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Popular Science Summary 
Microorganisms form the backbone of life on this planet. They are responsible for 
key global elemental cycles (such as the carbon, nitrogen and phosphorus cycle) that 
maintain the balance of biologically available forms of nitrogen and phosphorus in 
the form of ammonium and phosphate which are essential for the sustenance of 
small and large organisms. The carbon cycle is also maintained by microorganisms 
to a large extent as they account for the conversion of the majority of carbon di oxide 
into sugars and vice versa.  

Due to the variety of microorganisms present they are capable of producing and 
breaking down most organic material except for some synthetic materials such as 
teflon and plastics. These synthetic materials are causing long term damage to the 
environment as well as to our health. To enable the discovery and production of 
alternative materials for replacing these synthetic compounds, as well as to degrade 
existing synthetic compounds that have entered the environment, we need to widen 
the variety of microbes that we can cultivate. As of now we can cultivate only a 
small fraction of the microbes that are around us, and to expand this we need a better 
understanding of what limits their growth.  

To expand our ability to cultivate a wider variety of microbes, there is a need to 
understand alternative central carbon pathways. The central carbon metabolism is a 
series of chemical reactions in which various forms of carbon are fixed or broken 
down to form energy carriers for growth and reproduction of the microbes. For 
microbial growth, the energy carrier is in the form of adenosine triphosphate (ATP) 
which is a molecule that releases energy when the phosphate bonds are broken. It 
can also be in the form of electrons that can be utilised in reactions where electrons 
are transferred between molecules by cofactors such as nicotinamide adenine 
dinucleotide (NAD+), in what is called oxido-reductive reactions or ‘redox 
reactions’. The amount of redox cofactors (NAD+) and energy currency (ATP) 
formed is determined by the central carbon metabolism. This is well understood for 
the most common pathway which is the Embden-Meyerhoff-Parnas pathway but 
has to be expanded when microbes that use less-well studied pathways like the 
phosphoketolase pathway in Limosilactobacillus reuteri, which is a common 
probiotic microbe being grown industrially.  

This thesis focuses on expanding our understanding in the relationship between 
redox carriers and energy in two specific microbes. One is Limosilactobacillus 
reuteri that prefers the use of a pathway that produces less energy (phosphoketolase 
pathway) even when a fully functional EMP pathway is present. This organism has 
evolved to colonise the gastrointestinal tract of various animals and thus 
understanding the physiology of its central carbon pathway can shed light into how 
this microbe can successfully compete with other gut microbes even when it has less 
energy available. 
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The second organism in focus is the yeast Saccharomyces cerevisiae that has been 
engineered with a xylose-utilising pathway. Xylose is a substantial part of 
lignocellulose, which is a promising substrate for biosynthesis of various value-
added compounds. The pathway that was introduced by engineering reduces the 
total energy production rate while imposing a redox imbalance when grown on 
xylose. This is caused by a disconnect between the reduced and oxidised forms of 
NAD+. The thesis focuses on using pyrophosphate as an additional energy carrier, 
which is a byproduct of cell growth and metabolism. My research showed that it 
increased robustness of the yeast when metabolizing in stressful environmental 
conditions as often seen in industrial fermentation processes. 
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Populärvetenskaplig sammanfattning 
Mikroorganismer utgör grunden för liv på vår planet. De ansvarar för viktiga 
kretslopp av olika grundämnen (såsom kol-, kväve- och fosforcykeln) som 
upprätthåller balansen av biologiskt tillgängliga former av kväve och fosfor i form 
av ammonium och fosfat, vilket är helt avgörande för små och stora organismers 
överlevnad. Kolcykeln upprätthålls också till stor del av mikroorganismer eftersom 
de står för majoriteten av omvandlingen av koldioxid till socker och vice versa.  

På grund av deras stora mångfald så kan mikroorganismer producera och bryta ned 
nästan allt organiskt material förutom vissa syntetiska material såsom teflon och 
plast. Dessa syntetiska material orsakar långsiktig skada på miljön och vår hälsa. 
För att möjliggöra upptäckt och produktion av alternativa material för att ersätta 
dessa syntetiska föreningar, samt för att bryta ned befintliga syntetiska föreningar 
som har släppts ut i miljön, behöver vi en bredare variation av mikroorganismer som 
vi kan odla. För närvarande kan vi bara odla en bråkdel av de mikroorganismer som 
finns runt omkring oss, och för att expandera detta behöver vi en bättre förståelse 
över vad som begränsar deras tillväxt.  

För att öka vår förmåga att odla en bredare variation av mikrober finns det ett behov 
av att förstå alternativa vägar för kolmetabolism. Den centrala kolmetabolismen är 
en serie kemiska reaktioner där olika former av kol fixeras eller bryts ned för att 
bilda energibärare som behövs för mikrobernas tillväxt. För mikrobiell tillväxt bärs 
energin i form av adenosintrifosfat (ATP), vilket är en molekyl som frigör energi 
när dess fosfatbindningar bryts. Energin kan också vara i form av elektroner som 
kan användas i reaktioner där elektroner överförs mellan molekyler med hjälp av 
cofaktorer såsom nikotinamidadenindinukleotid (NAD+), i vad som kallas 
'redoxreaktioner'. Mängden redox-cofaktorer (NAD+) och energivaluta (ATP) som 
bildas bestäms främst av den centrala kolmetabolismen. Detta är välstuderat för den 
vanligaste vägen som är Embden-Meyerhoff-Parnas-vägen (EMP) men måste 
utforskas mer när det gäller mikroorganismer som använder mindre studerade vägar 
så som fosfoketolasvägen i Limosilactobacillus reuteri, vilket är en vanligt 
förekommande probiotisk mikroorganism som odlas i industriell skala.  

Denna avhandling fokuserar på att fördjupa vår förståelse för förhållandet mellan 
redoxbärare och energi i två specifika mikroorganismer. Den ena är 
Limosilactobacillus reuteri som föredrar att använda en väg som producerar mindre 
energi (fosfoketolasvägen) även när en fullt fungerande EMP-väg är tillgänglig. 
Denna organism har utvecklats för att kolonisera mag-tarmkanalen hos olika djur 
och förstå fysiologin för dess centrala kolmetabolismen kan därför belysa hur denna 
mikrob framgångsrikt kan konkurrera med andra tarmmikrober även när den har 
mindre energi tillgänglig.  

Den andra organismen i fokus är en stam av jästen Saccharomyces cerevisiae som 
har modifierats för att kunna använda xylos. Xylos utgör en väsentlig del av 
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lignocellulosa, vilket är ett lovande substrat för biologisk produktion av olika 
värdefulla ämnen. Den metabola vägen som har introducerats minskar den totala 
energiproduktionshastigheten samtidigt som den inför en redox-obalans när jästen 
odlas på xylos. Detta beror på att jämvikten mellan de reducerade och oxiderade 
formerna av NAD+ påverkas. Avhandlingen fokuserar på att använda pyrofosfat 
som ytterligare en energibärare. Pyrofosfat är en biprodukt från celltillväxt och 
metabolism. Min forskning visade att det ökade jästens robusthet när den odlas 
under stressiga miljöförhållanden, vilket ofta ses i industriella jäsningsprocesser. 
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Abstract 
Anaerobic fermentation, compared to aerobic processes, remains the most scalable 
method for bioproduction of compounds. This is due to that aerobic microbial 
processes require large amounts of energy and are unable to satisfy the oxygen 
demand of a high-density microbial biomass. Thus, anaerobic microbes are readily 
scalable to large volumes. It was found that most anaerobic microbes have evolved 
with the Embden-Meyerhof-Parnas pathway for efficient and luxurious growth 
under these conditions due to adequate energy production provided by the pathway. 
It is also found that most of these microbes are able to establish a balanced redox 
and energy metabolism either by the use of anaerobic respiration or other forms of 
ATP synthesis.  

Some microbes, however, are of industrial relevance but are not capable of luxurious 
growth without the use of external electron acceptors or other external conditions. 
Among these microbes, the suspected issues are usually attributed to redox or 
energy imbalances. Thus, the thesis expands on our understanding of the regulatory 
mechanisms and explores possible engineering methods to improve their growth 
rates by focusing on two specific microbes, namely the bacterium 
Limosilactobacillus reuteri and the yeast Saccharomyces cerevisiae. 

