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Populärvetenskaplig sammanfattning 
Avvikande proteinkinassignalering är central för flera neurodegenerativa 
sjukdomar. Dessa sjukdomar undersöks allt oftare med omics-tekniker i syfte att 
förstå förändringar på systemnivå i motsats till singular signalering eller 
förändringar av proteinnivåer. Proteomics är ett område av omics, som syftar till att 
direkt mäta förändringar som sker i proteinnivån som leder till en viss fenotyp. 

Fokus för denna avhandling ligger på Parkinsons sjukdom, som är den näst 
vanligaste neurodegenerativa sjukdomen som drabbar miljontals individer över hela 
världen. Den vanligaste sjukdomsassocierade mutationen i Parkinsons sjukdom är i 
LRRK2, som är ett proteinkinas. LRRK2 orsakar fenotyp av Parkinsons sjukdom 
som liknar idiopatisk sjukdomsform, vilket gör det idealiskt att studera patogena 
mekanismer i denna sjukdom. 

Arbetet i denna avhandling kretsar kring att förstå proteinkinassignalering i 
proteomikdata. Dessutom undersöks mekanismer som orsakar LRRK2-sjukdom i 
djur- och patientprover. Detta avslöjade att mekanismer som är involverade i 
proteinsyntes och proteostas är dysreglerade i både LRRK2 och sporadisk form av 
Parkinsons sjukdom. 
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1. Introduction 

The human brain is a complex organ consisting of multiple functional regions, 
including dividing cells such as glial and stem cells, cells of blood vessels and about 
100 billion neurons. The brain controls all aspects that makes us human: cognition, 
language, and emotion, as well as deciphering sensory information from outside and 
regulating movement. This makes brain one of the most complex and important 
organs in the human body. Neurological disorders are a heterogeneous group of 
conditions, where the normal function of the brain is disturbed. These disorders 
range from migraine which affects ~1.04 billion individuals worldwide [1] to more 
rare disorders such as multiple sclerosis affecting ~2.2 million individuals 
worldwide [2].  

These disorders can severely affect a person’s quality of life and at worst leads to a 
lifelong struggle at a great cost at the level of individual and the society. Taken 
together the economic cost of these various disorders was estimated to be 798 billion 
euros in the year 2010 in Europe alone [3]. For many of the disorders there is no 
cure available, the cause is unclear and the diagnosis leading to treatment can take 
years. Furthermore, the study of various disorders affecting the brain are hard to 
carry out.  The brain is generally inaccessible to invasive biopsies, animal and 
cellular models do not always reproduce the human physiology, and post-mortem 
brains are hard to acquire. Other approaches for studying brain disorders include 
brain imagining and indirect readouts of brain status from various bio-fluids such as 
plasma, urine and cerebrospinal fluid (CSF). These are helpful, but do not reveal the 
molecular mechanisms of the pathology in cells. In this thesis, the focus will be on 
Parkinson’s disease (PD), with special focus on protein kinases and proteomics to 
study human disease. The disease was first described by James Parkinson in his 
1817 description in” An Essay on the Shaking Palsy” and is named after him. 
Despite this description over two centuries ago and groundbreaking advances in 
genetics, imagining and biochemistry we have yet to understand the underlying 
pathogenesis behind the disease. 

Advancements in biochemistry and cellular biology have helped to solve how many 
fundamental physiological and pathological processes work. In the past, much of 
the research in understanding how these processes work was based on pre-selecting 
a set of genes and biomolecules of interest and attempting to assign a biological 
function for them based on a range of experimental approaches. This has led to 
advancement in understanding basic processes such as glucose metabolism, and 
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how this process is disturbed in type 1 diabetes, and how insulin can be used to treat 
this condition. However, many questions remain, which necessitate inspection of 
large networks made up by the biomolecules found in the cells and other 
physiological compartments. Understanding the interactions in complex systems -
out of necessity- has moved biological research into the omics era. Omics as a term 
includes the systematic study of large networks of molecules of interest that are 
present in the cell and living beings. These include studies into small metabolites, 
polynucleotides, polypeptides, fatty acids and the various modifications made to 
these. In this thesis, I utilize a subset of omics: proteomics to study human biology 
and disease. 

In paper I we studied PD linked Leucine-rich repeat kinase 2 (LRRK2) function in 
protein synthesis. We show that LRRK2 associates with ribosomal small subunit 
40S and that LRRK2 kinase activity supresses protein synthesis in cultured primary 
hippocampal and dopaminergic neurons, by labelling cells with the methionine 
analogue azidohomoalanine (AHA) and Fluorescent non-canonical Amino acid 
Tagging (FUNCAT) approach for quantification. Using same method for protein 
synthesis estimation, we find that this process is reduced in rotenone and 6-hydroxy 
dopamine models of PD by 40% and is rescued by LRRK2 inhibition. We next used 
the rotenone model of PD in vivo in rats, and using phosphoproteomic approach, we 
found multiple protein synthesis arrest points turned on in striatum and mid-brain. 
Lastly, we observe attenuated protein synthesis in cultured patient fibroblasts from 
both sporadic and LRRK2 glycine 2019 to serine (G2019S) forms of PD. This effect 
is reversible by LRRK2 kinase activity inhibition and is not observed in fibroblasts 
from multiple systems atrophy patients. This suggests that protein synthesis is 
dysregulated in PD, and the effect is regulated by LRRK2. 

Paper II continued the work from paper I. We performed validation of reduced 
protein synthesis in patient fibroblasts and proceeded to identify newly synthesized 
proteins that are affected in these cells with Bio-Orthogonal Non-canonical Amino 
Acid tagging (BONCAT) and bottom-up proteomics. We identified a panel of 
proteins that are changing specifically in sporadic and LRRK2 G2019S PD, with an 
overlap of 65% between these two PD types. To validate the markers in PD we used 
parallel reaction monitoring to see if the changes recapitulate at the total protein 
level. We find that key regulators of proteostasis are downregulated in both sporadic 
and G2019S PD. In conclusion, this work identified a panel of proteins that may be 
involved at down-regulated protein synthesis we observed in paper I. 

Paper III Mining of large phosphoproteomics datasets and extracting kinase-
substrate relations ships from such data, as well as functional prediction, is difficult. 
We developed a fast and user-friendly tool for phosphoproteomics data analysis in 
R: PhosPiR. PhosPiR accepts data from popular MS search engine MaxQuant, and 
data that has been transformed to similar format from other tools. PhosPiR performs 
offers pre-processing of data and performs multiple statistical tests for finding 
significantly changing phosphosites. PhosPiR predicts kinase activation from the 
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data and performs network and functional enrichment analysis. PhosPiR simplifies 
phosphoproteomic data analysis, which up to date has mostly relied on expert 
knowledge of the separate tools available.  
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2. Protein kinases

Protein kinases are a group of enzymes that transfer a phosphate group from 
adenosine triphosphate (ATP) to specific amino acid residues on proteins in a 
reversible process called phosphorylation. Protein phosphorylation controls the 
activity of proteins, localization, and protein-protein interactions. These 
modifications therefore have profound impact on cellular signalling and function, 
and not surprisingly, dysregulated phosphorylation is central to many human 
diseases and conditions. Protein kinases are also highly druggable, which makes 
them good targets in therapeutics and in the study of cellular processes. As the scope 
of this thesis is in human diseases, the literature review here is mostly restricted to 
eukaryotes from Animalia kingdom.  

It was believed well up to early 2000s that roughly one third of the proteome was 
phosphorylated [4, 5]. Technological advances contest these numbers, as modern 
mass spectrometry (MS) based in depth phosphoproteomic study detected 
phosphorylation in ~75% out of the roughly 11k detected proteins, in a cell line [6]. 
As many phosphorylation events trigger under specific conditions, and 
technological limitations in detection applied, Sharma et al. speculate that more than 
90% of expressed proteome could be phosphorylated [6]. The most common 
phosphorylated amino acid residues are serine (Ser), threonine (Thr) and tyrosine 
(Tyr), which in the 1980s were  estimated at a ratio of ~90%, ~10% and ~0.05% of 
all phosphorylated residues in mammalian cells by autoradiography [7]. A similar 
ratio was detected empirically using proteomics where the number of 
phosphorylation events detected was validated [5]. Although not in the scope of this 
thesis, other phosphorylated amino acid residues are also observed in mammalians 
such as histidine (His) [8, 9], lysine (Lys) [8], arginine (Arg) [10],  and aspartate 
(Asp) [11]. These are relatively understudied due to low abundance, and due to the 
fact that basic and acidic residue phosphorylation products are labile under acidic 
conditions [12, 13], which is standard pH in peptide separation for mass 
spectrometry analysis. As these are difficult to study, it becomes important to 
carefully assess the data quality carefully. For example, one study reported over 100 
phosphorylated histidine residues under near neutral peptide separation conditions 
from mammalian cells [14]. Independent assessment of the same data revealed that 
many of the sites were likely to have been erroneously assigned to histidine [15]. 
These  authors additionally performed an independent experiment, which lead to 
conclusion that although histidine phosphorylation is genuine in mammalian cells 
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this is extremely rare, and misinterpreting the data can lead to erroneous over 
identification of phosphorylated histidine [15]. As very little is known about protein 
kinases targeting residues other than serine, threonine and tyrosine, eukaryotic 
protein kinase here refers to protein kinases targeting these three residues. 

2.1 Eukaryotic protein kinase structure and diversity 

2.1.1 Structure 
Understanding the function of protein kinase starts from the protein kinase 
conserved structure. The first protein kinase structure to be defined was protein 
kinase A (PKA) [16], which contains typical protein kinase core structure domains 
found in protein kinases considered typical eukaryotic protein kinases (ePK). These 
kinases have two conserved major domains in the catalytic core: N- and C-terminal 
lobes, which together form the catalytic cleft. The N-terminal lobe typically consists 
of five β-strands and an α-helix called the C-helix. The β-strands are responsible for 
binding and coordinating ATP for phosphate transfer and contains a conserved 
glycine-rich loop and valine(Val)-alanine(Ala)-Isoleucine(Ile)-Lys motif (VAIK) 
necessary for proper ATP positioning [17]. The C-helix is positioned for efficient 
catalysis in an active kinase [17].  

The C-terminal lobe is the catalytic core of ePK consisting of α-helixes and a β-
sheet consisting of four β-strands, and is responsible for substrate binding and 
phosphate transfer [17]. This domain contains the kinase’s activation segment, 
which functions as an on/off switch for kinase activity and binds to the 
phosphorylation region of the substrate. This segment is highly variable amongst 
kinases and starts with a conserved Asp-phenylalanine(Phe-)-glycine(Gly) followed 
by any hydrophobic residue motif (DFGѱ) and extends 20-35 amino acids up to 
Ala-proline(Pro)-glutamate(Glu) motif (APE) [18] (Figure 1.). The DFGѱ motif is 
responsible for magnesium binding necessary for proper ATP positioning, while the 
APE motif helps to dock activation segment motifs to F-helix, which in turn helps 
to stabilize the active conformation of the kinase[17]. 
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Figure 1 Schematic view of the protein kinase activation loop. 

The activation segment contains the activation loop, which in some kinases is auto 
phosphorylated or phosphorylated by another kinase at one or more Ser/Thr/Tyr 
residues. Phosphorylation of these residues, which are 5-10 amino acids N-terminal 
to the APE sequence drives the activation of some kinases by docking the 
phosphorylated residue to the arginine of His-Arg-Asp (HRD) motif located in 
catalytic loop, as well as to C-helix and residues inside the activation loop [17]. 
Kinases that do not use this mechanism have an amino acid sequence in activation 
segment that form the active conformation with HRD motif without 
phosphorylation  [18].  

Adjacent to the activation loop is the P+1 loop, which binds to the substrate 
sequence C-terminal to phosphorylation site. In the activated kinase this region 
binds a region of the substrate which tends to have disorganized conformation 
surrounding the phospho-acceptor site [19]. Although this segment contributes to 
substrate specificity, the substrate and scaffolding protein binding grooves outside 
the catalytic cleft also contribute to specificity. For example c-Jun terminal kinase 
(JNK) family member 1 has a C-terminal docking groove for substrate and docking 
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proteins [20], and PD associated PTEN induced kinase 1 (PINK1) has three unusual 
N-terminal inserts, where the third insert helps to create a binding motif for ubiquitin 
[21]. Active kinases undergo an open-close cycle, where correctly folded and active 
kinase catalytic cleft closes on the substrate and orients the target residue catalytic 
loop HRD motif aspartate and ATP. Following the catalysis, the catalytic cleft 
opens, and the phosphorylated substrate is ejected from the cleft, which allows the 
kinase to phosphorylate next substrate. 

As said earlier, the catalytic cleft is between the C- and N-terminal lobes, and 
therefore it is not surprising that the amino acid residues from these domains interact 
and form conformational motifs. In an active kinase two leucine residues from the 
N-terminal lobe interact with Phe from DFGѱ motif and His/Tyr from HRD motif 
forming a hydrophobic regulatory spine, which is called the R-spine in the literature, 
the formation of which is the ultimate indication of an activated kinase [22]. During 
activation the second spine forms and is referred as C-spine standing for catalytic 
spine. In PKA C-spine is formed by Val from β2 strand and Ala from VAIK motif, 
and Leucine 173 from C-terminal lobe dock with adenine ring from ATP forming a 
catalytic spine referred to as C-spine in literature, which servers to position ATP 
correctly [23]. Both of these spines are anchored to the F-helix C-terminal to 
activation segment ensuring an ordered structure necessary for catalysis [17]. The 
structures of over 300 kinases show a high level of conservation in an active state, 
while the inactive state shows more variation [24]. Consistent with these spines 
being highly conserved in and necessary for active kinase conformation, amino acid 
residues in the spines are mutually exclusive with residues that determine kinase 
substrate specificity [25]. 

2.1.2 Kinome 
The exact number of protein kinases that make up the human kinome is unknown. 
Peer-reviewed evidence stands at 525-550 serine, threonine, tyrosine protein kinases 
[26, 27] with nine major subfamilies based on sequence similarity [26]. Protein 
kinase classification for many kinases relies on sequence and structural homology 
predictions, as well as substrate and inhibitor specificity.  However, many proteins 
have been overlooked for their phosphate transfer activity towards proteins, and it 
is likely that there are more than in the reviewed literature [28, 29]. For example, 
some non-protein kinases show dual specificity for proteins and small molecules 
[30] and some pseudokinases are catalytically active and will be discussed later. 
According to the most recent classification by Moret et al., proteins exhibiting 
protein kinase activity can be divided in to 3 classes, and that way expand the 
definition of kinome to 710 protein kinases [29]. These classes are ePK, eukaryotic 
like kinases that differentiate from ePK in substrate binding lobe, and finally 
atypical kinases that adopt kinase like 3D-structure, but have weak sequence 
similarity to classical protein kinases [29]. Kinase terminology can cause confusion, 
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as same terms tend to have different definitions between studies hindering the 
research. For example, vascular endothelial growth factor receptor is a tyrosine 
kinase that has four alternative names and four different gene names in the literature 
according to UniProt [31], and only three names include the term kinase. With the 
introduction of the AlphaFold database [32] with predicted structures for all 
proteins, it is likely that more proteins with kinase like 3D structures will be 
identified, furthering the endeavour to find more proteins exhibiting protein kinase 
activity.  

