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Abstract 
Lifestyle factors, including physical activity and dietary intake of lipids and glucose, 
play a role in metabolism and influence susceptibility to diseases such as obesity 
and type 2 diabetes. Recent human investigations conducted by our research team 
have revealed that lifestyle factors such as exercise and altering lipid and glucose 
intake can induce changes in DNA methylation patterns in controlled laboratory 
settings and within human subjects. These epigenetic modifications may modulate 
the expression patterns of genes and proteins in human tissues and, as such, affect 
metabolism. Thus, epigenetic modifications may act as the link between different 
lifestyle factors, such as dietary intake, and the likelihood of developing metabolic 
diseases. However, we need to enhance our understanding of how lifestyle factors 
modulate DNA methylation. We, therefore, aim to explore the impact of various 
lifestyle factors, such as dietary factors and physical activity, on DNA methylation 
in human tissues and cells. Additionally, we want to investigate how these molecular 
changes influence metabolism and the risk of developing diseases. In vitro analyses 
in human pancreatic islets showed that elevated glucose and lipids 
(glucolipotoxicity) induced methylation and expression changes, contributing to 
impaired insulin secretion and increased apoptosis. Analyses in human offspring 
cord blood show that lifestyle intervention and gestational weight gain among 
pregnant women with obesity impact the DNA methylome of several genes which 
seem to be linked to offspring anthropometrics measures important for offspring 
health. Furthermore, our findings in human sperm indicate that a one-week sugar-
rich diet does not significantly alter the sperm methylome. However, nominal 
evidence suggests potential DNA methylation modifications of specific CpG-sites 
linked to male fertility and imprinted genes after the sugar-rich diet. Overall, these 
findings support that DNA methylation may link lifestyle factors to health 
implications, including metabolic diseases.  
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Popular Science Summary 
Your body needs energy to function. For example, basal functions such as breathing 
and pumping your blood consume energy, as does moving around. We humans get 
this energy through the food and drink we consume. For the body to be able to use 
the food as energy, several chemical reactions take place where the food is converted 
to energy that our body can use; this is called metabolism.  

Obesity is a global health problem that is only getting worse, and today, 
approximately 1 in 8 people lives with obesity. Obesity often arises because you eat 
too much food and engage in insufficient physical activity, resulting in a surplus of 
energy intake compared to energy expenditure. The surplus energy gets stored in 
your body as fat, leading to weight gain over time. Being overweight or obese can 
lead to many different health problems, such as heart disease, type 2 diabetes, and 
certain types of cancer. Obesity during pregnancy also increases the risk for 
complications during pregnancy and delivery and both short and long-term adverse 
health effects in the offspring.  

DNA, the blueprint detailing the construction of the body, is present in identical 
copies in the cell nucleus of all the trillion cells constituting our body. Despite this 
uniformity, our bodies are comprised of more than 200 cell types, each with its 
distinct functions. This diversity in cell types is partially due to epigenetics, which 
allows for the construction of all the different tissues and organs in our body. 
Epigenetics includes several different mechanisms that regulate which parts of the 
DNA the cells can read and thus control which instructions the cell receives 
regarding its structure and function. Currently, we are unable to change our DNA 
sequence; it is something we inherited from our parents and which our children will 
inherit from us. However, we can change our epigenetics! It has been shown that 
when the body's circumstances change, for example, if we change what we eat or 
how we exercise, the instructions on how the cells should be built also change. Still, 
our knowledge of how and what is affected by our lifestyle is limited. We, therefore, 
wanted to explore how lifestyle factors, such as diet and physical activity, affect 
DNA methylation in our bodies. We also wanted to investigate how these potential 
DNA methylation changes affect our metabolism and the risk of disease. 

This was investigated using four different studies. Study I investigated the effect of 
elevated levels of glucose and lipids (glucolipotoxicity), mimicking circulating 
levels of an individual with obesity and/or type 2 diabetes, on gene expression and 
DNA methylation patterns in human pancreatic islets. We found that 
glucolipotoxicity affected methylation and gene expression and that these changes 
seem to lead to altered insulin secretion and increased cell death. Study II was 
conducted on pregnant women with obesity, where 2/3 got a lifestyle intervention, 
including physical activity, with and without dietary advice. We then explored if 
there were any effects on the DNA methylation pattern in the offspring by analyzing 
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cord blood taken at delivery. Here, we found that the lifestyle intervention had an 
impact on the offspring’s DNA methylation pattern in the cord blood, and several 
of these were linked to offspring muscle mass at birth and growth during the first 
three years of life. In Study III, we investigated if the amount of weight gain during 
pregnancy in women with obesity affects the offspring’s DNA methylation pattern 
in cord blood. We found that the weight gain during pregnancy was, in fact, linked 
to changes in the DNA methylation pattern and that several of the altered 
methylation sites have been linked to asthma, BMI, and/or type 2 diabetes in other 
studies. We also found that several of the observed methylation changes were linked 
to muscle mass in the offspring at birth and their birthweight. In Study IV, we 
wanted to investigate the effect of a one-week-long diet intervention with excess 
sugar on the DNA methylation pattern in human sperm. Our findings indicate that 
a one-week sugar-rich diet does not influence the overall sperm methylome. 
However, there might be effects on methylation of individual sites linked to e.g., 
male fertility. In this study, we also provide a map of the global DNA methylome 
in human sperm. Overall, in this thesis, I show that DNA methylation can be 
affected by our lifestyle and possibly affect our metabolism, which can lead to 
various health consequences such as metabolic diseases.  

In future studies, it would be highly interesting to include several different tissues 
from the same individuals and perform different biomedical analyses to better 
understand the link between lifestyle choices and the underlying mechanisms of 
diseases such as obesity and type 2 diabetes.   
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Populärvetenskaplig Sammanfattning 
Din kropp behöver energi för att fungera. Basala funktioner så som andningen och 
att hålla kroppstemperaturen förbrukar energi, liksom att röra på sig. Vi människor 
får denna energi genom den mat och dryck vi konsumerar. Det sker flera kemiska 
reaktioner där det vi konsumerar omvandlas till energi som vår kropp kan använda; 
detta kallas ämnesomsättning eller metabolism. 

Fetma är ett globalt hälsoproblem som bara blir värre, och idag lever cirka 1 av 8 
människor med fetma. Fetma uppstår ofta för att man äter för mycket mat och rör 
på sig för lite, vilket leder till ett överskott i energiintag jämfört med 
energiförbrukning. Överskottet av energi lagras i din kropp som fett, vilket leder till 
viktökning över tid. Att vara överviktig eller ha fetma kan öka risken för många 
olika hälsoproblem, såsom hjärtsjukdom, typ 2-diabetes och vissa typer av cancer. 
Fetma under graviditeten ökar också risken för komplikationer under graviditet och 
förlossning samt både kort- och långsiktiga negativa hälsokonsekvenser hos 
avkomman. 

DNA, ritningen som beskriver kroppens konstruktion, återfinns i exakta kopior i 
cellkärnan hos var och en av de biljoner celler som bygger upp vår kropp. Trots 
denna likformighet består våra kroppar av mer än 200 olika celltyper, var och en 
med sina unika funktioner. Denna mångfald av celltyper beror delvis på epigenetik, 
vilket möjliggör uppbyggnaden av alla olika vävnader och organ i vår kropp. 
Epigenetik inkluderar flera olika mekanismer som reglerar vilka delar av DNA:t 
som cellerna kan läsa och därmed styr vilka instruktioner cellen får angående sin 
struktur och funktion. I dagsläget kan vi inte ändra vår DNA-sekvens; den har vi 
ärvt från våra föräldrar och vi kommer föra vidare den till våra barn. Men vi kan 
ändra vår epigenetik! När kroppens omständigheter förändras, till exempel genom 
att vi ändrar vår kost eller vår fysiska aktivitet, ändras också cellernas instruktioner 
om deras uppbyggnad. Vår kunskap om hur och vad som påverkas av vår livsstil är 
dock begränsad. Därför ville vi undersöka hur livsstilsfaktorer, såsom kost och 
träning, påverkar epigenetiska markörer, så som DNA-metylering, i våra kroppar. 
Vi ville också undersöka hur dessa potentiella DNA-metylerings förändringar 
påverkar vår metabolism och risken för utvecklandet av sjukdom. 

Detta undersöktes i fyra olika studier. I Studie I undersökte vi effekten av förhöjda 
nivåer av glukos och lipider (s.k., glukolipotoxicitet), som efterliknar cirkulerande 
nivåer hos en individ med fetma och/eller typ 2-diabetes, på genuttryck och DNA-
metyleringsmönster i mänskliga pankreasöar. Vi fann att glukolipotoxicitet 
påverkade metyleringsmönstret och genuttrycket och att dessa förändringar verkar 
leda till förändrad insulinfrisättning och ökad celldöd. Studie II utfördes på gravida 
kvinnor med fetma, där 2/3 fick en livsstilsintervention med fysisk aktivitet, med 
eller utan kostråd. Vi utforskade sedan om det fanns några effekter på avkommas 
DNA-metyleringsmönster genom att analysera navelsträngsblod insamlad i 
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samband med förlossningen. Här fann vi att mammans livsstilsintervention hade en 
effekt på avkommans DNA-metyleringsmönster i navelsträngsblodet, och flera av 
dessa var kopplade till avkommans muskelmassa vid födseln och tillväxt under de 
första tre åren. I Studie III fann vi att viktökningen under graviditeten hos kvinnor 
med fetma påverkar avkommas DNA-metyleringsmönster i navelsträngsblod. Flera 
av dessa förändringar har tidigare kopplats till astma, BMI och/eller typ 2-diabetes. 
Vi hittade också att flera av metyleringsförändringarna var kopplade till mängden 
muskelmassa hos avkomman vid födseln och deras födelsevikt. I Studie IV ville vi 
undersöka effekten av en en-veckas dietintervention med hög andel socker på DNA-
metyleringsmönstret i human sperma. Våra fynd tyder på att en en-veckas sockerrik 
diet inte påverkar det globala metyleringsmönstret i sperma. Det verkar dock finnas 
effekter på metyleringsmönstret på specifika ställen i vårt DNA som är kopplade till 
t.ex. manlig fertilitet. I denna studie kartlade vi även det globala DNA- 
metyleringsmönstret i human sperma. Sammantaget visar jag i denna avhandling att 
DNA-metylering kan påverkas av vår livsstil och möjligen påverka vår metabolism, 
vilket kan leda till olika hälsokonsekvenser såsom metabola sjukdomar. 

I framtida studier skulle det vara mycket intressant att inkludera flera olika vävnader 
från samma individer och genomföra olika biomedicinska analyser för att bättre 
förstå sambandet mellan livsstilsval och de underliggande mekanismerna bakom 
sjukdomar såsom fetma och typ 2-diabetes.  
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Preface 
My interest in nutrition and its impact on our health stems from my childhood. 
Growing up with childhood obesity, I got an early insight into the importance of our 
diet through the healthcare system. Although the approach may not have been the 
best, it slowly started to create an interest and curiosity as to why I struggled with 
obesity and not my friends. After struggling with obesity throughout my growing 
up and young life, I sat down one day at my extra job and thought about what to do 
with my life. I had managed to lose some weight on several occasions, to be 
completely truthful, but it was a constant struggle to keep the weight off. Why was 
that? Internet searches and evening newspaper articles were not enough to answer 
my questions, and then it came to me like a lightning strike from above: why not 
turn this interest into a career? I get to learn "for real" and delve into some of the 
things I find most interesting - nutrition and health. That's how I found the training 
to be a nutritionist.  

After many evening courses to qualify for science education (I was going to be an 
interior architect, I thought), I applied and then moved to Stockholm to start my 
bachelor's education. After a semester of (brutal) chemistry courses, I realized I did 
not want to be a nutritionist. Although I find population science (which nutrition 
education focuses on) very interesting, I was more interested in what happens inside 
the cells when we eat different things. So, I chose to change my focus and instead 
completed my bachelor's degree in molecular biology. During my education, albeit 
very briefly, we were introduced to epigenetics. Now another interest was sparked; 
here was perhaps the mechanism behind how external factors, such as diet, can 
affect our health. After completing my bachelor's education, I chose to move back 
to Skåne and do my master's in molecular biology with a specialization in molecular 
genetics and biotechnology at Lund University. When it was time for our master's 
project, I came across the Epigenetics and Diabetes group at Lund University, CRC. 
I was lucky enough to get the opportunity to do my project in this group. About a 
year after I finished my master's, I got the opportunity to do a Ph.D. in the same 
group, where I would investigate the effect of lifestyle, including diet, on 
epigenetics and health. 

Although one may primarily think of acquiring specialized knowledge as the 
greatest learning experience during doctoral studies, some of the most significant 
learning experiences I will cherish from my Ph.D. education are the development of 
critical thinking, resilience, problem-solving skills, and adaptability. Research is far 
from a straight path, and setbacks and overcoming challenges are a big part of the 
journey, contributing to these skills. Additionally, the more I have learned, the more 
questions have arisen, revealing how much knowledge there is yet to be gained and 
leaving me with the humbling realization of how little we truly know. 
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This thesis was carried out within the Epigenetics and Diabetes Group, Faculty of 
Medicine, Department of Clinical Sciences, Malmö, Clinical Research Centre, Lund 
University. 

Throughout this thesis, we wanted to investigate the influence of lifestyle factors, 
such as diet, on DNA methylation in human tissues and cells and assess their 
implications for human health. This was done using four studies, which differ, 
among other things, by which tissues and lifestyle factors have been analyzed.   
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Introduction 

Metabolism 
Metabolism encompasses all the enzyme-mediated chemical reactions taking place 
within each cell of a living organism providing energy for fundamental processes 
and for synthesizing and assembling new organic material. The two main processes 
of metabolism are anabolism and catabolism. Anabolism involves the synthesis of 
lipids, nucleic acids, and proteins, whereas catabolism involves the breakdown of, 
e.g., proteins, fats, and carbohydrates. The metabolism is tightly regulated through
metabolic pathways, which are affected by the changes in metabolic demands due
to internal and external conditions. For example. the body's physiological state is
very different depending on whether it is in a prandial (before a meal/fasting) or
postprandial (after a meal) state and coordination and fine-tuning of these processes
are known as metabolic regulation (1). In animals, energy is obtained from nutrients
in our diet, which can be grouped into two categories based on the amount required
per day. Macronutrients include carbohydrates, proteins, and fat of which we require
grams daily. Micronutrients include vitamins and minerals; we require milligrams
or micrograms daily. The primary function of metabolism is to generate energy, for
which the macronutrients are metabolized to produce adenosine triphosphate (ATP).
ATP is the primary energy molecule used for cellular processes in the body.
Carbohydrates are broken down into glucose and, finally, ATP through glycolysis
and the citric acid cycle (1). Carbohydrates are the body’s main source of energy
and dietary sources of carbohydrates are, e.g., fruits, vegetables, and grains. Proteins
are made up of amino acids – the building blocks of tissues, hormones, enzymes,
and antibodies. Some of the amino acids are essential, i.e., the body cannot produce
them, and we need to acquire these through our diet. Proteins can be found in food
sources such as meat, fish, eggs, legumes, and nuts. Proteins are metabolized into
amino acids, which can be broken down into glucose or used as intermediates for
the citric acid cycle to produce ATP (1). Fats, also known as lipids, are rich in energy
and important for cell membranes' structure and function and absorption of fat-
soluble vitamins. Fats can, in turn, be divided into saturated fats with a straight
molecular structure and unsaturated fats, with a bent molecular structure due to one
or more double chemical bonds. Dietary fats can be found in, e.g., dairy products,
oils, fatty fish, and nuts. Fats are converted to ATP through hydrolysis into fatty
acids and glycerol and beta-oxidation (1). Vitamins are organic components needed
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in various metabolic processes, where they act as coenzymes or cofactors in 
enzymatic reactions (1). Vitamins are said to be either water-soluble (B and C) or 
fat-soluble (A, D, E, and K) and can be found in foods such as fruits, vegetables, 
whole grains, meat, and fish. Minerals are inorganic elements essential for various 
physiological functions, e.g., muscle contraction, bone formation, and nerve 
transmission (1). Minerals, such as calcium, iodine, iron, and magnesium, can be 
found in dietary sources such as dairy products, fish, nuts and seeds, and leafy 
greens.  

Obesity 
Obesity is a global health and economic burden that is estimated to only become 
more severe in the coming years (2). In 2022, approximately 878 million adults (≥20 
years) and about 157 million children and adolescents (aged 5-19), that is to say, 1 
in 8 were obese (3). Obesity is most commonly measured by the Body Mass Index 
(BMI) scale, but other methods, such as waist circumference or waist-to-hip ratio, 
are also used. BMI is defined as the body weight in kilograms (kg) divided by the 
square height in meters (kg/m2) and is divided into four categories: underweight 
(≤18.5), healthy (18.5-24.9), overweight (25-29.9), and obese (≥30). Other 
thresholds are used for children, adolescents, and pregnant women. In children 
under five, the WHO Child Growth Standards are used as a reference, and if the 
child’s weight-for-height is more than two standard deviations (SD) from the 
median, the child is said to be overweight. For childhood obesity, the cut-off is three 
SD. It is important to note that several obesity-related risk factors seem to depend 
more on fat distribution than excess weight, where visceral fat accumulation is 
considered to be metabolically worse than subcutaneous fat accumulation (4). 

