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Abstract 

Object: The aim of this study was to demonstrate a new automatic brain segmentation 

method in MRI. 

Materials and Methods: The signal of a spoiled gradient-recalled echo (SPGR) sequence 

acquired with multiple flip angles was used to map T1, and a subsequent fit of a multi-

compartment model yielded parametric maps of partial volume estimates of the different 

compartments. The performance of the proposed method was assessed through simulations as 

well as in vivo experiments in five healthy volunteers. 

Results: Simulations indicated that the proposed method was capable of producing robust 

segmentation maps with good reliability. Mean bias was below 3% for all tissue types, and the 

corresponding similarity index (Dice’s coefficient) was over 95% (SNR=100). In vivo 

experiments yielded realistic segmentation maps, with comparable quality to results obtained 

with an established segmentation method. Relative whole brain cerebrospinal fluid, grey 

matter, and white matter volumes were (mean±SE) 6.8±0.5%, 47.3±1.1%, and 45.9±1.3% for 

the proposed method, and 7.5±0.6%, 46.2±1.2%, and 46.3±0.9% for the reference method. 

Conclusion: The proposed approach is promising for brain segmentation and partial volume 

estimation. The straightforward implementation of the method is attractive, and protocols that 

already rely on SPGR-based T1 mapping may employ this method without additional scans. 

  



 

Introduction 

In many MRI applications, it is of relevance to be able to distinguish between different tissue 

types or compartments within a given dataset. For example, tissue separation may be critical 

for complete assessment of the function in a given structure [1]. Separation of different 

compartments can also be utilized in the actual calculation of parametric maps [2], while, in 

other applications, it may be important to know the volume of the structures of interest [3]. 

A tissue segmentation method generally generates parametric maps containing information 

about the spatial distribution of the compartments of interest. These maps may be binary or 

continuous, where the latter may be referred to as fractional segmentation or partial volume 

estimation. Many MRI datasets, including functional and motion-sensitized MRI, are of low 

spatial resolution, implying that a fractional segmentation is useful since it may be used for 

correction of partial volume effects [4]. 

The present work is focused on brain segmentation, specifically segmentation of grey matter 

(GM), white matter (WM), and cerebrospinal fluid (CSF). Many existing brain segmentation 

methods in MRI are automatic and employ modelling of signal intensity distributions in a 

morphological scan, and/or prior information about the spatial distributions of different 

compartment classes (e.g., from atlases) [5]. These methods generally employ multiple 

mathematically advanced algorithms, which make them difficult to implement. The wide 

variety of existing segmentation methods has been thoroughly reviewed in the literature [1,6]. 

Simple segmentation methods, based on quantitative mapping and subsequent modelling of 

the MRI signal, could be a viable alternative to the established methods. Although such 

segmentation methods do exist, they are still not readily available [7,8]. One way of 

performing such a data-driven segmentation is to use quantitative T1 mapping, as suggested 

by Shin et al. [7], employing a multi inversion time (multi-TI) inversion recovery (IR) 

sequence. This concept, referred to as ‘FRActional Signal mapping from InvErsion Recovery’ 

(FRASIER), has been successfully adapted to low-resolution perfusion MRI for calibration 

purposes [2] and partial volume correction [9,10]. The FRASIER method exploits the 

difference in T1 between different compartments by modelling the dynamic IR signal, in 

every voxel, as a sum of the three characteristic recovery curves of the three brain 

compartments [7]. This intuitive concept is most likely applicable to a wide variety of 

quantitative and volumetric MRI studies, but we hypothesize that it is also possible to 



 

reformulate it for use with other MRI sequences. We demonstrate this by adapting the IR-

based segmentation method by Shin et al. [7] to another common method for quantitative T1 

mapping, namely the spoiled gradient-recalled echo (SPGR) sequence with variable flip angle 

(VFA) acquisition [11,12]. The new segmentation method (which incorporates VFA T1 

mapping) is dubbed ‘SPoiled Gradient-Recalled echo based SEGmentation’ (SPGR-SEG). 

Results from simulations and five in vivo pilot studies are presented to demonstrate the 

performance and experimental validity of the proposed method. 

Materials and Methods 

Brain segmentation 

The signal equation for a SPGR sequence is given by: 

 
𝑆(𝜃) = 𝑆0 sin(𝜃)

1 − e−𝑇𝑅/𝑇1,𝑡

1 − cos(𝜃) e−𝑇𝑅/𝑇1,𝑡
 [1] 

where 𝑆0 depends on longitudinal magnetization at thermal equilibrium and receiver coil 

sensitivity, 𝜃 is the flip angle (FA), 𝑇𝑅 is the repetition time and 𝑇1,𝑡 is the longitudinal 

relaxation time. Note that the transverse relaxation term is omitted, assuming a short echo 

time. Given that data have been collected with two or more different flip angles, the signal 

can be modelled as a function of the varying flip angles, and Eq. 1 can be solved for 𝑀0 and 

𝑇1,𝑡. For T1 mapping, this is often accomplished using two low flip angles [13]. 

