃(t)S̃†

αk(t − τ) − ρ̃(t)S̃†
αk(t − τ)S̃αk′(t)

��
.

(D.17)
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By explicit calculation, it is possible to show that C
(α)
kk′ (t) ∼ δkk′ , and we find that

C
(α)
00 (t) =

�

k

|hαk|2eiωαktn
(α)
F (ωαk) =

� ∞

−∞
dωρ(α)(ω)n

(α)
F (ω)eiωt, (D.18)

C
(α)
11 (t) =

�

k

|hαk|2e−iωαkt[1 − n
(α)
F (ωαk)] =

� ∞

−∞
dωρ(α)(ω)[1 − n

(α)
F (ω)]e−iωt,

(D.19)

where we used [Ĥα, âαk] = −ωαkâαk, the Baker–Campbell–Hausdorff formula, and
tr{â†

αj âαk τ̂α} = δjkn
(α)
F (ωαk) with n

(α)
F (·) being the Fermi-Dirac distribution defined

in Eq. (3.18). We also introduced the spectral density of bath α as

ρ(α)(ω) =
�

k

|hαk|2δ(ω − ωαk). (D.20)

Here we assume that the spectral densities are constant over all ω. Under this assumption,
the bath correlation functions become the Fourier transforms of n(α)

F (ω) and 1−n
(α)
F (ω).

With the identity
�∞
−∞ dxeiλx/(ex + 1) = π[δ(λ) − i/ sinh(πλ)], the bath correlation

functions can be written as

C
(α)
00/11(t) =

Γα

2
e±iµαt

�
δ(t) − i

kBTα

sinh(πkBTαt)

�
, (D.21)

where we introduced the tunneling rate Γα = 2πρ(α)(ω) between the DQD and bath α.
We can now identify the bath correlation time τB = max{1/kBTL, 1/kBTR}. For infinite
temperatures, i.e., when the Fermi-Dirac distributions are flat, the correlation functions
becomeDirac delta functions and τB → 0. For Tα → 0, the second term of the correlation
function decays as 1/t, and must be taken into account when estimating τB .

To find the local master equation, we must perform a second Markov assumption, where
we replace S̃αk(t − τ) with S̃αk(t). To do this, we begin by noting that

S̃L0(t) = aeiE1t |E1⟩⟨E0| + ceiE2t |E2⟩⟨E0| , (D.22)

S̃R0(t) = beiE1t |E1⟩⟨E0| + deiE2t |E2⟩⟨E0| , (D.23)

where we expanded the operators in the energy eigenbasis. Observe that S̃α1(t) = S̃†
α0(t).

For S̃L0(t), we can write

S̃L0(t − τ) = aeiE1te−i(ϵ̄+
√

∆2+g2)τ |E1⟩⟨E0|

+beiE2te−i(ϵ̄−
√

∆2+g2)τ |E2⟩⟨E0| .
(D.24)
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The remaining operators can be expressed on a similar form. By plugging this into Eq. (D.17),
we find integrals on the form

Γα

2

� ∞

0
dτ

�
δ(τ) − i

kBTα

sinh(πkBTατ)

�
e∓i(ϵ̄−µα)τe±i

√
∆2+g2τ , (D.25)

where we used Eq. (D.21). When
�
∆2 + g2τB ≪ 1 or

�
∆2 + g2 ≪ |ϵ̄ − µα|, the

integrals can be approximated with

Γα

2

� ∞

0
dτ

�
δ(τ) − i

kBTα

sinh(πkBTατ)

�
e∓i(ϵ̄−µα)τ . (D.26)

Under this approximation, we can replace S̃αk(t−τ) → e(−1)1−kiϵ̄τ S̃αk(t) in Eq. (D.17).
Inserting this in (D.17) results in

∂tρ̃(t) =
�

α

�

k

�
2Re

�
γ

(α)
kk (ϵ̄)

��
S̃αk(t)ρ̃(t)S̃

†
αk(t) −

1

2

�
S̃†
αk(t)S̃αk(t), ρ̃(t)

��

−i Im
�
γ

(α)
kk (ϵ̄)

��
S̃†
αk(t)S̃αk(t), ρ̃(t)

��
,

(D.27)
where we introduced

γ
(α)
kk (ϵ̄) =

� ∞

0
dτC

(α)
kk (τ)e(−1)1−kiϵ̄τ . (D.28)

In particular, we note that

2Re
�
γ

(α)
00 (ϵ̄)

�
= Γαn

(α)
F (ϵ̄), 2Re

�
γ

(α)
11 (ϵ̄)

�
= Γα[1 − n

(α)
F (ϵ̄)], (D.29)

which we found by using that
�∞
−∞ dτ exp{±i(ω − ϵ̄)τ} = 2πδ(ω− ϵ̄). Equation (D.27)

is written on Lindblad form, and desribes the time evolution of the DQD in the interaction
picture. Note that 1/Γα determines the timescale τDQD of the densitymatrix in the interac-
tion picture. For the firstMarkov assumption to hold, we required that τB ≫ τDQD, which
is true as long as γ(α)

kk (ϵ̄) is flat around ϵ̄. This occurs if kBTα ≫ Γα or |ϵ̄ − µα| ≫ Γα.
Transforming (D.27) to the Schrödinger picture, we find

