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Resilient Cloud Control System: Dynamic
Frequency Adaptation via Q-learning

Fatemeh Akbarian1, William Tärneberg1, Emma Fitzgerald1 and Maria Kihl1
1Department of Electrical and Information Technology, Lund University, Sweden

Abstract—Traditional control systems face challenges in man-
aging high data loads and computing power, prompting the evo-
lution of Cloud Control Systems (CCS)—a fusion of Networked
Control Systems (NCS) and cloud computing. Despite offering
manifold advantages, CCS encounters hurdles in navigating
the dynamic cloud environment characterized by fluctuating
workloads, rendering static frequency settings inefficient. More-
over, the optimal utilization of cloud resources poses a pivotal
challenge within CCS operations. To address these, the paper
proposes a resilient CCS by adapting system frequency dynami-
cally. Leveraging Q-learning, the approach measures Round Trip
Time (RTT) and system output errors, dynamically adjusting
the system’s frequency to minimize control costs, optimize
performance within the dynamic cloud environment, and achieve
resource frugality, minimizing resource usage. Through real
testbed experiments, this paper evaluates and analyzes the
effectiveness of the proposed method, aiming to establish an
adaptive and efficient control framework aligned with evolving
cloud dynamics.

Index Terms—Cloud, Resiliency, Q-Learning, Frequency
adaption

I. INTRODUCTION

Traditional control systems, limited to closed environments,
lacked remote monitoring and adjustment capabilities. With
the evolution of industries and the emergence of Networked
Control Systems (NCS), communication technologies enabled
remote control and monitoring. NCSs leverage networks to
manage complex systems from a distance, enhancing flexibil-
ity and efficiency.

Nonetheless, there is still a demand to address the chal-
lenges faced by control systems in managing high data loads
and computing power. To tackle these challenges, a new
concept called Cloud Control System (CCS) has been devel-
oped by leveraging the benefits of NCS and cloud computing
technology. CCS presents a novel approach by shifting the
core processing unit to cloud servers, facilitating massive
parallel computation and efficient data storage for high loads
[1]. The move to CCS reduces system size and offers energy-
saving potential, providing an innovative solution to enhance
efficiency and extend operational lifespans.

Although Cloud Control Systems offer numerous advan-
tages, they also present new challenges that make industries
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Nordic University Hub on Industrial IoT (HI2OT) funded by NordForsk.
Maria Kihl is partially funded by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg
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hesitant to embrace cloud technology. Therefore, it is crucial
to find solutions for these issues, which serve as impediments
to fully harnessing the advantages of cloud technology. Our
primary objective is to establish a resilient cloud control
system capable of overcoming these challenges. Security is
the first challenge introduced regarding the cloud control
system since using the cloud and the network between the
cloud and physical domain can create an access point for the
attacker to intrude into the system and establish attacks. In
our previous works [2], we proposed a solution to make an
attack-resilient cloud control system such that the system can
be kept stable in the presence of an attack with high efficiency.

Another significant concern arising from cloud integration
is the potential for increased delays. Relocating the controller
to the cloud means it will be physically distant from the
domain it controls, resulting in longer data transmission times.
In addressing this challenge, our previous work [3] established
a framework for delay-resilient cloud control systems.

In this paper, we present an approach to enhance the
resilience and efficiency of cloud control systems by em-
phasizing dynamic parameter adaptation. Unlike the conven-
tional method of employing static parameters throughout, our
proposal focuses on adjusting system parameters based on
the current conditions. The initial impetus for this adap-
tation stems from the inherently dynamic nature of cloud
environments, marked by continuously changing conditions
and varying workloads [4], [5]. To enhance performance and
resource utilization, it is essential that our control systems
seamlessly adjust to this dynamic nature. Our research aims
to align cloud systems with the evolving environment for peak
efficiency.

Furthermore, in today’s cloud computing landscape, the
efficient allocation and utilization of resources with a frugal
approach stands as a paramount concern [6]. Adhering to a
static parameter configuration throughout carries the risk of
resource wastage and performance bottlenecks. Therefore, by
dynamically adjusting system parameters, we aim to achieve
resource frugality, minimizing resource usage while maximiz-
ing system performance, aligning with the prudent resource
management principles integral to modern cloud computing.