Assuming that the VFA signal can be modelled as a sum of three compartments, i.e., CSF, 

GM, and WM, each with a unique partial signal (signal contribution) and a representative T1 

value, Eq. 1 is modified as: 

 
𝑆(𝜃) = sin(𝜃)∑ 𝑓𝑠,𝑖

1 − e−𝑇𝑅/𝑇1,𝑖

1 − cos(𝜃) e−𝑇𝑅/𝑇1,𝑖𝑖
 [2] 

where 𝑓𝑠,𝑖 and 𝑇1,𝑖 are the fractional signal and the longitudinal relaxation time of 

compartment 𝑖 = {𝐶𝑆𝐹, 𝐺𝑀,𝑊𝑀}, respectively, and ∑ 𝑓𝑠,𝑖𝑖 = 𝑀0. Eq. 2 can be rewritten in 

matrix form as 𝐒𝐦 = 𝐗𝐅𝐬 + 𝐞, where 𝐒𝐦 = [𝑆(𝜃1), 𝑆(𝜃2), … , 𝑆(𝜃𝑁)]
𝑇 is the discretely 

measured SPGR signal (for different FAs), 𝐞 is the measurement error, and 



 

 
𝑋𝑗𝑖 = sin(𝜃𝑗)

1 − e−𝑇𝑅/𝑇1,𝑖

1 − cos(𝜃𝑗) e
−𝑇𝑅/𝑇1,𝑖

 [3] 

 𝐅𝐬 = [𝑓𝑠,𝐶𝑆𝐹 , 𝑓𝑠,𝐺𝑀, 𝑓𝑠,𝑊𝑀]
𝑇
 [4] 

𝐅𝐬 is subsequently solved by linear least squares estimation, i.e., 𝐅𝐬 = (𝐗𝑇𝐗)−1𝐗𝑇𝐒𝐦, where 

(𝐗𝑇𝐗)−1𝐗𝑇 is the pseudo-inverse of 𝐗. Since longitudinal magnetization is proportional to 

proton density, we can correct for the water content of each compartment to yield fractional 

volumes: 

 
𝑓𝑣,𝑖 =

𝑓𝑠,𝑖
𝜌𝑖

 [5] 

where 𝜌𝑖 is the volumetric water density of compartment 𝑖. Finally, the fractional volumes are 

constrained by ∑ 𝑓𝑣,𝑖 = 1𝑖  to obtain normalized values. It is important to note that, in contrast 

to the VFA method for T1 mapping, the SPGR-SEG method needs at least three different flip 

angles to separate three compartments. Representative 𝑇1,𝑖 values of each compartment need 

to be estimated prior to the segmentation. This can be accomplished by first mapping 𝑇1,𝑡 with 

the VFA method, and then estimating the mean compartment T1 values from a whole-brain 

histogram. 

Flip angle correction 

T1 quantification by the VFA approach requires knowledge of the achieved flip angle, but 

inhomogeneities in the transmit field (B1+) generally results in a spatially varying flip angle. 

At field strengths above 1.5 T such inhomogeneities are non-negligible, and mapping of the 

local flip angle is essential for accurate T1 values [14]. The proposed segmentation method 

exploits the SPGR signal equation in a similar way, and is also dependent on the local flip 

angle. Hence, a local flip angle correction factor 𝑘 was measured using the double angle 

method (DAM) [15,16]: Two gradient echo signals with long TR and different nominal flip 

angles, so that 𝛼2,𝑛𝑜𝑚 = 2𝛼1,𝑛𝑜𝑚, where acquired. Since 𝑆(𝛼) ≈ 𝑆0sin⁡(𝛼) when 𝑇𝑅 ≫ 𝑇1, 

the signal ratio is 𝜆 = 𝑆(𝛼2)/𝑆(𝛼1) = sin⁡(𝛼2)/sin⁡(𝛼1). Assuming that 𝛼2 = 2𝛼1, the 

achieved flip angle is given by 𝛼1 = arccos⁡(𝜆/2), and the flip angle correction factor is 

subsequently given by 𝑘 = 𝛼1/𝛼1,𝑛𝑜𝑚. The correction factor is then applied voxel-wise to the 

nominal flip angles of the VFA acquisition. Note that this approach assumes similar slice 

profiles for the two flip angles. 



 

Simulations 

A digital phantom of a normal brain (subject 04) from BrainWeb [17] 

(http://brainweb.bic.mni.mcgill.ca/brainweb/) was used as ground truth in the simulations. 

The resolution was subsampled to a 2 mm isotropic voxel size (from 1 mm isotropic), which 

is similar to the in vivo resolution applied in this study (see ‘In vivo experiments’). 𝑇1,𝑖 values 

were set to 4.3 s, 1.3 s and 0.8 s for CSF [7], GM and WM [18], respectively, and water 

content and flip angle correction factor were set to unity. Simulated SPGR signals were 

generated, based on Eq. 2, using FA=2°/5°/10°/15°/20°/25°/30°, and a TR of 11 ms. Gaussian 

noise was added with an amplitude corresponding to signal-to-noise ratios (SNRs) ranging 

from 10 to 200, where SNR was defined as the maximum unperturbed GM SPGR signal value 

(i.e., the signal value at Ernst angle for GM) divided by the noise standard deviation. 