Some kinases classify as pseudokinases, which number at roughly 50. 
Pseudokinases have high sequence homology to catalytically active kinases, but 
lack key amino acids thought to be indispensable for catalytic activity. These amino 
acids are lysine in the VAIK motif involved in ATP binding, the aspartate catalytic 
loop’s HRD motif and the DFGѱ motif involved in Mg binding [33]. These kinases 
lack catalytic activity, and yet they are thought to be active components of signalling 
cascades by interaction with other kinases, by sequestering or anchoring kinase 
substrates or serving as signalling scaffolds [33]. While these motifs and residues 
are indispensable for kinase activity there is evidence that at least, some these so 
called pseudokinases are active. For example, CASK [34] and Haspin [35, 36] are 
both catalytically active. Both lack canonical DFGѱ motif, and Haspin does not 
contain an APE motif. It is possible that the definition of a pseudokinase is due to 
lack of thorough characterization. For example, PD associated Leucine-rich repeat 
kinase 2 (LRRK2) has an unusual DFGѱ motif, which serves to keep the kinase in 
inactive form [37], but was originally discovered as an active kinase. Therefore, it 
remains a distinct possibility that an additional number of, non-protein kinases, 
uncharacterized proteins and pseudokinases can also phosphorylate proteins, but 
their mechanism of action and binding partners and substrates are simply not known 
due to lack of studies or appropriate screens.  

2.1.3 Kinase signalling 
Kinase signalling is ubiquitous in most cellular processes and dysregulated 
signalling can lead to many diseases including cancer and neurodegeneration. 
Kinase signal transduction often happens in multiple phases, and the stimulus can 
lead to multiplication of the original signal. A signalling cascade usually starts by a 
certain stimulus, such as binding of a ligand to a receptor, accumulation of small 
molecules such as Ca2+, and unfolded proteins, or nutrient deprivation. A classic 
example of protein kinase signalling through a cascade are mitogen activated protein 
kinases (MAPK), key regulators of cell survival, growth and death. Extracellular 
signal-regulated kinase (ERK) signalling regulates various responses coming from 
the outside of the cell and is an example of typical MAPK signalling. Here an 
extracellular ligand binds to an tyrosine kinase receptor, which leads to activation 
of a Rat sarcoma virus (Ras) guanosine triphosphate hydrolase (GTPase), which 
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triggers activation of upstream MAP3K kinase, which activates MAPK2 by 
phosphorylation, which in turn proceeds to activate ERK by phosphorylation [38]. 
Organisation of kinases within a cascade imposes a threshold for activation that 
ensures that the cascade of events do not occur unless a sufficiently strong trigger is 
present. The organisation of MAPK cascades with each consecutive level 
expressing more molecules, facilitates a high level of signal amplification [39]. 

Many of the kinase signalling pathways have overlapping activators, substrates, and 
intermediates. Additionally, multiple signalling pathways can cross talk and 
integrate into a specific response. As an example dual leucine-zipper kinase (DLK) 
is an upstream activator of both the JNK family kinases and p38 [40]. As an 
upstream MAPK3-level kinase, DLK regulates multiple processes from cell 
degeneration and death to regeneration, and is able to activate both JNK and p38 
MAPK pathways, which can cross-talk in specific context such as during axon 
regeneration [40]. As aberrant kinase signalling can cause serious consequences, 
kinase regulation is achieved in multiple ways such as post-translational 
modifications, subcellular localization and by ensuring that correct proteins interact 
at the correct time. 

Regulation by localization is achieved in multiple ways. Some protein kinases have 
a localisation tag, for example, unprocessed PINK1 has a mitochondrial localization 
tag. Many kinases are trans-membrane proteins localised at the plasma membrane 
and some kinases are specifically localized to subcellular localizations due to 
protein interactions. Maintaining the correct localization is an important function 
for physiology and cell death, and a wrong localization can trigger incorrect 
signalling outcomes. As an example, members of the JNK kinase family come from 
three genes and regulate a wide variety of functions from liver toxicity to neuronal 
development [41]. JNK family kinases have some overlapping substrates such as 
stathmin-2, which is preferentially phosphorylated by JNK1, while JNK2 and JNK3 
phosphorylate it with less efficiency [42]. JNK1 is physiologically active member 
of JNK family, while JNK2 and JNK3 are stress activated [43, 44]. As these kinases 
have substrate overlap, it is important to regulate where and with what JNK1 
interacts with, to avoid erroneous stress response without a trigger, which is more 
the domain for JNK2 and JNK3. In dorsal ganglion root sensory neurons, JNK2 and 
JNK3 are palmitoylated, but not JNK1 [45]. This modification allows stress induced 
localization and activation of JNK3 by DLK, but not other MAP kinases including 
JNK1, which lack the palmitoylation modification [45]. Palmitoylation of JNK and 
DLK [45] ensures that in the case of cell stress, correct proteins are in the correct 
place, able to interact and generate the correct outcome. 

Kinase signalling can create a positive feedback loop, or the kinase can inactivate 
itself. For example activated proteins in the ERK pathway ERK can directly 
inactivate their activators by phosphorylation [38]. As an example, activation of 
ERK leads to phosphorylation of the epidermal growth factor receptor (EGFR) at 
Thr669 by ERK. This disturbs EGFR dimerization and cross-activation, leading to 
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attenuation of EGFR-ERK signalling [46]. If the negative feedback loop for ERK 
signalling is not working, the consequence is aberrant cell signalling and can lead 
to oncogenesis.  

As the specific outcome from a kinase depends on many factors, it is important to 
take a systems approach to understand molecular events happening in cell, and to 
understand key signalling drivers. In the next chapter I will discuss methods to study 
kinases biochemically and in systems biology. 

2.2 Studying eukaryotic protein kinases. 

2.2.1 Biochemical methods for studying kinase function 
Various biochemical methods exist to study protein kinases and some commonly 
used methods are discussed briefly below. One of the most widely used methods to 
measure protein phosphorylation is Western blotting (WB) [47]. In WB proteins are 
separated on a sodium dodecyl sulphate polyacrylamide gel (SDS-PAGE) [48] and 
transferred to a membrane, and subsequently proteins are detected with an antibody 
recognizing the target protein. Antibodies detecting a specific phosphorylated 
residue are in routine use in many laboratories and provide information on single 
phosphorylation events. This approach is valuable in detecting well-characterized 
signalling events such as detecting kinase activation by autophosphorylation or by 
substrate phosphorylation. However, this method is low throughput and impractical 
for understanding systems level changes and the integration of signalling pathways. 
Antibodies are also prone to unspecific binding [49], and according to a 2015 
estimate, almost half of the money spent on antibodies is spent on antibodies that 
do not properly recognize their targets [50]. Phosphorylation-specific antibodies 
have another disadvantage; neighbouring phosphosites can change the affinity of 
the phosphosite specific antibody [51], which makes thorough antibody 
characterization or complementary evidence important in kinase studies using 
antibodies. 

SDS-PAGE gels also have other uses, such as to detect phosphorylation events in 
mechanistic studies where antibodies are not used. Classical methods use [γ-32P]-
labelled ATP and perform a kinase reaction in vitro with purified kinase and 
substrate, and separate the reaction components on the gel and detect 
phosphorylation by autoradiography [52] This is useful in finding and validating 
substrates, testing efficiency of molecules affecting kinase activity as, well as 
studying mutations that might affect kinase activity. Kinase activity can also be 
detected in non-radioactive gel assays by looking at the protein mobility shift on a 
gel. If the charge density between phosphorylated and non-phosphorylated forms of 
protein is large enough, the protein migration on gel will be altered [53]. 
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Alternatively it is possible to induce a phosphorylation-dependent retarded 
migration on SDS-PAGE gel by adding a reagent known as “Phos-tag” to the gel to 
distinguish the phosphorylated protein from non-phosphorylated[54]. 

Functional validation of phosphorylated proteins is possible with point mutations 
and kinase inhibitors. Using mutations involves that either the kinase or the substrate 
has the phosphosite of interest mutated in to phosphomimetic amino acid glutamate 
and Asp to simulate phosphorylation, or using inhibitory amino acids such as Ala 
or glutamine for Ser/Thr residues or Phe for Tyr residues to prevent phosphorylation 
[55, 56]. These mutations have multiple purposes. They can serve as internal 
controls for substrate screening and, they can be used to provide functional 
information in biological systems in vivo and in vitro on consequence of 
phosphorylation. For example, JNK1 knockout mice have abnormal 
neurodevelopmental phenotype, which is rescued by mutating JNK specific 
Stathmin-2 phosphorylation sites to aspartate, which mimics the JNK 
phosphorylated form of Stathmin-2 [57].  

As mentioned earlier protein, kinases are highly druggable, and several types of 
inhibitors exist. Type I inhibitors compete with ATP, and stabilize the kinase in an 
active closed conformation, where the DFGѱ motif and C-helix are oriented inwards 
to catalytic cleft and type I½ inhibitors bind inactive conformation with DFGѱ motif 
facing inwards [58]. Type II inhibitors bind kinases in inactive conformation with 
DFGѱ motif facing out [58]. Type III and IV inhibitors are both allosteric 
modulators, where type III binds next to the ATP binding pocket, and IV binds 
outside the substrate and ATP binding pocket [58]. Type V inhibitors bind two 
distinct sites on the kinase, while type VI covalently bind and inhibit the enzyme 
[58] and often target free cysteine residues in catalytic cleft [59]. Furthermore, the 
inhibitors can be divided into pharmacological inhibitors, and protein and peptide 
derived inhibitors. Many inhibitors are not strictly specific to their targets, and 
ideally, studies should utilize multiple inhibitors. Additionally using different types 
of inhibitors can yield mechanistic information, as kinases can change localization 
and binding partners depending on their conformation, which are changed by the 
inhibitors. 

Ultimately as protein kinases function in large dynamic networks, that have 
complex cross talk, it becomes increasingly important to understand kinase-
signalling networks as a whole. The most systematic and informative way to do this 
is by proteomics and systems biology methods. Currently mass spectrometry-based 
proteomics is the most mature technology for systematic study of phosphorylation. 
Typically, this is done by cleaving proteins into small peptides, which are readily 
analysed by Mass spectrometers. The exact details of which will be discussed later 
in chapter 4. However, special biochemical features of phosphorylated dataset 
generation are discussed here. Peptide sequences containing phosphorylated 
residues make up a minority of the generated peptides and are hard to detect from 
the mixture, which contains non-phosphorylated peptide. Therefore, it is 
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advantageous to enrich phosphorylated peptides instead of proteins. Peptides 
containing these post-translational modifications (PTM) can be enriched with strong 
cation exchange [60], strong anion exchange [61], immobilized metal ion affinity 
[62] or titanium dioxide enrichment [63]. Combination of orthogonal techniques
such as strong cation exchange with immobilized metal ion affinity or titanium
dioxide enrichment can be used to improve depth of the analysis or for further
enrichment [5, 64]. Although all phosphorylated peptides are enriched with these
techniques, only a small proportion contain phosphorylated tyrosine. To circumvent
this problem, antibodies recognizing pTyr residues or specific pTyr motif binding
domains are used to enrich phosphorylated tyrosine containing and peptides [65]. In
the next section, I will discuss some of the computational methods used to study
protein kinase signalling data derived from MS-based proteomics experiments.

2.2.2 Computational methods 

Protein kinase phosphorylation site databases 
Many of the systems level phosphorylation methods rely on phosphorylation 
databases. These databases allow one to make predictions on the kinase activation, 
data, and functional significance of the phosphorylation sites in the data. These have 
been recently reviewed extensively by Zhao et al., and although outside the scope 
of this thesis to review all of them [66], it is good to note specific features of some 
of the databases. The disadvantage of all databases is that many kinases remain 
understudied, and ca. 90% of known kinase-substrate relations belong to 20% of 
protein kinases [67]. The problem is not limited to study of protein kinases, but to 
the field of biological research as a whole. Some genes are very extensively studied, 
which amounts to the 100 top most studied genes being present in 25% of 
biomedical research articles [68]. Furthermore, roughly, 20% of proteins in humans 
do not have any known function [69] and at least part of the remaining 80% are not 
fully characterized.  

Most extensive databases are those, which contain data from high throughput 
studies with minimal manual curation, and examples of these are PhosphoSitePlus 
[70] and Peptide Atlas [71]. PhosphoSitePlus as of writing this thesis contains
~294,000 detected phosphorylation sites Ser/Thr/Tyr in human, mouse and rat, and
also data from low throughput experiments from the literature [70]. Similar to
PhosphoSitePlus databases combining low and high throughput data, some
databases are species-specific, exemplified by PhosphoGRID for S. cerevisiae [72].
This wealth of data generated by high throughput experiments is not without
problems as only 5%  the known human phosphorylation sites have a known
function or assigned kinase [67]. Thus, interpreting high throughput
phosphorylation data now heavily relies on specialized downstream tools to predict
kinase-substrate relationship. Furthermore, many of the uncharacterized sites
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identified in high throughput studies are coming from low quality MS2 peptide to 
spectrum matches. A consequence of this is that many of these sites are identified 
in only one study, possibly indicative of false positive identification, which can be 
problematic [73].  

Some databases such as Signor [74, 75], PTM signatures database (PTMsigDB) 
[76], Human Protein Reference Database (HPRD) [77] and BioGrid [78] specialize 
in manually curated information on kinase-substrate relationships, PTMs and 
functional consequence of the PTMs. PTMsigDB, also contains information from 
PhosphoSitePlus [70], and the information has been added to PTMsiDB manually 
or semi-automatically. One problem with the manually curated data is the fact that 
manual data mining and annotation is enormous task even for large collaboration 
networks. For example, a well-known LRRK2 autophosphorylation site at Ser1292 
is not entered in HPRD, BioGrid and Signor (June 2023), while PTMsigDB contains 
the site owing to its semi-automated information gathering. Tools and databases for 
assigning kinases to uncharacterized sites are described below. 

As mentioned earlier, very few phosphosites have an assigned kinase. Several tools 
exists that can be used to predict kinase-substrate relationships based on properties 
such as sequence motifs, 3D-structure and protein-protein interactions, and are 
reviewed by Savage and Zhang [79]. Many of the tools are no longer being 
maintained and I will discuss two examples of currently maintained tools below, 
with distinct functions. The simplest form of prediction uses the sequence motif. 
However, many motifs have non-unique features, and if considered alone, tens of 
kinases can map to a single phosphorylation site. To circumvent this problem a tool 
named NetworKIN combines sequence motif and protein interaction network 
analysis on the observed phosphorylation sites to predict a kinase for the 
phosphorylation sites [80]. This tool is useful for building library for well-
characterized kinases. According to year 2019 estimate by Needham et al. 276 
protein kinases had five or less substrates, and remaining 149 described in the study 
had no known substrate [67], and this puts limits on a known sequence motif based 
kinase prediction.  An alternative approach proposed by Parca et al. also uses 
sequence information, but instead of known sequence motifs, the approach termed 
Automatic Kinase-specific Interaction Detection (AKID) uses sequence information 
from both the protein kinase and substrate without prior data [81]. AKID first 
identifies the protein kinases from sequence with a Hidden Markov Model, and then 
determines the kinase’s specificity conferring residues with KINspect algorithm 
[25]. Following this, AKID uses deep neural networks to train and detect kinase-
substrate relationships using the KINspect output and known kinase-substrate 
relationships from PhosphoSitePlus and PhosphoGrid. AKID outperformed other 
prediction methods including NetworKIN but has not been cited in an independent 
comparative study. 

Many kinases have shared features in their substrate phosphorylation motif 
sequences [82, 83]. These shared features cluster significantly within protein kinase 
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families [83], and are possibly sites of PTM cross talk [83, 84], conferring 
specificity and dynamic regulation for substrate recognition. As the substrate 
phosphorylation motifs are shared between many kinases, special tools are required 
to assess kinase activation, and will be discussed below. 

