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Symbolic neural networks for automated
covariate modeling in a mixed-effects

framework
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Abstract: Mixed-effects models are used to describe the inter-patient variability in drugs.
Modeling of these variabilities include both fixed and random effects. Fixed effects relate
covariates such as age and weight to compartment volumes and clearances, whereas random
effects account for unexplained variability. Traditionally, the development of fixed effects models
is an inefficient process where covariate relationships are evaluated in a step-wise manner. In this
study, we implemented a symbolic neural network (SNN) to automate the development of a fixed
effects model and used it to develop a population pharmacokinetic model for propofol. With the
SNN, we can find covariate relationships that are traditionally not evaluated. Then, we apply
random effects and estimate parameters in the standard mixed-effects modeling framework. Our
final model shows comparable predictive performance to a published model for propofol, despite
having fewer covariates and model parameters.

Keywords: Neural networks, mixed-effects modeling, pharmacokinetics, pharmacometrics,
covariate models

1. INTRODUCTION

Modeling and simulation have become intrinsic to drug
development. Non-linear mixed-effects (NLME) models
are used to describe the pharmacokinetics (PK) and phar-
macodynamics of drugs. The models are utilized for dose
selection in clinical trials and to inform individual adapta-
tions in dose regimens (Mould and Upton, 2012). Such
models contain fixed effects (parameters describing the
central tendencies of the population) and random effects
accounting for individual differences. Variability between
individuals can be described by models that map covari-
ates, such as age or gender, to PK parameters. Such co-
variate models are typically formulated to depend on a set
of optimizable parameters. The remaining inter-individual
variability (IIV), not explained by the fixed effects, is
ascribed to random effects.

For drug delivery systems, such as target-controlled in-
fusion (TCI) or closed-loop control, the models are com-
monly used without random effects (Schnider et al., 1998;
White et al., 2008). However, considering random effects
in automated systems can increase safety for a broader
population. We therefore see a need for modeling tool
chains from data set to control system design that explic-
itly take random effects into account. In this paper, we
present a crucial link in such a tool-chain: a methodology
for automating the covariate modeling step.

⋆ This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation. All authors are members of
the ELLIIT Strategic Research Area at Lund University.

Covariate models are traditionally developed through an
iterative process where simple functions mapping covari-
ates to PK parameters are evaluated one by one (Wählby
et al., 2002). The evaluation is focused on the identification
of relevant covariates and any profound exploration of the
functional relationship between covariates and parameters
is seldom performed. As the number of covariates that
are evaluated increases, the evaluation further becomes
increasingly ineffective due to its combinatorial, iterative
nature. It also increases the risk of overfitting.

We have developed a method for the automatic identifica-
tion of influential covariates and their functional mapping
to parameters of pharmacometric models in Wahlquist
et al. (2023). The method is based on neural networks with
customized activation functions. By iterative pruning, we
can obtain a sparse symbolic neural network (SNN) that
represents a simple covariate expression. Such methodol-
ogy allows for exploring covariate relationships that are
not commonly considered in the traditional framework.
However, the method was developed without consideration
of random effects.

In the present study, we evaluated the SNN modeling
method in the context of a mixed-effects model. We use
the covariate model structure produced by the SNN and
apply a standard pharmacometric mixed-effect modeling
framework (Wählby et al., 2002). This involves assigning
parameterized prior distributions to model parameters,
and then estimating the parameters by maximizing the
likelihood of the training data.

The method is demonstrated by the development of a pop-
ulation PK model for the anesthetic drug propofol. Fur-



thermore, it was compared to a previously published model
developed with the state-of-the-art modeling methodology
on the same underlying data set (White et al., 2008). The
main advantage of our method compared to the state-
of-the-art is the automation in the model search, which
enables consideration of a large number of low-complexity
models.

2. METHODS

2.1 Population PK models

A pharmacokinetic (PK) model describes the evolution of
drug concentration in communicating compartments that
partition the patient’s body. In the example of this paper,
and likewise White et al. (2008), we consider a PK model
for propofol with three compartments as depicted in Fig. 1.
Letting c = [c1, c2, c3]

⊤ denote the drug concentration of
each compartment, the PK model can be formulated as a
linear differential equation

ċ(t) =
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(1)
where u(t) is the per-time addition of the drug to the first
compartment, modeling the blood plasma. The PK param-
eter vector p = [V1, CL, V2, V3, Q2, Q3]

⊤ parameterizes A
and B.