Furthermore, to assess the performance in the presence of more pronounced partial volume 

effects, the digital phantom was subsampled four times, yielding a 4 mm isotropic resolution, 

and subsequent segmentation was performed for an SNR of 100. To assess the potential of 

segmenting additional compartments, e.g., pathologies, a dataset from NITRC TumorSim [19] 

(http://www.nitrc.org/projects/tumorsim/) was used, were a simulated solid tumor acted as an 

arbitrary lesion in this work. The digital phantom was based on the same normal brain as the 

one from BrainWeb. The performance with a fourth compartment was tested with 𝑇1,𝑙𝑒𝑠𝑖𝑜𝑛 set 

to 0.5 s, 1.5 s, and 2.5 s, for an SNR of 100. 

The sensitivity to errors in flip angle and T1 estimation was investigated by simulations. For a 

ground truth corresponding to 100% GM, errors in estimated GM volume was calculated for a 

10% variation in T1 value (1.17-1.43 s) and for a 20% variation in flip angle (𝑘=0.8-1.2).  

In vivo experiments 

To evaluate the in vivo performance of SPGR-SEG, five healthy subjects (two females and 

three males, mean age 31±3.4 y) were scanned with a conventional 3D SPGR/FLASH 

sequence. The study was approved by the local ethics committee, and all volunteers gave 

written informed consent. The experiment was performed on a 3T MRI unit (MAGNETOM 

Skyra, Siemens Healthcare, Erlangen, Germany) using the following parameters: 52 slices, 3 

mm slice thickness, 128×128 matrix, 1.72×1.72 mm2 in-plane resolution, 

FA=2°/5°/10°/15°/20°/25°/30°, TR/TE=11/4.2 ms, at a total scan time of 4 min 40 s. For flip 

angle correction, two 2D SPGR sequences were employed with the following parameters: 52 



 

slices, 3 mm slice thickness, 64×64 matrix, 3.44×3.44 mm2 in-plane resolution, FA=45°/90°, 

TR/TE=10000/2 ms, at a total scan time of 12 min 4 s. For comparison purposes, data from a 

multi-TI IR experiment (IR turbo/fast spin echo) were also acquired using the following 

parameters: 52 slices, 3 mm slice thickness, 128×128 matrix, 1.72×1.72 mm2 in-plane 

resolution, TR/TE=4200/11 ms, TI=50/250/500/750/1000/1500/2000/2500 ms, at a total scan 

time of 15 min 52 s. All sequences employed parallel imaging (GRAPPA with acceleration 

factor 2) and B1- inhomogeneity correction (Prescan Normalize). 

Post-processing 

All post-processing was executed using in-house developed software (MATLAB 2012a, The 

MathWorks, Inc., Natick, MA, USA), based on the theory described above. A whole-brain 

mask, used to remove background voxels in the fitting procedures, was produced using the 

Robust Brain Extraction software [20] (http://www.nitrc.org/projects/robex/).Flip angle 

correction maps were calculated using DAM, and the flip angles were subsequently corrected 

voxel-wise. Motion correction was performed separately on the SPGR and IR data, using 

Elastix [21] (http://elastix.isi.uu.nl/). For each voxel, Eq. 1 was solved for 𝑀0 and 𝑇1,𝑡 by 

nonlinear regression. Longitudinal relaxation properties of GM and WM were estimated from 

the position of the largest peaks in a whole brain 𝑇1,𝑡 histogram. Due to the few voxels 

containing high fractions of CSF, mean T1 in CSF was estimated from a manual ROI placed 

in the lateral ventricles. 

Fractional segmentation was accomplished by constrained linear least squares estimation so 

that 𝐅𝐬≥0, using the proposed model (Eq. 2). Fractional volumes were calculated from the 

fractional signals according to Eq. 5, assuming water contents of 100%, 89% and 73%, for 

CSF, GM and WM, respectively [22]. The simulated data were post-processed in the same 

manner, although assuming error-free 𝑇1,𝑖 estimation. Fractional segmentation based on the IR 

data was performed as proposed by Shin et al. [7]. 

Analysis 

The results from the simulations were compared to the true fractional values (ground truth) by 

calculating accuracy, precision, volume agreement (VA) and volume overlap (VO), for each 

compartment. Accuracy was defined as the difference between the estimated fractional 

volume and the ground truth, averaged over the entire brain (with a positive value 

corresponding to an overestimation). Precision was defined as the root-mean-square deviation 



 

of the corresponding difference (Eq. 7). VA is the agreement in total (whole brain) 

compartment volume [23], and VO is a similarity measure reflecting the spatial correlation of 

fractional volumes (cf. Dice’s coefficient) [24]. The VO value can be interpreted as the voxel-

wise correspondence in compartment volume (overlap) normalized by the average 

compartment volume in that voxel. Since the estimated fractional volumes are perfectly 

aligned with the ground truth (i.e., the true spatial distribution of compartments within any 

given voxel is identical for both maps), the proportion of overlap (nominator in Eq. 9) may be 

defined as the minimum of the two fractional volume values [24]. VA and VO are both within 

the interval 0-1, where a high value corresponds to a high agreement and overlap, 

respectively. 