Assessing kinase activation from phosphoproteomics data 
Kinase activation can be assessed with kinase activation prediction tools as 
described above. There are many tools available, which are reviewed by Piersma et 
al. [85]. Here I will summarize some tools, with their distinct features. One of the 
earliest still currently maintained computational implementations of predicting 
kinase association in the dataset is kinase enrichment analysis (KEA) [86, 87], 
which as of writing this utilizes both predicted and known kinase-substrate 
interactions. KEA assesses kinase activation by comparing user input to KEA 
background libraries by performing Fisher’s exact test. This kind of analysis does 
not consider intensity values, and the input is a simple list of proteins. The resulting 
output does not tell if a particular kinase is activated or inactivated. This aspect is 
considered in popular kinase-substrate enrichment analysis (KSEA) [88, 89], which 
to date is the most cited kinase activity prediction tool [85]. KSEA uses prior 
knowledge from PhosphoSitePlus and predicted substrate sites from NetworKIN. 
Kinase activation is scored with a modified z-score. The statistical significance of 
kinase activation is subsequently obtained with one tailed paired Student’s t-test and 
corrected for multiple testing with Benjamini-Hochberg method. KSEA is simple 
and easy to understand, which is probably why it continues to be cited.  

Another approach presented in PTM-SEA [76] utilizes a popular algorithm for 
functional enrichment analysis: Gene Set Enrichment Analysis (GSEA) [90]. In 
simple terms, GSEA first calculates a combined score from p-value and fold change 
and ranks genes according to combined score so that positive values will be at top 
and negative at bottom, indicative of up and downregulated genes respectively. 
Following this GSEA calculates an enrichment score from top to bottom so that 
whenever a gene is present in a gene set, the score is added to a running sum, and 
when it’s not the score is subtracted, effectively indicating if a gene set is up or 
down regulated, followed by statistical significance analysis and control for multiple 
testing. Although GSEA was originally developed for gene set enrichment analysis, 
this can be utilized with other data, including large phosphorylation datasets. Instead 
of gene sets, PTM-SEA uses phosphorylation pathways from PTMsigDB [76], 
which contains the direction of change for each PTM in a pathway. PTM-SEA uses 
this database to perform modified single sample GSEA to predict kinase activation 
and inactivation [76]. PTM-SEA can be considered a step up from both KEA and 
KSEA, but it is still limited by the information present in PTMsigDB, which is 
derived from known biological and kinase-substrate information, which are limited 
for most kinases. 
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To circumvent this bias Mari et al. proposed the In vitro kinase-to-Phosphosite 
database (iKiP-DB) to predict kinase activation [91]. This approach predicts kinase 
activation with a dataset coming from a high throughput in vitro kinase substrate 
screen study with 354 recombinant protein kinases [92]. The raw data from the 
kinase screen was reanalysed by iKiP-DB authors to yield 160k kinase to 
phosphosite relations in 4,032 protein groups for 313 kinases. These kinase to 
phosphosite relations are used to predict kinase activation with PTM-SEA algorithm 
with expended kinase set relative to PTMsigDB [91]. One disadvantage of iKiP-DB 
is that the data is coming from an In vitro screen, and many of the substrates might 
not be real substrates for a given kinase in vivo, which is also noted by the authors 
[91]. 

Assessing kinase function in phosphoproteomics data 
The simplest way to make predictions of functional changes in data set is to look at 
functional term enrichment. Popular tools for this include Gene Ontology (GO) 
terms [93, 94], Kyoto Encyclopedia of Genes and Genomes (KEGG) [95], 
WikiPathways [96, 97] and Reactome [98]. These tools enable the identification of 
enriched functions among the significantly changing phosphorylation sites, and 
some tools like KEGG, Reactome and WikiPathways provide manually curated 
pathway maps. Although the maps are simplified abstractions, these help to 
visualize signalling cascades. The downside of these tools is the reliance on known 
pathway information, which might not originate from protein level experiments and 
the low amount of functional information for some proteins.  

Identifying uncharacterized signalling pathways can take advantage of known and 
predicted protein-protein interactions, and several tools exists to do this kind of 
analysis for phosphoproteomics data such as Signor [74, 75], Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING) [99, 100], Phosphomatics [101] 
and human tissue specific tool TissueNet [102, 103] and HumanBase [104]. 
STRING is one of the most popular protein pathway enrichment and network tools, 
and integrates known interactions from multiple databases such as HPRD, GO, 
KEGG, BioGrid and Reactome, with predicted interactions from literature text 
mining, gene and protein level co-expression [99, 100].  STRING also allows the 
visualisation of interactions, which is useful for deciphering signalling pathways. 
Several phosphorylation specific network tools exist. As an example, PhosphoPath 
builds interaction networks using PhosphoSitePlus, BioGrid and WikiPathways to 
visualize quantitative changes in top enriching kinase pathways [105]. PhosphoPath 
also differentiates between phosphosites that have been detected either in peptide 
without other phosphorylated residues, or in multi-phosphorylated peptides.  
Phosphomatics is a web based protein phosphorylation network analysis tool, which 
uses information from Signor [74, 75], UniProt [31], KEGG [95] and BioGrid [78] 
to annotate the phosphorylation data [101]. Phosphomatics can also draw kinase-
substrate relation networks from data; plot the phosphorylation changes on KEGG 
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pathways. Furthermore, phosphomatics predicts kinase-substrate relationships with 
known interactions from BioGrid and matches unassigned sites to known kinase-
substrate relationships using phosphosite sequence information. 

Many of the protein-protein interactions are likely to be tissue and cell type specific, 
so matching all known interactions from all human cell types to a neuron might 
mask the enrichment of real interactions occurring in neurons. Tools like TissueNet 
[102, 103] and HumanBase [102, 103] are specifically made for tissue specific 
interaction analysis, while some databases such as Signor [74, 75] offer some tissue-
based functionality. Although tissue/cell specific interactions are not widely taken 
into account, it is conceivable that a phosphorylation event in JNK1 in brain might 
have different consequences to the same event in intestine due to different set of 
JNK1 interacting proteins being present. Another commonly overlooked issue with 
functional analysis is the subcellular localization of the phosphorylation events 
which can be monitored [106, 107], but as this kind of data is not routinely collected 
and no published tools for subcellular phosphoproteomics analysis are published, it 
will not be discussed further. 

Phosphoproteomic data pipelines 
Several of the tools discussed above also function as a part or as a specialized 
phosphoproteomics pipeline. The aim of these pipelines is to automate data 
processing and bring high throughput phosphosite analysis tools to 
bioinformaticians and non-bioinformaticians alike in one package. Each of the 
pipelines presented here have their own design choices that come with their own 
limitations and advantages. I will describe some recently released pipelines below.  

PaDuA is a phosphoproteomic data analysis pipeline built as a Python package 
[108]. PaDuA  performs sample median subtraction as normalization step, and for 
imputation the user chooses between random sampling from a normal distribution 
function similar to that used in Perseus analysis software [109] or an estimate 
imputation value from similar phosphosites as described by Webb-Robertson, B.J. 
et al. [110]. PaDuA uses Student’s t-test and analysis of variance (ANOVA) for 
statistical analysis, and PhosphoPath [105] and KEGG [95] for pathway enrichment 
analysis and visualization [108]. PaDuA accepts output from MaxQuant [111], 
which is a popular MS/MS data analysis pipeline, or data that has been converted to 
MaxQuant format. The advantage and limitation of PaDuA is that it is a relatively 
simple package that does not incorporate a large amount of information. Although 
this is also a limitation, it makes data interpretation easier. 

PhosPiR is a R language-based data analysis pipelines [112] (Paper III). The users 
can use their own imputation or normalization methods, or use proBatch [113] 
and/or MSimpute [114] packages offered by PhosPiR for normalization and 
imputation. For statistical tests PhosPiR offers the choice of Student’s t-test, 
Wilcoxon signed-rank test, reproducibility-optimized test statistic [115] and rank 
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product test [116] for two-sample statistical analysis, and ANOVA and linear mixed 
model for unpaired and paired multiple sample test, respectively. PhosPiR uses GO, 
KEGG, WikiPathway and STRING for protein functional enrichment and network 
analysis for proteins. For statistically significant phosphosites, PTM-SEA is used 
for kinase activation and pathway enrichment. Additionally PhosPiR performs a 
kinase activity prediction with KinSwingR [117], in which PhosPiR uses 
PhosphoSitePlus kinase-substrate relationship database, and performs a consensus 
sequence motif analysis on the input data. Subsequently KinSwingR combines the 
direction of fold change and p-value for a given kinase and calculates p-value for 
kinase activity change. Finally, PhosPiR visualizes the top 250 phosphorylation 
sites and their predicted upstream kinases in a Circos plot. A special feature of 
PhosPiR is a sequence alignment of the phosphosites to a human ortholog, which is 
then annotated with UniProt information for non-human organisms. PhosPiR 
accepts phosphosite output from MaxQuant and other output formats need to be 
converted to this. 

PhosR is an R language-based phosphorylation data analysis pipeline and accepts 
data from MaxQuant and from various commercial MS/MS analysis software 
packages. PhosR places special emphasis on data imputation and normalization. 
PhosR performs imputation before data normalization, by performing a similar 
imputation function as Perseus [109], first in condition-specific way if the 
phosphosite has a greater value than the user set threshold of x% of non-missing 
values, and remaining missing values are imputed from total data. Finally, PhosR 
normalizes the data by removing unwanted variance method [118] with minimally 
changing phosphosites across samples. Similar to KSEA and KinSwingR, PhosR 
takes sequence motif and fold changes into account, and scores for top changing 
kinases in the dataset. PhosR also visualizes protein modules, which consists of 
proteins with similar kinase regulation profile, which allows for finding proteins 
that are regulated in a similar way in multiple phosphorylation sites. 
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3.Parkinson’s disease

3.1 PD risk factors and pathophysiology 
Parkinson’s disease is the second most common neurodegenerative disease, 
classically characterized by loss of dopaminergic neurons in Substantia nigra pars 
compacta (SNpc), and its motor symptoms. PD affected 6.1 million people globally 
in 2016 [119]. This number is growing rapidly and was estimated to have increased 
to 8.5 million affected by year 2019 [120]. At the population, level the disease 
incidence increases with age. In a 2016 meta-analysis of incidence studies, PD 
incidence starts at 3.57/100,000 in males and 3.26/100,000 in females from ages 40-
49 [121]. This progressively increases to 258.47/100,000 in males and 103.48/ 
100,000 in females at age of +80 [121]. Significant regional variance in incidence 
rate was reported between the studies reflecting different populations being 
comparted [121]. The incidence has increased in most world regions between 1990-
2019 [120], and it is unclear how much of the increase can be attributed to globally 
increased life expectancy, aging societies and improved awareness and diagnosis of 
the disease. 

Most prominent and well-known features in PD are the classical progressive motor 
symptoms, which are many and not limited to: bradykinesia, resting tremors, 
rigidity, postural instability, and gait impairment. These symptoms can be attributed 
to progressive degeneration of dopaminergic neuron axons in the striatum followed 
by loss of dopaminergic neurons in SNpc [122, 123], which is a process that starts 
before manifestation of motor symptoms and clinical PD diagnosis. SNpc 
dopaminergic neurons are not the only neurons affected in the brain, and loss of 
neurons can be observed in multiple brain regions [124]. Increasingly the non-motor 
symptoms are also being recognized as important features in PD and can precede 
the motor symptoms and diagnosis of PD by years. These include, but are not limited 
to: constipation, sleep disturbances, olfactory dysfunction, daytime sleepiness and 
depression [124]. In respective to these symptoms PD is heterogeneous and there 
have been attempts to divide PD into subgroups [124], for example with clinical 
information [125, 126] or biomarkers [127]. A recently proposed staging system 
classifies PD based on presence of pathological α-synuclein (αSyn), genetic genetic 
status and clinical features [128]. 
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Currently the cause of the disease is not known. Risk factor for PD include genetic 
variation, which are discussed later, as well as non-genetic factors such as rural 
living and exposure to pesticides [124]. Reduced risk for PD is associated with 
tobacco smoking, alcohol consumption, and coffee drinking [124].  There is no cure 
for the disease, and treatments aim to slow the progression of the disease and easing 
the symptoms. There is interest in diagnosing the disease in pre-motor phase, which 
could lead to significant improvement in life quality for people at risk for PD [129], 
but currently the disease is most commonly diagnosed at the time when motor 
symptoms manifest as the prodromal non-motor symptoms are vague. 

As discussed above pathologically PD is characterised by loss of dopaminergic 
neurons in substantia nigra of midbrain and to lesser degree in other neurons in other 
regions. Many of the surviving and dying neurons also exhibit appearance of protein 
aggregates called Lewy bodies (LB). One component of these protein aggregate 
bodies is αSyn, which gene’s mutations and gene multiplications are known to cause 
PD [130-132].  Below I will be discussing LRRK2, and some protein pathways 
related to PD, with special emphasis on LRRK2. 

3.2 LRRK2  
LRRK2 is a large ~286 kDa serine/threonine protein kinase and it’s mutations  are 
associated with autosomal dominant form of familial PD [133-138], sporadic PD 
[138] and Crohn’s disease [139]. Gain of function mutation in the kinase domain 
Glycine 2019 to Serine (G2019S) is the most common PD associated mutation and 
present in 1-6% in sporadic PD [140] and up to 40% in familial PD depending on 
the population [141]. LRRK2 PD resembles sporadic PD, though the symptoms and 
disease progression are milder [142]. The symptoms are almost indistinguishable 
between LRKR2 and sporadic PD. Furthermore, LRRK2 activity is elevated in 
sporadic PD [140, 143-145], and this makes LRRK2 one of the most promising 
targets to study in PD biology, and unsurprisingly multiple clinical trials are 
currently targeting LRRK2. The fact that LRKR2 mutations cause symptoms similar 
to sporadic PD, we chose LRRK2 as our gene of interest (Paper I and II). LRRK2 
is widely expressed most prominently by cells of lung, kidney immune system and 
the gut, as well as glial cells and neurons [146, 147].  

LRRK2 forms a dimer under physiological conditions [148], and contains two 
catalytic domains: a GTPase domain consisting of Ras-of-complex (ROC) and the 
C-terminal of the Roc domain (COR), which together form ROC-COR domain, 
followed by the kinase domain [134, 149]. These domains are flanked by the N-
terminal armadillo (ARM), ankyrin (ANK), LRR and c-terminal WD40 domains, 
which are regulatory protein-protein interaction domains [149].  
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Figure 2 Schematic overview of LRRK2 domains, common mutations and relevant phosphorylated 
residues discussed in this thesis. 

3.2.1 LRRK2 Kinase domain 
Two of the LRRK2 PD associated mutations are in the LRRK2 kinase domain: 
glycine 2019 to serine (G2019S) and isoleucine 2020 to threonine (I2020T), both of 
which are located at the activation segment of LRRK2 (Figure 2.), which spans 
amino acids 2017-2054. Both mutations are located at a conserved kinase 
DFGѱ motif (Figure 2.), which in the active DFGѱ -in conformation binds to a 
magnesium ion necessary for catalytic activity. Instead of the conserved DFGѱ, 
LRRK2 has an unusual DYGI motif, where the conserved Phe residues is replaced 
by Tyr and serves to stabilize the kinase in an inactive DFGѱ-out conformation, 
which decreases the catalytic activity [37]. Mutating the tyrosine 2018 residue to 
phenylalanine (Y2018F) creates a hyperactive kinase activity similar to I2020T and 
G2019S mutations, although the I2020T LRRK2 activity readout is dependent on 
the assay being used [37], which results in contradictory results for I2020T activity. 