Although studies have shown that a genetic predisposition is estimated to account 
for about 40% to 70% of obesity cases (5), obesity is often caused by lifestyle factors 
such as diet with an energy surplus. The energy surplus is often due to nutritional 
overconsumption and low physical activity levels – leading to metabolic 
dysregulation (6). In fact, lifestyle has been shown to be important in preventing 
obesity (7) and its comorbidities (8).  

Complications of Obesity 
Obesity is associated with widespread metabolic alterations that affect circulating 
levels of various metabolites, affecting almost every organ system in the body, and 
can lead to a variety of complications (Figure 1). Adipose tissue is an endocrine 
organ in itself that regulates whole-body metabolism by producing several 
hormones (adipokines, e.g., leptin, TNF-a, and adiponectin) (9). Obesity leads to 
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an imbalance in the adipokines and, thus, metabolic effects. Obesity is highly 
associated with type 2 diabetes (T2D), with incidence rates going in parallel. This 
may partly be due to several of the adipokines, such as adiponectin and TNF-a, 
affecting insulin sensitivity (9). Insulin is a hormone produced by the beta-cells of 
the pancreas and plays a central role in coordinating glucose metabolism by enabling 
or enhancing the uptake of blood glucose by tissues and organs such as muscle, 
adipose tissue, and liver. When levels of circulating glucose are high, such as after 
a meal, insulin is released into the bloodstream. The elevated levels of insulin lead 
to the inhibition of glucose production in the liver and promote storage in the form 
of glycogen as well as the synthesis of fatty acids and the inhibition of their release 
(5). In the muscle, the glucose is either used directly as energy or stored as glycogen. 
In the adipose tissue, glucose is converted into triglycerides for storage, while 
insulin also inhibits lipolysis. 

Figure 1. Common complications of obesity. Created with BioRender.com 

Insulin resistance occurs when tissues and organs become less responsive to insulin, 
leading to inadequate glucose uptake and elevated blood glucose levels (5). Ectopic 
lipid accumulation has been linked to insulin resistance in muscle and liver (10). 
Ectopic lipid accumulation is the abnormal deposition of lipids in tissues other than 
adipose tissue, such as the liver and muscle, disrupting normal signaling pathways 
and cellular metabolism (10). In the muscle, excess lipids lead to impaired insulin 
signaling and glucose uptake (10). Ectopic lipid accumulation in the liver impairs 



26 

insulin signaling, in part due to the activation of processes such as the unfolded 
protein response and endoplasmic reticulum stress (10). Insulin resistance has also 
been suggested to impair the uptake of and the ability to metabolize triglycerides, 
leading to elevated triglyceride levels in the blood (5) and an increased risk of 
cardiovascular diseases (CVD). Obesity also affects lipid metabolism in a more 
direct manner through lipolytic adipokines, which increases lipolysis and leads to 
the breakdown of triglycerides and elevated circulating free fatty acids (also known 
as non-esterified fatty acids) (5). In fact, obesity is characterized by dyslipidemia 
with increased levels of free fatty acids, triglycerides, very low-density lipoproteins, 
and HDL-cholesterol (11), increasing the risk of, e.g., CVD (12), Non-Alcoholic 
Fatty Liver Disease (13), and insulin resistance (14). 

Obesity and Pregnancy 
Maternal obesity, most often defined as a pre-pregnancy BMI of ≥30kg/m2, poses a 
risk to both mother and offspring. One of the most common obesity-related 
pregnancy complications is gestational diabetes mellitus (GDM), where the risk of 
developing GDM increases 3.5-fold in women with obesity and 8.5-fold in women 
with severe obesity (15). Adverse outcomes for the mother also include a higher 
frequency of cesarean deliveries, preeclampsia (16), and stillbirths (17). Adverse 
outcomes in the offspring include macrosomia (18), congenital anomalies (19), 
cardiovascular morbidity (20), and childhood overweight and obesity (21). Maternal 
obesity can be seen as a double burden as women with obesity tend to exceed the 
gestational weight gain (GWG) recommendations more often than normal-weight 
women (22). Both burdens increase the risk of similar complications. Excessive 
GWG is, for instance, associated with obesity due to a higher risk of maternal 
postpartum excess weight retention, cesarean delivery (23), GDM (24) and 
macrosomia (23), increased BMI in childhood, and an increased risk of obesity in 
adulthood (25). It is considered excessive GWG when the weight gain exceeds the 
Institute of Medicine recommendations based on pre-pregnancy BMI categories 
(Table 1).  

Table 1. Institute of Medicines recommendations for Total Weight Gain During Pregnancy 
Pre-pregnancy BMI Total Weight Gain, Range in kg 
Underweight (<18.5kg/m2) 12.5–18  
Normal weight (18.5-24.9kg/m2) 11.5–16 
Overweight (25.0-20.9 kg/m2) 7–11.5 
Obese (≥30.0 kg/m2) 5–9 

 

It has been shown that lifestyle interventions with physical activity can be beneficial 
in pregnant women with obesity, with reduced GWG (26) and high-sensitivity C-
reactive protein: an inflammation marker (27). Additionally, the intake of soft 
drinks, sweets, and snacks was a strong predictor of GWG (28). Together, this 
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suggests that advice regarding increased physical activity and reducing the intake of 
soft drinks, sweets, and snacks in pregnant women with obesity is highly relevant 
for limiting GWG.  

Epigenetics and DNA Methylation 
Epigenetics is the study of changes in cellular phenotype that do not involve 
alterations to the DNA sequence. The term “epigenetics” comes from the Greek 
prefix “epi”, meaning “on top off”, and genetics, reflecting something taking place 
“outside off” or “on” the genetic sequence. Epigenetic mechanisms involve 
modifications of DNA or histone proteins as well as RNA-mediated processes 
(Figure 2) (29). DNA is wrapped around a core of histone proteins, making up the 
nucleosome, a fundamental unit of chromatin. Histone modifications are post-
translational modifications to the histone proteins, such as acetylation, 
phosphorylation, ubiquitination, and methylation. These modifications alter the 
structure of the nucleosomes altering the compaction and accessibility of the DNA 
to regulatory proteins and consequently affecting gene expression (30). RNA-
mediated processes, often referred to as RNA interference, include non-coding 
RNAs, such as microRNAs and long non-coding RNAs. These RNA molecules do 
not code for proteins but aid in gene regulation at the transcriptional or post-
transcriptional level by interfering with mRNA (the protein-coding molecule) 
stability or translation (30). DNA methylation is the process by which methyl groups 
(-CH3) are enzymatically added to or removed from the 5-carbon position of 
cytosine residues in the DNA. This most often occurs at CpG dinucleotides – so-
called CpG-sites of which there are approximately 30 million in the human genome 
(31). These sites are not randomly distributed in the genome, rather, 1-2% are 
clustered in regions and known as CpG islands (31). A CpG island is defined as a 
>200 bp region of DNA with a C+G content of >50% and an observed
CpG/expected CpG of >0.6 (32). CpG islands are often found in the promoters of
protein-coding genes, where the methylation status may affect the accessibility of
DNA to transcription factors and, hence, influence gene expression (31).

DNA methylation is a vital mechanism in many biological processes, such as X-
chromosome inactivation, transposable element silencing, tissue-specific gene 
expression, cell fate determination, and genomic imprinting.  DNA 
methyltransferase enzymes (DNMTs) establish and maintain the DNA methylation 
patterns during DNA replication. DNMT1 mainly maintains the DNA methylation 
pattern during DNA replication. It has the ability to recognize hemimethylated DNA 
and methylate the newly synthesized strand, ensuring the same DNA methylation 
pattern in the daughter cells. DNMT3A and DNMT3B are the de novo 
methyltransferases and can create new DNA methylation patterns (33). They are, 
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therefore, fundamental in biological processes such as early embryonic 
development and gene regulation. DNMT3L is a paralog of DNMT3A and 
DNMT3B and is catalytically inactive. However, it interacts with and modulates the 
methyltransferase activity of DNMT3A and DNMT3B, making it an important 
DNA methylation regulatory protein in germ cells and genomic imprinting 
processes (34). The DNMTs catalyze the addition of a methyl group from S-
adenosulmethionine (SAM) to the cytosine in DNA, forming 5-methylcytosine 
(5mC). DNA demethylation, on the other hand, involves Ten-Eleven Translocation 
(TET) enzymes, which, with multiple oxidation steps, lead to the removal of the 
methyl group (29). Passive demethylation also takes place and is a process where 
methyl groups are diluted with each round of DNA replication and cell division, 
leading to decreased methylation (29). 

Epigenetics and Lifestyle Factors 
The Cambridge Dictionary defines ‘lifestyle’ as “someone's way of living” or “the 
things that a person or particular group of people usually do”. When considering 
lifestyle factors, diet and physical activity are most likely the first to come to mind, 
but stress, smoking, and alcohol consumption are also examples.  

Tobacco smoking and alcohol consumption have for instance shown to affect DNA 
methylation (35). 

Diet is an important lifestyle factor in epigenetics partly, due to altering the 
availability of substrate necessary for enzymatic reactions leading to epigenetic 
modifications. Folate (vitamin B9) and vitamin B12, for instance, have important 
roles in one-carbon metabolism, which combines the folate cycle and the 
methionine cycle and produces SAM (30). SAM acts as a methyl donor, enabling 
the addition of a methyl group e.g., during DNA methylation. Good dietary sources 
of folate include leafy greens, citrus fruits, and legumes. Sources of vitamin B12 
include animal-derived foods, such as meat, dairy products, and eggs, but can also 
be found in a wide range of fortified foods, such as plant-based milk alternatives. 
Several studies in rodents have demonstrated the importance of folate in DNA 
methylation, with strong associations between folate metabolism and fetal growth 
and development. Diets rich in folate lead to hypomethylation of placental DNA 
with the opposite effect with diets low in folate, and protein-restricted diets lead to 
altered DNA methylation patterns in the adult offspring liver – reversible by folate 
supplementation (36). In humans, the DNA methylation study of the Dutch Hunger 
Winter is probably one of the most well-known studies in epigenetics, showing that 
intrauterine exposure to famine can cause epigenetic changes that persist throughout 
life (37). However, it is not only famine that affects DNA methylation; studies of 
overfeeding have shown that overfeeding affects the DNA methylation pattern in 
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human subcutaneous adipose tissue (SAT) (38) and skeletal muscle (39). 
Additionally, fat quality (saturated fatty acids versus polyunsaturated fatty acids) 
showcases distinct DNA methylation patterns in adipose tissue of normal-weight 
participants (40), suggesting that also the source and quality of foods matter. Studies 
of low birth weight (LBW, i.e., impaired fetal growth) versus normal birth weight 
(NBW) participants have also found alterations in DNA methylation; Gillberg et al. 
found that DNA methylation of genes previously associated with T2D was different 
in SAT of LBW versus NBW men (38) and that these groups show fasting-induced 
DNA methylation changes (41, 42). This supports the notion of intrauterine 
programming, and that the intrauterine environment plays a key role in the 
development of metabolic disease. Several studies in animal models and humans 
show that paternal diet is linked to offspring health, which is suggested to be due to 
epigenetic inheritance (43-45), implying that the father's lifestyle also significantly 
impacts the health of the offspring.   

Physical activity has been found to affect DNA methylation in a wide range of 
tissues (46). Physical activity has, e.g., been linked to hypomethylation of LINE-1 
elements in peripheral blood lymphocytes, which, in turn, has been found to lower 
the incidence and mortality of certain CVDs (35). Additionally, Rönn et al. showed 
that a six-month exercise intervention in men with previously low levels of physical 
activity resulted in genome-wide changes in adipose tissue DNA methylation (47) 
with effects on gene expression (48). Similarly, effects of exercise on DNA 
methylation in skeletal muscle have been found (49, 50). Exercise also seems to 
alter acetyl and methyl group availability and the activity of enzymes involved in 
methylation and demethylation (51). Studies in rodents show different effects of 
physical activity in the fathers and health effects in the offspring depending on the 
fathers’ body type. A study in lean mice showed that the fathers who had been 
exercise-trained had altered sperm methylation patterns compared to sedentary 
controls and that the offspring of the exercise-trained fathers were programmed for 
low energy expenditure and more susceptible to the adverse effects of high-fat diets 
(52). An exercise study in obese mice, however, shows beneficial effects on the 
offspring with reduced risks of obesity and metabolic impairments (53). 

Tissues 
In the four studies that comprise this thesis, we use three different human tissues: 
pancreatic islets, cord blood, and sperm. 

Pancreatic islets are micro-organs located within the pancreas. In humans, the 
pancreas is located behind the stomach, and the pancreatic islets are scattered 
throughout the pancreas. The pancreatic islets comprise several hormone-secreting 
cells vital for blood glucose homeostasis (54). The alpha, beta, delta, pancreatic 



31 

polypeptide (PP), and epsilon cells make up the pancreatic islet. The alpha cells 
secrete glucagon, a hormone that stimulates the release of stored glucose from the 
liver. The beta cells secrete insulin, which promotes glucose uptake into cells, 
glucose storage in muscle and the liver, and inhibits glucose production in the liver 
(54). Additionally, insulin promotes lipogenesis through the uptake of glucose into 
the adipocytes (5). Consequently, excess glucose gets converted to fatty acids and 
stored as triglycerides in the adipocytes (5). The delta cells secrete somatostatin, a 
hormone that helps regulate the overall balance of blood glucose levels by inhibiting 
insulin and glucagon release. The PP cells secrete PP, a hormone that regulates the 
secretion of digestive enzymes from the pancreas and, as such, helps optimize the 
digestive process. PP also has effects on gastrointestinal motility and appetite 
regulation (54). The epsilon cell produce ghrelin, a hunger-stimulating hormone 
playing a vital role in appetite control (55). In a healthy individual, the beta cells 
respond to elevated levels of blood glucose, such as after a meal, by secreting insulin 
into the circulation. Insulin facilitates glucose uptake and/or storage in the liver, 
muscle, and adipose tissue, normalizing blood glucose levels. In T2D, insulin 
secretion from the beta cells is impaired, and the insulin-sensitive tissues are often 
unable to respond to insulin (56). Consequently, this results in elevated levels of 
circulating fatty acids and glucose, which in vitro studies have shown to cause 
adverse effects on insulin secretion (57-59), which may partially be due to 
epigenetic mechanisms (60, 61). 

Cord blood, also known as umbilical cord blood, and adult peripheral blood have 
several physiological differences. For instance, cord blood contains a small 
proportion of nucleated red blood cells (nRBCs), which are immature red blood cells 
with a cell nucleus. During the maturation process of the red blood cells in the bone 
marrow, the nuclei are typically lost before entering the bloodstream. Thus, adult 
blood normally does not contain nRBCs. Cord blood also contains a larger 
proportion of immunologically naïve hematopoietic stem cells than adult blood. 
Furthermore, the leukocytes are more immunologically immature (62).  

Sperm cells are male haploid gametes containing 23 chromosomes, contributing to 
half of the embryo genome. The process by which sperm cells (spermatozoa) are 
produced is called spermatogenesis and involves a series of sequential steps. The 
first step involves the undifferentiated germ cells (spermatogonia), which undergo 
mitotic division, producing more spermatogonia and primary spermatocytes. The 
primary spermatocytes then undergo meiosis, resulting in haploid spermatids. The 
spermatids then undergo extensive morphological changes, which involve the 
formation of the head, a midpiece, and a tail, before they are called mature sperm 
cells (63). The nucleus is found in the sperm's head, where the DNA is highly 
condensed by protamines, ensuring the protection and integrity of the DNA. 
However, the chromosomal elements essential for embryonic development are 
histone-bound and thus more accessible. Furthermore, the chromatin is organized 
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into loop domains anchored to the nuclear matrix. This organizes the chromatin, 
which aids in regulating DNA replication and gene expression (64).  
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Rationale 

Homo sapiens – the modern man – arose around 300,000 years ago in Africa (65) 
and humans of today, our genetics are adapted to our ancestral environment. 
However, the introduction of agriculture and domestication of animals happened 
recently on an evolutionary time scale, only about 10,000 years ago (66). This has 
brought about significant changes in our diet and lifestyle, and our genomes have, 
as such, not had the time to adapt to our modern lifestyle (66).  In more recent years, 
much due to advancing technology after the Industrial Revolution, this acceleration 
continued. Today, the growing availability of ultra-processed foods with high levels 
of sugars, saturated fats, refined carbohydrates, and sodium has led to another 
change in our diets, which now contain calorie-rich foods high in fats and sugars 
(67).  Additionally, sedentary jobs, expanded transportation options, and 
urbanization have made us more physically inactive, adding to the burden (67). It is 
believed that these, in combination, are the reasons for the steep rises in health-
related problems, such as obesity, type 2 diabetes, and cardiovascular disease, 
worldwide.  

It is crucial to deepen our understanding of what happens in the body as a reaction 
to different foods and lifestyles. This knowledge can inform better policies and 
allow individuals to make healthier life choices. In this thesis we, therefore, wanted 
to explore the effect of various lifestyle factors on DNA methylation in human 
tissues and cells and assess their implications on human health. 
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Aims 

The overall aim was to investigate the influence of various lifestyle factors, such as 
diet, on DNA methylation in human tissues and cells and assess their implications 
on metabolism and disease risk.  

Specific Aims 
Study I To investigate the effect of glucolipotoxic treatment on genome-

wide mRNA expression and DNA methylation patterns in human 
pancreatic islets. Furthermore, to evaluate if glucolipotoxicity 
induced epigenetic changes underlie islet defects. 