The four performance measures were calculated as follows, for any given compartment 𝑖: 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 =

1

𝑁
∑ (𝑓𝑣,𝑖,𝑗 − 𝑓𝑣,𝑖,𝑗)

𝑗
 [6] 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 = √
1

𝑁
∑ (𝑓𝑣,𝑖,𝑗 − 𝑓𝑣,𝑖,𝑗)

2

𝑗
 [7] 

 
𝑉𝐴𝑖 = |1 −

|𝛴𝑗𝑓𝑣,𝑖,𝑗 − 𝛴𝑗𝑓𝑣,𝑖,𝑗|

𝛴𝑗𝑓𝑣,𝑖,𝑗 + 𝛴𝑗𝑓𝑣,𝑖,𝑗
| [8] 

 
⁡𝑉𝑂𝑖,𝑗 =

min(𝑓𝑣,𝑖,𝑗, 𝑓𝑣,𝑖,𝑗)

0.5(𝑓𝑣,𝑖,𝑗 + 𝑓𝑣,𝑖,𝑗)
 [9] 

Here, 𝑓𝑣,𝑖,𝑗 is the estimated fractional volume for compartment 𝑖 and voxel 𝑗, 𝑓𝑣,𝑖,𝑗 is the 

corresponding ground truth value, and 𝑁 is the total number of voxels. To include all types of 

errors, accuracy and precision were calculated over the entire phantom for all compartments. 

The drawback of this approach is that each deviation will be included three times (since errors 

in the three volume maps are not independent), and an alternative approach is to average the 

measures in the respective compartments only, which results in alternative measures referred 

to as 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖
′ and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

′. This was accomplished by producing binary masks, where 

each voxel was defined as belonging to the compartment with the highest fractional volume 

(i.e., no voxels were completely omitted), and then calculating the measures in those masks. 

The VO calculation yields parametric maps, but the values are unreliable in voxels with low 

fractional volume and, therefore, the mean and standard deviation (SD) of VO were calculated 



 

using the binary masks. In addition, the goodness of fit was assessed by calculating the voxel-

wise root mean square error (RMSE), i.e., the square root of the residual sum of squares 

divided by the number of degrees of freedom. Normalized RMSE (nRMSE) was calculated by 

dividing RMSE by the voxel-wise maximum SPGR signal. 

The in vivo data were analyzed through whole brain compartment volumes, corresponding 

VA, and whole-brain histograms of fractional volumes for the two methods. Visual inspection 

and measures of nRMSE was used to further assess the performance in vivo. The nRMSE 

values were calculated in a way similar to the simulations, i.e., by dividing RMSE by the 

range of observable values in every voxel, where the range was defined as the maximum 

SPGR signal at the Ernst angle for SPGR, and two times the longitudinal magnetization at 

thermal equilibrium (𝑀0) for IR. In vivo SNR was estimated, similar to the simulations, as the 

mean maximum obtainable signal in GM divided by the standard deviation in a manually 

placed background ROI (corrected for Rayleigh distribution). 

Results 

Simulations 

Figure 1 displays an example of parametric results from the simulation study (SNR=100), 

including ground truth, estimated volumes using SPGR-SEG, and difference maps. It is clear 

that the largest errors arise due to volume underestimation in GM. Voxels with a mixture of 

all three compartments are misclassified as GM (see edge of the lateral ventricles). This 

observation was not present for the original phantom with 1×1×1 mm3 resolution (data not 

shown). 

Density plots of the entire digital phantom (240082 voxels), comparing ground truth with the 

estimated volumes, are displayed in Figure 2, for SNR=100. Random deviations from the 

identity line are most prominent for GM, in accordance with Figure 1 where the GM map 

appears slightly noisier than the other maps. Comparison of segmentation quality for three 

different SNRs (10/50/100) is presented in Figure 3. The rightmost column displays the 

corresponding nRMSE (goodness of fit). Calculated performance measures are given in 

Figure 4 for six different SNRs (10/25/50/100/150/200). All performance measures, as well as 

the goodness of fit, improved with increasing SNR. The values in the plots of Figure 4 can be 

found in table format (Online Resource 1). 



 

Segmentation results for low resolution data (28019 voxels), and for the lesion data (i.e., four 

compartments), are presented in Table 1 for SNR=100. Spatial segmentation quality for the 

lesion data set is visualized in Figure 5 for the three different simulated lesion T1 values. Best 

overall segmentation quality was obtained for 𝑇1,𝑙𝑒𝑠𝑖𝑜𝑛=0.5 s. 

Figure 6 displays the bias in estimated GM volume due to errors in estimated mean T1 (Fig. 

6a) and due to errors in flip angle correction (Fig. 6b-c). Figure 6b assumes error-free T1 

estimation even though the flip angle is incorrect (which corresponds to, for example, using 

literature T1 values or estimating T1 with an independent method), whereas Figure 6c 

assumes that an (incorrect) GM T1 value is estimated from the erroneous data points. The 

simulation showed that, for a 10% variation in the representative T1 of GM, the average error 

in the partial volume estimation of pure GM was 8.1±4.7% (mean±SD), and the 

corresponding maximum error was 17.4%. A 20% variation in effective flip angle yielded an 

average error of 33.6±22.0% (maximum error 91.1%) with independent T1 estimation, and an 

average error of 2.0±4.0% (maximum error 26.1%) when a representative GM T1 value was 

estimated from the uncorrected data. 