While these mutations lead to hyperactive LRRK2, the mechanisms for causing this 
are different. LRRK2 exhibits higher kinase activity as a dimer [150, 151], and 
interestingly I2020T, but not G2019S homodimerize more strongly than wild type 
[152]. LRRK2 with I2020T mutation spontaneously forms filamentous structures 
due to association with microtubules [37, 153], which is also seen with the Y2018F 
mutation [37]. Wild type and G2019S LRRK2 require inhibition by a type I kinase 
inhibitor for the same effect [37, 154], which effectively stabilizes the kinase in an 
active closed conformation. The reason for this difference possibly relates to the 
kind of conformation the kinase adopts. A recent structural study with full length 
LRRK2 revealed that the inactive wild type (WT) and G2019S have similar 
structure [155], which along with the cited evidence above suggests a 
conformational difference between the different LRRK2 mutation forms. 
Conformation equilibrium for I2020T and Y2018F shifts towards active closed 
conformation [156], while WT and G2019S LRRK2 form filamentous structures, 
when this conformation is stabilized with type I inhibitor [37]. Furthermore, type II 
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inhibition, which stabilizes the inactive DFGѱ-out conformation, does not lead to 
the filament formation and MT association of LRRK2 G2019S [156]. This 
conformation-based difference can be one of the explanations why I2020T and 
G2019S mutations both cause hyperactive kinase, but with differing assay results. 
An additive explanation comes also from structure, as I2020T has a conformational 
shift towards active closed conformation, which can lead to slower substrate release 
[157]. In conclusion, G2019S possibly enhances kinase catalytic activity because of 
altered kinase kinetics, and I2020T through structural change [140, 156]. 

Detecting LRRK2 kinase activity 
The protein kinase activation segment often contains one or more Ser/Thr/Tyr auto-
phosphorylation sites 5-10 amino acids N-terminal to the conserved the APE 
sequence in the activation loop, which become phosphorylated upon kinase 
activation. There is evidence that LRRK2 auto-phosphorylates itself on Thr2035 
[148, 158-160], Thr2031 [159, 160] and Ser2032 [148, 159, 160]. While Thr2035 
originally was found be indispensable for kinase activity [158], the opposite result 
has been reported [148]. An unambiguous auto-phosphorylation site in the 
activation site indicative of LRRK2 activity has not been established, and several 
phosphorylation sites located outside the kinase domain are proposed to be 
indicative markers of activated kinase: Serine Ser910 and Ser935 [161], and 
Ser1292 [162].  

Auto-phosphorylation at Ser1292 decreases with kinase inhibition [162-166] and 
many pathogenic mutations including I2020T and G2019S show elevated 
phosphorylation at this site relative to wild type [162]. This site also has an increased 
phosphorylation in G2019S mutation PD carriers [167] and sporadic PD cases [143, 
144], making this site an attractive target in monitoring LRRK2 activity in vivo and 
biochemical assays. 

Two other proposed surrogates for kinase activity Ser910 and Ser935 were 
discovered to have decreased phosphorylation in presence of various PD associated 
mutations including I2020T, and act as binding sites for 14-3-3 proteins [168]. 
Despite the having decreased phosphorylation in PD relevant mutations including 
in I2020T, these sites respond to kinase inhibition by loss of phosphorylation [161, 
164, 169-176], making these sites valuable tools in monitoring pharmacological 
inhibition. Confounding the matter Ser935 phosphorylation is increased in patient 
fibroblasts [145], decreased in PD patient brain [177], unchanged in sporadic PD 
patient peripheral blood mononuclear cells (PBMC)  [178] and neutrophils [176] 
and decreased in G2019S positive PD patient PBMCs [179]. At the same time, 
mutating these sites to alanine does not affect kinase activity [163, 168]. 
Furthermore, there is an inverse relationship between LRRK2 Ser1292 and Ser935 
phosphorylation levels [144]. Taken together phosphorylation Ser910 and Ser935 
are useful for monitoring kinase inhibition efficiency, but using these sites as a 
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readout of activated kinase is complicated, and phosphorylation at Ser1929 is a more 
direct readout of kinase activity. 

Finally LRRK2 substrate Ras-associated binding (Rab) family member Rab10 
[175], Moesin, synthetic peptides [180] and myelin basic protein [158] are used to 
detect LRRK2 activity. Of particular interest is Rab10, which is a physiological 
substrate of LRRK2. Rab10 was originally identified as LRRK2 substrate in an 
unbiased LRRK2 substrate screen [175] and it’s phosphorylation at Thr73 is used 
as a surrogate marker of an activated kinase and kinase inhibition [165, 176, 181, 
182]. Phosphorylation state of Rab10 correlates with kinase inhibition and 
subsequent dephosphorylation of Ser910/935 [165, 175, 176, 183] and Ser1292 
[165]. However this phosphorylation did not differentiate G2019S [182] and 
sporadic patient neutrophils from the healthy [182, 184]. In an urine study Rab10 
phosphorylation is unable to differentiate G2019S PD and healthy individuals, while 
sporadic PD has a minimal difference to healthy [185]. To further complicate the 
results a recent study using PBMC was able to demonstrate increased phospho 
Rab10 levels in both sporadic and G2019S PD [186]. Taken together monitoring 
LRRK2 kinase activity ideally uses multiple readouts as demonstrated by [37]. 
These readouts are designed for the experiment at hand, and LRRK2 readout can 
differ between experiments and patient cohorts. 

3.2.2 LRRK2 ROC-CORD domain and N- and C-terminal interaction 
domains 
ROC-COR domain is the second catalytic domain in LRRK2 located N-terminal to 
the kinase domain and can activate the kinase domain in a GTP bound state [158, 
187-189]. Mutations causing amino acid substitutions in three residues in this 
domain are associated with PD: asparagine 1437 to histidine (N1437H), arginine 
1441 to cysteine/glycine/histidine (R1441C/G/H) and tyrosine 1669 to cysteine 
(Y1699C) [190]. ROC-COR domain functions as a GTPase domain and the 
mutations in this domain reduce GTPase activity and ROC-COR function [158, 187-
189, 191]. This leads to increased kinase activity against non-physiological 
substrates [158, 187-189], and the physiological substrate Rab10 alike [175, 182, 
192, 193].  

Mechanistically mutations at R1441, N1437H and Y1699C prolong the GTP bound 
state by disturbing proper ROC domain dimerization and therefore decreasing 
GTPase activity [194-196]. Since LRRK2 kinase activity requires GTP [158] it is 
conceivable, that attenuated GTPase activity leads to prolonged LRRK2 signalling 
in the subcellular localizations where LRRK2 is recruited to. 

N- and C-terminal interaction domains contain less common disease-causing 
mutations. The N-terminal domain consists of armadillo, ankyrin and leucine-repeat 
rich domains, while the C-terminal regulatory domain is WD40. These domains are 
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largely regulatory in function, acting through protein-protein interactions. 
Removing the N-terminal regulatory domains creates constitutively active LRRK2 
kinase, possibly through the relief of WD40 interaction with N-terminal domain 
[156]. WD40 domain appears to be involved in dimerization and subsequent 
neurotoxicity of LRRK2 [197], as well as involved in interaction with vesicles [198] 
and the microtubule system [153, 198]. The best-characterized regulatory process 
through interaction domains occurs through armadillo and ankyrin. Here Rab29 
recruits LRRK2 to membranes, and activates LRKR2 kinase activity through 
interactions with ankyrin [199], and armadillo domains [200]. Additionally, Rab10 
and Rab8 are able to bind armadillo domain, where Rab8 binding stimulates 
phosphorylation of Rab10 [200]. In addition N-terminal domains interact with FAS-
associated death domain protein [201] and E3 ubiquitin ligase CHIP [202]. 

3.3 Molecular mechanisms of PD 
Parkinson’s disease is a diverse disease, with several genes involved in multiple 
cellular pathways. The first PD associated mutations were discovered in the gene 
coding for αSyn in the late 1990s in unrelated Greek families [203]. Since then 
multiple genes have been associated with PD or are putative risk factors [132], and 
although not all of their functions are not clear, one way to categorize PD 
mechanisms is to look at broad categorical functions, in order to contextualize the 
complex biology. In this thesis, I will breakdown these functions into mitochondrial 
dysfunction, disturbed proteostasis and inflammation.  

3.3.1 Mitochondrial dysfunction 
The brain consumes ~20% of the body’s glucose [204], which puts a large demand 
for brain mitochondrial function, which is a function that has been shown to be 
impaired in both sporadic and genetic forms of PD. Exposure to mitochondrial 
complex I inhibitors 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [205] 
and rotenone [206] both cause PD symptoms. At the same time decreased complex 
I activity is observed in sporadic PD patient brain tissue [207, 208] and other tissues 
such as muscle [209]. It is possible that in sporadic PD the loss of complex I activity 
is related to damage caused by reactive oxygen species (ROS) [208], which is 
consistent with signs of oxidative stress in PD patient substantia nigra [210]. As 
mitochondria are a major source of intracellular ROS, it is possible that in sporadic 
patients the oxidative damage seen in the brain is caused partly by dysfunctional 
mitochondria. Alternatively, the mitochondria might be damaged by ROS generated 
by dopamine metabolism. SNpc dopaminergic neurons at basal levels contain high 
concentrations of ROS due to dopamine metabolism in neurites [211]. As axon 
retraction in PD appears to precede dopaminergic neuron death, one possibility is 
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that either ROS overload at dopaminergic neuron pre-synapses, from mitochondria 
or dopamine metabolism is one of the causes behind axon degeneration.  

Several PD relevant genes such as LRRK2, DJ-1 and SNCA are linked to 
mitochondrial dysfunction. LRRK2 G2019S mutation carrier patients have 
decreased mitochondrial membrane potential and intracellular ATP levels indicative 
of mitochondrial dysfunction [212]. Additionally, αSyn has been shown to co-
localize with mitochondria in rodent neurons [213], and appears to sequester 
mitochondria in LB formation [214] and several SNCA mutations are associated 
with mitochondrial damage [215]. Protein/nucleic acid deglycase DJ-1 binds 
directly to ATP synthase complex, and loss of DJ-1 leads to mitochondrial 
depolarization [216]. The most studied genes in mitochondrial pathology are PINK1 
and E3 ubiquitin ligase 3, which will be discussed below more in detail.  

Autosomal recessive loss of function mutations in PINK1 [217] and Parkin [218] 
are involved in early onset recessive PD. The earliest evidence showed impaired 
mitochondrial function, accumulation of ROS and loss of mitochondrial proteins by 
mass spectrometry in Parkin knockout mice brain [219]. Later drosophila models 
show mitochondrial dysfunction in PINK1 knockout flies, and genetically linked 
PINK1 and Parkin to same pathway [220, 221]. This pathway activates when 
mitochondrial function is impaired, and starts with PINK1 recruitment to outer 
mitochondrial membrane, where PINK1 recruits Parkin [222] by phosphorylating 
Parkin at its ubiquitin like domain [223-225], and Ubiquitin [21, 224-227]. This in 
turn results in ubiquitination of mitochondrial Parkin client proteins, and clearance 
of damaged mitochondria in a process called mitophagy [228]. One of the hallmarks 
of damaged mitochondria is an increase of intracellular reactive oxygen species. 
Interestingly PINK1 activity is negatively regulated by reactive oxygen species, 
which raises the question of PINK1 dependent mitochondrial mechanisms [229]. 
Additionally it appears that mitochondrial basal mitophagy in mammalian brain 
occurs independent of PINK1 [230], and more studies are needed to understand 
processes that PINK1 and Parkin regulate.  

As rotenone directly causes PD, LRRK2 is implicated in mitochondrial dysfunction, 
and mitochondrial dysfunction is observed in PD we chose rotenone to model PD 
in vitro and rodent rotenone model of PD (Paper I). 

3.3.2 Proteostasis 
Proteasome function, αSyn and Lewy bodies 

The proteasome is a large protein complex consisting of a catalytic core with trypsin 
and chymotrypsin like activity, and multiple regulatory and structural subunits and 
is responsible for degradation of cytosolic and nuclear proteins tagged with 
ubiquitin [231]. Proteasomal function has been observed to be impaired in PD [232, 
233] and mutations in proteasome subunit S6 ATPase are associated with early onset 
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form of PD [234]. One of the most prominent histological signs of PD in many, but 
not all cases is the formation of LB. The major component of LBs and driver of their 
formation is thought to be αSyn, which is found to be ubiquitinated in cells, 
indicative of a malfunctioning ubiquitin-proteasome system [235].   

Under basal conditions, αSyn is localized to presynaptic membrane structures [236-
238], and is thought to regulate synaptic transmission. In simplified terms in the 
non-pathogenic state, αSyn exists as a monomer but due to some unknown 
mechanism forms various fibril polymers, which over time turn to form LB 
inclusions. Studies show that αSyn exhibits prion like properties [239], and the prion 
propagation can start from the peripheral tissues such as gut [240, 241]. In 
connection to this artificially preformed synuclein fibrils are able to convert soluble 
αSyn to aggregates [242, 243], and interestingly αSyn derived from patient LB are 
able to seed inclusions that resemble LB found in the disease in terms of abundance 
and subcellular distribution [244]. Furthermore, a recent study using an in vitro test 
demonstrates that formation of these inclusions by preformed inclusions is highly 
specific to individuals suffering from PD compared to healthy, non-manifesting 
mutation carriers and motor disease patients without dopamine deficit [245]. 

Duplication and triplication mutations in αSyn are linked to PD [132] suggesting a 
gene dose dependent effect. Despite this, it is not fully clear if formation of LB is 
one of the drivers for pathogenesis or is symptom of the disease [246]. There is 
evidence that functional αSyn is required for normal neuronal function, as 
knockdown in non-human primates [247] and in the rat [248] causes dopaminergic 
neuron degeneration, and neurological impairment and premature death in mice 
[249]. Around 90% of the αSyn found in LB is phosphorylated at Ser129 [250, 251] 
and it is unclear if phosphorylation at this residue either precedes or is downstream 
of the LB formation. Contrary to this phosphorylation event being disease causing, 
a recent study demonstrates that this phosphorylation correlates with normal 
neuronal activity [252], which makes the consequence of Ser129 phosphorylation 
unclear and further studies are necessary. In summary, it is clear that one of the 
major genes: αSyn is involved in disturbed proteasomal function, which as a process 
is a disease-causing mechanism in PD, but there are many unanswered questions. 

Autophagosome and lysosomal function 
Autophagy is a process where cells degrade cellular material, by either engulfing 
the cargo in a double membrane vesicle and delivering the contents to lysosome, or 
directly delivering the cargo to lysosome [253]. As mentioned earlier mitophagy, 
which is a special form of autophagy, is involved in PD pathogenesis. This form of 
organelle specific autophagy is referred as selective macroautophagy in the 
literature, which targets organelles such as ER or misfolded protein aggregates. A 
second kind of macroautophagy: non-selective autophagy targets bulk cytosol to 
degradation to provide nutrients during starvation [253]. In both cases, a double 
envelope forms around the bulk cytosol or organelle, which then fuses with 
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lysosome to form autolysosome, where hydrolases degrade the contents. 
Interestingly autophagy-lysosomal function is disturbed in both familial and 
sporadic Parkinson’s disease. Markers indicative of increased autophagosome 
formation are present in PD post-mortem brains [254]. At the same time, lysosomal 
markers are decreased in PD patient brain [255-258]. Taken together accumulation 
of autophagosomes appears to be a consequence of impaired lysosomal function in 
both rodent PD models and in PD patient SNpc neurons [257]. Furthermore, 
accumulation of autophagic markers is evident in LB, which again is indicative of 
impaired lysosomal function [257].  

Several genes mutated in PD have a strong links to autophagy functions. Most 
notably lysosomal enzyme Glucocerebrosidase (GBA) gene contains multiple loss 
of function mutations associated with PD causing lysosomal dysfunction [259]. This 
enzyme functions to cleave glycosphingolipids into their constituent parts, and 
sporadic PD patients have decreased GBA activity [260, 261]. Even though the 
activity decreases in PD, healthy individuals also display decreasing GBA activity 
over the course of normal aging, eventually reaching similar activity levels as in PD 
[260], which suggests further mechanisms that have not been observed so far. 
Interestingly patients harbouring both GBA and LRRK2 mutations have less severe 
disease phenotype than patients harbouring just the GBA mutation [262, 263], 
suggesting that LRRK2 and GBA converge on same pathway, through an unknown 
mechanism.  