Another fundamental motivation for our approach emerges
from traditional practices in parameter setting. Historically,
many systems have relied on parameters established through
trial and error or based on system operators’ experience
and knowledge of the system’s physics, often neglecting

ICIN 2024 - 1st workshop on 6G Network Use Cases and Verticals 2024

979-8-3503-9376-7/24/$31.00 ©2024 European Union 242

20
24

 2
7t

h 
Co

nf
er

en
ce

 o
n 

In
no

va
tio

n 
in

 C
lo

ud
s,

 In
te

rn
et

 a
nd

 N
et

w
or

ks
 (I

CI
N

) |
 9

79
-8

-3
50

3-
93

76
-7

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IC
IN

60
47

0.
20

24
.1

04
94

42
9

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on April 18,2024 at 13:58:57 UTC from IEEE Xplore.  Restrictions apply. 



environmental considerations [7]. However, this conventional
approach often falls short of ensuring the optimal parameter
configuration. Additionally, when the same system is em-
ployed in different environments, it may not exhibit the same
level of performance as previously anticipated. Consequently,
we propose a new method for system parameters adjustment
that strives to accomplish two pivotal goals: first, to ascertain
the optimal parameter settings, and second, to automatically
adapt these settings in response to changes in the environment
and current conditions.

The primary factors contributing to the dynamic nature
of the cloud environment are fluctuating delays, which are
often linked to varying workloads within the cloud. Moreover,
various factors like setpoint changes, disturbances, and noise
fluctuations induce environmental variations. One of the criti-
cal system parameters susceptible to the dynamic nature of the
cloud is frequency. Frequency directly impacts the workload
within the cloud. When discretizing a control system to mimic
its continuous counterpart closely, the preference is for a
minimal sampling period. However, this preference leads to
higher frequency, resulting in increased data transmission and
potential network congestion. Moreover, it places a greater
computational load on the cloud controller, further amplifying
the cloud’s workload. Therefore, in this paper, we aim to dy-
namically adjust the frequency based on real-time conditions,
ensuring a higher frequency only when necessitated, such as
during the presence of critical information.

A longer delay than the sampling period can result in the
control signals received by the plant not aligning with the
most recent plant output being sampled. Over time, this can
elevate the effective control delay, potentially leading to sys-
tem instability. Therefore, it is prudent to factor in the current
delay when selecting the appropriate frequency. Authors in
[8] and [9] present an adaptive sampling scheme designed
to maintain a control delay shorter than the sampling period
during steady-state operation. This scheme also relies on the
system’s maximum tolerable delay at a specific sampling
interval to ensure a smooth transition between consecutive
sampling periods, promoting system stability. In [10], an
adaptive sampling scheme has been introduced for wireless
sensor networks, aiming to notably diminish communications
and consequently lower energy consumption. Most of these
efforts have primarily centered around general-purpose sig-
nal processing and telecommunication systems, devoid of
involvement in control applications.

Authors in [11], proposed a flexible time-triggered sam-
pling approach for wireless control systems that dynamically
adjusts sampling periods using smart sensors and feedback
control technology. In [12], a frequency control approach
is introduced for cloud control systems employing a PID
(Proportional-Integral-Derivative) controller. In this study, the
PID controller adjusts the sampling period to attain an ac-
ceptable rate of request failures, referred to as the miss
ratio. The miss ratio signifies the percentage of requests
(control signals) not received within the expected sampling

Fig. 1: Cloud Control System (CCS)

period. So, most of these papers prioritize success rates
by adjusting frequencies to ensure consistent control signal
reception within the expected sampling time.

In this paper, we propose a frequency adaptation method
for cloud control systems employing Q-learning. In contrast to
other available approaches that rely on delay or miss ratio for
frequency adjustments, our method derives information about
the current environment’s condition by measuring Round Trip
Time (RTT), which includes network delay and execution
time, and also by quantifying errors in the system’s output
arising from setpoint changes, noise, or disturbances. Ad-
ditionally, we employ the Q-learning method to determine
frequencies, which represents a novel approach compared
to existing methodologies in this field. This method adjusts
frequency to mitigate delay effects, boosting overall system
efficiency and optimizing cloud resource use. It minimizes
control costs by dynamically setting the frequency to suit the
evolving cloud environment.

