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Characterizing the Structure Tensor
Using Gamma Distributions

Magnus Oskarsson
Centre for Mathematical Sciences, Lund University, Lund, Sweden

Email: magnuso@maths.lth.se

Abstract—The structure tensor is a powerful tool describing
the local intensity structure of an image or image sequence.
In this paper we give a model for the noise distribution of
the components of the tensor. In order to do so we have
also investigated some properties of the gamma distribution.
We show that, given an input image corrupted with Gaussian
noise, the noise in the structure tensor can be modeled well by
gamma distributions. We apply our model to automatic contrast
enhancement of images taken under poor illumination. We show
how our noise model can be used for automatic parameter
selection in the filtering process, giving powerful results without
the need for cumbersome parameter tuning.

I. INTRODUCTION

We will in this paper investigate the statistical properties of
the so-called structure tensor. The structure tensor or second
moment matrix is used to efficiently capture the local gradient
structure in an image or image sequence. Methods using this
matrix have been developed and applied in image analysis
in numerous papers [1], [2], [3] and was e.g. a central tool
in early feature extraction methods, [4], [5]. Our goal in this
paper is to characterize some of the statistical properties of the
structure tensor. This gives us tools to analyze properties of
functions of the structure tensor, such as the determinant and
the Eigenvalues. This is important in many applications, and
we will especially show how this can be used for automatic
parameter selection.

The paper is organized as follows. We will in section II
describe a number of known, and some new results relating
to the gamma distribution. Then, in section III we will use
the properties of the gamma distribution to characterize the
noise distribution of the different components of the structure
tensor. We will then test our models on an example application
– in section IV we investigate how we can automatically set
parameters in a structure adaptive image enhancement method.
This example is merely used to illustrate the modeling and we
do not claim that these methods necessarily increase state-of-
the-art. But we argue that given these methods, the modeling of
the tensor components gives us a powerful tool for parameter
estimation.

II. THE GAMMA DISTRIBUTION

We will in this section describe some well known properties
of the Gamma distribution as well as some new, that we will
use in the following sections to characterize the statistical
properties of the structure tensor. For more information on
the gamma distribution see e.g. [6], [7].
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Fig. 1. Top row: The distributions of two input gamma distributed variables.
The histograms of the random data as well as the theoretical PDFs are shown.
In the bottom the sum and the product of the two datasets are shown to the
left and right respectively. The model distribution PDFs are overlaid.

The probability density function, PDF, of a Gamma distri-
bution, Gamma(k,Θ), is given by

p(x) =
xk−1e−

x
Θ

ΘkΓ(k)
, x ≥ 0, (1)

where Γ(k) is the Gamma function. It has two parameters, the
shape parameter k and the scale parameter Θ that control the
properties of the distribution. The mean of the distribution is
given by m = kΘ and the variance is given by v = kΘ2.
The shape parameter and the scale parameter can in turn be
calculated from the mean and the variance according to k =
m2/v and Θ = v/m. This means that the mean and variance
completely describe the distribution. The distribution has a
number of other properties that follow from the definition.
Multiplying a gamma distributed stochastic variable with a
scalar gives again a gamma distributed stochastic variable:

X ∈ Gamma(k,Θ)⇒ cX ∈ Gamma(k, cΘ). (2)

If we have a number of independent stochastic variables with
the same scale parameters the sum is gamma distributed:

Xi ∈ Gamma(ki,Θ), X =
∑
i

Xi ⇒ (3)

X ∈ Gamma(
∑

ki,Θ). (4)



One may ask what happens if the summed distributions do
not have the same scale parameter. In this case the result
will not be gamma distributed. In [8], [9] it is shown that
the probability distribution is given by an infinite linear
combination of gamma distributions. Let

Xi ∈ Gamma(ki,Θi), X =
∑
i

Xi, (5)

then the probability distribution of X is given by

p(x) = C

∞∑
j=0

δjx
ρ+j−1e−x/Θ1

Γ(ρ+ j)Θρ+j
1

, (6)

with

ρ =

n∑
i=1

, C =

n∏
i=1

(
Θ1

Θi
)ki , (7)

and

δj =
1

j + 1

j+1∑
i=1

iγiδj+1−i, δ0 = 1, (8)

γj =

n∑
i=1

ki
(1− Θ1

Θi
)j

j
. (9)

We will in this paper work with the hypothesis that both the
sum and product of two or more gamma distributed stochastic
variables (with arbitrary parameters) can be well approximated
by a gamma distribution.