As mentioned earlier several Rab proteins are LRRK2 substrates [165, 175]. Rab 
proteins are GTPases, which are kept inactive in the guanosine diphosphate (GDP) 
bound mode in cytosol, and in the active GTP bound form they associate with 
membranes, and facilitate vesicular transportation [264]. Once a Rab cargo has 
reached the target membrane, Rab GTPase activity is activated, and Rab is stabilised 
in the GDP bound mode by their regulatory proteins, and recycled back to proximity 
of their original membrane [264]. A consequence of the LRRK2 dependent Rab 
phosphorylation appears to be loss of Rab interacting protein interactions trapping 
Rab at their target membrane interfering with normal membrane trafficking of Rab 
proteins [175, 265]. Not surprisingly, LRRK2 mutations lead to endo-lysosomal 
dysfunction in rodent and drosophila models [266] and this dysfunction is evident 
in sporadic PD brain neuron soma [258]. Furthermore, rotenone treatment, which is 
a known activator of LRRK2, leads to reduction in GBA activity and end-lysosomal 
dysfunction in neuronal soma, all of which are reversed by LRRK2 inhibition [258]. 
Specific to neurons, LRRK2 kinase activity leads to impaired retrograde 
autophagosome transportation in neurons in both G2019S and R1441H models 
[267, 268], which is done through phospho-Rab dependent activation of kinesin 
[268]. Taken together suggests that both lysomal maturation and function, as well 
as transportation of autophagosomes are impaired in PD. 
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Protein synthesis and unfolded protein response 
Protein synthesis is a tightly regulated process involving multiple regulatory 
processes. One of these processes is the unfolded protein response (UPR), which 
activates when unfolded proteins accumulate in endoplasmic reticulum. This 
process serves to prevent further accumulation of unfolded proteins by slowing 
down protein synthesis and directing cells to make chaperones. Sustained activation 
results in activation of pro-apoptotic JNK signalling cascade and caspases. Here 
type I transmembrane protein inositol requiring 1 (IRE1) and activation 
transcription factor 6 (ATF6) pathways regulate the expression of proteins involved 
in UPR. A third pathway of UPR is protein kinase RNA-like endoplasmic reticulum 
kinase (PERK), which upon activation phosphorylates eukaryotic initiation factor 2 
alpha (eIF2α), resulting in arrest of cell cycle and protein synthesis [269]. Under 
resting conditions, 78-kDa glucose regulated protein (GRP78) binds to IRE1, ATF6 
and PERK and keeps them inactive. GRP78 preferentially associates with unfolded 
proteins, and upon accumulation of unfolded proteins, GRP78 dissociates from 
these three proteins resulting in activation of ATF6, IRE1 and PERK [269]. 

Relevant to PD activation markers of PERK were found to be present in PD patient 
brains [270-272], while the ER chaperone GRP78 is decreased [272], indicating 
dysregulated UPR and a decreased capacity for unfolded proteins. Furthermore, a 
member of protein-disulphide isomerase (PDI) family proteins, which help to 
mature unfolded secretory protein levels, is increased MPTP model and PD patient 
brain, and is present in LB [273], which could indicate a compensatory mechanism 
in response to unfolded proteins. S-nitrosylation of PDI family proteins can cause 
their inactivation, which contributes to endoplasmic reticulum (ER) stress and UPR 
activation, and this modification is increased in PD brain [274]. This modification 
is also induced by rotenone exposure [274], which suggests that mitochondrial 
dysfunction and increased ROS levels could activate UPR in PD. Rotenone appears 
to affect other components of UPR pathway, as it is able to induce phosphorylation 
of eIF2α in LRRK2 dependent manner in cultured neurons [145] (Paper I). 
Additionally many components of UPR are activated in response to rotenone 
treatment in an αSyn phospho-Ser129 dependent manner in a αSyn expressing cell 
line [275]. Further evidence of LRRK2 and αSyn involvement in UPR comes from 
a study where LRRK2 interacts with several ER resident proteins and regulates ER 
Ca2+ levels [276]. The treatment of cells with αSyn appears to trigger calcium 
depletion in the ER, which is exacerbated in cells derived from transgenic G2019S 
mice, leading to activation of UPR [276]. Taken together these results, and many 
more that are not cited in this thesis, suggests that PD mutations and environmental 
toxins predispose individuals to PD and UPR is involved. 

Connected to UPR, aberrant protein synthesis is present in PD through other 
mechanisms. The first line of genetic evidence comes from a family in Northern 
France with an autosomal dominant form of late PD, where eukaryotic initiation 
factor 4-gamma 1 was found to contain PD associated mutations [277]. Increased 
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elongation factor 2 phosphorylation (EEF2) indicative of decreased protein 
synthesis is present in PD brain [278] and in an in vivo rodent rotenone model of 
PD [145] (Paper I). Fibroblasts derived from sporadic and LRRK2 G2019S PD 
patients also show increased EEF2 phosphorylation in addition reduced protein 
synthesis [145] (Paper I). Proteomic study of the same cells revealed that proteins 
related to proteostasis and protein synthesis are down regulated relative to healthy 
controls [279] (Paper II). Contrary to evidence from patient derived samples, 
LRRK2 G2019S over-expression models in drosophila and cultured human neurons 
showed an increased protein synthesis mediated by ribosomal protein s15 
phosphorylation [280]. Pharmacological inhibition of endogenous LRRK2 protein 
levels rescues reduced protein synthesis in sporadic and G2019S patient fibroblast 
under basal conditions, and in cultured neurons in the rotenone model [145] (Paper 
I). Different results obtained by Martin et al. [280] possibly relates to differences 
between overexpression and endogenous LRRK2 levels found in cultured neurons 
and patient fibroblasts, and an open question is, which direction protein synthesis 
changes in cells with high and low LRRK2 levels.  Ribosomal profiling of LRRK2 
WT and G2019S knockout brains show equal differences in both directions [281], 
which indicates that the issue is complex, although ribosomal profiling does not take 
translational efficiency into account. Interestingly significantly different protein 
levels for ribosomal protein in both cytosol and mitochondria showed almost 
unilateral downward trend in PD patient brain, in a recent proteomic study [282], 
which again would suggest impaired protein synthesis in neurons. Taken together it 
appears like that protein synthesis machinery and its key regulators are dysregulated 
in PD. 

3.2.3 Inflammation 
Inflammation in PD was first described by McGee and colleagues in 1998 with the 
observation that microglia were activated in PD patient sNPC microglia [283]. 
Additionally CD+4 positive lymphocyte invasion to PD brain has been observed 
[284], and CD14+CD16- monocytes have been observed to increase in PD patient 
blood [285]. Conversely CD+4 lymphocytes are decreased in the periphery in 
multiple studies, while other cell types show mixed results [286]. Additionally 
multiple studies show increased neutrophil count in PD patient blood [287]. Recent 
study replicates decreased lymphocyte count with two large independent patient 
cohorts, and also shows a trend for increased neutrophil count in sporadic and GBA 
PD, but not in LRRK2 PD [288], which suggests different inflammatory 
mechanisms for different types of PD. 

In addition to cellular mediated immunity, the complement system has been shown 
to be activated in PD sNPC Lewy Bodies [289, 290]. Furthermore, complement 
protein levels increase in CSF in multiple studies [291]. Not surprising complement 
components have come up as top biomarkers in recent proteomics high depth studies 
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from patient samples coming from various sample materials sources including brain 
[282, 292, 293]. Additional evidence of complement activation comes from a 
cellular model, where overexpression of αSyn activates the classical complement 
pathway [294]. 

The most prominent gene with mutations in PD with strong links to inflammation 
is LRKR2. LRRK2 is highly expressed in various immune cells [146, 295, 296], 
especially in neutrophils [176]. In addition, LRRK2 is involved in inflammatory 
bowel diseases (IBD) [139], which is a risk factor for PD. A Taiwanese population 
study showed that individuals suffering from IBD had 35% higher risk of 
developing PD [297], which yet again suggests that PD starts from the periphery. In 
disease models, lipopolysaccharide (LPS) treatment in mice causes delayed loss of 
dopaminergic neurons in mice by 7 months after systemic delivery of LPS [298]. 
This is not observed in transgenic wild type LRRK2 mice in response to LPS 
treatment, while LRRK2 R1441G or G2019S mutation mice have loss of 
dopaminergic neurons in SNpc [299]. Interestingly many immune cell types have 
higher LRRK2 protein levels in sporadic PD relative to healthy controls [295, 296] 
and many cytokines are able to elevate LRRK2 protein levels in cultured PBMC 
[300]. Pathogenic mutations in LRRK2 can increase inflammatory cytokine and 
chemokine levels, in kinase dependent manner [301]. Other Parkinson’s disease 
related genes also link to PD, and functionally most likely alter the immune system 
in different ways [286]. Taken together multiple lines of evidence demonstrate that 
immune system is disturbed in both sporadic and genetic PD alike. 
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4. Proteomics 

Advances in the study of polynucleotide deoxyribonucleic acid (DNA) analysis 
techniques have allowed the development of global gene wide association studies 
(GWAS) [302], with the aim of understanding how genomic variance explains 
physical phenomena such as physical and mental traits, as well as disease states. 
Although providing valuable information, these studies fail to fully explain the 
resultant phenotype traits such as body weight, intelligence or personal preference 
between coffee and tea. GWAS studies also fail to fully explain when or if ever, an 
individual carrying disease associated variant(s) will develop the disease.  

Another polynucleotide-based approach: transcriptomics measures ribonucleic acid 
(RNA) levels, tries to bridge the gap between DNA and the phenotype, and is 
popular due to mature sample preparation and measuring methods. Since messenger 
ribonucleic acid (mRNA) is the blueprint for making proteins by ribosome, the 
assumption is that mRNA levels reflect protein levels and the biological complexity. 
Proteins in turn largely make up the biological state of a cell or tissue and ultimately 
a phenotype. However, merely looking at mRNA levels alone is not sufficient to 
explain function of the protein present in the cell. Proteins contain PTMs, have 
dynamic structures, they interact with each other and metabolites in various 
complexes and subcellular locations. In addition, proteins have varying states of 
solubility and have variable half-lives, information that is invisible at mRNA level. 
Furthermore, diagnostically valuable body fluids such as plasma or urine have no 
active translation, and a phenotypic readout on changes occurring at protein level is 
only possible by direct protein readout. Below I will be discussing how Mass 
spectrometry-based proteomics works from sample preparation to Mass 
spectrometric analysis methods. Finally, I will be discussing how making protein 
level correlations from mRNA under steady and non-steady state works, and briefly 
introduce non-Mass spectrometric proteomic techniques. Various RNA species also 
have other important functions, such as regulating transcription, transcript slicing, 
protein synthesis and protein activity [303], but will not be discussed in detail in this 
thesis. 
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4.1 Mass spectrometry based proteomics. 
As discussed above, the prerequisite for understanding any phenotype requires the 
study of the proteome. Traditionally this has been achieved with classical 
biochemical techniques such as Edman degradation [304] or probe-based 
technologies such as Western blotting and it’s derivate eastern blotting [47, 305]. 
However, these techniques are not high throughput and do not provide complete 
protein coverage and can yield unspecific signals. In answer to this Mass 
spectrometry based proteomics, is the key technology that has enabled the study of 
proteins at high throughput at the proteome level, with a diverse array of 
instruments, techniques, and applications.  

The current estimate is that that each cell type expresses roughly 10k genes at a 
time, with a detectable protein product [306]. Each gene can produce multiple 
transcripts through splicing, each transcript can produce multiple forms of proteins 
through alternative start codons and may contain individual genetic variations. 
Proteins in turn are post-translationally modified, and each protein with distinct set 
of variables coming from a gene is called a proteoform [307] (Figure 3A.). It is not 
clear how many proteoforms are present in any human cell type, but Aebersold et 
al. estimated one million [308], which is a striking number considering humans have 
roughly 20k genes. Currently mass spectrometry-based proteomics is the most 
mature technique used to characterize quantitative protein level differences between 
conditions, PTMs, protein turnover, structure and various proteoforms that make up 
the proteome, and in the end finding the determinants that define a phenotype.  

 

Figure 3. Multiple proteoforms with distinct set of modifications from the same gen can exist, such 
as different sites being phosphorylated in a proteoform (P on the protein chains) A. Bottom-up 
proteomics measures cleaved proteins, making it challenging to assign peptides to particular 
proteoform, while middle-down and top-down proteomics allow for better sequence coverage and 
proteoform assignment B. 
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Mass spectrometers measure charged ions by their mass to charge ratio (m/z) in 
either intact ion (MS1), or in fragmentation mode (MSn). Proteomic samples are 
very complex and are usually separated by chromatography to allow for a more in 
depth analysis. Intact analytes in proteomic samples often have an identical m/z, and 
to identify the analyte, its peptide/protein sequence must be established. This is 
achieved by MS2 analysis, where the intact precursor ions are first detected by MS1 
scan, and then fragmented inside the Mass spectrometer. The resulting MS2 
spectrum provides the sequence information necessary for establishing identity of 
the intact ions. If necessary, further rounds of MSn analysis can be performed to 
obtain unambiguous identification.  

A Mass spectrometric analysis of proteome has the following stages: sample 
preparation, separation, ionization, mass analysis, optional fragmentation and ion 
detection and data processing and analysis. The actual way these are done varies 
and the choice starts from what is being measured. The proteome can be investigated 
by Mass spectrometry in three ways: bottom up, middle down, top down (Figure 
3B.), each of which have multiple analysis strategies. Bottom-up proteomics 
typically measures ~6-30 amino acid length peptides generated from a protein 
sample by enzymatic digestion, middle down proteomics peptides larger than 30 
amino acids derived from chemical or enzymatic digestion and top-down intact 
proteins. Top-down analysis provides the most information rich detail on a 
proteoform, but it is, as of writing limited to detecting several thousand proteoforms 
coming from several hundred proteins [309]. This is largely due to challenging 
sample preparation, the large dynamic range of the proteome and difficulties in 
separating the analytes necessitated by complexity of the proteome, and fragmenting 
the proteins in MS2 analysis and the subsequent data analysis [309, 310]. Novel 
separation methods such as circular ion mobility and proton transfer charge 
reduction are being developed and may eventually solve these problems ([311, 312]. 
Middle-down is a compromise between bottom up and middle down, but largely 
suffers from the same problems as top down. Additionally, there are no standardized 
and easy to use sample preparation methods available for generating large peptides 
and analysing them reliably [313].  

Bottom-up proteomics is the most common proteomic sample preparation strategy 
in use, largely owing to its flexibility and relatively easy sample preparation. 
Another advantage of bottom-up proteomics is that modern Mass spectrometers can 
resolve and fragment small peptides more readily, and the identification and the 
analysis software is mature. The largest disadvantage of bottom-up proteomics 
compared to middle and top down is limited sequence coverage of the protein, which 
leads to ambiguous protein identity assignment, as many proteins from closely 
related families or functions contain identical protein sequence segments. When 
such segments are detected, it is impossible to tell unambiguously, which protein 
they belong to. The second disadvantage relates to post-translational modifications. 
Proteins contain multiple post-translational modifications and relationship between 
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different post-translational modifications and the associated proteoform is lost in 
bottom-up proteomics, as it is impractical to design experiments to detect multiple 
PTMs at a large scale. Despite these disadvantages related to bottom-up proteomics, 
the techniques associated with it are most the most matured in proteomics, and were 
used in the papers covered in this thesis (Paper I-III). 

