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Low-rank second-order splitting of large-scale
differential Riccati equations

Tony Stillfjord

Abstract—We apply first- and second-order splitting schemes to the
differential Riccati equation. Such equations are very important in e.g.
linear quadratic regulator (LQR) problems, where they provide a link
between the state of the system and the optimal input. The methods
can also be extended to generalized Riccati equations, e.g.arising from
LQR problems given in implicit form. In contrast to previousl y proposed
schemes such as BDF or Rosenbrock methods, the splitting schemes
exploit the fact that the nonlinear and affine parts of the problem, when
considered in isolation, have closed-form solutions. We show that if the
solution possesses low-rank structure, which is frequently the case, then
this is preserved by the method. This feature is used to implement the
methods efficiently for large-scale problems. The proposedmethods are
expected to be competitive, as they at most require the solution of a
small number of linear equation systems per time step. Finally, we apply
our low-rank implementations to the Riccati equations arising from two
LQR problems. The results show that the rank of the solutions stay low,
and the expected orders of convergence are observed.

Index Terms—Differential Riccati equation, Riccati differential equa-
tion, splitting methods, large-scale, low-rank

I. I NTRODUCTION

We consider the differential Riccati equation

Ṗ (t) = ATP (t) + P (t)A+Q− P (t)SP (t), t ∈ [0, T ]

P (0) = P0.
(1)

This is a semi-linear matrix-valued evolution equation forP (t) ∈
R

N×N . Such equations arise in many areas, for example in linear
quadratic regulator (LQR) problems and optimal state estimation [2],
[10], [27]. The main application that we have in mind are the LQR
problems, where the goal is to minimize the functional

J(u) =

∫ T

0

〈Q̃y, y〉+ 〈Ru, u〉 dt,

subject to the state and output equations

ẋ = Ax+Bu,

y = Cx.
(2)

Under certain assumptions on the involved matrices, it can be shown
that the optimal inputu∗ is given in feedback form asu∗(t) =
−R−1BTP (T − t)x(t), whereP (t) solves the Riccati equation (1)
with S = BR−1BT, Q = CT Q̃C andP (T ) = 0, see e.g. [2]. One
can also consider the implicit case,

Mẋ = Ax+Bu,

with an invertible mass matrixM . This gives rise to a generalized
Riccati equation similar to (1), see e.g. [21], which we handle in
Section IV.

In general, we suppose that Equation (2) withx ∈ R
N is the dis-

cretization of the corresponding PDE. ThusA would prototypically
be the discretization of an elliptic differential operator. Alternatively,
one could consider the infinite-dimensional case directly by allowing
x to belong to a Hilbert or Banach space. Then Equation (1) is
operator-valued and can e.g. be treated in the space of Hilbert–
Schmidt operators [23], [34]. This corresponds to the “undiscretized”
case whereN → ∞.
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The aim of this paper is to introduce efficient splitting methods for
large-scale problems of the type (1). With large-scale we mean that
the dimensionN is large, and by efficient we mean that the meth-
ods should produce small errors without unneccesary computational
effort. To this end, we introduce the operators

FP = ATP + PA+Q and (3)

GP = −PSP. (4)

The motivation for dividing the problem into these two parts is
that the subproblems

Ṗ = FP, P (0) = P0, and (5)

Ṗ = GP, P (0) = P0, (6)

are easier to solve separately than the full problem (1): both have
closed-form solutions and (5) is additionally affine. In the following
we denote the solution operators to these problems byTF (t) and
TG(t), respectively. Thus,TF (t)P0 is the solution to (5) at timet.

We propose to use the Lie and Strang splitting schemes [33]. For a
introduction to splitting methods in general, we refer to [20, Section
IV], [15, Section II.5] and [24]. In our context, the schemes are given
by the time-stepping operators

Lh = TG(h)TF (h) and

Sh = TG(h/2)TF (h)TG(h/2),
(7)

respectively, whereh > 0 is the time step. The Lie and Strang
splitting approximations to the solution of (1) at timet = nh are then
given byLn

hP0 andSn
hP0, respectively. We note that these schemes

are first- and second-order accurate, respectively, in the currentmatrix
setting. That is, ifP (t) solves (1), then

‖Ln
hP0 − P (nh)‖ ≤ Ch and

‖Sn
hP0 − P (nh)‖ ≤ Ch2,

for all n such thatnh ≤ T . This can be shown as indicated in [20,
Section 4], through proving consistency by e.g. Taylor expansions,
and stability for small enoughh by the local Lipschitz continuity of
the nonlinearity. However, this approach leads to error bounds that
depend on the matrices involved. In the case of a discretized PDE,
these error bounds might tend to infinity when the discretization is
refined. Hence, a stiff error analysis is called for, but this is much
more difficult and out of the scope of this technical note. Such
an analysis is, however, performed in [17] for a first-order method
similar to the Lie splitting, under the restrictionS = I.