Study II To explore the effects of a lifestyle intervention including physical 
activity, with and without dietary advice, in pregnant women with 
obesity on DNA methylation changes in offspring cord blood. 
Moreover, analyze whether specific epigenetic cord blood marks 
associate with offspring body composition at birth and growth 
during the first 36 months of life. 

Study III To analyze whether gestational weight gain in pregnant women with 
obesity is associated with offspring DNA methylation in cord blood. 
Additionally, to examine if specific cord blood epigenetic marks in 
the offspring associate with body composition in the newborn and 
birthweight. 

Study IV To characterize the human sperm DNA methylome and relate it to 
gene expression and study the effect of a diet intervention, including 
added sugar, on whole genome DNA methylation in sperm. 
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Material and Methods 

This section offers an overview of the methods used in this thesis while allowing 
for an in-depth exploration of their technical aspects. For a detailed description of 
the conduction of methods, please refer to the respective article. 

The four studies included in this thesis can be regarded as aligning with the 
progression of knowledge acquired throughout the doctoral studies, either by 
advancing laboratory or statistical methods or by increasing independence and 
responsibility.  

Study Design and Overview 
The first study analyzed the effect of excess metabolic substrates—glucose and 
palmitate, i.e., glucolipotoxicity—in human pancreatic islets. Studies number two 
and three explored the effect of lifestyle factors in pregnant women with obesity on 
the offspring. In the fourth study, we characterized the sperm DNA methylome and 
analyzed the effect of added sugar on sperm whole genome DNA methylation. The 
studies are summarized in Table 2.  

The following sections are presented for each study/cohort. 
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Table 2. Overview of the four studies included in this thesis 
Study I 
Aim To investigate the effects of glucolipotoxic treatment on genome-wide 

mRNA expression and DNA methylation patterns in human pancreatic 
islets. Furthermore, to evaluate if glucolipotoxicity induced epigenetic 
changes underlie islet defects 

Study design Within-subject experimental study 
Setting Human pancreatic islets from 13 donors, treated under control and 

glucolipotoxic conditions 
Measurments/Methods Human Islets: Glucolipotoxic treatment, DNA methylation 450k array, 

Affymetrics mRNA expression array, Glucose-stimulated insulin 
secretion (GSIS), Apoptosis. Functional follow-up experiments in cell-
lines: Knock-down of genes of interest, Luciferase assay, qPCR, GSIS, 
Cell viability i.e., cell number, assesment of apoptosis, and ATP levels.   

Statistics  Gene set enrichment analysis, Paired t-tests, Kruskal-Wallis One-Way 
ANOVA, Wilcoxon matched-pairs signed-rank test 

Study II 
Aim To explore the effects of a lifestyle intervention including physical 

activity, with and without dietary advice, in pregnant women with obesity 
on DNA methylation changes in offspring cord blood and if specific 
epigenetic cord blood marks associate with offspring body composition 
at birth and growth during the first 36 months of life 

Study design Randomized Control Trial 
Setting Umbilical cord blood from 208 newborns 
Measurments/Methods DNA methylation 450k array, Lifestyle intervetion, Lean mass, and 

Growth 
Statistics  Linear regressions, Linear Mixed Models (LMMs), Spearman 

correlations, Student’s t-test, Mann-Whitney U test, Chi-squared tests, 
Causal Mediation Analyses, FDR, Bonferoni correction 

Study III 
Aim To analyze whether gestational weight gain in pregnant women with 

obesity is associated with offspring DNA methylation in cord blood. 
Additionally, to examine if specific cord blood epigenetic marks in the 
offspring associate with body composition in the newborn and 
birthweight 

Study design Randomized Control Trial 
Setting Umbilical cord blood from 208 newborns 
Measurments/Methods DNA methylation 450k array, Gestational weight gain, Lean mass, and 

Birthweight 
Statistics  Linear regressions, Causal Mediation Analyses, FDR, Bonferoni 

correction 
Study IV 
Aim To characterize the human sperm DNA methylome and relate it to gene 

expression and study the effect of a diet intervention, including added 
sugar, on whole genome DNA methylation in sperm 

Study design Cross over study 
Setting Ejaculates at three timepoints from 15 participants 
Measurments/Methods Whole genome bisulfite sequencing, DMR calling, Individual CpG 

methylation analyses, Characterization of the human sperm methylome  
Statistics  Generalized Least Squares (GLS) with a nested autoregressive 

correlated error structure, Wilcoxon signed rank tests with continuity 
correction, Friedman rank sum test, Dunns’ post hoc test 
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Study Design 

Experimental Study (Study I) 

Metabolic Substrate Analyses in Human Islets (Study I) 
Pancreatic islets from human donors were acquired from the Nordic Network for 
Islet Transplantation at Uppsala University, Uppsala, Sweden, through the Human 
Tissue Laboratory at Lund University Diabetes Centre. The islets were prepared by 
collagenase digestion and density gradient purification (68). Here, we investigate 
the effect of glucolipotoxic treatment in human islets by measuring mRNA 
expression, insulin secretion, and apoptosis. DNA methylation was measured to 
evaluate if glucolipotoxicity-induced epigenetic changes underlie the potential islet 
defects (Figure 3).  

Figure 3. Study design of the glucolipotoxicity study in human pancreatic islets. Created with 
BioRender.com 

DNA methylation and mRNA expression were analyzed from 13 donors. Eight 
donors were included in both the DNA methylation and mRNA array analyses, 
while five donors were unique for each array (Table 3).  

Table 3. Characteristics of pancreatic islet donors 
Analysis Donors (n) Sex (F/M) Age (years) BMI (kg/m2) HbA1c (%) 
DNA methylation 13 5/8 48.6 ± 16.4 26.4 ± 4.5 5.4 ± 0.7* 
mRNA expression 13 6/7 53.5 ± 14.3 25.5 ± 4.3 5.6 ± 0.9** 
Insulin Secretion 9 5/4 58.9 ± 9.2 24.3 ± 2.6 5.5 ± 0.2 
Apoptosis 4† 0/4 59.3 ± 6.2 25.8 ± 3.4 6.3 ± 0.8*** 

Data are presented as mean ± SD. F, female; M, male. †One donor had T2D. *Data missing for 
three donors. **Data missing for five donors. ***Data missing for two donors.  
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Intervention Studies (Study II-IV) 

The Treatment of Obese Pregnant women (TOP) study (Study II & III) 
The TOP-study is a randomized controlled trial initially conducted to evaluate the 
effect of lifestyle intervention on GWG in 425 pregnant women with obesity, by 
comparing three groups I) PA, physical activity intervention (n = 142); II) PA+D, 
physical activity and dietary intervention (n = 142); and III) C, a control group 
receiving standard care (n = 141). Due to participant attrition by miscarriages, 
voluntarily withdrawing, and moving from the region, 389 women completed the 
study. On the mothers, we have anthropometric, questionnaire, and blood test data; 
in the newborns, we have DNA methylation data from cord blood, anthropometric 
and body composition data; follow-up data in the form of anthropometric data is 
available for a subset of the offspring at 9, 18, and 36 months (Figure 4A). Whole 
cord blood samples, used for DNA methylation analyses, were available for 232 
offspring and for these analyses, the two lifestyle intervention groups (PA and 
PA+D) were merged, and after quality control (QC), 208 samples remained (Figure 
4B, and explained in more detail in papers II and III) (Table 4). 
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Figure 4. A) Study design of the methylation cohort of the TOP-study. Anthropometric data and blood 
work are available for the mothers, anthropometric and body composition data for the newborns, and 
anthropometric follow-up data for the offspring at 9, 18, and 36 months. Created with BioRender.com 
B) Flowchart and available data for analyses in Paper II & III (69).
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Table 4. Parental and offspring baseline characteristics according to the lifestyle intervention and control 
groups in the methylation cohort 
 Lifestyle 

intervention 
Control P-value 

Maternal characteristics n = 135 n = 73  
  Age at enrollment (years)* 30.90 (4.30) 31.40 (4.74) 0.440 
  Prepregnancy BMI (kg/m2)* 34.19 (4.00) 34.36 (3.98) 0.763 
  Education level, n (%)†   0.970 
    Grammar school, 10y 15 (11.1) 6 (8.2)  
    Secondary school, 12y 16 (11.9) 9 (12.3)  
    Vocational training school 13 (9.6) 6 (8.2)  
    Further education 1-2y 26 (19.3) 12 (16.4)  
    Tertiary education 3-4y (Bachelor level) 46 (34.1) 29 (39.7)  
    Advanced (postgraduate) 18 (13.3) 10 (13.7)  
    NA 1 (0.7) 1 (1.4)  
  Smoking during pregnancy (yes/no), n (%)† 10/125 (7.4/92.6) 3/70 (4.1/95.9) 0.524 
  Parity (single/multi), n (%) † 75/60 (55.6/44.4) 39/34 (53.4/46.6) 0.882 
  Energy intake at enrollment (kJ)‡§ 8 019 (2 784) 7 540 (3 246) 0.829 
Paternal characteristics n = 115 n = 65  
  BMI (kg/m2) at enrollment* 27.39 (4.51) 27.01 (4.52) 0.585 
Offspring characteristics n = 135 n = 73  
  Sex, n (%) (F/M)† 66/69 (48.9/51.1) 34/39 (46.6/53.4) 0.862 
  Gestational age (weeks)* 40.17 (1.23) 40.01 (1.31) 0.393 
  Birthweight (g)* 3 724 (482) 3 677 (513) 0.515 
  Weight (kg), 9 months*|| 9.61 (1.03) 9.38 (1.15) 0.299 
  Weight (kg), 18 months*¶ 11.86 (1.18) 11.26 (10.27) 0.014 
  Weight (kg), 36 months*# 15.30 (1.86) 14.71 (12.97) 0.141 
  Length (cm), birth*** 52.50 (2.17) 52.48 (2.24) 0.958 
  Length (cm), 9 months*|| 73.14 (2.31) 72.99 (1.97) 0.740 
  Length (cm), 18 months*†† 82.75 (2.87) 82.55 (2.48) 0.724 
  Height (cm), 36 months*‡‡ 96.42 (4.21) 95.95 (3.07) 0.599 
  Breastfeeding, exclusively (weeks)*§§ 10.98 (9.41) 8.38 (10.07) 0.163 
  Breastfeeding, partially (weeks)*§§ 16.30 (11.05) 14.88 (10.71) 0.501 

Enrollment, weeks 11-14; NA, not available. *Mean (SD), two-sided Student t test. †Frequencies, c2 test. 
‡Median (interquartile range), two-sided Mann-Whitney U test. §Lifestyle intervention, n=133; control, 
n=68. ǁLifestyle intervention, n=60; control, n=39. ¶Lifestyle intervention, n=58; control, n=36. #Lifestyle 
intervention, n=51; control, n=29. **Lifestyle intervention, n=129; control, n=71. ††Lifestyle intervention, 
n=57; control, n=36. ‡‡Lifestyle intervention, n=51; control, n=28. §§Lifestyle intervention, n=77; control, 
n=42. 
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Added Sugar, Sperm (Study IV) 
In this crossover study, 15 voluntary men aged 20-27 and a BMI below 30kg/m2, 
performed a 2-step diet intervention during a 2-week period (Table 5). The first 
week of the diet intervention consisted of a standardized healthy diet based on the 
Nordic Nutrition Recommendations, with an energy intake corresponding to the 
study participants’ calculated total energy expenditure (TEE). During week two, the 
diet involved the same standardized healthy diet, with the addition of sweets and 
sweetened drinks corresponding to 50% of their estimated TEE, resulting in an 
energy intake of 150% of their estimated TEE (Figure 5).  

Table 5. Characteristics of participants in the Added Sugar cohort (n=15) 
Mean ± SD (range) 

Baseline Healthy Diet Added Sugar 

Age (years) 23.27 ± 2.28 
(21.50 – 25.00) 

23.27 ± 2.28 
(21.50 – 25.00) 

23.27 ± 2.28 
(21.50 – 25.00) 

Height (m) 1.84 ± 0.08 
(1.77 – 1.88) 

1.84 ± 0.08 
(1.77 – 1.88) 

1.84 ± 0.08 
(1.77 – 1.88) 

Weight (kg) 75.83 ± 10.23 
(68.23 – 81.80) 

75.25 ± 9.86 
(68.54 – 80.83) 

76.70 ± 9.92 
(70.39 – 83.13) 

BMI (kg/m2) 22.48 ± 2.57 
(20.31 – 24.37) 

22.31 ± 2.39 
(20.17 – 24.31) 

22.73 ± 2.32 
(20.92 – 24.42) 

Sperm concentration (x106/ml) 32.40 ± 25.25 
(11.00 – 44.00) 

32.20 ± 20.18 
(22.00 – 44.00) 

28.87 ± 18.27 
(14.00 – 39.50) 

Progressive motile sperm (%) 47.93 ± 14.36 
(33.50 – 60.50) 

53.00 ± 13.04 
(49.00 – 61.00) 

55.93 ± 8.63 
(52.50 – 63.00) 

Total motile sperm (%) 53.00 ± 14.10 
(40.00 – 65.00) 

58.00 ± 13.11 
(54.50 – 66.00) 

60.87 ± 8.07 
(57.00 – 67.50) 

Fat mass (kg) 11.53 ± 4.08 
(9.11 – 12.84) 

11.71 ± 3.76 
(9.22 – 12.92) 

11.86 ± 4.12 
(9.77 – 13.31) 

Fat free mass (kg) 64.30 ± 8.06 
(59.93 – 70.02) 

63.55 ± 7.61 
(58.89 – 68.80) 

64.85 ± 7.99 
(61.20 – 71.33) 

Plasma cholesterol (mmol/L) 4.59 ± 1.15 
(3.80 – 5.20) 

4.38 ± 1.38 
(3.70 – 4.65) 

4.46 ± 1.31 
(3.85 – 4.70) 

Serum triglycerides (mmol/L) 1.20 ± 0.81 
(0.84 – 1.30) 

1.08 ± 0.63 
(0.66 – 1.10) 

2.13 ± 1.28 
(1.40 – 2.55) 

Plasma HDL cholesterol (mmol/L) 1.55 ± 0.42 
(1.25 – 1.75) 

1.49 ± 0.41 
(1.20 – 1.60) 

1.36 ± 0.38 
(1.10 – 1.55) 

Serum LDL cholesterol (mmol/L) 2.48 ± 0.87 
(1.80 – 2.80) 

2.38 ± 1.18 
(1.85 – 2.35) 

1.90 ± 0.54 
(1.45 – 2.15) 

Plasma non-HDL cholesterol (mmol/L) 3.02 ± 1.17 
(2.20 – 3.30) 

2.87 ± 1.44 
(2.25 – 2.85) 

3.08 ± 1.40 
(2.50 – 3.20) 

Fasting plasma glucose (mmol/L) 5.13 ± 0.33 
(4.90 – 5.30) 

5.09 ± 0.29 
(4.90 – 5.20) 

5.15 ± 0.38 
(4.90 – 5.35) 

BMI, body mass index; HDL, High-density lipoprotein; kg, kilogram; LDL, low-density lipoprotein; m, 
meter; SD, standard deviation. 
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Figure 5. Study design of the Added Sugar cohort in human sperm. TEE, total energy expenditure. 
Created with BioRender.com 
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DNA Methylation 
In the first three studies of this thesis, DNA methylation was measured using the 
Infinium® HumanMethylation450 BeadChip. In the fourth study, we used Whole-
Genome Bisulfite Sequencing to analyze DNA methylation.  

Bisulfite Conversion (Study I-IV) 
Bisulfite conversion is a necessary first step in analyzing DNA methylation. It 
results in the unmethylated cytosines (C) being chemically converted to uracil (U) 
while methylated cytosines (5mC) are unaffected. The first step of bisulfite 
conversion is to produce single-stranded DNA by chemical or temperature 
denaturation. The denatured DNA is subsequently treated with sodium bisulfite 
(NaHSO3) enabling the deamination of the unmethylated cytosine through the 
release of ammonia, leading to the conversion to uracil (Figure 6A). Methylated 
cytosines remain as cytosines during bisulfite conversion and the amplification 
process, while unmethylated cytosines are converted into uracil, and during the 
amplification process, the uracil is converted to thymine (Figure 6B). Incomplete 
bisulfite conversion may lead to misinterpretation of the DNA methylation status, it 
is hence important to consider the bisulfite conversion rate and have built-in controls 
to assess this.  

Figure 6. A) Scheme of the chemical reaction of bisulfite conversion, where cytosine is converted to 
uracil in DNA after bisulfite treatment. B) During bisulfite conversion and the subsequent amplification 
process, methylated cytosines remain as cytosines. Meanwhile, unmethylated cytosines are converted 
to uracil during bisulfite treatment, and during the amplification process, uracil is converted to thymine. 
Created with BioRender.com 
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Infinium® HumanMethylation450 BeadChip (Study I-III) 
The Infinium® Assays are used for studying CpG methylation using bisulfite-
converted genomic DNA. The Infinium® HumanMethylation450 BeadChip entered 
the market in 2011 and is a high-throughput DNA methylation platform providing 
a genome-wide coverage of more than 485,000 CpG-sites. It covers 99% of all 
RefSeq genes with a global average of 17.2 probes per gene region, and 96% of all 
CpG islands with an average of 5.6 probes per CpG island (70). Probes per gene 
range between 1 to 1,299. It has a broad coverage distributed across gene regions 
(Figure 7A), CpG island regions (Figure 7B), and non-CpG cites. Methylation 
profiles have been found to correlate well with the predecessor 
HumanMethylation27 array and with whole-genome bisulfite sequencing data (70).  