Due to inter-individual variability, the predictive perfor-
mance of the PK model can be improved by assigning
individual-specific values of pi for an individual i. This
problem can be approached by letting pi depend on a set of
known (observable) individual-specific covariates φi. The
covariate set used both by (White et al., 2008) and us is

φ = [age,weight, gender]
⊤
. (2)

The covariate relationship for pij , being the jth PK pa-
rameter of the ith individual, is modeled as

pij = fj(φi;θ) exp(ηij), (3)

where fj is an ordinary function parameterized in a vector
θ, referred to as the fixed effects, and the random effects
ηij are assumed N (0, ω2

j ).

For each individual in a PK modeling data set, there is a
series of observations. In (White et al., 2008), these consist
of drug concentration measurements in blood plasma. We
assume normal measurement errors that are either additive
(4a) or proportional (4b)

yik = c1 + ϵik, (4a)

yik = c1(1 + ϵik), (4b)

where k indexes measurements, i indexes individuals, and
ϵik is assumed N (0, σ2).

In our context, pharmacometric mixed-effect modeling is
the process of finding θ, ω = [ω1, . . . ωnp ]

⊤ (where np is
the number of PK parameters), that maximizes the like-
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Fig. 1. Three-compartment mammillary PK model. The
compartmental volumes are V1, V2, V3 and the corre-
sponding clearances are CL,Q2, Q3. Drug is admin-
istered at volumetric rate u and eliminated from the
central compartment at rate CL/V1.

lihood of the parameters conditional on the measurement
data.

In this work, we first developed a base model consisting of
the structural model (1), residual error (4), and IIVs (3).
Secondly, functions relating covariates to PK parameters
f = [f1, . . . , fnp

]⊤ were identified using symbolic neural
networks (SNNs). Lastly, the two were combined into a
final population PK model.

2.2 Base model

The base model was defined as (3) without covariates. For
example, the clearance PK parameter CL is stochastically
modeled as

CL = θCL exp(ηCL), (5)

where θCL is the fixed effect associated with clearance and
ηCL is the random effect, with ηCL ∼ N (0, ω2

CL). The base
model was used as a reference to determine if the addition
of covariates improved model fit to observations.

The objective function value (OFV) was used for the
comparison of models which included random effects. The
OFV is defined as the −2 log-likelihood of the parameters
(θCL and ωCL in the above clearance example) conditional
on the data. The likelihood ratio test may therefore be
used to compare two nested models, where one is a
special case of the other with some parameters fixed.
The difference in OFV between the two nested models is
approximately χ2 distributed. A decrease in OFV by−3.84
is hence equivalent to a statistically significant model
improvement by p = 0.05 for one degree of freedom (one
parameter difference) (White et al., 1992).

Both an additive and proportional residual error (4) were
evaluated (Mould and Upton, 2013). IIVs were evaluated
on all six PK parameters. IIVs that did not statistically
improve the model according to a decrease in the objective
function value (OFV) were removed from the model.

2.3 Covariate model

Finding the covariate model, consists of identifying a
function fj that relates the covariate vector φi to the PK
parameter pij(3). In this study, we identified the covariate
expressions f1 and f2 of

pi1 = V1 = f1(φi), (6a)

pi2 = CL = f2(φi), (6b)

where φi is the covariate vector for the i
th

individual.
We used the covariates of (2), which was also used by
White et al. (2008). In the same study (White et al., 2008),
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Fig. 2. Symbolic neural network (SNN) representing a
covariate expression, relating covariates (here three)
to PK parameter pij = fj(φi). The figure represents
the nominal structure of the SNN before pruning with
three dense layers and following activation functions.
zl is the output from the dense layer (7) and xl is the
output from the activation function of layer l (8).

covariate relationships were identified using a traditional
fixed effects modeling framework for the central compart-
ment volume V1 and clearance CL. While we aimed to find
functional covariate expressions for the PK parameters in
(6), the other PK parameters for volumes and clearances
pij , where j = 3, 4, 5, 6, were estimated as constants during
the development of the covariate model.

During model development, we scaled the input covariates.
The continuous covariates (age and weight) were scaled
between 0 and 1. Gender was modeled as a binary covariate
0.5 for male and -0.5 for female. Thus, all covariate values
were roughly of the same magnitude to not favor any
covariates based on their scale.

