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ABSTRACT

Programming is a cognitively demanding exercise. In particular, today’s software
development requires a collective effort of programmers and the orchestration of a
complex programming infrastructure. As disruptive technologies emerge, e.g., AI
and quantum computing, the programming practice is undergoing a change, facing
an uncertain future that we may not be able to accurately predict but can envision
and work toward.

With the maturity of eye-tracking and its integration into everyday consumer
electronics such as Alienware’s laptops and Apple’s Vision Pro, we expect it will
eventually make its way into everyday use just as touchpad, camera, and micro-
phone. Therefore, we see an opportunity to design eye-tracking based assistance
to support programmers. Given programmers spend a large amount of their time
reading and understanding code, which heavily relies on eyes, we deem this to be
a promising problem domain where eye-tracking can be of assistance.

To explore this inquiry, we undertook two mapping studies to establish the
problem and solution constructs. We then surveyed professional developers to
understand this representative cohort of our prospective users and gather concrete,
situated problems from them. We conducted these studies under the guiding design
science model for empirical software engineering which centers on a problem-
solution pair.

From the first study, we found that eye-tracking so far is used mostly for
education-oriented studies in the research community focused on software devel-
opment. There is a need to bring it closer to practitioners. From the second study,
we identify that the gaze data produced by eye trackers has been explored with a
collection of machine learning techniques. However, these models were trained
with small samples that might carry bias and insufficiency. Contemporary ma-
chine learning techniques may be able to compensate for that. From the survey,
we learned that developers have already adopted AI assistance, and they are mostly
positive about it despite room for greater accuracy and capability. As eye-tracking
is relatively novel to them, most developers are unsure about how it can help them.

For future work, we plan to practice designing with programmers to develop
and evaluate our proof of concept and explore gaze data with more tailored ma-
chine learning techniques, which aims to generate integration into our system.
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INTRODUCTION

1 Introduction

In this section, we take a glance at the major milestones in the history of program-
ming. We briefly review the changes in the profiles of human actors who perform
programming and the notations and other media they leverage to communicate
with computing machines. We highlight how modern software development prac-
tice evolved into its current shape and how the underlying tool set has expanded.
Looking at the trajectory of programming, we observe that when revolutionary
technology emerges, e.g., microprocessors in hardware and the incoming quantum
computer, it may pose an impact on the entire programming world, potentially re-
sulting in certain elements being deprecated, replaced, or reinvented. We discuss
that we are now in an era of being disrupted by AI and many new assistive sen-
sory technologies being experimented with(e.g., [8,91]). With the uncertainty that
accompanies such disruption, we see an opportunity to design eye-tracking based
tool assistance to support programmers, e.g., with code comprehension, given the
fact that at the moment it consumes programmers most of their time [57, 103].

1.1 Changes in Programming Languages

In essence, programming is to instruct computers to perform tasks for humans.
On the fundamental level, a computer only understands instructions consisting of
binary digits. To ease the work of programming, computer scientists have devel-
oped various notations for expressing instructions. The notations have evolved
from machine code and assembly language to now more human-readable high-
level programming languages - C, Java, Python, and Rust, to name a few [18].
Although some are visual (e.g., Scratch [27]) or in between these two formats
(e.g., Ballerina [20]), most programming languages are textual.
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1.2 Changes in the Way of Programming and Program-
mer Population

As computers (e.g., microprocessors [21]) and programming languages are evolv-
ing, the way that programmers perform programming has also shifted. For in-
stance, clerks used to heavily rely on punched cards for data processing [26] and
operators used to control the state of the registers and memory of a computer and to
debug a running program through front panels [19]. These practices are distinctly
different from how programmers handle those tasks now. Nowadays, the common
practice is to employ database management systems (e.g., MySQL) to store and
process data. In most cases, we dedicate the operating system to interact with the
registers and memory. For debugging, there are even more tools available to assist
us such as debuggers (e.g., Google Chrome DevTools, the GNU debugger), unit
test frameworks (e.g., JUnit), and static analyzers (e.g., SpotBugs).

Meanwhile, the programmer population has also changed. The programming
team working with the first programmable, electronic, general-purpose, digital
computer ENIAC consisted of six women [25]. Until the late 1960s, the gen-
eral demographics of programmers were predominantly women in UK and US [9,
30, 42]. Nowadays, women’s participation in computing varies in different coun-
tries [37, 60]. It is reported that girls make up roughly half of the students who
enrolled in computing-related majors at some of the prestigious universities in
India (Year 2014-2015 [88]), Malaysia (Year 2010-2018 [65]), and Saudi Arab
(Year 2014 [6]). But less than half of the jobs in Information and Communication
Technology are taken by women in many other countries, e.g., 22% in Sweden
(Year 2019-2021 [86]), 20% in Australia (Year 2021 [63]), 22% in Nigeria (Year
2021 [36, 89]), and 35% in Argentina (Year 2009 [106]). Additionally, the main
target segment of the visual programming language Scratch is children [27], a
programmer profile that traditional programming language designers might have
never had to consider.

In summary, significant changes have taken place over the past decades in
terms of what concrete activities programming consists of and who practices pro-
gramming.

1.3 Software Development and Tooling Today

Because of the advances in computing, software has carved its way into the work-
place and later on became an indispensable component of our everyday life along-
side the proliferation of personal computers [24] and the prosperity of the Inter-
net [23].

With the rapid increase in computing power, however, a “software crisis”
emerged in the 1960s [28]. Programmers at the time could not keep up with the
increasing complexity of computer hardware and the software development tasks
became larger and complex as well [78]. Many software development projects
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were over-budget, over-time, inefficient, with low quality or low maintainability,
or even never delivered.

These problems motivated the introduction of new software development pro-
cesses, methodologies, and paradigms, which helped shape the mainstream pro-
gramming practices today (e.g., Agile, DevOps). Accordingly, the underlying de-
veloper tooling has also evolved to now comprise editors (e.g., Sublime Text),
assemblers/linkers/compilers (e.g., GCC for C++), build tools (e.g., Gradle), ver-
sion control systems (e.g., Git), code review tools (e.g., Gerrit), testing tools and
debuggers (e.g., Valgrind), and CI/CD tools (e.g., Jenkins), or become gigantic all-
in-one Integrated Development Environments (IDEs, e.g., Visual Studio Code).

Undoubtedly, the size of the code bases or the number of lines of code that
programmers work with also grew significantly if not exponentially. For instance,
Google’s monolithic code base contains billions of lines of code [69] and tens of
thousands of developers use it as the single source of truth [73]. Several studies
found that programmers spend most of their time on code comprehension, e.g.,
approximately 60% of their working hours [103], and 70% of their time in an
IDE [57].

1.4 Future Programming and Programming Tool Assis-
tance

Eye-tracking technology has matured significantly in the past few decades. Ded-
icated eye trackers are much more affordable and easier to use, and the more ac-
cessible web cameras can also achieve satisfactory performance. The laptop man-
ufacturer Alienware has integrated eye-tracking into its high-performance models
to enhance the gaming experience for the customers [91]. Apple has also released
the visionOS platform which introduces a three-dimensional interface - eye move-
ment, hand gestures, and voice commands - for some productivity products accom-
panied [8]. With these major players from consumer electronics entering the field
to educate their clients on eye-tracking, we can be optimistic that eye-tracking will
gradually become an integral sensor to many devices and systems or tools in the
future, just as touchpad, camera, microphone, keyboard, and mouse. In this direc-
tion, some researchers have already been experimenting with enabling navigation
and cursor with gaze in a software development environment, e.g., EyeDE [39],
EyeNav [70], iReview [44], and Gander [75].

The release of ChatGPT has triggered a vast interest in Large Language Models
(LLMs) or Generative AI among researchers and the public. It further drove the
birth of the so-called AI software engineer or autonomous software engineering
that is enabled by language models customized for software development tasks on
the repository level, e.g., DevIn [4], SWE-agent [104], and AutoCodeRover [110].
Some of these intelligent agents are claimed to be teammates working with devel-
opers but not to replace them. Nonetheless, studies show developers have already
started using AI assistance for programming, e.g., for repetitive code generation
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and syntax recall [52]. There is also increasingly more research on “prompt en-
gineering” with LLMs [54, 56, 100, 101] and some in particular aim to benefit
beginner programmers or non-expert programmers [55, 108]. With the disruption
of Generative AI or LLMs, e.g., ChatGPT [64], the possibility of using natural lan-
guages for programming has arisen [76,90]. We can speculate that the programmer
profile may expand to a more diverse population since natural languages for pro-
gramming are much more accessible, especially if one can program in one’s native
language. This implies that the underpinning infrastructure for programming may
undergo a change and there is room for non-conventional assistive support to come
into play as LLMs evolve toward multimodality [102].

Therefore, we see value in exploring how eye-tracking will fit into software
development tooling given programmers spend a large amount of their time read-
ing code to gather information from this abstract representation. This leads us to
formulate the research question as follows:

• RQ: How can eye-tracking support programmers?

2 Background

In this section, we provide some fundamental concepts, practices, and related
works as the background.

2.1 Eye Tracking

Eye tracking is the technology to capture the position and movement of one’s
eyes [58]. An eye tracker is a device that utilizes such technology to infer where or
on what one’s gaze is placed. As the most used modern model, a video-based eye
tracker usually comprises three key components: near-infrared light illumination
modules, a camera sensor, and a processor [58]. The illumination modules emit
lights to help locate the target’s eyes. The camera takes pictures of those eyes. The
processor processes those images to model the eyes and map the positions of the
eyes and the angles of the reflection into one’s gaze points on a stimulus [33, 92],
e.g., a screen. There are different ways to categorize eye trackers. Some manufac-
turers [58] assign them into three types: screen-based (since it is usually mounted
to a desktop or laptop screen, as shown in Figure 1), wearable (e.g., glasses), and
integrated (e.g., into a Virtual Reality headset). From the research perspective
concerning experimental setup and human interaction, they can be characterized
as head-free (e.g., wearable eye trackers), head-boxed (e.g., remote eye trackers),
and head-restricted (e.g., eye trackers with a chin rest or forehead rest), according
to the degree of the freedom of head movement [92].
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Figure 1: A video-based eye tracker attached to the bottom of a monitor with a
chin rest.

2.2 Gaze Data

As explained by Holmqvist et al. [45], we can measure the eye movement events
recorded by an eye tracker in many ways and with great granularity. They sug-
gested mapping the measures into four themes: movement (e.g., saccade direc-
tion), position (e.g., pupil diameter), numerosity (e.g., fixation number, proportion,
and rate), and latency (e.g., entry time to an Area of Interest (AOI)) and distance
(e.g., left eye to right eye).

Some researchers otherwise suggest categorizing gaze data into four orders [81].
The first-order gaze data comprises the X and Y positions, pupil diameter, and
blink rate. It is usually the raw output of an eye tracker. Significant variation in
pupil diameter usually indicates visual arousal such as an animation in a graphic in-
terface but it can also be triggered by changes in lighting. Researchers are advised
to adopt a high degree of rigor when collecting this measurement and interpret it
cautiously. Blink rate can be a predictor of fatigue or drowsiness, e.g., the overload
of a programmer’s cognitive effort during extreme programming hours. Fixations
and saccades are the second-order gaze data. They are probably the most com-
monly used gaze metrics. They constitute the foundation for most gaze analysis in
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practice. Metrics directly derived from fixations and saccades are third-order gaze
data, including fixation count, fixation duration, percentage of fixation, saccade
count, saccade amplitude, and regression rate, just to name a few. They are useful
for more fine-grained analysis and comparisons. For instance, both long fixation
duration and large saccade counts on a specific code block of a file can indicate to
which the programmer paid significant attention. The percentage of fixation can
help distinguish the importance between two AOIs and the averaged fixation dura-
tion may help determine which one is more interesting to a programmer between
two code snippets. The fourth-order gaze data refers to scan paths that consist of
fixations or AOIs ordered by time. Scan paths are useful, for instance, for studying
a programmer’s distribution of visual effort over a large file in-depth or compar-
ing two groups of programmers’ search strategies such as whether a salient linear
pattern is shown in reading the code.

2.3 Use of Eye Tracking in Software Engineering

There exists a wealth of Empirical Software Engineering (ESE) research using eye
tracking [50, 62, 82]. The most studied topic to date is program or code compre-
hension (e.g., [13,31,32,67] ). Other topics cover model comprehension (e.g., un-
derstanding UML diagrams [15, 107]), code review (e.g., [10, 11, 46]), debugging
(e.g., [7, 98]), traceability (e.g., [79, 97]), data structure manipulation (e.g., [80]),
and so on. Most of these studies focus on understanding programmers’ eye move-
ment behavior or speculating about their cognitive process by analyzing their gaze
while performing certain software development tasks mentioned above. A great
portion of these studies were undertaken with pedagogical purposes by comparing
different groups of students (e.g., low vs. high performance, freshmen vs. gradu-
ates) or students with professionals (novices vs. experts). A few studies explored
the possibility of introducing gaze-based support to programmers in their develop-
ment environments. Within these studies, a substantial part of them employed gaze
for human-computer-interaction (e.g., [39, 70, 74]) and sometimes together with
voice (e.g., [66, 87]); some studies tracked programmers’ gaze to inform them
about where their attention was (e.g., [2, 75]) and further to facilitate them with
completing a task with better quality (e.g., [44]) or efficiency (e.g., [16]).

