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Abstract:

Heart failure (HF) is a leading cause of death and disability globally. HF represents the common end-
stage of most heart conditions, during which the heart is unable to generate sufficient output of blood for
the metabolic demands of the body and intracardiac pressures increase. Different heart diseases display
specific molecular pathophysiologies, but common pathways are also present that drive development
and progression of HF. Specifically, the negative remodelling of the heart muscle that occurs gradually
during prolonged load includes activation of a fetal gene expression program in heart muscle cells,
immune cell activation, fibroblast activation, and increased fibrosis. However, both the molecular
mechanisms of many underlying heart diseases and negative remodelling remain incompletely
understood with limited therapeutic options beyond neurohormonal antagonists. The aims of this thesis
were to (a) comprehensively investigate cell type-specific mechanisms involved in underlying heart
diseases and negative remodeling in human hearts and (b) explore mechanisms linking the
immunological mediator TSLP to HF mortality, as identified in a previous genetic study from the group.

In Paper I, we sought to develop a protocol for single cell isolation from frozen human hearts. However,
a range of protocols was unable to isolate intact cells. Instead, we developed a protocol for isolation of
single nuclei and show that nuclear transcriptomes are highly representative of the overall cellular and
cytoplasmic transcriptome in human heart cells. By application of this protocol to human hearts and single
nuclei RNA sequencing (snRNAseq) we developed a transcriptional atlas of the cell types and molecular
profiles of the human heart. In Paper |l, we greatly expanded this atlas to >100 human hearts with specific
heart diseases and hearts without evidence of heart disease (controls). Compared to control hearts, the
largest number of transcriptional differences were observed in dilated cardiomyopathy but most changes
were also broadly shared with other conditions. In contrast, the largest number of unique transcriptional
differences were seen in arrhythmogenic right ventricular cardiomyopathy. In Paper Ill, we find increased
expression of TSLP in response to strain of cardiac fibroblasts. In addition, cardiac overexpression of
TSLP resulted in increased expression of transforming growth factor 8 in myocardial mast cells, and
tissue fibrosis. In Paper IV, we confirmed that the surface area of both cardiomyocytes and their nuclei
were increased in HF patients, consistently with different underlying conditions, as compared to controls.
Increased mechanical strain of iPS-derived cardiomyocytes also resulted in increased cellular and
nuclear size but these changes in nuclear size were not explained by changes in transcriptional activity
as reflected by RNA content.

Collectively, this work shows the feasibility of dissecting the molecular pathophysiology of heart diseases
from frozen single cardiac nuclei, highlights molecular signatures associated with specific heart muscle
conditions, and implicates TSLP as a putative therapeutic target to prevent cardiac remodelling.
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Populérvetenskaplig sammanfattning

Hjartsvikt dr en av de vanligaste orsakerna till dod och sjuklighet globalt, och utgor
slutstadiet av de flesta hjéartsjukdomar. De vanligaste underliggande orsakerna ér
kranskérlssjukdom och hogt blodtryck medan en mindre andel orsakas av priméra
hjartmuskelsjukdomar (kardiomyopatier). Forekomsten av hjartsvikt har
uppskattats till mer &n 64 miljoner individer globalt och 200 000 i Sverige. Patienter
med hjértsvikt har en 6kad dddlighet, ca hélften avlider inom 5 ar, och nedsatt
livskvalitet pga symptom som  andfaddhet, anstringningsintolerans,
vitskeansamling med svullnad av ben och regelbundet behov av inneliggande
sjukhusvard.

Vid hjartsvikt dr hjartat oformdget att uppratthalla tillrackligt utfléde av blod for
kroppens behov. Trycket i hjartat okar, vilket resulterar i 6kad belastning pa
hjartmuskeln. Sddan o©kad belastning resulterar 6ver tid i kompensatoriska
fordndringar 1 hjartmuskeln, sdsom okad storlek av hjartmuskelceller och dkad
bildning av arrvévnad (fibros) som dkar hjartmuskelns stelhet, vilket kallas negativ
remodellering. Sddana fordndringar medfor positiva effekter pa kort sikt, men
resulterar i progress av hjartsvikt och dkad risk for dod.

Det finns ingen bot for hjartsvikt men flera behandlingar som minskar symptomen
och forbéttrar prognosen. De flesta sddana behandlingar riktas mot cirkulerande
hormoner for att minska belastningen pa hjértmuskeln ytterst genom att minska
blodtryck, blodvolym, hjartfrekvens och liknande hemodynamiska effekter. Fa
behandlingar finns dock mot underliggande sjukdomar eller som direkt riktas mot
negativ remodellering.

Hjartmuskelcellerna (kardiomyocyterna) genererar den kraft som krévs for hjértats
pumparbete och dr dérfor centrala for hjértats funktion. Manga andra celltyper &r
dock atminstone lika vanliga i hjartat och bidrar ocksa till hjértats funktion och tros
ha en central roll i remodelleringsprocesser. Fibroblaster verkar genom att bilda den
extracelluldrmatrix som finns i hjartat och ger strukturellt stod. Endotelceller bildar
det innersta lagret i blodkdrl och hjartrum och styr cirkulation och
kéarlgenomslapplighet. Glatta muskelceller dr ansvariga for blodkérlsreglering och
att bibehalla elasticitet i blodkéirlen. Skador mot hjirtat resulterar i dod av
hjartmuskelceller och 6kad aktivitet av fibroblaster som genererar drrvivnad och
frisdtter ett stort antal signalimnen. Exakt vilken roll olika celltyper och deras
molekyldra profiler spelar for hjéartsjukdomar och remodellering &r dock
ofullstdndigt kartlagt, delvis pga svarigheter att fa tag pa intakt human hjértvavnad.

Denna avhandling avsdg darfor att undersoka strategier for att separera ut
individuella hjartceller s& att hjartvdvnad kan studeras i detalj péd singel-cell niva,
for molekyldra analyser av hur enskilda celler och molekyler bidrar till specifika
sjukdomar och remodellering.



I en forsta studie utvecklade vi protokoll for att isolera enskilda cellkdrnor fran
humana hjértan. Vi fann att frysande av celler, vilket dr nddvandigt for preservation
av hjartprover till analys, resulterar i svérigheter att separera ut enskilda celler.
Déaremot cellkdrnor var mycket mer robusta vid frysning och vi finner att det
molekyléra innehallet i cellkdrnor i stort dr representativt for hela celler. Vi anvédnde
dérefter dessa metoder for att generera en karta Over celluldra och molekylédra
komponenter i det humana hjirtat. I en andra studie anvénde vi dessa
isoleringsmetoder for att studera flera specifika hjartmuskelsjukdomar och fann 6kat
antal fibroblaster vid alla sjukdomarna. Manga fordndringar i genaktivitet var
desamma vid olika sjukdomar, talande for en roll vid remodellering, medan andra
forédndringar var specifika for ett visst tillstdnd. Det storsta antalet fordndringar ségs
vid arytmogen hogerkammar kardiomyopati. I en tredje studie fokuserade vi pa
molekylen TSLP som identifierats som en mojlig bidragande faktor till
remodellering i genetiska studier. Vi fann att TSLP frisitts vid belastning av
hjartceller och aktiverar fibroblaster till 6kad fibros och hjartstelhet. Slutligen, i
studie fyra, fann vi att hjartmuskelcellernas karnor ocksé 6kar i storlek vid mekanisk
belastning och &r storre i sviktande hjértan &n kontrollhjartan.

Sammantaget ger studierna i denna avhandling inblick i cellulédra identititera vid
hjartmuskelsjukdomar, mdjliga mekanismer for sjukdomsutveckling och
remodellering, och nominerar nya potentiella terapeutiska mal inklusive TSLP som
kan bidra till att forbéttra prognosen vid hjartsvikt.



Popular Science Summary

Heart failure (HF) is a leading cause of death and disability globally, representing
the end-stage of most heart diseases. The most common underlying conditions are
coronary artery disease and hypertension while a smaller subset of cases are due to
primary diseases of the heart muscle (cardiomyopthies). The prevalence of HF has
been estimated to more than 64 million individuals globally and 200 000 in Sweden.
Patients with HF suffer from poor prognosis, with a five year mortality of
approximately 50%, and reduced quality of life due to symptoms such as shortness
of breath, exercice intolerance, fluid retention with swelling of the legs and frequent
need for hospitalization.