In vivo experiments 

Figure 7 displays examples of segmentation maps produced by SPGR-SEG in all five 

subjects. Figure 8 depicts a single slice comparison of the in vivo segmentation results using 

the proposed method (SPGR-SEG) and the reference method (FRASIER). The rightmost 

panels display zoomed parts of the respective maps, and the bottom row displays the 

corresponding nRMSE (goodness of fit). The spatial distributions of fractional volumes 

agreed well with known brain structures for both methods, although differences between the 

methods are noticeable, for example, in deep grey matter (DGM) structures. The mean whole 

brain nRMSE for all five subjects was (mean ± standard error of mean; SE) 3.5±0.06% for 

SPGR-SEG and 3.5±0.04% for FRASIER. Although the mean nRMSE was equal for both 

methods, the spatial distribution of nRMSE values differed between the methods (Fig. 8).  

Mean in vivo SNR was (mean±SE) 582±32 for SPGR-SEG and 376±35 for FRASIER. The 

mean number of voxels in the extracted brain was (mean±SE) 179664±8818 (c.f. the digital 

phantom which consisted of 240082 voxels). Mean relative whole brain CSF/GM/WM 

volumes in all subjects were (mean±SE) 6.8±0.5% / 47.3±1.1% / 45.9±1.3% for SPGR-SEG 

and 7.5±0.6% / 46.2±1.2% / 46.3±0.9% for FRASIER. None of the whole brain compartment 



 

volumes were significantly different between the two methods (two-sided t-test, 𝛼=0.05). The 

corresponding VA between the methods was (mean±SE) 0.95±0.01%, 0.98±0.002% and 

0.98±0.004 for CSF, GM and WM, respectively. 

Figure 9 shows a comparison of the segmentation results in five slices of one representative 

subject. The maps are similar overall, but differences in, for example, DGM and ventricles 

(middle slice) are noticeable. The distributions of fractional volumes in all five subjects and 

for both methods are shown in Figure 10 in the form of histogram plots. There are significant 

differences between the corresponding histograms of the two methods. 

Discussion 

Simulations 

For a simulated SNR of 100, the proposed method produced segmentation results of visually 

good quality, although a general underestimation in GM voxels, spread throughout the 

simulated brain, was observed (Fig. 1-2). The general underestimation of GM volumes was 

confirmed by the performance plots (Fig. 4). In particular, the density plot in Figure 2b shows 

that SPGR-SEG had a tendency to underestimate the GM volume in voxels with a high 

fraction of GM. Furthermore, Figure 2a suggested that the CSF volume was generally slightly 

overestimated. For the discretization used in the density plots (2% intervals), the mode of the 

estimated fractional CSF volume was 24%, 52% and 82%, for a ground truth of 20%, 50% 

and 80%, respectively. Apart from this, the density plots suggest an excellent correspondence 

between the ground truth and the estimated volumes with Pearson correlation coefficients 

around 0.99. Figure 1 also demonstrates that SPGR-SEG misclassified voxels with a mixture 

of all three compartments (edge of lateral ventricles). Although this error is obvious and 

expected, border zones with three adjacent components are rare, and this type of 

misclassification can be minimized by employing high resolution acquisitions. 

The simulation study suggested that SPGR-SEG performs well at SNR levels above 100 (Fig. 

3-4). The measure of accuracy was close to zero for all compartments for SNR≥100, whereas 

the segmentation quality for SNR<50 suggested that SPGR-SEG is likely to be inapplicable at 

lower SNR levels. The precision measure was lowest (i.e., best precision) for CSF and WM, 

and stabilized at approximately 3% as SNR increased. The difference between whole brain 

measures (Accuracy/Precision) and compartmental measures (Accuracy’/Precision’) were 



 

most apparent for GM, with a worse accuracy and precision for compartmental values. This is 

consistent with Figure 1 (GM difference map), where the majority of the errors can be seen in 

GM. The accuracy and precision of CSF and WM, on the other hand, were, for the same 

reason, better for the compartmental measures. For an SNR of 100, the mean nRMSE was 

1.09±0.57 (mean±SD), i.e., the residuals had a mean magnitude comparable to 1% of the 

maximum signal, which is reasonable since the noise magnitude was approximately 1% of the 

maximum signal in GM (according to the SNR definition). 

The corresponding volume agreement and volume overlap values were also satisfactory in the 

simulation study. For SNR=100, all VA values were over 0.96 which suggests an excellent 

agreement. The total true volume and estimated volume for each compartment was 17%/19% 

(CSF), 49%/48% (GM), and 34%/34% (WM). A VO value above 0.7 has been regarded 

excellent in the literature [25]. Normally, VO reflects the volume of voxels classified as 

belonging to the same class, across two measurements, normalized by the average volume for 

that tissue category [24]. Here, fractional values are compared between a ground truth and a 

simulated measurement, which makes the interpretation less straightforward. On the other 

hand, a VO of around 0.97 (SNR=100) was obtained which suggests very good similarity, 

regardless of the exact interpretation. Error-free flip angle correction and 𝑇1,𝑖 estimation was 

assumed in the simulations, and the performance is expected to decrease when uncertainties 

are present in these steps. 

The segmentation accuracy of the low-resolution data set was similar to the standard data set 

(Table 1), with a minor overall decrease in performance. This is encouraging regarding the 

possibility to apply SPGR-SEG in low-resolution quantitative MRI applications. 