Oxygen tolerance of Lb. reuteri is important as it is one of the mechanisms to 
alleviate the redox imbalance. This study expands on the variations of oxygen 
tolerance between strains and shows that Lb. reuteri DSM 17938 does not 
necessarily produce more peroxide per biomass but has greater resistance than its 
counterparts. In parallel the various lactate dehydrogenases present in Lb. reuteri 
DSM 17938 were enzymatically characterised to explore the presence of alternative 
control mechanisms that may be present due to the simultaneous utilisation of two 
different central carbon pathways. The impact of overexpression of the native 
phosphofructokinase candidates which are predicted to be from a minor family 
revealed issues related to protein burden in lean media. 

The introduction of a proton pumping pyrophosphatase (H+-PPase) to supplement 
the proton pumping ATPase (H+-ATPases) in S. cerevisiae was also explored. 
Under stressful conditions, the study revealed that the H+-PPase could improve the 
growth rate and successfully act in restoring pH homeostasis. The H+-PPase 
improved growth of S. cerevisiae in high acetic acid concentrations and showed that 
there may be more limiting factors in xylose engineered S. cerevisiae. The study 
also revealed new avenues for improving productivity for ethanol production using 
lignocellulosic biomass as well as possible alternative methods that could be 
implemented to increase production of existing compounds that are currently ATP 
limited. 
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1 The need for expanding industrially 
relevant microbes 

A select number of microorganisms retain a large preference for industrial 
production of various compounds [1]. These microbes have the advantage of being 
optimised for production by the long use through history, and later through 
established toolboxes for engineering [2]. These industrial processes are now faced 
with new challenges because of various factors, such as limitations in the metabolic 
pathways present in the microbes, ability of current microbes to produce new 
pharmaceutical compounds and so on [2]. 

Any limitation in the metabolic pathways present in existing industrial microbes 
hinders their use in upscaling bioprocesses for production of value-added 
compounds. These processes are essential to tackle climate change and to introduce 
a cyclic economy. Some examples of this are the production of biofuels, such as 
methane, ethanol and butanol from compost waste, animal husbandry waste and 
agricultural/forestry waste [3]. Other examples are recycling plastic waste [4], 
production of microbial polymeric matrices for alternative clothing material and 
leather [5].  

Recently, a few companies are focussing on using nonconventional microbes for 
production of various metabolites and compounds [6]. One such company is Lanza 
biotech, that pioneers the use of C1 compounds (CO2) for production of biofuels 
using Clostridium autoethanogenum [7].  

The ease of use of the microbes currently applied in industry is enabled by the 
understanding of their central carbon pathways that are required for producing 
energy and redox equivalence for the biochemical reactions that enable growth. To 
use waste streams for production of high-value compounds, alternative central 
carbon pathways are required. To this effect, an understanding of limitations in 
organisms that do not use the Embden-Meyerhoff-Parnas (EMP) pathway could 
shed light in the adoption of new microbes for industry as well as engineering 
existing microbes for new metabolic avenues.  
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1.1 Diversity in regulation of EMP Pathway 
The collective works of numerous scientists over a period of almost a century, led 
to the elucidation of the most canonical pathway for glucose metabolism, the 
Embden-Meyerhof-Parnas pathway. The studies elucidating the EMP pathway were 
finalised in 1940, and it remains the most well studied of the central carbon 
pathways [8]. This pathway (Figure 1) converts the 6-carbon sugar, glucose to two 
3-carbon moieties (pyruvate).

Figure 1: The Embden Mayerhoff parnas pathway.  

The process begins with phosphorylating the sugar in two individual steps. The 
initial step after the facilitated uptake of glucose is phosphorylation. In higher 
eukaryotes this is facilitated by ATP-dependent kinases [9]. However, in at least a 
third of bacteria this is facilitated by a sugar phosphotransferase (PTS) system [10]. 
This is followed by phosphorylation of the other end of the 6-carbon compound to 
make the entire sugar usable. The resultant fructose 1,6 bisphosphate is split into 
glyceraldehyde 3 phosphate (G3P) and dihydroxyacetone phosphate. The latter is 
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converted to G3P, and a cascade of reaction leads to the formation of pyruvate with 
the net production of 2 molecules of ATP and 2 molecules of NADH per glucose 
molecule. 

Microbes that are capable of aerobic (𝑂ଶ) or anaerobic respiration (𝑁𝑂ଷି , 𝑆𝑂ସଶି) can 
convert the redox equivalence (NADH) into energy (ATP) via a proton motive force 
[11], [12]. The involved electron transport chains can be regulated to establish a 
redox balance and elevated energy levels [13]. Microbes that lack an electron 
transport chain, rely on substrate level phosphorylation to recover the redox 
equivalence, and are termed as fermenters. Some aerobic microbes are capable of 
fermentation in anaerobic conditions and these microbes can be subject to redox 
imbalances when under additional stress conditions. This is the case for S. cerevisiae 
that is grown under anaerobic conditions in the presence of phenolic compounds 
[14]. 

Due to the ubiquitous nature of the EMP, it is regulated at the transcription, 
translation, and protein levels [15], [16], [17]. The nature and quantity of regulation 
are varied and based on the overall metabolism of the microorganisms. 

1.1.1 Regulation of the EMP pathway using energy carriers 
The breakdown of sugars leads to the production of energy in the form of phosphate 
bonds (ATP) and electron donors (NADH + H+, and NAD(P)H + H+) [18]. The 
reactions generating or using these cofactors are key points as these reactions are 
considered irreversible in the EMP pathway [18]. These molecules are used to drive 
biochemical reactions towards the direction favourable for microbes. The 
concentration of these molecules can regulate the activity of the enzymes in the 
EMP pathway [19].  

Energy in biology is mainly obtained by breaking phosphate bonds [18]. This is 
primarily carried out using adenosine triphosphate (ATP), which is a small molecule 
made of covalently bonded nucleoside (adenine), sugar (ribose) and three phosphate 
groups. Some organisms are also capable of using adenosine diphosphate (ADP) as 
well as inorganic pyrophosphate (PPi). These molecules act as a phosphate donor to 
drive phosphorylation reactions such as sugar phosphorylation, protein 
phosphorylation, etc. ATP is also involved in active uptake or excretion of some 
compounds as well as cations. It can function as an intracellular response/signalling 
molecule in addition to maintenance of intracellular pH (pHi), and intracellular 
cation concentrations (Na+, Mg2+, Ca2+).  

Redox equivalence or redox cofactors (NAD+, NADP+, FAD+) are involved in 
oxidation-reduction reactions, which are a major part of biological processes. These 
cofactors can store electrons released by the oxidation of sugars and drive the 
reactions that require energy in the form of electrons. Examples are reactions 
involving detoxification and reactive oxygen species response as well as substrate 
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level regeneration (e.g. reduction of pyruvate to lactate). These cofactors share the 
ADP nucleotide, and ribose with the addition of either nicotinamide or flavine 
moieties instead of a regular nucleic base in the second nucleotide.  

In all organisms the concentrations of the energy carriers (ATP, ADP, AMP) and 
redox cofactors (NADH, NAD+), among other metabolites, regulates the activity of 
the enzymes in the EMP pathway [20], [21], [22], [23]. These enzymes have 
variations in their amino acid sequences making them susceptible to detect and 
respond to variations in the intracellular conditions based on the concentration or 
formation fluxes of these cofactors [21]. This response is especially important under 
stress conditions that lead to a depletion of ATP or redox cofactors. For instance, 
cell death becomes likely if ATP production and depletion through regulation of the 
glycolytic pathway is not maintained, because ATP is required for the first half of 
EMP pathway. 

1.1.2 Regulation using intermediate metabolites 
The concentrations of the intermediate metabolites of the EMP also regulates the 
activity of the downstream reactions. A classic example is the feed forward 
activation of pyruvate kinase and lactate dehydrogenase (LDH) by the concentration 
of fructose 1,6 bisphosphate (FBP) [24], [25], [26]. This method of regulation is 
also conserved in higher organisms. In Saccharomyces cerevisiae only the pyruvate 
kinase is regulated by this mechanism as no native LDH is present [27], [28].  