 

Figure 7. A) CpG-sites are mapped to gene regions based on functional genome distribution, where 
the promoter is defined as the region between the TSS and 1 kb upstream, and to B) CpG island 
regions based on CpG content. Shore: the flanking region of CpG islands, i.e., covering 0-2,000 bp 
distant from the CpG island; Shelf, regions flanking island shores, 2,000-4,000 bp distant from the CpG 
island. TSS, Transcription Start Site. Created with BioRender.com 

The HumanMethylation450k array involves two types of 50-base long probes: 
Infinium I and Infinium II. In the Infinium I assay, a paired probe approach is used 
for each CpG-site, the 3’ terminus of the probe is designed to recognize either the 
methylated state (M probe) or the unmethylated state (U probe) (Figure 8A). For 
the Infinium II assay, only one probe corresponds to each CpG-site, and the 
methylation state is detected by single-base extension where cytosines are 
incorporated in the methylated state and thymine in the unmethylated state (Figure 
6B and 8B) (70).  

Both Infinium assays use a color-coded fluorescence detection system that allows 
discrimination between methylated and unmethylated states. After DNA bisulfite 
conversion, the DNA is amplified and hybridized to the BeadChip, and the 
methylation level is determined by the fluorescence intensity (70).  

Although the Infinium Methylation assays are useful tools for measuring DNA 
methylation, there are some known problems. Multiple Infinium I and II probes have 
been found to cross-hybridize with non-intended genomic regions by 47-50 base 
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matches, especially on the X- and Y-chromosomes. Furthermore, several probes 
have been found to overlap with single nucleotide polymorphisms (SNPs) (71). 
Additionally, technical variability and batch effect are other problems to be aware 
of. These issues could lead to misinterpretation of data and have hence been 
considered in the studies where the HumanMethylation450k array has been used.  

Figure 8. The Illumina Infinium® HumanMethylation450 BeadChip utilizes a dual-assay design with 
both Infinium I and Infinium II assays. A) In the Infinium I assay, two bead types are employed per CpG 
locus, representing the methylated and unmethylated states. B) The Infinium II design utilizes a single 
bead type, determining the methylated state at the single base extension step following hybridization. 
Created with BioRender.com 
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Whole Genome Bisulfite Sequencing (Study IV) 
Although array-based methods for studying DNA methylation are robust, there is a 
great difference in genomic coverage, where the latest Infinium Methylation array 
on the market, the EPIC version 2, covers about 3% of the genome. Whole-genome 
bisulfite sequencing (WGBS) on the other hand, is a technique for analyzing DNA 
methylation patterns at a single-base resolution across the entire genome (Figure 
9).  

In this thesis, WGBS was performed using the SPlinted Ligation Adapter Tagging 
(SPLAT) protocol (72) for library preparation. This protocol combines bisulfite 
treatment of DNA with next-generation sequencing and allows for low quantities of 
DNA input. 

 

Figure 9. Workflow of the whole genome bisulfite sequencing analysis. Created with BioRender.com 

Gene Expression 

Affymetrix GeneChip™ Human Gene 1.0 ST Array (Study I) 
The Affymetrix GeneChip™ Human Gene 1.0 ST Array is an array-based method 
for gene expression profiling, providing comprehensive measurements of protein-
coding and long non-coding RNA transcripts. It covers 28,869 genes with 764,885 
probes, which are distributed across the full length of the gene, allowing for whole-
transcript coverage (73).  

Publicly available RNA sequencing data (Study IV) 
Publicly available human sperm RNA-sequencing (RNA-seq) data for 12 subjects 
(74) was used to explore the relationship between DNA methylation and gene 
expression levels. The publicly available RNA-seq data was downloaded from the 
NCBI SRA database (https://www.ncbi.nlm.nih.gov/sra, Accession: 
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PRJNA573604). Genes were annotated to hg38, and a total of 33,408 genes were 
identified.  The expression levels were split into four factions, with 20,791 genes 
being classified as non-expressed genes (<2 mean normalized counts) and the 
remaining expressed genes with a mean normalized count of ≥2 were categorized 
into low- (n=4,151), medium- (n=4,171), and high-expressed (n=4,295) genes. 

Additional Methods 

Pathway Analyses (Study I-III) 
Pathway analyses encompass the systematic study of biological pathways, allowing 
for a biological context and interpretation of, for example, DNA methylation and 
gene expression data. DNA methylation or gene expression changes of genes 
enriched in certain pathways can provide insight into potential underlying biological 
mechanisms and how these contribute to phenotypic outcomes.  

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a resource providing 
information on biological pathways and interactions of genes and molecules such 
as proteins and metabolites (75). The Gene Ontology (GO) database is another 
resource for annotating genes and their products based on their molecular function, 
involvement in biological processes, and cellular components (76).  

Gene Set Enrichment Analysis (GSEA) is one method for analyzing the enrichment 
of genes in certain pathways of differently expressed genes. This method uses a 
priori-defined gene sets from databases such as KEGG or GO terms. GSEA ranks 
the genes and provides a GSEA enrichment score for each gene set with a nominal 
P-value based on permutations (77).

Using methods such as gene ontology analysis on DNA methylation data from 
array-based methods has been shown to create a great bias due to the differing 
number of probes per gene (78). That is to say, a gene with many probes is more 
likely to be identified as differently methylated. Another source of bias arises as 
several of the probes are annotated to more than one gene, deviating from the 
assumption of independent measurement. To account for these biases, we 
implemented the gometh function of the missMethyl R package (79) in studies II 
and III.  

Small interfering RNA transfection (Study I) 
Small interfering RNA (siRNA) transfection is a widely used method in targeted 
gene silencing (knock-down) experiments. siRNAs, which will target the mRNA 
sequence of choice, need to be designed if not readily available. The siRNA is then 
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transfected into cells, in our case we used Lipofectamine RNAiMAX (Thermo 
Fisher Scientific, Waltham, MA), a lipid-based transfection reagent. The siRNA is 
incorporated into the RNA-induced silencing complex (RISC, depicted in Figure 2) 
which targets the mRNA with a matching sequence, leading to its degradation. The 
siRNA’s efficiency was evaluated by varying volumes and incubation times and a 
negative control was used for baseline comparisons.  

Luciferase Assay (Study I) 
We used a luciferase assay, a biochemical assay, for studying gene expression. 
Luciferases catalyze the oxidation of luciferin, leading to the emission of light, and 
their enzymatic activity is measured by luminescence (Figure 10A). The Dual-
Luciferase® Reporter Assay System (Promega, Madison, WI, USA) was used in 
these experiments. It implements a dual reporter system with a “control” reporter 
(internal control) and an “experimental” reporter. Normalizing the experimental 
reporter to the activity of the internal control minimizes experimental variability 
potentially caused by differences in cell viability or transfection efficiency. 

 

 

Figure 10. Simplified scheme of the Luciferase Assay. A) Expression of the luciferase gene following 
translation to the luciferase enzyme and the addition of luciferin (the substrate of luciferase) lead to 
light emission, which allows for quantification of gene expression. B) A simplified depiction of the CG-
free Luciferase Reporter vector. Created with BioRender.com 
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In Study I, we implemented this method for studying the effect of DNA methylation 
on gene expression of genes of interest. Promoter sequences corresponding to 
1,500bp upstream of the transcription start site (TSS) were synthesized and inserted 
into a CG-free vector containing the luciferase gene (pCpGL-basic, GeneScript 
USA Inc., Piscataway, NJ, USA) (Figure 10B). The impact of DNA methylation 
was evaluated using three different methyltransferases, SssI, HhaI, and HpaII (New 
England Biolabs, Frankfurt, Germany) known to methylate cytosines in distinct 
patterns. Methyltransferase SssI methylates all CpG-sites and leads to a highly 
methylated construct. In contrast, HhaI methylates the internal cytosine residue 
within a GCGC sequence, and HpaII methylates the internal cytosine within a 
CCGG sequence, leading to point-methylated constructs. Depending on the 
promoter sequence, the number of methylated CpG-sites will differ, allowing for 
evaluation of promoter methylation's impact on gene expression.   

Apoptosis Assessment (Study I) 
The Apo-ONE® Homogeneous Caspase-3/7 Assay is a simple and highly sensitive 
method for analyzing programmed cell death (apoptosis). It encompasses activity 
measurements of caspase-3 and caspase-7, two key enzymes involved in the 
apoptotic pathway. This method provides insight into cell viability and cytotoxicity. 
In Study I, this allowed for the evaluation of the impact of the glucolipotoxic 
treatment in the human islet and also, in the functional follow-up experiments, the 
effect of altered gene expression (knock-down experiments).   

Statistical Analyses 
In Studies I and IV, R software and GraphPad were used for statistical analyses; for 
Study II-III, R was used for all statistical analyses (80, 81).  

Paired t-tests were used to identify differences in DNA methylation and mRNA 
expression and to analyze functional experiments in human islets (Study I). To 
analyze results from experiments performed in beta cell lines, 832/13 INS-1 cells 
(rat beta cell line) (82) and EndoC-bH1 cells (human fetal pancreatic beta cell line) 
(83), Kruskal-Wallis One-Way ANOVA or Wilcoxon matched-pairs signed-rank 
test were used (Study I).  

Linear regression models were used to analyze the DNA methylation pattern in 
Study II-III. Several versions, with varying covariates, were run as sensitivity 
analyses to evaluate the robustness of the results. Linear regressions were also run 
to assess whether DNA methylation is associated with offspring measurements. 
Linear Mixed Models for repeated measurements were used to evaluate the 
association between DNA methylation and offspring growth. Longitudinal data on 
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growth expressed as BMI z-scores (weight relative to height and adjusted for age 
and sex of the child) were used in these calculations (Study II). Spearman 
correlations, a nonparametric measure of rank correlation, were used to check for 
correlations between two variables (Study II-III). Descriptive analysis of clinical 
variables was done using different statistical methods, depending on the data tested. 
Student's t-test (parametric) or the Mann-Whitney U test (nonparametric) were used 
for continuous data, and frequencies were analyzed using chi-squared tests (Study 
I-IV). In Studies II and III, causal mediation analyses were performed to investigate 
whether DNA methylation at individual CpG-sites was part of a pathway through 
which lifestyle intervention (Study II) or GWG (Study III) exerts its effects on 
offspring measurements. The mediation analysis breaks down the total effect of 
exposure on the outcome into two components: the indirect effect, which acts via 
the mediator of interest, and the direct effect, which acts either directly or through a 
mediator other than the one that is under study (Figure 11). A nonparametric causal 
mediation analysis and the R ‘mediation’ package with default settings were used 
for these analyses (84). The effect is estimated for each association between the 
treatment, i.e., lifestyle intervention or GWG, and the outcome(s), i.e., offspring 
measurement(s), with the discovered lifestyle intervention or GWG-associated 
DNA methylation sites as the mediator (Figure 11).  

 

Figure 11. The scheme tested by the causal mediation analysis and the potential mechanisms linking 
the exposure to the outcome. Created with BioRender.com 
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Study IV used the R package ‘dmrseq’ (85) to identify diet-associated differentially 
methylated regions (DMRs). This package utilizes a method that fits a linear 
regression model by using generalized least squares (GLS) with a nested 
autoregressive correlated error structure. The GLS regression allows for correlation 
among the residuals and hence accounts for the complex correlation patterns present 
in DNA methylation data by including the CpG-sites’ genomic positions. 
Autoregressive correlation means that the correlation between CpG-sites decreases 
as their distance from each other increases. Wilcoxon signed rank tests with 
continuity correction were used when analyzing individual CpG-sites from the 
WGBS data. Continuity correction was applied to account for the small sample size. 
The Friedman rank sum test was used to explore the relationship between DNA 
methylation and gene expression levels. The non-parametric Friedman rank sum test 
is an extension of the Wilcoxon signed-rank test, allowing for analysis of repeat 
measurements of more than two groups/conditions. The Dunns’ post hoc test was 
then applied to identify which groups were significantly different.  

To correct for multiple testing, we applied either Benjamini-Hochberg (86), a 
statistical method used to control for the false discovery rate (FDR), or both 
Benjamini-Hochberg (86) and Bonferroni. Bonferroni, a correction method 
controlling for the family-wise error rate, is an effective method for reducing the 
likelihood of Type I errors (false positives) but may also increase the risk of Type 
II errors (false negatives). In epigenome-wide association studies (EWAS) it is said 
to be too conservative due to the known correlation patterns at nearby sites in DNA 
methylation data and the nonvariability of sites present on the array, leading to many 
false negatives. An alternative method, widely used in EWAS, is the Benjamini-
Hochberg procedure (86); however, it may produce some false-positive results. 
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Results 

Study I 

Glucolipotoxicity Alters Insulin Secretion via Epigenetic Changes in 
Human Islets 
In this study, we investigated the effect of glucolipotoxic treatment in human islets 
by measuring insulin secretion and apoptosis. We then investigated potential 
molecular mechanisms contributing to the phenotypes observed by measuring 
mRNA expression. Finally, DNA methylation was measured to evaluate whether 
the gene expression changes caused by glucolipotoxicity were prompted by 
epigenetic changes (Figure 3). 

The human islets treated under glucolipotoxic conditions for 48 hours were found 
to have impaired glucose-stimulated insulin secretion (GSIS), with similar results 
in the human EndoC-bH1 beta-cell line (Figure 12A-B). Increased apoptosis was 
also seen in the glucolipotox-treated islets compared to islets under control 
conditions (Figure 12C). 

Figure 12. Impact of glucolipotoxic treatment on A) glucose-stimulated insulin secretion in human islets 
(n=9) **P<0.01, paired t-test and B) glucose-stimulated insulin secretion in the human EndoC-βH1 
beta-cell line (n=6, with two technical replications per condition) *P<0.05, Wilcoxon signed rank test, 
and C) apoptosis (n=4), measured as the combined activity of Caspase-3/-7, *P<0.05 paired t-test. 
Data are shown as mean ± SD. GLTx, glucolipotoxicity. (87) 

experiments on clonal b-cells using theWilcoxon matched-
pairs signed rank test or Kruskal-Wallis one-way ANOVA.
Data are presented as the mean 6 SD. We analyzed the
false discovery rate (FDR) to correct for multiple testing
in the mRNA expression data (22). Genes exhibiting dif-
ferential expression with an FDR ,5% (q , 0.05) were
considered significant.

Data and Resource Availability
The expression and methylation data sets generated
and/or analyzed during this study are available from the
corresponding author upon request. No applicable resources
were generated or analyzed during the current study.

RESULTS

Insulin Secretion and Apoptosis in Human Islets After
Glucolipotoxic Treatment
Control-treated islets responded with significantly increased
insulin secretion when exposed to 16.7 mmol/L glucose but
notwith 3.3mmol/L glucose (5.061.3 vs. 4.061.3;P, 0.05;
islets from 9 donors), while glucolipotox-treated islets did not
(5.16 0.7 vs. 4.46 0.8; P. 0.05; islets from 9 donors) (Fig.
2A). This corresponds to fold changes (secretion at 16.7mmol/L
glucose divided by secretion at 3.3mmol/L glucose) of 1.606
0.29 (control) and 1.256 0.08 (glucolipotox), when calculated
as the mean of the fold change values in individual experi-
ments. We also tested the effect of 48 h of glucolipotoxic
treatment on the human EndoC-bH1 b-cell line. These
cells respond suboptimally to glucose alone when not
starved overnight in medium with low glucose before
the experiment. As starvation would interrupt the gluco-
lipotoxic treatment, we stimulated the cells with glucose
in combination with the phosphodiesterase inhibitor
3-isobutyl-1-methylxanthine to ensure strong induc-
tion of insulin secretion. Like islets, glucolipotox-
treated EndoC-bH1 cells responded poorly to glucose
(Fig. 2B). Short-term glucolipotoxic treatment may

stimulate insulin secretion at both basal and stimulatory
glucose levels (23). Indeed, a shorter exposure (24 h)
increased insulin secretion, but reduced fold change,
from human islets, but it had no effect on EndoC-bH1
cells (Supplementary Fig. 1A and B). Islets exposed to
glucolipotoxicity for 48 h exhibited more apoptosis than
the control-treated islets (Fig. 2C), whereas EndoC-bH1 cells
were resistant to glucolipotoxicity in terms of cell survival
(apoptosis and crystal violet assays; data not shown). Our data
thus demonstrate impaired insulin secretion and increased
apoptosis in human islets exposed to glucolipotoxicity for 48 h,
which several studies have also previously reported (1,24).

Glucolipotoxicity Leads to Widespread Gene
Expression Changes in Human Islets
To identify molecular mechanisms that may contribute to
the changes we identified, we used microarrays to analyze
gene expression in control- and glucolipotox-treated islets
from 13 donors (Table 1). The results showed that 1,855
genes were differentially expressed in islets after glucoli-
potoxic treatment (q, 0.05; FDR,5%): 1,005 genes were
downregulated and 850 were upregulated (Figs. 1B and 3A
and Supplementary Table 1). We next ran a GSEA to
identify cellular pathways that are affected by glucolipo-
toxicity. This revealed 64 significant KEGG pathways (q ,
0.05) (Supplementary Table 2). Importantly, metabolic
pathways key for islet cell function were downregulated
in glucolipotox-treated islets, whereas pathways involved
in protein export and exocytosis were upregulated (Fig. 3B
and Supplementary Table 2). The latter might be a sign of
compensatory changes in the islets.