The lesion simulation results (Table 1 and Fig. 5) demonstrated that the multi-component 

modelling becomes significantly more difficult with additional compartments. In particular, 

Table 1 shows that the performance was reduced in most cases. This is expected since more 

compartments generally yield an increase in the amount of possible solutions. Only 

considering the number of possible binary combinations, they increase from 7 to 15 when 

extending the model to include a fourth compartment. The lower performance for the lesion 

data sets was accompanied by a small reduction in nRMSE, which is related to the increase in 

free parameters (i.e, overfitting). Figure 5 suggests that SPGR-SEG selects solutions with a 

high volume in one compartment, rather than highly mixed solutions (in consistence with Fig. 

1). This is especially clear in the lesion segmentation with 𝑇1,𝑙𝑒𝑠𝑖𝑜𝑛=2.5 ms (bottom right map 



 

in Fig. 5), where voxels with a mixture of CSF and GM are classified as lesion. As mentioned 

above, a higher resolution will reduce this type of misclassifications. For example, the 

performance of the lesion segmentation was improved when using the original 1×1×1 mm3 

phantom resolution (data not shown). A similar increase in performance could also be 

achieved by repeating the sampling or acquiring additional flip angles. Hence, segmentation 

of additional components using SPGR-SEG (for example, a pathological lesion) seems 

challenging, and good data quality and/or an extended model, taking into account additional 

tissue information, may be needed to enable satisfactory results. Furthermore, it is of 

particular importance that the additional component has a representative T1 value which is 

different from those of the existing compartments. 

The sensitivity of SPGR-SEG to heterogeneities in T1 corresponded to an average error of 

8.1% for a 10% variation in GM T1 (Fig. 6a). Whereas the simulated T1 variation may be 

realistic in some areas, DGM structures often have significantly lower T1 values due to 

myelin content and iron depositions [7]. Segmentation performance in such structures will 

depend on the difference in T1 between whole-brain GM and DGM, as well as how the 

segmentation method handles mixed signals. Shin et al. pointed out that, although DGM is 

mostly composed of GM, it also contains myelinated axons which, in the strict sense, can be 

regarded as fractions of WM [7]. However, as with the FRASIER method, SPGR-SEG does 

not account for iron content and, therefore, GM volumes in DGM are likely to be 

underestimated. 

Further simulations showed that the method may be very sensitive to uncorrected variations in 

FA (33.6% average error for a 20% variation; Fig. 6b). However, this result assumed error-

free T1 estimation, which is unlikely when the FAs are wrong. Still, if this were the case, 

errors in GM volume would be very large without FA correction. More realistically, T1 is 

estimated from the same data as used for segmentation, and in such a case the average error 

was reduced to 2% (Fig. 6c), which emphasizes the high coupling between flip angle and T1 

in the model. This situation highlights another unrealistic extreme, which is primarily 

applicable to a global error in achieved FA. The B1+ field is generally inhomogeneous across 

the brain, and uncorrected errors in local FA will, firstly, broaden the peaks in the whole brain 

T1 histogram hampering the estimation of 𝑇1,𝑖 values, and, secondly, introduce spatially 

varying errors in partial volumes estimates. A 20% variation in achieved FA is realistic at 3 T 

[26] and, therefore, we can expect errors of the order of 10-30% if FA correction is not 

included. The error is close to zero for 𝛼/𝛼𝑛𝑜𝑚>1 when T1 is estimated from the data (Fig. 



 

6c), which is the result of two effects. Firstly, for 1<𝛼/𝛼𝑛𝑜𝑚<1.2 the estimated T1 in GM is 

still very different from the fixed T1 value for CSF (4.3 s). Secondly, the nonnegative 

constraint on the least squares problem avoids overestimation in GM volume (which would 

correspond to a negative error in Fig. 6c). This is true until the flip angle error becomes so 

large that the estimated T1 in GM falls above the T1 value for CSF, which happens around 

𝛼/𝛼𝑛𝑜𝑚 =1.77 (which is unlikely at 3 T [26]). 

In vivo experiments 

The proposed segmentation method yielded realistic and robust segmentation results in all 

investigated subjects (Fig. 7). In general, the SPGR-SEG output agreed well with the 

segmentation maps produced by the reference method (Fig. 8-9), which was also suggested by 

the similarity in whole-brain compartment volumes and high volume agreement. Still, distinct 

differences between the methods was observed across all subjects, and one of the most 

noticeable differences was that DGM structures (e.g. thalamus, putamen and caudate nucleus) 

seemed to be more clearly delineated and had higher volumes in the GM map originating 

from SPGR-SEG (Fig. 8-9). This difference, although hard to explain with certainty, may be a 

consequence of differences in SNR and image quality in the center of the brain. SPGR-SEG 

and FRASIER estimate partial volumes and, therefore, DGM structures are determined to be a 

mixture of GM and WM [7] (see simulation discussion). In many applications, binary 

delineation of DGM may be of interest and magnetization transfer mapping has been 

proposed as a feasible way to yield higher GM fractions in DGM structures [27]. 