During HF, the heart is unable to generate sufficient output of blood for the demands
of the body. The pressure inside the heart increases, resulting in increased strain on
the heart muscle. Such increases in strain act over time to result in compensatory
changes in the heart muscle, such as increased size of heart muscle cells and
increased deposition of scar tissue (fibrosis) which increases the stiffness of the
heart muscle, referred to as negative remodelling. Such changes, although
conferring positive effects in the short term, result in progression of HF and
increased risk of mortality.

Although cure is not possible for HF, several therapies are available to relieve
symptoms and improve prognosis. Most such therapies target circulating hormones
to reduce strain on the heart muscle by ultimately reducing blood pressure, blood
volume, heart rate and similar hemodynamic effects. However, therapy rarely
targets the underlying conditions or directly the negative remodelling.

Although heart muscle cells (cardiomyocytes), which generate the force for cardiac
pumping, are central for the function of the heart, many other cells types are at least
equally abundant in the heart and also contribute importantly to cardiac function and
are central for remodelling processes. Fibroblasts function by maintaining the
extracellular matrix of the heart and provide structural support. Endothelial cells
form the inner layer of blood vessels and heart chambers, regulating circulation and
vessel permeability. Smooth muscle cells are responsible for vascular regulation and
maintaining the elasticity of blood vessels. Injury to the heart results in death of
heart muscle cells but increased activity of fibroblasts to generate scar tissue and
release a range of signaling molecules. However, the precise contributions of
specific cell types and their molecular profiles to heart diseases and remodelling
remains incompletely understood, in part due to the difficulties of obtaining intact
human heart tissue.

Therefore, this thesis aimed to investigate strategies to separate individual heart
cells so that the tissue of the heart could be studied accurately at the single-cell level,
for comprehensive molecular analysis of the contribution of such cells and
molecules to specific diseases and remodelling.
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In a first study, we developed a protocol to isolate single cell nuclei from human
hearts. We find that freezing of cells, which is necessary for preservation of heart
samples until analysis, results in difficulties in separating out single cells. However,
cellular nuclei are much more robust to freezing and we find that the molecular
contents of cellular nuclei are largely representative of whole cells. We then used
these methods to generate a detailed atlas of the cellular and molecular constituents
of the human heart. In a second study, we employed this isolation protocol to
multiple heart muscle diseases, and we found increased number of fibroblasts in all
the muscle diseases. Many changes in gene activity were broadly shared across
diseases, consistent with a role in remodelling, while some changes were specific
for a certain condition. The largest number of changes were seen in arrhythmogenic
right ventricular cardiomyopathy. In the third study, we focused on the molecule
thymic stromal lymphopoietin (TSLP), which was identified as a potential
contributor to remodelling in genetic studies. We find that TSLP is released in
response to cardiac cell strain and activates fibroblasts to increase fibrosis and
cardiac stiffness. Finally, in study four, we found that cardiomyocyte nuclei increase
in size when put under mechanical stress, and are larger in heart failure patients than
in controls.

Together, the studies in this thesis provide insights into cellular identities across
heart muscle diseases, potential mechanisms for disease onset and remodelling, and
nominate new potential therapeutic targets including TSLP which may help improve
outcomes in HF.

11
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Introduction

The heart

The heart is a muscular organ located centrally within the chest behind the sternum.
The main function of the heart is to serve as a pump, maintaining circulation of
blood and providing all tissues throughout the body with oxygen and nutrients. The
heart is a four-chambered structure consisting of two upper smaller chambers,
referred to as atria, and two lower chambers referred to as ventricles [4]. The
superior and inferior vena cava transport deoxygenated blood from the body to the
right atrium, whereas the pulmonary veins transport oxygenated blood from the
lungs to the left atrium. The right ventricle receives blood deoxygenated blood from
the right atrium and generates pressure to drive blood to the lungs through the
pulmonary artery. Conversely, the left ventricle receives oxygenated blood from the
left atrium and generates pressure sufficient to transport blood to the rest of the body
through the aorta [1]. To ensure unidirectional flow of blood through the heart, the
heart has four valves that prevent reverse flow between chambers: two
atrioventricular valves prevent backflow from ventricles into atria: the tricuspid
valve on the right side and the mitral valve on the left side. The aortic valve prevents
backflow from the aorta into the left ventricle and the pulmonary valve prevents
backflow from the pulmonary artery to the right ventricle. The heart itself'is supplied
with blood from arterial branches from the aorta - the coronary arteries.

The heart consists of three layers: The innermost layer is called the endocardium, lines
the chambers and valves and is similar in structure, function and embryological origin
to the endothelial lining of blood vessels. The middle layer is the thick muscular
myocardium, consisting of heart muscle cells (cardiomyocytes), blood vessels and
connective tissue, and is responsible for the contraction of the heart. The outermost
layer is the epicardium which is a protective layer composed of connective tissue and
epithelium [2]. The epicardium borders to the fluid-filled pericardial cavity which
allows the heart to move without friction during contraction (Figure 1).

The heart undergoes a sequence of changes in pressure and volume known as a cardiac
cycle that lasts one whole beat. The sinoatrial node (SA), located in the right atrium,
first generates an electrical signal that is transmitted through the atria by the flux of
ions across the cell membrane. This signal causes the coordinated contraction of the
atrial myocardium and ejection of blood from atria to ventricles after an initial filling
phase. The signal then travels from the atria through the atrioventricular (AV) node
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and a specialized conduction system to the ventricles, prompting contraction of the
ventricular myocardium and ejection of blood into the arteries. After contraction and
ejection of blood into arteries, a phase of the cardiac cycle referred to as systole, the
chambers relax and filling with blood begins, a phase referred to as diastole. Diastole
starts when the pulmonary and aortic valves close and finishes when the tricuspid and
mitral valves close. Systole begins when the tricuspid and mitral valves close and ends
with the closing of the pulmonary and aortic valves [3] [4].

Impulse generation in the pacemaker cells of the SA node and conduction through
the AV node is regulated by the autonomic nervous system, regulating the heart rate
as the cardiac cycle continuously repeats. A constant blood flow that is matched to
tissue demands throughout the circulatory system is assured by the coordinated
cardiac cycle [5, 6].
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Figure 1. Human heart anatomy.
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Cellular heterogeneity in the human heart

The heart is often viewed as a muscular organ, and although the large
cardiomyocytes make up a substantial proportion of the heart volume, other cell
types are equally or more common in the three layers that make up the heart. The
most prominent cell types have been shown in histological studies to be endothelial
cells, fibroblasts, cardiomyocytes, and smooth muscle cells [7, 8]. In addition, the
heart is known to contain populations of adipocytes, pericytes, neurons, and immune
cells (Figure 2) [9, 10].

The abundance, molecular profiles, and spatial arrangement of cardiac cell types as
well as their surrounding matrix determine the properties of the heart, including its
stiffness, contractility, and conductive properties [11]. Importantly, the distribution
of distinct cell types in the heart may also determine how it responds to injury, strain
and other pathological processes as different cell types respond differently. In
addition, understanding the distribution of different cell types in the heart is essential
for understanding its development [12].

The implications of cellular heterogeneity in the heart are thus significant both for
understanding cardiac physiology, development, pathologies, and potential
therapeutic strategies [9].

Cardiomyocytes

Endothelial cells

P\

Adipocytes N — 4 \( —_— Neurons

Pericytes _ / Smooth muscle

cells

Immune cells

Figure 2. Schematic representation of cardiac cell types.
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Cardiomyocytes

Cardiomyocytes are a type of specialized muscle cells in the heart which generate
contractile force and active relaxation upon electrochemical excitation. These cells
comprise around 30% of cells in the human heart [7], connecting to each other
through membrane structures referred to as intercalated discs, in which gap
junctions allow flow of ions between cardiomyocytes, forming a network
throughout the heart referred to as a functional syncytium.