We next investigated whether differentially expressed
genes in human islets exposed to glucolipotoxicity overlap
with candidate genes for T2D as identified by genome-wide
association studies (GWAS). We used the online GWAS
SNP library (http://www.genome.gov/gwastudies, accessed
2 July 2018) to acquire candidate gene lists. Of 264 T2D

Figure 2—Glucolipotoxic treatment impairs insulin secretion and increases apoptosis in human pancreatic islets. A: Control-treated islets,
but not glucolipotox-treated islets, respondwith significantly increased insulin secretion upon stimulationwith 16.7mmol/L glucose. Data are
the mean6 SD of results of experiments on islets from nine donors, with five technical replicates for each condition. **P, 0.01, paired t test.
B: GSIS is impaired in glucolipotox-treated EndoC-bH1 cells. Data are the mean 6 SD of the results of six experiments, with two technical
replicates for each condition. *P , 0.05, Wilcoxon signed rank test. C: Glucolipotoxic treatment leads to enhanced apoptosis in cultured
islets. Data are themean6SD of results of experiments on islets from four donors, with four technical replicates for each condition. *P, 0.05,
paired t test. GLTx,: glucolipotoxicity.
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Figure 13. Workflow of the gene expression and DNA methylation analyses of islets treated under 
glucolipotoxic conditions. Created with BioRender.com 

Using microarrays, we found 1,855 genes with differential expression when 
comparing control- and glucolipotox-treated islets (q<0.05; FDR<5%, Figure 13).  

The GSEA showed 64 significant KEGG pathways being upregulated, including 
pathways involved in exocytosis and protein export (pathways important for, e.g., 
insulin secretion), and key metabolic pathways in islet cell function being 
downregulated in glucolipotox-treated islets (q<0.05, Figure 14). In the overlap 
analyses of T2D candidate genes (using the genome-wide association studies 
(GWAS) catalog), the donor’s HbA1c levels, glucotoxic- (60), and lipotoxic-
treatment (61), we found 35, 187, 6, and 972 genes overlapping, respectively. We 
analyzed differential DNA methylation using the Illumina Infinium® 
HumanMethylation450 BeadChip in control versus glucolipotox-treated islets. Here  
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Figure 14. A) A selection of KEGG pathways, several with important functions in pancreatic islets, from 
the GSEA analysis of the mRNA expression data (q<0.05). The black bars indicate the number of 
contributing genes and the gray bars indicate the total number of genes in the pathway. B-C) DNA 
methylation of different B) genomic and C) CpG island regions in control and glucolipotox-treated 
pancreatic islets (13 donors). **q<0.01, ***q<0.001, paired t-test. (87) 

we found that several gene and CpG-island regions (Figure 7) had slightly higher 
methylation in the glucolipotox-treated islets (Figure 14A-B).  

In the analyses of individual CpG-sites, 62,175 CpG-sites (Figure 13), annotated to 
16,320 genes, were identified as differently methylated (P<0.05) with the majority 
showing increased methylation. The mRNA expression and DNA methylation data 
were then overlapped to identify genes with altered expression and methylation. A 
total of 5,051 CpG-sites showed altered DNA methylation in 1,469 genes of 
differently expressed genes (Figure 13), including some known T2D-associated 
genes such as BCL11A, CDKN2B, and TCF7L2. Functional follow-up experiments 
were then performed to further support our findings. Here four genes showcasing 
differential expression and DNA methylation were chosen: CDK1, FICD, TPX2, 
and TYMS (i.e., genes of interest, Figure 13). Luciferase assays were performed in 
a rat beta-cell line (832/13 INS-1) (82) where a 1.5kb fragment upstream of the TSS 
of the CDK1 gene, inserted in a CpG-free firefly luciferase reporter vector, were 
used to analyze the effect of DNA methylation on gene expression. Methylation by 
SssI and HhaI, the methyltransferases that methylate most cytosines, showed strong 
effects on transcription from the CDK1 promoter, while methylation by HpaII 
showed no effect (Figure 15A). The effect of the genes of interest on insulin 
secretion was assessed by knockdown experiments using siRNA in EndoC-βH1 
cells. GSIS was increased after the knockdown of FICS and TPX2, where TPX2- 
knockdown also led to a slight increase in basal secretion (Figure 15B-C). 

CDK1-knockdown led to a slight decrease in insulin content (negative control 
siRNA 458.3 ± 78.7 vs. CDK1 siRNA 389.4 ± 64.8 mU/mg protein; P = 0.03), while 
knockdown of the other genes did not show an effect on insulin content (data not 
shown). No effect of the glucolipotox-treatment was seen on cell number or 
apoptosis after the knockdown of any of the four genes of interest in the EndoC-
βH1 cells (data not shown).  

1,469 genes showed that 38 pathways were enriched. This
again included protein and vesicle transport pathways as
well as protein folding and UPR pathways (Supplementary
Table 7). Next, we used a luciferase assay to test whether
methylation changes induced by glucolipotoxic treatment
can regulate transcription directly and thereby may cause
differential expression in treated islets. Here we chose to
study CDK1, which is known to be important for b-cell
function (28) and has four significant methylation sites, of
which three are located in the 1,500 base pairs upstream of
the transcription start site, in islets cultured under glu-
colipotoxic conditions. CDK1 expression was also reduced
after the treatment (Fig. 5A). Our data show that increas-
ing methylation with the methyltransferases SssI and HhaI
(which methylate 31 and 6 methylation sites, respectively)
strongly inhibits transcription from the CDK1 promoter,
whereas methylation with HpaII (two methylation sites)
had no significant effect (Fig. 5B). These results support
a role for DNA methylation in the glucolipotoxicity-induced
changes in gene expression.

We next tested whether epigenetic changes induced by
glucolipotoxic treatment are reversible. Here we used
EndoC-bH1 cells exposed to glucolipotoxicity for 48 h
(GLTx_acute). Some cells were then allowed to recover
for 48 h under normal culture conditions (GLTx_recov).
Methylation of 37,382 CpG sites had changed in GLTx_
acute cells when compared with control-treated cells
(P , 0.05) (Supplementary Table 8). Methylation of
5,045 of the 37,382 sites (13.5%) changed during recovery
(P , 0.05, GLTx_acute vs. GLTx_recov). Among sites that
changed during recovery, 98% reversed toward baseline
while 2% continued to change in the same direction as
during the treatment. This means that ;87% of the
methylation changes induced by the treatment persisted
or were further enhanced after the 48-h recovery period.
Of note, 10,762 genes contain CpG sites whose methyla-
tion was affected by the glucolipotoxic treatment in
both islets and EndoC-bH1 cells (Supplementary Tables
5 and 8).

Genes Exhibiting Differential Methylation and
Expression Regulate b-Cell Function
To strengthen the functional relevance of our findings, we
functionally investigated four genes displaying both dif-
ferential methylation and differential expression: CDK1,
FICD, TPX2, and TYMS. These are among the top 100 up-
regulated and downregulated genes, as determined on the
basis of fold change, and have previously been reported to
have cellular functions with potential importance in in-
sulin secretion and b-cell survival (28–31). They were also
altered by treatment with palmitate alone (5). CDK1,
TPX2, and TYMS were downregulated in glucolipotox-
treated islets, whereas FICD was upregulated (Fig. 5A
and C). We knocked these genes down in EndoC-bH1 cells
(Fig. 5D) and assessed the effects on insulin secretion.
Knockdown of FICD and TPX2 increased GSIS. Knockdown
of TPX2 also slightly increased basal secretion (Fig. 5E).
CDK1-deficient cells had slightly less insulin content (neg-
ative control siRNA 458.36 78.7 vs. CDK1 siRNA 389.46
64.8 mU/mg protein; P = 0.03), whereas knockdown of the
other genes had no significant effect on insulin content
(data not shown). Furthermore, because glucolipotoxic
treatment resulted in increased apoptosis in human islets,
we tested whether knockdown of the four genes resulted in
b-cell loss. Just as with their resistance to the glucolipo-
toxic treatment, the number of EndoC-bH1 cells was not
reduced and apoptosis was not increased after any of the
four genes were silenced (per crystal violet and caspase
activity assays; data not shown).

DISCUSSION

Circulating levels of glucose and lipids are generally
elevated and islet function is impaired in subjects with
T2D. In this study we examined the effects of treatment
with high levels of glucose and palmitate on islet func-
tion, gene expression, and DNA methylation. Our data
show that glucolipotoxic conditions impair insulin secre-
tion and increase apoptosis in human islets. Further-
more, we show that gene expression changes extensively

islets. DNA methylation in the different
conditions (islets from 13 donors). **q,

in methylation in glucolipotox-treated islets
paired t test. GLTx, glucolipotoxicity.
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candidate genes, 35 were significantly altered by glucolipo-
toxicity at the expression level (Supplementary Table 1),
including TCF7L2, BCL11A, and CDKN2B (Fig. 3C). We also
analyzed the overlap between the differentially expressed
genes and genes for which islet expression is associated
with the donor’s HbA1c level, a measure of long-term blood
glucose levels. This showed that 187 of the differentially
expressed genes in glucolipotoxicity-treated islets also as-
sociate withHbA1c (P, 0.05) (25) (Supplementary Table 1).
Finally, we compared our data with previously identified
expression changes in islets treated under either glucotoxic
or lipotoxic conditions (4,5,26). This showed that six of
eight genes differentially expressed in glucotox-treated
islets were altered also in glucolipotox-treated islets (Sup-
plementary Table 3). Moreover, all six genes were changed
in the same direction in both studies. Among the differen-
tially expressed genes in lipotox-treated islets, 972 were also
altered in glucolipotox-treated islets (Supplementary Table
4). We performed a similar comparison with previously
published RNA sequencing data from lipotox-treated islets
(26).We reanalyzed their data with the same statistical tools
we used in the current study, thus revealing that 1,438
genes were altered by palmitate treatment (P , 0.05). As
no genes in their data set stood for correction for multiple
testing, we used the 1,438 genes for which P , 0.05 in
comparisons with our data, and 242 of these genes were
altered also in our study. The expression of three genes—
GLRA1, SLCO5A1, and LEPREL2—was significantly al-
tered, and altered in the same direction, by all three
conditions when comparing data from the current study
with data from the previous studies from our lab (4,5). We
then performed a pathway analysis to investigate the role
of genes specifically altered by glucolipotoxic treatment
but not by either glucotoxic or lipotoxic treatment. This
list contains 17 genes previously identified as T2D candi-
date genes through GWAS (e.g., BCL11A and CDKN2B),
and the analysis revealed that 18 pathways were enriched
for genes altered by glucolipotoxic treatment, including
several pathways for protein metabolism, transport, and

secretion, and a pathway for unfolded protein response
(UPR) (Supplementary Fig. 2).

Effects of Glucolipotoxicity on DNA Methylation in
Human Islets
One mechanism that may underlie the gene expression
changes seen in glucolipotox-treated islets is altered DNA
methylation (6). We therefore used an Illumina Human
Methylation 450K BeadChip to investigate DNAmethylation
in control- and glucolipotox-treated islets from 13 donors.
When comparing the average methylation of all investigated
sites, glucolipotox treatment slightly increased DNA methyl-
ation (0.5%, P , 0.001; data not shown). When analyzing
methylation of different genomic and CpG island (stretches
of DNA with a high frequency of CpG sites) regions (27), we
observed that the TSS1500 (200–1,500 base pairs upstream
of transcription start sites), the 59 and 39 untranslated
regions, gene bodies, and intergenic regions, as well as
northern and southern shores and shelves and the open
sea, exhibited slightly but significantly higher methylation
in glucolipotox-treated islets (Fig. 4A and B).

We next analyzed methylation at individual CpG sites.
This showed that 62,175 CpG sites, annotated to 16,320
unique genes, showed differential methylation (P , 0.05)
in islets cultured under glucolipotoxic conditions (Fig. 4C
and Supplementary Table 5). The majority of these sites
(;80%) showed increased methylation after glucolipotoxic
treatment. The fold change in methylation of specific sites,
calculated as the ratio of methylation in glucolipotox-
treated to that in control-treated islets, ranged between
0.73 and 1.65, corresponding to changes from a 27%
decrease to a 65% increase in methylation.

To identify genes with both altered expression and
methylation, we compared our mRNA expression (q ,
0.05) and DNA methylation data (P , 0.05). We found
1,469 genes with altered mRNA expression and DNA
methylation on a total of 5,051 CpG sites (Supplementary
Table 6). These include well-known T2D loci such as
TCF7L2, CDKN2B, and BCL11A. Pathway analysis for these

Figure 3—Glucolipotoxic treatment results in widespread gene expression changes in human pancreatic islets. A: Top three downregulated
and upregulated genes (based on relative change) in islets cultured in glucolipotoxic conditions (islets from 13 donors). *q, 0.05, **q, 0.01,
paired t test. B: GSEA of the global gene expression data reveals changes to several pathways with key roles in pancreatic islets. The gray
bars indicate the total number of genes in the pathway; the black bars indicate the number of contributing genes. C: Expression of BCL11A,
CDKN2B, and TCF7L2 in islets cultured under control and glucolipotoxic conditions. *q, 0.05, **q, 0.01, paired t test. Data in A and C are
presented as the mean 6 SD. GLTx, glucolipotoxicity.
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Figure 15. Functional follow-up experiments. A) A luciferase assay showing inhibition of the 
transcriptional activity of the CDK1 promoter after methylation of the promoter with SssI or HhaI, 
whereas there was no effect after methylation with HpaII (n = 6). P = 0.001, Kruskal-Wallis one-way 
ANOVA. B) The relative expression measured by quantitative PCR analysis of siRNA-mediated CDK1, 
FICD, TPX2, and TYMS knockdown in EndoC-βH1 cells. Data are presented as the mean ± SD (n = 6). 
*P<0.05, Wilcoxon matched-pairs signed rank test. C) GSIS in EndoC-βH1 cells after siRNA-mediated 
knockdown of genes of interest. Data are presented as the mean ± SD (n = 6, with two or three 
technical replicates for each condition). *P<0.05 vs. negative control siRNA (siNC) at 20 mmol/L, 
Wilcoxon matched-pairs signed rank test. (87) 

  

in glucolipotox-treated islets, which in many cases may be
due to altered DNAmethylation. Finally, follow-up in clonal
b-cells shows that these changes affect insulin secretion,
thus supporting a contributing role for the induced epige-
nomic and transcriptomic changes in T2D.

Recent studies show that dietary intake affects epige-
netic patterns, which seem to play an important role in
T2D development. For example, a randomized controlled
trial of high intake of saturated or polyunsaturated fatty
acids resulted in distinct epigenetic changes in adipose
tissue (32). Short-term treatment of islets or b-cells with
high levels of glucose or fatty acids increases insulin

secretion, often at both basal and stimulatory glucose
levels (23). Longer treatment periods, however, impair
insulin secretion (33,34). Moreover, treating human islets
with high glucose or the saturated fatty acid palmitate
altered DNA methylation (4,5). Also, other epigenetic
modifications are affected by nutrients. For example,
culturing b-cells in high glucose and palmitate for 48 h
resulted in altered histone modifications (33), and nutrient-
induced changes of miRNAs and long noncoding RNAs
have also been reported (35). The current study supports
a role for glucolipotoxicity-induced methylation and ex-
pression changes in T2D. Several metabolic pathways of

1 mmol/L
20 mmol/L

Figure 5—Functional follow-up revealed a role for glucolipotoxicity (GLTx)-induced expression changes in insulin secretion. A: Gene
expression (left) and DNAmethylation (right) forCDK1 in human islets exposed to glucolipotoxic conditions (islets from 13 donors). *q, 0.05;
#P, 0.05, ##P, 0.01, paired t test. B: A luciferase assay showed that the transcriptional activity of the CDK1 promoter was greatly inhibited
after methylation of the promoter with SssI or HhaI, whereas methylation with HpaII had no effect (n = 6). P = 0.001, Kruskal-Wallis one-way
ANOVA. C: Expression and methylation of FICD (left), TPX2 (middle), and TYMS (right) in human islets exposed to glucolipotoxic conditions
(islets from 13 donors). *q , 0.05, **q , 0.01; #P , 0.05, ##P , 0.01, paired t test. D: Quantitative PCR analysis of siRNA-mediated CDK1,
FICD, TPX2, and TYMS knockdown in EndoC-bH1 cells. Data are the mean 6 SD of six experiments. *P , 0.05, Wilcoxon matched-pairs
signed rank test. E: GSIS in siRNA-transfected b-cells. Data are the mean6 SD of six experiments, with two or three technical replicates for
each condition. *P , 0.05 vs. negative control siRNA (siNC) at 20 mmol/L (Wilcoxon matched-pairs signed rank test).
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Study II 

Lifestyle Intervention in Pregnant Women With Obesity Impacts Cord 
Blood DNA Methylation, Which Associates With Body Composition in 
the Offspring 
This study aimed to assess whether a lifestyle intervention, including physical 
activity with and without dietary advice, in pregnant women with obesity affected 
the DNA methylome in their offspring’s cord blood. To do this, we used offspring 
cord blood from the randomized control trial, the TOP-study. The baseline 
characteristics of the mothers, paternal BMI, and offspring at birth are presented in 
Table 4. There was no difference in energy intake at enrollment, but there was a 
trend towards a lower energy intake in the intervention group compared to controls 
at weeks 36-38. Wearing a pedometer was part of the lifestyle intervention, and 
during week 17 of pregnancy, the daily step counts were 8,623 ± 2,615 (no available 
step counts for the control group). The offspring were similar at birth regarding 
gestational age (GA), weight, length, and breastfeeding (Table 4).  