For large-scale problems, even representing the solutionP (t) can
be a problem due to excessive storage requirements, and one is
forced to utilize structural properties. One such property is that of
low rank, i.e. that we can accurately approximateP (t) ≈ z(t)z(t)T

where z(t) ∈ R
N×r with r ≪ N . It has been observed that the

solutions to the Riccati equation commonly exhibit such behaviour,
see e.g. [3]. Partial results on when this is to be expected in the
related area of algebraic Riccati equations (ARE) can be found in [4],
and for Lyapunov equations the issue is e.g. discussed in [26], [32].
We therefore describe how to implement the schemes in a way that
preserves low-rank structure.

Many of the currently available methods for solving the Riccati
equation are based on matrix factorizations, which clearly is not
feasible in the large-scale case. The idea so far in the large-scale
case has been to apply the matrix versions of common time-stepping
methods, e.g. BDF methods [6], [25] or Rosenbrock methods [7],
[25], and realise that in each step an ARE or a number of Lyapunov
equations have to be solved. Low-rank algorithms for the solution
of these equations exist and we refer to [9], [31] for recent surveys,
see also [5]. There are two main classes, the Krylov-like projection
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methods, e.g. [18], [30], and the methods based on the low-rank ADI
iteration proposed in [22]. In both classes, one of the basic operations
depends on solving linear equation systems involvingA.

The splitting methods constitute a new class of methods, for which
the basic operation is solvinġx = Ax over the same short time
interval as the time step of the method. Using a standard implicit
scheme for this only requires the solution of one or two linear
equation systems, which is less than or equal to what is commonly
needed in the projection- or ADI-based methods. If the properties of
A can be utilized to employ a better tailored method, the efficiency
can further be much improved. Hence we expect the splitting methods
to be very competitive. A further advantage of the proposed splitting
methods is that they both yield approximations that are positive semi-
definite, like the solution to (1). This is in contrast to e.g. the BDF
and Rosenbrock methods, and in fact to any interesting “one-step”
or linear multi-step method, which only have this property for the
methods of order one [13].

A brief outline of this note is as follows. In Section II we present
the assumptions on the involved matrices and give the solutions to the
subproblems. Section III demonstrates how to formulate the splitting
methods in a low-rank context. The extension to generalized Riccati
equations is done in Section IV, and finally Section V presents the
results of two numerical experiments.

II. PROBLEM SETTING

We make the following assumption on the matrices in (1):

Assumption 1. The matricesA, Q and S all belong to R
N×N .

Further, P0, Q andS are all symmetric and positive semi-definite.

We note that Assumption 1 is fulfilled in the LQR setting ifB ∈
R

N×m for m ≤ N , andR ∈ R
m×m is positive definite. Further,

Assumption 1 guarantees the existence of a unique symmetric positive
semi-definite solutionP (t) for t ≥ 0, see e.g. [1, Theorem 4.1.6].
Also note that while we assume that the problem is autonomous, the
results extend in a straightforward manner also to the time-dependent
case.

Consider now the exact solutions to the subproblems (5) and (6).
By differentiation, one confirms at once that

TF (t)P0 = etA
T

P0e
tA +

∫ t

0

esA
T

QesAds. (8)

For the nonlinear subproblem, we have the following lemma:

Lemma 1. Let Assumption 1 be fulfilled. Then the solutionTG(t)P0

to the problem(6) with t ≥ 0 is unique and given by

TG(t)P0 = (I + tP0S)
−1P0.