2.4 Gaze Data, Machine Learning and Programming

As explained by Holmqvist et al. [45], the representation of gaze data is complex.
For instance, attention maps are a well-adopted representation of the spatial dis-
tribution of gaze data. The representation can be visualized as a quite intuitive
heat map. Both researchers and naive users can grasp a meaning from it easily. A
weakness of a heat map is the loss of temporal information about the user. This
illustrates the situation that researchers often face when conducting gaze data anal-
ysis. They have to select the representations that suit their study best from among
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Figure 2: A heat map generated from a participant’s reading of a program analysis
example.

many options and deal with the associated trade-offs. Not every researcher is ca-
pable of or confident in making the right decision although there are some best
practices to follow. And a bad choice will potentially render the validity of their
findings in question.

On the other hand, machine learning (ML) is good at handling large amounts
of data with high dimensionality to extract useful information from it, e.g., infer
the category of the samples. Therefore, feeding the ML models with the raw gaze
data which usually contains thousands of rows and tens of dimensions seems to be
a good fit. It can potentially reveal details about the cognitive process and emo-
tional state of programmers more precisely than the conventional representation
and analysis. Further, when an ML model is well-trained with gaze data, it has the
potential to be integrated into a programming environment to support program-
mers in real time while conventional representations are usually post-hoc.

A few studies have been conducted in the above-stated direction in the soft-
ware engineering research community using eye tracking. Most of these studies
focused on tackling the problem of code comprehension (e.g., [1,3,41,51]), along
with code review [43, 96], pair programming [94], and debugging [109]. To ap-
proach the solution, they employed different machine learning techniques (e.g.,
support vector machines [3, 38, 51], random forests [5, 96]) to infer programmers’
attributes (e.g., programming expertise [3, 5, 51], code reading ability [41]), the
code’s attributes (task difficulty [38], mentally demanding code fragments [1]),
and the work’s attributes (e.g., quality of code review [43], success of pair pro-
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gramming [94]). Most of these works were done in the preliminary phase. It means
that their functions were not integrated into a programming environment and em-
pirically evaluated. To the best of our knowledge, however, some researchers (e.g.,
[44]) are pioneering in this direction.

3 Method

In this section, we first illustrate the overarching methodology that guides our
studies. We then break down our high-level RQ explicated in the introduction
into three sets of sub-RQs, which we have investigated through three separate
studies, respectively. We briefly introduce the specific research methods that we
employed in each of these three studies. Finally, we map these studies into the
guiding Design Science model.

3.1 The Design Science Model

The methodology we followed is the Design Science model for Empirical Software
Engineering proposed by Runeson et al [34,71]. In their view, Empirical Software
Engineering research mostly fits into the paradigm of “Design Science” [85]. This
paradigm centers the frame of a “problem-solution” pair [93]. Most ESE stud-
ies encompass or at least constitute part(s) of the loop - problem conceptualiza-
tion, solution design, and empirical validation. ESE researchers output knowledge
through “problem-solution” instances and “technological rules” to benefit practi-
tioners and peers. We detail their proposed model by briefly explaining each of the
components. As shown in Figure 3, the model is divided into four quadrants. The
horizontal axis divides the top and bottom into theory and practice. The vertical
axis divides the left and right into problem and solution domains.

We first look at the four major box clusters in the model from top left to bottom
left in a clockwise order.

• Problem Construct is the knowledge about a general problem, e.g., reading
code is cognitively demanding and slow.

• Design Construct is the knowledge about a general solution, e.g., consistent
style of the code facilitates code reading.

• Problem Instance is a specific problem, e.g., locating the critical code ele-
ments such as the variables and methods within a file is difficult and time-
consuming.

• Design Instance is a concrete solution, e.g., syntactically highlighting these
code elements with consistent colors makes it easier and quicker to locate
them.
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Figure 3: The Design Science model for ESE research, adapted from Runeson et
al [71].

The plural expression and cluster format imply the outputs can be iterative and
thus many.

Next, we interpret the knowledge-creating activities (the arrows) sitting be-
tween the four box clusters. We start the interpretation from problem conceptu-
alization in a clockwise order as it is typically the first step of a design science
study.

• Problem Conceptualization is to identify a problem, e.g., a field study with
practitioners can identify a problem.

• Solution Design is to match a problem with a solution, e.g., a co-design
workshop can map a solution to a problem.

• Instantiation is to actualize a solution in context, e.g., developing a proto-
type to address a specific problem.

• Abstraction is to extract key design decisions that served the purpose of the
actualized solution, e.g., generalizing learning from testing a prototype with
prospective users.

• Empirical Validation is to assess to what extent the actualized solution tack-
les the problem, e.g., conducting user studies with the target group.
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Figure 4: Our papers mapped to the Design Science model for ESE research,
adapted from Runeson et al [71].

Lastly, we explain the small box cluster of technological rules.

• Technological Rule is the abstract knowledge built through conducting the
study, e.g., utilizing syntax highlighting can ease the reading of code in a
file and help locate the critical code elements more quickly.

3.2 Papers Mapped to the Design Science Model

Bearing the design science paradigm in mind, we have started our heuristic search [85]
to answer the RQ: How can eye-tracking support programmers? We break down
this broad inquiry into three pieces in the problem and solution space.

In Paper I [48], we conducted a mapping study to navigate the landscape of
software development and eye tracking. A mapping study (a.k.a. scoping study) is
a research method used to gain an overview of an area of interest by classifying and
counting the related publications [68]. With this study, we wanted to understand:

• RQ1.1: How is eye tracking used in software engineering research?

In Paper II [48], we conducted another mapping study on software develop-
ment, eye tracking, and machine learning to narrow down the problem and shape
the solution. We intended to examine:
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• RQ2.1: What problems have been tackled by using ML on gaze data in
software development?

• RQ2.2: How is ML used with gaze data in software development?

• RQ2.3: What are the open challenges in using ML on gaze data in software
development?

In Paper III [49], we surveyed professional programmers to build an in-depth
understanding of programming practices in the industry. According to Linåker et
al., survey is a method to “collect information about a group of users by sampling
individuals from a large population” [53]. We sampled this vital but less-studied
(in our field and due to the fact it is expensive to gain access to the group) cohort
of our prospective users to gather their experiences, gauge their attitudes, and col-
lect concrete pain points as in-context problems. We investigated the following
research questions:

• RQ3.1: What are developers’ perception on tool assistance today?

• RQ3.2: What are developers’ perception on directions for future tool assis-
tance?

We map our studies into the clusters of this model according to their main fits
as shown in Figure 4. Paper I constitutes Problem Constructs. It first establishes
the context that eye tracking has been used mostly for understanding students’ gaze
behavior during code comprehension tasks. It surfaces the problem that novice
programmers struggle to read and understand code effectively. Paper II constitutes
Design Constructs. It informs us that machine learning together with gaze data has
the potential to predict a range of interesting attributes about the programmer, the
code, or the software development task that one is undertaking. Such information
can be used to inform the system to tailor its tool assistance for the designated
programmer. Paper III constitutes Problem Instances. It reports that code compre-
hension is the most outstanding pain point even among experienced practitioners
in the industry, wrapped with concrete information about their specific situations.

4 Contributions

In this section, we outline the contributions of each of our three studies to the
research community.

4.1 Contribution of Paper I

In Paper I [50], we conducted a mapping study to examine the literature on using
eye-tracking for software development studies. Answering RQ1.1, we identify that
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the majority of the studies were conducted with students, with educational materi-
als, and in the lab setting, and adopted the quantitative research method. We also
recognize challenges in characterizing programmers’ expertise due to its complex
nature, and in building cross-study knowledge due to the inherent vulnerability of
eye-tracking and various ways of performing gaze analysis.

To tackle these gaps and challenges, we make actionable recommendations to
the wider community. We point out the need for more research with higher realism,
namely, to study practitioners, with realistic code, and in real-world workplaces.
We encourage researchers to involve practitioners in design studies if the design
intends to monitor or detect the programmers’ cognitive process or emotional state
since this qualitative approach curates more understanding about the prospective
users. As expertise is complex and fluid and gaze data is of huge amount, we
suggest exploring gaze data for expertise inference with contemporary machine
learning techniques.

4.2 Contribution of Paper II

In Paper II [48], we conducted a mapping study to particularly investigate how
gaze data gathered from software development tasks are explored with specific
machine learning techniques. The following findings with respect to problems
tackled and ML technique utilized address RQ2.1 and RQ2.2. We found only a
small portion of eye-tracking studies in empirical software engineering focus on
such a topic. These studies, however, have covered most of the important soft-
ware development tasks: code comprehension, code review, pair programming,
and debugging. A wide range of ML techniques have also been utilized while
support vector machines and random forests are the most frequently used ones.
Researchers have applied ML to gaze data in software development to predict pro-
grammers’ expertise, the difficulty of the task at their hands, and the quality of the
work done by them (e.g., quality of code review).

To answer RQ2.3, we present the open challenges as follows. Despite the fact
that the research community collaborated to curate open datasets, we found most
studies trained their ML models with less than 40 samples (here we mean the num-
ber of distinct participants not the number of data points). This limitation, together
with the lack of diversity and balance in the training dataset, calls into question the
applicability or generalizability of these models. Further, some other problems,
e.g., oversimplification of the programming expertise (which manifested in mak-
ing the prediction task become a binary categorization), would have also impacted
the accuracy. We also summarize the possible future works from these studies.

4.3 Contribution of Paper III

In Paper III [49], we surveyed developers to gather their experiences with and
opinions on the current programming tool assistance and their attitudes toward
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three enabling technologies (AI/ML, eye tracking, and gamification) for future
programming tool assistance. We received responses from 68 developers who
reside in 12 countries and speak 13 native languages.

To answer RQ3.1, we summarize the developers’ perspectives on current pro-
gramming tool assistance as follows. We found only half of these developers use
program analysis but those who do think it is useful. Many of these develop-
ers have already used AI-based tools in their day-to-day work and a majority find
them useful despite AI’s insufficient accuracy at times and its inability to deal with
sophisticated tasks. The developers report a variety of main pain points about pro-
gramming while understanding code (especially at large scale and/or when written
by others) stands out as the most prominent one. The developers also acknowl-
edge not speaking English natively impacts their understanding of error messages
or more specifically program analysis results to some extent. However, as English
is the defacto language for programming, a skilled programmer is supposed to be
reasonably proficient in English.

To answer RQ3.2, we present the developers’ perceptions of future program-
ming tool assistance. We found these developers are positive toward AI/ML, neu-
tral (with a lean toward negative) toward eye tracking, and negative (polarized)
toward gamification when asked about leveraging them to empower future pro-
gramming tool assistance. The surveyed developers tend to believe that AI/ML
(e.g., LLMs or Generative AI) is the next game changer in the field of program-
ming.

5 Ethical Aspects

In this section, we address the ethical aspects of using eye-tracking and machine
learning.

5.1 Ethical Aspects with Eye Tracking

Modern eye trackers usually employ near-infrared light for the illumination of tar-
get eyes. It is invisible to human eyes and normally deemed harmless (though
strong infrared radiation can potentially cause hazards to human eyes in certain
industry high-heat settings, e.g., glass making [22]). The sunlight [29] and many
products we use in our household, e.g., certain home appliances, surveillance cam-
eras, and wireless communication devices, emit infrared light. When conducting
eye-tracking experiments with participants, its impact on one’s health is negligible
given the short exposure, usually within one hour. Additionally, many eye trackers
are tested and certified for human safety by authorities from where they are man-
ufactured. When eye tracking is integrated into a programming environment for
potential long-lasting use, in our view, the tool makers should always give users
the option to switch it off despite the harm being minimal.
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Another concern with eye tracking raised by prospective users from our survey
is about privacy. As introduced in the background section, contemporary eye track-
ers have developed to be physically unobtrusive. One will hardly notice it when
an eye tracker attached to the desktop screen is in use. But whether users want
their eye movement to be monitored and their gaze data to be stored and analyzed
is another question. It is worth more discussion, especially in a work environment,
about whether their gaze behavior will be accessible to their employers, supervi-
sors, or peers. Different users may have different preferences, e.g., supervisors and
seasoned programmers may not mind sharing theirs for didactic purposes whereas
new employees or junior programmers may feel uncomfortable with that. There-
fore, toolmakers should always request users’ consent to enable eye tracking in a
programming environment. The eye tracking functionality should be inactive by
default unless users choose to activate it. Again, users should be informed about
and given the option to opt out anytime and unconditionally. Ideally, the options
and consent degree should be of great granularity, e.g., to what extent the gaze data
will be collected and stored, whether it is shared, and with whom it will be shared.
In the case that data will be aggregated for use, anonymization of specific users
should be implemented.

5.2 Ethical Aspects with Machine Learning

We discuss the ethical aspect concerning the use of ML planned in our future stud-
ies. According to the meta-analysis study by Jobin et al. [47], the high-level prin-
ciples of AI ethics are concerned with transparency, justice, fairness and equity,
non-maleficence, responsibility, and privacy.

• Transparency. For transparency, we intend to prioritize the use of more
explainable ML models when the performances are comparable and conduct
feature ranking to understand the outstanding contributors. We are also open
to publishing our code.