Conjecture 1. If X1 ∈ Gamma(k1,Θ1) and X2 ∈
Gamma(k2,Θ2) are independent then X = X1 + X2 is
approximately gamma distributed with parameters

ks =
(k1Θ1 + k2Θ2)2

k1Θ2
1 + k2Θ2

2

and Θs =
k1Θ2

1 + k2Θ2
2

k1Θ1 + k2Θ2
. (10)

If we have a sum of more than two variables we get

Corollary 1. If Xi ∈ Gamma(ki,Θi) are independent then
X =

∑
iXi is approximately gamma distributed with param-

eters

ks =
(
∑
i kiΘi)

2∑
i kiΘ

2
i

and Θs =

∑
i kiΘ

2
i∑

i kiΘi
. (11)

For two independent variables the mean of their product
is given by the product of their means. The variance of the
product is given by the formula:

Var(XY ) = E[X]2 Var(Y ) + E[Y ]2 Var(X)+ (12)
Var(X) Var(Y ). (13)

If we assume that the product of two gamma distributed
variables is gamma distributed we can use this fact to estimate
the parameters of the resulting distribution and we get the
following conjecture:

Conjecture 2. If X1 ∈ Gamma(k1,Θ1) and X2 ∈
Gamma(k2,Θ2) are independent then X = X1X2 is approx-
imately gamma distributed with parameters

kp =
(k1Θ1 · k2Θ2)2

(k1Θ1)2 · k2Θ2
2 + (k2Θ2)2 · k1Θ2

1 + k1Θ2
1 · k2Θ2

2

,

(14)
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Fig. 2. Histogram of the logarithm of the Kullback-Leibler divergence
between data histograms and model distribution. To the left is the result for
the sum of two variables and to the right for the product.

and

Θp =
(k1Θ1)2 · k2Θ2

2 + (k2Θ2)2 · k1Θ2
1 + k1Θ2

1 · k2Θ2
2

k1Θ1 · k2Θ2
.

(15)

For a product of more than two variables we can write this
in the following form:

Corollary 2. If Xi ∈ Gamma(ki,Θi) are independent then
X =

∏
iXi is approximately gamma distributed with param-

eters

vp =
∏
i

(Var(Xi) + E[Xi]
2)−

∏
i

E[Xi]
2, (16)

mp =
∏
i

Xi, kp =
m2
p

vp
, Θp =

vp
mp

. (17)

To test our hypotheses we did the following test. We gener-
ated a large set of numbers drawn from two different gamma
distributions. This gives us two vectors x ∈ Rn and y ∈ Rn
where xi ∈ Gamma(k1,Θ1) and yi ∈ Gamma(k2,Θ2).
We chose k and Θ randomly and set n = 100 000 in our
experiments. We took the element-wise sum and product of
x and y and calculated the histograms of these vectors as
an estimate of the probability distribution. We then compared
this with the proposed gamma distributions. An example can
be seen in figure 1, where the distributions of x, y, x+ y and
xy are shown. We repeated the experiment a number of times
and calculated the Kullback-Leibler divergence [10], between
the estimated histogram and the estimated gamma distribution.
The result can be seen in figure 2 where a histogram of the
logarithm of the Kullback-Leibler divergence is shown for
the sum and product respectively. One can see that we get
consistently small deviations, leading to the conclusion that
the model distributions follow the data well.