Cardiomyocytes have a tubular shape with a central nucleus, although a subset have
two or more nuclei, and a plasma membrane known as the sarcolemma [13]. They
are densely packed with mitochondria for energy generation and myofibrils, rod-
like organelles within the cell responsible for the active contraction and relaxation
of cardiomyocytes. In close proximity with both the myofibrils and the sarcolemma
is also a specialized type of smooth endoplasmic reticulum that stores calcium ions
and plays a central role in activation and regulation of myofibril function.

Cardiomyocyte membrane potential is precisely regulated by a spatially defined
network of ion channels and exchangers that regulate the flux of sodium, potassium,
and calcium ions across the sarcolemma and sarcoplasmic reticulum. The electrical
activity across the sarcolemma controls Ca2” release from the sarcoplasmic
reticulum which in turn activates myofibril contractility [14].

Myofibrils are made up of repeated sarcomeres, the basic contractile units of muscle
cells [15]. The sarcomere consists of two types of protein filaments: thick and thin
filaments, mainly consisting of larger numbers myosin and actin molecules
respectively (Figure 3). Upon activation by increased cytosolic calcium ions,
myosin in the thick filaments climb across the thin filaments, resulting in shortening
of the sarcomere and myofibril (contraction). As calcium is pumped back into the
sarcoplasmic reticulum and cytosolic concentrations decrease, in an energy-
consuming active relaxation process, myosin releases its grip to actin and the
sarcomere returns to its extended shape, due to the spring-like titin protein and
elastic components in the extracellular matrix [2, 16].
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Figure 3. Structure of myofibrils and sarcomeres in cardiomyocytes.

Fibroblasts

Fibroblasts are the most common cells in connective tissue and can be found in most
tissues [17]. Fibroblasts are more abundant than cardiomyocytes in the human heart
[18] However, fibroblast populations have been shown to be heterogeneous,
representing fibroblast precursors, tissue-specialized fibroblasts and disease-
activated fibroblast states [19]. Fibroblasts can be activated by several stimuli,
including transforming growth factor beta and strain, and differentiate into
myofibroblasts, also referred to as “activated fibroblasts”, with increased production
of extracellular matrix components such as collagens which increase the structural
integrity of the surrounding tissue [20]. A hallmark of late stages of cardiac injury,
such as after myocardial infarction, or with increased strain during heart failure, is
myocardial fibrosis deposited by myofibroblasts [21].

Cardiac fibroblasts are thought play an important role in heart disease, especially in
cardiac remodeling during pathological conditions including myocardial infarction
and pathological strain. Excessive cardiac fibrosis can compromise heart function
by multiple mechanisms, including increased restriction to filling and by altering
electrophysiological characteristics resulting in increased risk both for bradycardia
and ventricular reentry circuits that provide substrate for tachyarrhythmias [22, 23]
[24]. In addition to their central role in remodelling of the extracellular matrix,
fibroblasts are involved in cell-cell communication with myocytes and immune
cells, and other fibroblasts, secreting both cytokines and growth factors [25].
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Single-cell RNA sequencing to assess RNA heterogeneity

Single-cell RNA sequencing (scRNAseq) is a developing high-throughput method
for examining the cellular heterogeneity of tissues by global RNA profiling of
individual cells and clustering of cells into cell types and subpopulations. sScCRNA-
seq has allowed researchers to identify and classify cell types within tissues with
greater resolution, revealing previously unknown cell subtypes and their
transcriptional profiles [26] [27].

The application of this powerful tool to dissect cellular heterogeneity has provided
initial important insights for understanding the molecular complexity of tissues and
organs. In the last several years, there has been notable progress in the evaluation of
cellular heterogeneity at single-cell resolution in several organs[19]. As we set out
with this thesis project, no protocols were available and no single cell study of the
human heart was available. Although both atlas studies of the normal human heart
[28] [9] and a few specific heart conditions have recently been published, resulting
mainly in important molecular perspectives on fibroblast activation in the heart [29],
snRNAseq applications to human heart conditions remain underexplored. However,
important insights and novel cell types have been identified in the kidney, lung and
brain fields as summarized in the section below.

Findings from single-cell profiling across human organs

Kidney

scRNA-seq has to date proved particularly useful in the kidney field, helping to
advance the understanding of kidney immunology and disease. In particular,
scRNA-seq has been used to investigate immunological contributions to a range of
kidney illnesses, including lupus nephritis, diabetic kidney disease, and IgA
nephropathy [30]. The method has been applied to thoroughly examine immune
cells in blood, secondary lymphoid tissues, kidney biopsy, and urine samples,
resulting in the identification of novel immune cell types, gene regulation, and
signalling pathways related to kidney conditions [30] providing several
opportunities for novel therapies..The technique has also facilitated the discovery of
novel specialized cell types, for example a uroepithelial cell expressing TNNT1, a
marker typical of skeletal muscle fibers. This cell type is proposed to play a role in
the stretching functions of the bladder and urinary tract [19]. scRNA-seq has also
revealed the sensitivity of renal lymphatic endothelial cells to acute kidney damage
[31].

Finally, scRNA-seq data applied to kidneys of human donors has revealed the
cellular architecture of the normal human kidney, demonstrated 10 clusters of
normal human renal cells [32] and over multiple nephron segments [33].
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Lung

scRNA-seq has been utilized to investigate numerous features of the lung, including
lung cancer and pulmonary fibrosis. A study used scRNA-seq to profile
differentially expressed genes (DEGs) at single-cell resolution in human non-small
cell lung cancer (NSCLC) epithelial cells. This led to the identification of candidate
genes and biomarkers for early-stage lung cancer [34]. This method has also been
used to generate a single-cell atlas of pulmonary fibrosis, demonstrating
heterogeneity across alveolar macrophages and epithelial cells and providing
insights into disease pathobiology [35]. A complete cell atlas of the human lung,
containing the gene expression patterns and structural locations of 58 cell groups,
was generated utilizing droplet- and plate-based scRNA-seq, The technique has
facilitated discovery of a new rare, cell type, the ionocyte [36]. Ionocytes are
primarily responsible for the function of cystic fibrosis transmembrane conductance
regulator (CFTR) within conductive epithelium. [37]. In addition, the technique has
identified aerocytes, which are unique cells involved in pulmonary gas exchange
[38].

Brain

scRNAseq has been applied to generate an atlas of cell type heterogeneity in the
human brain. In addition, scRNAseq has been applied to both map cell-type-specific
therapeutic responses in Parkinson's disease [34, 35], Huntington’s disease to
identify gene expression changes in different cell types and subtypes [36], multiple
sclerosism and brain tumours andthe tumour microenvironment. scCRNAseq
uncovered specialized cortical neurons in specific brain areas, a wide range of
neurons in the midbrain and hindbrain, and varying astrocyte populations across
regions. Additionally, distinct types of oligodendrocyte precursors were identified,
each specific to different regions of the brain [39]. The technique has also allowed
detection of hundreds of different cell statuses during brain development, including
early neuroepithelium in the developing mouse [40]. Furthermore, diverse mouse
medial ganglionic eminence (MGE) cell types were identified that include
proliferating progenitor cells in the ventricular region of the MGE [41].

Heart failure

Heart failure is a clinical syndrome with typical symptoms and clinical findings that
presents when the heart is unable to provide sufficient output of blood to meet the
demands of the body. This syndrome is a leading cause of death and disability
globally, estimated to affect about 64 million people worldwide [42], with high
burden in developed countries and increasing prevalence in emerging countries [43].
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Heart failure is characterized by high intracardiac pressures and decreased cardiac
output at rest or during stress. Typical symptoms include dyspnea and exercise
intolerance, which has a multifaceted pathophysiology that includes pulmonary
congestion and impaired perfusion of skeletal muscle. Other symptoms are related
to fluid accumulation in the legs and abdomen, resulting in peripheral edema and
ascites. [44]

Heart failure is most commonly due to dysfunction of the left ventricle but also in a
smaller subset due to predominant dysfunction of the right ventricle [45]. However,
left ventricular dysfunction frequently progresses to dysfunction of both ventricles
through several mechanisms, importantly including pulmonary hypertension
resulting from congestion of blood in the pulmonary circulation.