Cord blood DNA methylation was examined at individual sites to determine if there 
were any differences between the lifestyle intervention and control groups. We 
found 379 CpG-sites (q<0.05, Figure 16A), annotated to 370 unique genes, to differ 
between the groups after adjusting for known confounding factors and using the 
Houseman reference-free method (88) to adjust for cell-type composition and 
controlling for FDR using the Benjamini-Hochberg method (86). 

To evaluate the robustness of our findings, we did a sensitivity analysis in which we 
I) used a reference-based method to adjust for cell-type composition (62), II)
adjusted for the first five principal components of the residuals, and III) added fewer
covariates to the models or adjusted for smoking, IV) adjusted for maternal age,
maternal BMI, smoking, GA, and offspring sex. In I) we found 376 of the 379 CpG-
sites to be nominally associated with the lifestyle intervention (P=5.12x10-7–3x10-
2), II) 377 of the 379 CpG-sites were found to be nominally associated with the
lifestyle intervention (P=3.08x10-9–4.7x10-2), where a post hoc Benjamini-
Hochberg analysis (86) on the 379 sites showed that all of the 377 had FDR<5%,
III) all CpG-sites were nominally associated with lifestyle intervention after
adjustment with fewer covariates and after adjustment for smoking (P<0.05), and
IV) where 377 of the 379 sites were nominally associated with the lifestyle
intervention (P=1.3x10-8–2.4x10-4). Additionally, we checked if GWG was
associated with any of the 379 CpG-sites, of which none were (q<0.05).

Using GO Term Mapper for the 370 unique genes with differently methylated CpG-
sites we found that about 60% of the genes have a role in metabolic processes (89). 
Additionally, combining GO and REVIGO analyses, 15 biological pathways were  
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Figure 16. A) A Manhattan plot, representing the distribution of methylation sites across the genome. 
The black line shows the FDR threshold for multiple testing (P<4.17 x 10-5) where surpassing 
hypermethylated sites are red and hypomethylated sites are blue in the lifestyle intervention group vs. 
the control group. B) Pathways with P<0.05 from a GO analysis focusing on the biological processes 
and where redundant GO terms were removed using REVIGO. Gray bars, the total number of genes in 
the pathway; blue bars, the number of differently methylated (DM) genes in lifestyle intervention vs. 
control subjects. (69) 
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found with a P<0.01, some of which are important in metabolic regulation and in 
metabolic diseases, such as response to fatty acids, negative regulation of insulin 
secretion involved in cellular response to glucose stimulus, and adipose tissue 
development (Figure 16B)(79, 90).  

We investigated the relationship between genetic variation and DNA methylation 
by utilizing the methylation quantitative trait loci (mQTL) database. We identified 
110 out of the 379 CpG-sites to be associated with SNPs, so-called mQTLs. 
Notably, the CpG-site cg21753618 is among the three sites that withstood the 
Bonferroni correction. Among these mQTLs, 18 SNPs have been linked to diseases 
in GWAS. Furthermore, previously published EWAS have linked 56 of these 
mQTLs to traits such as T2D, obesity, sperm viability, and maternal stress. 
Additionally, we explored whether any of the 370 genes for which we found 
differential methylation, had been associated with diseases/traits of interest. Here 
we found, three genes associated with adiposity (MAP2K5, MEIS1, and IPO9), four 
with obesity (MAP2K5, PCDH9, SCNN1A, and TCF4), four with T2D (ACSL1, 
HMGA2, RPSAP52, and SLC9B2), and seven genes (TENM4, HMGA2, MAP3K10, 
RB1, KLHL29, LRIG1, and PMFBP1) have SNPs associated with birthweight.  

We were interested in finding out if the lifestyle intervention affected offspring 
characteristics, at birth and during the first three years of life. We chose to study 
lean mass in the offspring, as this cohort comprises very valuable data from Dual-
energy X-ray Absorptiometry (DXA) scans of the newborns (within 48h of birth). 
Here we found that offspring born to mothers randomized to the lifestyle 
intervention group were born with more abdominal lean mass (Figure 17A-B, 
Table 6). Additionally, a trend toward more overall lean mass was seen for the 
offspring of mothers in the lifestyle intervention group (Figure 17C-D, Table 6). 
As seen in Table 4, the birthweight did not differ between the groups, indicating 
that the distinction between the groups is due to altered body composition. 

Furthermore, we found that children of mothers in the lifestyle intervention group 
were larger in size at 9, 18, and 36 months although only significantly so at 18 
months of age (Figure 17E, Table 4 and 6). This led us to the question of whether 
the found lifestyle intervention-associated CpG-sites (379 sites) were associated 
with the offspring characteristics of interest. Here we found that 25 out of the 379 
CpG-sites were associated with lean mass (q<0.05), with a majority being 
hypermethylated in the lifestyle intervention group and positively associated with 
greater lean mass. BMI z-scores were used as a proxy for measuring growth, and as 
we were interested in exploring if the 379 lifestyle intervention-associated CpG-
sites were associated with offspring growth over the first three years of life we used 
LMMs. Methylation of 22 out of the 379 CpG-sites was associated with BMI z-
scores (P<0.05). Some of these 22 CpG-sites were annotated to genes of interest in 
metabolism and metabolic diseases, e.g., ACSL1 harboring an SNP associated with 
T2D and TCF4 with an SNP associated with obesity. 
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Figure 17. Boxplots showing A) abdominal lean mass (g), B) abdominal lean mass (%), C) total lean 
mass (g), and D) total lean mass (%) in the lifestyle intervention and control groups at birth, medians 
(IQR). The P-values are based on linear regression models adjusted for maternal education level, 
maternal smoking during pregnancy (yes/no), GWG (kg), pre-pregnancy BMI (kg/m2), parity 
(single/multi), GA (weeks) and offspring sex. E) Offspring BMI z-scores at four time points, birth, 9, 18, 
and 36 months. *P<0.05 based on linear models adjusted for maternal education level, maternal 
smoking during pregnancy (yes/no), GWG (in kilograms), prepregnancy BMI, parity (single/multi), 
breastfeeding partially and exclusively, and BMI z-score at birth.  
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Table 6. Differences estimated from linear regression models of offspring lean mass and BMI z-
scores, Lifestyle intervention (n=92) versus control (n=47) groups. 
Phenotype Estimated differences (95% CI) P-value
Lean mass (g), birth 126.55 (-4.52; 257.62)* 0.058* 
Lean mass (%), birth 1.36 (20.05; 2.77)* 0.059* 
Abdominal lean mass (g), birth 59.09 (10.53; 107.65)* 0.017* 
Abdominal lean mass (%), birth 0.88 (0.24; 1.53)* 0.008* 
BMI z-score, birth1 0.15 (20.14; 0.43)† 0.352† 
BMI z-score, 9 months2 0.31 (20.14; 0.76)‡ 0.315‡ 
BMI z-score, 18 months3 0.54 (0.14; 0.93)§ 0.006§ 
BMI z-score, 36 months4 0.30 (20.13; 0.74)§ 0.169§ 
1Lifestyle intervention, n=129; control, n=71. 2Lifestyle intervention, n=60; control, n=39. 3Lifestyle 
intervention, n=57;control, n=36. 4Lifestyle intervention, n=51; control, n=28. *Adjusted for maternal 
education level, maternal smoking during pregnancy (yes/no), GWG (in kilograms), prepregnancy 
BMI, parity (single/multi), GA (in weeks), and offspring sex. †Adjusted for maternal education level, 
maternal smoking during pregnancy (yes/no), GWG (in kilograms), prepregnancy BMI, parity 
(single/multi), and GA (in weeks). ‡Adjusted for maternal education level, maternal smoking during 
pregnancy (yes/no), GWG (in kilograms), prepregnancy BMI, parity (single/multi), GA (in weeks), 
breastfeeding partially and exclusively, and BMI z-score at birth. §Adjusted for maternal education 
level, maternal smoking during pregnancy (yes/no), GWG (in kilograms), prepregnancy BMI, parity 
(single/multi), breastfeeding partially and exclusively, and BMI z-score at birth. 

To analyze the potential causal relationship between DNA methylation and 
offspring characteristics, we performed causal mediation analyses. This allows us 
to investigate whether DNA methylation is part of a pathway through which the 
lifestyle intervention exerts its effect on offspring lean mass (Figure 11). We found 
that 17 of the 25 lean mass-associated CpG-sites partially mediate the effect of the 
lifestyle intervention on offspring lean mass at birth (q<0.05, Table 7).  
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Study III 

Gestational weight gain in pregnant women with obesity is associated 
with cord blood DNA methylation, which partially mediates offspring 
anthropometrics 
This study aimed to investigate whether GWG in women with obesity, spanning a 
broad range of GWG (-5.0-34.1kg), is associated with offspring cord blood DNA 
methylation. To do this, we analyzed DNA methylation using the Illumina 
Infinium® HumanMethylation450 BeadChip from 232 newborns enrolled in the 
TOP study (Figure 18A). The association was tested using four linear regression 
models (Figure 18B), which differed in included covariates and methods for 
adjusting for cell-type composition. This was done to estimate the covariates’ 
influence on the association. Our main model, Model 1) was adjusted for maternal 
age (years), pre-pregnancy BMI (kg/m2), lifestyle intervention (yes/no), offspring 
sex, and GA (days). Adjustment for cell composition was done using the reference-
free method from Houseman et al. (88). Model 2) was an unadjusted model, and 
Model 3) was adjusted for the same covariate as Model 1 but without correcting for 
cell-type composition. Model 4) included the same covariates as Model 1 and 
correction for cell-type composition was done using a reference-based method (62). 
Using our main model, Model 1, we found 441 CpG-sites to associate with GWG 
(FDR<5%), annotated to 352 genes (Figure 18). Six sites surpassed the Bonferroni 
cut-off: cg01704198 in the gene body of CLASP2; cg19152518 in the 1st Exon and 
5’ untranslated region of DENND5B; cg19697475, in the promotor region of HCN1; 
cg22950754 in the promotor region of PDRG1; cg10383019, in the gene body of 
TUB – encoding a member of the Tubby family of bipartite transcription factors 
which is suggested to affect hypothalamic regulation of body weight; and 
cg13303461 in the promoter region of UBE2L6 (Figure 18C). Additionally, GWG 
was nominally associated with DNA methylation at 410, 413, and all of the 441 sites 
in Model 2 with P = 3.72 x 10-8 – 4.91 x 10-2, Model 3 with P = 2.08 x 10-8 – 4.92 x 
10-2, and Model 4 with P = 1.59 x 10-7 – 3.70 x 10-2, respectively (Figure 18B).
Together, these data indicate that the association between GWG and DNA
methylation was not drastically impacted by these covariates. Further validation of
the results was done by randomly splitting the cohort into a discovery (n=125) and
validation cohort (n=83)(60:40), where 99% and 74% of the sites were replicated,
respectively. More importantly, 74% of the sites in the discovery cohort were
replicated in the validation cohort.

Next, we investigated the genetic influence of the 441 GWG-associated CpG sites 
in cord blood. Using the mQTL database, we identified 4911 SNPs linked to DNA  
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Figure 18. A) Flow diagram of the GWG and DNA methylation cohort of the TOP-study. QC, quality 
control; DXA, Dual-energy X-ray absorptiometry. B) Linear regression models of GWG and DNA 
methylation in cord blood. C) A Manhattan plot, representing the distribution of methylation sites across 
the genome, for the association between GWG and DNA methylation in cord blood from the offspring, 
(Model 1). The bottom (black) line indicates the FDR-adjusted P-value threshold (FDR<5%) and the top 
(red) line indicates the Bonferroni threshold (1.085199 x 10-7, i.e., 0.05/460,745). Methylation sites that 
surpassed the FDR threshold are highlighted in color; red is hypermethylated and blue is 
hypomethylated sites. Hyper-/hypomethylation is based on beta coefficients from Model 2. (91) 
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methylation at 111 CpG-sites—mQTLs (92). Of these, a CpG-site—cg19152518, 
annotated to the DENND5B gene involved in vesicle-mediated transport— was one 
of the six CpG-sites that withstood the Bonferroni correction. Additionally, 39 SNPs 
among the 111 mQTLs were associated with disease traits such as asthma (e.g., 
SIK2 and WDR36) and waist-to-hip ratio adjusted for BMI (ATP6V0A2) in GWAS 
(93). Furthermore, DNA methylation at 61 of the 111 mQTLs was linked to various 
traits, including asthma (e.g., cg21689291 annotated to TMEM106A and 
cg22227621 annotated to ALG14), birthweight (e.g., cg22441770 annotated to 
CRTC2, and cg24796852 annotated to GMFG), BMI (cg12338137 annotated to 
TNS1), and T2D (cg05411199 annotated to PXDC1), in published EWAS (94). 

We proceeded to investigate whether GWG is also associated with offspring lean 
mass at birth (n=139) and birthweight (n=208). A negative correlation between 
GWG and offspring lean mass at birth was found (Figure 19A), a linear regression 
model adjusted for lifestyle intervention (yes/no), maternal smoking during 
pregnancy (yes/no), GA (days), and offspring sex, confirmed these results and 
estimated a decrease of lean mass at birth by 0.23 ± 0.05 percentage points (95% 
CI: -0.33; -0.13) with every kilogram of GWG. A positive correlation between 
GWG and birthweight was found (Figure 19B), also confirmed by an adjusted 
linear regression model (covariates: GA (days) and parity (single/multiple)), 
showing estimates of 21.1 ± 5.0g (95% CI: 11.3; 30.9) increase in birthweight for 
every unit of GWG. Following these analyses, we tested if cord blood methylation 
of the found 441 CpG-sites from Model 1 was associated with offspring lean mass 
at birth and birthweight, adjusting models as mentioned above. We found 62 CpG-
sites associating with offspring lean mass and 21 CpG-sites associating with 
offspring birthweight (q<0.05). We explored these CpG-sites further and 
investigated whether the influence of GWG on the offspring’s lean mass and/or 
birthweight was partially mediated through cord blood DNA methylation at any of 
the sites associated with lean mass (62 sites) and/or birthweight (21 sites). Using 
nonparametric causal mediation analyses, we found that DNA methylation partially 
mediates the effect of GWG on offspring lean mass and birthweight at 21 and 17 
CpG-sites, respectively (FDR<5%, Figure 19C-E).  
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Figure 19. A) Spearman correlation plots of GWG (kg) and offspring lean mass at birth (%) and B) 
offspring birthweight (g). C-D) The scheme tested by the causal mediation analysis and the potential 
mechanisms linking GWG and C) offspring lean mass at birth and D) offspring birthweight. E) Show the 
six sites suggested to partially mediate the effect of GWG on both offspring anthropometric 
measurements (91). C-E) Created with BioRender.com 
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Study IV 

Impact of Added Sugar on the Whole Genome DNA Methylation 
Pattern in Human Sperm 
The aim of this study was to investigate the impact of dietary intervention, with and 
without added sugar, and to profile the DNA methylome in human sperm using 
WGBS.  

DNA methylation at base-pair resolution was obtained in human sperm of 15 men 
using WGBS (Figure 5). We profiled genome-wide DNA methylation at 26.9 
million CpG-sites in the human sperm with an average sequencing depth of 10x. 

The effect of diet on the DNA methylome was investigated using the R package 
dmrseq (85). The following criteria were set for DMR calling: a minimum 
sequencing depth (CpG coverage) of 10x for individual CpG-sites across all 
samples, a minimum DMR length of three CpGs, a cut-off of 0.05 (indicating ≥5% 
difference in methylation between groups), and 10 permutations. DMR calling was 
performed for the three different diets, Baseline versus Healthy, Baseline versus 
Added Sugar, and Healthy versus Added Sugar, on approximately 2.9 million, 2.1 
million, and 3.7 million CpG-sites, with an average sequencing depth of 11.7x, 
12.5x, and 11.7x, respectively (Figure 20). We found seven DMRs in total, four 
DMRs for Baseline versus Healthy, two for Baseline versus Added Sugar, and one 
for Healthy versus Added Sugar (Figure 20), all of which are annotated to intergenic 
regions and with a DMR length of three CpG-sites.  

Figure 20. Flow chart of bioinformatic and statistical analyses of WGBS data in human sperm of 15 
men. Created with BioRender.com 
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We further tested if the Healthy Diet versus Added Sugar impacted DNA 
methylation of individual CpG-sites. For these analyses we required CpG coverage 
of ≥10 reads across all samples, resulting in 7 pairs and approximately 3.7 million 
CpG-sites. We chose to investigate I) genes and CpG-sites with known function in 
male fertility based on the review by Åsenius et al. (95) of which 6,974 CpG-sites 
overlapped with our data, II) CpG-sites annotated to imprinted genes where 13,277 
CpG-sites overlapped, III) CpG-sites annotated to the top 1% (159) of expressed 
protein-coding genes in human sperm, based on RNA sequencing (RNA-seq) data 
in human sperm from Corral-Vazquez et al. (74) with 2,861 CpG-sites overlapping, 
and IV) CpG-sites at exact genomic coordinates as known tRNAs, of which 14 sites 
were overlapping (Figure 20). Based on nominal P-values (P<0.05), DNA 
methylation was affected by the Added Sugar diet in I) 143 CpG-sites annotated to, 
e.g., ACP1, AHRR, GNAS, HDAC4, PAX8, PTPRN2, and SNURF, II) 313 CpG-sites
annotated to, e.g., GLIS3,, MAGI2, PEG3, PLAGL1, and SNURF, III) 42 CpG-sites
annotated to, e.g., CHD2 and PEG3, and IV) none of the 14 CpG-sites with the same
genomic position as known tRNAs (Figure 21). On the whole, we found DNA
methylation of 486 unique CpG-sites to be nominally affected by the Added Sugar
diet, of which numerous went in the same direction in all analyzed samples (Figure
21).  However, these findings did not withstand correction for multiple tests.

