
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Minimal Solution to Relative Pose with Unknown Focal Length and Radial Distortion

Jiang, Fangyuan; Kuang, Yubin; Solem, Jan Erik; Åström, Karl

Published in:
[Host publication title missing]

DOI:
10.1007/978-3-319-16808-1_30

2015

Link to publication

Citation for published version (APA):
Jiang, F., Kuang, Y., Solem, J. E., & Åström, K. (2015). A Minimal Solution to Relative Pose with Unknown Focal
Length and Radial Distortion. In M. Brown, T.-J. Cham, & Y. Matsushita (Eds.), [Host publication title missing]
(Vol. 9004, pp. 443-456). Springer. https://doi.org/10.1007/978-3-319-16808-1_30

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 23. Jul. 2024

https://doi.org/10.1007/978-3-319-16808-1_30
https://portal.research.lu.se/en/publications/9edf9eb9-e787-414a-9b02-e7f9f8d322f4
https://doi.org/10.1007/978-3-319-16808-1_30


A Minimal Solution to Relative Pose with
Unknown Focal Length and Radial Distortion

Fangyuan Jiang1 Yubin Kuang2 Jan Erik Solem1,2 Kalle Åström1

1Centre for Mathematical Sciences, Lund University, Sweden
2Mapillary AB, Sweden

Abstract. In this paper, we study the minimal problem of estimating
the essential matrix between two cameras with constant but unknown
focal length and radial distortion. This problem is of both theoretical and
practical interest and it has not been solved previously. We have derived a
fast and stable polynomial solver based on Gröbner basis method. This
solver enables simultaneous auto-calibration of focal length and radial
distortion for cameras. For experiments, the numerical stability of the
solver is demonstrated on synthetic data. We also evaluate on real images
using either RANSAC or kernel voting. Compared with the standard
minimal solver, which does not model the radial distortion, our proposed
solver both finds a larger set of geometrically correct correspondences on
distorted images and gives an accurate estimate of the radial distortion
and focal length.

1 Introduction

Estimating the camera motions from the image matches is a fundamental prob-
lem in the geometric computer vision. It is also one of the essential components
to the large-scale 3D reconstruction system, e.g. Photo Tourism [1]. However, as
the wide-angle cameras, e.g. GoPro or the cameras with digital zoom become
more common and popular, a lot of images captured are radially distorted. With-
out handling the distortion, it will have a non-negligible effect in the estimate of
the essential matrix or fundamental matrix, since the epipolar constraints have
to be set very loose in order to find enough correspondences, which might also
increase the number of outliers. Besides, if the radially mis-aligned images are
used in a Structure-from-Motion (SfM) pipeline, it can cause significant skewness
[2]. So estimation of radial distortion is an important task in a reconstruction
pipeline with images captured by distorted lens.

Early works on estimation of the radial distortion is usually done in an of-
fline manner. One first calibrates the cameras, finds the focal length and the
radial distortion parameter. The epipolar geometry is then estimated separately
afterwards. This requires either the knowledge of the 3D points [3] or the extra
calibration object or pattern [4]. However, these offline methods have a large
drawback that one need to have the original camera lens at hand. If the images
are from the archived collection, or downloaded from internet, then the offline
calibration becomes impossible.
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Fig. 1. An example of radially distorted image (Left) captured by a GoPro Hero3
camera and the undistorted image (right) using our method.

With the online estimation method, the calibration could be handled in a
more general situations. The plumb line ideas [5–7] are based on the fact that
a straight line is preserved under an ideal pinhole camera. Extra knowledge are
required to tell which curves in the image are the projections of straight lines in
the 3D scene. However, the real scene, e.g. natural scene does not always contain
a straight lines. Even it does, recognition of such a line also needs some effort.
Contrary to the plumb line methods, the other methods [2, 8–14] requires nothing
but only the rigidity assumption of the scene and the point correspondences
between the views. Due to the simple assumption and off-the-shelf matching
algorithms, e.g. SIFT [15], these methods become very popular.