Proof. We first note that sinceP0 andS are both symmetric positive
semi-definite, there exists a nonnegative, diagonal matrixD and
a nonsingular matrixV such thatP0S = V DV −1, see e.g. [19,
Corollary 7.6.2b]. Thus the function

P (t) = (I + tP0S)
−1P0 = V (I + tD)−1V −1P0

is well defined for all nonnegative timest, and uniformly bounded by
‖V ‖‖V −1‖‖P0‖. As (I+tP0S)P (t) = P0 is constant, we therefore
get

0 =
(

I + (t+ h)P0S
)

P (t+ h)− (I + tP0S)P (t)

= (I + tP0S)
(

P (t+ h)− P (t)
)

+ hP0SP (t+ h),

and lettingh → 0 yields the continuity ofP (t). Dividing both sides
of the above equality byh further yields the existence of the limit

lim
h→0

P (t+ h)− P (t)

h
= −(I + tP0S)

−1P0SP (t),

from which we conclude thatP (t) is differentiable and satisfies (6).
That this solution is unique e.g. follows from takingA = Q = 0
in [1, Theorem 4.1.6].

III. L OW-RANK SPLITTING METHODS

In order to implement the splitting schemes efficiently, we consider
now the low-rank formulation of the solution operatorsTF (h) and
TG(h). We assume throughout this section that there are low-rank
factorizationsz andQf of P0 andQ, respectively, i.e.

P0 = zzT and Q = QfQ
T

f .

A. The affine subproblem

By Equation (8) we have

ehA
T

zzTehA +

∫ h

0

esA
T

QfQ
T

f e
sAds (9)

=
(

ehA
T

z
)(

ehA
T

z
)

T

+

∫ h

0

(

eτA
T

Qf

)(

eτA
T

Qf

)

T

dτ .

Denote the integralIQ(h) and consider an approximation by a
quadrature formula with weightswk and nodesτk:

IQ(h) ≈ h
s

∑

k=0

wk

(

eτkA
T

Qf

)(

eτkA
T

Qf

)

T

.

Then we also haveIQ(h) ≈ ŷŷT, where

ŷ =
[√

hw1e
τ1A

T

Qf ,
√
hw2e

τ2A
T

Qf , . . . ,
√
hwse

τsA
T

Qf

]

.

By this notation we mean that thes matrices
√

hwje
τjA

T

Qf are
placed side by side. This new matrixŷ has more columns than eitherz
or Qf , and likely also more than its rank. A better low-rank candidate
IQ(h) ≈ yyT can be found by applying a column-compression
technique. For instance, consider applying the rank-revealing QR
factorization (RRQR) tôyT. This yields a factorization

ŷTP̃ = Q

[

R11 R12

0 R22

]

whereP̃ is a permutation matrix,R11 ∈ R
r×r, the norm ofR22 is

small, andQ is orthogonal. Thus (in MATLAB notation),

ŷT ≈ Q:,1:r

[

R11 R12

]

P̃T,

so

ŷŷT ≈ yyT =
(

P̃
[

R11 R12

]T
)(

P̃
[

R11 R12

]T
)

T

,

wherey belongs toRN×r. Finally, the low-rank approximationwwT

to TF (h)P0 is given by forming

ŵ =
[

ehA
T

z, y
]

and again employing column compression to achievewwT ≈ ŵŵT.
In practice, one would use a high-order quadrature formula and a
RRQR tolerance which is small enough that the corresponding errors
are negligible compared to the local error of the method.

We need to compute terms of the formesA
T

z efficiently in the
above procedure. This can be done in many different ways, essentially
divided into two categories. The first category consists of numerical
linear algebra techniques whereesA

T

z is treated as a matrix-vector
product. See e.g. [12] for a recent comparison of four common
approaches in the large-scale case. In the second category are methods
that consideresA

T

z as the solutionx(s) to the system of ODEs
ẋ = ATx, x(0) = z. Here we refer to [16]. We note that employing a
standard implicit Runge-Kutta method toẋ = ATx is efficient enough
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for the proposed methods to be competitive, as this means that the
basic computation only requires the solution of a few linear equation
systems involvingA. However, the efficiency can be much improved
if the problem possesses special structural properties. For example,if
A is the discretization of a differential operator on a simple domain,
then pseudo-spectral methods based on the FFT [11] or dimension
splitting [20] can yield a vast improvement. In summary, the specific
method needs to be chosen according to the characteristics ofA, but
even a non-optimal choice will yield good performance.

B. The nonlinear subproblem

Now consider the nonlinear subproblem (6). By Lemma 1, the
solution is given by

TG(h)P0 = (I + hzzTS)−1zzT.