Left ventricular heart failure is also frequently classified based on whether the
gjection fraction, a measure of contractility and cardiac emptying, is reduced
(HFrEF), mildly reduced (HFmrEF) or preserved (HFpEF) [46]. HFrEF and
HFmrEF is often thought to result from limitations in the number or contractile
function of cardiomyocytes, such as after a myocardial infarction or with a genetic
cardiomyopathy which impairs sarcomere function. HFpEF on the other hand is
thought to often represent impaired relaxation and increased stiffness related to
hypertrophy and fibrosis resulting in impaired filling [47]. Hypertension and
diabetes are important risk factors for HFpEF.

Therapy for HFrEF targets the underlying condition as well as the neurohormonal
pathways that result from limitations in output and high filling pressures that drive
disease progress. Such neurohormonal therapies include betablockers, angiotensin
receptor blockers, angiotensin converting enzyme inhibitors, neprilysin inhibitors,
and mineralocorticoid receptor antagonists. For HFpEF, SGLT2 inhibitors was
recently the first therapy to show evidence of benefit in phase III clinical trials, and
this new group of therapies also provides benefit in HFrEF, potentially acting
through a combination of positive effects on blood pressure, glucose concentration,
fluid volume and others. Diuretics are also used to reduce fluid overload and
symptom burden. Surgical or endovascular alternatives are available for a subset of
patients and include heart transplantation, ventricular assist devices, coronary
revascularization, implanted cardioverter-defibrillators, and pacemakers. However,
even with this broad range of therapies, morbidity and mortality remains high in
heart failure [48].

Heart muscle diseases

Most cardiac diseases result in some degree of myocardial damage and may
ultimately result in heart failure. A large proportion of cases occurs in patients with
coronary artery disease resulting in myocardial ischemia or infarction or with
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hypertension, resulting in increased strain on cardiomyocytes. Other conditions,
including diabetes mellitus, valvular heart disease, congenital heart disease, or
infections explain a smaller proportion of cases. A subset of cases also occur in the
absence of underlying systemic disease, termed primary diseases of the heart muscle
- cardiomyopathies [49] which includes contributions from genetic factors and
systemic factors such as amyloidosis and cardiac inflammation that may not result
in manifestations from other organs.

Coronary artery disease

Diseases in the coronary artery that limit blood supply to the heart is, together with
hypertension, the most common cause of heart failure. Such limitations in blood
supply result in ischemia and potentially infarction. The most common cause of
limitations in blood supply is buildup of atherosclerotic plaque in the branching
points of coronary arteries, with lipid accumulation, followed by inflammatory
processes, smooth muscle cell and fibrous matrix growth, and calcification [50].
Increased pressure as well as the contributions of macrophages and other
inflammatory cells may damage the plaque wall, resulting in plaque rupture,
intravascular thrombosis and marked vessel occlusion ultimately resulting in
myocadial infarction [50, 52].

Treatment of coronary artery disease is based on management of risk factors by a
combination of lifestyle changes and medications. In addition, improved myocardial
perfusion may be obtained by revascularization, that is the widening of an
atherosclerotic vessel by percutaneous coronary intervention or shunting of blood
around the plaque by open heart surgery involving bypass grafting [53, 54].

Cardiomyopathy

313

A cardiomyopathy is defined by the European Society of Cardiology as “‘a
myocardial disorder in which the heart muscle is structurally and functionally
abnormal, in the absence of coronary artery disease (CAD), hypertension, valvular
disease, and congenital heart disease (CHD) sufficient to cause the observed
myocardial abnormality” [55]. Cardiomyopathies are further subgrouped based on
morphological findings upon imaging of the heart, for which the two major groups
are dilated and hypertrophic cardiomyopathy.

Dilated cardiomyopathy

Dilated cardiomyopathy (DCM) is the most common cause of early-onset severe
heart failure which requires heart transplantation. Dilated cardiomyopathy (DCM)
is a progressive cardiac condition, characterised by an increase in internal chamber
size and weakness of the heart chambers, particularly the left ventricle, resulting in

24



limitations in cardiac emptying and output. Continued ventricular dilation and
contractile decline results in gradually worsening heart failure, and may be followed
by cardiac fibrosis, conduction system abnormalities, ventricular arrhythmias, and
thromboembolism [56]. The most common identifiable causes of DCM are viral or
idiopathic myocarditis and genetic variants that truncate the titin gene [55].

Hypertrophic cardiomyopathy

HCM is characterized by increased cardiomyocyte volumes and wall thickness, and
often fibrosis, resulting in impaired filling, myocardial ischemia, and risk for
ventricular arrythmias. Symptoms are largely the same as for other causes of heart
failure. [57, 58]. A majority of patients with HCM are carriers of mutations in
sarcomere genes, particularly including myosin heavy chain and myosin-binding
protein C genes.

Cardiac remodeling

Cardiac remodelling is a term that encompasses a set of molecular, cellular, and
interstitial alterations of the heart that appear clinically as changes in the size, mass,
shape, and function of the heart following injury [59]. Several pathophysiological
stimuli, including injury, pressure and volume overload, trigger the remodeling
cascade (Figure 4), a process that initially confers protection to the heart as a
compensatory mechanism but in the longer-term results in adverse clinical
outcomes.

The onset and course of remodeling is influenced both by cardiomyocytes and other
cell types. In cardiomyocytes, remodelling is associated with activation of a fetal
expression profile which includes class switches in sarcomeric proteins and
ventricular expression of atrial natriuretic peptide. Energy metabolism changes
towards increasing glycolysis and increased oxidative stress contribute to activate
hypertrophic, inflammatory and profibrotic signalling pathways [60]. Gradual
cardiomyocyte loss has been widely characterized to occur by necrosis, necroptosis,
apoptosis, or autophagy. In parallel, subclinical myocardial immune system
activation and inflammation may persist after heart injury or be triggered by other
contributing factors and result in increased cytokine production, contributing to
fibroblast proliferation and metalloproteinase activity [61]. Fibrosis occurs through
fibroblast proliferation and extracellular matrix (ECM) reconfiguration as described
above and may impact both relaxation and contractility [59, 61-63]. This loss of
cardiomyocytes, excess fibrosis, and reduced contractile strength further drives
remodelling.

The initial clinical manifestations of remodeling include morphological changes
such as increased intracardiac cavity diameter, ventricular mass and wall thickness
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by echocardiography, increased natriuretic peptides in plasma, and signs of fibrosis
by magnetic resonance imaging [64]. Progressive remodelling drives deterioration
of both cardiac contractile function and filling, resulting in onset and progression of
heart failure, worsening symptoms, and risk of both bradycardias, tachyarrhythmias
and mortality.
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Figure 4. Schematic representation of cardiac remodeling.
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Cardiac Fibrosis

Excessive myocardial fibrosis is well established to confer increased risk of
morbidity and death [65]. Essentially all myocardial disease processes, including
hypertensive heart disease, diabetic heart disease, and idiopathic dilated
cardiomyopathy [66, 67], involve deposition of extracellular matrix (ECM) proteins
by cardiac fibroblasts (CFs) which influences risk for development of cardiac
dysfunction, heart failure and arrhythmia [65, 68, 69]. Fibrosis mechanisms have
been particularly well studied in the context of myocardial infarction in particular,
which may lead to extensive death of cardiomyocytes, focal tissue damage and an
inflammatory response with upregulation of proinflammatory cytokines and
profibrotic factors. As regenerative capacity in the postnatal human heart is limited,
such damage results instead in tissue scarring, with activation of cardiac fibroblasts,
proliferation, transition to a myofibroblast phenotype [70] and replacement of dead
myocardium by a collagen-based scar, particularly including collagen type I [61,
71]. The transition of tissue fibroblasts to myofibroblast is the key cellular event
that drives the fibrotic response (Figure 5) [71]. Transforming growth factor beta
(TGF-B) is a key driver of fibroblast activation and proliferation in the heart
following injury or stress [65, 71]. However, many of the molecular details remain
incompletely understood.
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Figure 5. Schematic representation of cardiac fibrosis.
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Genetic contribution to cardiac remodeling and
outcomes