In the rest of this paper, we first introduce our targeted
system which is the cloud control system. Then, we delve
into our proposed solution, covering methodologies and tech-
niques. Next, We detail the experiments conducted on an
actual testbed, analyze the outcomes, and draw conclusions.

II. CLOUD CONTROL SYSTEMS

Our targeted system in this paper is Cloud Control Systems
(CCS), illustrated in Fig. 1. The system consists of a plant
controlled by a controller implemented in the cloud. The
measurement signal, denoted as y, is acquired by sensors
and transmitted to the controller in the cloud. The controller
employs this signal to compute the control signal u, and sends
it to the actuators to apply on the plant [13], [14].

As discussed in Section I, regarding the dynamic nature
of the cloud, it is not efficient to have a constant fre-
quency. The cloud environment is characterized by varying
workloads resulting from concurrent applications, leading to
unpredictable delays in executing control signals. The chosen
control frequency directly defines the sampling period h that
is used for discretizing the plant’s model and designing a
controller accordingly, as well as defining the time allotted
for each control loop. As depicted in Fig. 2(a), the plant
undergoes periodic sampling at intervals of h. During each
sampling period, it transmits measurement signals y, and the
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Fig. 2: Control signal availability in different amount of delay:
(a) measurement sampling at h sampling period, (b) RTT ≤
h, (c) RTT > h

corresponding control signals u must be received within this
interval before the next set of measurements is taken. In other
words, the RTT should ideally be shorter than the sampling
period, ensuring a timely data exchange.

If the combined delay D in our CCS—encompassing both
cloud execution and network transmission—results in an RTT
shorter than h, as depicted in Fig. 2(b), the control signals
aligned with the sampled plant outputs are delivered regularly
at intervals of h. This occurs despite the existing delay, en-
suring periodic updates to the plant with new control signals.
However, if RTT > h as depicted in Fig. 2(c), the plant
is updated every RTT instead of the expected h intervals,
despite the measurement signal is still sampled at h. This
discrepancy arises because the received control signals do not
correspond to the most recent plant output being sampled. For
example, in Fig. 2(c), u1 is received in the second sampling
period after sending y2 while we expect receiving u2. Also,
this delay results in an exponentially growing effective control
delay from sampling to its corresponding control signal,
potentially leading to instability over time. This instability
can be attributed to the effective sampling period differing
from the one used in controller design, thus deviating from
the intended controller functionality. Consequently, the plant
is updated every RTTc, while the sampling occurs every h.

In Section I, we discussed another vital factor influenc-
ing frequency adaptation: its direct impact on the workload
imposed by the controller on the cloud system. A higher
frequency results in more frequent data accumulation from
measurements, closely resembling continuous data streams.
However, this also means sending data to the cloud more
frequently, increasing the number of times the cloud must
execute control signals. With a constant frequency setup, the
system consistently transmits data without considering new
information. Hence, frequency adjustment becomes pivotal
based on conditions. If measurement signals remain relatively
consistent, indicating minimal new information, a lower fre-
quency suffices. Conversely, substantial fluctuations in mea-
surement signals suggest a wealth of new data, demanding a
higher chosen frequency. Therefore, it becomes essential to
adapt the frequency based on the prevailing conditions.

III. PROPOSED SOLUTION

Q-learning is a fundamental reinforcement learning tech-
nique used to solve sequential decision-making problems [15].
It is particularly well-suited for scenarios where an agent
interacts with an environment, taking actions to maximize
cumulative rewards over time. In the context of cloud control
systems and frequency adaptation, Q-learning can be em-
ployed to make intelligent decisions about adjusting system
frequency to achieve desired performance goals. Q-learning
relies on several key components: states, actions, rewards, and
Q-table, which we’ll delve into in the following Sections.

