
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Detecting and Mitigating Actuator Attacks on Cloud Control Systems through Digital
Twins

Akbarian, Fatemeh; Tärneberg, William; Fitzgerald, Emma; Kihl, Maria

Published in:
The 31st International Conference on Software, Telecommunications and Computer Networks (SoftCOM 2023)

DOI:
10.23919/SoftCOM58365.2023.10271648

2023

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Akbarian, F., Tärneberg, W., Fitzgerald, E., & Kihl, M. (2023). Detecting and Mitigating Actuator Attacks on
Cloud Control Systems through Digital Twins. In The 31st International Conference on Software,
Telecommunications and Computer Networks (SoftCOM 2023) IEEE - Institute of Electrical and Electronics
Engineers Inc.. https://doi.org/10.23919/SoftCOM58365.2023.10271648

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.23919/SoftCOM58365.2023.10271648
https://portal.research.lu.se/en/publications/f0a88c32-e449-461f-8345-271eb3f044a7
https://doi.org/10.23919/SoftCOM58365.2023.10271648


Detecting and Mitigating Actuator Attacks on
Cloud Control Systems through Digital Twins

Fatemeh Akbarian1, William Tärneberg1, Emma Fitzgerald1 and Maria Kihl1
1Department of Electrical and Information Technology, Lund University, Sweden

Abstract—Recently, the industry has been driven to move
industrial control systems to the cloud due to the significant
advantages it offers in terms of storage and computing resources.
However, this shift also brings forth significant security chal-
lenges. By moving control systems to the cloud, the potential for
attackers to infiltrate the system and launch damaging attacks
increases. These attacks can result in severe disruptions and
potentially catastrophic consequences. Hence, attack detection
and mitigation mechanisms are crucial for cloud control systems.
In this paper, we present an approach that leverages the digital
twins concept and virtual actuator method to detect and mitigate
deception attacks on control signals within cloud control systems.
By conducting experiments on a real testbed and subjecting it to
a set of attacks, we validate the effectiveness of our solution. Our
proposed method successfully detects attacks in a timely manner
and keeps the plant stable, with a good performance during the
attack.

Index Terms—cloud control system, attack detection, attack
mitigation, digital twins

I. INTRODUCTION

In recent years, cloud computing has emerged as a transfor-
mative technology, revolutionizing the way organizations han-
dle data and deploy their computing resources. By leveraging
the power of remote servers and virtualization technologies,
cloud computing offers unparalleled scalability, flexibility,
and cost-efficiency. These advancements have paved the way
for the control of industrial control systems over the cloud,
enabling the utilization of seemingly endless computing and
storage resources. With cloud-based architectures, control
strategies can now be executed using more advanced algo-
rithms and techniques, allowing controllers to tackle complex
problems that are computationally demanding. Cloud control
systems (CCS) leverage the cloud infrastructure, moving the
control functionality to a centralized location, enabling remote
monitoring, centralized control, and seamless integration with
other cloud-based services, thereby enhancing operational ef-
ficiency and performance [1].

However, with the increasing adoption of cloud control
systems, a new set of challenges emerges, particularly in
terms of security. Connecting these systems to the cloud
introduces access points for potential exploitation by malicious
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actors. Integrating cloud control systems with the broader net-
work infrastructure creates opportunities for attackers, posing
significant security risks. These risks include unauthorized
access, data breaches, and service disruptions. Hence, it is
crucial to prioritize robust security measures to protect critical
infrastructure against sophisticated attack techniques [2].

Cybersecurity measures can be categorized as prevention,
detection, and mitigation. Prevention reduces vulnerabilities
through encryption, firewalls, and security protocols. Detection
monitors for anomalies caused by attacks, while mitigation
aims to minimize their impact. Detection and mitigation ac-
tions are crucial, as attackers may bypass prevention measures.
In addition, implementing prevention measures like encryption
for older systems like power grids can be costly due to
equipment updates [3].

Different types of attacks can occur on CCSs, but this paper
specifically addresses deception attacks within CCSs, focusing
on their detection and mitigation. A deception attack targets
the integrity of the signals sent between the cloud and the
plant through the network. These signals can be either control
or measurement signals, and their compromise can severely
impact system performance and stability [4].