Although it has long been clear that heart failure patients have very different
propensity for accelerated myocardial remodelling, the mechanisms for this remain
unclear as does any genetic contributions to cardiac remodelling. However, our
group has shown that patients with a family history of poor prognosis in heart failure
also have a poor prognosis when developing heart failure [72]. In an effort to better
understand mechanisms underlying familial propensity to remodelling and poor
outcomes, our group previously conducted a genome-wide association study of
prognosis in heart failure patients, in broad international collaboration [73] In such
studies, single nucleotide polymorphisms (SNPs, i e single-base pair substitutions
in the DNA sequence that occur in a large proportion of a population that represent
the most common form of genetic variation in populations) across the genome are
related to differences in phenotype. This study identified a SNP on chromosome
5922 (rs9885413) associated with increased mortality in heart failure [73]. It was
further reported that the SNP confers a change to the regulatory motif of an enhancer
region upstream of the thymic stromal lymphopoietin gene (TSLP), which is
predicted to bind the transcription factor nescient helix-loop helix 1 (NHLH1)
(Figure 6). Any role for TSLP, NHLH]1, or other genes at the locus in the heart have
remained unclear.
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Figure 6. Schematic representation of the location of the SNP rs9885413 on chromosome 5.
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Key Methods

Cell culture

In paper I, Il and IV we used human cardiac fibroblasts, cardiomyocytes derived
from induced pluripotent stem cells (iPS-cells) and human cardiac microvascular
endothelial cells. The cells were cultured in Fibroblast Growth Medium, iCell
Cardiomyocyte Plating or Maintenance Medium and endothelial basal medium
respectively.

Overexpression of Tslp in mice

In paper Il an AAV9 viral vector was used to induce transgenic expression of 7slp
under the control of the T¢f21 promoter [74]. The transcription factor Tcf21 is
specific for the cardiac fibroblast cell lineage. Tcf21 is expressed in epicardial
progenitor cells, which give birth to cardiac fibroblasts, and its expression persists
in adult fibroblasts [75]. Furthermore, Tcf21 expression was shown to be
considerably higher in resident fibroblasts throughout the fibrotic phase [76, 77].
Therefore, we used the Tcf21 promoter to create a cardiac fibroblast-selective AAV9
vector. A P2A self-cleaving peptide linker was used to attach an enhanced GFP
(eGFP) reporter gene downstream of Ts/p. A vector expressing solely eGFP under
the Tcf21 promoter was created as a control. Oligonucleotides corresponding to the
genomic region 500 base pairs upstream of the Tcf21 transcription start site, the Tslp
open reading frame (NCBI Reference Sequence: NM_021367.2), the self-cleaving
peptide P2A sequence, eGFP (GenBank ID: MH458079.1), Woodchuck Hepatitis
Virus Posttranscriptional Regulatory Element (WPRE), simian virus 40, and poly
(A) were synthesised and cloned into the plasmid containing the inverted terminal
repeats (ITRs) from AAV9. Plasmid AAV9-Tslp-eGFP and the control plasmid
AAV9-eGFP were delivered into HEK293T cells, collected, purified, and quantified
as previously published [78].
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Animal procedure

Female C57BL/6 mice, aged 8-10 weeks, were utilized for all the animal
experiments. The mice received intravenous injections of AAV9-Tslp-eGFP or
AAV9-eGFP (at 10"9 genomic copies/animal diluted in PBS) through the tail vein.
Following injection, the mice were isolated for 72 hours before collecting heart,
kidneys, lungs, spleen, liver, and whole blood samples for subsequent analysis. All
animal procedures conducted in Lund were sanctioned by the local ethics committee
for animal research.

Human heart tissue

In Study I human cardiac tissue samples were obtained from the free wall of the left
ventricle of four orthotopic heart transplant recipients; three of the recipients with
dilated cardiomyopathy (DCM), and one with ischemic cardiomyopathy. Biopsies
were sectioned, placed in RNA-later, frozen at -80°C, kept for 12 months, and only
thawed for cell isolation. All participants provided written informed permission, and
the study was approved by the local ethics committee approved of the study. In
Study II heart biopsies were obtained from explanted hearts at Swedish
transplantation centres in Gothenburg and Lund as part of the ongoing
SwedeHeartSeq research program. Control samples from unused donor hearts
without heart disease were collected in Gothenburg. The cardiac tissue was
preserved either snap-frozen or stored in RNALater and frozen at -80°C. Clinical
data were extracted from electronic health records, and heart failure phenotypes
were determined following ESC guidelines by specialized cardiologists. The study
was ethically approved, and all participants provided written consent.

Strain of cells

We mechanically strained cells to replicate the biomechanical stress characteristic
of cardiac failure in cell culture. The cells were seeded on silicon chambers with
flexible membranes. The cells were subsequently subjected to a 48-hour uniaxial
strain in a single direction at a frequency of 60 cycles per minute, 10% elongation,
or a distance of 2.0 mm (Figure 4). After that, cells were removed to extract RNA.

30



Chromatin Immunoprecipitation

Chromatin Immunoprecipitation (ChIP) is the gold standard technique for studying
protein-DNA interactions. It aims to determine if proteins, such as transcription
factors or other DNA binding sites, are associated with particular genomic areas. In
Study III we used ChIP in order to ascertain the binding of transcription factor
NHLHI1 to the enhancer region flanking the risk allele rs9885413 by co-
precipitating the DNA and protein complex from human cardiac fibroblasts. Cells
were fixed and crosslinked, then subjected to enzymatic digestion for fragmentation
of chromatin. Then the chromatin was pulled down with antibodies against Histone
H3, NHLHI or non-specific IgG. The protein:DNA:antibody complex was captured
in a Protein A filter spin column for washing and the chromatin sample was
recovered by reverse cross linking. The DNA was then quantified with qPCR.

Electrophoretic Mobility Shift Assay

Electrophoretic Mobility Shift Assay (EMSA) is used to detect and quantify the
interaction between protein and DNA. As nucleic acid-protein complexes move
slower than free nucleic acids through the gel during electrophoresis, the difference
in band location indicates whether the protein of interest has bound to the potential
target DNA [79]

We used EMSA in Study IV to determine whether NHLH]1 binding is affected by
the rs9885413 risk allele in HCF. The oligonucleotides were designed based on the
region spanning the SNP. Two probes were designed: one carrying the wild type G
allele and the other the T risk allele. HCF nuclear protein extract was incubated with
the DNA oligonucleotides. Compared to the wild-type G, binding to the T allele was
significantly stronger.
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Figure 7. Schematic representation of electrophoretic mobility shift assay/ gel shift assay. Nuclear
protein extract is mixed with fluorescently labeled DNA probes corresponding to the DNA region of
interest. When a protein binds to the labelled probe, the probe is retarded during electrophoresis and
shifted up. An excess of unlabeled competitor probe reduced the intensity of the band.

Single nuclei isolation

This technique is used to study gene expression patterns at the level of individual
cells, providing insights into cellular heterogeneity and function. By analyzing
nuclei instead of whole cells, snRNA-seq helps minimize issues associated with cell
dissociation and stress-induced transcriptional changes. It is also essential for
studying tissues where single intact cells are difficult to isolate, e.g. from the brain
and heart. The technique involves multiple steps.