A. States

The first key component in the Q-learning method is states.
The states are feedback from our system and represent the
system’s current situation. Hence, regarding the fact that our
goal is the resiliency of our cloud control system in different
environments, we should use the parameters that can define
the different environments (conditions) as the states in our Q-
learning method. So, a state could include information about
the current workload, resource utilization, and other relevant
variables. In this paper, varying delay in the environment is
very important for us, and we want to have a resilient cloud
control system to delay. Hence, one of the states can be RTT
in the system that is calculated as follows:

RTT = Tup + Texe + Tdown (1)

where Tup is the time to send the measurement signal from
the plant to the controller, Tdown is the time for transmitting a
control signal from the controller to the plant, and Texe is the
execution time for computing the control signal in the cloud.
So, based on this, after sending the measurement signal, we
should wait to receive the corresponding control signal to
calculate RTT. Then, the newest RTT we have access to is
related to the latest control signal we have received.

The other factor that we want to adjust the parameters of the
cloud control system according to is the output error that can
happen due to the setpoint change, disturbance, noise, etc. For
instance, in normal condition when there is no disturbance,
noise and the setpoint is constant, it is reasonable to have a
lower frequency since there is no new information to update
the system. However, when there is a setpoint change, there
is more new information that the system should be updated
about, and we probably need to have lower sampling time and
higher frequency. For considering such information, we will
consider error as the other state in our Q-Learning algorithm
and it is calculated as follows:

ek = xk − setpointk (2)
where x is the state variable of the control systems.

B. Action Space

Actions are the choices available to the agent in a given
state. Regarding our purpose in this paper, which is adjusting
the system’s frequency based on the current condition, our
action is the frequency that should be used in the current
control loop.
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Not all frequencies are suitable for every system; each
system typically operates within its own acceptable range of
frequencies. We determine the acceptable frequency range for
the system based on [8], and each of the frequencies in this
range is defined as an action for the Q-Learning. The choice
of frequency plays a crucial role in system performance.
In an ideal scenario without considering delay and limita-
tions in cloud resources, higher frequencies are preferred
for optimal performance. However, practical constraints, such
as the controller’s implementation capabilities and control
delay, can limit how high the frequency can be. As frequency
decreases, system performance generally deteriorates. We can
set a threshold for allowable performance degradation. A
common metric used is Integrated Accumulated Error (IAE)
to define the acceptable frequency range for a system. By con-
ducting experiments with different frequencies, starting from
the maximum value “fmax” determined by plant controller
characteristics and incrementally decreasing frequency, the
IAE is measured over a fixed duration. Based on the allowable
IAE range, an appropriate frequency range is chosen. In this
paper, considering the testbed that is explained in Section
IV-A, the range of the frequencies that are considered as
action space is: f ∈ {10 Hz, 20 Hz, 30 Hz, 40 Hz, 50 Hz}.

A frequency from this set is chosen by the Q-Learning
and is sent to the controller. Then the controller should be
redesigned based on that and generate the corresponding
control signal to send to the plant. Also, the sampling period
for that loop is set based on this chosen frequency.

C. Reward Design

In the Q-learning method, a reward function should be
designed such that quantifies the system’s performance based
on the chosen objectives. This reward function guides the
learning process by providing feedback to the agent. This
paper aims to increase the system’s efficiency, which can
be measured by investigating the control cost. Hence, in
this Q-learning problem, the reward is considered −J where
J is the control cost function. By considering this reward,
we will have a higher reward for a lower cost. As it is
explained in Section IV-A, a Model Predictive Controller
(MPC) is considered in our testbed. Hence, by considering
this controller, the control cost can be calculated as J in
equation (4) in section IV-A2. Following (4), in MPC, the
control signal is determined to minimize the cost function
while accounting for constraints. Our Q-learning solution is
applicable to any type of CCS, and the definition of control
cost and reward can vary depending on the specific controller
used in CCS.