1.1.3 Other regulatory mechanisms 
The response of the enzymes involved in the EMP pathway is related to their 
enzymatic properties at optimal conditions. These optimal conditions are 
established by a combination of numerous factors, such as intracellular pH (pHi), 
substrate, product, and cofactor concentrations [29], [30]. The extracellular 
conditions also affect the intracellular environment and thus the enzyme efficiency. 
The enzyme activity efficiencies for the various reactions in the pathway defines the 
total flux through that pathway [16]. 

The pHi is assumed to be at near neutral conditions. This is supported by strong 
evidence showing that the catalytic activity of the EMP pathway enzymes are 
directly affected by changes in pH beyond the neutral range [16], [31]. However, 
some microbes, such as Lactobacillus acidophilus, can maintain enzyme activity in 
the EMP pathway even when the pHi approaches 4.5 [32]. 
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1.2 Scope of the Thesis 
This thesis focuses on chemo-organo-heterotrophic microbes. These microbes 
require organic compounds such as sugars for its growth. Of all chemo-organo-
heterotrophs many microbes still elude cultivation in the laboratory environment 
[33], [34], [35]. Of this small subset of cultivable microbes, the most successful 
laboratory and industrial microbes are likely to use the EMP pathway making it the 
most well understood pathway. This pathway is also used as a benchmark to 
understand other pathways [36], [37], [38]. This thesis focuses on two 
microorganisms possessing alternative pathways as case studies.  

The first organism Limosilactobacillus reuteri uses the phosphoketolase pathway 
(PKP) as its main central carbon pathway and uses the EMP pathway as a shunt. 
This organism is of interest due to its ability to produce industrially relevant 
compounds as well as its probiotic properties. To understand the probiotic properties 
a clearer picture of the metabolic limitations of the unique central carbon 
metabolism must be obtained. Paper I, II and III elucidates the various 
characteristics of Lb. reuteri and variations among its strains. Most research with 
this microbe uses rich media such as Man-Rogosa Sharpe (MRS) medium. This 
medium has various electron acceptors in addition to the substrate, which might 
interfere with our study focus. We are interested in understanding the mechanisms 
involved in mitigating the various restrictions posed by its central carbon 
metabolism, and thus, defined and semi defined media are essential to avoid 
multiple interpretations.  

Another organism in focus is an engineered strain of Saccharomyces cerevisiae that 
is capable of fermenting xylose using the oxido-reductive xylose pathway. This 
organism has limitations in its ATP formation flux on xylose under anaerobic 
conditions. Paper IV reports on an alternative method for restoring pH homeostasis 
that can relieve the ATP burden under stressful conditions. 
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2 Applying redox and energy 
balances to understand growth 

A comprehensive genomic analysis revealed that anaerobic microbes 
overwhelmingly rely on the adequate ATP yield of the EMP pathway (Figure 2) 
[39]. This begs the question as to why some microbes use alternative pathways 
under the same constraints. 

 

Figure 2: Microbial glycolytic pathway in relation to its oxygen requirement. Adapted from 
Flamholz et al., (2013)[39]  

To expand our understanding of microbial growth under anaerobic conditions, a 
simplified toolbox based on redox and energy formation fluxes could be employed. 
The toolbox utilizes only the formation fluxes as this is mainly correlated to the 
central carbon metabolism, whereas the consumption of energy and redox occurs in 
many more reactions making it difficult to follow. This difficulty becomes more 
prevalent when organisms are under stress as these mechanisms are generally 
upregulated only during exposure to such stress conditions [37], [40], [41]. This is 
because ATP is generally considered as the driving force due to the free energy (ΔG) 
of 50 kJ/mol produced by breaking the phosphate bonds under physiological 
conditions [42]. If we consider the redox cofactors, microbes with aerobic or 
anaerobic respiration chains can convert this into energy. In the case of microbes 
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that lack a respiratory chain, they still require the redox cofactors for oxido-
reductive reactions. If we take a closer look at the oxido-reductive reactions the 
reductive potential of the reaction is proportional to the ΔG required for the reaction 
and thus these cofactors can be interpreted as a form of potential energy. Since 
oxido-reductive reactions involve a redox couple each half of the couple is provided 
a standard reduction potential (𝛥𝐸ᇱ ) and ΔG can be calculated from a formula 
(Figure 3, Equation 1).  𝛥𝐺°ᇱ ൌ െ𝑛𝐹 ∙ 𝛥𝐸ᇱ (1)

Where ΔG°’ is the Gibbs free energy, n is the number of electrons being transferred, 
and F is the Faraday constant (96.5 kJ/mol). An example being the free energy 
released by the substrate level reduction of pyruvate to lactate produces -25.1 kJ/mol 
[43].  

Figure 3: The redox tower: The reduction potentials measured in electon volts (Eo’) with the difference 
of electron potential for the most common redox couples.  

By considering ATP as kinetic and redox as the potential energy we can consider 
the growth rate as a function of a ratio of these fluxes (Equation 2): 
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µ = 𝐹(𝑅) = 𝐹(ಿಲವ(ು)ಹಲು ) (2) 

where, RJ is the dimension less formation flux ratio, J are the formation fluxes in 
mmol·h-1·g-1, NAD(P)H is the summation of the redox equivalences. The equation 
captures kinetics and thus requires flux balance analysis to determine these fluxes 
[44].  

2.1 Formation flux ratios in well elucidated central 
carbon pathways 

Taking only the formation fluxes of energy and redox in the EMP pathway, it is 
noted that a total of 2 moles of NADH and 4 moles of ATP are produced per mole 
of glucose (Figure 4A). This will give, according to equation 2, a RJ-value of 0.5. 
This low value is considered as the most optimal situation, i.e. the most efficient 
route for a balanced redox and ATP. We can compare it now with the Entner-
Doudoroff (ED) (Figure 4B) and phosphoketolase pathways (Figure 4C) for which 
we find the RJ-values being higher: 1 and 1.5, respectively.  

In most microbes there are always a minimum of two central carbon pathways 
operating simultaneously and thus the RJ-value will be liable to changes in the fluxes 
through these pathways, and this may depend on the microbe and the environmental 
condition. Taking only the EMP and the PPP pathways as an example, L. lactis has 
a very small (<2%) carbon flux through the PPP pathway [45]. However, the flux 
through the PPP in S. cerevisiae ranges from 0.9 to 20% depending on the cell phase 
and whether glucose is oxidised or not [46]. 

2.2 Implications of formation flux ratio 
This convenient formation flux ratio (RJ) can be used as a ballpark for the direction 
of engineering for increasing growth rates. Reducing the RJ value improves the 
growth rate and performance. Some organisms that showcase metabolisms with 
high RJ values are Leuconostoc sp., Limosilactobacillus reuteri, Zymomonas mobilis 
and xylose-fermenting Saccharomyces cerevisiae. The last organism mentioned has 
usually a low RJ value, like during aerobic or anaerobic growth on glucose. Lb. 
reuteri and S. cerevisiae are discussed in greater detail in the subsequent chapters, 
whereas a brief observation is provided here for evidence of the hypothesis in the 
other organisms mentioned. 
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Leuconostoc mesenteroides is an obligate heterofermentative LAB that relies solely 
on the phosphoketolase pathway for growth and assimilation of carbon [47]. The 
phosphoketolase pathway converts one mole of glucose to one mole of acetyl 
phosphate and one mole of glyceraldehyde 3 phosphate. Only the latter metabolite 
leads to the formation of ATP, and acetyl phosphate is converted to ethanol to 
regenerate NADH, if the organism is grown anaerobically [38], [47]. The organism 
can produce one mole of acetate per mole of glucose if oxygen or electron acceptors, 
such as fructose, are provided [47]. As a result, the ATP yield increases, thereby 
decreasing the RJ value significantly. It has been argued that microorganisms 
possessing the PKP pathway thrive best in environments where electron acceptors 
are present [47], [48]. 

Even though microorganisms such as Zymomonas mobilis have been characterised 
well, there are still large gaps in understanding how it copes with utilising only the 
Entner-Doudoroff pathway. Overexpression of most glycolytic proteins in this 
bacterium leads to a decrease in growth rate due to the burden on protein expression 
[49]. This was, however, further clarified by other studies and it revealed that the 
glycolytic control was ATP dependent and increasing ATP formation is a viable 
engineering strategy for the microbe [50]. 