Modern Mass spectrometers are limited in their detection range, and typically can 
detect protein quantities in the range of 3-7 orders of magnitude in a single shot 
experiment. This depends on the instrument analysis mode used, where older 
Orbitrap instruments have dynamic range of over 3 orders of magnitude [314], and 
~5 orders of magnitude with the newer Orbitrap [315, 316] and time of flight [317] 
instruments in untargeted mode.  The cellular proteome has dynamic range of 
roughly 7 [318] orders of magnitude and bio fluids such as plasma 12 orders of 
magnitude [319]. Therefore, to fully understand protein level differences, post-
translational modifications and how they translate into a particular phenotype, 
special fractionation and enrichment techniques are commonly used to dissect 
proteome level changes occurring outside the detection range. The scope of this 
thesis lies in the domain of bottom-up proteomics and following chapters will be 
used to discuss steps involved from sample preparation to ion detection of bottom-
up protein sample. In the remaining part of the thesis, I will discuss sample 
preparation methods for bottom-up proteomics, followed by Mass spectrometry data 
acquisition modes, data processing and quantitative analysis of proteomic MS data, 
and finally non mass spectrometry based methods to study the proteome. 

4.1.1 Sample preparation for bottom-up proteomics. 
The efficient analysis of bottom-up samples by Mass spectrometry requires that the 
peptides, which are used in the analysis, are ~7-30 amino acids in length. The most 
common way of achieving this is to enzymatically digest the sample with trypsin, 
which specifically cuts C-terminal to arginine and lysine, which usually generates 
> +2 charged ions, and are highly abundant on protein surfaces, and generate 
peptides that can be used to detect most of the proteome [320, 321]. There are other 
enzymes used for bottom-up proteomics such as chymotrypsin, which cuts 
preferentially at aromatic amino acid residues and at lesser rate at leucine and 
methionine, which is advantageous when analysing highly hydrophobic proteins 
such as multi-pass transmembrane proteins.  

Digestion for bottom-up proteomics. 

There are multiple ways to achieve digestion of protein sample, and these can be 
largely divided in to three categories: in solution, gel-based digestion methods and 
device-based methods, which have been extensively compared [322-326]. The 
choice of which method largely depends on combination of scale of the experiment, 
cost, reliability, and the downstream application. 
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In solution digestion is a commonly used approach in bottom-up proteomics. Here 
the sample is efficiently denatured followed by reduction and alkylation of cysteine 
side chains, followed by trypsinization and sample clean up. Samples for in solution 
digestion samples are often denatured with Urea or Guanidine hydrochloride, both 
of which are chaotropes. Ionic detergents such as sodium dodecyl sulphate (SDS) 
sodium deoxycholate (SDC), the alcohol trimethyl,2,2,2-trifluoroethanol and the 
commercial MS compatible detergent RapiGest™ are also extensively used [327-
329]. Samples may contain MS incompatible components such as detergents, lipids, 
and metabolites, which can be removed by protein precipitation if needed [322]. The 
downside of chaotropic denaturants is that, even when they are diluted, they 
interfere with the activity of the trypsin, leading to more incomplete digestion than 
in other methods [322, 323, 327]. Another downside of in solution methods is that 
the sample preparation and digestion introduce MS incompatible chemicals, which 
must be removed prior to MS analysis. Salts, water soluble chemicals and chaotropic 
reagents are effectively removed by reverse phase (RP) C18 clean up. Ionic 
detergents SDS [328] and SDC [329] can be removed by precipitation, which is 
often followed by RP C18 clean up to further clean and concentrate the samples. A 
recently developed in solution method SPEED uses trifluoroacetic acid for 
solubilisation. SPEED samples are cleaned by RP C18 after reduction, alkylation 
and trypsinization have been done in the same sample tube, which streamlines the 
sample handling [330]. This method is simpler than the older in solution methods 
and compares favourably to modern digestion methods in terms of reproducibility 
and data depth [322]. While these methods ensure that the sample is MS ready, RP 
C18 clean up adds an extra cost and handling, and roughly 50% of the sample is lost 
during the clean-up. The advantages of in solution methods are the relatively cheap 
cost and simplicity in sample handling.  

In the gel-based methods, the sample is either embedded or separated in a 
polyacrylamide gel under native or denaturing conditions. Following this, samples 
are stained to allow visualisation for subsequent excision from the gel. In the next 
step, the gel diced into small pieces, destained, and in the process cleaned 
thoroughly from any MS containing contaminants in the process. Following 
destaining, cysteines are reduced and alkylated, and trypsin is added to gel pieces 
[331]. The sample obtained after peptide extraction is ready for downstream 
experiments or liquid chromatography Mass spectrometry (LC-MS) analysis. In gel 
digestions are labour intensive and slow, but show robust results [324], although the 
peptide yield is strongly affected by input amount and is smaller than with other 
methods under certain conditions [325, 326]. In gel digestion is possible to 
automate, but is still limited by the necessity of running SDS-PAGE gels and the 
manual excision of the sample lanes [332], which limits the use in large scale 
experiments. The advantage of in gel digestion is that samples are cleaned 
thoroughly through the handling, and it is possible to fractionate proteins of interest 
by size, which allows for characterization of proteins of interest and proteoforms 
based on size and cross-linked protein complexes. 
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Device based methods are a more recent development, relatively speaking. Protein 
samples are generally denatured with strong denaturants, followed by reduction and 
alkylation. The samples are trapped physically on or by a solid matrix during or after 
the denaturation and alkylation. Trapped samples are extensively washed on the 
devices effectively removing most interfering substances, which increases 
efficiency of both digestion and streamlines downstream handling. The advantages 
of trapping methods is their speed, and they often give pure peptide samples, which 
are ready for downstream analysis. There are many commercial options such as S-
Trap [333], SP3 [334], Si-Trap [335] and iST [336], and in house methods such as 
FASP [337]. Many of these methods are available in 96-well plate format, and 
owing to their simplicity, they are increasingly used in high-throughput studies. 
SP3, S-Trap and Si-Trap generate samples that are ready for simple protein level 
analysis without the need of sample purification, while FASP and iST require this. 
FASP is the non-commercialized method and is cheaper than the commercial 
methods, but the method involves multiple long centrifugation steps, which makes 
it more time consuming. The commercial device methods discussed are more 
streamlined, but at the same time are more expensive than FASP or the in solution 
and in gel methods. 

Bottom-up approaches for newly synthesized proteomes. 
As total protein levels are made up of different proteoforms in various states of 
activity, solubility and processing, it is beneficial to study newly synthesized 
proteome, to assess response to drug treatments or perpetuations in protein 
synthesis. Historically protein synthesis was studied by ribosomal occupancy and 
S35 labelling. However, these techniques do not give global information about which 
proteins are undergoing synthesis. Non-canonical amino acids probes like L-
azidohomoalanine (AHA) [338] and L-homopropargylglycine (HPG) were 
developed [339] and are incorporated in to growing polypeptide chains in place of 
methionine. These amino acids contain an azide side chain, that can be conjugated 
to alkyne containing molecules by click chemistry [340], and proteins tagged with 
these amino acids can be enriched and analysed by MS using a technique like 
BONCAT [341]. Here, azide containing proteins are covalently bound to alkyne 
agarose, allowing for the enrichment, and are then digested on bead, followed by 
MS analysis. However, as the AHA residues that unambiguously identify newly 
synthesized proteins are covalently bound to alkyne resin after the digestion, it is 
difficult to tell newly synthesized protein from proteins that bind agarose by 
unspecific binding. As further development to BONCAT, Direct Detection of 
Biotin-containing Tags method first digests the protein, then uses click chemistry to 
conjugate AHA containing peptides  to biotin alkyne, and enrich biotinylated 
peptides on streptavidin agarose leading to unambiguous identification and 
increased sensitivity compared to protein enrichment based technique [342], and is 
applicable to in vivo labelling [343]. 
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Labelling with AHA and HPG is neither fast nor 100% efficient, as cells prefer 
methionine to analogues by a factor of several hundred times [338, 339], and 
therefore requires methionine starvation in cell culture or replacement of methionine 
in the diet in vivo. This puts constraints on short time course experiments and 
methionine starvation results in a non-native state for the cells. An alternative for 
non-canonical amino acids, puromycin allows for rabid labelling of newly 
synthesized polypeptides [344], and an alkyne containing puromycin analogue, can 
be enriched for MS analysis [345]. Puromycin is incorporated in to growing 
polypeptide chains in place of tyrosine and upon incorporation, the polypeptide is 
released from the ribosome [346]. Puromycin containing polypeptide products are 
cleared away within hours, which creates problems for long time course 
experiments [347]. Another downside of puromycin-based assays is that it creates 
proteotoxic stress through accumulation of unfinished protein products that have to 
be cleared away. Seemingly circumventing the problems with AHA and HPG, 
which are methionine starvation and long labelling, and proteotoxic stress and 
protein degradation with puromycin THRONCAT was developed [348]. Here cells 
are efficiently labelled with the threonine analogue β-ethynylserine in complete 
media without amino acid starvation. Although β-ethynylserine competes with 
threonine, efficient labelling is achieved in as little as in an hour in threonine 
containing complete media. This allows for pulse labelling of proteins in short 
treatments and appears to be promising tool in detecting changes in newly 
synthesized proteome.  

Newly synthesized proteins can also be studied in a cell type specific manner by 
targeting transfer RNA (tRNA). This technique utilizes mutant aminoacyl tRNA 
synthetase, and the methionine analogue L-azidonorleucine (ANL). Here cells 
expressing mutant aminoacyl tRNA synthetase are able to charge methionine tRNA 
with ANL, which leads to efficient incorporation of ANL to proteins in place of 
methionine [349]. This allows for efficient incorporation of ANL in presence of 
methionine containing medium, in cell type specific manner although this mutated 
synthetase has 4 fold preference for methionine [349], this is significantly more 
efficient than AHA and HPG based, which have 100 fold smaller affinity for 
incorporation compared methionine. At the time of we performed proteome analysis 
of newly synthesized proteins AHA approach BONCAT [341] was characterized 
the best, which why we chose this approach (Paper II). 

4.1.2 Analysis of bottom-up samples on a mass spectrometer 
The choice of the quantitation and data acquisition methods is critical in MS based 
proteomics experiment, and largely determines quantitative accuracy, proteomic 
depth, and the cost of analysis. Mass spectrometers can be operated in data 
dependent acquisition (DDA) mode, where the mass spectrometer first performs an 
intact ion scan (MS1) (Figure 4A.) followed by MS2 sequencing of most intense 
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MS1 ions either by number of specified MS2 scans, or under a specific time interval 
(Figure 4B. and C.). In an alternative data acquisition method, data independent 
acquisition (DIA) the intact ion mass range is divided into mass windows and 
windows are sequentially analysed in MS2 mode (Figure 4C.). The third data 
acquisition mode is targeted mode, where the mass spectrometer is monitoring a 
specified list of precursor ions. Lastly, a rough cut can be made into unbiased 
discovery acquisition methods and targeted methods, although with introduction of 
hybrid DIA method [350], which combines targeted method and unbiased label free 
DIA, the line between these two is blurring. Although not all encompassing below, 
I will be discussing the most used data acquisition methods and assessing their 
strengths and weaknesses. 
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Figure 4. Peptide ions are detected in MS1 scan A. In DDA single peptide ion is chosen for analysis, 
and in DIA m/z window B. Resulting spectra in DIA analysis are more complex and require more 
sophisticated analysis software C. 
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Label free DDA quantification 
Label free quantification (LFQ) DDA (LFQ-DDA) quantification typically obtains 
the sequence information from an MS2 scan and peptide quantity from the precursor 
ion intensity measured in MS1 scan, as MS2 scans occur randomly outside the MS1 
peak apex. This can contain co-eluting peptides and thus does not reproducibly 
capture peptide quantitative information in DDA [351]. This is relatively 
inexpensive and quantitatively accurate but suffers from the stochastic nature of 
DDA precursor ion selection, which increases as a problem as increasing number of 
runs are being compared. As LFQ-DDA quantification is typically done with MS1 
precursor intensities, the problem of missing values with this technique is partially 
circumvented by matching unidentified MS1 features in one run to an identified 
MS1 feature with the same mass and retention time in another run as exemplified 
by MaxQuant [111, 352] also called match between runs (MBR) in the literature. 
However, despite MBR, label free DDA still suffers from high number of missing 
values, which is particularly problematic in PTM studies, where a presence of a 
PTM can be binary, and missing values can cause uncertainty in deciphering the 
biology. In label free DDA quantification, it is possible to achieve higher proteome 
coverage by orthogonal fractionation methods with up to 12k protein groups being 
identified [353-356]. Advanced DDA methods such as Boxcar DDA uses a single 
shot experiment [357] as does Wide Window Acquisition [358] to achieve the same 
coverage. All come of these approaches come with some disadvantages. 
Fractionation in label free DDA comes at the cost of sample throughput, as each 
sample require multiple fractions in order to achieve high proteome coverage. 
Boxcar DDA on the other hand heavily relies on assigning unidentified MS1 
features to a spectral library without an MS2 scan raising the risk of false positive 
quantification. Wide Window Acquisition limits the analysis of MS/MS analysis to 
a vendor specific software (Proteome Discoverer, Thermo Fisher Scientific), and up 
to now, has not gone through peer review or comprehensive independent evaluation. 

Isobaric labelling approach 
In an isobaric labelling experiment, the peptide samples are tagged typically with 
an amine reactive set of labels which have the same nominal mass and appear as 
single isotopic distribution at MS1 level when the tagged samples are mixed and 
analysed on mass spectrometer. However, upon fragmentation and MS2 detection 
each of these labels produce a label specific quantitative reporter ion. There are 
multiple possible isobaric labelling tags: tandem mass tag (TMT) [359], isobaric 
tags for relative and absolute quantification (iTRAQ) [360], deuterium isobaric 
amine reactive tag (DiART)[361], N,N-dimethyl leucine (DiLeu) [362] and 10-plex 
isobaric tags (IBT) [363]. TMT and iTRAQ are readily available commercial 
reagents that allow labelling of up to 18 [364] and 8[365], while non-commercially 
available DiART, IBT and DiLeu reach up to 6, 10 and 21 respectively [361, 363, 
366]. Commercial isobaric labels are expensive limiting their use, although efficient 
labelling can be performed with less reagent than manufacturers recommend [367].  
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Although there are efforts to combine with targeted methods [368], isobaric 
labelling experiments are typically done in data dependent mode. Here the precursor 
peptide chosen for MS2 is a mix of all pooled samples and upon fragmentation and 
MS2 analysis all samples are simultaneously quantified, which leads to very few 
missing values within isobaric plex, which is particularly advantageous in PTM 
studies. As an emerging specialty use, isobaric labelling is also utilized in proteomic 
single cell methods. Typically eukaryotic cells contain ~100-300 picograms of 
protein [369], and peptide and protein detection rate rapidly decreases as peptide 
input closes to pictogram scale  even with modern instrumentation [317]. Isobaric 
labelling circumvents this limitation by utilizing a carrier channel with higher 
protein amount, pooled with the labelled single cell proteomes, which results in 
increased MS1 and MS2 signal while maintaining the quantitative information for 
single cell channels [370, 371]. 

However, due to stochastic nature of DDA sampling, isobaric labelling experiments 
can be plagued with missing values between isobaric plexes, with number of 
missing values reported to reach at 10% and 40% for proteins and peptides 
respectively at five TMT plexes [372]. Recently an isobaric labelling match between 
runs algorithm [373] in the popular MS analysis software MaxQuant [111] was 
developed to alleviate this problem, but missing values between plexes are still 
restrictive in a large isobaric labelling experiment. Another concern with isobaric 
labelling is interference signal from co-isolating peptides disturbing the quantitative 
accuracy, by ratio compression [374-379]. There are several strategies to 
circumvent this, and in the first, a peptide ion is first fragmented and analysed in by 
MS2 in ion trap, which is followed by MS3 scan of the most intense product ion in 
Orbitrap, largely eliminating interference at the cost of number of identified peptides 
[378]. A second approach is to separate precursor ions in gas phase by mass and 
charge properties [379] and modern mass spectrometers equipped with ion mobility 
capabilities are able to take advantage of this idea in isobaric labelling experiments, 
by reducing the amount of co-isolating ions [380]. 