The minimal problems, which are defined as using the minimal point corre-
spondences to estimate the epipolar geometry as well as the camera calibration,
e.g. focal length or radial distortion, plays an important role in these methods.
The solver to the minimal problems are particularly useful when equipped with
RANSAC[16], leading to a robust estimation method. However, to solve the min-
imal problems, one usually needs to handle some complex algebraic constraints.
One example is when estimating the fundamental matrix F , the determinant con-
straint on F gives a cubic polynomial equation, which is difficult to cope with.
This is why the early methods, such as [2, 9] ignored this algebraic constraint,
but solves a simpler system using more points than the minimal requirement.
More specifically, in [2], a non-minimal algorithm is given to simultaneously es-
timate the fundamental matrix and the single radial distortion parameter. The
division model it proposed for radial distortion is extensively used in the later
works. In [9], the authors treated exactly the same problem as [2] but used a
hidden-variable method on the polynomial equations. A kernel voting scheme is
used instead of RANSAC to avoid the computation of undistorted image point
in each iteration. Another work on non-minimal solver is [8], where a 4 × 4
radial fundamental matrix is proposed to model the bilinear relation between
the lifted point in one view and the corresponding epipolar curve in the other
view. A non-minimal 15 points algorithm is given. The drawback of these non-
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minimal methods is that it usually requires more RANSAC iterations to find an
outlier-free set, which will increase the time complexity of the algorithms.

Thanks to the recent progress in the Gröbner basis method [17], solving a
polynomial system becomes feasible, fast and stable. More focus are attracted to
solving the minimal problems. All these works [11, 18, 13, 19, 20, 14] are based on
the minimal solvers. In [11], a minimal solver using eight point correspondences
is given to estimate the fundamental matrix and the single radial distortion
parameter for the uncalibrated case. In [18], two minimal problems are proposed.
One is to estimate the essential matrix E and the same radial distortion assuming
the two cameras are partially calibrated with known focal length f , the other is to
estimate the fundamental matrix F and two different radial distortion parameters
for two uncalibrated cameras. For the first problem, the trace constraint on E

is used to reduce the problem to a minimal one. The exact rational arithmetic
solvers are given for both problems in Maple, which is very slow and impractical.
In [13], based on the efficient implementation of Gröbner basis computation in
floating point arithmetic, two solvers, which are much faster, are proposed for the
two minimal problems in [18]. In [14], the one-sided problems are studied, which
is to estimate the radial distortion for one camera assuming the other is already
known. Three minimal problems are solved regarding to the uncalibrated case
using 8 points, the calibrated case with unknown focal length using 7 points and
the calibrated case with known focal length using 6 points. In [19], absolute pose
estimation problem with unknown focal length is considered by incorporating
the radial distortion. A 4-point algorithm is given based on Gröbeer basis. In
[20], simple concepts from linear algebra, instead of Gröbeer basis, are used that
leads to a real-time solution to the same pose problem.

In this paper, we study the minimal problem of estimating the relative pose
with both the focal length and the radial distortion unknown. This is a very
general and useful setting when the images are captured by one camera model
with distortion. Up to our knowledge, this still remains an unsolved problem in
the area. Compared with the previous minimal problems, this is more difficult
since when both focal length and radial distortion are unknown, the epipolar
constraint on essential matrix E leads to a polynomial equation with higher
degrees. Also estimating E generally requires more effort than estimating F as
one need to incorporate extra constraint, e.g. trace constraint in the system.
By using the division model in [2], we derive a parametrization and simplify
the polynomial system using a linear elimination scheme. We then study the
simplified polynomial system and verify the number of solutions. A fast and
stable polynomial solver is developed to solve the system. With our solvers,
one can use it with RANSAC or kernel voting, to find the estimate of camera
motions, which could be served as the initialization for bundle adjustment.

2 Problem Formulation

In this section, we will first introduce the camera model and the model for
radial distortion. We give a parametrization of the image point to incorporate
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the unknown radial distortion. A polynomial equation system is then formulated
using all the constraints given by the epipolar geometry. By linearly eliminating
several variables, one can obtain a more simplified and compact formulation with
fewer unknowns.