2.3 Methods for following intracellular cell states 
The goal to manipulate the formation flux ratio (RJ) is to understand the impact of 
attempts to restore the redox balance as well as the energy balance of the cells in 
relation to its growth rate. This is a dynamic system that has far reaching 
consequences as the redox (NAD(P)H) levels define the reductive power of the cells 
that remains available for other metabolic processes and the energy carrier ATP is 
important for proliferation and maintenance of vital systems, such as intracellular 
pH and DNA synthesis. 

Since the aim is to disrupt the redox and energy as a means to gain insight in their 
interconnected metabolism, measurement of these cofactors is useful for elucidating 
the cell state and determine the direction of engineering. This has been facilitated 
by numerous methods. However, the measurement of the redox cofactors is affected 
by various factors, such as the estimation of the concentration of NADH and 
NADPH in the protein-bound form [51].  

The traditional methods used to estimate the concentration of intracellular redox 
couples are limited in their scope due to their time consuming and expensive nature 
[51]. Most of these methods are also limited to offline measurement, for example 
mass spectrometry, NMR, enzymatic assays or fluorescent lifetime imaging [51]. 
These methods are subject to various considerations due to the rapid turnover of 
redox couples within the cell. To address the rapid turnover rates quenching of the 
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metabolic activity is required which usually involves the addition of methanol at -
40°C or the use of liquid nitrogen and recent advances have reduced the time 
required for this [52]. This is followed by cell disruption and then the estimation of 
the concentration of the redox couples. 

The estimation of the concentration of redox couples can be done directly with 
spectrophotometry at a wavelength of 340 nm using cell extracts by the use of 
enzymatic cycling (ethanol and alcohol dehydrogenase for determination of NAD+ 
and NADH; glucose 6-phosphate and glucose 6-phosphate dehydrogenase for 
NADP+ and NADPH) [53], [54]. However, this method is subject to various 
inaccuracies caused by variations in the handling of cells, activity of the enzymes 
used in the cell extract, and pH. The use of mass spectrometry is promising due to 
its low limit of detection, but they are restricted to use after HPLC systems which 
operate at a pH that leads unfortunately to analyte degradation [55], [56], [57]. The 
use of 13C-NMR is robust for the detection of the redox couple concentrations, but 
they usually require high cell concentrations for reliable measurements and the cost 
of 13C-labelled metabolites and the use of NMR are rather expensive for routine 
estimation [58], [59], [60]. Fluorescence life time imaging for the estimation of 
redox couple concentrations would be a good alternative, but this method is rather 
limited in scope for scale up of bioreactors which may be subject to population 
variances [61], [62]. 

Alternatively, flux balance analysis can also be used to estimate the redox balance. 
However, without the use of 13C-NMR, this method is subject to overestimations 
[63]. Nonetheless this method is also not capable of providing the immediate live 
state of the cells growing in bioreactors as they require HPLC to estimate the 
concentrations of the metabolic substrates and products. 

An online method is beneficial for direct observation of these factors. This can be 
facilitated using GFP-based fluorescence proteins that place very little burden on 
the cell and facilitate a direct non-invasive method of following intracellular cell 
states [64], [65], [66]. The application of these proteins has been used extensively 
with live cell imaging to understand the metabolic processes on a single cell level 
and their adoption for assessing the cell states in larger scale cultivations using flow 
cytometry is slowly growing. 

2.3.1 Fluorescence Biosensors 
Unlike the autofluorescence of the redox couples (NADPH and flavins), cellular 
structures (mitochondria and lysosomes) and other proteins (proteins containing 
high amounts of tryptophan, tyrosine and phenylalanine) [67], [68], [69], [70], 
induced fluorescence can be enabled by the use of engineered fluorescent proteins 
[71], [72], [73], [74], [75], [76], [77]. This can be due to changes in intracellular 
states such as the concentration of small molecules, metabolites as well as changes 
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in the expression of various genes. Some fluorescence biosensors/reporters use the 
existing promoters that respond to various cell stresses to induce expression of 
fluorescent proteins [78], [79]. This enables the identification of the global cell state 
or the time/growth phase at which a particular gene or promoter is induced [74], 
[80], [81]. Other fluorescent biosensors are chimeric proteins, which is a mix of a  
fluorescence protein with a protein that is involved in a particular function, that 
changes its fluorescence intensity based on the quaternary structure of the bound 
protein [66], [76], [77], [82]. A few fluorescence proteins of the latter variety are 
highlighted here (pun not intended). 

2.3.2 ATP biosensors 
Estimating the relative ATP abundance of the cell during the various growth phases 
enables a deeper understanding of cellular energetics [83], [84], [85]. The 
concentration of ATP is dynamic during the various phases of the cell and following 
this in real time has been challenging using traditional methods [86], [87]. However, 
the development of numerous ATP binding biosensors has enabled the real time 
measurement of ATP concentrations in living cells [64], [76], [86]. Biosensors in 
combination with live cell imaging can provide variations of ATP concentrations 
between cells but the combination of these biosensors with flow-cytometry can 
provide real-time data from a heterogenous population that can be present in 
bioreactors. 

2.3.3 Redox sensors 
The intracellular redox state is a driving force for the oxido-reduction reactions of a 
cell. However, there are multiple redox couples in a microbe (NADH/NAD+, 
NADPH/NADP+, FAD/FADH2) in addition to certain biological indicators 
(production of H2O2) [88], [89], [90]. Thus, the redox biosensors should be very 
specific for a particular type of redox couple. Some redox biosensors that are 
specific are peredox-mCherry, SoNar (NADH/NAD+), ObaQ (glutathione redox 
balance), HyPer, and rxRFP (H2O2) [66], [82], [90], [91]. 

2.3.4 Intracellular pH 
The intracellular pH (pHi) is also an important factor that determines the growth rate 
of microbes. The various glycolytic enzymes cannot function efficiently beyond a 
certain pH range [16]. The pHi is also related to the quinary structure of the proteins 
in the microbe [92]. Metabolic engineering attempts may affect this by the 
interference with the native pH homeostasis mechanisms, and thus the observation 
of intracellular pH can provide vital information on the intracellular state of the cell. 
Some well-known intracellular pH sensors are pHTomato, mNectarine, and 
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pHluorin [65], [75], [93], [94]. In addition to the use of fluorescence proteins, this 
can also be performed with certain dyes, without the requirement of strain 
engineering, such as pHrodo®, BCECF and CFDA-SE, with each method having its 
own benefits and drawbacks [95], [96], [97].  

2.4 Flow cytometry, a tool for live monitoring 
The biosensors stated above has been used extensively in conjunction with 
microscopy. This is, however, not feasible for monitoring the cell states in large 
bioreactors due to the variations inherent to fermentation in larger volumes [62], 
[98]. A relatively recent adoption of online flow cytometry aims to target this issue. 
A flow cytometer, by the use of lasers in conjunction with photodiodes through a 
narrow capillary flow chamber aims to distribute and observe singular cells passing 
through the laser beam and observe its phenotype and fluorescence profile. Usually, 
a blue laser (488 nm) is used to obtain the forward scatter ((FSC) shadows) and side 
scatter ((SSC) scatter at 90°) profiles of the cells passing the laser. The use of lasers 
also allows the capture of fluorescence data by the use of dichroic mirrors at the 
same time [99], [100]. The device samples a small volume and collect the 
fluorescence profiles of more than 10,000 individual cells per second which gives 
us a snapshot of a small population in the bioreactor. By altering the number of 
samples and the number of events captured we can obtain a representative idea of 
the intracellular state of all the cells in the fermentation. 
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3 Understanding Limosilactobacillus 
reuteri 

Lactobacillus reuteri, reclassified as Limosilactobacillus reuteri is a gram positive, 
exopolysaccharide forming, catalase negative and non-sporulating species in the 
lactobacillus family. This organism has been isolated from various niches but is 
particularly abundant in the gastrointestinal tract of humans, sheep, chicken, pigs 
and rodents [101], [102], [103], [104], [105]. The organism is classified as a 
facultative anaerobic microbe, but they lack an aerobic respiration chain [106], 
[107], [108], and most strains can grow in micro aerobic conditions and not fully 
aerobic conditions [109], [110]. These microbes grow optimally at 37°C in still 
shake flasks but have better growth characteristics under anaerobic conditions. The 
microbe as a part of the LAB species is generally regarded as safe and has been 
shown numerous health benefits when provided as supplements in humans [111]. 
The health benefits range from preventing bone loss in the elderly mice to regulation 
of bowel movements in germ free mice [112], [113], [114]. Thus, this microbe is 
considered as a probiotic bacterium and is currently being commercially sold as 
such. Lb. reuteri shows many other potential applications ranging from antibiotic 
production (reuterin, reutericyclin), vitamin production, medical treatment 
(treatments for leaky gut, obesity, immunomodulation) and many more [111]. 