The highest proteomic coverage is usually achieved with orthogonal fractionation 
methods as in LFQ-DDA [355], usually with an off-line high pH reverse phase C18 
fractionation followed by online separation of the resulting fractions. Extensive 
fractionation combined with isobaric labelling not only produce high depth protein 
level data of up to ~8-12k genes being detected from complex human samples [381-
384], and also proteoform specific peptides, abundant PTMs, rare variants and non-
canonical proteins are readily detected [381, 383, 385].  

Data independent acquisition 

In recent years DDA in label free quantification for protein level changes has found 
a competitor in data independent acquisition (DIA, Figure 4). DIA MS2 spectra are 
more complex than those acquired with DDA (Figure 4C.), as the product ion 
species resulting from the fragmentation originate from multiple peptides. This 



53 

necessitated building of project specific spectral libraries by deep coverage 
fractionation, or use of generic libraries, which results in slightly lower quantitative 
accuracy and identification rates than with project specific libraries [386]. However, 
library free DIA was enabled by generating pseudo MS2 spectra from DIA scans by 
matching MS1 peptide features to product ion retention times [387]. This idea has 
been further developed into multiple DIA analysis pipelines such as MaxQuant 
[111, 388], DIA-NN [389], Spectronaut [390] and Fragpipe [391, 392], and as of 
writing this these techniques have come very close to library based DIA in terms of 
identification. Typically DIA experiments are label free, but recently developed 
non-isobaric tagging has shown promising results in multiplexing, number of 
identifications and quantitative accuracy [393]. However, further independent 
studies are needed to validate this finding. 

Targeted methods 

Targeted methods fundamentally differ from the shotgun methods described 
above. Here a list of peptide precursors is monitored either constantly, at certain 
chromatographic retention time points or the peptide scan is triggered. These 
methods are typically more sensitive and quantitative accurate than the discovery 
methods, if designed properly. Method design starts from defining the peptides 
that are to be quantified. Ideally these peptides do not contain difficult tryptic cut 
sites, labile or readily modified amino acids such as asparagine and methionine. 
However, all peptides have their intrinsic properties regarding stability, and for 
many proteins it is impossible to define a perfect peptide. After defining peptides, 
these are synthesized and analysed by MS to build a spectral library. As not all 
peptides are stable, different parts of proteins under study might behave in 
different ways due to proteostasis processes, PTMs or proteoforms it is desirable 
to analyse multiple peptides per protein. This design should take sequence 
isoforms and peptide specificity for protein into account, as many proteins share 
redundant sequences. 

There are multiple methods available, with selected reaction monitoring (SRM) and 
parallel reaction monitoring (PRM) being the so called “classical” methods [394]. 
In both precursor peptide ion specified in an inclusion list is isolated from other ion 
species with a quadrupole mass analyser (Figure 5.). SRM is typically done with a 
triple quadrupole instrument where the second quadrupole acts as a fragmentation 
cell, and the third scans through selected list of product ions. PRM in turn was first 
described for Orbitrap instrument where the precursor peptides are isolated with 
quadrupole and an optional MS1 scan is performed [395]. Isolated peptide 
precursors are fragmented in higher energy collisional dissociation or collision-
induced dissociation (CID) mode, followed by simultaneous measurement of all 
product ions in Orbitrap. These experiments are also possible in quadrupole time of 
flight instruments. No matter the technique, the measured product ions are matched 
against the spectral library, where the ions should match library ions and their 
relative ion intensities, and the final quantification is done with product ions that do 



54 

not show interference from other peptides. Both PRM and SRM have their limit of 
quantification (LOQ) in the attomole scale and have similar quantitative accuracies 
[394, 396-398]. However, SRM suffers from co-isolation of interference ions due 
to relatively low resolution of mass selection (1-2 m/z) with each quadrupole [396], 
which are potentially difficult to detect in a large scale experiment. For these reasons 
we chose PRM for our targeted validation method (Paper II). 

 

Figure 5. SRM and PRM are both targeted proteomics methods. In both methods, the isolation cell, 
which is typically a quadrupole are used to isolate precursor ions. In both methods second cell acts as 
fragmentation device(Q2), which is a second quadrupole in SRM, and fragmentation trap in Orbitrap 
instruments. In SRM product ions are detected one at a time in Q3, typically quadrupole. In PRM all 
product ions are detected in parallel in mass analyser, which is typically an Orbitrap.   
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In order to increase the number of peptides quantified it is possible to schedule the 
isolation list, so that only a subset of the isolation list is being monitored at any 
given time. Even with this approach, the feasible number of monitored precursor 
peptides is in low hundreds and requires stable chromatographic conditions and 
careful scheduling of the peptides. As it is unlikely that retention times replicate 
reproducibly over time especially with “in-house” made liquid chromatography 
columns, the concept of index retention time peptides was introduced by the 
MacCoss laboratory [399], to help adjust for retention time changes occurring over 
time or change of chromatographic system and gradient. An alternative approach to 
this is to perform a real time retention time calibration [400], which allows for tight 
retention time scheduling with real time MS2 matching.  

As a further development to targeted methods it is possible to spike samples with a 
stable heavy isotope synthetic peptide (SIL) and use the mass spectrometer to 
monitor presence of these peptides for a triggered detection of the endogenous 
peptide. This was first described in index-ion triggered MS2 ion quantification 
(iMSTIQ) [401]. Here the sample peptides are labelled with a +4 Da mTRAQ 
reagent, and SIL reference peptide with light amine reactive tag. This essentially 
creates isobaric ion species compromised of the labelled sample and spike in 
peptide, which MS2 detection is triggered when a third species of peptide: heavy 
labelled SIL index ion peptide is detected by MS1. An advantage of this method is 
the fact that the method is more sensitive than inclusion list-based methods with 
roughly 2.5x more identified peptides at a 0.75 fmol peptide concentration [401]. 
The index peptide in theory should trigger the scan of the target when it is eluting, 
and as reference and sample peptide are simultaneously isolated, the resulting data 
is easy to normalize between runs. However, labelling scheme is more expensive 
and difficult to implement than a label free targeted method, and endogenous 
peptides can cause a false positive MS2 trigger from the index ion scan.  

In an alternative approach, the SIL peptide is used directly to trigger the scan of 
endogenous peptide. Internal Standard Triggered-Parallel reaction monitoring (IS-
PRM) uses SIL peptides, which are monitored with a minimum intensity threshold 
in scheduled mode. If the MS1 signal with a correct m/z exceeds a minimum 
intensity threshold, a fast low resolution scan is triggered, and resulting MS2 scan 
triggers a quantitative mode if it matches reference spectra [397]. Quantitative mode 
continues scanning the endogenous peptide with long ion accumulation times and 
high resolution for the duration of the scheduled time window. This enables a high 
specificity and sensitivity superior to both PRM and SRM, allowing more robust 
quantification of peptides in low scale of attomoles compared to PRM and SRM 
[397]. A major disadvantage of this method is that it requires programmatic access 
to the mass spectrometer, making the adaptation challenging in most labs. However, 
the SureQuant method from ThermoFisher available on newer Orbitrap instruments 
works on similar principle to IS-PRM and has been used to detect low abundance 
pTyr peptides successfully [402]. A related technique combining both iMSTIQ and 
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IS-PRM utilizes TMT labelling of endogenous peptides and isobaric labelling. Here 
the samples are mixed with a co-eluting trigger peptide tagged with alternative TMT 
tag, which is monitored and sequenced in real time, followed by MS2 identification, 
and MS3 level quantification of endogenous peptides upon reference spectra match 
[368]. This method and SureQuant are available only on Thermo-Fisher’s tribrid 
series instruments, limiting its use. 

Comparison of acquisition methods 
Multiple studies have compared isobaric labelling, label free DDA and DIA, and 
the features are summarized in table 1. These studies commonly use a carrier 
proteome, which is supplemented with a known amount of a spike in proteome or 
peptides from another species with minimal proteome and sequence identity with 
the carrier proteome. However, these kinds of studies can introduce bias due to 
different tools, and unequally optimized MS conditions being used. Results from 
these studies consistently show that label free DDA suffers from a higher number 
of number of missing values and lower precision compared to isobaric labelling 
exemplified by the following studies [403-406], while in some cases still 
maintaining slightly better accuracy [403, 404]. DDA-LFQ is useful for PTM 
analysis where the sample complexity is not expected to be high, and number of 
replicates are sufficient to overcome problems associated with missing values. 
DDA-LFQ is also useful for open search methods, for finding unknown PTMs from 
samples [407]. However, until recently, this technique didn’t achieve same level of 
proteome coverage in the same analysis time, as DIA or isobaric labelling leading 
to increasing popularity of DIA and isobaric labelling.  

A comparison of DIA with LFQ-DDA and isobaric labelling is difficult, as DIA 
analysis software is still advancing rapidly, and is not as mature. Compared to LFQ-
DDA, data independent acquisition shows accuracy, as well as higher proteome 
coverage [408, 409] and precision [408-410]. Originally DIA was producing less 
identifications, but higher accuracy compared to isobaric labelling [411]. This 
results can be partially attributed due to lower number of identifications with older 
DIA methods and analyses. Authors in a recent study with multiple MS search 
engines in complex samples found similar number of identifications for both DIA 
and isobaric labelling, and showed that library free DIA was marginally superior to 
isobaric labelling based on accuracy and precision [412]. Isobaric labelling 
historically achieved high proteome coverage in less time, and the results more 
easily scrutinized due to relative simplicity of the resulting spectra compared to 
DIA. However, this technique also suffers from high value of missing values 
between isobaric plexes. Furthermore, the combination of modern DIA software 
with modern instruments allows for high-throughput experiments where several 
thousand proteins are quantified for low tens of hundreds of samples per day 
analysed [413, 414]. With longer separations; >60 minute gradients, DIA is nearing 
full proteome coverage in terms of expressed genes [413, 415] similar to isobaric 
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labelling. However, the resulting DIA spectra are not identified without complicated 
machine learning methods, which makes human based quality control on these 
spectra difficult. The choice of MS analysis method for discovery depends on the 
application, and no one method is a perfect solution.  

The advantages of targeted methods were largely discussed earlier. In the end 
targeted methods are used to quantify samples with a predefined and well 
characterized panel of targets. Ideally the limit of detection and the LOQ are defined 
for target peptides, as well as chromatographic behaviour. Targeted panels can be 
used to assess known disease specific panels in patient cohorts or validate results 
from discovery experiments. The separation methods for mass spectrometry are 
usually kept short to allow high throughput and cost is determined by whether or 
not the quantification is done with relative quantification or in absolute values using 
highly purified calibration standard peptides. 

 

Method Precision Accuracy Time Cost 
DDA-LFQ + ++ low-medium low 
Isobaric-
labelling ++ +/++/+++ Low - high high 
DIA ++ +++ low-medium low 
Targeted +++ ++++ low low-medium 

Table 1. Comparison of MS data acquisition modes. Precision and accuracy are scored with “+” 
where higher count indicates better performance. Time and cost are indicated categorically from low 
to high. 

4.1.3 Tandem MS data analysis 
Data analysis is a field heterogeneous field as the sample preparation and needs to 
be discussed in this thesis. Quantitative accuracy and precision can vary between 
MS analysis software platforms, which are varied and difficult to benchmark. 
Furthermore, data normalization and imputation can have a significant impact on 
quality of the output data, depending on the degree of missing values. Below I will 
discuss briefly how the generated spectra are assigned an identity, how data 
normalization is carried out and how intensity is defined and give a quick overview 
of the relevant statistics. 

Matching MS data to identity 
MS analysis generates tens of thousands of MS/MS spectra per run. Although a 
human is able to sequence the data by hand in simple DDA and targeted cases, the 
number of the spectra makes analysis impractical and specialized algorithms are 
used. In the simplest form of untargeted analysis, the peptide analysis software is 
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given a protein sequence database of the organism of interest. Next the software will 
perform an in silico digest of the protein sequences to give peptides and then 
generate a predicted spectrum, with specified PTM and digestion rules. Typically, 
this takes into account, the type of instrument used, and the kind of parent ion 
fragmentation method used such as CID. Following this, each spectrum is matched 
against the in silico generated spectra, and the highest scoring spectrum to database 
match is assigned for each spectrum [416]. In order to control for false positive 
matches, the analysis software will in parallel search a decoy database containing 
reverse, mutated, or random sequences in parallel [416]. This allows the 
specification of a score cut-off value, defining the number of false positives that are 
acceptable. 

As peptide fragmentation occurs at variable efficiency at each peptide bond and the 
generated fragment ions do not ionize with equal efficiency, spectra have fragment 
ions with differing intensities. Traditional DDA search engines such as MaxQuant 
[111] and Mascot [417] did not take this in into account, the engines matched 
product ions to in silico-digested spectra irrespective of their relative intensities. As 
discussed earlier complex spectra such from DIA data, or targeted methods use 
spectral libraries from real observed peptide to spectrum matches to provide high 
quality and almost unambiguous peptide to spectrum matches, which takes relative 
peptide fragment intensities into account during spectra to peptide matching. This 
is particularly useful for targeted methods, where a predefined list of peptides is 
scanned in short LC-MS analyses. For discovery studies with DIA this can be 
limiting, as the best sensitivity is achieved with project specific libraries, which are 
time consuming to make. In addition, various sample specific features as PTMs, 
peptide indicative of proteoforms and sample/condition specific proteins can be left 
out, without very extensive peptide library building. Several tools for in silico 
generating spectral libraries exist such as Prosit [418], which can be utilized with 
modern MS search engines such as MaxQuant [388], or they are built in to search 
engine like in DIA-NN [389] and Spectronaut [390]. 

MS data pre-processing and differential expression analysis 
After MS2 analysis and protein quantification is done, the data is typically filtered 
with missing values greater than the user set threshold, which is typically set to total 
number of missing values exceeding missing value % or require that at least one or 
more sample groups have at least certain % non-missing values. Some search 
engines can be set to perform protein and/or peptide level normalization, or the 
normalization can be performed outside the search engine. As isobaric label and 
targeted data normalization was discussed earlier, I will concentrate on label free 
discovery mode experiments here and give examples of normalization and 
imputation strategies. Multiple comparison studies exist comparing differential 
protein levels [419-421], but the choice of combination should always depend on 
the dataset. Of particular interest is the recent benchmark study from Lin et al., 
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where the authors compared normalization and quantification methods from RNA-
seq field to commonly used proteomics methods [421], which suggests ROTS [115] 
as the most suitable for differential along with statistical tests from RNA-seq 
abundance estimator for proteomics. 

As mentioned earlier proteomic datasets typically contain many missing values, 
especially at the peptide level, which can be problematic for statistical testing. 
Missing values can be missing either completely or at random (MCAR or MAR 
respectively), or they can be missing not at random (MNAR). MAR refers to 
technical issues such as stochastic sampling in label free and isobaric labelling 
DDA, or incorrect peak detection. MNAR generally refers to abundance dependent 
missing values, due to factors like instrument detection limit or the peptide being 
not present in the sample or group. These are the predominant source of missing 
values in label-free non-DDA proteomics, although the proportion is difficult to 
assess and was benchmarked recently by Jin et al. and Lin et al. [421, 422]. A 
computational approach for determining the type of missing value present in the 
data is presented in MsImpute, which determines the type of missing values present 
in the dataset and proceeds to impute [114]. MAR values can be imputed by 
estimating the value from similarly behaving samples with methods such as random 
forest, where the observed data points are used to predict missing values [423] or k 
nearest neighbours, which estimates imputed values from mean of similarly 
behaving features [424]. As MNAR are mostly on the left side of abundance 
distribution, the so-called left-censored methods are used to replace missing values 
that are close to detection limit or below it. Examples include Perseus replacing 
missing values using a normal distribution  [109], or simply replacing missing 
values with lowest sample or dataset value [425]. No universal approach exists and 
ideally the type of data should determine the imputation method with experimental 
conditions being considered. 