A special case for the sum of two gamma distributed
variables is when they have different scale parameters but the
same shape parameters. This situation occurs when we take a
linear combination of two equally distributed variables,

X1 ∈Gamma(k,Θ), X2 ∈ Gamma(k,Θ), (18)
X =aX1 + bX2 ⇒ X = Y1 + Y2, (19)
Y1 ∈Gamma(k, aΘ), Y2 ∈ Gamma(k, bΘ). (20)

In this case we can actually calculate the exact distribution
of the sum in a more simple form than the one given by
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Fig. 3. The figure shows the model distribution and the exact theoretical
distribution, for the sum of two input distributions with the same shape
parameters.

equation (6). This is simply done by convolving the two
gamma probability distribution functions. This leads to an
expression that can be written as a sum of two addends
involving Whittaker functions. In figure 3 the sum of two
gamma distributed variables with the same shape parameter
is shown. One can see that the estimated gamma distribution
follows the exact distribution closely.

III. THE PROBABILITY DISTRIBUTION OF THE
STRUCTURE TENSOR

We will now turn our attention to the statistical properties
of the structure tensor, building upon the discussion in the
previous section. Given an input image I the structure tensor
at a point x0 is defined in the following way:

Jρ(x0) = Gρ ? (∇I(x0)∇I(x0)
T

) ≡
[
j11(x0) j12(x0)
j12(x0) j22(x0)

]
,

(21)
where

∇I(x0) =

[ ∂I
∂x
∂I
∂y

]
x=x0

, (22)

is the intensity gradient of I at the point x0. Basically it is
the outer product of the gradient, but additionally filtered. Here
Gρ is the Gaussian kernel function

Gρ(x, y) =
1

2πρ2
e
− 1

2 ( x
2+y2

ρ2
)
. (23)

The notation ? means element-wise convolution of the matrix
∇I(x0)∇I(x0)

T in a neighborhood centered at x0. This
convolution gives a smoothing in the space of gradients which
leads to much of the robustness of the representation. We will
now try to characterize the noise distribution of the different
elements of Jρ. The calculation of the elements involve three
basic steps. First we differentiate the image in the x and
y−direction giving us the gradient. This is done by linearly
filtering the image with a differentiation kernel. Then we
calculate the outer product of the gradient. This is a non-linear
operation on the gradient components. In the third and last step
we smooth the components, and this is again a linear filtering,
in this case with a Gaussian smoothing kernel.

We will assume that the image is corrupted by normally
distributed noise, i.e. the measured image I is given by

I(x) = I0(x) + e(x), e(x) ∈ N(0, σ2). (24)

We will further look at points where I0 is varying slowly so
that ∇I(x) ≈ ∇e(x).

a) Step one: The noise of the entries of the gradient will
be normally distributed. This is due to the fact that we apply
a linear filter. The mean of the gradient will be zero, and the
variance will be given by the sum of the squared entries of
the filter times the initial error variance σ2, i.e. ∈ N(0, d ·σ2).

b) Step two: Here we want to characterize the noise of
∂I
∂x

2
, ∂I∂y

2
and ∂I

∂x
∂I
∂y . The first two are squares of something

that is normally distributed. This gives χ2-distributed error,
which also can be described as a gamma distribution with
shape parameter equal to 0.5 and scale parameter 2d ·σ2. The
noise in ∂I

∂x
∂I
∂y will follow a normal product distribution, with

zero mean and variance d2σ4. The PDF of a normal product
distribution is given by a modified Bessel function. In the top
of figure 4 these errors are shown for a synthetically generated
example. The estimated PDFs follow the histograms of the
noise well.

c) Step three: This step in the calculation of the structure
tensor is the Gaussian smoothing of the tensor components.
This is a linear filtering and we will make use of our model
hypothesis from the previous section. This means that the
noise in j11 and j22 will follow gamma distributions. We will
have to be a bit careful when we calculate the parameters
of these distributions, since they are not entirely independent.
This is due to the previous differential filtering. The mean
will not change, (dσ2), and the variance will be equal to
d11σ

4, where d11 only depends on the differential filter and
the Gaussian smoothing filter. We will model the noise in j12

with a Gaussian distribution with zero mean. Again we have
to be a bit careful when we estimate the variance, due to the
covariance between pixels. However the variance will again
be proportional to σ4, i.e. ∈ N(0, d12σ

4). In Figure 4 the
estimated distributions of the structure tensor is shown for a
synthetic example. In figure 5 the same is shown for a real
image with added Gaussian noise. One can see that in this
case the error distributions follow the model.