• Justice and Fairness. Justice and fairness are about ensuring the diversity
of the data used especially for training the models. As depicted in Paper II,
we are aware of the bias that can be introduced by the lack of diversity and
balance in a data set. We plan to utilize tailored data argumentation [99],
synthetic data generation [35], and pre-trained models to mitigate this.

• Equity. Equity can be translated into accessibility described by Siau and
Wang [84]. The eye-tracking technology itself is in general accessible and
particularly helpful to handicapped people. Our tool assistance intends to
cater to not just conventional programmers or professional developers but
the bigger and more diverse population in terms of their programming ex-
pertise, computer literacy, educational background, age, and language pref-
erences and proficiency.
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• Non-maleficence. In plain words, non-maleficence is not to do harm. This
concerns safety and security, both on the personal level and on the holistic
level. To the programmer individual, by design, the ML-enabled feature
is deactivated. We aim to hand over to the programmer a high degree of
controllability over the feature. On a holistic level, AI is perceived to cause
job loss or replacement [84]. Our goal is to assist programmers as a whole to
do their job better and particularly empower vernacular programmers who
may need more support, but not to replace them.

• Responsibility. Responsibility means accountability, which requires us as
AI developers to prepare the data and train the ML models responsibly. We
will focus on pinpointing potential biases to prevent harm to the users during
the development of the ML models.

• Privacy. For privacy, we will prevent the involuntary collection and use of
one’s gaze data. We also plan to reuse the open data set curated by the re-
search community. Moreover, we intend to treat privacy concerns with syn-
thetic data generation [35] and privacy-preserving federated learning [105].

We further share the point made by Mittelstadt [59]: “Principles alone can-
not guarantee ethical AI”. It is a complex and deep topic debated heatedly as it
is compounded by many factors such as business competition, country race, and
individual awareness and commitment [40]. Pursuing ethics as a process and shift-
ing ethics to organizations may be some of the directions to drive this forward as
Mittelstadt suggested. Nevertheless, we as AI developers commit to practicing
in accordance with the abovementioned ethical principles to serve our fiduciary
duties.

6 Threats to Validity
In this section, we address the threats to validity for the three studies we have
undertaken.

6.1 Threats to Validity for Paper I and Paper II
For mapping studies, the key threats to validity reside in achieving completeness
(maximizing the recall) and rejecting primary studies falsely (minimizing false
negatives) [12]. To achieve completeness, we devised our search strings carefully
and chose representative platforms for search. We examined and refined our search
strings to achieve exhaustive hits, complimenting them with informal snowballing
and inspection of publications from influential venues in the study domain. To
ensure the quality of selection we either applied pilot studies on a good percentage
of the papers retrieved to formally examine the inter-reliability among the authors
(for Paper I) or discussed each one of the papers included (for Paper II). Another
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significant threat to the validity of mapping studies is the quality of data extraction
and synthesis. We are confident in this aspect as we had very high inter-reliability
and discussed extensively both pre- and post-extraction to reach a consensus for
eliminating misconceptions and reporting trends or topics identified.

6.2 Threats to Validity for Paper III

For surveys, sampling bias poses a common threat to the representativeness of the
population selected and then to their conclusion validity or generalizability. Since
we adopted convenience sampling, our samples skew toward developers who re-
side in Sweden and China. We tried to mitigate this by advertising our survey
through a wide range of channels. However, location is not the primary attribute
we look into for developers in this study. Additionally, some of the findings from
the survey, e.g., some reasons why developers do not use program analysis, align
with what we see in the literature [72, 73]. Finally, this survey aimed to under-
stand practitioners’ experience with and perception of programming tool assis-
tance, hence, the findings do not apply to another distinct group of programmers,
e.g., novices who may be students or learners.

7 Conclusions and Future Work

In conclusion, we have conducted three studies to answer the research question:
How can eye tracking support programmers? Until this point, we have not fully
addressed this overarching RQ. This is in part because we are investigating a “non-
routine problem” [95], which implies possibly there is no fixed or pre-established
solution. Nonetheless, the three studies we have conducted thus far help pave the
way for a promising answer. The first mapping study constitutes the problem con-
structs which help us conceptualize the general problems. The second mapping
study provides us with mostly solution design constructs and partly problem con-
structs again. It helps us paint out skeleton solution designs while again revealing
the problems tied to these solutions that need to be further addressed. The third
survey paper constitutes mainly problem instances and in part solution design con-
structs. It unearths a series of first-hand concrete problems that we can attempt to
solve in a way of “problem setting” [77]. In the meantime, it also gathers evidence
for us to select from multiple available backbone technologies for the solution
design. These three studies together have built knowledge in us to work toward
finding the best way to introduce gaze-assisted support to programmers.

7.1 Future Work

For future work, we contemplate plans as follows:
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• Participatory Design Study. Practice participatory design with program-
mers to weed out design options and find viable designs that are worth im-
plementation. Traditionally, programming languages and developer tools
(e.g., formal specification [61]) were designed by experts or a small group
of highly specialized programmers with little involvement of vernacular pro-
grammers at the early stage despite their constituting the greatest portion of
the user population of these languages and tools [83]. We thus believe it is
suitable to apply participatory design theory [14] in our exploratory research
for designing gaze-based tool assistance.

• Machine Learning with Gaze Data Study. Explore the open gaze dataset
curated by the research community with convolutional neural network mod-
els and transformer variations. There is a need in this respect since the
artifacts and data sets of most related work are not available and thus cannot
be reused or replicated. Since the raw data outputted by an eye-tracker is
time series data, we believe it will be beneficial for us to experiment with
different ML techniques specific to time series data. For instance, we be-
lieve some prominent emotional states of a programmer such as frustration
and confusion may be solved by the anomaly detection task associated with
time series data based ML [17]. We envision such anomalies can be used to
“alarm” the tool to trigger more tailored assistance for the programmer. Ad-
ditionally, in the scenario of aggregating programmers’ gaze data, leverag-
ing privacy-preserving federated learning [105] may reduce programmers’
privacy concerns.

• Proof of Concept and Evaluation Study. Develop a proof of concept sys-
tem with eye-tracking integrated and evaluate it with programmers itera-
tively. This will help us gather user feedback and incorporate their inputs
into refining the tool assistance.
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PAPER I

TOWARD GAZE-ASSISTED
DEVELOPER TOOLS

Abstract

Many crucial activities in software development are linked to gaze and can poten-
tially benefit from gaze-assisted developer tools. However, despite the maturity
of eye trackers and the potential for such tools, we see very few studies of practi-
tioners. Here, we present a systematic mapping study to examine recent develop-
ments in the field with a focus on the experimental setup of eye-tracking studies
in software engineering research. We identify two gaps regarding studies of prac-
titioners in realistic settings and three challenges in existing experimental setups.
We present six recommendations for how to steer the research community toward
gaze-assisted developer tools that can benefit practitioners.

1 Introduction

One of the main activities of a software developer is reading code [25, 45], an
activity driven by gaze. Still, research using eye trackers to study the gaze behav-
ior of software developers during their day-to-day work is not common [27, 36].
Gaze-driven tools become even more attractive when considering the increase in
remote work and online collaboration [46]. There are a number of activities in
software engineering where we believe that gaze analysis and eye-tracking data
could contribute to research, e.g., in cooperative work, both in the same location
and geographically distributed, and in code comprehension.

Eye trackers used to be expensive and required trained personnel to operate, ef-
fectively confining their use to lab environments. But this is not the case anymore.
In the last decades, rapid technical development has greatly increased the feasi-
bility of in-situ acquisition of eye-tracking data, both by the availability of cheap
dedicated eye trackers and eye tracking via commodity webcams. It is reasonable
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to assume eye trackers will soon be ubiquitous at developers’ desks, integrated into
monitors, laptops, and cell phones [12, 41, 42].

Considering research in software engineering, the possibility of using eye track-
ing in software development has been identified [37, 39] and we see an increase
in studies that utilize eye trackers to understand e.g., program comprehension [27,
36]. Also, it can be utilized as a means for data collection in empirical software
engineering research [38]. However, when considering the experimental setup of
eye-tracking studies so far, we see a dominance of lab studies, with students and
educational material [27]. We see very few studies considering the day-to-day
activities performed in professional software engineering settings. Yet, there is
evidence that experts and novices have different gaze patterns [7, 33]. How well
can we build tools for practitioners with gaze data from students in an educational
lab setting?

In this paper, we systematically review recent studies utilizing eye trackers in
software engineering research to investigate recent trends (Section 2). We find a
persistent lack of eye-tracking experiments conducted outside of the lab environ-
ment and a dominance of student participants (Section 3). With these results in
mind, we discuss challenges in utilizing results and possible paths forward (Sec-
tion 4).

2 Method
To develop a thorough overview of current use of eye-tracking in software engi-
neering research and to address the question: how is eye-tracking used in software
engineering research?, we conducted a mapping study [29] summarized in Ta-
ble 1. We explain the steps and the limitations of the study below. Supplementary
material with our data set is available online1.

Mapping Study Steps In step 1, we conducted a search in Scopus2, an “ab-
stract and citation database” with references to articles from journals and confer-
ences from established publishers (e.g., Elsevier, Springer, and IEEE). Scopus was
chosen as a source because we deemed it to provide a representative view of avail-
able literature in the studied research area. We used the following search string
(with line numbers added):

1SUBJAREA ( comp ) AND
2TITLE-ABS-KEY (
3( {debugging} OR {programming} OR
4{source code navigation} OR
5{code browsing} OR {code search} OR
6{code review} ) AND
7( {eye tracking} OR {eyetracking} OR
8{gaze} OR {eye movement} OR

1https://portal.research.lu.se/files/137278187/ICSE_NIER_2023_
KuangEtAl_artifact.xlsx

2https://www.scopus.com

https://portal.research.lu.se/files/137278187/ICSE_NIER_2023_KuangEtAl_artifact.xlsx
https://portal.research.lu.se/files/137278187/ICSE_NIER_2023_KuangEtAl_artifact.xlsx
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Table 1: Summary of steps in mapping study

Steps
1. Search in academic database, resulting in 509 papers.
2. All authors review 10% of papers (titles and abstracts), with Kappa

showing strong inter-rater agreement.
3. Updated search in academic database, resulting in 513 papers.
4. First author reviews all papers (titles and abstracts), resulting in 204

papers.
5. All authors review 10% of papers (full content) in pairs and agree to

keep all papers.
6. All authors develop a data collection scheme together.
7. Joint decision to focus on papers from 2018 and later, resulting in 136

papers.
8. First author reviews remaining papers (full content), resulting in 86 pa-

pers.
9. First author extracts data according to the data collection scheme, re-

sulting in 71 papers.
10. Joint analysis of data set and extraction of summaries by the first and

second author.

9{gaze estimation} ) ) AND
10( EXCLUDE ( DOCTYPE , "cr" ) )

The first line focuses on the search in the area of computer science and the last line
removes irrelevant documents (e.g., book reviews). Line 2 states that we search in
titles, keywords, and abstracts, and the two main areas we require in each article
are stated on lines 2–6 (programming) and 7–9 (eye tracking). The search resulted
in 509 papers (April 22, 2022).

In step 2, we conducted a pilot review of the titles and abstracts of the first 10%
of the found papers (51 papers) to develop an approach for sorting out irrelevant
papers based on only titles and abstracts. We selected the 51 most recent papers
to ensure this approach is based on the most recent research. All authors then re-
viewed these separately. The inclusion criteria we applied were: First, the stimuli
must be code (studies solely with pseudocode stimuli were excluded); Second, the
study must contain experiments with humans (but studies with children were ex-
cluded); Third, the study must be generating some data rather than entirely reusing
preexisting data. The exclusion criteria we employed were: the paper is not in En-
glish, peer-reviewed, or available in full text. We then performed a Light’s Kappa
analysis of the inter-rater reliability of multiple raters, and got a Kappa score of
0.86, indicating that the magnitude of agreement is “strong” [9]. With the strong
agreement, one author could proceed to review the rest of the papers.

Next, we re-ran the search (step 3, on 27 June 2022) since some time had
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passed, and this resulted in 4 additional papers, i.e., 513 papers in total. Then the
first author proceeded with selecting the relevant papers (step 4), ending up with
204 potentially relevant papers.

In step 5, we selected the first 20 of the included papers (approximately 10%)
to conduct a quality assurance study with the full text of each paper. We assigned
two co-authors to cross-review each paper. We had six unique pairs which covers
18 of the 20 papers by repeating three times. For the remaining two papers, we
deliberately assigned them to the pairs who had a relatively low agreement in the
prior pilot review. After this process, we discussed our assessment of the quality
of the papers we read. We unanimously agreed on the inclusion of 17 papers. For
the remaining three papers, we used a majority voting mechanism to decide on
the inclusion of two papers; we also included a paper when there was a tie. After
review, all 20 examined papers were included. Since we had an agreement on
which papers to remove and which to keep, we concluded that one author could
review the rest of the papers.

In steps 6-9, we designed a data collection form (step 6) and used it to conduct
pilot data extraction on the aforementioned papers. The first author also recorded a
time estimate for reading each paper. We discussed and revised the form after this
procedure. Based on review time and the existence of a previous study covering
literature up until 2017 [27], we decided to limit the investigation to papers from
2018 and later (step 7). After that the first author reviewed the remainder of the
papers (step 8), resulting in 86 papers, and also extracted data from the papers
(step 9).