Some research has been done regarding deception attacks,
and they have proposed different solutions using machine
learning techniques [5], designing secure control [6], [7], using
watermarking signals [8], [9], and using fault tolerant control
methods [10], [11]. But, all these works have considered
attacks on measurement signals.

In [12], we proposed a method to detect and mitigate attacks
on control signals. We used the analytical redundancy relations
(ARR) method to estimate the attack signal and reconstruct the
actual control signal, effectively maintaining system stability
and reliable performance during an attack. However, this
method relies on the system model, and its applicability
depends on the model’s characteristics. Therefore, this paper
introduces an alternative mitigation method that can be applied
to various systems, regardless of their specific models. We
aim to detect attacks on the control signal by combining
the digital twins concept and the generalized likelihood ratio
(GLR) method. Additionally, we employ the virtual actuator
method to reconfigure the controller and mitigate the attack’s
impact on the system.

In the rest of this paper, first, we explain our targeted
system. Next, we delve into the investigation of our proposed
solution, outlining the methodology and techniques employed.
Then, we illustrate the details of the experiments and evalu-
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ation of the proposed solution on a real testbed. Finally, we
analyze and discuss the results obtained from the experiments,
drawing conclusions and insights from our findings.

II. TARGETED SYSTEM AND TESTBED

A Cloud Control System integrates cloud computation with
physical processes, enabling the use of advanced controllers
that require substantial computation power. However, cyber-
security is a major concern for these systems. The system
consists of a cloud-based controller, a physical domain with a
plant, sensor(s), and actuator(s). Measurement signals (y) are
transmitted from the physical domain to the cloud controller,
while control signals (u) are sent back to the actuators. The
network between the cloud and the physical domain serves as
a potential access point for attackers to manipulate the signals,
as shown in Fig. 1.

As was discussed in Section I, we consider deception attacks
on control signals in which the attacker manipulates these
signals. Hence, this attack can be modeled as follows:

ũ(k) = u(k) + a(k) (1)

where uk = [u1 u2 ... unu ] is the control signal vector,
ak = [a1 a2 ... anu ] is the attack vector, and k shows
time instance. The attack vector has nonzero entries for the
control signals under attack and zero values for all other
control signals. In this paper, we also consider simultaneous
attacks, which means that it is possible to have the attack on
several control signals at the same time. Hence, for nu control
signals, there could be 2nu different attack modes. However,
totally there will be 2nu − 2 modes of attack because we
assume the attacker is not able to have access to all control
signals and apply attacks on them at the same time, and also,
one mode is related to 20 in which there is no attack on control
signals. So, we subtract 2 from 2nu .

III. PROPOSED SOLUTION

This section describes our proposed solution to detect and
mitigate deception attacks on control signals in CCSs.

Fig. 1. CCS under actuator attack.

A. Attack Detection

1) Digital twin: For the attack detection part, we propose
to use the digital twin concept. Digital twins is a rather new
concept that precisely mirrors the internal behavior of the
system. Hence, this fact can be used for creating a reference
that by comparing the behavior of the real system with its
digital twin’s, any abnormal changes can be noticed.

Digital twin usually is located in cloud resources and
includes simulation of all components and units of the physical
part. Based on [13], as digital twins for Industrial Control
System (ICS) we have a virtual replica in the cloud for each
component in the physical domain. However, in cloud control
systems, the controller has already been implemented in the
cloud to control the real plant. Hence, to create a digital twin,
as Fig.2 shows, we can have only the virtual replica of the
plant and use the cloud controller for both the real plant and
its digital version. In this paper, to create the virtual plant,
we use the mathematical model of the plant, which can be
obtained either based on the physical laws or using system
identification methods.