∂tρ̂(t) = −i[ĤDQD + ĤLS, ρ̂(t)]

+
�

α=L,R

�
Γαn

(α)
F (ϵ̄)D[σ̂†

α] + Γα[1 − n
(α)
F (ϵ̄)]D[σ̂α]

�
ρ̂(t), (D.30)

with the Lamb shift Hamiltonian

ĤLS =
�

α

�

k

Im
�
γ

(α)
kk (ϵ̄)

�
σ̂†
ασ̂α, (D.31)
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shifting the bare energies of the dots. Typically, this Hamiltonian is baked into ĤDQD (or
neglected), giving Eq. (3.20), which is valid for

max{kBTα, |ϵ̄− µα|} ≫ Γα,
�
∆2 + g2. (D.32)
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Appendix E

Ensemble averages over trajectories of
jumps

For simplicity, we consider trajectories of jumps for only one jump process dN(t), but the
method can be generalized to K processes. We define a trajectory of jumps as

γn = {dNj}n
j=0, (E.1)

where we have discretized time into n segments of length dt = (t − t0)/n, such that
dNj = dN(t0 + jdt). The probability of observing this trajectory can be decomposed as
(Bayes’s rule)

P [γn] = P [dNn|γn−1]P [γn−1], (E.2)

where P [dNn|γn−1] is the conditional probability that dNn happens given that we previ-
ously observed the trajectory γn−1. We now introduce the notation ρ̂c(t) = ρ̂(t|γn−1) =
ρ̂(t, γn−1)/P [γn−1] to indicate that the density matrix at time t is conditioned on the
full trajectory of jumps γn−1 up to time t. The notation suggests that the n:th jump has
not occurred yet. We can now write P [dNn = 1|γn−1] = dt tr{L̂†L̂ρ̂(t|γn−1)} and
P [dNn = 0|γn−1] = 1 − dt tr{L̂†L̂ρ̂(t|γn−1)} for the n:th jump.

The ensemble average over all possible trajectories is defined as a path integral via

E[·] =

�
D[γn]· =

�

dN0=0,1

· · ·
�

dNn=0,1

·. (E.3)
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Via this definition, we get

E[dtdNn] =

�
D[γn]dtdNnP [γn]

=

�
D[γn−1]

�

dNn=0,1

dtdNnP [dNn|γn−1]P [γn−1]

= dt2 tr{L̂†L̂ρ̂(t)} = 0,

(E.4)

where we used that
�

D[γn−1]ρ̂(t, γn−1) = ρ̂(t) is the unconditioned density matrix at
time t. This proves that E[dtdNn] ∝ dt2, as stated below Eq. (3.30).

We now prove that the ensemble average of Eq. (3.32) gives back the Lindblad equation
(3.15). For one jump process, the stochastic master equation (3.32) reads

dρ̂c(t) = −idt[Ĥ, ρ̂c(t)] + dNn


 L̂ρ̂c(t)L̂

†

tr
�

L̂†L̂ρ̂c(t)
� − ρ̂c(t)




+ dt

�
ρ̂c(t) tr

�
L̂†L̂ρ̂c(t)

�
− 1

2

�
L̂†L̂, ρ̂c(t)

��
.

(E.5)

We begin by noting that our definitions provide E[ρ̂c(t+dt)] = ρ̂(t+dt) and E[ρ̂c(t)] =
ρ̂(t), where we, for the second equality, used that

�
D[γn] =

�
D[γn−1]

�
dNn

. The
second equality implies that all terms that are linear in ρ̂c(t) can use the replacement
ρ̂c(t) → ρ̂(t) when averaging. We further find

E


dNn

L̂ρ̂c(t)L̂

tr
�

L̂†L̂ρ̂c(t)
�


 = dtL̂ρ̂(t)L̂†, (E.6)

as well as

E [dNnρ̂c(t)] =

�
D[γn−1]dtρ̂(t, γn−1) tr

�
L̂†L̂ρ̂(t|γn−1)

�
, (E.7)

and

E
�
ρ̂c(t) tr

�
L̂†L̂ρ̂c(t)

��
=

�
D[γn−1]ρ̂(t, γn−1) tr

�
L̂†L̂ρ̂(t|γn−1)

�
. (E.8)

Putting everything together now gives

dρ̂(t) = −idt[Ĥ, ρ̂(t)] + dt

�
L̂ρ̂(t)L̂† − 1

2

�
L̂†L̂, ρ̂(t)

��
, (E.9)

which is the Lindblad equation.
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Appendix F

Derivation Eq. (5.66)

We derive Eq. (5.66) by assuming that the system only couples to one bath, thus simplifying
the derivation. The derivation can be generalized to an arbitrary number of baths. At
time t0, the density matrix of the total setup (both system and bath) factorizes as ρ̂(t0) =

ρ̂S(t0) ⊗ τ̂ , where the bath is in the thermal state τ̂ = e−(ĤB−µN̂B)/kBT /Z, with the
bath Hamiltonian ĤB and the bath number operator N̂B .