Lb. reuteri is an obligate heterofermentative microbe as opposed to the facultative 
heterofermentative profiles seen in other lactobacillus species such as 
Lactiplantibacillus plantarum. This is due to the possession of the phosphoketolase 
pathway (PKP), resulting in the formation of lactate, ethanol, and CO2. However, 
Lb. reuteri has the interesting physiological feature of having the simultaneous 
utilization of two glycolytic pathways, the EMP pathway and the PKP pathway, 
whereas the PKP pathway is active in Lp. plantarum only under stress conditions 
[38], [48], [115]. The type-strain and certain other closely related strains have been 
characterised to use the PKP pathway as the main central carbon pathway and the 
EMP pathway acts only as a shunt with a ceiling of 30% carbon flux (Figure 5A) 
[115]. The optimal medium for growing these microbes is De Man-Rogosa-Sharpe 
(MRS) medium which is a very rich medium and thus limits the exploration of the 
physiology of the central carbon metabolism. This is due to the presence of digests 
of beef extract, yeast extract in addition to fatty acids (Tween 80), vitamins and 
amino acids [116]. Sodium acetate and ammonium citrate are also part of the 
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medium that may act as alternative carbon source and electron acceptors, 
respectively [116]. 

3.1 Central carbon metabolism 
As stated above Lb. reuteri prefers the phosphoketolase pathway even in strains that 
contain and express all the genes for the EMP pathway. This pathway introduces 
the preference for the presence of acetate in the growth media which boosts the 
growth of the microbe, though the mechanism is not yet well elucidated. 

Figure 5: The central carbon pathway in limosilactobacillus reuteri. (A) The pathway in the absence of 
an external electron acceptor. (B) The pathway in the presence of an external electron acceptor (In this 
case Furctose) 

This distribution of flux towards a less energy productive pathway produces certain 
challenges for the microbe which includes a 50% reduction in total ATP production 
(1 mol of ATP/mol of glucose) since, the PKP pathway produces one 3-carbon 
compound that is converted to pyruvate in a 3-carbon pathway similar to the one in 
the EMP pathway. In the upper part of the PKP, two molecules of NAD(P)+ are 
reduced that can give rise to a redox imbalance. Usually, these redox cofactors are 
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re-oxidised via the reduction of acetyl phosphate (AcP) to ethanol in the 2-carbon 
branch of the PKP. This means that only from the 3-carbon branch ATP can be 
extracted. Production of ethanol being the only mechanism for achieving a redox 
balance limits the total glucose consumption rate and making the microbe grow 
slower in media without electron acceptors. When an electron acceptor such as 
fructose is provided, the redox cofactors are re-oxidised in the conversion of 
fructose to mannitol. This allows the AcP flux to be diverted towards acetate which 
increases the total ATP yield. 

The dual central carbon pathways in Lb. reuteri raises questions such as (1) How 
does the regulation of the enzymes in the EMP pathway work, (2) Are there strain 
variations in other aspects of growth in lean media, (3) How is the metabolism of 
Lb. reuteri affected when a functional EMP pathway is introduced. 

3.2 Idea behind engineering 
Due to the dependence of Lb. reuteri on the two distinct central carbon pathways, it 
may provide the involvement of unique potential alternative metabolic control 
mechanisms. By manipulating the flux through each pathway, it may become 
possible to compare the effects on these two pathways. The PKP pathway has a 
higher -ΔG for the reactions whereas the EMP pathway has a higher ATP yield but 
a lower -ΔG for the cumulative reactions in the pathway [47]. 

It enables the exploration of diminishing the redox burden by the addition of 
electron acceptors or increasing and decreasing the formation flux of ATP by 
manipulating the flux through the EMP pathway. This can be done by creating 
knock out strains for the native phosphofructokinase, which is predicted to be from 
the minor phosphofructokinase family (pfkB), as well as introducing an inducible 
phosphofructokinase with known kinetic properties from the major family of 
phosphofructokinases (pfkA). 

3.3 Role of electron acceptors 
Electron acceptors are compounds that cannot be used a carbon or energy source, 
but instead they are reduced in oxido-reductive reactions to recycle redox cofactors 
(NAD(P)H). Compounds such as citrate, fructose, glycerol, and oxygen are electron 
acceptors for Lb. reuteri. The addition of these compounds in the medium improves 
growth and total biomass produced in Lb. reuteri [48], [117], [118]. This is due to 
the recycling of redox by means other than the reduction of AcP to ethanol. It allows 
the formation of acetate combined with an ATP as a fermentation product and thus 
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increases the total ATP production (Figure 5B). This is especially evident when this 
organism is grown in a mixture of glucose and fructose or sucrose as the total ATP 
yield per biomass increases [48]. 

Each electron acceptor performs to different extents in the various strains of Lb. 
reuteri. This is for instance seen when oxygen is used as an electron acceptor. Lb. 
reuteri lacks a proton translocating electron transport chain making it incapable of 
aerobic respiration [106], [107], [108]. Nevertheless, it reduces oxygen to water 
catalysed by NAD(P)H oxidases (Figure 6). Still Lb. reuteri is sensitive when 
exposed to oxygen due to the lack of complete protection mechanisms against 
reactive oxygen species. 

Figure 6: NADH oxidase (NOX) catalysing the reduction of oxygen with NADH. 

In the two strains used in this thesis the PTA 4659 is more sensitive to oxygen 
compared to DSM 17938, which is caused by hydrogen peroxide, which sounds 
peculiar since both strains were isolated from breast milk [117]. The increased 
sensitivity to peroxide in the PTA 4659 is investigated in Paper I as the strain 
produces lethal quantities of hydrogen peroxide upon aeration and this in turn led to 
cell apoptosis.  

3.4 Lactate dehydrogenase 
Lb. reuteri DSM 17938 has a total of 6 predicted lactate dehydrogenases (EC 
1.1.1.27). This enzyme is regulated at the enzyme level by the concentrations of 
redox cofactors, ATP and ADP [19], [119], [120], [121], which is seen with many 
dehydrogenases in other microorganisms [23]. This enzyme is also assumed to be 
activated by of fructose 1,6-bisphosphate (FBP), thus enabling the feed forward 
activation of the enzyme when the culture is exposed to glucose [121]. This may be 
questioned for Lb. reuteri as its concentration of FBP is very low [48]. Additionally, 
very few LDH’s that lack FBP activation have been characterised [119], [122]. 
Thus, Paper II aims to expand our understanding on the regulatory mechanism of 
this enzyme in Lb. reuteri and compare it with lactate dehydrogenases of other 
Gram-positive bacteria. 
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3.5 Engineering Lb. reuteri 
Since the discovery of Lb. reuteri in 1962, it has been a subject for strain engineering 
to understand molecular mechanisms involved in gut interaction and expression of 
its antimicrobial compounds. The initial strain improvement was through random 
mutagenesis, adaptive evolution and other traditional non-targeted methods. The 
increased understanding of targeted mutation and the reduced cost for custom 
synthesis of various DNA elements has led to the adoption of methods such as Cre-
LoxP, single strand recombineering and CRISPR-Cas9 in Lb. reuteri. The Cre-LoxP 
system has been used in the laboratory strain Lb. reuteri DSM 20016 for the deletion 
of two putative propanediol dehydrogenases and this lead to the characterisation of 
the mutant phenotypes [123]. Single strand recombineering was initially developed 
and implemented for the point mutation of targeted genes using single stranded oligo 
nucleotides with efficiencies ranging from 0.4% to 19% in Lb. reuteri PTA 6475 
[124]. This was further improved by the implementation of the CRISPR-Cas9 
system to introduce double stranded breaks and thereby increasing the 
transformation efficiency as well as reducing non-transformed colonies [125]. The 
CRISPR-Cas9 system has also been used successfully in editing and studying many 
other mutations in Lb. reuteri PTA 6475 as well as Lb. reuteri DSM 20016 [95]. 