We rewrite this expression by using the following special case of the
Woodbury matrix inversion formula [14]:

(I + Y Z)−1 = I − Y (I + ZY )−1Z (10)

This equality can be shown by simply multiplying withI+Y Z from
the left and from the right. We setY = hz andZ = zTS, which
yields

TG(h)P0 =
(

I − hz(I + hzTSz)−1zTS
)

zzT

= z
(

I − (I + hzTSz)−1hzTSz
)

zT

= z(I + hzTSz)−1zT.

The computation ofzTSz is cheap in many cases, e.g. if a low-rank
or Cholesky factorization forS is available or cheaply computable,
or if sparsity structure can be utilized. At the worst, the cost is that
of r matrix-vector multiplications ifz ∈ R

N×r. Note that in the
LQR case, we havezTSz = zTBR−1BTz. SinceB ∈ R

N×m and
R ∈ R

m×m where generallym ≪ N , the computation is certainly
efficient in this case. GivenzTSz, we can Cholesky factorize the
inner matrix as

I + hzTSz = LLT.

This means that

TG(h)P0 = (zL−T)(zL−T)T,

which is the sought after low-rank factorization ofTG(h)P0. Note
that it has the same rank asP0, in contrast to the affine subproblem
where the approximation can be of higher rank thanP0.

To summarize, we outline the procedure for taking one Lie splitting
time step in Algorithm 1. This depends on the low-rank factor of
IQ(h), which only needs to be computed once. For completeness, we
summarize also this computation in Algorithm 2. We omit presenting
the Strang splitting in algorithmic form as it is very similar to
Algorithm 1.

Algorithm 1 Computing the low-rank factor ofLhP

Input: Low-rank factorsz and y such thatP = zzT and yyT

approximates the integralIQ(h) in (9)
Solve ẋ(t) = ATx(t), x(0) = z for t ∈ [0, h]
Form w̃ = [x(h), y]
Column-compressw ≈ w̃ by e.g. RRQR
Cholesky factorizeI + hwTSw =: LLT

SolvexLT = w
Output: x

Algorithm 2 Computing the low-rank factor ofIQ(h)

Input: Low-rank factor Qf such thatQ = QfQ
T

f . Quadrature
weightswk and nodesτk for k = 0, . . . , s.
for k = 0 to s do

Solve ẋk(t) = ATxk(t), xk(0) = Qf for t ∈ [0, τk]
end for
Form ỹ =

[√
hw1x1(h),

√
hw2x2(h), . . . ,

√
hwsxs(h)

]

Column-compressy ≈ ỹ by e.g. RRQR
Output: y

IV. GENERALIZED RICCATI EQUATIONS

In many LQR problems, the state equation is instead of the form

Mẋ = Ax+Bu,

whereM is a mass matrix arising from a finite element discretization.
We will assume thatM is invertible, to avoid the extra difficulties
connected with differential-algebraic equations, see [21] for this case.
We can thus theoretically convert the state equation to the usual form,

ẋ = M−1Ax+M−1Bu. (11)

However, even if bothA and M are sparse matrices,M−1A is
usually a dense matrix, so in practice we do not want to do this.
Instead we seek a way to formulate our methods to implicitly handle
the matrixM . The Riccati equation corresponding to (11) is

˙̃P (t) = ATM−TP̃ (t) + P̃ (t)M−1A+Q

− P̃ (t)M−1BR−1BTM−TP̃ (t), P̃ (0) = P̃0,

with the feedbacku∗(t) = −R−1BTM−TP̃ (T − t)x(t). By setting
P = M−TP̃M−1 (cf. [29]) we see that we can reformulate this as
the generalized Riccati equation

MTṖ (t)M = ATP (t)M +MTP (t)A+Q

−MTP (t)BR−1BTP (t)M,
(12)

with the initial conditionP (0) satisfyingMTP (0)M = P̃0, and with
the feedbacku∗(t) = −R−1BTP (T − t)Mx(t).

Consider now splitting (12) into its affine and nonlinear parts,
as for (1) previously. By cancelling the factorsMT and M we
see at once that the nonlinear subproblem is the same. Similarly
to Equation (8), by differentiation one sees that the solution to the
affine subproblem is given by

P (t) = ehM
−TAT

P0 e
hAM−1

+

∫ h

0

esM
−TAT

M−TQM−1esAM−1

ds.
(13)

Thus, the only necessary change to the algorithm is to instead solve
MTẋ = ATx, x(0) = z, over [0, h] to computeehM

−TAT

z, and to
solveMTẋ = ATx, x(0) = M−TQf , over different intervals[0, s]
to approximate the integral. Note that the initial data is transformed
by M in the second case, but not in the first.