Figure 21. Diet-induced DNA methylation differences in individual CpG-sites based on nominal P-
values (P<0.05), with inclusion criteria requiring ≥10 reads for CpG-sites and samples, and consistent 
directionality of DNA methylation changes across all sperm samples when comparing the Healthy Diet 
versus Added Sugar. DNA methylation of CpG-sites annotated to A) ACP1, B) AHRR, C) GNAS 
exhibited increased methylation, while D) HDAC4, E) ATP10A, F-G) GLIS3, H) PEG3 showed 
decreased methylation, and I) PLAGL1 displayed increased methylation after the Added Sugar diet 
compared to the Healthy Diet, (n=7 for all panels except F, n=6). Wilcoxon signed rank tests with 
continuity correction was used for these analyses.  
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Next, the impact of the three diets on the “global” methylome in human sperm was 
investigated. To do this, we calculated the 1st, 2nd, and 3rd quartiles per diet (Baseline, 
Healthy Diet, and Added Sugar) based on the WGBS data of 22,780,770 CpG-sites 
(the number of overlapping CpG-sites for all three diets) with a mean sample 
coverage of ≥10x (n=41). Figure 22A shows the 1st quartile representing the quarter 
of CpG-sites with the lowest methylation level, the 2nd quartile representing the 
median methylation level, and the 3rd quartile representing the quarter of CpG-sites 
with the highest methylation level. No evident impact of the diet intervention on the 
“global” methylome in human sperm could be seen, and no difference in the 
“global” DNA methylation pattern for the three different diets in the 15 men was 
detected (Figure 22A). Furthermore, no significant effect was found for the 
variance in the “global” degree of methylation in the 1st and 2nd quartiles (P=0.33 
and P=0.81, respectively). Due to a small sample variance, the 3rd quartile could not 
be statistically tested (methylation values were 100% for 39 out of 41 samples, 
Figure 22A).  

The profiling of the human sperm DNA methylome was carried out using merged 
methylation data from the three diets of the 15 men included in the study. This was 
done since we did not see a distinct difference between the diets and to increase the 
sequencing depth. The merging resulted in an average CpG coverage of 28.7x 
(Figure 22B).  

When plotting the overall distribution of DNA methylation in human sperm, using 
dmrseq (85), the distribution was found to be bimodal. The first peak was around 
0%, demonstrating CpG-sites with low levels of methylation, and the second peak 
was at about 100%, revealing that most CpG-sites are fully methylated, the average 
degree of methylation was 77.05% (Figure 23A). This is in concordance with what 
has been seen previously in pancreatic islets, although the average methylation in 
the human sperm seems to be slightly higher (96). The distribution and degree of 
DNA methylation vary with different genomic regions; in human pancreatic islets, 
for instance, the promoter regions have been found to have the lowest degree of 
methylation, and the gene body has the highest (96). Density plots visualizing the 
overall distributions of the methylation levels through different genomic regions in 
human sperm were generated using dmrseq (85)(Figure 23A-H). The introns and 
3’UTRs were found to have the highest DNA methylation degree, with an average 
of around 82% (Figure 23F-G), and the lowest levels were seen in the 5’UTRs, 
with an average methylation degree of 13.7% (Figure 23D).  

Thereafter, using publicly available RNA-seq data (n=12)(74), we investigated the 
relationship between gene expression and the DNA methylome of the 15 men 
included in this study. We identified 33,408 genes in the RNA-seq data, of which 
the majority (62%) were classified into non-expressed genes (<2 mean normalized 
counts). The remaining 12,617 genes were determined to be expressed genes and 
divided into three bins classified as low- (n=4,151), medium- (n=4,171), and high-
expressed (n=4,295) genes. Associations between the degree of DNA methylation 
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in the different gene regions and the four gene expression levels were found using 
the Friedman rank sum test (Figure 23I). Based on Dunns’ post hoc test, we, for 
example, found non-expressed genes in human sperm to have lower DNA 
methylation levels in exon regions in comparison to the expressed genes (Figure 
23I). 
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Figure 23. A) The overall distibution of DNA mentylation in human sperm (n=15) visualized in a density 
plot. Peaks at around 0% and around 100% methylation. The mean methylation degree was 77.05%. 
B) Average DNA methylation levels, using the merged WGBS data, in different gene regions of non-
expressed genes and high-, medium-, and low-expressed protein-coding genes. #<0.05, as analyzed
by Friedman rank sum tests, P=9.3x10-10 for 1-5kb, P=1.6x10-9 for promoters, P=9.3x10-10 for 5’UTR,
P=9.3x10-10 for exons, P=9.3x10-10 for introns, and P=2.6x10-9 for 3’UTR, as analyzed by a post hoc
Dunn's multiple comparison test. Density plots showing the degree of DNA methylation in the human
sperm samples (n=15) in different gene regions, using the merged WGBS data including all three diets:
C) The region of 1 to 5 kb upstream of the TSS, mean DNA methylation degree of 62.87%; D)
Promoters, mean DNA methylation degree of 20.69%; E) 5’UTRs, mean DNA methylation degree of
13.73%; F) Exons, mean DNA methylation degree of 63.40%; H) 3’UTRs, mean DNA methylation
degree of 82.83%; and I) Intergenic regions, mean DNA methylation degree of 77.53%. CpGs (n) is the
total number of CpGs analyzed in all samples in each specific region. WGBS, whole genome bisulfite
sequencing; TSS, Transcription Start Site; 5’UTR, 5’ Untranslated Region; 3’UTR, 3’ Untranslated
Region; kb, kilobase pairs; bp, base pairs.
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Ethical Considerations 

Ethical considerations in research involve balancing various legitimate interests, 
such as the pursuit of knowledge, integrity interests, and protection against harm. 
Although ethical assessment and approval by a body such as the Swedish Ethical 
Review Authority is mandatory, ethical considerations extend beyond this point. 
The concept of ‘good research practice’ also includes reflections on the researcher's 
own work and professional judgments (97).  

The ethical framework for the EU’s research funding “The European Code of 
Conduct for Research Integrity”, outlines fundamental principles for ‘good research 
practice’. These principles emphasize reliability in research quality, honesty in 
conduct and reporting, respect for stakeholders and the environment, and 
accountability throughout the research process (97).  

Study I 
Informed consent was obtained from pancreatic donors or their relatives, as 
approved by the local ethics committee in Lund, Sweden (Dnr 173/2007), which 
oversees organ donation for medical research. 

Study II-III 
The TOP-study was approved by the Ethics Committee for the Capital Region of 
Denmark (January 2009, H-D-2008–119; Hillerød, Denmark) and by the Swedish 
Ethical Review Authority, Stockholm (Dnr 2022-07072-01) and registered at 
ClinicalTrials.gov (NCT01345149). Before enrollment, all participants provided 
written informed consent.  

Study IV 
The study was approved under the Declaration of Helsinki by the regional ethical 
board at Linköping University, Sweden (permit number: 2016/183-31, extension: 
2019-03080). Written informed consent was obtained before enrollment from all 
participants. 
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Discussion 

The overall aim of this thesis was to investigate whether lifestyle impacts the 
epigenome and, thereby, metabolism in humans. The epigenome consists of several 
epigenetic modifications and mechanisms. Therefore, we limited the content of this 
thesis to include only DNA methylation, measured in different tissues and in 
different ways. In Paper I, we analyzed DNA methylation in human pancreatic 
islets, where we tried to mimic a typical circulation milieu of a T2D patient with 
elevated levels of glucose and fatty acids—glucolipotoxicity. Here we measured 
DNA methylation using an array-based method, the Illumina Infinium® 
HumanMethylation450 BeadChip. In Paper II, we investigated the effect of a 
Lifestyle intervention during pregnancy in women with obesity and its effect on the 
offspring. In Paper III, we wanted to explore the effect of weight gain during 
pregnancy (gestational weight gain, GWG) in women with obesity and its effects on 
the offspring. In Papers II and III, this was done by measuring DNA methylation in 
the offspring cord blood using the Illumina Infinium® HumanMethylation450 
BeadChip. In Paper IV, we investigated whether diet interventions affected genome-
wide DNA methylation in human sperm, by applying Whole-genome bisulfite 
sequencing.   

Interpretation of Main Findings 

Study I 

Glucolipotoxicity Alters Insulin Secretion via Epigenetic Changes in Human Islets 
Elevated circulating levels of glucose and fatty acids are commonly observed in 
individuals with obesity and seem to contribute to the development and progression 
of metabolic disorders like T2D (5, 9, 14). In fact, elevated levels of these 
metabolites are also commonly found in individuals with T2D, accompanied by 
impaired islet function. In this study, we therefore investigated the impact of high 
glucose and palmitate levels on islet function, gene expression, and DNA 
methylation. Our findings reveal that glucolipotoxic treatment leads to decreased 
insulin secretion and increased apoptosis in human islets. Moreover, we observe 
extensive changes in gene expression in glucolipotoxic-treated islets, potentially 
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attributed to DNA methylation changes. Subsequent analysis in clonal beta-cells 
reveals that these changes influence insulin secretion, suggesting a contributory role 
of induced epigenomic and transcriptomic alterations in the pathogenesis of T2D. 

When exploring the genes uniquely affected by the combined elevated levels of 
glucose and palmitate, we find several critical processes in insulin-secreting beta-
cells, such as pathways crucial for protein metabolism, transport, and secretion. 
Additionally, a pathway related to the unfolded protein response (UPR), known to 
impact T2D and beta-cell function (98), was enriched among these significant 
genes. These findings suggest that alterations induced by glucolipotoxicity may 
contribute to the deterioration of beta-cell function in vivo, a phenomenon not 
observed with individual nutrient elevations (60, 61). Among the genes exhibiting 
altered expression in glucolipotox-treated islets, 35 have SNPs associated with T2D 
risk in previous GWAS (93). Many of these variants or encoded proteins are 
implicated in islet cell development and/or function (93, 99-101), or influence cell 
proliferation and/or apoptosis, particularly in beta-cells (93, 102, 103). These 
findings support the notion that expression changes induced by high levels of 
palmitate and glucose may heighten T2D risk in obese individuals or further 
compromise beta-cell function in those with T2D.  

Importantly, in our experiments, the exposure to glucolipotoxic conditions was 
merely 48 hours, while the exposure time in real life may extend over several years 
or even decades, likely leading to more potent effects. Rescue experiments in the 
human EndoC-βH1 beta-cell line, for the analysis of whether the epigenetic changes 
were reversible, showed that the DNA methylation changes largely persisted, even 
after a 48-hour-long recovery period where the cells were cultured under normal 
conditions. This implies that restoring circulating metabolite levels may not 
completely reverse already established epigenetic effects or the recovery time may 
potentially be longer than the exposure time.  

Overall, these findings provide support for the involvement of glucolipotoxicity in 
the onset and/or deterioration of T2D.  

Study II 

Lifestyle Intervention in Pregnant Women With Obesity Impacts Cord Blood DNA 
Methylation, Which Associates With Body Composition in the Offspring 
Maternal obesity during pregnancy increases the risk of offspring metabolic disease 
(104) and is associated with epigenetic modifications in the offspring’s cord blood
(105). Additionally, distinct DNA methylation profiles have been found in tissues
of individuals with obesity compared to lean individuals (106-108). As lifestyle
factors have the potential to influence DNA methylation (40, 49), we wanted to
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investigate if a Lifestyle intervention during pregnancy in women with obesity 
influenced the offspring cord blood DNA methylation pattern.  

Our findings reveal that a lifestyle intervention comprised of physical activity with 
and without dietary advice among pregnant women with obesity impacts cord blood 
DNA methylation in their offspring, with enrichment in genes involved in metabolic 
processes. Notably, the epigenetic modifications associated with physical activity 
and a healthy diet in our study appear to be distinct from those previously linked to 
maternal BMI (105) and GDM (107, 109). Moreover, we find a link between 
epigenetic markers in cord blood and offspring lean mass and growth. This suggests 
that adapting to a healthier lifestyle during pregnancy - allowing for offspring 
epigenetic cord blood modifications - may contribute to improving the offspring’s 
health. This notion is reinforced by studies indicating that newborns born small for 
gestational age (SGA) exhibit more pronounced differences in lean mass rather than 
fat mass compared to appropriate-for-gestational-age newborns (110). Being born 
SGA is associated with an elevated risk of metabolic diseases later in life (111), 
suggesting that the adverse effects may be due to reduced lean mass. In fact, higher 
muscle mass and increased metabolic activity may provide beneficial effects on 
insulin sensitivity and protect against obesity and T2D (112). Additionally, in this 
study, DNA methylation in cord blood at several sites appears to partially mediate 
the effect of the maternal lifestyle intervention on offspring lean mass. Notably, the 
lifestyle intervention group exhibited decreased methylation of SETD3, a gene 
encoding a methyltransferase. Hypomethylation of SETD3 is associated with 
increased expression and subsequently higher muscle mass (113), potentially 
explaining the greater lean mass observed in offspring of the lifestyle intervention 
group.  

Overall, these results emphasize the potential of the intrauterine environment to 
influence the epigenome, which could subsequently affect metabolism and growth 
in later life.  

Study III 

Gestational weight gain in pregnant women with obesity is associated with cord 
blood DNA methylation, which partially mediates offspring anthropometrics 
In Paper III, our study reveals associations between GWG in pregnant women with 
obesity and cord blood DNA methylation patterns linked to BMI, type 2 diabetes, 
and asthma. Additionally, we demonstrate correlations between GWG and 
important anthropometric measurements for the future health of offspring, such as 
lean mass and birthweight. Of note, twenty-five percent of the GWG-associated 
cord blood methylation sites have also been linked to mQTLs, as well as with traits 
such as BMI, T2D, asthma, and birthweight, in previous EWAS. Thus, these 
findings provide evidence that GWG in pregnant women with obesity influences the 
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DNA methylome in offspring cord blood and impacts anthropometric measurements 
of likely relevance for offspring health. Furthermore, our research demonstrates that 
these effects occur within genes related to metabolic disease.  

This study is, to our knowledge, the first to identify associations between GWG in 
pregnant women with obesity and DNA methylation in cord blood using the 
Infinium® HumanMethylation450 BeadChip. Previous studies have been 
performed in normal-weight women (114-116). Morales et al. analyzed 1,505 DNA 
methylation sites in cord blood from 88 offspring, where they found 44 sites to 
associate with GWG during weeks 0-18 of pregnancy (114). However, these results 
could not be replicated using a larger sample size and the Infinium® 
HumanMethylation450 BeadChip (115). Similarly, Sharp et al. did not find any 
GWG-associated DNA methylation site in cord blood (116). Discrepancies in 
results between these studies may be due to several factors, including differences in 
adjusting for cell composition, and GWG measured at various time points during 
pregnancy (114-116).  

High birthweight increases the risk of developing overweight or obesity later in life 
(117) and being born to a mother with obesity increases the risk of metabolic disease 
(118). These conditions are likely to be multifactorial, where both the intrauterine 
environment and genetic factors are important (119). Having a greater proportion of 
lean mass i.e., more metabolically active tissue, enhances insulin sensitivity and 
protects against cardiometabolic disease and T2D (120, 121). Children born with 
higher birthweights are at risk of various long-term health outcomes, including 
psychiatric disorders, cardiometabolic diseases, and several types of cancer (122). 
In this study, we show that increased GWG in women with obesity may negatively 
affect the offspring, leading to less lean mass at birth and a higher birthweight. 
Methylation sites positively associated with GWG were inversely associated with 
the offspring’s lean mass, while methylation sites negatively associated with GWG 
tend to be positively associated with the offspring’s lean mass. The opposite pattern 
is observed for birthweight.  

Furthermore, several of these methylation sites appear to partially mediate the effect 
of GWG on offspring’s lean mass and birthweight. Six methylation sites are 
proposed to partially mediate the effect of GWG on both lean mass and birthweight. 
Among them, we observe a positive association between GWG and methylation of 
a site residing in the gene body of KDM1B, which encodes a histone demethylase 
involved in regulating histone lysine methylation (123). A negative association was 
found between GWG and methylation of a site in the gene body of WNT8B, 
encoding a Wnt protein – part of the Wnt signaling pathway and implicated in 
several developmental processes. Additionally, a negative association is observed 
between GWG and methylation of a site in the 5’UTR/1st Exon of CCN4, encoding 
a downstream regulator in the Wnt/Frizzled signaling pathway.  
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Childhood asthma is a global health issue, and preventive strategies are needed to 
limit its escalating prevalence. Data suggest that childhood asthma is associated 
with GWG (124), having adequate GWG could, therefore, potentially reduce 
childhood asthma cases. Interestingly, in our data on GWG-associated cord blood 
DNA methylation, we found several mQTLs associated with asthma in GWAS and 
EWAS. Two DNA methylation sites, annotated to WDR36 and SIK2 were linked to 
nine SNPs previously associated with asthma in GWAS. Additionally, six DNA 
methylation sites annotated to SLC9A3, RNF220, TMEM53, SLC41A3, GRB10, 
TMEM106A, and ALG14 were linked to 410 SNPs associated with asthma in 
EWAS. 