Other methods of engineering Lb. reuteri is by the use of overexpression plasmids 
with various inducible systems. The nisin-controlled gene expression system 
(NICE) was discovered in L. lactis and then adapted to Lb. reuteri DSM 20016 with 
a successful linear induction of ɑ-amylase between the range of 0 to 50 ng·µl-1 [126]. 
Concentrations above this range proved toxic for the growth of the microbe with the 
minimum inhibitory concentration at 75 ng·µl-1 for nisin [126]. Another expression 
system that has a linear induction mechanism is the sakacin induction system 
identified in Lactobacillus sakei [127]. This is a native system used for the 
production of a bacteriocin (sakacin) by the microbe but through promoter 
engineering the system has been adopted for inducible expression by the use of a 36 
Dalton peptide [128]. This system has been used in Lb. reuteri ATCC 55730 as well 
as PTA 6475 successfully [129], [130]. 

3.6 Metabolic flux and pathway variations 
Saulnier et al., (2011) illustrated the variations in the expression of the glycolytic 
enzymes, overtime, between strains. The study showed that the pyruvate 
dehydrogenase (PDH) is upregulated in the early log phase in Lb. reuteri ATCC 
55730 whereas the PTA 6475 strain expressed PDH in the early stationary phase 
[117]. This was further expanded in subsequent studies showing that the ratio of 
flux between the pathways also changes based on the strains used [115]. These 
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variations between strains and the control of the PDH enzyme being redox ratio 
dependent warrants clarification of the PDH expression overtime as well as their 
activity [131]. 

The engineering targeting the manipulation of the flux through the EMP pathway 
was attempted with three goals. (1) the elucidation of the PDH gene in the strains 
DSM 17938 and PTA 6475, (2) identification and deletion of the native pfkB, (3) 
expression of an exogenous pfkA under an inducible promoter. The latter two are 
explored in Paper III. 

For the elucidation of the PDH activity as well as to eliminate any possible 
interference of it in the overexpression of the EMP pathway, a knockout strategy 
with the replacement of each of the coding regions in the PDH operon replaced by 
a GFP protein was attempted (Figure 7) using the double-crossover integration 
method previously demonstrated in Lb. reuteri [132], [133]. This strategy did not 
lead to any mutants in the PTA 6475 strain, whereas some mutants were obtained 
in the DSM 17938 strain.  

Figure 7: Schematic representation of the attempted double-crossover integration. (Black = PDH 
operon upstream and downstream regions; Blue = the genes in the PDH operon; Yellow = selection 
pressure with Cre-LoxP sites; Green = pNZ5319 backbone) 

From the obtained mutants attempts to remove the antibiotic resistance gene 
(Chloramphenicol (Cmr)) by Cre-Lox recombination were not successful due to 
microbial lysis observed one hour after electroporation with the Cre-recombinase 
plasmid obtained from Lambert et al., (2007). Further analysis of the mutant strains 
also showed both unmutated as well as mutated genotypes in a single colony. This 
might indicate a duplication of the operon during trials of genetic engineering or 
integration of the entire plasmid at some other region. It is also noted that no 
fluorescence was observed in the mutant strains under any of the tested conditions 
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(growth in aerobic baffled shake flasks, still cultures and anaerobic conditions). 
Attempts of the same engineering with a CRISPR-Cas9 system, developed by 
another research group [134], also led to undefined genotypes. The lack of 
fluorescence upon expression of a GFP using a PDH promoter could be attributed 
to low levels of expression, misfolded proteins or the high background fluorescence 
of Lb. reuteri, and further investigation was not performed. 

The observed difficulty in engineering may be due to variations between the strains 
regarding the number of restriction systems present as well as the differences in the 
expression of the glycolytic enzymes. It is also noted that similar engineering 
attempts for deletion of various other genes worked in the parent strain of DSM 
17938, namely ATCC 55730 [135], [136]. The difference between the two strains 
being the loss of two plasmids [137], and a brief look at the REBASE database 
revealed a larger variety of restriction systems present in the ATCC 55730 strain 
with one restriction system being present in one of the plasmids (Figure 8) [138].  

 

Figure 8: Restriction modification systems recognised by REBASE database. (A) the restiction 
modification system present in the genome of DSM 17938 and ATCC 55730. (B) the restriction 
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modification system present in the plasmid of ATCC 55730. (C) The restriction modification system 
present in Lb. reuteri JCM1112 (Analogous to PTA 6475). 

Furthermore, some studies have been successful with the expression of GFP in Lb. 
reuteri isolates from the environment so genetic experiments can be done with Lb. 
reuteri, but it requires further investigation for the DSM 17938 strain. The PTA 
6475 strain is also subjected to various genome rearrangements based on the origin 
of replication present in the plasmids and thus a comprehensive genome sequencing 
may be required after deletion of genes [139]. 

3.7 Phosphofructokinase activity 
Lb. reuteri DSM 17938 and PTA 6475 strains have three and two probable hits for 
functional complementation of phosphofructokinase activity respectively. These 
hits are orthologous to phosphofructokinase B of Escherichia coli. The genes are 
expressed at relatively high levels in transcriptome data (not published) in DSM 
17938 but their enzyme activity is relatively low and thus the effect of 
overexpression was of interest. The lack of pyruvate dehydrogenase activity in Lb. 
reuteri DSM 17938 during logarithmic growth provides an ideal platform for 
metabolic flux analysis to follow the effects of overexpression. However, our 
attempts at engineering this strain failed. Previous attempts at increasing the flux 
through the EMP pathway used a truncated pfkA from Aspergillus niger, in the 
parent strain of Lb. reuteri DSM 17938, namely Lb. reuteri ATCC 55730, showed 
improved growth rates and up to 60% carbon flux through the EMP pathway when 
grown in rich media [140].  

We wanted to follow and characterise the variations in redox balance and energy 
production by using the controlled expression of pfkA from Lactococcus lactis. This 
is to elucidate the variations in regulation of the EMP pathway in Lb. reuteri as well 
as to explore the effect of the L. lactis’s feedforward control mechanism. The pfkA 
in L. lactis is part of the las operon which contains the genes for pyruvate kinase 
(PYK) and lactate dehydrogenase in addition to the phosphofructokinase [141]. The 
expression of the operon would allow the control of the flux through the EMP as 
PYK and LDH are regulated by the concentration of fructose bisphosphate. 
Alternatively, expression of only the phosphofructokinase would elucidate if the 
second half of the EMP pathway would remain a bottleneck. This is explored in 
paper III. 



23 

4 Industrial application of 
Saccharomyces cerevisiae 

Fungal species have played an important role in the industrial production of a wide 
variety of compounds and have instigated an increased interest for their applications 
in waste management and valorisation of various waste streams into value added 
compounds [142], [143]. This is attributed to their high tolerance to numerous 
stressful conditions, their capability to produce a wide variety of compounds and 
their scalability attributed to their robustness [144]. A few examples of the various 
genera in industrial application as well as their uses are listed in Table 1. 

Table 1: Fungal families and their industrial applications. 
Fungal families were found for some of organisms found in the the lists present in the references and 
simplified [142], [143], [144], [145], [146], [147], [148], [149], [150], [151]. 