The spatial difference in nRMSE between SPGR-SEG and FRASIER is related to differences 

in the obtained MRI signal. Whereas an IR sequence has a maximum MRI signal primarily 

related to the magnetization at thermal equilibrium, the maximum MRI signal of a SPGR 

sequence is strongly related to T1 relaxation. The SNR was also higher for the SPGR 

acquisition, compared to the IR acquisition. 

Differences between the methods may also related to the difference in sequence design and, 

subsequently, signal modelling. For example, a high precision in T1 mapping is vital for both 

methods, and the difference in T1 estimation methodology is likely to propagate to 

differences in estimated fractional volumes. In particular, VFA is more sensitive to variations 

in excitation flip angle, whereas IR T1 mapping rely on robust inversion efficiency. However, 

neither segmentation method depends on absolute T1 values, but rather on each compartment 



 

showing a representative estimable T1 value. Nevertheless, flip angle correction is important 

in SPGR-SEG since spatial variations of the achieved flip angle introduce errors in the model, 

and also obstruct the 𝑇1,𝑖 estimation (see simulation discussion). In this work, calculated T1 

values, based on SPGR acquisition, were overestimated compared with literature values (data 

not shown). The deviation from literature values could be due to a number of reasons. For 

example, it has been suggested that absolute T1 mapping by the VFA method requires 

absolute FA calibration [26], correction for RF pulse shape [28], and correction for 

incomplete RF spoiling [29]. 

The fractional volume histograms (Fig. 10) show that there were differences in the 

distribution of compartment partitions between the two segmentation methods. The small 

difference for 𝑓𝑣,𝐶𝑆𝐹>0.5 (Fig. 10a) was also seen in the CSF maps (e.g., lateral ventricles in 

Fig. 9). Even larger differences were seen for 𝑓𝑣,𝐶𝑆𝐹<0.5, but the source of this difference was 

difficult to analyze. High 𝑓𝑣,𝐺𝑀 values were systematically underestimated in the simulations, 

which possibly could explain the general lower amount of voxels with a high 𝑓𝑣,𝐺𝑀 in SPGR-

SEG, compared to FRASIER (Fig. 10b). FRASIER also showed a larger amount of low 

𝑓𝑣,𝐺𝑀<0.5, which could be associated with the overall lower 𝑓𝑣,𝐺𝑀 values in DGM for 

FRASIER, compared to SPGR-SEG. The larger amount of voxels with high fractions of WM 

in FRASIER (Fig. 10c) was also observable in the zoomed panels of Figure 8. The differences 

imply that, currently, partial volume estimates will depend on the choice of method and, 

therefore, these differences need to be further investigated. 

The total acquisition time was 15 min 52 s for FRASIER and 16 min 44 s for SPGR-SEG. 

Both methods can, in a significantly shorter time, produce segmentation results of comparable 

quality as was presented here, although it will require special sequences that were not 

available in the present study. For example, whole-brain FRASIER data acquisition has 

previously been performed in 4 min 32 s by applying Look-Locker read-out [7], and SPGR-

SEG could be accelerated by using ultra-short TR (e.g., TurboFLASH) combined with faster 

B1+ mapping methods (e.g., actual flip-angle imaging [30] or Bloch-Siegert shift [31]). 

Comparison of simulations and in vivo experiments 

The in vivo SNR values seemed high in both methods, which is explained by the somewhat 

unconventional definition (used in order to be consistent with the simulations). Still, in vivo 

segmentation maps (Fig. 7-9) were almost completely free from noise using both methods, 



 

roughly to be compared with a simulated SNR≥100 in Figure 3. This means that the SPGR-

SEG acquisition did not suffer from significant disturbance from thermal noise in the 

segmentation performance, and that higher resolution acquisitions should be feasible. 

The in vivo mean nRMSE was 3.5% across both methods, which compares to a simulated 

SNR of approximately 30 (Figure 4d), i.e., a significantly lower value compared to the 

estimated SNR in vivo. This illustrates the difficulty in comparing simulations with real data, 

and that the simulations should only be regarded as an indication of the performance of 

SPGR-SEG. For example, the in vivo measurements will suffer from perturbations not 

included in the simulations, e.g., imaging artifacts, errors in flip angle correction and 

compartmental variations in T1. The in vivo VA between FRASIER and SPGR-SEG was 

≥0.95 for all compartments. Comparing with the VA values in the simulations (Online 

Resource 1 and Fig. 4), this corresponds to an SNR of around 100. Note, however, that in the 

simulations, a ground truth is compared with estimated values, whereas for the in vivo data 

two different experimental methods are compared. 

Prospects 

The proposed method is simple, robust and does not depend on the use of spatial priors, 

complex modelling or computationally intensive optimization. The development of SPGR-

SEG was largely based on the work by Shin et al. [7], and since our algorithm was easily 

derived we believe that similar segmentation methods, plausibly exploiting additional 

sequences and quantitative parameters, will emerge. It should also be noted that, although this 

work demonstrates the application to brain segmentation, the methodology may be directly 

applicable to any structure or object. For the possibility of separating additional compartments 

in the brain, e.g., fat, vessels, tumors or other pathologies, one of the most important factors is 

that the representative T1 value differs from the other compartments. Successful segmentation 

of pathologic areas from healthy tissue is of great importance in clinical research, and future 

work of interest includes investigating the possibility of achieving this with SPGR-SEG. 