Before providing the derivation, we present two important identities. If Â is defined on a
Hilbert space HA and B̂ is defined on a Hilbert space HB , we have that

ln
�
Â ⊗ B̂

�
= ln

�
Â
�
⊗ 1 + 1 ⊗ ln

�
B̂
�
. (F.1)

If B̂ and Ĉ are defined on Hilbert spaces HB and HC , and Â is defined on HB ⊗ HC ,
the following holds,

tr
�

Â ln
�
B̂
�
⊗ 1

�
= trHB

�
trHC

{Â} ln
�
B̂
��

, (F.2)

where trHj is the partial trace over Hj .

Now we derive Eq. (5.66). We have

S[ρ̂(t)||ρ̂S(t) ⊗ τ̂ ] = −SvN[ρ̂(t)] − tr{ρ̂(t)ln[ρ̂S(t) ⊗ τ̂ ]}
= −SvN[ρ̂(t)] − tr{ρ̂(t)ln[ρ̂S(t)] ⊗ 1} − tr{ρ̂(t)1 ⊗ ln(τ̂)}

= −SvN[ρ̂(t)] + SvN[ρ̂S(t)] +
1

kBT
tr{(ĤB − µN̂B)ρ̂(t)} + ln(Z)

= SvN[ρ̂S(t)] − SvN[ρ̂S(t0)] +
1

kBT
tr{(ĤB − µN̂B)[ρ̂(t) − ρ̂(t0)]},

(F.3)
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where we after the second equal sign used Eq. (F.1), after the third equal sign, we used
Eq. (F.2), and in the last equality, we used that SvN[ρ̂(t)] = SvN[ρ̂(t0)].
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Appendix G

Particle currents: from discrete to
diffusive

In this appendix, we provide some more details on particle currents. In particular, we
illustrate the relation between “jump currents” and diffusive currents.

For simplicity, we concentrate on unidirectional jumps here. That is, we only consider
particles jumping from S to R, see Fig. 3.3. The total number of jumps at time t can be
decomposed as

n(t) =

� t

0
dn(τ), (G.1)

where τ runs from 0 to t, and dn(t) = n(t + dt) − n(t) = 0, 1 is a point process with
P [dn(t) = 1] = λdt and P [dn(t) = 0] = 1 − λdt with the average particle transition
rate λ and the infinitesimal time increment dt. Note that dn(t) at different times are
independent. By discretizing time into N segments of length dt = t/N , we can calculate
the charactersitic function of n(t) as

φn(t)(s) = ⟨eisn(t)⟩
= ⟨eisdn(t)⟩N

=

�
1 +

λt

N

�
eis − 1

��N

→ eλt(eis−1),

(G.2)

where the limit is taken with N → ∞. This proves that n(t) is a Poissonian process [101]
with

P [n(t) = k] =
(λt)ke−λt

k!
. (G.3)
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As dn(t) changes discontinuously between 0 and 1 for a jump, the particle current will be
given by a series of δ-peaks,

I(t) =
dn(t)

dt
=

�

j

δ(t − tj), (G.4)

where tj corresponds to the times where a jump occurs. In Fig. 3.3(b), we illustrate such a
current, but for a bidirectional process.

For λt ≫ 1, n(t) is well-approximated as a Gaussian random variable. We now show this,

ln{P [n(t) = k]} = k ln(λt) − ln(k!) − λt

≃ k ln

�
λt

k

�
+ (k − λt) − ln

�√
2πk

�

= −(x + λt) ln
�
1 +

x

λt

�
+ x − ln

��
2π(x + λt)

�
,

(G.5)

where we used Stirling’s approximation in the second line, and introduced the variable
x = k − λt in the third line. We note that k ≃ λt on average, which means that x ≪ 1
and x/λt ≪ 1. By using the Taylor approximation ln(1 + ϵ) ≃ ϵ− ϵ2/2, we arrive at

ln{P [n(t) = k]} ≃ − x2

2λt
− ln

�√
2πλt

�
, (G.6)

which gives

P [n(t) = k] ≃ e−(k−λt)2/2λt

√
2πλt

, (G.7)

proving that n(t) is approximately Gaussian for λt ≫ 1. This means that we can write

n(t) ≃ λt +
√
λW (t), (G.8)

where W (t) is a Wiener process, see Chapter 2. For an infinitesimal increment, we get

dn(t) ≃ λdt +
√
λdW (t), (G.9)

with the Wiener increment dW (t). We now find the diffusive current

I(t) =
dn(t)

dt
≃ λ +

√
λξ(t), (G.10)

where ξ(t) = dW (t)/dt is a white noise process as introduced in Chapter 2. That is, for
λt ≫ 1, the current between S and R behaves diffusively. This is similar to homodyne
detection, where a laser beam (local oscillator) is mixed with the output of an optical cavity,
and then detected by a photo-detector. Note that the local oscillator and the output of the
cavity have the same frequency. When the number of photons in the laser beam greatly
exceeds the average number of photons in the cavity output, the detector records a signal
with Gaussian, rather than Poissonian, noise [15, 16, 77].
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