V. NUMERICAL EXPERIMENTS

Example 1. As a first example, we study a linear quadratic regulator
problem as described in Section I. We describe first the continuous
version of the problem. LetΩ = (0, 1) and let the state space be
H = L2(Ω). We takeA to be the Laplacian∆ : D (A) ⊂ H → H
with periodic boundary conditions. The control space will beU =
R

m with m = 10, andB : U → H will be the sum ofm evenly
spaced interval sources:

Bu =
m
∑

j=1

ujχ[xj ,xj+1/(4m)],
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wherexj = j/m. Thus B is a linear bounded operator. We take
R ∈ R

m×m to be the identity matrix.
To defineC, we choose first the real trigonometric orthonormal

basis forH: {1} ∪ {ek}∞k=1 ∪ {fk}∞k=1, where

ek(x) =
√
2 cos(2πkx) and fk(x) =

√
2 sin(2πkx).

Then we set

C
(

a0 +
∞
∑

k=0

akek + bkfk
)

= a0 +

mc
∑

k=0

akek + bkfk,

for a small mc, i.e. we simply truncate the sum. ThisC can
be thought of as representing measuring equipment that can only
measure low-frequency signals.

We discretize the problem in space by2M+1 equidistantly spaced
nodes, corresponding to2M +1 frequencies in the spectral domain,
and takeM = 1000. The discretization ofC has a natural low-
rank factorizationccT in the spectral basis, wherec is a matrix of
dimension(2M + 1) × (2mc + 1). In order to work in the same
basis we instead considerETccTE, whereE denotes the orthogonal
transformation matrix between the two different bases. LetQM be
the discretization ofQ = CTC. Since

QM = (ETccTE)T(ETccTE) = ETccTccTE = ETccTE,

we can also low-rank factorizeQM = wwT with w = ETc. For
this experiment we choosemc = 4, which yields a matrix of low
rank. We use the initial conditionP0 = 0, corresponding to the cost
functional given in the introduction, but similar results are obtained
for other values ofP0.

The Lie and Strang splitting schemes were implemented in MAT-
LAB according to Algorithm 1 (with a slight modification for the
Strang case) and applied to the problem described above. In order
to compute expressions of the formesA

T

z, FFT was used. Further,
approximating the integralsIQ(h) was done using14th-order Gauss
quadrature, and the RRQR tolerance was set to10−15.

In Figure 1 we see that the methods exhibit the expected error
behaviour: the Lie splitting converges with order1 and the Strang
splitting with order 2. Note that we measure the errors in the
Frobenius norm,‖·‖F, both here and in Example 2. As computing
TF (h)z is likely to be significantly more expensive than computing
TG(h)z, we expect the Strang splitting to be more efficient than
the Lie splitting. This is confirmed in the efficiency plot Figure 2
which shows the achieved error against the computation time. Finally,
Figure 3 shows that the rank of the approximation indeed does remain
low, r = 9, while n = 2001.

Example 2. As a second example we consider the real-world
application of optimal cooling of steel. We refer to [8], [28] for
a detailed description of the problem. In short, a section of rail
needs to be cooled after manufacturing. This is done by spraying a
cooling fluid onto the outside of the rail. In order to preserve desirable
material properties, the temperature differences inside the rail should
be kept small. We thus have an optimal control problem, where the
controls are chosen as the temperatures of the cooling fluid sprayed
onto different parts of the boundary. The system is of the form

Mẋ = Ax+Bu,

y = Cx,

as in Section IV. Here,M and A arise from a finite element
discretization of the cross section of the rail, and the operatorC
forms differences between the temperatures in certain nodes. By
refining the finite element discretization, differently sized matrices
can be acquired. For this experiment, we used the sizesN = 1357
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Fig. 1. The relative errors‖Ln
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Pref‖F/‖Pref‖F when approximating the solution to (1) for Example 1. The
different step sizes areh = T/n, with n = 2, 4, . . . , 512 and T = 1.
The reference solutionPref was also computed by the Strang splitting, albeit
with a finer temporal step size ofh = 1/2048. The spatial discretization has
N = 2001 nodes.
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Fig. 2. The same experimental setup as in Figure 1 for Example 1, but the
relative errors are now plotted against the computation time.We see that the
Strang splitting outperforms the Lie splitting scheme for allerror levels, as
expected.
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Fig. 3. The rank ofSn
hP0 when approximating the solution to (1) for