The SNN structure used in this work is illustrated in Fig. 2.
We used an SNN with nl = 3 dense layers, each followed by
activation functions. We denote the input covariate vector
x0 = φ. The output from each dense layer is given by

zl = Wlxl−1 + bl, (7)

where the input vector of dense layer l is given by
xl−1 = [x(l−1)1, x(l−1)2, ...]

⊤ and the output vector is

zl = [zl1, zl2, ...]
⊤. The weight matrix and bias vector

of dense layer l are denoted Wl and bl. The activation
function vector h is applied to the outputs of the dense
layer, so that

xl = hl(zl) (8)

where the activation functions of each layer hl are given
by

h1(z1) =


z11

z12z13

|z14|z15

 (9a)

h2(z2) =


z21

z22z23

z24
z25+1

 (9b)

h3(z3) = |z3|. (9c)

The last activation function h3 assures positive output
of the final layer. The division in h2 has the term one
in the denominator to ensure that the output does not

blow up if z25 ≥ 0 approaches zero. The SNN outputs
the PK parameter pij = x3. The activation functions
were chosen based on previously published PK models
for propofol (Eleveld et al., 2018; White et al., 2008). A
detailed description of the SNN is provided in Wahlquist
et al. (2023).

In the covariate modeling process, the PK parameter
estimates p were iteratively evaluated through simulation
of the corresponding infusion profile to obtain a predicted
blood concentration profile. Training of the SNN means
updating trainable network parameters γ (linear weights
Wl and biases bl in (7)) to minimize an error, expressed
through the loss function. For the training of the SNN, we
used the average of the median absolute logarithmic error
(Mean(MdALE)). For an individual i, the loss is given by

MdALEi = Median (|ln(yik/(cpred)ik|)) , k = 1, ..., nk

(10)
where yik are observed (measured) plasma concentrations
and (cpred)ik are corresponding predictions produced by
our model. The number entries of the measurement time
series is denoted nk. Over the population, the average error
becomes

Mean(MdALE) =
1

n

n∑
i=1

MdALEi (11)

where n is the number of individuals in the data set. We
trained the SNN with backpropagation with the stochastic
gradient-based optimization algorithm ADAM introduced
by Kingma and Ba (2017).

To obtain simple readable covariate expressions, we pruned
the SNN. Pruning is defined as removing parameters from
γ, i.e., setting them to zero and excluding them from
further training. It is desirable to remove those that have
relatively little influence on the loss (11). We alternated
between parameter training and parameter pruning to suc-
cessively remove parameters from γ. Before each pruning
iteration, we trained the network until convergence. This
relates to finding a local minima of (11). In such local
minima, the partial derivatives of the loss function with
respect to γ are zero. Then, the second-order derivatives
describe local parameter sensitivity, as further explained in
LeCun et al. (1989). The second-order derivatives make up
the Hessian matrix, and its diagonal elements represent the
sensitivity in the individual parameters of γ. The second-
order terms take on the form

S(γk) = γ2
kHk (12)

where Hk is the kth Hessian diagonal element of the loss
function with respect to the parameter γk. S(γk) denote
the salience of a parameter γk.

A summary of the training and pruning steps is:

(1) Choose a nominal SNN architecture and the corre-
sponding activation functions

(2) Train the network (until convergence).
(3) Compute the salience S(γk) of each (trainable/ re-

maining) parameter of (12). Sort the parameters by
salience and remove the N parameters with the small-
est salience.

(4) Repeat steps 2 and 3 with N = 1 until the expression
has reached a desired size (i.e., a desired number of
parameters left).

(5) Train the network (until convergence).



(6) Convert the resulting network to a readable function
representing our covariate expression.

(7) If possible, simplify the covariate expression.

During the first pruning step, several parameters were
removed to accelerate training. During training, we used
the learning rate of 0.005 and trained for 5000 epochs. At
the initial pruning iteration, we removed N = 10 network
parameters, and then N = 1 at a time until 10 parameters
remained in each of the two covariate expressions f1
and f2. The initialization of the parameters of the SNN
affects the resulting final expression. Thus, we ran the
SNN training and pruning several times (here eight). If we
obtained several models with similar fit to data (i.e lowest
value of the loss (11)), we chose the covariate model with
the simplest expression. After obtaining the expressions
from the SNN, we investigated if the final model could be
simplified further without worsening the fit to data. If so,
the model was replaced with its simpler form.