In the final step, we coded details about the experimental setup (the partici-
pants, stimuli/artifacts, devices, environment, and methods). We only considered
distinct primary studies. That is, publications on the same data set were counted
only once and it was the first or original study we considered. In total, we excluded
15 papers with this criterion, leaving 71 papers to be included in the reported re-
sults.

Limitations There are some limitations and threats to validity in this type of
research (e.g., [6]). Even if a structured process for selecting papers is applied
there is a risk, e.g., that some papers are rejected falsely. We have carefully re-
viewed papers and followed a process where we could reach a consensus about
papers, which we believe increased the quality of the selection.

Also, it is not possible to get complete coverage of primary studies. However,
we selected a well-known database and carefully designed the search string, which
we believe increased the completeness. If very few primary studies were identified
that could be seen as an indication that the selection was too narrow. However, in
this case, we identify not so few relevant sources (in the magnitude of 15 per
year). We compare our results to trends, but it is impossible to get a complete list
of trends in the broader area. We base our analysis on our experience from research
in the fields and we believe this experience to be sufficient to identify future paths.
To not miss important perspectives, we spent effort on identifying and obtaining
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consensus in the review process.

3 Results

Fig. 1(a) shows the summary of roles of participants in the studies we found, split
into students, practitioners, mixed, and unspecified. A study was labeled as having
mixed participants when it included participants with more than one role, e.g., stu-
dents and researchers [10,11]. The data show that while there was no change in the
number of studies using only students during the years covered by our review, there
was a notable increase in the number of studies using participants with more than
one role in 2019–2021, compared to 2018. Across the years, the vast majority of
studies (92.96%) used students. These studies used either only student participants
(61.97%) or used students in combination with researchers (8.45%, e.g., [10,11]),
practitioners (12.68%, e.g., [8,13,30]) or both (8.45%, e.g., [15,16]). Conversely,
only 22.54% of studies included practitioners as participants.

Finding 1: The vast majority of studies (92.96%) used students in eye-tracking
experiments, with 61.97% using only students. 22.54% of studies used practi-
tioners.

Fig. 1(b) shows in what context (setting & material) the reviewed studies were
performed, split into 12 combinations of setting and material. The categories with
the “mixed” prefix indicate studies that were conducted in more than one setting,
usually involving different participant roles, e.g., Lab for Students and Workplace
for Researchers/Practitioners [3, 13].

We notice that laboratory studies using open-source software as the source of
stimuli were more common in 2019 (e.g., [1, 2]) and 2020 (e.g., [11, 14, 19]) than
the other years. Only two studies were done in the workplace with closed-source
software [5, 43].

Finding 2: A majority of studies (84.51%) were conducted in a laboratory set-
ting, either with educational materials (70.42%) or with materials adapted from
open-source software (14.09%).

Fig. 1(c) shows what research methods were used by studies across the time
period we reviewed. As the studies we examined all utilize eye tracking, the re-
search method they adopted was either quantitative or mixed. Among these mixed
studies, 68.75% (15.49% of all studies) used post-test/retrospective interviews to
complement the quantitative analysis of eye movement data; the rest used either
think-aloud, verbal Q&A, or a combination of the two.

Moreover, ten distinct studies adopted other sensors/devices, e.g., fMRI (func-
tional Magnetic Resonance Imaging, e.g., [19, 34]), fNIRS (functional Near In-
frared Spectroscopy, e.g., [14,34]), EEG (electroencephalogram, e.g., [21,22]) and
HRV (heart rate variability, e.g., [16, 23]), either simultaneously or subsequently
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Figure 1: Overview of experiment setup in selected papers split by year. The leg-
ends list coding categories for participant roles (a), study context (b) with a combi-
nation of location and material used, and study method (c). Note Edu=Educational,
OSS=Open-Source Software, and CSS=Closed-source software. Mixed is used in
all plots to indicate a combination of roles, contexts, or methods. ∗2022 includes
research only up to June 27, 2022.
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with eye trackers. Two studies used VR eye trackers instead of screen-based eye
trackers to collect gaze data [20, 44].

Finding 3: A majority of studies (77.46%) used Quantitative research method
while 22.54% adopted a Mixed approach.

4 Discussion

Our data combined with previous data [27], suggests a clear increase in research
studies involving eye-tracking in the area of software engineering. We ended up
with 71 papers in our study, which constitutes an average of 15.78 papers per year
(71/4.5), while in the previous survey by Obaidellah et al. [27] they found 2.33
papers per year over the range 1990-2017, with 6.4 papers per year for the last 5
years in their data set (2012-2017). We see this as an encouraging development
toward the utilization of gaze in developer tooling, but we also see gaps in the
areas covered by this research and challenges in how to conduct research in this
space.

Gap: Gaze behavior of practitioners. The study participants are predom-
inately students (Finding 1), a finding that aligns with previous surveys of the
field [27,36]. Although the argument can be made that students in some cases can
be seen as representatives of junior engineers [36], this still leaves a gap regarding
the gaze behavior of more experienced practitioners.

Gap: Gaze behavior in realistic setups. Studies primarily take place in a
lab or classroom setting, with mainly educational material and occasionally with
material from open-source (Finding 2). While we acknowledge efforts to bring in
more realism, with stimuli from open-source, and of course the few gems studying
practitioners in the workplace (e.g., [43], [5]), there is generally little knowledge
about gaze behavior in realistic software development settings. This aligns with
previous surveys where ”most of the experiments reported in relation to program-
ming were conducted in an institution for higher learning” [27] (Section 3.4) with
75% of studies being carried out with students, teachers or researchers with a con-
nection to programming courses and often with ”source code, texts, or models that
can fit on one screen” [36] (Section 5.5.3).

Challenge: Task incentive. Besides the realism of the setting and the stimuli,
there is also something to be considered regarding the incentives of participants,
which is not mentioned in earlier work [27, 36]. The incentive for doing a task
may have an impact on the gaze behavior and thus create bias in findings. It
is reasonable to assume that there could be a big gap between knowing that not
finding a bug will have no severe consequences vs. knowing that not finding a bug
(and fixing it) will affect thousands of users.

Challenge: Characterizing participant expertise. While it is plausible to
divide participants into different groups and contrast them for studies, we observe
the line researchers use to draw between novices and experts is not consistent in
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the literature. While freshman students are typically treated as novices and prac-
titioners as experts, senior and graduate students may be treated as intermediate,
advanced, or novices. Variation in role assignment makes it difficult to compare
and replicate studies. While previous surveys show that studies of differences be-
tween novices and experts are common [27, 36], they do not list this challenge.

Beyond the immediate challenges in the current practice in expertise character-
ization, the notion of expertise is by nature very difficult to measure and context-
dependent. Expertise, proficiency, and task difficulty are intertwined and interact
with each other. Expertise can vary between languages; an expert in C can be a
novice in JavaScript. Past language experience matters; being a novice in your
fifth language is not the same as the first time you learn to program [40]. Expertise
may also vary within a language; solving the same problem for the fifth time is not
the same as the first time. Lastly, expertise can also degrade over time; 20 years of
experience in C may not be the same after spending 5 years developing in Python.

Challenge: Building cross-study knowledge. Eye tracking research deals
with massive amounts of data [36] and a high degree of attention and rigor is re-
quired when using eye trackers to generate valid data. In addition, processing and
analyzing eye movement data is also challenging. There has been a lack of guid-
ance in the field [27,36], resulting in variation in experimental setups and problems
with replication (e.g., [28], see also [17]). Variation in the meta-data of gathered
data sets further makes it difficult to compare results and to combine results into
larger data sets, to open up for automated pattern recognition via machine learning.

4.1 Toward gaze-assisted developer tools

With the presented gaps and challenges in mind, we present recommendations
for how to drive the research in this area toward gaze-driven developer tools for
practitioners.

Recommendation: Find paths to practitioners. While we acknowledge that
it may be difficult for researchers to get access to practitioners [36], we still advo-
cate for more studies with practitioners and preferably conducted in their natural
work environment, a point also made by others [35]. We encourage researchers
to take on the challenge of finding paths to practitioners, perhaps by considering
other research methods or adaptions to their experimental setups. Are there ways
to move to practitioners rather than moving practitioners to the lab? Are there
ways to find a mutual benefit to their participation?

Recommendation: Let expertise be more complex. The current practice of
characterizing expertise is to use years of programming, years of using a certain
programming language, self-reported proficiency/confidence, and perceived task
difficulty. While all these metrics are valid and relevant, we encourage researchers
to consider alternative ways of characterizing expertise, capturing more of the nu-
ance. Perhaps by capturing experience along more dimensions, for instance, past
experience in different programming languages, and recent development activities.
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Recommendation: Provide realistic incentives. In order to increase the va-
lidity it has been argued that not only expertise is important, but also the incentives
for conducting tasks in experiments [18]. Incentives are probably clearer in an in-
dustrial setting, but incentives can be seen as orthogonal to subject experience, e.g.
there may, to some extent, be clear incentives also in tasks that are part of student
projects. We encourage researchers to obtain realistic incentives also with students
as subjects.

Recommendation: Tee up for machine learning. As the field matures, prac-
tical guides for how to conduct eye-tracking experiments are emerging [35], as
well as efforts to share data sets [4, 24]. High-quality data sets with gaze data
open the door for machine learning and the incorporation of such techniques into
developer tools for improved developer assistance. To enable this development,
we encourage researchers to take on the challenge of creating larger data sets with
gaze data from practitioners in realistic settings.

Recommendation: Characterize gaze in development. While shared gaze
data sets enable the training of machine learning models, an important factor that
makes such data sets useful lies in the richness of the meta-data that describe them
(see also [26]). Describing the space where gaze plays a role in software devel-
opment, is more complex than describing the space of an introductory program-
ming course. While a course is simplified (e.g., typically focuses on one language
and construction of small applications), software development is multi-faceted and
complex (e.g., editing of multiple languages, remote collaboration with pair pro-
gramming, code review, and whiteboard design discussions). We encourage re-
searchers to take on the challenge of characterizing this "gaze space" in software
development to enable knowledge building and gaze-driven tooling for software
developers.

Recommendation: Involve participants in design. Software development is
not only a cognitively-demanding task but can also be an emotion-draining task.
Gaze data, along with other bio-sensors, open up possibilities to detect part of
a developer’s emotional state [35]. This data can potentially enrich the existing
services of developer tools and also create new ones focused on emotional user
experiences [31]. However, there is a risk that the cost of sharing bio data may
outweigh the benefit of the assistance. We recommend researchers consider par-
ticipatory design methods [32] in exploring such services.

5 Conclusions

To investigate how eye-tracking is used in software engineering research, we car-
ried out a systematic mapping study. We focused on the experimental setups in
the last 5 years and found that the majority of experiments are carried out with
students, in a lab setting and with educational material as stimuli. We identify
gaps in terms of studies with practitioners in realistic settings, and we identify
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challenges in existing studies regarding task incentives, characterization of exper-
tise, and variation in the practice around data gathering. To address these gaps
and challenges, we present six recommendations aimed at steering the research
community toward gaze-assisted developer tools useful for practitioners.
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PAPER II

APPLYING MACHINE
LEARNING TO GAZE DATA IN
SOFTWARE DEVELOPMENT:

A MAPPING STUDY

Abstract

Eye tracking has been used as part of software engineering and computer science
research for a long time, and during this time new techniques for machine learning
(ML) have emerged. Some of those techniques are applicable to the analysis of
eye-tracking data, and to some extent have been applied. However, there is no
structured summary available on which ML techniques are used for analysis in
different types of eye-tracking research studies.

In this paper, our objective is to summarize the research literature with respect
to the application of ML techniques to gaze data in the field of software engineer-
ing. To this end, we have conducted a systematic mapping study, where research
articles are identified through a search in academic databases and analyzed qual-
itatively. After identifying 10 relevant articles, we found that the most common
software development activity studied so far with eye-tracking and ML is program
comprehension, and Support Vector Machines and Decision Trees are the most
commonly used ML techniques. We further report on limitations and challenges
reported in the literature and opportunities for future work.

1 Introduction

Both eye tracking (ET) and machine learning (ML) technology have matured a lot
in the last decade; eye tracking has reached a point where it is being integrated into
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consumer laptops1, and ML has seen significant progress (e.g., AlphaGo [19] and
ChatGPT [21]). Programming can benefit from these two developments since eye
trackers generate a lot of multifaceted data that may reveal a wealth of information
about the user and their intentions, while machine learning is needed to distill
these high dimensional data into actionable information [5]. Specifically, there is
an opportunity to utilize ML techniques to both understand programmers’ gaze
behavior and to explore gaze-assisted developer tools [10].

However, despite the initial development of gaze data sets intended to accel-
erate research in this area [3, 4], there are limited guidelines for how to apply
machine learning techniques to this data. Existing guidelines for employing eye
tracking for studies in the field of software engineering focus on data gathering
and metrics [17], but have little to say about making the collected data useful
for the training and evaluation of machine learning models. Existing surveys of
eye-tracking research studies in software engineering [10, 14, 18] give overviews
with a focus on data gathering, experimental setups, and metrics [18], but like-
wise do not discuss the use of machine learning techniques in these studies, nor
whether data gathered in these studies is suitable for the development of machine
learning models. Likewise, more general guidelines for eye tracking studies [?,
e.g.]]holmqvist2022guidelines do not pay particular attention to machine learning
approaching in gaze data analysis.