2.1 Camera and Radial Distortion Model

In our formulation, we use the pinhole camera model and assume a one-parameter
division model as in [2]. The intrinsic matrix K of the camera is defined as

K =

f s px
0 γf py
0 0 1

 (1)

where f is the focal length of the camera, For most cameras, the pixels are
square and there is no skew, so we could safely assume the skew s is zero and the
aspect ratio γ takes the unity. The principal point given by (px, py) is usually
at the centre of the image, i.e. (0, 0). So by the above assumptions, we could
reparametrize K using only one variable as

K =

1 0 0
0 1 0
0 0 w

 (2)

where w = 1/f . Note this can be done since K is only defined up to a scale. If
we denote the inhomogeneous coordinates of undistorted image point as xu =
(xu, yu)T and the radially distorted image point as xd = (xd, yd)T , then the
relation between xd and xp is given by the division model as

xu =
1

1 + λ‖xd‖2
xd (3)

where λ is the distortion coefficient and ‖xd‖ is the distance from xd to the
centre of distortion. Here we assume the center of distortion is known and at the
center of the image.

If we use the homogeneous coordinates as pu = (xu, yu, 1)T , pd = (xd, yd, 1)T

and rd = ‖xd‖, then (3) can be written asxuyu
1

 ∼
 xd

yd
1 + λr2d

 =

xdyd
1

 + λ

 0
0
r2d

 (4)

which is equivalently

pu ∼ pd + λz (5)

where z = (0, 0, r2d)T is known since xd is given. In some cases, we need the
normalized image point pn, which can be represented as
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pn ∼ K−1pu (6)

It is well known [21] that for two calibrated cameras, the essential matrix
E has 5 degrees of freedom. For two cameras with constant but unknown focal
length f and radial distortion λ, the degree of freedom is in total 7. In two-view
geometry, each point correspondence gives one constraint. Thus, the minimal
problem of auto-calibration with unknown focal length and radial distortion
needs 7 correspondences.

2.2 Parametrization and Formulation

We present in the following the parameterization and the problem formulation
based the epipolar constraints and the constraints on essential matrix E.

Given n point correspondences {(pui ,p
′
ui

), i = 1, 2, ..., n} of the undistorted
image points, the epipolar constraints using fundamental matrix F are given by

pT
ui

(λ) F p′ui
(λ) = 0, i = 1, . . . , n. (7)

where pu(λ) is parametrized using (5). Using the normalized image points pni
∼

Kpui
, the epipolar constraint can also be expressed using the essential matrix E

as

pT
ni

(λ,w) E p′ni
(λ,w) = 0, i = 1, . . . , n. (8)

In our method, instead of directly parametrizing the essential matrix E, here
we parametrize on F and solve for E implicitly. The reason is that using the
constraint in (7) instead of (8) will get rid of the parameter w of the focal length,
this gives much simpler equations and will lead to a linear elimination strategy
as we will show in next section. The fundamental matrix F is parametrized as

F =

f1 f4 f7
f2 f5 f8
f3 f6 f9

 . (9)

where the last element f9 is set to be one to fix the scale. Then from the relation
E = KT FK′ where K′ = K in our case, the essential matrix E is parametrized using
calibration matrix K in (2) as

E = KT FK′ =

1 0 0
0 1 0
0 0 w

T f1 f4 f7
f2 f5 f8
f3 f6 1

1 0 0
0 1 0
0 0 w

 =

 f1 f4 wf7
f2 f5 wf8
wf3 wf6 w2

 . (10)

On the other hand, the singularity of the essential matrix E is enforced as:

det(E) = 0. (11)
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along with the trace condition such that the two singular values are equal:

2(EET )E− trace(EET )E = 0. (12)

Inserting (10) into (11) and (12), together with the point equations (7), we
formulate the problem as solving a polynomial equation system. The polynomial
system contains 17 equations in 9 unknowns, namely, {f1, f2, ..., f8, λ, w}.