D. Q-Table and Q-Values

In Q-learning, Q-table plays a pivotal role in the decision-
making process. It is a data structure that keeps track of the
learned values for each state-action pair, reflecting the agent’s
knowledge of the expected cumulative rewards. The Q-table
is a 2D array showing states in rows and actions in columns.
Each cell holds a Q-value, estimating the expected cumulative

reward by taking action ’a’ in state ’s’ following the optimal
policy. These values update throughout the learning process.

As explained in Section III-A, RTT and error are considered
as states, but since these are continuous variables, we need
to discretize them to create a Q-Table. For this, we consider
RTT ∈ [0 ms, 250 ms], and error ∈ [0, 1] m, and then we
break these ranges into 20 different discrete values for each
of these two states. Also, discrete actions are needed to create
the Q-table, and as explained before in Section III-B, we can
define five different actions based on different frequencies.
Hence, our Q-table’s size will be 20× 20× 5.

The Q-table is initialized with random values at the be-
ginning of the learning process. Then, during the learning
process, Q-values are updated based on the rewards received
and the learned estimates of future rewards. This learning
process is done in two parts. The first part is called explo-
ration, which involves trying out different actions randomly,
even if they are not currently considered optimal, to gather
information about their effectiveness. Exploration is crucial
for discovering potentially better actions and improving the
agent’s knowledge of the environment. The second part, called
exploitation, involves choosing actions that the agent believes
are currently optimal based on existing knowledge and have
the highest Q-value. Exploitation aims to maximize short-
term rewards by sticking to known good actions. Over time,
these updates lead to the Q-table converging to more accurate
estimates of optimal action values, and after the learning
process, the final Q-table will be used for our intent.

IV. EXPERIMENTS

In this section, we detail the testbed used for our proposed
method, followed by evaluation from three distinct aspects.

A. Real Testbed

To assess the effectiveness of our proposed frequency adap-
tation method, we implement it on a real testbed, detailing
each component in the subsequent Sections.

1) Plant: In our experiment, we consider a ball and beam
system as a plant consisting of a long beam where a ball
moves back and forth. This inherently unstable system causes
the ball to swing and potentially fall off the beam. To ensure
stability, the controller adjusts the beam’s angle using an
electric motor, aiming to maintain the ball at a specified
position on the beam. The beam is 1.1 meters long, and the
allowable ball position ranges from −0.55 meters to 0.55
meters. This system involves three measured signals: ball
position (x1), ball speed (x2), and beam angle (x3). The
continuous-time model for this process is outlined below:

ẋ(t) =

 0 1 0

0 0 − 5g
7

0 0 0

x(t) +

 0
0

0.44

u(t) (3)

where g = 9.80665 is the gravity of Earth [16]. We discretize
this continuous time model with a sampling time of h for
designing the controller.
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2) Controller: We design a Model Predictive Controller
(MPC) to ensure stability and regulate the ball’s position in
the ball and beam system [17]. As mentioned earlier, the
continuous model of the plant described in (3) needs to be dis-
cretized using the sampling period h to design the controller.
When the frequency is not constant, h becomes variable as
well. Consequently, the controller must be reconfigured in
each control loop to correspond to the discretized system’s
model based on the specific sampling period h of that loop.
At each sampling instant k, the control action u is determined
by solving an open-loop optimal control problem with a finite
horizon (N ). This problem utilizes the current state of the
plant as the initial state, as follows:

minimize
u

J =

k+N−1∑
i=k

xT
i Qxi + uT

i Rui + xT
k+NPxk+N

subject to xi+1 = Axi +Bui

G

[
xi

ui

]
≤ g, H

[
xi

ui

]
= h, xn+k ∈ T

(4)
where J is control cost function, Q, R and P are cost
matrices, A and B define the discrete model of the system, x
is the state vector, u is the control signal, and the constraints
of the system are defined by the matrices and vectors G,
g, H and h. We deployed this controller in a Kubernetes
cluster which will be described in the following Section. In
this approach, MPC in each loop generates a sequence of N
control signals, with the first signal applied to the current
loop and the subsequent signals intended for future loops. In
this paper, we use the predicted control signals to mitigate
delays. When a specific control signal is delayed, the system
uses the most recent received control signal sequence. By
considering the delay duration and the sampling period of the
latest received signal sequence, the system determines which
element in that sequence corresponds to the current loop.