In this paper, we aim to contribute to filling this gap by providing an overview
of how machine learning techniques have been applied to gaze data so far in the
software engineering literature. To this end, we present a mapping study focused
on how machine learning has been applied to gaze data. We start by presenting our
method in Section 2, then we present our results in Section 3, before we discuss
the results in Section 4 and conclude in Section 5.

2 Method
In order to investigate the overarching question of ‘how have machine learning
techniques been applied to gaze data gathered from software development activi-
ties?’, we carried out a systematic mapping study [15], by first breaking down our
overarching question into the following three lower-level research questions:

• RQ1 What problems have been tackled by using machine learning on gaze
data in software development?

• RQ2 How is machine learning used with gaze data in software development?

• RQ3 What are the open challenges in using machine learning on gaze data
in software development?

1"Eye Tracking fully integrated and baked right into the very latest high performance gaming de-
vices from Alienware, Acer and MSI". https://gaming.tobii.com/products/laptops/
(Visited Feb 15, 2023)

https://gaming.tobii.com/products/laptops/
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1 SUBJAREA ( comp ) AND TITLE-ABS-KEY (
2 ( {debugging} OR {programming} OR {source code navigation}
OR {code browsing} OR {code search}
3 OR {code review} OR {code reading} OR {code
comprehension} OR {program comprehension} )
4 AND ( {eye tracking} OR {gaze} OR {eye movement} OR
{eye-tracker} )
5 AND ( {machine learning} OR {ML} OR {AI} OR {deep learning}
OR {artificial intelligence}
6 OR {classifier} OR {classification} OR {support vec
tor} OR {SVM} OR {decision tree}
7 OR {random forest} OR {RF} OR {naive bayes} OR
{naïve bayes} OR {NB} OR {linear regression} OR {LR}
8 OR {clustering} OR {imitation learning} OR {rein
forcement learning} ) )
9 AND ( EXCLUDE ( DOCTYPE , "cr" ) )

Figure 1: Search string used for data gathering. SUBJAREA limits the area to
Computer Science. TITLE-ABS-KEY searches titles, abstracts, and keywords of
publications. DOCTYPE with the option "cr" means "conference review". The
highlighted parts show the keywords added in the second iteration of the search
string.

We then composed the search string focused on software development activities,
gathering of gaze data, and machine learning, shown in Fig. 1 (without the high-
lighted part which was added later). When we ran this search string on Scopus2

on Jan 25, 2023, we got 50 papers in the search result. The first three authors
then screened the title, abstract, and keywords of these papers using the following
inclusion and exclusion criteria:

• Include paper if it employs eye-tracking, machine learning, and software
development activity (SDA).

• Exclude paper if it is not in English, not available in full text, or is not a pri-
mary study. If a study described in a paper does not contain an experiment,
then we did not consider it to be a primary study. However, if the study
uses a pre-existing data set with gaze data gathered from an experiment, we
considered this to be a primary study.

We employed a rule of minority inclusion when there was a disagreement on a
paper. That is, even if only one author deemed that a paper should be included,
we included it for further examination. Our rationale was that applying this rule
would minimize the risk of missing a relevant study. After screening by all authors

2https://www.scopus.com
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and the resolution of disagreements, 13 papers remained (i.e., 37 papers were ex-
cluded). Next, all three authors read the full texts of the remaining 13 papers,
using the same inclusion and exclusion criteria from the screening. After the full-
text review, we discussed any disagreement on inclusion and managed to reach a
consensus for all discussed papers. In the end, 8 papers remained (i.e., 5 were
excluded).

The first author then proceeded to collect the following data from the 8 papers:
topic domain (using software development activities as codes), ML algorithms
used, the purpose of ML use (a.k.a, prediction task), use of a pre-existing data set,
input and output of the ML models, stimulus type, study setting, participant type,
the number of participants, additional sensors used, limitations/threats to validity
and future work.

Meanwhile, we informally reviewed past publications from the workshop venue
- Eye Movement in Programming (EMIP). We found two papers that had the po-
tential to be added to the final paper set but were not captured by the search string
mentioned above. The reason was the use of the term "code reading" as a repre-
sentative software development activity, which we had not included in our initial
search string formulation. In addition, when we were coding the data gathered
from the 8 papers mentioned above, we identified some frequently-used machine
learning techniques, e.g. Random Forest. Hence, we refined the search string to
include these techniques to potentially capture more papers of interest, the addi-
tions are highlighted in Fig. 1. When we used this search string on Scopus on Feb
1, 2023, we got 83 papers in the search result, with an overlap of 50 papers with
the result of the previous search string, i.e., we found 33 new papers. We then went
through the same process as described earlier with these 33 papers and ended up
including 2 further papers, resulting in a final set of 10 papers.

Since there was strong inter-rater reliability (Kappa=0.84) between the first
three authors during the first round of screening and we always reached a consen-
sus after discussion throughout the screenings, we deemed it sufficient for the first
author to proceed alone with the coding of the gathered data 3.

When coding experiment-related attributes such as the number of participants
and participant type, we collected the information included in publications con-
nected to the study described in the reviewed paper if it is not reported or omitted
in the paper we reviewed. Otherwise, we used or prioritized the information re-
ported in the reviewed paper. In some papers we reviewed, we found that their data
sample was a subset of the data from an earlier study, e.g. to meet some custom
research needs [8].
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Table 1: Overview of selected papers. ICPC = International Conference on Pro-
gram Comprehension, ISSRE = International Symposium on Software Reliability
Engineering, ETRA = Eye Tracking Research and Applications Symposium, AP-
SIPA ASC = Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference, JSS = Journal of Systems and Software, VISSOFT =
Working Conference on Software Visualization, UMAP = Conference on User
Modeling, Adaptation and Personalization, JCC = Journal of Cluster Computing,
ICSE = International Conference on Software Engineering, EDA = Electroder-
mal Activity, HRV = Heart Rate Variability, EEG = Electroencephalogram, CSS =
Closed Source Software, OSS = Open Source Software.

Paper Year Venue Use
of
data
set

Stimu-
lus
type

Study
setting

Partici-
pant
type

No.
par-
tici-
pants

Extra
sensors

ASW22 [1] 2022 ICPC No Edu. Lab Mixed 16 EDA

APSM21 [3] 2021 ICPC Yes Edu. Mixed Mixed 20 -

HCC+21 [9] 2021 ISSRE No Edu. Lab Mixed 21 HRV

HN21 [8] 2021 ETRA Yes Edu. Lab Mixed 157 -

AO20 [2] 2020 APSIPA No Edu. Lab Students 66 -

VBMB20 [23] 2020 JSS No CSS Workplace Practi-
tioners

37 EDA +
Mouse

ZSPSY19 [27] 2019 VISSOFT Yes OSS Mixed Mixed 22 -

VR18 [22] 2018 UMAP No Edu. Classroom Students 84 -

LHJNL18 [11] 2018 JCC No Edu. Lab Mixed 38 EEG

FBMYZ14 [7] 2014 ICSE No Edu. Lab Practi-
tioners

15 EEG +
EDA +
Camera

3 Results

We start by presenting the demographics of the papers we selected and then we
present the results with regard to each research question.

3.1 Demographics

The demographics of the selected papers are listed in Table 1. Almost all papers
(9 out of 10) were published in 2018 or later, with a peak in 2021 (3 papers). In
terms of venue distribution, 8 papers were published in a conference or a sympo-
sium, and 2 in journals. The International Conference on Program Comprehension
(ICPC) is the top venue with 2 papers. The majority of the papers (7) presented
a study that included data collection, while 3 papers reused an existing data set.

3https://portal.research.lu.se/en/publications/applying-machine-learning-to-gaze-data-in-software-
development-a-
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The majority of papers (8) report on using educational material as stimuli, while
the remaining papers (2) report on using code snippets from either open-source
software (OSS) or closed-source software (CSS). When it comes to the choice of
stimuli, the same type of material, e.g., educational material, is commonly used
for both novices and experts, but there might be an increase in task difficulty or
code complexity (or experts may get additional tasks). For studies with only prac-
titioners, researchers tended to employ CSS material for the purpose of capturing
realistic gaze behaviors in the workplace.

The majority of studies (6) were carried out in a laboratory setting, with a few
(2) also including a workplace setting. One study was carried out in a classroom,
and one study was carried out in a workplace. The studies in a mixed setting are
usually those contrasting novices with experts in programming expertise, where
novices are usually university students and experts are practitioners in the industry.
Depending on the goals of the study, sometimes researchers asked both groups of
participants to perform the tasks in the lab, while in some other cases, researchers
conducted the experiments with experts in their offices.

The majority of papers (8) report using students as participants, which in a
number of cases (6) were mixed with researchers and practitioners. The remain-
ing 2 papers report using only practitioners. The number of participants ranges
from 15 to 157, with a mean of 48, a median of 30, and a standard deviation
of 45. Finally, half of the studies (5) used additional sensors; for Electrodermal
Activity (EDA), Galvanic Skin Response (GSA, coded as a type of EDA), Elec-
troencephalogram (EEG), Heart Rate Variability (HRV), mouse, and camera. The
most common additional sensors were EDA (3) and EEG (2).

Table 2: Heatmap of software development activity x ML technique.

SVM and decision tree are frequently used for code comprehension

ML / Activity Code compre-
hension

Code
review

Pair pro-
gramming

Debugging Total

Support Vector Ma-
chine

4 0 0 0 4

Decision Tree 3 0 0 0 3
K-nearest Neighbours 1 1 0 0 2
Naive Bayes 1 0 1 0 2
Random Forest 1 1 0 0 2
Ensemble Learning 1 0 0 0 1
Graph Embedding 0 0 0 1 1
K-means Clustering 1 0 0 0 1
Linear Regression 0 0 1 0 1
Total 12 2 2 1 17
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3.2 RQ1: What problems have been tackled by using ma-
chine learning on gaze data in software development?

To address this research question, we collected data on the software development
activities studied. The top row of Table 2 gives an overview of the activities we
found and the bottom row in the same table shows the total number of occurrences
of an ML technique being applied to a data set gathered from this activity. Code
comprehension is the most studied activity (12), followed by code review (2), pair
programming (2), and visualization of debugging gaze data (1).

Table 3: Heatmap of prediction problem x ML technique.

SVM is frequently used for predicting programmer expertise and task difficulty

ML / Pre-
diction

Program-
mer
exper-
tise

Task
diffi-
culty

Mentally
de-
mand-
ing
code

Success
of pair
prog.

Quality
of
code
review

Affect
in
code
review

Code
read-
ing
ability

Total

Support
Vector
Machine

2 2 0 0 0 0 1 5

Decision
Tree

1 1 1 0 0 0 0 3

K-nearest
Neighbours

1 0 0 0 1 0 0 2

Naive
Bayes

0 1 0 1 0 0 0 2

Random
Forest

1 0 0 0 0 1 0 2

Ensemble
Learning

0 0 1 0 0 0 0 1

K-means
Clustering

1 0 0 0 0 0 0 1

Linear
Regression

0 0 0 1 0 0 0 1

Total 6 4 2 2 1 1 1 17

Beyond activity, we also collected data on the purpose of using an ML tech-
nique. Across almost all papers (9 of 10), we found the purpose to be some kind of
prediction task, summarized by the top row of Table 3 and counted in the bottom
row of the same table. One paper, not shown in the table, used graph embeddings
for mapping graphs into a 2D space. Note that multiple papers describe studies
where several ML techniques were applied to the same data set [1, 2, 7, 22]. One
paper may also describe more than one prediction task [11]. As such the totals in
these tables (17) exceed the number of papers (10). The most common ML task
was to predict programmer expertise (6), followed by task difficulty (4). After that
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we saw prediction of mentally demanding code (2), success of pair programming
(2), quality of code review (1), affect in code review (1), and code reading ability
(1).

3.3 RQ2: How is machine learning used with gaze data
in software development?

To address this question, we consider what ML techniques are applied on gaze
data and how. From the heatmap presentations in Table 2 and Table 3, we see that
Support Vector Machines (SVM) and Decision Trees are the two most commonly
used techniques, followed by Random Forest (2), K-nearest neighbor (KNN) (2),
and Naive Bayes (2). The preference for the top two techniques and Random
Forests is due to their capability to handle large data sets [11,23], overfitting [3,11],
and effective ranking/selection of features [3, 23], while the preferences for KNN
and Naive Bayes is due to simplicity [7] and/or explainability [9].

To dig deeper into how the ML techniques are applied, we consider the ML
techniques from a perspective of a model taking input and providing output, sum-
marized in Table 4. The listed models correspond to the ML techniques listed
earlier in Table 2 and Table 3. In the input column, we convey our interpretation
of the details from the descriptions provided in the papers along with examples
for clarification. We find a fairly high degree of heterogeneity, which may not
be surprising given the available granularity/properties/dimensions of gaze data.
However, in general, we see a tendency to use raw gaze data in combination with
embedded feature selection algorithms (e.g., [1, 11]) to help pinpoint the promi-
nent features for a specific task. In cases where several sensors are used (e.g.,
EDA, EEG) or data is gathered via other methods (e.g., answers to a questionnaire
for participant performance assessment [2]), the data from the other sensors are
incorporated in the training data set. Further, some researchers also used analysis
results or derived metrics (e.g., CRQA attributes [22]) of gaze data as the input for
training their models.