2.4 Covariate model with random effects

In the development of the base model, the type of residual
error, as well as significant IIVs, were identified based on
reduction in the OFV according to Section 2.2. Then, the
significant IIVs were applied to the PK covariate expres-
sions for V1 and CL (f1 and f2) that were obtained in the
SNN training. For the other PK parameters (V2, V3, Q2,
and Q3), the PK expressions were the same as for the
base model (5), i.e., not including any covariates.

When the significant IIVs were combined with the covari-
ate model according to (3), the fixed effects parameters θ
of the covariate expressions were re-optimized with Pumas.
After the estimation of random effects and re-estimation of
fixed effects θ, we obtained the final population PK model.

2.5 Software

This work was carried out in the Julia language (Bezanson
et al., 2017). The NLME package Pumas (version 2.4)
(Rackauckas et al., 2020) was used for the development of
the base model and re-estimation of the model parameters
of the final PK population model with random effects.
The first order conditional estimation with an interaction
algorithm was used for model fitting.

The full code implementation is enclosed in Sundell and
Wahlquist (2024).

2.6 Data set

The proposed method was applied to a data set for the
anesthetic drug propofol from White et al. (2008), hereby
referred to as the White data set. The data set was chosen
due to that propofol has well-studied pharmacokinetics
and that the data set was openly disclosed by Eleveld
et al. (2018). Ethical approval of the underlying study is
declared in the original publication in White et al. (2008).

The data set is composed of propofol plasma concentration
observations and infusion profiles from 107 individuals.
The data set contains 1505 plasma concentration observa-
tions. Out of the 107 individuals, 54 are males and 53 are
females with ages ranging from 17 to 88 years, and weights

ranging from 42 to 100 kg. The data was pre-processed
so that data points corresponding to subsequent infusion
changes shorter than 1 s or smaller than 0.5 µg s−1 were
merged.

3. RESULTS

The final base model included a proportional error to
describe the residual error. The proportional error was
selected based on reduction in the OFV for the base model,
which was 301.1 compared to the corresponding model
with an additive error. Similarly, statistically significant
IIVs were identified for V1, V2, CL and Q2. Inclusion of
IIVs on V3 and Q3 did not significantly improve model fit.

Table 1. Estimated parameter values for the
final population PK model in (14).

Parameter Estimated value
Relative standard
error %

θ1 0.13 12.5

θ2 0.1 101.4

θ3 0.45 321.1

θ4 -0.0095 59.5

θ5 0.02 29.3

θ6 7.78 81.3

θ7 1.08 52.6

θ8 126.7 408.9

θ9 0.89 79.4

σ 0.15 38.2

Table 2. Inter-patient variabilities (IIVs) and
their variances of the final population PK

model in (14).

Parameter IIV Variance (ω2)
Relative standard
error %

η1 V1 0.66 13.8

η2 CL 0.27 153.4

η3 V2 0.77 56.3

η4 Q2 0.28 2893.4

Table 3. Prediction errors (mean(MdALE),
(11)) for three population PK models without
random effects (η = 0) and objective function
values (OFV) for the same models with ran-

dom effects.

Model
mean(MdALE)
(η = 0)

OFV

Base model 0.196 1504.5

White model 0.174 1466.6

SNN model 0.172 1467.3
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Fig. 3. Model predictions vs observations for the base model, the White model, and our SNN model, with and without
random effects.

Allowing for a maximum of 10 parameters for each expres-
sion of V1 and CL in the final covariate model, the SNN
search for covariate functional relationships resulted in the
following covariate expressions for V1 and CL:

V ′
1,male =

8668.9 + 36.1WGT− 0.030WGT2

1165.9−WGT
(13a)

V ′
1,female =

8668.9− 36.1WGT− 0.030WGT2

1165.9 +WGT
(13b)

CL′
male = 0.023− 0.00015AGE + 0.00032WGT (13c)

CL′
female = 0.021− 0.00015AGE + 0.00032WGT. (13d)

The output covariate expressions of the SNN for CL
in (13) were simplified without affecting model predictive
performance, i.e., no change in OFV. When the covariate
model parameters were re-estimated and random effects
added in Pumas, we saw that the intercept variable in the
linear relationship of V1 could be removed without change
in OFV. The final population PK model with random
effects became:

V1,male = θ1WGTexp (η1) (14a)

V1,female = θ2WGTexp (η1) (14b)

CL = (θ3 + θ4AGE+ θ5WGT) exp (η2) (14c)

V2 = θ6 exp (η3) (14d)

Q2 = θ7 exp (η4) (14e)

V3 = θ8 (14f)

Q3 = θ9, (14g)

where θ and η are the parameter estimates. Parameter
estimates for θ and η with the corresponding standard
errors are summarized in Table 1 and Table 2, respectively.
The standard deviation of the proportional residual error
estimate (4b) is presented in Table 1. All compartment
volumes have units of L and all clearances have units of
Lmin−1.