These findings underscore the potential benefits of reducing GWG in women with 
obesity for the future health of their offspring. Furthermore, our results highlight the 
critical role of the intrauterine environment in programming the methylome, which 
may have implications for offspring metabolism. 

Study IV 

Impact of Added Sugar on the Whole Genome DNA Methylation Pattern in Human 
Sperm 
Although there are existing studies investigating the effect of physical activity and 
diet on rodents and human sperm methylome (95, 125-127), to our knowledge, there 
are no studies investigating the effect of added sugar on the human sperm DNA 
methylome. Interestingly, Nätt et al. found human sperm to be sensitive to a high-
sugar diet (128), with effects on tsRNA levels and sperm motility (128). Using the 
sperm samples from the diet intervention performed by Nätt et al. (128), we 
investigated the genome-wide DNA methylome which shows that one week of a 
sugar-rich diet does not impact the global sperm DNA methylome. The majority of 
samples had low DNA levels, ranging between 2.2-252.6ng and with a mean of 
30.1ng. To make the samples comparable, ≤50ng input was used for the first step of 
the protocol, the fragmentation, and subsequently, all the material was used for the 
remaining steps. The mean sequencing depth, for all 42 samples (2 samples had 
been removed before library preparation due to DNA levels of <2ng, and one sample 
was removed during QC due to a mean sequencing depth of <1) were 10x, ranging 
from 1.4 to 20.5x. Due to low coverage, we decided to pull out sites with adequate 
sequencing depth (≥10x, in all samples) and analyze the effect of the diet on 
individual CpG-sites in genes linked to male fertility, imprinted genes, the top 1% 
expressed genes, and CpG-sites with the same genomic coordinates as know 
tsRNAs. From these analyses we find that the Added Sugar diet leads to changes in 
DNA methylation levels of sites annotated to genes linked to male fertility, 
imprinted genes, and genes with the 1% highest expression level in sperm. In fact, 
486 individual sites annotated to 151 unique genes show altered DNA methylation 
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patterns (P<0.05). Although these tests did not withstand correction for multiple 
testing, the methylation level of several of these sites changed consistently in all 
individuals, indicating a genuine effect. For example, we found that Added Sugar 
increased DNA methylation for individual CpG-sites of ACP1, AHRR, GNAS, and 
PTPRN2 and decreased methylation of a site in HDAC4 in all sperm samples 
analyzed. ACP1, encoding a phosphotyrosine protein phosphatase, harbors an SNP 
representing about 10% of the population linked to lower spermatic concentrations 
and more atypical spermatozoa (129). GNAS is located in a region with intricate 
imprinted expression pattern. DNA methylation levels in sperm of the GNAS gene 
have been associated with semen abnormalities such as low sperm count and 
mobility (130)  and have been shown to be inversely correlated with sperm 
concentration and have been found to be linked to follicle-stimulating hormone and 
luteinizing hormone levels (131). PTPRN2 encodes a receptor-like protein tyrosine 
phosphatase that regulates plasma membrane phosphatidylinositol 4,5-bisphosphate 
levels to facilitate actin remodeling and plays a role in vesicle-mediated secretory 
processes. Hypermethylation and a negative correlation of expression levels of the 
PRPRN2 gene have been found in individuals with low sperm concentrations (132). 
In this study, we have shown that the Added Sugar diet resulted in a hypomethylated 
pattern of HDAC4, encoding a histone deacetylase. Conversely, our previous 
research show that regular exercise leads to a hypermethylated pattern and 
subsequent decreased expression of HDAC4 in adipose tissue (47). Together, this 
underscores the significance of lifestyle choices and their impact on the epigenetic 
control of this gene. These data suggest that Added Sugar may change the 
methylation levels of sites annotated to genes linked to male fertility, imprinted 
genes, and genes with the 1% highest expression level in sperm. Still, these data 
need to be validated in future studies.  

Additionally, we provide a comprehensive picture of the DNA methylation pattern 
in human sperm. We merged the samples from the three diets to obtain adequate 
sequencing depth, resulting in 15 samples with a mean sequencing depth of 28.7x, 
ranging from 12.8 to 49.8x. Using these data, we found that the mean methylation 
level was 77.05%, which is higher than reported by Molaro et al. (~70%) (133) and 
lower than reported by Chen et al. (~90% in the control group) (134). We found the 
highest methylation levels, around 82%, in introns and the 3’UTRs and the lowest 
levels in CpG Islands and 5’UTRs, with approximately 8.5% and 14%, respectively. 
The discrepancies of results between our study and that of Molaro et al. and Chen 
et al. may be due to several factors, e.g., methodological in regards to library 
preparation, sequencing, and bioinformatic analyses, number of individuals 
included (15, 2, and 8, respectively), and potentially also age and ethnicity (133, 
134). Furthermore, we found that exons of non-expressed genes are hypomethylated 
compared to expressed genes (≥2 mean normalized counts), which is in concordance 
with what we have found in pancreatic islets (96). Further demonstrating a link 
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between sperm methylation and RNA levels and the importance of epigenetic 
regulation of different genomic regions.  

Methodological Considerations  
The relationship between epigenetic modifications and observed phenotypes is 
complex and intertwined, with both factors often influencing each other in a 
bidirectional manner. Epigenetic modifications may influence the observed 
phenotype through their effect on gene expression and cell functions, but 
environmental factors may also modify epigenetic modifications through 
phenotypic traits. This may present a challenge to establishing causality in 
epigenetic studies. This can be addressed by the study design and/or by the use of 
specific statistical methods. All four papers try to address this challenge through the 
study design; in Papers I and IV, we use within-subject design, meaning participants 
serve as their own control; in Papers II and III, which is based on a randomized 
control trial, and considered the golden standard for establishing causality, we also 
employ causal mediation analyses in an attempt to establish causality partly due to 
the fact that we have meddled in the randomization.  

In this thesis, we have used two different techniques for studying DNA methylation 
patterns: the Illumina Infinium® HumanMethylation450 BeadChip Array and 
WGBS, each with its advantages and limitations. Array-based methods are a cost-
effective approach for assessing predetermined CpG-sites, i.e., they are limited to 
the CpG-sites covered by the array. WGBS allows for profiling of DNA methylation 
across the entire genome at single-base resolution, and identification of DMRs. 
WGBS is quite costly and computationally intensive compared to array-based 
methods and requires higher sequencing depth to get adequate coverage, particularly 
so for samples with low DNA input.  

Control of confounding variables is a critical step for finding true associations and 
establishing causal relationships. In Studies II and III, we therefore considered all 
maternal and offspring variables that might influence the relationship between the 
independent and dependent variables. However, as sample size often presents 
challenges in EWAS, and this holds true for our studies as well, as well as reducing 
the risk of overfitting the model, we decided to only include variables with a P<0.25 
in univariate analyses in the final regression models, based on the work on a 
purposeful selection of covariates by Bursac et al. (135). 

In epigenetic studies, it is also important to consider the cell-type composition of 
the tissue under study. Tissues are made up of various cell types, all with their own 
distinct epigenetic profile. Controlling for the cell-type composition ensures that 
observed differences are not only due to differences in cell proportions. In most 
cases, the correct cell-type composition cannot be determined, but it can be 
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estimated using two main approaches: reference-based and reference-free methods. 
Reference-based methods rely on pre-existing profiles of cell types and their 
epigenetic signatures. These references are often based on a small sample set and, 
thus do not have the ability to account for the variance that may exist in a larger 
population. Reference-free methods infer cell-type composition by the application 
of advanced computational and mathematical methods, such as unsupervised 
learning algorithms that cluster or decompose the data.  

Replication and validation steps in science are essential processes to ensure the 
credibility of the research results. Replicating findings, preferably in independent 
cohorts, will showcase the robustness of the results, help reduce the likelihood of 
Type I errors, and assess their generalizability. Validating epigenetic marks using 
alternative methods or functional assays enhances the reliability and biological 
relevance of the study results. In Study I, we validated our results by functional 
follow-up experiments in cell lines. In Study II and III, we evaluated the robustness 
of analyses by sensitivity analyses, and in Study III we additionally split the cohort 
into a discovery and validation cohort. Study IV can be considered a pilot study and 
as such, the results need to be validated in further studies. 

EndoC-βH1 is a human pancreatic beta cell line of fetal origin with different DNA 
methylation patterns compared to mature beta cells (136). As such, treatments 
modifying DNA methylation may exhibit distinct effects in EndoC-βH1 beta cells 
compared to mature beta cells. However, despite their differences, the EndoC-βH1 
beta cell line remains the most reliable in vitro model available for studying human 
beta cells. 

Clinical Implications 
Through Studies I-IV, we hope to highlight the importance of lifestyle choices in 
human health. How we as individuals and as a society can affect human health by 
making and facilitating healthy lifestyle choices. Moreover, we want to emphasize 
that epigenetics may serve as an important mechanism linking lifestyle choices and 
human health. Studies II and II, and potentially also Study IV, illustrate how lifestyle 
choices not only impact our own health but also seem to exert a direct effect on the 
health of the offspring. The findings from these studies demonstrate the individuals' 
ability to influence their and their offspring’s health outcomes through lifestyle 
choices. However, it's of the utmost importance to recognize that the responsibility 
for maintaining a healthy lifestyle should not solely rest on the individual. Instead, 
society must provide support and assistance and facilitate healthy choices. These are 
essential components in creating a culture of well-being and enabling individuals to 
follow a healthier lifestyle. 
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The results from Studies II and III, indicate that there are ways to reduce the negative 
effects of obesity during pregnancy. Increased physical activity in the form of 
increased step counts per day, with and without dietary advice on a low-fat, low-
calorie Mediterranean diet, as well as lowering the GWG, in fact, show positive 
effects on the offspring. Based on these findings, it would be desirable for midwives 
or similar healthcare professionals to encourage pregnant women with obesity to do 
more physical activity and be provided with support from a dietitian to enable them 
to maintain a healthy diet. 

Study IV indicates that paternal lifestyle choices are also important. However, in 
this study, we are unable to make true connections to fertility or offspring health 
outcomes and can merely speculate. However, in the same subjects, Nätt et al. have 
seen effects of the dietary intervention on sperm parameters important for fertility 
(128), indicating that diet influences the likelihood of conception. During 
development, the DNA methylation pattern in mammalian cells goes through two 
waves of reprogramming. The first wave occurs in the germline and the second after 
fertilization. Sperm promoters are bound by transcription factors (TFs) but are 
transcriptionally inactive (137). TF-bound sites might hence escape the second wave 
of DNA methylation reprogramming. The TF distribution may be affected by 
environmental factors, potentially serving as a mechanism for the transmission of 
epigenetic patterns across generations (137). In fact, DNA methylation patterns 
have been found to be heritable (138). It is, therefore, possible that diet-induced 
DNA methylation patterns are transmittable to the offspring. This could potentially 
encourage men to maintain a healthy lifestyle. 

Strengths and Limitations 
All four studies included in this thesis have strengths and limitations. Since we have 
discussed these quite well and in-depth in the individual articles, I will only address 
some general strengths and weaknesses and some personal reflections. 

The methylation changes identified in these studies may be considered subtle, 
however, we argue that the cumulative impact of several minor changes, each 
contributing in a small part, could potentially have a large effect on the overall 
outcome. 

Study I is the only in vitro study included in this thesis. In vitro studies have several 
inherent strengths and limitations. They are great as they can help circumvent many 
ethical concerns and allow for precise control over experimental conditions. 
However, in vitro models are unable to reflect the complex system of a living 
organism and, as such, may induce artifacts or lead to biased results.   
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Some of the great strengths of intervention studies in human subjects (Studies II-
IV) are their direct clinical relevance and ability to find causality. Compliance and 
adherence, on the other hand, are major limitations of human studies. Researchers 
are reliant on the participants' cooperation, and we must assume that the participants 
comply with the study protocols. However, it's important to acknowledge that this 
may not always be the case. This uncertainty naturally affects the study's outcome 
and is something we are currently unable to fully account for. 
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Summary and Conclusions 

Study I 
We identified glucolipotoxicity-induced methylation and expression changes in 
human pancreatic islets. These changes seem to contribute to impaired insulin 
secretion and increased apoptosis. Collectively, our results support the involvement 
of glucolipotoxicity in the onset and progression of type 2 diabetes, highlighting its 
potential impact on disease development and exacerbation. 

Study II 
In this study, we show that a lifestyle intervention among pregnant women with 
obesity has an impact on the DNA methylome of offspring cord blood. Additionally, 
we are able to link cord blood epigenetic markers with offspring lean mass and 
growth. These findings underscore the importance of the intrauterine environment 
in programming the epigenome, potentially influencing metabolism and growth 
trajectories later in life. 

Study III 
GWG in pregnant women with obesity was found to be associated with cord blood 
DNA methylation of 441 sites, several of which have previously been linked to 
BMI, T2D, and asthma. Furthermore, GWG is associated with offspring lean mass 
and birthweight - anthropometric measures important for offspring health. These 
results show the importance of managing GWG in pregnant women with obesity to 
facilitate favorable health outcomes in their offspring. Moreover, our study 
highlights the influence of the intrauterine environment on the methylome, 
potentially affecting metabolic profiles in the offspring.  

Study IV 
While our findings indicate that a one-week sugar-rich diet does not significantly 
alter the overall sperm methylome, there is nominal evidence suggesting potential 
changes in the methylation levels of specific CpG sites associated with male fertility 
and imprinted genes after consuming a diet rich in added sugar. This study also 
offers a thorough exploration of the global DNA methylome in human sperm, 
highlighting their correlation with gene expression and the significance of 
epigenetic control across various genomic regions.  
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In conclusion, these data support the notion that DNA methylation is modifiable by 
our lifestyle choices, potentially affecting the metabolism and the risk of developing 
metabolic disease.  
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Future Perspectives 

We are moving towards an era of personalized treatments, where healthcare is more 
individualized with diagnosis and treatments being more effective. This is possible 
in part due to biomarker discovery, where, e.g., an individual’s genetic makeup and 
protein levels are considered when selecting treatments. This will allow for the best 
possible drug effect and minimize the adverse effects of the treatment. Epigenetics 
also poses as a potential biomarker for treatment response and tolerance, as has been 
shown by García-Calzón et al. regarding metformin - the first-line drug therapy in 
type 2 diabetes patients (139). Additionally, epigenetic editing is a promising 
approach in developing novel treatments for many diseases with aberrant gene 
expression. However, optimizing epigenetic editing technologies' efficiency, 
specificity, and safety is needed before implementation in patient care is possible.  

Using digital health solutions makes health care more accessible, both in terms of 
geographical location and the effort it requires. It may enable more frequent follow-
up care due to its convenience. Today, there are multiple remote monitoring devices 
and even more mobile health apps, making it possible for individuals to track their 
health metrics in real-time. This could allow healthcare providers to step in in a 
timely manner and provide advice on necessary or enhancing treatment adjustments, 
potentially improving adherence to treatment regimens.  

Adherence to lifestyle interventions can be measured to some extent by biomarker 
and biochemical analyses. For example, it is possible to measure lipid profiles and 
glucose levels in blood, and in urine or hair, it is possible to attain information about 
nutrient intake which may provide the researcher with information regarding 
compliance with dietary recommendations. Here, epigenetics may serve as 
biomarkers one day, as we have seen effects in several different tissues based on 
lifestyle factors such as diet and exercise (38, 40, 41, 47-49, 69, 91). Although these 
methods are not widely used for these purposes today, they may become more 
common as costs decrease and the reliability of the analysis increases. This would 
allow for more reliable information regarding adherence and, thus also, causality 
within lifestyle interventions. 

As mentioned in the discussion of Study IV, the diet intervention analyzed in the 
human sperm was short, only two weeks, of which only one week was with excess 
sugar. The process of human spermatogenesis is, however, estimated to be much 
longer, in fact, up to 2.5 months (140). Due to the importance of proper DNA 
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methylation in sperm, it is possible that the DNA methylation pattern already 
formed in sperm will not be affected by a change in diet. Therefore, it would be of 
interest to perform a diet intervention extending over the lifespan of the sperm. This 
would ensure all sperms have formed during the intervention and would potentially 
allow for an effect on the overall DNA methylome. However, this would probably 
be difficult to carry out in humans from an ethical perspective. A 50% excess of 
sugar for such a long period would lead to quite a substantial weight gain in the 
participants increasing their risk of, e.g., T2D and CVD.  

Furthermore, it would be of high interest to perform lifestyle intervention studies 
with multi-omic levels, i.e., combining several omics layers such as epigenomics, 
transcriptomics, and proteomics, together with deep phenotype data. Preferably in 
several different tissues to be able to see the effect of the lifestyle in different parts 
of the body but also to analyze what tissues mirror or are in discordance with each 
other. This could allow for unraveling complex biological networks and examining 
the intricate interplay between these layers. Additionally, it would generate and 
deepen our knowledge about how our lifestyle choices affect our health and the risk 
of developing metabolic diseases, such as obesity and T2D. Enhanced 
understanding of how our lifestyle impacts health can potentially help motivate 
individuals at high risk of disease to adopt healthier habits. Furthermore, it may 
allow for identifying molecular and cellular changes that can be targeted for 
precision medicine for the development of more effective prevention strategies and 
treatments for metabolic diseases. 

In addition, I hope that in the future, we, as a research community, will be better at 
including the sex chromosomes in DNA methylation analyses. Evidence shows 
marked differences in the DNA methylation pattern in different tissues between men 
and women and studies in animal models suggest that these differences are due to 
the sex chromosomes and not the hormonal differences between males and females 
(141).  
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