Example 1. Here,n = 0, . . . , 512 andh = 1/512. The spatial discretization
hasN = 2001 nodes. Note how the rank increases from1 to 9 in the first
step and then remains at this value throughout the rest of the integration.

andN = 5177, with the matricesB ∈ R
N×7 andC ∈ R

6×N . We
again usedQ = CTC, andP0 = 0, but the weighting factorR for
the input was set to10−5I. The last two parameters are the final
time, T = 20, and the RRQR tolerance, which was set to10−10. To
approximate the solutions to the linear systemsMẋ = Ax we used
the third-order RadauIIA method, which is an implicit Runge–Kutta
method.

Also in this problem we observe the expected error behaviour, as
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The reference solutionPref was also computed by the Strang splitting, albeit
with a finer temporal step size ofh = 1/1024.
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Fig. 5. The relative errors‖Ln
hP0 − Pref‖F/‖Pref‖F and ‖Sn

hP0 −
Pref‖F/‖Pref‖F when approximating the solution to (12) for Example 2 with
N = 5177. The different step sizes areh = T/n, with n = 16, 32, . . . , 512.
The reference solutionPref was also computed by the Strang splitting, albeit
with a finer temporal step size ofh = 1/2048.

seen in Figures 4 and 5, forN = 1357 andN = 5177, respectively.
Figures 6 and 7 show the corresponding efficiency plots, where the
Strang splitting again outperforms the Lie splitting. Figures 8 and 9
show the rank of the approximation over time for the two different
cases. We note that while the rank is higher than in Example 1 it is
still much less than the dimension of the problem. We also observe
that it is of similar size regardless of the spatial discretization, which
indicates that it is a property of the continuous version of the problem,
and that further refinements of the grid will not substantially increase
the necessary rank.

Finally, to further validate our results, we also computed the
solution to Example 2 withN = 1357 using the second-order
trapezoidal rule for time-stepping. We solved the resulting (dense)
algebraic Riccati equations with MATLAB’s built-in solver “care”,
a computation that took about four hours. Comparing this to the
splitting computations, which required less than two minutes each,
clearly demonstrates the benefits of the low-rank approach. We used
the same step sizes for the different methods, which means that
the difference between the trapezoidal method and the Lie splitting
should be of sizeO(h), while comparing it to the Strang splitting
should yield a difference of sizeO(h2). In Figure 10, we show these
(relative) errors over time. As the step size is20/256 ≈ 0.08, these
results correspond well with the expectations.
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Fig. 6. The same experimental setup as in Figure 4, for Example 2 with
N = 1357, but the relative errors are now plotted against the computation
time. We see that the Strang splitting outperforms the Lie splitting scheme
for all error levels.
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Fig. 7. The same experimental setup as in Figure 4, for Example 2 with
N = 5177, but the relative errors are now plotted against the computation
time. The Strang splitting outperforms the Lie splitting scheme for all error
levels also here.
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Fig. 8. The rank ofSn
hP0 when approximating the solution to (12) for

Example 2 withN = 1357. Here,n = 0, . . . , 256 andh = 20/256.

VI. CONCLUSIONS

We have shown how to efficiently implement low-rank splitting
methods for the differential Riccati equation, as well as for the
generalized version. The numerical experiments indicate that the
methods converge with the expected orders. As the Strang splitting
is essentially as cheap as the Lie splitting, while achieving better
accuracy, we clearly recommend using the Strang splitting except for
when the solution is not at all smooth. While the presented examples
are not extremely large-scale, the results nevertheless indicate that
increasing the problem dimensions even further should present no
inherent difficulties. An in-depth comparison between the proposed
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Fig. 9. The rank ofSn
hP0 when approximating the solution to (12) for

Example 2 withN = 5177. Here,n = 0, . . . , 512 andh = 20/512.
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Fig. 10. The relative differences between the trapezoidal rule method and the
two splitting methods over the time interval[0, 20] when approximating the
solution to (12) for Example 2 withN = 1357. The number of steps was
N = 256, giving a step size ofh = 0.0781.

splitting methods and projection-based or ADI-based methods is out
of the scope of this technical note, but it is subject to ongoing work
which will be published elsewhere.
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