In Study I we used the extraction of single nuclei from tissue based on sucrose
gradient centrifugation. Briefly, tissue is first homogenised in lysis buffer using a
rotor-stator homogenizer followed by repeated strokes with a dounce homogenizer.
The homogenate is filtered through a series of cell strainers of different sizes. Next,
the tissue suspension is layered with sucrose buffer and centrifuged to remove debris
[80]. The nuclear pellet is suspended in a buffer and stained with the desired
antibody or nuclear stain for analysis by flow cytometry. In Study I, the isolated
nuclei were sorted into cardiomyocyte and non-cardiomyocyte population for
further downstream processing based on the cardiomyocyte nuclear marker PCM1.
In Study II we implemented a sucrose free nuclei isolation protocol. Briefly, tissue
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was first homogenised in NP40 lysis buffer using a rotor-stator homogenizer
followed by 8 strokes with a dounce homogenizer. The homogenate was filtered
through a 70 um cell strainer. The nuclei suspension was then centrifuged and
suspended in a buffer with the nuclear dye 7AAD. The nuclear suspension was
FACS-sorted to remove doublets and debris.
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Figure 8. Single nuclei isolation experimental workflow in Study | and Il. Frozen tissue was dissected,
homogenized, washed, filtered and either |) layered with sucrose, centrifuged and stained with DRAQ5
and PCM1 antibody or II) directly centrifuged and stained with 7AAD.

Library preparation for droplet-based single-cell RNA
sequencing

In droplet-based single cell RNA-sequencing, the first step of library preparation
involves loading of the nuclear suspension in a microfluidic controller (Chromium,
10x Genomics). The instrument utilises microfluidics to produce Gel Beads-in-
emulsion (GEMs), that contain sequencing primers, a unique molecular identifier
(UMI) and a reverse transcriptase master mix. Upon loading of the sample, single
nuclei are captured and lysed within a GEM. Incubation of the GEMs produces
barcoded, full-length cDNA from the mRNA of the captured cell or nucleus. In
Study I and II, single nuclei cDNA libraries were produced with the 3’ Gene
expression chemistry (10x Genomics) and sequenced on a NovaSeq 6000 system.
Raw base calls were imported into CellRanger software (see below) for quality
control and mapping of reads to the human reference genome.
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Figure 9. Single cell RNAseq sample processing. Schematic representation of a typical workflow for an
scRNA-seq experiment. The cell or nuclear suspension is placed into a microfluidic chip, and cells are
separated and partitioned into gel beads-in-emulsion (GEMs) droplets that include barcoded gel beads
and reverse transcription (RT) reagents. After cell or nuclear lysis, reverse transcription takes place. The
pooled cDNA is amplified in bulk, fragmented by enzymatic fragmentation, and libraries are formed. The
sequencing libraries are sequenced, and the results are analysed by alignment and demultiplexing,
before being interpreted.

Bioinformatic processing of snRNA-Seq data

In Study I and 11, Seurat (see below) was used for further processing and analysis of
single nucleus RNA-sequencing data. Molecular counts were normalised for
variations in sequencing depth across nuclei, and the variance was stabilised using
regularised negative binomial regression. Dimensionality reduction was carried out
using principal component analysis. Two-dimensional projections based on the top
50 major components were generated using the UMAP (Uniform Manifold
Approximation and Projection for Dimension Reduction) approach [81]. The
UMAP projection's shared nearest neighbor network was used for graph-based
clustering of nuclei. The expression of traditional cell-type informative markers
often employed in immunohistochemical research was used for annotation of cell
clusters.

Cell ranger

Cell Ranger is a suite of analytic pipelines developed by 10x Genomics that use
Chromium Next GEM single-cell data to align reads, construct feature-barcode
matrices, cluster, and perform secondary analysis. It includes five pipelines for the
3' Single Cell Gene Expression and 5' Immune Profiling Solutions [82].
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Seurat

Seurat, a comprehensive and versatile R software toolbox for examining and
understanding scRNA-seq data, was developed by the Satija Lab at the New York
Genome Centre. Seurat can handle data from many scRNA-seq systems and is
compatible with a variety of file types. Some of the important aspects of Seurat are
Quality control and pre-processing of single-cell data, cell type grouping and
identification, multiple gene identification, and dimensional reduction. Seurat
provides a variety of tools for viewing single-cell data, such as feature plots, violin
plots, and heat maps. t-SNE and Uniform manifold projection approximation
(UMAP) plots are popular methods for displaying high-dimensional data in two or
three dimensions [83].
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Aims and Results

Paper 1
Aim
This paper aimed to develop a framework for analysing frozen human heart tissue

at the single-cell level, providing a comprehensive view of the human heart's
transcriptional activity beyond the limitations of bulk tissue analysis.

Results

Single nuclei isolation from the frozen human heart.

We sought to evaluate the previously reported single nuclei RNA sequencing (sn-
Seq) analysis methodology on frozen human cardiac tissue. Left ventricular tissue
from a surgically excised (explanted) heart was utilized and PCM1 was used as a
marker to distinguish cardiomyocyte nuclei from nuclei originating from other cell
types. Two distinct populations of DRAQS5+/PCM1+ and DRAQS5*/PCM1~ were
detected with flow cytometry (Figure 10 A, D). The purity of the isolated nuclei was
checked by qPCR using markers PCM1, TNN3 for cardiomyocytes and VIM for
fibroblasts, respectively. As expected, PCM1" nuclei were enriched in TNN3 and
PCMI1" nuclei were enriched in VIM (Figure 10 E, G).
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Figure 10. Assessment of nuclei isolation protocol from frozen human heart tissue. (A, D) Flow cytometry
analysis of nuclei, DRAQ5" nuclei identified and gated. (E, F, G) Isolated PCM1 *nuclei were enriched in
cardiomyocytes marker PCM1 and TNN3, where PCM1™ nuclei fraction was enriched in VIM. Data is
presented as mean + SD from three independent experiments.

Single-cell transcriptomic analysis of human heart

Next, we generated single-cell transcriptome profiles from a patient with dilated
cardiomyopathy. A total of 4390 PCM1 * and 4070 PCM1" nuclei were analysed,
clustered and used to generate Uniform Manifold Approximation and Projection
(UMAP) projections. We identified nine cell clusters, including cardiomyocytes,
fibroblasts, endothelial cells, vascular smooth muscle cells, macrophages,
lymphocytes, and neurons. Cell type annotations were made using gold-standard
marker genes and Gene Ontology pathway analyses. Further analysis of
cardiomyocyte clusters revealed one cluster characterized by high natriuretic
peptide expression. TCF21, a tissue-resident fibroblast marker, was widely
expressed in the fibroblast cluster (Figure 11).
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Figure 11. Single nuclei analysis of the human heart. (A) Uniform Manifold Approximation and Projection
(UMAP) graphic was generated from 8,460 individual nuclei from a human heart with 4,390 chosen from
PCM1* and 4,070 from PCM1- nuclear fractions using fluorescence-activated cell sorting. Panel B
displays a dot plot of gene expression across clusters of certain known marker genes that are
representative of the main cell types found in the human heart. The colours red, yellow, green, cyan,
blue, purple, and pink represent cardiomyocytes, fibroblasts, endothelial cells, vascular smooth muscle
cells, pericytes, macrophages, lymphocytes and neurons, respectively.

Paper 11
Aim
The aim of this paper was to apply single nuclei RNA sequencing on a larger cohort

of heart failure patients with various etiologies to improve our understanding of
heart disease pathophysiology.

Results

A single nucleus transcriptional atlas of healthy and diseased human hearts

We performed droplet-based RNA sequencing of single nuclei from the hearts of
103 individuals, including 96 heart failure patients and 7 unused donor hearts
without heart disease. After sample and nuclear level quality control, doublet
removal and sample integration; principle component analysis and shared nearest
neighbour clustering of 398 917 nuclei from 102 individuals were used to identify
distinct cell populations in the human heart. We identified 14 clusters representing
10 distinct cell types (Figure 12 A). Endothelial cells were the largest cell cluster,
followed by cardiomyocytes and fibroblasts (Figure 12 B). Transcriptionally diverse
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subgroups were identified, with markers unique to Cardiomyocytes II suggesting
they represent cardiomyocytes subjected to hemodynamic strain.
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Figure 12. Cellular composition of the adult human heart. (A) Uniform Manifold Approximation and
Projection (UMAP) graphic generated from 398 917 individual cardiac nuclei (B) Cell composition across
all clusters and cell types

Differential gene expression in heart muscle diseases

We sought to investigate the effects of heart failure on cardiac cell composition and
gene expression. Consistent with earlier research (single-nucleus profiling of human
dilated and hypertrophic cardiomyopathy) heart failure patients had an extended
fibroblast cluster, substantial decreases in pericyte and endothelial cell clusters, and
neuronal cell reduction across 10 major heart failure etiologies (Figure 13A). Next,
differential gene expression analysis comparing heart failure with control samples
was carried out using a pseudobulk approach. Myeloid cells, cardiomyocytes I and
fibroblast cell clusters contained the most differentially expressed genes (Figure 13
B). Natriuretic peptide gene (NPPA) and Periostin (POSTN) were highly
upregulated in cardiomyocyte cluster II and fibroblast clusters, respectively. The
next step was to identify transcriptional effects related to individual heart failure
etiologies compared to control hearts. Here, DCM was found to have the highest
number of DE genes (Figure 13 C).
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Figure 13. Transcriptional profile of differential gene expression of heart muscle diseases. (A)
Comparison of fibroblats, pericytes |, endothelial cells | and neuronal cell cluster sizes across HF
ethiologies. (B) Left, volcano plot of differentially expressed genes comparing all heart failure patients
with controls. Right, comparison of the number of differentially expressed genes per cluster (C) Number
of differentially expresed genes per cluster and etiology.