The proposed approach is particularly suitable for applications in which SPGR T1 mapping is 

already included, e.g., Dynamic Contrast Enhanced MRI (DCE-MRI) [32], where 

implementation may be possible without additional scans. A faster acquisition would make 

the method even more attractive since it may be easily added to existing protocols. 



 

Note that transversal relaxation effects are disregarded in the present work. Although T1 

quantification with VFA is insensitive to such effects, due to the linear scaling of the signal, 

the proposed segmentation method will not be insensitive since different compartments have 

different T2*. Although the errors are expected to be minor, inclusion of T2* relaxation 

effects would reduce those errors and possibly also improve segmentation performance of 

extra compartments. 

In this work, seven flip angles were used to allow for a reasonable acquisition time, whereas a 

rigid optimization of protocol parameters (e.g., TR and number and choice of FAs) is a highly 

complex issue, which is likely to yield better segmentation performance. In the further 

development of SPGR-SEG, areas of interest includes assessing the reproducibility, 

optimizing imaging parameters, and designing an acquisition protocol with a shorter, 

clinically more acceptable, scan time. 

Conclusion 

We have proposed a new method, called SPGR-SEG, for automatic brain segmentation in 

MRI, based on quantitative T1 mapping with SPGR sequences. It produced robust fractional 

volume maps of comparable quality to a reference method. The proposed method only 

requires access to a standard SPGR sequence and is therefore immediately feasible at most 

MRI sites. Initial simulation results are encouraging with regard to reliability, and results from 

in vivo experiments confirm the feasibility of acquiring brain segmentation maps under 

realistic experimental conditions. Simulations suggested that segmentation of additional 

compartments, e.g., pathologies, is challenging with the current protocol. We believe that 

similar segmentation methods, based on fractional MR signal modelling, will emerge and 

show significant usefulness in clinical research. 
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Fig. 1 Simulation results for SNR=100 depicting one slice of the digital phantom (ground 

truth), estimated volumes in the same slice, and the voxel-wise difference (accuracy). In the 

difference maps, positive values (green) correspond to an overestimation, and negative values 

(red) correspond to an underestimation 



 

 

Fig. 2 Density plots of the estimated volumes versus the simulated ground truth, for 

SNR=100, in a) CSF, b) GM, and c) WM. White solid lines correspond to the identity line, 

and Pearson correlation coefficients are noted in white text. Note that the bin count 𝑁 is 

logarithmized to facilitate the dynamic range of the color scale 

 

 

 

 



 

 

Fig. 3 Illustration of simulated segmentation quality for three different SNR levels (10, 50 and 

100). Last column displays the voxel-wise goodness of fit, defined as the normalized root-

mean-squared-error (nRMSE), i.e., RMSE in percentage of the maximum SPGR signal 



 

 

Fig. 4 Performance measures and goodness-of-fit (nRMSE) from the simulation study. In a-c, 

blue, green and red color corresponds to CSF, GM and WM, respectively. a) Accuracy (solid 

lines) and precision (dashed lines) averaged over the entire digital phantom. b) Accuracy 

(solid lines) and precision (dashed lines) averaged over the respective compartment. c) 

Volume overlap (solid lines) and volume agreement (dashed lines). d) nRMSE averaged over 

the entire digital phantom, with error bars corresponding to one standard deviation 



 

 

Fig. 5 Simulated segmentation quality when a fourth component (e.g., lesion/pathology) is 

present, for SNR=100. The left-most column displays the ground truth and the other columns 

display segmentation results for three different T1 values (0.5/1.5/2.5 s) of the simulated 

lesion 



 

 

Fig. 6 Bias in estimated GM volume (in a voxel with pure GM) due to variations in T1 value 

and flip angle. a) Error in estimated GM volume as a function of ±10% variation in T1 (mean 

𝑇1,𝐺𝑀=1.3 s). b) Error in estimated GM volume as a function of ±20% variation in achieved 

flip angle, assuming error-free T1 estimation. c) Error in estimated GM volume as a function 

of ±20% variation in achieved flip angle, assuming that T1 is estimated from the erroneous 

data points 



 

 

Fig. 7 In vivo segmentation results in on slice from all five subjects using SPGR-SEG 



 

 

Fig 8 In vivo segmentation results from one slice in one subject using the reference method 

(FRASIER) and the proposed method (SPGR-SEG). The six panels to the right display 

zoomed parts of the segmentation maps and the bottom row displays nRMSE of the respective 

model fit 



 

 

Fig 9 Comparison of in vivo segmentation results using the reference method (FRASIER) and 

the proposed method (SPGR-SEG) in five different slices of one subject 

 



 

 

Fig 10 Whole brain histogram plots of in vivo segmentation results, comparing estimated 

volumes of the reference method (FRASIER; blue line) and the proposed method (SPGR-

SEG; red line) in a) CSF, b) GM, and c) WM 

  



 

Table 1 Results from the simulation of low-resolution data (‘low res’) and 

additional compartment (𝑇1,𝑙𝑒𝑠𝑖𝑜𝑛 denotes the simulated lesion T1 

relaxation time), for SNR=100. One standard deviation is in parenthesis, 

where applicable 

 