2.3 Eliminating Variables

Let us look at the first seven equations given by the point correspondences in
(7), or equivalently  xd

yd
1 + λr2d

T f1 f4 f7
f2 f5 f8
f3 f6 1

 x′d
y′d

1 + λr2d

 = 0, (13)

by expanding the above multiplication and stack all the seven equations, one
can reach the following linear system

Ax = 0, (14)

where A is a 7×15 coefficient matrix and x = (λ2, λf3, λf6, λf7, λf8, f1, . . . , f8, λ, 1)
is a vector containing the unknown monomials. After applying the Gaussian
elimination on (14), one can linearly eliminate 7 unknown monomials by ex-
pressing those in terms of the remaining 8 unknown monomials (include the
constant 1). Since f1, f2, f4, f5 appear only in the linear terms in (13), so it
is natural to eliminate those four variables. Besides, we also choose to elimi-
nate f3, λf3 and λ2. This choice of eliminating variable will simplify the sys-
tem as we will show. Now the eliminating monomials {f1, f2, f3, f4, f5, λf3, λ2}
can be represented as a linear combination of the remaining monomials, namely
{λf6, λf7, λf8, f6, f7, f8, λ}, or equivalently, each can are expressed as a quadratic
function on unknown variables {f6, f7, f8, λ}. For f1, f2, . . . , f5, we have

fi = hi(f6, f7, f8, λ), i = 1, 2, 3, 4, 5 (15)

For λf3 and λ2, we have

λf3 = h6(f6, f7, f8, λ) (16)

λ2 = h7(f6, f7, f8, λ) (17)

One can further eliminate f3 in (16) by replacing it with h3(f6, f7, f8, λ) as

λh3(f6, f7, f8, λ)− h6(f6, f7, f8, λ) = 0 (18)

So now one can substitute fi in (10) with hi(f6, f7, f8, λ) for i = 1, 2, . . . , 5
and insert it into (11) and (12). Together with (17) and (18), we would obtain a
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well-defined system of 12 polynomial equations (Note the trace constraint (12)
leads to 9 equations) with 5 unknowns {f6, f7, f8, λ, w}. The equations are of
degree at most 9.

Solving such a polynomial system is certainly a non-trivial task. It is a more
complicated system compared with the previous work. The formulation in [11]
for uncalibrated case gives 3 equations with 3 unknowns, the degree of which is 5.
The polynomial system in [14] for calibrated case, assuming the radial distortion
and focal length for one view is already known, contains 11 equations with 4
unknowns, the degree of which is 5 or 6. With the recent progress in Gröbner
basis method, we will show in the next section that it is possible to find a fast
and stable solver for our minimal problem.

3 Polynomial Solvers

In this section, we will focus on the polynomial system we derived in the previous
section and aims at finding a fast and stable solver based on the Gröbner Basis
method. We will first give a brief review of the Gröbner Basis method.

3.1 Review of Gröbner Basis Method

We are aiming at solving a polynomial equation system in the following form

h1(x) = 0, h2(x) = 0, . . . , hm(x) = 0 (19)

where H = {h1(x), . . . , hm(x) |hi ∈ C[x1, . . . , xn]} are polynomials in n variables
over the field C of the complex numbers. Using the notation in the algebraic
geometry [22, 23], we consider the ideal I generated by the the polynomials
H = {h1(x), . . . , hm(x)} defined by

I = {
m∑
i=1

pihi | pi ∈ C[x1, . . . , xn], hi ∈ H} (20)

In general, an ideal could be generated by different finite set of generators.
However, all sets of generators share the same solutions. The idea of the Gröbner
basis method for solving a polynomial equation system given by {hi(x) = 0|i =
1, . . . ,m} is to find another set of generator {gi(x)|i = 1, 2, . . . ,m} that generates
exactly the same ideal as {hi(x)} does, but {gi(x) = 0}is a much simpler problem
to solve. It turns out that reduced Gröbner basis w.r.t the lexicographic ordering
is such a set of generator, which is usually simple or even trivial to solve.