Fungal families Fungal 
genera 

Compounds produced 

Pharm
aceutcals and 

antim
icrobials 

Enzymes 

A
griculture 

Food 

A
m

ylase 

Protease 

Pectinase 

G
alactosidase 

C
hitinase 

Lipase 

Lignocellulolytic 

Trichocomaceae 
Aspergillus, 
Penicillium, 
Talaromyces 

Clavatol, 
Lovastatin, 
Aspergillomarasmine 

● ● ● ● ● ● ●  

Tea, 
chocolate, 
miso, 
sake, 
cheese, 
sausages 

Sclerotiniaceae Botrytis    ●    ●  
sweet 
wines 
(aszú, 
sauternes) 

Saccharmoycetacea Saccharomyces, 
Candida 

Insulin, 
Human serum 
albumin, 
hepatitis vaccines 

● ● ● ● ● ●   
bread, 
cheese, 
chocolate, 
alcohol 

Hypocreaceae Trichoderma Peptaibolis  ● ●  ●  ● ●  
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Of the numerous species, Saccharomyces cerevisiae is the most relied upon due to 
its ease of engineering and long history of use [152]. It is currently used for a wide 
range of products ranging from human enzymes and vaccines to bread and alcohol 
[149], [152], [153]. Engineering this organism for new functions enable the transfer 
of existing petrochemical processes to a more environmentally friendly production 
and reduced reliance on fossil fuels. A few of these new functions is the valorisation 
of lignocellulosic biomass to biofuels and production of various amine compounds. 

4.1 Lignocellulosic biomass 
Lignocellulose is a cheap substrate that is promising for production of value-added 
compounds due to its abundance [154]. Lignocellulose refers to the remnants of 
various industries as listed in brackets for a few. 

1. Agriculture – crops for consumption (wheat straw, corn stover, sugarcane
bagasse [155]),

2. Forestry – timber for building material, furniture, etc. (wood chips, saw dust
[155])

3. Industrial waste streams – brewery waste, paper mills etc. (brewer’s Spent
grain, black liquor [156])

These waste streams are unattractive for conventional conversion processes and are 
thus either burnt or discarded [154]. Although some of the waste from food crops 
can be used as feed stocks for industrial processes, a majority is simply discarded 
due to their low value as a source of nutrition, and the lack of cost-benefit for 
processing this waste [154], [157]. Some of these waste streams that have been 
adopted in industrial processes are paper production from sugarcane bagasse 
(Vincent corporation, TNPL), and bioethanol production from lignocellulose 
(Granbio, Beta renewables) but they are not yet widespread, culminating in that 
production of this waste far outpaces its conversion. Thus, it is recognized as a 
potential source for biorefineries for the production of biofuels, biochemicals, 
bioenergy and biomaterials.  

The main polymers that remain in lignocellulose are cellulose, hemicellulose, and 
lignin. Cellulose in isolation can be fermented by most microbes since it is a linear 
chain of β14 linked glucose molecules [158], [159], [160]. Cellulose can 
constitute anywhere from 40 to 60% of the residual waste but is inaccessible to 
microbes due to the substrate being embedded in a matrix of hemicellulose and 
lignin [161], [162], [163]. 

Hemicellulose is a polymer consisting of a combination of various five or six carbon 
sugars (e.g. arabinose, galactose, glucose and xylose) in chains of β1  4 and β13 
linkages. Their specific combination of sugars can vary based on plant species but 
their total composition ranges from 15 to 30% of the lignocellulosic biomass [160], 
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[161], [163]. There are many fungal species that can degrade this compound, but 
they are not in use in industry for various reasons ranging from difficulty of strain 
engineering, unavailability of genetic toolboxes, difficulty faced during scaleup and 
so on [164]. 

Lignin can take 5 - 30% of the lignocellulosic biomass based on plant species [161], 
[163], [165], [166]. This fraction of lignocellulose is composed of highly 
heterogenous mixture of aromatic compounds that form a polymer using carbon-
carbon or carbon-oxygen bonds [165]. This fraction also makes the outer structure 
of the lignocellulosic biomass, thereby preventing industrial microbes from 
accessing their sugar substrates [161], [166]. Therefore, pretreatment that degrades 
is necessary to make these sugars accessible. 

4.2 Lignocellulose pretreatment – How and drawbacks 
Lignocellulose can be broken down using different chemical and biological methods 
[167], [168]. Each of these methods have their advantage and disadvantages. Some 
of the methods, such as the biological degradation using enzymes is 
environmentally friendly, but due to the long processing time for hydrolysis, 
combined with low hydrolysis efficiency, scale up of this method proves difficult 
[168]. The current most widely adopted method for lignocellulose biomass 
pretreatment of hard wood is steam explosion with an acid catalyst [167]. This 
physiochemical method involves the addition of acids, such as dilute sulphuric acid 
to assist the autohydrolysis caused by water at high temperature (190°C) and 
pressure (1-3.5 MPa) [169], [170].  

The autohydrolysis results in the release of monomeric glucose, xylose and other 
sugars in various ratios depending on the starting material [169]. This method is 
relatively environmentally friendly as it does not involve the use of stronger acids 
and bases [169]. However, this method does have drawbacks such as production of 
fermentation inhibiting compounds (week acids, phenolic compounds and 
furaldehyde) [171], [172].  

S. cerevisiae has a relatively high tolerance to the various inhibitors present in this 
waste stream. This compounded with three decades worth of research enabling 
xylose utilization in this species, makes it an ideal organism for making value-added 
compounds from pretreated lignocellulose. However, these inhibitors and the rate 
of xylose utilisation by S. cerevisiae requires further optimisation for the process to 
be cost-effective and competitive to fossil fuel-based production. 
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4.3 Xylose fermentation 
Catabolism of xylose has been engineered in Saccharomyces cerevisiae by the 
integration of various pathways. Of these pathways, two pathways have been 
expressed in yeast and improved upon by following an iterative processes for 
optimal xylose fermentation with variable results [173]. Among the two pathways, 
the oxido-reductive pathway is found in other yeast species, whereas the xylose 
isomerase pathway is found in bacteria. Other notable pathways are the Weimberg 
pathway and the Dahms pathway [174], [175], [176].  

Although progress has been made for the efficient catabolism of xylose by S. 
cerevisiae, they are still not a viable replacement for petroleum-based processes. 
One of the limiting factors for each of these pathways is hypothesised to be xylose 
not being sensed as a fermentable sugar on top of the inherent nature of catabolic 
repression [173], [177]. This thesis focuses on the oxido-reductive pathway, as this 
pathway faces a redox imbalance coupled with a limited ATP formation flux under 
anaerobic conditions (Figure 9)[178].  

Figure 9: The oxido-reductive pathway (In red) introduced into S. cerevisiae. The pentosephosphate 
pathway is represented in blue and the EMP pathway is represented in black. The formation fluxes of 
redox (JNAD(P)H) is represented in red and the formation fluxes of energy (JATP) is represented in green. 
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Strains developed with this pathway have a high xylose uptake rate and are preferred 
for anaerobic xylose fermentation [179], [180]. It is also the preferred pathway for 
production of xylitol, which is a common sugar substitute in the industry [181]. The 
xylose reductase (XR) is predominantly NADPH dependent, whereas the xylose 
dehydrogenase (XDH) uses NAD+ as the sole cofactor [173]. This causes a redox 
imbalance that has been tackled by various means, such as addition of an external 
electron acceptor, protein engineering, and using alternative xylose reductases 
[182], [183]. This study builds on the culmination of all these engineering attempts 
and uses TMB 3504, which is one of the fastest growing oxido-reductive strains 
developed by our group [180], [183], [184]. This strain uses the XR from 
Spathaspora passalidarum, which reduces the redox burden as the enzyme has a 
greater reliance on NADH rather than NADPH under anaerobic conditions [183].  

As stated before (Chapter 1), the uptake of substrates such as glucose causes feed 
forward activation of the EMP pathway. This creates a competitive advantage for 
the organism. In the case of S. cerevisiae that is engineered to ferment xylose, this 
effect is absent. The heterologous xylulokinase (XK) gene has a high expression 
level and upon the availability of xylulose ends up using large quantities of ATP 
[185]. We hypothesise that this instigates a decrease in the ATP pool available for 
biomass production and cell maintenance such as pH homeostasis. 