3) Kubernetes Cluster: The testbed includes a seven-node
Kubernetes cluster functioning as the edge cloud. Kubernetes
(K8S) is an open-source platform renowned for manag-
ing containerized workloads and services, offering declara-
tive configuration and seamless automation capabilities [18].
The cluster incorporates both an Nginx ingress [19] and
a Prometheus operator [20]. The Nginx ingress is exposed
through the K8S NodePort paradigm. The Kubernetes cluster
serves as the edge cloud to implement the controller.

To implement the Q-learning method on this testbed, during
the learning phase, each learning episode involves running the
control system for 100 seconds. We operate the control sys-
tem, utilizing square waves for both setpoint and delay, where
the intervals and amplitudes of these waves are randomly cho-
sen to encompass all feasible states. The cumulative rewards
across all control loops during this 100 seconds are calculated.
During the initial one-third of episodes, exploration occurs,
involving the random selection of frequencies for each control
loop. Subsequently, in the remaining episodes, exploitation
takes place, where frequencies are chosen based on the highest

Q-value obtained through the learning process. The learning
process continues until the reward converges.

B. Evaluation

In order to evaluate our proposed method, we establish
three different experiments that are stated in the following.

1) Average Behavior of the System: In the initial phase
of our evaluation, we contrast the system’s average behav-
ior using our proposed method against scenarios employing
constant frequencies from the acceptable frequency range
{10 Hz, 20 Hz, 30 Hz, 40 Hz, 50 Hz}. Also, we assess the
workload imposed by each case on the cloud, aiming to
appraise the effective utilization of cloud resources.

For this purpose, we explore the performance of the cloud
control system under normal conditions without introducing
additional delays. The experiments entail running the system
six times, each time for 100 ms. The initial run involves em-
ploying frequency adaptation through our proposed methodol-
ogy, while the subsequent five runs maintain constant frequen-
cies within an acceptable range, gradually decreasing from
high to low settings. In order to conduct a comprehensive
assessment of control performance, we consider a constant
setpoint but we add some strong disturbances that enter the
system as follows:

xk+1 = Axk +Buk +
[
0 wk 0

]T
(5)

i.e., adjusting the speed of the ball. Here, A and B are the
state space matrices discretized using very small sampling
time (h = 5 ms) closely resembling the continuous system.
Hence, choosing a higher frequency for the controller allows
quicker detection and response to disturbances. The sequence
of disturbances is,

w =
[
0 ... w0 0 ... w1 0 ...

]
(6)

where the values of wi are drawn from a normal distribution
N

(
µw, σ

2
w

)
which σ2

w = 0.001 and µw is randomly selected
from the interval [0.003, 0.01], and these disturbances are
applied at random time to the system for variable durations
ranging from one second to four seconds. As a performance
metric to compare the error in each case, we will measure
the total cost for 100 ms using

∑N
k=0 Jk that in each loop

J is calculated using the cost function in (4). Additionally,
we assess the maximum error during 100 ms, and Integral
Absolute Error (IAE). However, due to disparate sampling
times across experiments, to be able to compare the IAE
of different 6 experiments, unifying the IAE comparisons
necessitates revising IAE calculation by considering sampling
time as follows :

IAE =

N∑
k=0

|yk − sk|∆tk (7)

where yk represents the positional signal, while sk denotes the
setpoint for the ball’s position along the beam. The term ∆tk
signifies the corresponding variable sampling time, specifi-
cally varying within our proposed solution while remaining
constant across other cases. Additionally, to measure the
efficiency of cloud resource utilization, we measure the total
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execution time in the cloud over the entire 100 ms, providing
insight into the extent of cloud utilization.

2) Challenging the System: In the second part of the eval-
uation, we challenge the cloud control system by considering
a square wave setpoint that is changing randomly and also ap-
plying a delay higher than the normal condition encountered
in the last part. This involves two key steps: We establish the
tolerable range of delay that the system, without our proposed
method, can endure without destabilizing. We incrementally
increase the delay, observing how the system reacts. This
experiment is carried out under two conditions: first, with a
constant frequency representing the traditional approach, and
second, using our proposed frequency adaptation method. By
comparing the system’s performance in these scenarios, we
assess the effectiveness of our proposed method in mitigating
the effects of elevated delays.