However, to compute the complete set of Gröbner basis is usually very diffi-
cult due to the numerical stability. Also it requires a proper choice of the mono-
mial order, e.g lexicographic order. Recent progress [17] in the Gröbner basis
method provides a new action matrix method, which does not rely on finding
the complete set of Gröbner basis, yet leads to a more stable algorithm. The key
idea is to consider the quotient space C[x]/I, which is the space of all possible re-
mainders under the multivariate division by the ideal I. By the theorem in [22],
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if the equation system (19) has finite zeros, then C[x]/I is finite-dimensional
linear space, the dimension of which coincides with the number of zeros of (19).

Using this property, within the quotient space C[x]/I, the multiplication
with a monomial xk, known as action variable could be regarded as a linear map
from C[x]/I to itself. Due to the finite dimension of C[x]/I, this linear map can
be represented using a matrix Mxk

, called the action matrix. The eigenvalue of
Mxk

directly gives the value of action variable xk. The eigenvectors corresponds
to the vector of monomials which are evaluated at the zeros of (19). More details
are referred to [17].

3.2 A Polynomial Solver to Our Problem

We first study and explore the structure of the polynomial system generated
from (11), (12), (17) and (18), one observation is that among the 12 equations,
there are 4 equations has w as the common multiplier. To avoid the trivial and
false solution w = 0, we divide w from all the 4 equations. The other observation
is that, after we remove the common multiplier w, all the equations that contain
w only contain the terms of even degrees, e.g. w2, w4, w6. So we could simply
replace w2 with a new variable z = w2. With these observations, we managed
to simplify the system by decreasing the degree of the system from 9 to 7. Now
we obtain a polynomial system contains one equation of degree 2, one of degree
3, two of degree 5, three of degree 6 and five of degree 7.

We then verify the number of solutions using some algebraic geometry tools.
By generating the polynomial system with coefficients in Zp, and using Macaulay2
[24], we find that there are in general 68 solutions for this problem. Although
the number of solution is relatively large, but we will show later in the experi-
ments that most solutions in our problem are complex and thus could be simply
removed.

To solve the system, we follow the method based on Gröbner basis in [17].
A redundant set of higher order polynomials, called eliminating template, are
systematically generated from our initial polynomial equations by multiplying
them with a set of monomials. With this step, one aim is to find a sufficient large
set of monomials from which we could find the basis, i.e. a set of monomials. All
the other monomials that are not included in basis could be represented as a
linear combination of basis. The permissible monomials, which stay in itself after
multiplication with an action monomial xk will give us direct clues to construct
the action matrix and further find the solution. Empirically we found that the
following choice of multiplication monomials will generate a numerically stable
solver. (i) the highest degree of monomials in those equations are up to 9 after
the multiplication. (ii) the highest degree of those multiplication monomials are
{4, 4, 4, 2, 4} respectively for unknowns {f6, f7, f8, w, λ}. After this multiplica-
tion step, the resulting elimination template contains 886 equations with 1011
monomials. Further attempt to reduce the size of the elimination template by de-
creasing the highest degree of multiplication monomials will affect the numerical
stability as we tried.
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We use a column-pivoting scheme [17] to select the basis with the improved
numerical stability. The last 120 monomials is selected as the permissible set to
construct the action matrix of size 68 × 68. Using the eigen-decomposition on
the transpose of the action matrix, we could extract the solutions to our system
from the resulting eigenvectors. Once we found the value of {f6, f7, f8, w, λ}, the
other unknowns on the fundamental matrix F could be found using (15). The
essential matrix E is then solved from (10) as well.

4 Experiments

We test and validate our minimal solver on both synthetically generated image
data and the real images. For synthetic image data, we validate the number of
real solutions in general. We also test the numerical stability and the sensitivity
to the noise. For the real images, we use both RANSAC and the kernel voting
to obtain an accurate estimation of the essential matrix E, the radial distortion
coefficient λ as well as the focal length f . We also compared with the standard
7-point algorithm of fundamental matrix estimation, which do not handle the
radial distortion. As we will show later, taking the radial distortion into consid-
eration, we will obtain more inliers using the RANSAC.