IV. APPLICATION: STRUCTURE ADAPTIVE IMAGE
ENHANCEMENT

The structure tensor has been used in a number of denoising
methods. We will in this section investigate how we can
use the noise modeling of the structure tensor, in order to
set parameters for image enhancement in an automatic way.
We will specifically test our parameter setting for contrast
enhancement of images taken under dimlight conditions. In
order to do this we need to increase the contrast in the image,
which will inevitably increase the visible noise in the image.
This means that we need to denoise the image. There are many
ways to increase the contrast of an image; a classic way is to
do histogram equalization. We will rather look at the problem
as a tone mapping problem. Tone mapping is used to map a
high dynamic range of gray values to a low dynamic range.
This is often needed to display high dynamic range images on
low dynamic range displays. For an overview of tone mapping
methods see [11]. We will increase the dynamic range of
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Fig. 4. The figure shows histograms of data and model distributions. From left to rigth: the unsmoothed j11 and j12, the smoothed j11 and j12.
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Fig. 5. Top: The original image and the input image with added Gaussian
noise is shown. Middle: To the left the error distribution for j11 is shown,
and to the right the error distribution for j12 is shown. Bottom: The error
distributions of the two Eigenvalues of the structure tensor is shown.

our input image by doing structure adaptive image smoothing
using the structure tensor. This filtering will give us a higher bit
range than the input 24-bit color input. This is the equivalent
of doing super resolution, but on the grayscale as opposed to
the pixel resolution. We will then map this high dynamic range
image to a standard 24-bit color image using tone mapping.
Here we will use the method described in [12], which will
automatically increase the contrast. We have used the standard
implementation available at [13]. The structure tensor has been
used for image denoising in a number of previous work. We
will closely follow the methods described in [14], [15], [16]
and will here give the outline of their methods for complete-
ness. One main difficulty of these methods is the parameter

estimation and we will here show how our error modelling
can be used to set parameters automatically. This denoising
method is based on constructing Gaussian smoothing kernels
that are adapted to the local edge and gradient structure. This
is done by looking at the Eigenvalues and Eigenvectors of
the structure tensor. So we will start by looking at the noise
distribution of the two Eigenvalues of the structure tensor.

Since the structure tensor is a 2×2-matrix we can calculate
the Eigenvalues explicitly. They are given by,

λ1 = 0.5 · (j11 + j22 +
√
j2
11 − 2j11j22 + 4j2

12 + j2
22), (25)

λ2 = 0.5 · (j11 + j22 −
√
j2
11 − 2j11j22 + 4j2

12 + j2
22). (26)

This involves taking square roots, which we want to avoid in
our modeling, since this will make it untractable to estimate
the following error distributions. So instead, for the estimation
of variance and mean of λ1 and λ2, we make the following
approximation,

λ̂1 = 0.5 · (j11 + j22 + |j12|+ |j11 − j22|), (27)

λ̂2 = 0.5 · (j11 + j22 − |j12| − |j11 − j22|). (28)

We will again model the noise as gamma distributed, and
hence we want to estimate the mean and variance of λ̂1 and λ̂2.
We will model j12 and j11 − j22 with normal distributions so
taking the absolute value of these is straight-forward, yielding
folded normal distributions. This will give means A1 +B1 ·σ2

and A2 +B2 ·σ2, where Ai and Bi only depend on the filters
used in the calculation of the structure tensor. The variances
are given by D1 ·σ4 and D2 ·σ4, where again Di only depends
on the filters, but where some care has to be taken in order to
handle the covariances. In Figure 5 the estimated distributions
for the noise in the Eigenvalues is shown, for a real image
with added Gaussian noise.