3.4 RQ3: What are the open challenges in using machine
learning on gaze data in software development?

We address this research question from two aspects: limitations and challenges.
We constructed the following themes from the limitations reported in the set of se-
lected papers (not all papers reported limitations), sorted on occurrence in papers:

• Limited sample size (4 papers): the size of the sample is not large enough
(perhaps despite being representative [3]) and thus may impact the applica-
bility or generalizability of the model [1, 7, 23].
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Table 4: Overview of input, output and ML model used.
Paper Input Model Output
ASW22 [1] line and fragment level gaze data, e.g.,

"features derived from fixation, saccade,
pupil, scan-path"

Decision Tree,
Ensemble
Leaning

mentally de-
manding code
fragments

APSM21 [3] token level gaze data, e.g., "Single Fix-
ation Duration, First Fixation Duration"

Radom Forest programmer
expertise (novice
or expert)

HCC+21 [9] biometric features and non-biometric
features, e.g., HRV, scan time, code
complexity, experience level

K-nearest Neigh-
bour

code review qual-
ity of code re-
gions

HN21 [8] eye movement features, e.g., overall eye
movement horizontally and vertically

Support Vector
Regression

code reading abil-
ity

AO20 [2] total fixation duration (TFD) and partic-
ipants’ answers to questions

K-means clus-
tering, Decision
Tree, K-nearest
Neighbour,
Support Vector
Machine

expertise of
novice program-
mer

VBMB20 [23] gaze data + gaze shift data + EDA data +
mouse logs, e.g., Euclidean distance and
velocity derived from consecutive gaze
samples

Random Forest affect of the code
review

ZSPSY19 [27] eye movement trajectories and graphs of
the software program, e.g., scanpaths

Graph Embed-
ding (node2vec)

embedded space:
positions in a 2D
space and their
distances to each
other

VR18 [22] Cross-Recurrence Quantification Anal-
ysis (CRQA) metrics, e.g., "average di-
agonal length (L) means the in-sync fix-
ation paths"

Naive Bayes,
Linear Regres-
sion

success of pair
programming

LHJNL18 [11] psycho-physiological sensors data (eye
movement + EEG), e.g., total fixation
duration

Support Vector
Machine

programmer
expertise and task
difficulty

FBMYZ14 [7] eye movement data + EEG + EDA, e.g.,
total fixation duration

Naive Bayes,
Support Vec-
tor Machine,
Decision Tree

task difficulty

• Unbalanced data set (3 papers): skewness in sampling, insufficient or ab-
sence of representation of certain cohorts in the data set [7, 23], e.g., lack of
samples of professional programmers [3].

• Binary categorization (2 papers): specifically refers to the potential risk
of over-simplification of programmer expertise and the task difficulty with
a binary categorization method, e.g., novices vs. experts [9], and easy vs.
hard [7].
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• Information trade-off (1 paper): loss or compromise of certain information
due to the use of an ML technique, e.g., the nuanced differences between two
gaze trajectories became difficult to identify after having been mapped into
a 2D space in the work by Zhang et al. [27].

Similarly, we created themes based on the challenges reported in the paper, as
follows:

• Experiment management: the inherently difficult-to-control conditions of
an eye-tracking experiment, potentially interwoven with other advanced sen-
sors (e.g., EDA [1,7], EEG [7], or HRV [23]), and sensitivity to environmen-
tal variables such as illumination, the Hawthorne effect [12] (participants
may attempt to act in a manner pleasing to the researcher), and learning
effects while performing the tasks [7]. In addition, a mismatch between a
laboratory setting and a natural work environment is most likely unavoid-
able.

• Generalizability and validity of ML models: ML models by nature are
vulnerable to bias embedded in the training data set [2, 7, 23] and overfit-
ting when trained on a small data set [1, 3, 7, 23]. This sometimes calls the
validity and generalizability/applicability of the trained models in question.
However, some researchers deliberately chose certain ML algorithms, e.g.,
Random Forest [3, 23], over others to mitigate this problem. Regardless,
researchers still stated that due to the lack of diversity in their data and a
small-sized sample, further validation [2, 11] or in-situ evaluation [9, 23]
with a larger or unseen data set is needed or recommended.

Additionally, the challenge of getting access to professional programmers was
also mentioned [1], as well as the challenge of finding the optimal parameters to
derive metrics for training [22].

4 Discussion
Similar to the findings reported by Kuang et al. [10], we found that the majority of
studies applying machine learning to gaze data are carried out with students, in a
laboratory setting, and using educational material. As such, it could be questioned
whether the reported results generalize to practitioners in the workplace, a concern
also raised in the selected papers. A further concern is the small data sets, in
the context of machine learning, used by the studies reported here. Small data
sets limit the complexity of the deep learning models that can be developed [16,
20]. We find the community effort to publish more open data [13] and to curate
larger data sets collaboratively [4] very promising for the future application of
ML techniques. Still, despite these efforts, it may be challenging to compose
really large data sets. We recommend that more attention is given to the use of



4 Discussion 59

existing techniques for mitigating this problem, e.g., data augmentation [24,26] or
the generation of suitable training sets [25].

4.1 Opportunities for Future Research

Below we synthesize the future work stated in the studied papers as opportunities,
supplemented with our own insights (sorted after occurrences in papers):

• Extension of application (4 papers): the possibility of applying the trained
models to a similar sub-area [11, 23, 27] or a neighboring field rather than
software development, e.g., computer science education [9].

• Prediction task expansion (4 papers): the aspiration to expand the pre-
diction of the trained model to cover other similar or finer-grained tasks
[2, 3, 7, 23], e.g., "predict where and when the eyes move across a line of
code" [3] and detect "confusion and misinterpretation" [23].

• Model validation and enhancement (3 papers): this action concerns em-
ploying another data set to test the validity of the trained model [2], and two
ways of enhancing the models with enriched data: training data diversifica-
tion (e.g., [22]) and balancing [1]. One study may mention both enhance-
ment methods. Both training data diversification and balancing increase the
scale of the training data.

– Training data diversification (3 papers): include new data from a
completely new cohort or scenario [1, 2], or with new features of ex-
isting data points [22].

– Training data balancing (1 paper): increase sampling of the current
under-represented or hard-to-recruit participant cohorts [1].

• System improvement (3 papers): the envisioning of integrating the trained
model into existing systems or tools to better support programmers [7, 11,
23].

• In-situ evaluation (3 papers): the intention to evaluate the trained model on
data from a work environment [9,23] or with a more realistic user study [27].

4.2 Threats to Validity

The typical limitations of a mapping study [6] relevant to the work presented here
are the study selection process and the data extraction process. For the study selec-
tion process, the initial set of articles was based on a search string in an academic
database. We chose a well-known database, which we believe is rather complete.
The search string was iterated upon in order to find all relevant articles, but there
may still be articles that we did not find with our search string. To mitigate this



60 Applying Machine Learning to Gaze Data in Software Development: a . . .

concern, we have included extra search terms to find relevant articles from the
EMIP community, as described in Section 2. The selection of studies was further
performed by consensus of multiple authors. Given these actions and our own
knowledge of the field, we believe that we have identified a reasonably good set
of articles. For the data extraction process, the extracted data was iteratively dis-
cussed within the author group, e.g., based on previous research and knowledge
of the research field. Since we decided to collect rather well-known, accepted
and explicit types of data, such as the type of machine learning model, we believe
that no large errors or misunderstandings have occurred in the data extraction and
analysis.

5 Conclusions
This systematic mapping study aims at shedding light on the state of the art of ap-
plying ML techniques to gaze data in software engineering. We found a small set
of papers matching our criteria but at the same time a growing trend in the num-
ber of papers being produced in this area. We identified the software development
activities studied so far with eye-tracking and machine learning: code compre-
hension, code review, pair programming, and debugging. We further found that
machine learning has been used for prediction of programmer expertise, task diffi-
culty, mentally demanding code fragments, success of pair programming, quality
of and affect in code review, and code reading ability. The most frequently used
machine learning techniques are Support Vector Machines and Decision Trees.
Overall for all the considered studies, the main limitations reported are limited
sample size, unbalanced data set, binary categorization, and information trade-
off, and we further found two overarching challenges in experiment management
and generalizability/validity of machine learning models. These limitations and
challenges set the stage for many opportunities for future work, e.g., including ap-
plications in neighboring fields like computer science education, or to expand into
new prediction problems.
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PAPER III

DEVELOPERS’ PERSPECTIVE
ON TODAY’S AND

TOMORROW’S
PROGRAMMING TOOL

ASSISTANCE: A SURVEY

Abstract

Software development is a complex activity that needs a lot of tool assistance.
Over the years there has been a lot of effort put into development of automated
assistance to help with activities such as detection of issues via program analysis,
or refactoring of code. Recently, the landscape of developer tool assistance is
being disrupted with the entry of AI tools, such as Copilot and ChatGPT, powered
via Large Language Models. Other kinds of tool assistance, for instance, gaze-
driven assistance, is around the corner. What are programmers’ perceptions on
tool assistance today? What do they see as good directions for the future?

In this paper, we present the results of a survey where we asked developers
about their programming practices, experience with program analysis, and atti-
tudes and views on enabling technologies, like AI and eye-tracking. We received
68 replies from a diverse group of developers from 12 different countries. We
found that 50% of the participants use program analysis and that many participants
(28) already use AI-enabled tools for programming. We found that our participants
were positive toward AI-powered tools, neutral toward eye-tracking, and negative
toward gamification. We discuss these and other findings and point out directions
for future work.
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1 Introduction

Software development is a complex activity and there are numerous efforts to pro-
vide tool assistance to programmers, for instance, automatic discovery of defects
and vulnerabilities via program analysis [22]. We know from past work on pro-
gramming tool assistance that while a technology may provide benefits it may also
bring drawbacks. For instance, program analysis has been recognized as providing
promising tool assistance, with several reports of use in practice [5,17,18,25], but
at the same time there are numerous reports of usability issues [5, 7, 9–11, 18].

Recently the landscape of tool assistance for developers has been disrupted by
the introduction of AI-based tool assistance, for instance, Copilot [15] and Chat-
GPT [14]. We do not have to imagine the generation of code from natural lan-
guage, we already have it – even though much may remain to utilize this technol-
ogy in an efficient way (e.g., security issues with LLMs [2]). Other technologies
that may be disruptive will probably arise in the future. For instance, eye track-
ers may slowly be making their way into the development environment [8,19,23].
With the addition of devices, like the Apple Vision Pro [1], it is not too distant
to imagine the possibility of a programming environment with an integrated eye-
tracker.

To effectively explore designs in the area of programming tool assistance, we
need input from programmers, especially when the landscape is being disputed by
entry of new technology. There are examples of surveys of developers focusing
on specific tools in the programmer workflow, for instance, Liang et al. [12] fo-
cusing on AI-based programming and Do et al. [7] focusing on program analysis,
and surveys focusing on specific groups of programmers, e.g., Nguyen-Hoan et
al. [13] focusing on scientific programmers. Among these examples of surveys,
only Liang et al. [12] occurred after the disruption of AI programming. We see a
need for a broader focus where AI programming is considered together with other
tool assistance. We also see an opportunity to ask developers about how they re-
late to tool assistance available today, as well as, possible future directions for tool
assistance.

In this paper, a survey is presented where we reach out to developers to collect
their view on programming tool assistance, both with regard to today’s tools but
also with regard to what may be developed in the future. We focus on the follow-
ing research questions: (RQ1) What are developers’ perception on tool assistance
today? and (RQ2) What are developers’ perception on directions for future tool
assistance? To address these questions, we created a survey where we asked devel-
opers about their programming practices, experience with tool assistance like pro-
gram analysis, and attitudes and views on enabling technologies or strategies like
AI, eye-tracking, and gamification. We received 68 replies from a diverse group
of developers from 12 different countries. We found that 50% of the participants
use program analysis and that many participants (28) already use AI-enabled tools
for programming. We further found a positive sentiment toward AI-based assis-
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tance, neutral toward eye-tracking, and negative toward gamification. We discuss
our findings and point out directions for future work.

2 Method

To address RQ1 and RQ2, we designed a survey to better understand professional
developers’ programming practices and experience with program analyzers, and
their perception on a selection of enabling technologies; AI, eye-tracking, and
gamification1.

2.1 Data Collection

The survey contains 26 questions that were drafted by the first author and reviewed
by the rest of the authors. A master question together with its sub-question set,
which was prompted to participants depending on their answers to the master ques-
tion, are collectively counted as one question in our case. For example, "Can you
type out one or more program analysis tools that you are aware of?" and "Have
you ever used any program analysis tools?" are both sub-questions to "Have you
heard of program analysis?". In particular, we incorporated some questions from
a recently published paper by Peitek et al. [16] to capture the expertise of the par-
ticipants more accurately, compared to using years of programming experience as
an indicator. The survey was created and executed using an internal survey tool
named SUNET offered by the university.