In Table 3, the prediction errors (11) of the base model,
the White model, and our SNN model with and without
random effects (i.e., η = 0) are presented. Mean(MDALE)
was the measure for model fit in the covariate model
development, the training loss for the SNN. OFV (−2 log-
likelihood) was the measure of model fit in Pumas for

the modeling of random effects. Note that the model
parameters of the White model were re-estimated when
we applied random effects to the model, as random effects
were not available in the original publication of White
et al. (2008).

Based on the evaluated prediction errors in Table 3, both
the White model and the SNN model more adequately
described data than the base model. The OFV for the SNN
model was lower than for the base model equivalent to a
statistically significant model improvement by p < 0.01
for three degrees of freedom, corresponding to a difference
in three parameters. The White model and SNN model
predictions were equivalent both with and without random
effects. However, the SNN model includes one covariate
less for each of V1 and CL and three parameters less in
total in the covariate model, as seen in (14a) to (14c).
Predicted versus observed plasma concentrations for all
models, with and without random effects, are illustrated
in Fig. 3.

4. DISCUSSION

In the present paper, we demonstrate how traditional
NLME modeling may be used in combination with SNNs
for the development of population PK models with co-
variates. Unlike standard approaches, SNNs offer a flexi-
ble approach for identifying functions mapping covariates
to PK parameters and do not require assumptions of
the function structure. The lack of assumptions further
makes the identification of complex functions supported
by the data possible. For validation, the final model was
compared to a previously published model developed on
the same data set. Although the comparison was not the
main objective of this work, the validation demonstrated
that our method shows comparable performance to the
standard state-of-the-art modeling methodology.

There is a trade-off between accuracy in fitting data and
the model complexity, which is determined by the number
of final parameters of the SNN. We chose to limit the num-
ber of network parameters to a maximum of 10 for SNN,
to obtain simple covariate expressions. Consequently, our



final population PK model is a less complex model than
the White model regarding the number of covariates and
parameters. A less complex model results in greater read-
ability and generalizability. While this reduces the risk of
overfitting, it does not eliminate it. A sound practice is
therefore to perform cross-validation as we have demon-
strated in Wahlquist et al. (2023). Although standard
artificial neural networks may greatly outperform pruned
models in the prediction of the training data, such models
would exhibit poor generalizability and thus result in poor
applicability. Optimization of the pruning strategy with
regards to the number of parameters to prune dependent
on the complexity of the data set may therefore be of
interest to investigate further.

Interestingly, we found linear functions to adequately
map covariates to PK parameters similar to White et
al. For smaller data sets such as the data set used in
this study, the data may only support the identification
of simple covariate expressions. However, for larger PK
data sets, SNNs offer the possibility to identify complex
covariate expressions that are unlikely to be identified
using the current standard methodology for covariate
model development, as was demonstrated in Wahlquist
et al. (2023).

The precision of estimated parameters as quantified by
the standard errors, were overall poor for both the SNN
model and the White model (White model values not
presented here). Poor parameter precision is indicative
of poor identifiability of parameters. Furthermore, the
poor parameter precision may indicate a weak relationship
between covariates and PK parameters. However, since the
aim of this work was to develop the SNN methodology, we
did not perform any further analysis of which parameters
that caused the poor precision.

In the development of the covariate model, we used a loss
function that had previously been applied to develop a
state-of-the-art population PK model for propofol (Eleveld
et al., 2018). However, other loss functions may be equally
suitable for finding covariate functions with SNNs. There-
fore, the modeler may tailor the loss function depending
on the data and model.

In conclusion, we demonstrated an automated methodol-
ogy for the development of covariate models without any
assumptions on the structure of the covariate functions in
an NLME framework. The final model developed by the
method performed equivalently to a previously published
model with fewer parameters. The presented methodology
could become a powerful tool in precision dosing including
drug delivery systems.
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