We will now see how we can use this information in the
denoising of an image. The filtering is done by applying a
kernel at each pixel neighbourhood,

Iout(x0) =
1

µ(x0)

∫∫
Ω

k(x0,x)Iin(x)dxdy , (29)

where

µ(x0) =

∫∫
Ω

k(x0,x)dxdy (30)
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Fig. 6. Depiction of the smoothing kernel construction. Left: the function from
Eigenvalues to kernel standard deviation.Right: the heat-map of the resulting
kernel is shown, with the Eigenvector directions also shown.

is a normalizing factor. The area Ω over which the summation
is taken is chosen as a finite neighborhood centered around
x0. The kernel k(x0,x) is calculated for each point x0, and
adapts to the local gradient structure. The goal is to not
smooth over edges. The kernels should be wide in directions
of homogeneous intensity and narrow in directions with im-
portant structural edges. To find these directions, we calculate
the structure tensor. The Eigenvalues and Eigenvectors of Jρ
will give us the structural information that we seek. The
Eigenvector v2 corresponding to the smallest Eigenvalue λ2

will be approximately parallel to the direction of minimum
intensity variation while the other Eigenvector is orthogonal
to this direction. The magnitude of each Eigenvalue will be a
measure of the amount of intensity variation in the direction
of the corresponding Eigenvector. For a deeper discussion on
Eigenvalue analysis of the structure tensor see [17].

The summation kernels k(x0,x) are constructed at each
point x0 as Gaussian functions,

k(x0,x) = e−
1
2 (x−x0)TRΣ2R

T
(x−x0) . (31)

These include a rotation matrix R and a scaling matrix Σ.
The rotation matrix is constructed from the eigenvectors vi of
Jρ, R =

[
v1 v2

]
, while the scaling matrix has the following

form,

Σ =

[
1

σ(λ1) 0

0 1
σ(λ2)

]
. (32)

The function σ(λi) is a decreasing function that sets the width
of the kernel along each Eigenvalue direction, and we use the
following function

σ(λ) =

{
σmax if λ ≤ λmin,
∆σe

−d (λ−λmin)

λmin + σmin if λ > λmin,
(33)

with ∆σ = (σmax − σmin). The two parameters σmin and
σmax control the maximum span of the kernel widths. We
have used fixed values for these in our experiments, namely
σmin = 0.4 and σmax = 5. The two parameters d and λmin
control the slope of the function, and these are set according to
our analysis of the gamma distribution. In Figure 6 a graphical
representation of how the kernel is constructued is shown, for
a specific example.

In order to test our parameter estimation we used a number
of real images taken under poor illumination. The input images

are shown in Figure 7, where the variety of the input scene,
illumination and contrast can be seen. We used an estimate of
the noise in the input images (with an error mean of 1.5−2.0
for the input gray value range of 0−255). We then calculated
the corresponding estimates of mean (E(λ2)) and variance
(Var(λ2)) for the smallest Eigenvalue of the structure tensor.
According to Figure 6 we want the kernels in directions where
the Eigenvalues suggest only noise. We further want the kernel
function to be invariant to intensity scale changes. This leads
us to set the parameters for the kernel widths according to

λmin = E(λ2), (34)

d =

√
Var(λ2)

λ2
2

. (35)

Using these settings, the low-contrast input images were
filtered using the anisotropic kernels, channel-wise for the
red, green and blue channels. One could also work with
luminance and chrominance, but we follow the approach taken
in [14]. The denoised image were then tone mapped using the
democratic tone mapping method of [12], [13]. This method
optimally uses the output discretization based on the gray
value distribution of the input. For all our experiments we
used 2000 bins in the input histogram discretization (see [18]
for a discussion on bin size). The results can be viewed in
Figure 7. In Figure 8 a close-up of the toy crocodile from
Figure 7 is shown. In order to illustrate the denoising effect
we have here only linearly amplified the signal for the original
and the denoised image. One can see that the edges are well
preserved in the denoised image.

V. CONCLUSIONS

We have in this paper shown how we can model the noise
distribution of the structure tensor, primarily using the gamma
distribution. In order to estimate the distributions we have also
given some new insights into the sum and product of gamma
distributed random variables. Finally we have shown how the
proposed model can be used for automatic parameter setting.
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