We implement the solvers in MATLAB. The average running time for our
minimal solver is around 400ms(milliseconds). The timing are recorded on a
Macbook Air with 8GB memory and 1.8 GHz i5 CPU. One could further reduce
the running time by implementing the solver in C or C++. Other optimization
strategy, e.g. [25, 26] is also a choice.

4.1 Synthetic Data

We generated random 3D points within a cube of width 1000 centered at the
origin. Two cameras are placed to be around 1000 units away from the origin.
The two cameras are roughly pointing to the origin with a random rotation.
The translation between the two camera centers is around 300 units. The focal
length for both cameras are randomly generated around 1000. The 2D image
points are generated by projecting the 3D points into the image plane of size
1000×1000. Based on the division model in (3), we distort the image point with
the distortion coefficient uniformly sampled from [−0.5, 0]. The radial distortion
is specified w.r.t. the normalized image points in the range of [−1, 1].

The first experiment is to test the numerical stability and validate the number
of real solutions. For this experiment, we use the noise free image data. We
randomly generated 1000 synthetic scenes in the way described above. For each
scene, we run our minimal solver with 7 points and evaluate the relative error
between the estimated value of radial distortion λ, the focal length f and their
ground truth value. The relative errors for λ is defined as follows

e(λest) =
|λest − λgt|
|λgt|

(21)
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Fig. 2. Experiments on synthetic data without noise. Left: The distribution of log10
relative error of radial distortion λ and the focal length f . Right: The distribution of
number of solutions

where λest, λgt are respectively the estimated and the ground truth value for
the distortion. The relative error of f is defined in the similar way.

We plot the distribution of log10 of the relative error for λ and f in the
left of Fig. 2, . We can see that our solver is generally very stable and give the
accurate estimation of both λ and f . The medians of the log10 relative error are
-7.49 for λ and -7.16 for f . The statistic of the number of valid solutions is also
plotted in the right of Fig. 2. By valid solutions, we mean the real roots of the
polynomial system. Although the system have in total 68 solutions, but most
of them are of complex value and could be simply removed without the need of
further validation. For most cases, there are 4 to 10 valid solutions.

The performance of our solver in the presence of noises is also tested. The
image points are perturbed with Gaussian noise with different standard devi-
ation τ = 0, 0.01, 0.1, 0.5, 1, 2 respectively. We tried different radial distortion
parameter λ = −0.01,−0.1,−0.2,−0.5 as well. In Fig. 3, we plot the box with
the middle red line in the box as the median of the log10 relative error, the
top and bottom edges of the box as the 25th and 75th percentiles. The red cross
marks are the points lying beyond the 1.5 times the range. For noiseless data, our
solver gives accurate estimates of radial distortion λ. We also noticed that the
solver generally achieves more accurate estimates when the radial distortion is
large. When noise level increases, the log10 relative errors also increase largely,
to around 10−1. This shows that one should use the solver on the repeatedly
drawn minimal samples and combine it with either the kernel voting scheme
or the RANSAC when the real data are contaminated with noise or outliers.
Note we also tested the noise sensitivity for the estimation of focal length f and
obtained quite similar box plot. Due to the space limitation, we will omit the
resulting plot here.
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Fig. 3. Experiments on synthetic data with different noise levels. The log10 of relative
error of λ for different radial distortion, where the ground truth are λ = −0.01 (Top
left), λ = −0.1 (Top right), λ = −0.2 (Bottom left) and λ = −0.5 (Bottom right). See
the text for detailed description.

4.2 Real Data

We further evaluate the proposed solver on real images. A GoPro Hero3 camera
is used to capture the images with a significant radial distortion. The camera is
calibrated with the fixed focal length, which serves as the ground truth for the
algorithm evaluation. A set of 36 images are paired and used to test our solver.
The SIFT features are extracted from all the images and matched between each
pair using method in [15]. This produce a set of tentative matches which also
contains outliers.