3) Dynamic Workload Evaluation: In the final phase of
our experiment, we aim to assess the cloud control system’s
performance under varying workloads within the cloud en-
vironment. To accomplish this, we implement the controller
on a Kubernetes cluster that is used as the edge cloud
in our experiment. By deploying pods designed for heavy
computational tasks, we intentionally induce a load within
the cluster for a specified duration. Our methodology involves
executing a Python script dedicated to identifying prime num-
bers within a vast numerical range, necessitating substantial
computational resources. We adjust the cloud load based on
the number of pod replicas we deploy.

In our experimental setup, we execute the proposed fre-
quency adaptation mechanism and contrast its performance
against experiments conducted by using a constant frequency
f = 20 Hz. We exclusively compare our method with the
constant frequency of f = 20 Hz, which stands as the
prevailing frequency utilized in the testbed, as documented in
[2], [3], [16]. This comparative analysis allows us to evaluate
the efficacy of our proposed control in handling dynamic
workload variations within the cloud infrastructure. The MPC
controller employs online optimization, as represented by
equation (4), to generate the control signal. For a fixed horizon
time Nt, the execution time increases with higher frequencies
due to an increase in the number of iterations within the (4).
Specifically, the number of iterations N is determined by the
equation N = Nt

h , where h = 1
f represents the sampling

period corresponding to the frequency f . Nt represents a
continuous variable denoting the duration of time, while
N corresponds to its discrete counterpart determined based
on the chosen sampling period. Augmenting the workload
within the cloud environment has the potential to elevate
response times, thereby prolonging the reception duration for
the control signal. This delay can significantly influence the
performance of the control system. Therefore, we examine
the efficacy of our proposed frequency adaptation method to
assess its responsiveness under varying workload conditions.

V. RESULTS AND DISCUSSION

As detailed in Section IV-B1, the initial phase of the
experiment involves assessing the average behavior of the
system using our proposed method across two key aspects: the
performance of the control system and the efficient utilization
of cloud resources in normal condition without introducing
additional delays. In the experiment in Fig. 3, the RTT has
a normal distribution N

(
µr, σ

2
r

)
, which σ2

r = 6.9051e− 06
s2 and µr = 0.0115 s which indicates a normal condition
with no significant delays. However, occasional disturbances
are observed, leading to deviations in the ball’s position from
its designated setpoint and consequently resulting in errors.

The green curves in this figure depict the results obtained
through our proposed frequency adaptation method within
CCS. This method strategically maintains a high frequency
solely when necessary, prioritizing lower frequencies to min-
imize cloud workload and reduce network traffic. When
disturbances occur, causing errors in the ball’s position, the
Q-learning method responds by opting for a higher frequency.
Increased frequency allows the controller to rapidly receive
new information and detect errors, enabling quicker reactions
for rectification. Consequently, as illustrated in Fig. 3, when
disturbances are present, the error in the ball’s position using
our proposed method is so close to the scenario employing
a constant high frequency (f=50 Hz), which exhibits min-
imal error. Despite the error similarity, the total execution
time—reflecting cloud resource utilization for control signal
generation—is significantly reduced compared to the constant
high-frequency case (f=50 Hz), as shown in Fig. 4(a), leading
to minimized resource usage and enhanced resource frugality.