Paper III
Aim
This study aimed to (1) explore the impact of the SNP rs9885413 on TSLP

expression in cardiac fibroblasts and (2) to study the role of cardiac TSLP as a
potential therapeutic target in cardiac remodeling and fibrosis.
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Results

NHLH]1 differentially binds to the enhancer region spanning rs9885413 in human
cardiac fibroblasts

We wanted to demonstrate the binding of NHLH1 to the enhancer region through
chromatin immunoprecipitation. The result showed significant enrichment of
NHLHI1 at the rs9885413-containing region compared to the negative control
antibody and compared to a region in the GAPDH promoter lacking a NHLH1 motif,
indicating the specific interaction of NHLHI1 to the regulatory motif in human
cardiac fibroblasts (HCF) (Figure 14A). We further assessed whether NHLHI1
binding is affected by the risk allele using EMSA, where nuclear protein binding to
the risk allele (T, Fig. 14C, lane 5) was significantly higher than for the wild-type
allele (G, Fig. 14D, lane 2, Fig. 14C). The presence of an excess amount of
unlabelled probe lowered the intensity of the band, indicating the specificity of the
interaction with the nuclear extract (Figure 14B, lane 6). We concluded that NHLH1
binds to the rs9885413 motif in HCF, with the risk allele increasing the affinity of
the enhancer motif.
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Figure 14. Differential binding of NHLH1 to the enhancer region flanking rs9885413 in human cardiac
fibroblasts. (A) ChIP of NHLH1 in HCF, chromatin from HCF was pulled down using NHLH1 antibody, ,
a histone 3 positive control antibody, and a non-specific negative control IgG antibody. DNA from the
specific related region and an unrelated segment within the GAPDH promoter region was quantified using
gPCR and presented as a percentage of the input DNA n=3. (B) EMSA of HCF nuclear extract, stronger
binding of risk allele T to the HCF nuclear extract can be seen (lane 5) compared to the wild type allele
G (lane 2). (C) Quantification of band intensities n=4. Statistical differences were assessed using t-tests
*p < .05, ***p < .01. Data are shown as mean + SEM, from 4 independent experiments.

NHLH|I regulates TSLP expression in cardiac fibroblasts

We aim to investigate the effect of cyclic mechanical strain on the expression of
NHLH1 and TSLP. To this end 48 hours of cyclic mechanical strain was applied on.
HCF. A 4-fold increase in NHLH1 expression and a 10-fold increase in 7SLP ex-
pression was observed compared to non-stretched control cells (Figure 15 A, B).
Further, we wanted to determine if the effect of stretch-induced 7SLP expression is
dependent on NHLH 1 in HCF during pathophysiological biomechanical conditions.
To this end, HCF was transfected with NHLHI siRNA and subjected to 10% cyclic
mechanical strain for 48 hours. The expression of stretch-induced 7SLP was
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significantly decreased (Figure 15 C). Likewise, stretch-induced expression of
markers of fibroblast activation COLIAI and FNI was also reduced compared to
negative control siRNA (Figure 15 D, E). A similar trend was observed with stretch-
induced expression of the myofibroblast marker POSTN (Figure 15 F). These results
indicate that the NHLH1/TSLP signalling pathway plays a significant role in the
development of cardiac fibrosis triggered by mechanical stress.
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Figure 15.. Knockdown of NHLH1 affects TSLP expression in stretched human cardiac fibroblasts. (A,
B) TSLP and NHLH1 gene expression after 48 hours of cyclic mechanical strain, analysed by gPCR and
normalized to ACTB. (C, F) Gene expression of TSLP, Collagen, Fibronectin and Periostin in HCF after
transfected with NHLH1 siRNA or negative control siRNA and subjected to 48 hours of cyclic mechanical
strain. The data was assessed by gqPCR normalized to ACTB and shown relative to the average of their
respective negative control siRNA sample. Statistical differences were assessed with a t-test *p < .05.

Adeno-associated virus (AAV9) mediated overexpression of TSLP in mice

Next, the effect of Tslp overexpression was investigated in vivo. Transgenic
expression of Ts/p in cardiac fibroblasts was achieved by injection of a AAV9 vector
where Tslp had been inserted downstream of the Tcf2/ promoter. A control vector
containing eGFP downstream of the T¢f21 promoter was used as a negative control.
C57BL/6 mice were injected with Ts/p and control virus and a significant increase
in Tslp expression after 3 days of viral injections was observed (Figure 16A). A
trend towards increased Tslp protein expression was also detected at day 5 (Figure
16B). Further, the role of Tslp overexpression was detected in the context of fibrosis
and remodeling, where the evaluation of collagen deposition revealed increased
fibrosis in mice injected with the 7s/p virus (Figure 16C, D). We conclude that Tslp
stimulates cardiac collagen synthesis and may contribute to fibrosis in heart failure.
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Figure 16. Tslp overexpression drives collagen deposition. (A) Gene expression analysis of cardiac Tslp
at day 3 after injection with AAV9-Tslp-eGFPTcf21, AAV9-eGFPTcf21 and no virus (n= 3 per group). (B)
Quantification of Western blot data. (C) Massom trichrome staining of tissue sections from mice hearts
after 5 days of injections. (D) Quantification of collagen in Masson's trichrome stained sections.

Mast cell stimulation

Single nuclei RNA sequencing data generated in Study II revealed that both the
TSLP receptor subunits (i.e. IL7R and CRLF?2) were expressed in mast cells. Mast
cells have previously been shown to release TGF-B, a profibrotic factor [68] in
response to TSLP [84] [85]. We considered the possibility that cardiac mast cells
release TGF-P in response to TSLP and investigated it in a human mast cell line. A
significant TGF-B upregulation was found after 3 hours of stimulation with
recombinant TSLP (Figure 17A, B). To further explore this finding in vivo, cardiac
mast cells were stained with toluidine blue and ¢-KIT antibody. Mice injected with
Tslp virus showed a significant increase in toluidine blue+ cells (Figure 17C, E).
The result indicated that overexpression of TSLP in fibroblasts leads to the
activation of cardiac mast cells, prompting the production of TGF-p.
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Figure 17. TSLP triggered TGF-3 production in mast cells. (A, B) TGF- expression in mast cells after
being stimulated by 10 and 20 ng of recombinant TSLP respectively for 3 hours. (C, D) Toluidine blue
staining of cardiac sections from mice at day 5, scale bar 100 um (E) Percentage of total toluidine
blue*.cells.

Paper IV

Aim
This study aimed to compare cardiomyocyte nuclear size in individuals with and

without heart failure, and to assess whether cardiomyocyte strain affects nuclear
size.