Since the understandability of analysis results stands out as a barrier to adop-
tion in the literature [3,4,6], we designed questions specifically asking participants
whether or not their English proficiency has an impact on their understanding of
error messages or program analysis results. After that, the survey was pilot-tested
with two research colleagues; one senior researcher and one PhD student with
several years of industrial experience as a professional developer. The survey took
them 13 and 15 minutes to fill out, respectively.

The survey was then advertised by the first author via LinkedIn and shared by
the rest of the authors who own an active account there. Some of the colleagues
and friends of the first author also shared the LinkedIn post to help spread the word.
The ad was further shared by the first author to a Swedish network of academics.
In addition, the first and second authors reached out to professional programmers
within their circles via email and social media such as WeChat and Facebook.
When it comes to individual academics, the authors specifically approached those
who were known by them to have worked or still be working part-time in the
industry.

1The replication package is available at: doi:10.5281/zenodo.10777303. It includes two versions of
survey questions, a Python script used for analyzing the quantitative data, and a coding book used for
analyzing the qualitative data
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Based on the first few responses, the first author revised the survey into a new
version with a separate link. The new vision had five questions added, four to
cover AI-powered developer tools brought up by the first few respondents, and
one to serve as a baseline for programming experiences. Some of the wording
of questions was also adjusted based on the answers of those respondents, e.g.,
we added alternative names ’code analysis’ and ’software analysis’ for the term
’program analysis’, in the question asking participants whether or not they have
heard of this concept.

This created two versions of the survey. The latter had 5 more questions added
but the rest untouched. Making this kind of necessary modification to fit into re-
ality was also shared by some other researchers (e.g., [24]) in our field. The first
author updated the survey link wherever it was possible. In the end, 68 participants
responded to the survey. The first version received 29 responses and the second
version 39 responses. When reporting the result from the survey, we refer to par-
ticipants in the first survey using the prefix ’pa’, e.g., pa1, and participants from
the second survey using the prefix ’pb’, e.g., pb2.

2.2 Data Analysis

For analyzing the survey, the first author produced a Python script to process the
quantitative part (e.g., the questions with answers on a 5-point Likert scale) of the
data; for the qualitative part (e.g., open-ended questions with free text answers), we
applied bottom-up thematic analysis to the answers of the open-ended questions
related to program analysis and AI/eye-tracking/gamification. Some participants
answered the questions in their native languages, e.g., Chinese and Swedish. The
first author translated such texts into English before analyzing them. The first
author coded the qualitative data using open code [20], and then the second and
third authors reviewed the coding. The rest of the texts, since most of them are
succinct and straightforward, the first author summarized and weaved them into
the results where most appropriate.

3 Results

In this section, we report the results on participants’ demographics, programming
expertise, programming practices, and perceptions of enabling technologies.

3.1 Programmer Demographics

Residence

The survey reached participants residing in 12 countries. The top 4 countries are
Sweden (33), China (18), Australia (6), and Germany (3), with the rest 8 countries
each with one respondent. The predominant native languages that participants
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speak are Chinese (29) and Swedish (25), with a long tail of 11 other languages
spanning from English (3) and German (2) to Sinhala (1) and Bahasa Indonesian
(1). The participants include 57 males, 7 females, and 1 non-binary, with three
preferring not to disclose. Their average age is 35.

Education

All participants have an education in STEM (Science, Technology, Engineering,
and Mathematics): 63% of them had it solely in Computer Science/Software En-
gineering/Data Science/Machine Learning, 31% in the broad areas of STEM, and
6% with a mixed academic background, namely, they also have other degrees in
non-STEM fields. None is with a completely non-STEM background.

Occupation

In terms of profession, the majority (66%) of participants are professional devel-
opers in the industry: 41% software engineers or developers, 15% tech leads or
managers, 6% DevOps, 3% QA/testers, and 1% data scientists; the rest are mainly
from academia: 21% PhD students, 3% professors, 3% researchers (e.g., postdoc),
1% teaching staff and 1% graduates. Interestingly, among the category of ‘Other’
(4%), participants specified that they are data engineers, both academic and practi-
tioner, or senior management/leadership (e.g., CEO). Regarding occupation, 43%
of the participants work in multinational corporations, 28% at small or medium-
sized companies, 28% at universities or other educational institutes, and 1% is still
a student or learner.

Programmer Identity

We asked participants whether they identify as programmers, 85% of the partici-
pants responded that they do, while 15% do not. The reasons for not identifying
vary. Some participants link the practice of coding to the eligibility of being called
a programmer, either context-wise or frequency-wise. When they are just “scien-
tific programming” (pa8), or “casual coding” (pb36), they express that they do
not qualify as a programmer, or when they do not code that much anymore, even
though they used to be a professional software developer. Some participants link
it with the nature of their job, e.g., “devops scripting” (pb6), “engineer” (pb15),
and “hacking” (pa22), or with the relatively low level of their programming skill
or being self-taught. In general, these non-programmer-identifying participants
tend to equate programmers to professional software developers and deem that the
latter has to be very capable of programming.
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Programming Skill

In terms of programming skills, 21% of the participants reported that they are at ex-
pert level, 54% advanced, 21% intermediate, and 4% beginner. When asked about
their confidence in programming, 49% reported very confident, 43% somewhat
confident, 7% unsure or depends, and 1% not confident at all. Compared with
peers, 15% report themselves as much better at programming, 40% better, 35%
same, 9% worse, and 1% much worse. Compared with an expert with ten years of
programming experience, 6% report themselves as much better, 15% better, 32%
same, 34% worse, and 13% much worse. Among the 39 participants (57% of the
entire participant population) of the second version of the survey, their average
years of experience in programming is 11 years.

According to Peitek et al. [16], self-reporting proficiency by programmers is a
better indicator of a programmer’s coding skill measured in programmer efficacy
(correctness/time spent) than the years of experience in programming. Therefore,
it is reasonable to say the majority of the participants in our study are advanced
programmers.

Programming Languages and Paradigms

The top three primary programming languages used by the participants are Python
(31%), Java (29%), and the C family (27% in total, consisting of C 12%, C++ 9%
and C# 6%), followed by Javascript (7%), Go (6%), and other 11 programming
languages such as Swift, Ruby and so on. Besides their primary programming
languages, the participants are also familiar with some other languages. The top-
mentioned other languages remained to be the most popular ones: the C family,
Python, and Java, except Rust which did not surface in the primary language co-
hort.

For 68% of the participants, their primary language is their favorite language.
When asked about what they liked or did not like about the primary language,
many participants highlighted the factor of the resources available or the ecosys-
tem (libraries/tool support/developer community) for a language, along with other
factors including easy-to-learn syntax, level of abstraction, restrict type system,
match with the goal of the task, suitability for the scale of the project, and wide-
range adoption.

Regarding programming paradigms, 92% of the participants are familiar with
objected-oriented programming, 59% with imperative programming, 44% with
functional programming, and 16% with logic programming.

Development Activities

On average, our participants worked for 43 hours per week in the past three months.
Unsurprisingly, as shown in Figure 1, they spent most of their time on program-
ming (28%), followed by meetings (20%), other (13%), learning/training (12%),
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Figure 1: Distribution of weekly working hours.

testing (8%), code review/process (7%), mentoring (6%), deployment/operations
(6%). In the ‘other’ category, we asked participants to specify the activities that
were related to programming or software development. Participants mentioned
communication with co-workers (both in a task context, e.g., clarifying require-
ments, and social context, e.g., Fika [21]), documentation, and debugging. Partic-
ipants from academia brought up research activities such as reading and writing.
Others stated concrete activities closely tied to the nature of their job, for example,
spending time with customers and modeling threats.

When asked about the frequency of actually writing code per week during the
past three months, 47% of the participants answered almost every day each week,
19% of them answered 3–4 days per week, 18% 1–2 days per week, 6% read code
mostly, 3% read code sometimes, 6% read code occasionally, and 1% never need
to read or write code.

Development Environment

Regarding operating systems, 56% of the participants programmed in Windows,
41% in Mac OS, 67% in Linux, and 3% in other environments. In terms of the
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Figure 2: Functionalities of the IDEs/editors.

IDEs/editors that the participants are using, the top five mentioned are Visual Stu-
dio Code (56%), Vim (19%), Visual Studio variants (15%), IntelliJ (15%), and
Pycharm (9%), followed by many other IDEs/editors such as Eclipse (7%), Jupiter
(4%), Emacs (4%), Squeak/Smalltalk (3%), Xcode (3%), Spyder (3%), JetBrains
(3%), just to name a few. Regarding the features provided by the IDEs/editors (Fig-
ure 2), 44% of the participants ticked auto-implementation, 82% of them ticked
auto-completion, 62% ticked auto-refactoring, 95% ticked auto-styling, 64% ticked
program analysis or code analysis, 15% ticked code summarization, 21% ticked
code visualization, 3% ticked gaze control and/or gaze visualization, and 3% ticked
other features. One participant who selected the other category stated it was refer-
ring to “version control management” (pb15). When it comes to version control
or version management, 96% of the participants used Git, 3% of them used SVN,
1% used Mercurial, and 4% used other tools.

3.2 Perceptions on Today’s Tools (RQ1)

We report participants’ experience with program analysis, AI-enabled tools, their
main pain point with programming, and the language factor in understanding error
messages.
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Figure 3: Where to use program analysis.

Experience with Program Analysis

More than half of our participants (59%) have been exposed to program analysis.
Among the participants who know what program analysis is, 85% of them (34)
have used program analysis tools. Among those who used such tools, 74% are
still using them in their current work. The top-mentioned program analysis tools
are Coverity 19%, unspecified/general Linters 12%, SonarQube 10%, Pylint 10%,
Findbugs or Spotbugs 9%, Snyk 6%, Flake8 4%, Cppcheck 4%, PMD 4%, and
Semgrep 3%.

Among the 34 participants who reported having used program analysis tools,
53% of them used these tools before compiling or building their programs, 53%
of them used during, 71% after, and 24% selected other. In relation to version
control, 74% of participants used program analysis before pushing their code to
the repository, 50% during, 56% after, and 12% selected other. Regarding where
to use program analysis (Figure 3), 56% of participants used these tools in the
command line interface, 79% in IDEs, 32% during building, 79% during Contin-
uous Integration and Continuous Deployment (CI/CD), 12% in the cloud, and 6%
selected other.

The reasons why participants do not use program analysis tools include reasons
like there not being a need, redundant to the built-in analysis functions in the IDEs,
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costly to set up (time and/or money wise as some tools are premium or close-
sourced), low familiarity, noisy results, and organizational policy.

When asked about their first-time user experience with program analysis tools,
some were impressed by what it can do with a positive sentiment, whereas some
had a mixed or even a negative sentiment due to the following factors: hard to
set up or make it work, verbosity of analysis output, lack of configurability, in-
capability of detecting logic errors and decreasing usefulness for an advancing
programmer. For example, participant pa22 responded, “I received a cppchecker
dump from a Jenkins job and felt despair”. While some did not recall how they got
to experience program analysis in the first place, others depicted that it was intro-
duced to them in either academic scenarios (e.g., when submitting assignments for
a course), industrial ones (e.g., their first job as a software developer), or through
the embedded functions of developer tools (e.g., IDEs, Gerrit, Jenkins) that they
were using (e.g., suggested refactoring). The tools they used for the first time
range from syntactic linters to memory leak checkers (e.g., Valgrind) and security
vulnerability detectors (SonarQube).

Among the 40 participants who had exposure to program analysis, 28% strongly
agree with the usefulness of program analysis, 50% agree, and 22% are neutral.
None strongly disagree or disagree.

Finding 1: Half of participants (50%) use program analysis, and about
60% have been exposed to it. Those who are familiar with program anal-
ysis all find it useful. The main frustrations reported concern setup costs,
quality of results, and presentation of results.

Experience with AI-enabled Tools

The AI-related questions were only applied to the 39 participants of the second
version of the survey. The majority of these participants (77%) have used AI tools
for programming, while 23% had never tried. Among the 30 participants who had
experience with AI tools (Figure 4), 72% used ChatGPT, 23% used Copilot, and
3% used other similar tools. For those who did not use such tools, the main reason
was that they had not encountered the need yet - either they were fluent with the
current programming tasks, or they did not see a programming task where such
tools would help. Some also shied away because of the time and money costs of
setting up and learning the tool, or it was simply “not available on company’s
workstation” (pb36). Meanwhile, those who write code for publications were
concerned about potential copyright risks.

Among those 30 participants who have experience with using AI-enabled de-
veloper tools, 27% strongly agree with the usefulness of such tools, 53% agree,
10% neutral, 3% disagree, 7% strongly disagree. The concrete tasks participants
used these tools for are quite heterogeneous, ranging from generating comments,
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Figure 4: Usage of AI tools.

test data, utility code, scripts, and skeletons, to querying about APIs, libraries, de-
bugging, prototyping, and implementing a specific program. Academic program-
mers also used it with research motives, examining the possibility of integrating
these tools into teaching and instructing students on how to use them properly.

When asked about their views on the pros and cons of these tools, many partic-
ipants highlighted a boost in productivity, providing ideas, being interactive, and
reducing programmers’ fear of switching programming languages. The cons fo-
cused on the code generated not being good enough (thus needing time to verify
or modify) and fostering dependence and hindering the learning of programmers;
some were also concerned with data leakage and energy consumption of training
and running the machine learning models behind the scenes.
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Finding 2: Among the participants asked about AI-enabled tools (39/68),
a majority (77%) have used AI tools for programming, and among these
participants a majority (80%) is positive about the usefulness of these
tools. Participants report using AI tools for a broad range of program-
ming tasks and find these tools to help with productivity, creativity, and
exploration of new areas. Participants not using these tools report a lack
of need, lack of availability, or cost.