In Fig. 2, measurement signals are sent from the real plant to
the cloud controller, and control signals are transmitted to both
the real and virtual plants. Both the real and the virtual plants
get the same control signals, and the output of the virtual
one shows what is expected from the real plant. Hence, by
comparing the virtual plant’s outputs ŷ with the real plant
outputs y, abnormal changes can be detected. So, residual
signals r are generated as follows:

r(k) = y(k)− ŷ(k) (2)

where subscript k denotes the time instance. In normal condi-
tions, the outputs of the real and virtual plants should be the
same, resulting in zero residual signals. However, noise in real
systems can cause non-zero residuals, making it challenging
to distinguish between attacks and noise. To address this, a
decision system is needed to evaluate residual signals and
trigger an alarm upon detecting an attack.

2) Decision system: As a decision system, we should
use change detection methods to diagnose the attack from
noise. The most well-known change detection methods are
cumulative sum (CUSUM) and generalized likelihood ratio
(GLR) algorithms. CUSUM is a test for a known magnitude
of change. However, here depending on the attack signal, we
can have different magnitudes of change. Hence, we suggest
using GLR method in our decision system.

GLR method, which is based on the Neyman–Pearson’s
approach, and its aim is to distinguish between two hy-
potheses: H0—the nominal case, and H1—a change has
taken place in the residual signals r. In normal conditions,
residual signals are close to zero and have normal distribution
r = N

(
µ0 = 0, σ2

)
since the measurement noise on y have a

normal distribution. GLR method is able to estimate not only
the change time but also the change magnitude. It estimates
the change magnitude µ̂1 as follows:
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µ̂1 =
1

M

k∑
i=k−M+1

r(i) (3)

where M is the window size, which means that in each time
interval, the last M time instants are used to calculate µ̂1 at
that time. Based on the estimated change magnitude, GLR
decision function is calculated as follows:

g(k) =
1

2σ2

1

M

(
k∑

i=k−M+1

(r(i)− µ0)

)2

(4)

and using the threshold h, the change can be detected using
the following expression:{

H0 : g(k) ≤ h
H1 : g(k) > h.

(5)

So, based on (5), false alarms occur when the system is in
H0 but g(k) > h. Thus, for preventing such false alarms,
the proper h can be obtained for a given probability of false
alarms, PF , by solving the following equation:

PF =

∫ ∞

2h

1

2
1
2 | Γ

(
1
2

)X− 1
2 e−

X
2 dX (6)

where Γ(u) denotes the gamma function. There is a trade-off
between the probability of false alarms and the time to detect
the change. If the probability of false alarms is too small, con-
sequently, there will be a higher threshold, and this will result
in longer change detection times. A missed detection occurs
when the system is in H1, but g(k) ≤ h. Hence, the probability
of detection, PD, is defined based on the probability of missed
detection PM as PD = 1 − PM . After selecting h using (6),
the window size M for a given probability of detection can
be selected by solving the following equation:

PD =

∫ ∞

2h

pχ2

(
X; 1,

M (µ1 − µ0)
2

σ2

)
dX (7)

where:

pχ2(X; 1, λ) =
1

2

(
X

λ

)− 1
4

e−
X+λ

2 I− 1
2
(
√
λX) (8)

and I refers to the Bessel function of first kind.

B. Attack Mitigation

We consider a reconfiguration block to hide the attack in the
mitigation part. In fact, instead of reconfiguring the controller
for the attack condition, we consider a reconfiguration block
to adapt the attacked system to the current controller. So, for
a given control signal uc, the attacked system should produce
the same output as the normal condition yc and send it to the
controller. The controller based on yc generates uc.

By considering the attack on control signals, the plant under
attack can be modeled as follows:

ẋa = Axa +Bfua + Ed

ya = Cxa

(9)

where ua is the control signal after applying the attack, ya is
the measurement signal generated based on ua, and xa is the

Fig. 2. Digital twins for CCS.

states of the under attack plant. Also, d is the disturbance, A,
B, E, and C are coefficient matrices in the normal system’s
model. Bf is matrix B in that the columns related to control
signals under attack are considered zero. So this means that
healthy control signals should control the system. If (A,Bf ) is
controllable, the reconfigured control input accesses the entire
state vector and the full dynamics of the nominal system can
be shaped. The controllability of (A,Bf ) can be checked as
follows. (A,Bf ) is controllable if:

rank
[
Bf ABf A2Bf . . . An−1Bf

]
= p (10)

where p is the dimension of the matrix A ∈ Rp×p. But, if
(A,Bf ) is not controllable, at least it should be stabilizable
in which condition approximation of nominal output can be
shaped [14]. Then we can design the virtual actuator as
follows:

ẋv = Avxv +Bvuc

ua = Mxv +Nuc

yc = Cvxv + ya

where:

Av = A−BfM

Bv = B −BfN

Cv = C

N = B+
f B

and M is chosen such that A − BfM is Hurwitz. Using
this virtual actuator, we only use healthy control signals and
change them such that only by using them we can control the
system well.

IV. EXPERIMENT

In this section, we evaluate our approach using a ball and
beam process as the plant. We deploy an MPC controller
within the cloud to control it. By deploying the digital twin
and our detection and mitigation approach in the cloud, we
demonstrate the resilience of our cloud control system against
deception attacks on control signals. The following explains
the ball and beam system and our evaluation methods in detail.

A. Kubernetes cluster

The testbed has been equipped with a seven-node Kuber-
netes cluster as the edge cloud. Kubernetes (K8S) is a portable,
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extensible, open-source platform for managing containerized
workloads and services that facilitates declarative configura-
tion and automation [15]. The cluster has been equipped with
an nginx ingress [16] and Prometheus operator [17]. The nginx
ingress is exposed using the K8S NodePort paradigm. We
use this K8S cluster to implement our controller and attack
detection and mitigation algorithm.

B. Process

In this paper, we examine our proposed method using a ball
and beam system. This system consists of a long beam and an
electric motor that tilts the beam, causing a ball to roll back
and forth on top of it. Without a controller, the system is open-
loop unstable, resulting in the ball falling off the beam. The
controller’s goal is to maintain the ball at a set-point on top of
the beam by tilting it using the electric motor. In this system,
the beam length is 1.1m, and the ball’s allowed position range
is [−0.55m, 0.55m]. In all experiments, the setpoint for the
ball’s position is −0.3m.

The attacker aims to drive the ball out of the allowed range,
causing it to fall off the beam. Additionally, if the attacker
moves the ball from its set-point but keeps it on the beam, it
leads to increased costs and decreased efficiency. Therefore,
our objective in this paper is to maintain the ball on the beam
at the exact set-point, even in the presence of an attack.

We have chosen this system as a plant because it has a
fast dynamic and is time critical, and even in the absence of
attacks, controlling it over the cloud is tricky. Also, any attacks
can make it unstable easily. Hence, applying our proposed
method for this process and keeping it stable in the presence
of attacks can prove the effectiveness of our method very well.

This system has three measurement signals: the ball’s posi-
tion, the ball’s speed, and the beam’s angle. One control signal
sets the beam’s speed to adjust the ball’s position. This system
can be modeled as follows:

ẋ(t) =

 0 1 0

0 0 − 5g
7

0 0 0

x(t) +

 0
0

0.44

u(t)

y(t) =

 1 0 0
0 1 0
0 0 1

x(t)

(11)

To design the controller for this system, we discretize
it with a sampling time of Ts = 0.05s and employ the
Linear–quadratic regulator (LQR). The LQR generates the
control signal as:

u(k) = −K(y(k)− s(k)) (12)

Here, K = [−31.0027,−13.9077, 20.4937] represents the gain
vector, yk denotes the measurement signal, and sk denotes the
setpoint. The controller is deployed as a pod in a Kubernetes
cluster serving as the cloud.

Our mitigation method, discussed in Section III-B, is de-
signed for multi-input systems. However, the ball and beam
system is a single-input system, deliberately chosen to demon-
strate the applicability of our mitigation method even in such

cases. We can transform this system into a multi-input system
by modifying it. Firstly, we multiply the gain vector by Ka in
the controller, expanding the dimension of u as follows:

Knew = KaK =


1/2
1/3
1/5
1/4

K (13)

Hence, the controller will generate four control signals instead
of one:

unew(k) = −Knew(y(k)− s(k)) (14)

Based on Knew, the ball and beam system’s model in (11)
should be adjusted to four control signals. For this, B matrix
should be replaced with Bnew such that meets following
condition:

Bu = Bnewunew = BnewKau −→ B = BnewKa (15)

Using Bnew, (11) is changed to a multi-input system as
follows:

ẋ(t) =

 0 1 0

0 0 − 5g
7

0 0 0

x(t) +

 0 0 0 0
0 0 0 0
0.5 0.66 1.1 −1

u(t)

y(t) =

 1 0 0
0 1 0
0 0 1

x(t)

(16)
Now, for this multi-input system, we can employ a virtual

actuator to mitigate attacks. However, the actuator in the real
system can only apply a single control signal to adjust the
beam’s speed. Therefore, we need to recalculate the main con-
trol signal using the four control signals received on the plant
side. By utilizing equation (15) and knowing the values of B,
Bnew, and unew, we can calculate u as u = B−1Bnewunew.
C. Digital Twin

As explained in Section III-A1, the digital twin is deployed
inside the cloud and continuously follows its physical counter-
part. We use the nonlinear model of the ball and beam system
that is more precise to create its digital twin as follows:

x3(k + 1) = 0.44Tsu(k) + x3(k)

P =
5

7
g sin(x3(k + 1))

N =
5

7
0.442u2(k)

Q = Tsx2(k) + x1(k)

x2(k + 1) =
NQ− P

1−BT 2
s

Ts + x2(k)

x1(k + 1) = Tsx2(k + 1) + x1(k)

x(k + 1) = [x1(k + 1), x2(k + 1), x3(k + 1)]T

(17)

g = 9.80665 is the gravitational constant, u(k) is the control
signal, and x(k) is the state vector consisting of x1(k) (ball’s
position), x2(k) (ball’s speed), and x3(k) (beam’s angle). The
digital twin is implemented in Python and deployed as a pod
in a K8S cluster. The control signal generated by the LQR
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TABLE I
DIFFERENT MODES OF ATTACK.

M
od

e
1

M
od

e
2

M
od

e
3

M
od

e
4

M
od

e
5

M
od

e
6

M
od

e
7

M
od

e
8

M
od

e
9

M
od

e
10

M
od

e
11

M
od

e
12

M
od

e
13

M
od

e
14

Attack on u1 × - - - × × × - - - × × × -
Attack on u2 - × - - × - - × × - × × - ×
Attack on u3 - - × - - × - × - × × - × ×
Attack on u4 - - - × - - × - × × - × × ×

controller is utilized for both the cloud-based digital twin and
the physical system.

D. Applying Attacks on the System

In this paper, we assume attacks occur on control signals
and change their value. We also assume simultaneous attacks
can be applied to control signals. Based on Section IV-B, the
plant in our testbed has four control signals, and based on that
the attack occurs on which of them, we can define 24−2 = 14
different modes as shown in Table I. We subtract 2 from 24

because we disregard the case in which there is no attack on
the control signals and also the case in which we have an
attack on all control signals since we assume the attacker is
not able to have access to all control signals at the same time.

E. Evaluation of Attack Detection Method

In the initial phase of the experiment, we evaluate the attack
detection part. In (1), based on the mode of attack, if the
elements of the attack vector possess higher values, it induces
rapid changes in the position of the ball, thereby impacting the
system. However, such attacks are easily detectable. Hence, to
properly assess the detection method capabilities, we consider
an attack in the form of noise added to the actual control sig-
nal. Detecting this type of attack poses significant challenges,
as it can resemble normal system noise, rendering it difficult
to distinguish from genuine system behavior. So, based on the
mode of the attack that we consider, we consider the non-
zero elements of the attack vector in (1) as noise with normal
distribution ai = N (0.1, 0.0016) that is applied to the control
signals at the 700th sample.
F. Evaluation of Attack Mitigation Method

In the second part of the experiments, to evaluate our
mitigation part, we apply a powerful attack on the system, such
that the attack can make the system unstable immediately. So,
based on the mode of the attack that we consider, we consider
the non-zero elements of the attack vector in (1) as normal
distribution ai = N (9, 0.0016) that is applied to the control
signals at the 700th sample. Despite the easy detectability of
this attack, we use that here in our experiment to assess the
efficacy of our proposed mitigation method.