We first use the RANSAC algorithm equipped with our minimal solver as a
subroutine to estimate the essential matrix E, the focal length f and the radial
distortion λ. In each RANSAC iteration, different minimal sets of point corre-
spondences are randomly drawn and are fed into our solver. With the estimated
E, λ and f , we compute the distance to the epipolar line for each point and ob-
tain an inlier set containing all the points with distance smaller than a threshold.
The solution with the maximum inlier set gives the final estimation of E, λ and
f . The standard 7 point algorithm, which does not consider the radial distortion,
serves as a baseline in RANSAC to estimate the fundamental matrix. Note we
set the RANSAC iterations to be 1000 and the threshold of inliers to be 3 pixels
for both methods in the experiment. From Fig. 4, our minimal solver obtains a
substantially larger inlier set due to the explicit modeling of the radial distor-
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tion. Quatitatively, our minimal solver gains average 49.37% increase w.r.t. the
number of inliers compared with the standard 7 point solver on the image set.

Fig. 4. Experiments on read data using RANSAC. The inlier set using different method
are marked. The green star marks are inliers found by both methods. The red stars are
the inliers only found using our method, The yellow starts are the inliers only found
by standard 7 point solver. Note that the images are paired for the top two rows and
bottom two rows.

We also use a kernel voting scheme to estimate the E, λ and f . To avoid the
computation of the undistorted image point and the fundamental matrix in each
iteration of RANSAC, the kernel voting finds the estimate by fitting a kernel,
e.g. Gaussian kernel to all the solutions one obtained from different random
minimal samples. The success of the method is based on the observation that
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the solved roots are all around the genuine root regardless of the noises. In this
experiment, we randomly draw 1000 minimal set, solve them and keep all the real
roots. Gaussian kernel with bandwidth w = 0.02 for radial distortion parameter
λ and w = 200 for focal length f are fitted to all the solutions of λ and f . These
bandwidths are reasonable choices considering that λ ∈ [−1, 1] and f ∈ [0, 2000].
Then the peak is picked out as the final solution for λ and f respectively. From
the distribution of real roots of λ and f in Fig. 5, we could easily see the peak,
around which are the genuine solutions. The kernel voting gives an estimate of
-0.28 for λ and 1793.4 for f , which are plotted as blue lines in the Fig. 5. Note
we also plot the ground truth value of f , which is 1765.6, in the right part of Fig.
5 as a green line. It shows the estimate of f is very close to the ground truth.
Note the Fig. 5 is the plot for only one of the image pairs. As we have tested, all
the other image pair gives consistent estimate on λ and f and further validate
the proposed solver.
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Fig. 5. Experiments on read data using kernel voting. The distribution of real roots
(red curve) for radial distortion coefficient λ and focal length f are shown in the left
and right figure respectively. The estimate of λ and f (blue line) as well as the ground
truth of f (green line in the right figure) is also marked.

5 Conclusion

In this paper, we have given a fast and numerically stable solver for the minimal
problem of estimating the relative pose with unknown focal length and radial
distortion. We use a division model for radial distortion and derive a parametriza-
tion and formulate a polynomial system. After studying the polynomial system,
we simplify it by variable elimination and use Gröbner basis method to derive a
solver. We evaluate our solver on both the synthetic data and real images. The
solver is shown to be numerically stable on synthetic data. With the RANSAC
or kernel voting, the solver could be applied to real image data with noises and
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outliers. It finds more point correspondences and gives accurate estimates on the
relative pose, as well as focal length and radial distortion.
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14. Kuang, Y., Solem, J.E., Kahl, F., Åström, K.: Minimal solvers for relative pose
with a single unknown radial distortion. In: Proc. Conf. Computer Vision and
Pattern Recognition. (2014)

15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. Journal
of Computer Vision 60 (2004) 91–110

16. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commu-
nications of the ACM 24 (1981) 381–95
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