The simplest protein normalization method is the top N method, where the top N 
most intense ions are averaged or median centred to provide the protein level 
quantification, which is biased for smaller proteins [426]. Another disadvantage of 
this approach is that it neglects the rest of the peptide data, which contains useful 
quantitative data and the underlying batch effects might be missed. Another simple 
method divides the sum of observed peptide intensities  by number of theoretically 
observable peptides, and is called intensity-based absolute quantification (iBAQ) 
[427]. This method allows for absolute quantification by calculating protein 
abundance with linear regression from known external protein standard amounts. 
However, iBAQ is sensitive to presence of non-proteotypic peptides [428], which 
is problematic in bottom-up proteomics where many peptides are shared between 
proteins. Additionally, since the raw intensity values, which are normalized are 
proportional to error prone sample loading, the best accuracy iBAQ values are 
obtained with second round of normalization [429]. Another way of normalizing 
proteomics data is to first explore multiple normalization methods, and then choose 
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with technical replicates and known biological or technical variants, the 
normalization method which works best for the data, and the approach is 
implemented in tools like Normalyzer and the updated implementation 
NormalyzerDE [430, 431] and Tidyproteomics [432]. The advantage of this 
approach is the ability to remove researcher bias in choosing the correct method, the 
disadvantage is that many potentially useful normalization methods are not included 
depending on the tool used. 

Some normalization and protein quantification methods work as a pipeline, 
examples being, MSstats and MSqRoB. MSstats, which is a popular proteomics tool 
for proteomics normalization and quantification allows the user to choose between 
top 3, top N and all informative peptide features for quantification [433, 434]. 
Peptide intensities are median, and quantile centred or normalized to specified 
standard proteins [433, 434]. Tukey’s median polish method or linear mixed effect 
modelling are then used for final protein quantification [434]. Linear mixed effects 
are also used in MSqRoB and are used to calculate protein intensities from peptide 
level after choosing peptide summarization method [435, 436] like MSstats. Linear 
mixed effects models are complicated statistical models, which take fixed and 
random elements to predict a feature. Examples of fixed effects are sample condition 
or peptide sequence, while random effects represent subject response or run specific 
variance. MSqRoB requires user to determine the random and fixed effects, while 
MSstats 4.0 automatically determines these, making the approach more user-
friendly to individuals without any special statistical knowledge [434]. 

MaxLFQ is one of the most popular protein level normalization methods [352, 388], 
which is utilized in many modern search engines such as MaxQuant [111, 388], 
DIA-NN [389], Spectronaut [390] and Fragpipe [391, 392, 437]. Baseline maxLFQ 
calculates pairwise ratio between same peptide between all samples. Next, maxLFQ 
calculates median of peptide ratio for each protein for each sample pair, which 
efficiently removes the effect of outlier peptides in robustly detected proteins. 
Following this maxLFQ performs calculates intensity profile with a least square 
analysis to make an intensity profile that fits the pairwise protein ratios the best. The 
original implementation was for DDA data, but maxLFQ since has been adopted for 
DIA in the MS search engines using maxLFQ mentioned above, and as a standalone 
R package [438]. 

In the past, many proteomic experiments were relatively small scale with less than 
one hundred samples. However, recent advances in peptide separation and MS 
instrumentation have made large-scale experiments viable economically and 
timewise. Ideally, a large proteomics experiment should contain balanced mix of 
sample conditions and a digestion standard. Batch correction methods are designed 
to fix technical variation coming from various sample preparation parameters such 
as digestion batches and time related drift. As an example, the batch correction tool 
proBatch first quantifies batch effects coming from the experimental design, which 
can include discrete effects from digestion batch, the year sample was collected or 
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continuous over time effects, such as performance drift with MS run batches [113]. 
This is followed by normalization if the data has not been normalized. If significant 
batch effects are encountered with normalized discrete batch effect such as digestion 
artefacts can be corrected with median or mean centring, or alternatively with 
ComBat [439], which is a Bayesian mean centring method. Recently released web 
application BIRCH provides the same functionality, with a more user-friendly 
interface [440]. Another example of batch correction method is the removal of 
unwanted variation (RUV-III) [118], where the variance of the least changing 
proteins is considered unwanted variation and are estimated technical replicates.  
Subsequently RUV-III minimizes the unwanted variance by subtracting the 
unwanted variance from stable proteins and technical replicates. Quality and 
overfitting of batch correction can be visualised by clustering methods such as a 
heatmap. Here the diffusion of discrete effects and clustering of technical repeats or 
standard samples is indicative of a good fit, and diffusion of standard samples shows 
overcorrection. 

Many of the quantification and normalization methods discussed above have the 
aim of singling out differentially expressed proteins using correct expression 
quantification. However, modern high depth bottom-up MS analyses produce 
quantitative information from low tens to close to a hundred per protein group. This 
creates a problem, as peptides can come from multiple proteoforms, and 
summarizing peptide intensities from same gene in to one protein can mask 
quantitative differences that are present in the dataset [441]. There is a clear trend 
for protein groups with large number of identified peptides to have the least 
statistically significant differences, which is most likely caused by the larger number 
of proteoforms averaging out the differences when the peptide information is 
summarized to one value [441]. One approach is to use a normalization method that 
does robust normalization of peptide intensities, such as recently developed 
directLFQ [442] or to normalize the data with a tool like Normalyzer or 
Tidyproteomics. Performing statistical tests on the normalized data reveals peptide 
specific differences, but provides no information on proteoforms, or assesses if the 
detected peptide feature is random noise. Assigning peptides from high depth 
proteomic experiment to specific proteoforms requires statistical approaches such 
as assigning co-correlating peptides to a proteoform group as presented by Bludau 
and colleagues [443], or by using co-varying physical properties of the peptides to 
find proteoforms [444, 445]. 
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4.2 Other methods for measuring protein level 
information. 

4.2.1 mRNA 
Steady state in omics studies refers to a cellular state where a large proportion of the 
protein and/or mRNA levels are stable [446] and which are then made unstable for 
example by stress, stimulus or differentiation leading to non-steady state. While 
typically under steady state highly abundant proteins have highly abundant mRNA 
and there is positive correlation between mRNA and protein levels, typically reports 
show that under steady state mRNA levels explain ~10-65% or lower of protein 
level variance [354-356, 384, 427, 447-453]. Discordance between mRNA and 
Protein level variance has been observed to be determined by protein synthesis rate 
from the mRNA [427, 447], by protein degradation pathways [447, 451], post-
transcriptional regulation [451, 452] and sequence [452]. Although these models do 
not agree with each other completely they have been used in attempt to predict 
protein levels from mRNA. 

Under the assumption that protein synthesis rate was a key component in predicting 
protein levels from mRNA, two independent groups observed that protein to mRNA 
ratio (PTR) remained constant in 12 tissues [354] and in 11 tissues and 9 cell lines 
[450]. With this observation, it was assumed that each protein has a transcript 
specific protein synthesis rate, and PTR served as a proxy constant for this. After 
taking median or average PTR across study tissues and cells, both groups could 
demonstrate that over 80% of the protein level variation could be predicted by 
mRNA levels. However, this approach has been questioned for its mathematical 
basis and for ignoring various pathways which decouple protein levels from mRNA 
levels [451, 454], leading to poor within gene correlations.  

Additionally, in some tissues the top abundant mRNA and proteins have a low to 
moderate overlap depending on the cut-off in use, and sometimes the protein 
product for an expressed mRNA cannot detected or highly expressed protein does 
not have corresponding highly expressed mRNA [356, 384]. This means that some 
of the information leading to a phenotype is completely lost if only mRNA is 
considered. There have been recent improvements in predicting protein levels from 
mRNA based on sequence features [452], and this has been used to demonstrate that 
most of the explained protein level variability in the model is coming from mRNA 
levels [453]. Taken together, protein levels under steady state generally correlate 
positively with their mRNA level. When comparing different tissues and cells, or 
biomaterials from different individual’s mRNA levels can produce different 
responses at protein levels, which is problematic when studying a disease 
phenotype, necessitating the use of proteomics to study protein level variability.  
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Under non-steady state conditions such as cell differentiation stress or stimulus 
response, the steady state dynamics between proteins and mRNA can change 
drastically [446]. Stress conditions can cause part of the transcriptome to be 
sequestered into stress-granules, where they remain inactive before they are needed 
or degraded. Stress can also slow or inactivate translational machinery by post-
translational modifications on proteins and direct the translational machinery to 
synthesise proteins that are needed to survive and overcome the stress. 
Alternatively, a stimulus can activate translational machinery to make more protein 
from a steady state pool of mRNA. Increase in mRNA levels upon external stimulus 
or stress itself might not be immediately translated in to increased protein levels. 
Finally, proteins are modified post translationally, kept active/inactive by protein-
protein interactions, which cannot be inferred from mRNA levels. 

4.2.2 Antibody arrays and next generation methods 
Although mass spectrometry remains the most mature and unambiguous method for 
measuring the proteome, the instrumentation is expensive and requires skilled 
personnel to operate. To overcome this burden several methods have been 
developed that try to overcome this. These methods combine techniques used in 
microarray, microscopy and next generation sequencing with protein level 
measurements. Enzyme linked immunosorbent assay and other antibody-based 
assays targeting only handful of targets at a time will not be discussed separately 
here. 

Antibody arrays combine specificity of monoclonal antibodies with microchip 
array. The downside of antibody array is off-target binding and proteotypicity. Even 
if antibody has a high affinity for its target, it can still recognize other protein with 
similar amino-acid composition or a 3D fold, even with modern recombinant 
antibodies [49], and as discussed earlier the same gene can produce multiple 
proteoforms, which is largely missed by any antibody based platform.  

As a further development to antibody arrays, a technique using modified proximity 
ligation was developed and commercialized as O-link [455]. In proximity ligation, 
two antibodies conjugated with complementary oligonucleotides are used for 
detecting the target protein. If both antibodies bind to same protein they come to 
close proximity and oligonucleotides are able to hybridize, forming a circular DNA. 
This can be amplified and detected with a microscope using labelled fluorescent 
oligonucleotide dye complementary to the antibody oligonucleotide sequence. O-
link is modified so that each antibody pair has a unique tag sequence, which can be 
detected with quantitative real time PCR or next generation sequencing. Competing 
technique from Somalogic: SomaScan uses aptamers to bind target proteins [456].  
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Both techniques can measure thousands of protein targets, and since they are 
targeted, the presence of highly abundant proteins in challenging biofluids such as 
plasma does not interfere with the detection of more low abundant proteins, 
allowing for more in depth characterization. The downside of these techniques is 
that the affinity-based methods are an indirect readout of protein levels and off-
target binding remains a risk and proteoform specific information is largely lost or 
averaged out. Furthermore despite having high precision, these techniques do not 
always correlate with each other or other assays at protein level [457-459], meaning 
that any result obtained needs to be scrutinized with a targeted MS method or a 
complementary method targeting same epitopes. 

Several next generation methods are under development and measure single 
molecules. Nautilus Biotechnology’s Nautilus platform immobilizes single protein 
molecules to a landing bed on an array chip with billions of binding sites. Next 
samples are treated sequentially through hundreds of cycles, with fluorescent probes 
recognizing short epitopes of protein, and using unique binding pattern and machine 
learning proteins are sequenced [460]. In theory, this allows for single molecule 
scale sequencing of a whole proteome and is not possible with any protein-based 
methods currently in use. As random off target binding with these kinds of reagents 
is expected, each epitope is sequenced multiple times, and the machine-learning 
algorithm calculates the probability of the binding event.  

Another technique in development utilizes a modified Edman degradation and 
microscopy [461]. Here digested samples are immobilized on a chip, and specific 
amino acids are labelled with fluorescent dyes. Peptides undergo multiple Edman 
degradation cycles [304], and whenever a modified amino acid is removed the from 
the protein, the event is visible on microscope. Consequently, protein identity and 
quantity are established from the pattern specific to each protein and how many 
times each peptide has been sequenced.  
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Conclusions 

Subjects covered in thesis cover proteomics, kinases and neurodegenerative disease 
Parkinson’s disease. As science, moves forward in understanding complex diseases 
and their mechanisms traditional low throughput experiments are insufficient to 
explain diverse changes and networks behind the disease progress. This has 
heralded the age of omics, which seek to understand how biological entities work at 
molecular level leading to a phenotype. Proteomics is the field of omics that seeks 
to understand how multiple proteins and their functions lead to a certain phenotype. 

The disease that is dissected in this thesis is Parkinson’s disease, which is the second 
most common neurodegenerative disease in the world. The disease causes 
progressive motor symptoms and various non-motor symptoms, with no known 
cure. Various mechanisms including mitochondrial dysfunction, altered proteostasis 
and inflammation. These processes have overlapping signalling pathways and 
proteins involved, but it is not clear where does the pathogenesis start, and what is 
the main driver of the disease progression at cellular level. 

One of the most commonly inherited risk factors for Parkinson’s disease are in gene 
coding for LRRK2. LRRK2 is a large multidomain protein kinase with a second 
catalytic domain GTPase activity. The mutations associated with PD increase the 
kinase activity. In paper I we found that LRRK2 interacts with ribosomes. Upon 
further investigation, we demonstrate that LRRK2 kinase activity negatively 
regulates protein synthesis in rotenone model of PD in both vivo and vitro, and in 
patient primary fibroblast cells protein synthesis is specifically downregulated in 
LRRK2 G2019S and sporadic PD. We also show altered protein synthesis at the 
level of phosphoproteome in two rotenone treated rat brain regions: striatum and 
midbrain. 

This lead to the study in paper II. Here we perform an unbiased proteomics screen 
to identify proteins, which synthesis is under active regulation in PD sporadic and 
G2019S mutation fibroblast cells. After identifying the proteins we designed a 
targeted peptide panel for the significantly changing proteins we identified in the 
proteomics screen. The resulting panel showed clear overlap between sporadic and 
G2019S form of PD, and proteins regulating proteostasis are downregulated. This 
study is has the limitation in small sample number, which requires further 
investigation in a larger cohort to validate the results. 
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Mass spectrometry based proteomics is currently the most versatile and information 
rich approach to proteomics. However, there is no gold standard approach within 
this branch of analysis and careful study design is needed to for each project. In this 
thesis I presented what to consider and what are the challenges in sample 
preparation, data acquisition and in a proteomics studies in general, and presented a 
brief overview of newly synthesized proteome analysis, which is utilized in paper 
II. 

In this thesis, special emphasis was places on protein kinases, which are readily 
druggable master regulators of cellular signalling pathways and metabolism by 
modifying proteins by phosphorylation. I present a quick overview on tools to 
dissect complex phosphoproteomics data and discuss what are the limitations with 
these tools. In paper III I describe a tool to process datasets from phosphoproteomic 
experiments: PhosPiR [112]. This allows for deciphering of complex data and 
identification of kinase activity, to put their signalling in to meaningful context. In 
short finding the consequence of protein kinase signalling.  

In conclusion, the studies presented and performed in this thesis scratch the surface 
of protein function in Parkinson’s disease, proteomics and how kinase signalling 
can be studies with omics methods.  
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