Also, as a performance metric, we use Integral Absolute
Error(IAE) as follows to compare the control performance
in normal conditions, in attack conditions when we have
mitigation, and in attack conditions when we do not have any
mitigation.

IAE =

T∑
k=0

|y(k)− s(k)| , (18)

0 200 400 600 800 1,000 1,200 1,400
0
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M
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g(k)
h

Fig. 3. Detecting attack in mode 3 using the proposed method.

where y(k) is the position signal, and s(k) is the set-point
for the ball’s position on the beam. We have chosen IAE as
a performance metric for evaluating our mitigation method
because the control objective is tracking the reference in our
control system (ball and beam system).

V. RESULTS AND DISCUSSION

This section presents the results of the evaluation of attack
detection and mitigation algorithms.

First, Based on Section IV-E, we apply noise-based at-
tacks to control signals in different modes (Table I). Fig. 3
demonstrates the operation of our attack detection method for
mode 3, targeting u3. The red line represents the threshold
h = 3.3174 (determined from PF = 10−2 using Eq. (6)),
while the blue line depicts the decision function g(k) surpass-
ing the threshold at the 717th sample. With a sampling time
of Ts = 50 ms, the attack is detected in approximately 0.85
s. We repeat this experiment for all 14 modes, measuring the
detection time. Fig. 4 displays the results, demonstrating that
the attack is detected in less than 2 s in all cases, confirming
the effectiveness of our method.

In the second experiment phase (Section IV-F), we assess
our mitigation approach by applying a strong attack that can
immediately destabilize the system. Fig. 5 illustrates the results
of applying the attack in mode 1. Without the mitigation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.5

1

1.5

2

Mode of the attack

Ti
m

e
to
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(s

)

Fig. 4. The time it takes to detect different modes of attacks.
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Allowed range for ball’s position
Position signal (without mitigation)

Fig. 5. Mitigating attack on Mode 1.

method, the system quickly becomes unstable, as shown by
the red curve. The position signal at the 713th sample exceeds
the permissible range (black line), causing the ball to fall off
the beam. However, a different outcome is observed when our
mitigation method is implemented (blue curve). The attack is
detected shortly after initiating at the 700th sample, triggering
the mitigation mechanism. The ball is then moved back to the
setpoint, effectively saving the system. We will now extend our
analysis to other attack modes and calculate the IAE (based on
Eq. (18)) to evaluate the control performance in the presence
of attacks. Fig. 6 presents the IAE for all 14 attack modes,
considering the powerful attack described in Section IV-F.

In Fig. 6, the bars represent IAE for different conditions,
measured until the 750th sample. The red bars denote the
normal condition without attacks. The blue bars show the
IAE for the attack condition without mitigation, which exhibits
higher values compared to the normal condition. In contrast,
the purple bars display the IAE for the attack condition
with our mitigation approach. Across all attack modes, the
mitigated condition using our proposed security framework
consistently yields significantly lower IAE compared to the
case without mitigation. Furthermore, the IAE in the mitigated
condition closely resembles the IAE in the normal condition.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

5

10

15

20

25

30

Mode of the attack

IA
E

Normal condition
Attack with mitigation
Attack without mitigation

Fig. 6. IAE for each mode of the system.

This highlights the effectiveness of our mitigation strategy in
maintaining plant stability and achieving good control perfor-
mance in the presence of attacks. It demonstrates our solution’s
capability to counteract the adverse effects of attacks, ensuring
system stability and control quality.

VI. CONCLUSION

This paper introduces an innovative method for detecting
and mitigating attacks on control signals in cloud control
systems. Our approach utilizes digital twins to swiftly detect
deception attacks on control signals. We have also developed
virtual actuators to effectively mitigate detected attacks, ensur-
ing system stability and maintaining performance even during
an attack. To validate our solution, we implemented it on a
real testbed and conducted thorough evaluations. The results
unequivocally demonstrate the effectiveness of our approach
in detecting and mitigating attacks on control signals in cloud
control systems.
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