Results

Cardiomyocyte nuclei and cells are larger in failing hearts

The first step was to compare cardiomyocyte cell and nuclear size between heart
failure patients and controls. We performed immunofluorescence staining of cardiac
tissue sections using an antibody to cardiomyocyte marker Troponin T, cell
membrane dye WGA and nuclear dye DRAQ7. High content screening and
automated quantification of cell and nuclear size revealed cardiomyocyte size was
larger in heart failure patients compared to controls, in line with the expected heart
failure-related cardiomyocyte hypertrophy and remodeling. Interestingly,
cardiomyocyte nuclei were also found to be larger in heart failure patient’s samples
than controls (Figure 18 A, B).
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Figure 18. Cardiomyocytes nuclei and cells are larger in failing hearts. (A) Troponin T staining of paraffin
tissue sections, Troponin T (orange), membrane staining with WGA (green), and counter-staining with
DRAQ 7 (Red). Scale bar: 50 ym. (B) A comparison of the nuclear and cellular regions of cardiomyocytes
in control and patient samples. The analysis was performed in the Operetta CLS high-content imaging
system. Statistical differences were assessed using Paired t-tests ****P < 0.0001 data is presented as
mean = SEM.

Cyclic mechanical strain increases cardiomyocyte nuclei size

We sought to determine if mechanical strain could cause cardiomyocyte nuclear
hypertrophy. iPS-derived cardiomyocytes were subjected to cyclic mechanical
strain. NPPA gene expression was significantly increased after 48 hours, confirming
that the assay produced physiologically meaningful levels of mechanical strain
(Figure 19 A, B). Further, the size of cardiomyocyte nuclei was assessed and a
substantial increase in nuclear size was observed (Figure 19 C). This result suggests
that mechanical strain could be the driver of nuclear hypertrophy.

45



Relative ANP expression

Figure 19. Cyclic mechanical strain increases the nuclear size. (A) iPS-derived cardiomyocytes were
subjected to cyclic mechanical strain for 48 hours, representative images were taken in the brightfield,
scale bars 50 and 100 um respectively. (B) gPCR quantification of ANP gene expression in IPS-derived
cardiomyocytes after 48 hours of strain. (C) Manual analysis of the nuclear area of stretched and non-
stretched controls. Statistical differences were assessed using unpaired t-test **P < 0.01, ****P < 0.0001
data is presented as mean + SEM.
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Discussion

Paper 1

In this study, we developed a protocol for robust isolation of single nuclei from
human hearts for individual transcriptional profiling, which was not available when
we first set out on this project. Using frozen heart tissue, we first applied enzymatic
digestion protocols but found limited cell yield and quality. Instead, we developed
a protocol for nuclear dissociation from frozen tissue.

Importantly, we found that nuclear transcriptomes are strongly associated with
cytosolic and whole-cell transcriptomes in human heart cells, supporting that our
single nucleus sequencing protocol provides representative information on the
overall cellular transcriptome. We note that our findings are concordant with similar
work from nerve tissues which found correlation between transcriptomes of
individual nerve cells and nuclei [86]. In addition, we have also shown that PCM1-
gating can efficiently be used to separate cardiomyocytes from non-cardiomyocytes.
Using PCM1* based sorting, we confirm that the transcriptome of bulk heart tissue
is most strongly associated with the cardiomyocyte enriched PCM17 cell subset.

We then applied our snRNA-Seq sequencing protocol to generate a cell atlas of the
human heart, from patients with DCM and ischemic cardiomyopathy (ICM), which
had not previously been published at the time. By application of cluster analysis, we
identified eight different cell clusters, and confirmed that fibroblasts,
cardiomyocytes, and endothelial cells are the major cell types in human hearts,
followed by smooth muscle cells, pericytes, macrophages, lymphocytes, neurons,
and adipocytes, consistent with published work based on histology [18]. Our
findings were also consistent with a subsequently published atlas of the human heart
from the Human Cell Atlas project [9]. Clusters were identified using existing cell
type markers and pathway-based grouping with global transcriptional patterns.

Interestingly, we noted two cardiomyocyte clusters. We believe that the smaller
group of cardiomyocytes, marked by natriuretic peptide expression, might represent
nuclei from cardiomyocytes that have been particularly exposed to strain or injury
and are therefore particularly active in remodelling processes. This cluster was again
observed in our larger study of independent hearts in Paper II but further study is
required before any mechanistic inferences can be drawn.
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Paper 11

In this study, we sequenced a large number of human hearts with ten different
phenotypes and control hearts without evidence of heart failure. We identified 14
cell clusters representing 10 distinct cell types among which endothelial cells,
cardiomyocytes and fibroblasts were again the most common cell types, consistent
with our previous study. Furthermore, as mentioned we again observed two
cardiomyocyte clusters of which the smaller cluster expressed a transcriptional
profile consistent with increased strain and fetal gene expression program
remodelling. We further observed a notable increase in the number of fibroblasts
and a decrease in vascular cell populations in failing hearts [29] consistently across
all etiologies, highlighting significant cellular changes in heart failure. Further, we
detected multiple differentially expressed genes across all ten etiologies. The
highest unique differentially expressed genes were found in arrhythmogenic right
ventricular cardiomyopathy, a condition not previously studied in single cell studies.
The validity of our findings will need to be confirmed in additional samples using
independent methods, ideally with spatial resolution to allow understanding of the
tissue context of these findings.

Paper III

In thus study, we explored mechanisms for a SNP previously linked to heart failure
mortality. Our findings highlight 7SLP as the likely gene underlying the association
of the SNP with HF mortality. The SNP was located in an enhancer motif upstream
of the TSLP gene and conferred increased binding of the transcription factor
NHLHI1 and increased TSLP expression in human heart. Furthermore, we detected
increased expression of TSLP in primary human cardiac fibroblasts in response to
mechanical strain, recapitulating conditions in heart failure with high strain. A
significant decrease in TSLP expression was observed both at rest and, more
markedly, after strain, when NHLH1 was suppressed indicating that TSLP is likely
regulated by NHLH1 in human cardiac fibroblasts. In addition, overexpression of
TSLP in cardiac fibroblasts, by use of a TFC2I-promoter vector, resulted in
increased fibrosis and collagen deposition. In our snRNAseq dataset from study I,
we found that the TSLP receptor was present in cardiac mast cells and observed that
TSLP administration to mast cells resulted in increased TGF-beta expression,
suggestive that strain-induced crosstalk between fibroblasts and mast cells in the
human heart may contribute to tissue fibrosis. Mast cells have also previously been
described to release TGF-f [68].

It has been previously shown in other conditions that TSLP is released in parallel
with IL-25 and IL-33 [87], and that IL-33 is released from cardiac fibroblasts in
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response to increased strain during heart failure [88]. Our findings suggest that
combined targeting of IL-33 and TSLP may confer benefits to prevent cardiac
remodelling. Additional experiments to evaluate this therapeutic strategy in animal
models of heart failure are warranted.

Paper IV

The main observation of this study was that in addition to larger cell size, nuclear
size is also larger in failing hearts as compared to non-failing hearts. This
observation was consistent across multiple etiologies which highlights the
robustness of the observed phenomena across a range of heart failure phenotypes.
We also observed that increased strain results in increased nuclear size, suggesting
a role of mechanoresponsive pathways.

We argued that the larger size of cardiomyocyte nuclei in failing hearts may indicate
increased transcriptional activity, but in our cardiomyocyte strain experiment we
observed reduced total RNA abundance in both nuclei and cytoplasm, which does
not support a role of broadly increased transcription. Further experiments are
therefore needed to understand the mechanisms underlying these findings, which
could potentially include factors such as DNA abundance, open chromatin, or
altered nuclear-cytoplasmic transport. Furthermore, future studies will need to
explore whether strain-induced changes in DNA replication and polyploidization in
iPS-CMs as used here could contribute to increased nuclear size and contribute to
our findings.
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Conclusions and perspectives

The results of this work establish the feasibility of dissecting the molecular
pathophysiology of heart diseases by RNA sequencing of frozen single cardiac
nuclei. Furthermore, we sought to apply such methods at scale to >100 human hearts
and identified molecular signatures associated with specific heart muscle
conditions, which need to be confirmed in independent cohorts and expanded for
improved precision. Finally, our work implicates TSLP as a putative therapeutic
target to prevent cardiac remodelling which will need to be studied further in
experimental HF models.
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