Main Pain Points with Programming

The main pain point in programming varies for each participant. It could be at
many points of a programmer’s workflow or associated with many software de-
velopment activities. For the former, the answers range from requirements and
designing to collaborating with other stakeholders (e.g., other programmers or
product managers), tooling, coordinating dependencies, and managing backlog
and priorities. For the latter, the answers cover reading a code base, understanding
APIs, libraries, and frameworks, coding from scratch, setting up the environment,
long-time building or compilation, version control, testing, debugging, and refac-
toring. Others mentioned the shortage of time for programming (thus losing flu-
ency in a programming language), the fatigue from persistent programming, and
the demand to keep up with the technologies needed, while some stated that they
just enjoy programming and have nothing to complain about.

Finding 3: Our participants report a broad range of pain points, from frus-
tration with colleagues to frustrations with tools (e.g., cumbersome setup,
long build times, version control). The most prominent reported pain point
is code comprehension (e.g., APIs, libraries, and frameworks).

Is Native Language a Factor?

When asked about whether or not their English proficiency has an impact on their
understanding of general error messages generated by programming or developer
tools, 9% of the participants indicated high impact, 26% some impact, 12% low
impact, 12% little impact, and 41% no impact. For program analysis results, our
participants indicated that it may be a factor, with 3% of these participants indicat-
ing a high impact, 38% some impact, 3% low impact, 24% little impact, and 32%
no impact.

While admitting there are some impacts from the English proficiency, some
participants detailed that it is usually because the phrasing of analysis results “are
not following Natural language rules” (pb50) when they encountered confusing
outputs. But if it does happen, they can still search on the web for a resolution,
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the same as what they will do with other tools. Sometimes, the outputs of a pro-
gram analysis tool can be non-textual such as a diagram, heatmap, or recoloring of
something in the editor, then it may be more challenging to search the web.

Also, our participants tend to express that if programmers are fluent in pro-
gramming, their English proficiency is sufficient; otherwise, they are not able to
do other programming tasks since English is the “de-facto language” (pa44) for
programming and communication in this community. Nonetheless, some partic-
ipants stated that terminology in general should be avoided in analysis outputs,
especially in the case of documentation translation, as many terms are not even
stabilized in the other language.

We specifically looked into the data of six participants (pa4, pa23, pb17, pb20,
pb 23 & pb29) whose native language is not English and with relatively lower
proficiency (one elementary proficiency and five limited working proficiency) in
English. Surprisingly, only one of them chose high impact, the rest were inclined
to low to no impact (one low impact, two little impact, and two no impact). With
the four of them who had exposure to program analysis tools, this trend somehow
still resided - one chose some impact, two little impact, and one no impact. We
further checked the levels of their programming skills. It turns out their program-
ming skills vary: one beginner, one expert, one advanced, and three intermediate.
It was the expert who chose high impact for general error messages, but little im-
pact for program analysis results and one intermediate who chose little impact for
the former and some impact for the latter.

Finding 4: Our participants’ responses suggest that English as a non-
native language may have an impact for understanding of general error
messages (35%) and program analysis results (41%), but they also report
a view on English as closely intertwined with programming as the defacto
language.

Summary

We summarize our findings for RQ1 as follows:

What are developers’ perception on tool assistance today? (RQ1)

Program analysis is broadly used in practice and the majority of users find
it useful while reporting frustrations with setup and results. AI-based tools
are making a big entry, the majority of participants asked about this topic
report use for a range of programming tasks. Our participants report a vari-
ation of pain points, with code comprehension being the most prominent.
English proficiency is indicated as impacting understanding but English is
at the same time reported as part of understanding in programming.
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Figure 5: The impact of English proficiency on understanding general error mes-
sages.

3.3 Perceptions on Tomorrow’s Tools (RQ2)

We surveyed participants’ attitudes toward three enabling techniques or strategies
for future programming tools; AI/ML, eye-tracking, and gamification.

Attitude Toward AI or Machine Learning (ML)

Our participants are positive about AI/ML-assisted tools, with 18% indicating that
they are very positive, 52% positive, 20% neutral, 10% negative, and none very
negative. The majority of the participants believed in or were open to embracing
AI/ML, but some participants commented with doubts and concerns. Several par-
ticipants stated that they do not trust AI/ML enough and believe it is a bit of a hype
(pa37, pb12).

We asked whether participants thought AI/ML could improve the quality of
program analysis. Our participants mentioned multiple aspects: suppressing false
positives (pa22), filtering out noises or less significant outputs, and facilitating
understanding of both analysis outputs and analysis methods. Some expressed
that they did not see any space in program analysis for improvement with AI/ML
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(pa18), or there is yet a large gap to leap over to link AI/ML and program analysis
(pb12), pending on how it will be implemented (pb55).

Other participants pointed out that the success of AI/ML in helping program
analysis depends on whether or not the flaws with current AI/ML applications,
such as verbosity and inaccuracy (confidently reporting incorrect answers), will
be addressed (pa52, pb45 & pb50). Several participants were content with (pa52,
pb16), or at least preferred to still have access (pa43), to the short and succinct
format of raw outputs produced by the program analysis tools. This implies that
there might be a fine line to draw when it comes to designing, or manipulating, the
presentation of analysis results.

Finding 5: The majority of our participants are positive to AI-enabled
tools (70%), but also mention it as a hype. When asked about using
AI/ML to improve program analysis, our participants saw several possi-
bilities (e.g., suppressing false positives) but also expressed a preference
to see the raw output due to uncertainty with inaccuracy with AI/ML.

Attitude Toward Eye Tracking

Our participants are neutral, with a noticeable inclination toward a negative sen-
timent, about eye tracking; 2% very positive, 12% positive, 50% neutral, 28%
negative and 8% very negative. Some participants perceived eye-tracking as inva-
sive, if it is going to monitor or record their gaze, and thus had concerns about their
privacy being violated or revealed to employers (pa22, pa43 & pb12). Also, some
participants deemed eye trackers as “chunky” (pa37) or “bulky” (pb52) hardware,
which implies a burden. Some suggested the solution should focus on the code
rather than the humans in terms of providing support to developers (pa22 & pb15).

Finding 6: The majority of our participants are neutral toward eye-
tracking (50%), with a lean toward negative (36%). They report con-
cerns about privacy with the collection of gaze data and concerns about
the equipment being burdensome.

Attitude Toward Gamification

Participants’ sentiments toward this technique are more divided or polarized; 2%
very positive about gamification, 22% positive, 30% neutral, 28% negative, and
18% very negative. Participants appear to either like it or hate it. While some par-
ticipants complain this technique is “childish” (pa18, pa37), “distracting” (pb12,
pb52), or “patronizing” (pb10), some participants believe it is “promising” (pb45),
“a good idea to encourage developers” (pa42) and “very interactive” (pb55). Oth-
ers think it may work for others although not for them, depending on a team’s
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culture or individual preference, or it can be useful, conditioned on how it is im-
plemented, e.g., with good balance.

Finding 7: Our participants’ view on gamification is primarily negative
(46%), but also polarized; they either like it (e.g., promising) or hate it
(e.g., patronizing).

What Can Help in the Future?

We asked participants what technology they thought would improve their program-
ming experience. Many participants pointed to AI, e.g., "Large Language Models"
(LLMs) and "Generative AI". Some participants were more specific, replying with
ChatGPT and Copilot alike agents. They listed features such as auto-completion,
auto-refactoring, providing analysis, feedback or summary, and suggesting fixes
or better alternatives, which they assume would be either powered or enhanced by
AI.

While the promise of AI technology was acknowledged, participants also in-
dicated that the current AI-enabled tools cannot handle more sophisticated pro-
gramming tasks, and thus improvement is needed. Some participants stressed
the other party of this task - programmers. They deemed that daily practices or
more bad code written by programmers would help them master the skill, e.g.,
“Its the amount of bad code, compilation errors, bad architecture decisions, tech-
nical debts help you improve experience in programming” (pa14).

Finding 8: Our participants point toward AI-based tool assistance as a
direction for the future, while also indicating that this technology needs to
improve to assist with more sophisticated tasks. They also touch upon the
risk of AI-based assistance taking away opportunities for learning.

Summary

We summarize our findings for RQ2 as follows:

What are developers’ perception on directions for future tool assis-
tance? (RQ2)

Our participants are generally positive toward AI-based assistance, and see
opportunities for several improvements of existing tools using this technol-
ogy. They are wary of eye-tracking, with concerns about privacy and in-
convenient equipment, while being primarily negative about gamification.
They see AI-based tools are the main direction to focus on for the future.
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4 Discussion

We see a broad use of both program analysis and AI-based tool assistance. The us-
ability problems of program analysis are similar to those reported in the literature,
e.g., issues connected to the quality of the results and their presentation [10, 11].
AI-based tools, like ChatGPT and Copilot, are used for a broad range of program-
ming tasks, and the main concern mentioned for AI-based tools concerns their
reliability. Developers experience several points of frustration in their work, rang-
ing from issues connected to the work environment to issues with tools. The most
mentioned pain point in the survey was code comprehension.

For future directions, developers primarily see AI-based tools as the future,
while they are wary about eye-tracking and negative about gamification. We note
that our participants likely are the most familiar with AI-based tools, given the
broad adoption and buzz around tools like ChatGPT, while few have seen an eye
tracker. For gamification, we speculate that there are plenty of examples avail-
able in mainstream applications of gamification and participants may more easily
imagine scenarios they relate to when responding to our questions in the survey.

4.1 Directions for Future Work

We see a couple of directions for future work:
Improved support for code comprehension: This was the most mentioned

point of frustration in the survey result regarding frustrations with today’s pro-
gramming tools. We see this as an indication that there is more room for improve-
ment in this area.

Improved reliability and integration of AI-based tools: Reliability of AI-
based tools was the main concern mentioned in connection to AI-based tools. We
see an opportunity to explore how to best integrate AI-based tools into the devel-
oper workflow.

Continued exploration of eye tracking with a focus on what developers
want: The concept of eye tracking is largely novel and foreign to developers, and
the notion of collecting gaze makes developers wary. We still think this direction
is worthy of exploring but we encourage to proceed in this direction with care for
what developers want.

4.2 Reflections on the Method

We encourage other researchers to plan for pilot tests of a survey with more than
one participant from the target population, if possible before publishing it. Re-
sponses from participants with distinct backgrounds and experiences may help
researchers rethink the design of their survey in terms of phrasing and logic and
make necessary adjustments. It may also help if the researchers formulate a strat-
egy for advertising, e.g., leave the advertisement with organic traffic for the first
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two days and use it as an opportunity to check if there are any last-minute revisions
needed before actively driving traffic to the survey such as sending group emails.
Further, investigating the channels that you intend to use can be beneficial. For ex-
ample, we did not know the link in a post on LinkedIn could not be edited after it
was published. In terms of securing responses, in our case, we think approaching
potential participants individually through one’s network is the most effective way
to achieve that.

4.3 Threats to Validity

We identify the following threats in our study:
Construct validity: Our sampling is skewed toward developers in Sweden

and China. This is mainly because the authors adopted convenience sampling to
gain traffic. This presents a threat to the diversity of the samples. However, the
residence country is not a primary attribute that we look into for our participants.
We also mitigated this threat by reaching out to prospective participants via a wide
range of channels, including LinkedIn, Slack, Facebook, WeChat, email, and in-
person invitations. It is further compensated by the fact that developers from these
two countries were not well-represented in our study domain.

Content validity: The survey questions were discussed among the authors and
reviewed by some colleagues. The authors are subject matter experts in the study
domain and with the method. Most colleagues are representative of the target
population. One colleague is not a programmer himself so it provides face validity
to our survey. Their feedback was incorporated to revise the questions.

Criterion validity: The questions were organized in logical order with dif-
ferent sets of questions to capture the characteristics of different groups of the
population. We also devised branching logic to orient participants to different sets
of questions if they do not fulfill the criteria.

External validity: For the survey, the skewed sampling toward developers
who reside in Sweden and China poses a threat to generating the findings to a
broader population who do not share these characteristics. However, some find-
ings from the qualitative data align with what we see in the literature, e.g., some
reasons for not using program analysis tools and concerns with eye-tracking and
AI/ML. Further, the sampling is deliberately to represent practitioners (including
practitioners in academia or shifted to academia), so the findings do not apply to
another distinct population, namely, novice programmers or students/learners.

5 Conclusions

We surveyed 68 developers to investigate their perception of the current and future
programming tool assistance. Our inquiry covers their programming practices, ex-
perience with program analysis, and attitudes and views on enabling technologies
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- AI/ML, eye-tracking and gamification. We found that 50% of the participants use
program analysis and that many participants (28) already use AI-enabled tools for
programming. The participants are positive with AI/ML, neutral with eye-tracking
and negative with gamification. We suggest further work to be done to improve
support for understanding code, enhance reliability and integration of AI-powered
tools, and explore how eye-tracking better fits into developers’ wants.
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