Examining Fig. 4, the experiment employing a constant
f = 10 Hz showcases the lowest total execution time and
the number of control loops, indicating minimal workload
on the cloud infrastructure. However, this scenario exhibits
the highest Integral Absolute Error (IAE), “maximum error”,
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Fig. 3: Examining Average behavior of the system
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Fig. 4: Comparing the proposed solution with constant frequencies for different performance metrics: (a) Total Execution Time,
(b) Number of control loops, (c) IAE, (d) “maximum error”, and (e) Total cost.

and total cost. These results stem from reduced accuracy
in discretizing the system due to a larger sampling time,
leading to delayed error detection and subsequent reaction.
Conversely, the experiment with a constant f = 50 Hz
demonstrates the highest total execution time and the number
of control loops, signifying a heavier cloud workload. Yet,
this configuration yields the lowest IAE, “maximum error”,
and total cost due to its higher accuracy in discretizing the
system with a smaller sampling time. This allows for quicker
error detection and more rapid reactions. Upon examining
the green bars in Fig. 4, evaluating our proposed solution,
a clear trend emerges: the total execution time and number
of control loops are significantly lower compared to the
highest frequency setting (f = 50 Hz). However, in terms
of IAE, “maximum error”, and total cost, our proposed so-
lution performs comparably well. This observation highlights
the effective control performance achieved by our proposed
solution, akin to the highest frequency configuration, while
notably reducing cloud resource utilization. For instance,
in a 100 ms experiment, the constant f = 50 Hz setting
demands approximately 35.09 s of execution time, whereas
our proposed solution requires only around 10.16 s. Hence,
adopting our proposed solution facilitates resource efficiency,
striking a balance between minimized resource consumption
and optimized system performance.

The second part of our evaluation, as outlined in Section
IV-B2, involved challenging the system with delays beyond
tolerable limits and setpoint change. We introduced network
delay on the downlink between the cloud-based controller
and the plant in the form of a random square wave, where
both the amplitude and intervals were randomly chosen, such

that RTT changes between 100 ms and 210 ms. As setpoint
we also consider a square wave with random amplitude and
intervals. In Fig. 5, the red curve represents the CCS results
without our solution, operating at a constant frequency of 20
Hz. Notably, when the RTT exceeds 150 ms, the system’s
efficiency deteriorates, causing the ball’s position to deviate
from the setpoint. Once the RTT surpasses 200 ms, the system
becomes unstable, leading to the ball falling off the end of
the beam. Conversely, the green curve in Fig. 5 represents
the CCS results using our frequency adaptation method. It
is evident that the system can survive even when the delay
exceeds 200 ms, and it exhibits better efficiency for delays
over 150 ms compared to the system using a f = 20 Hz.

In our last experiment (Section IV-B3), we thoroughly
test how well the system performs with increased cloud
workload. Increased workload in the cloud can lead to re-
source contention, where multiple processes or applications
compete for the same resources. This contention can delay
the allocation of resources required for processing requests,
leading to higher response times. In this experiment, there is
a network delay of about 100 ms. Then, we introduce extra
applications in the cloud for a period, intentionally causing the
cloud’s response time to increase. In Fig. 6, the highlighted
red area represents the timeframe during which the response
time increased, attributable to the escalating workload within
the cloud. This leads to a longer execution time required for
the cloud to generate the control signal and consequently
increases RTT. Employing a constant frequency of f = 20
Hz, adversely impacts system performance. As evident in
the highlighted red area, the longer response time results in
significant deviations of the ball position from its setpoint.
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Fig. 5: Challenging the system: delay and setpoint variation

This discrepancy arises from the higher execution time of
f = 20 Hz. However, our proposed frequency adaptation
method responds to the increased response time by lowering
the frequency. As detailed in Section IV-B3 and equation (4),
lower frequencies result in reduced execution time. Therefore,
our method aims to decrease the response time by selecting
f = 10 Hz, employing a higher frequency only in cases
where a setpoint change induces an error. In Fig. 6, with
our proposed method, during the highlighted red area where
the response time increases, the execution time remains lower
compared to the constant f = 20 Hz scenario, and the ball
follows its setpoint well proves the efficiency of our method.

VI. CONCLUSION

Accounting for the dynamic nature of cloud environments,
employing a fixed frequency in cloud control systems proves
to be inefficient. To address this challenge, this paper intro-
duced a novel frequency adaptation method employing Q-
learning. This method dynamically selects the frequency for
each control loop based on the current environmental condi-
tions. Our evaluation, conducted on a real testbed, demon-
strates that this approach not only improves overall system
efficiency but also optimizes cloud resource utilization.
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