4.4 pH homeostasis mechanism 
In S. cerevisiae the pH homeostasis machinery is dependent on ATP [186]. This is 
attributed to the use of ATP-dependent proton translocating pumps [187]. There are 
two classes of these enzymes in S. cerevisiae. One is the P-type H+-ATPase encoded 
by pma1 that is targeted to the cell membrane [187]. This is the most abundant 
protein found on the cell membrane. Mutations of this protein become lethal if the 
activity of the protein drops below 20% [188]. The other type of H+-ATPases are 
V-ATPases [187]. There are numerous subunits in this type of H+-ATPase, and these 
are targeted towards the vacuole and cell organelles. Deletion of this protein is not 
lethal in S. cerevisiae due to Pma1p substituting the V-ATPase function but the same 
mutation in other eucaryotes is lethal [189]. This enzyme is responsible for vacuolar 
acidification which is an important part of cell growth in S. cerevisiae [186]. The 
two enzymes combined account for the majority of the ATP consumption during 
growth [190]. 

The ATPases in S. cerevisiae are regulated by glucose at the transcription, 
translation and protein level [186], [190]. It is seen that the H+-ATPases dissociates 
in the absence of glucose due to direct interaction at the enzyme level. This causes 
the enzyme activity to remain reduced in sugars other than glucose [190], [191]. 
Further research has shown that the sugar signalling pathway also influences the pH 
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homeostasis machinery [192]. Thus when S. cerevisiae was engineered for xylose 
consumption there was uncertainty on whether the pH homeostasis machinery was 
activated in a proper manner. 

4.5 Idea behind engineering 
In prokaryotes, and plants an alternative energy carrier in the form of pyrophosphate 
(PPi) can be utilised for pH homeostasis [193], [194]. This has not been found in 
fungal species and in the case of S. cerevisiae the majority of the PPi formed is 
hydrolysed by the cytosolic pyrophosphatase (ipp1) [195], [196], [197], [198]. 
Paper IV evaluates if the pH homeostasis can be offloaded to a proton pumping 
pyrophosphatase to reduce the ATP consumption flux for pH homeostasis, and thus 
be redirected to increasing glucose and/or xylose consumption flux.  

This is especially relevant when S. cerevisiae is grown in the presence of weak acids, 
such as acetic acid and levulinic acid, at low pH [163], [199]. These acids can pass 
into the cytoplasm through diffusion [200], [201]. Upon arrival at the cytoplasm 
which is maintained at a neutral pH the weak acids dissociate into protonated forms, 
thus decreasing the intracellular pH. The mechanism for dealing with weak acid 
stress is reliant on the pH homeostasis machinery, and thus increases the ATP 
demand. This is apparent in the reduced growth rates seen on glucose at low pH. 
This is compounded on xylose fermentations since the higher NAD(P)H formation 
flux over ATP formation flux limits the availability of ATP for the active export of 
protons to retain cytosolic pH (pHc) [44]. 

The formation flux ratio (RJ) was adapted to use PPi as a potential additional energy 
carrier that expands the total available energy pool in S. cerevisiae when grown 
anaerobically on xylose to combat higher ATP demand that limits the growth rate 
of the microbe [178]. Thus, the formation flux ratio (equation 2) is modified to add 
the energy obtained from PPi (Equation 3) µ = 𝐹(𝑅) = 𝐹( ಿಲವ(ು)ಹಲು ା ುು) (3) 

4.6 Fluorescence proteins as reporters 
Most GFP based biosensors require oxygen for fluorescence [202]. The oxygen 
requirement is usually satisfied during the sampling from the bioreactor in most 
cases [203], [204], [205], enabling the use of GFP proteins under anaerobic 
conditions. This is also the case for the biosensors (mQueen-2m and pHluorin) used 
in paper IV. Literature shows that GFP can be activated to a certain extent with 
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brief exposure to oxygen, so these biosensors were expressed under the same 
assumption [205]. To compensate for their lower fluorescence levels compared to 
the yeast enhanced GFP that is regularly used under anaerobic conditions, very high 
expression levels were forced. 

It was observed that the pHluorin and the mQueen-2m biosensors used were able to 
fluoresce when observed in the flow cytometer, 5 minutes of sampling from the 
anaerobic bioreactors but the fluorescence values did increase 1 hour after sampling. 
The wait for the increased fluorescence value was avoided in to obtain the 
fluorescence value closest to the sampling condition as the ATP and intracellular 
pH can also vary within minutes of sampling. pHluorin is a GFP protein based on 
the wild type Aequorea victoria GFP and thus the maturation time for 50% (t50) 
fluorescence is ~58 min [203], [206]. The newer variety of pHluorin based on the 
superfold GFP may be better suited for the application of observing intracellular pH 
at anaerobic conditions since it has a much shorter maturation time (t50 ~19 min). 
The mQueen-2m biosensor used a Circularly permuted green fluorescent protein 
(cpGFP) for which the maturation times are not readily available, but we observed 
that the fluorescence values increased only for the 1st hour after exposure to air [86], 
[207]. 

As stated in chapter 2, the metabolic flux analysis for the strains is of interest but 
further optimisation and understanding of the modifications is required. Paper IV 
shows that the addition of pHluorin in xylose fermentations improved the strain 
performance. The specific conditions causing this is of interest.  
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5 Conclusions and outlook 

The main conclusions of this thesis are: 
• Hydrogen peroxide is the chief reactive oxygen species that is produced by

the Lb. reuteri species tested. (Paper I)

• Lb. reuteri DSM 17938 adapts and can grow with up to 500 mL·min-1 of air
sparging, whereas the PTA 6475 and PTA 4659 can only grow with a rate
of up to 50 mL·min-1 of air. (Paper I)

• Lb. reuteri DSM 17938 does not necessarily produce less H2O2 than its
counterparts, but its resistance mechanism against H2O2 is more resilient in
the strain. (Paper I)

• The NADH oxidases of the Lb. reuteri species are capable of utilising
NADPH in addition to NADH and do not produce H2O2, but only H2O.
(Paper I)

• The lactate dehydrogenase enzyme (LDH) of Lb. reuteri is not activated by
FBP. (Paper II)

• The lactate dehydrogenase enzyme (LDH) of Lb. reuteri does not have any
other known regulatory mechanisms at a protein level. (Paper II)

• There is a competitive inhibition by ATP and ADP on the LDH enzyme in
Lb. reuteri, which has been observed for dehydrogenases of other bacteria.
(Paper II)

• Overexpression of the predicted native phosphofructokinase candidates
from the minor family led to loss of fitness of the Lb. reuteri PTA 6475
strains in lean media. (Paper III)

• The overexpression of the L. lactis las operon revealed a possibly active
pyruvate dehydrogenase enzyme in Lb. reuteri PTA 6475. (Paper III)

• Expression of a H+-PPase at the vacuolar membrane improves the growth
of S. cerevisiae in media at low pH and high acetic acid concentrations (pH
3.7, 6 g·L-1 acetic acid). (Paper IV)

• The expression of the H+-PPase at the vacuolar membrane under normal
conditions on glucose or xylose leads to elevated ATP levels. (Paper IV)
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• The H+-PPase expression at the vacuolar membrane acidifies the cytosol 
when grown on 20 g·L-1 glucose at pH 5. (Paper IV) 

• The pH homeostasis machinery is likely running in engineered strains of S. 
cerevisiae even though this machinery requires protein level activation by 
glucose. (Paper IV) 

• The expression of pHluorin in addition to the vacuolar H+-PPase led to 
increased growth rate and volumetric productivity of ethanol. (Paper IV) 

• The H+-PPase targeted to the vacuole in S. cerevisiae is capable of 
maintaining the intracellular pH when pHluorin is expressed. (Paper IV) 

 
As usual, research generates more questions than it can answer. The work described 
here is not different and has not find all answers to previous research questions. The 
outlook for further research based on this thesis is as follows: 

1. The mechanism of hydrogen peroxide formation requires further 
investigation to pinpoint the protein responsible for the increased tolerance 
of Lb. reuteri DSM 17938 compared to that of PTA 4659. 

a. This is especially relevant due to applications of Lb. reuteri to 
counter fungal infections. [208] 

2. This work has revealed that, for the microbes studied, the kinetic 
mechanism of lactate dehydrogenase enzyme regulation is related to 
regulation of metabolic shifts in the catabolism, which is dependent on 
environmental conditions. This needs to be further verified in other 
organisms that produce lactate under normal or only under stress conditions. 

3. The characterisation of the native enzyme responsible for the 
phosphofructokinase activity in Lb. reuteri is of interest for the 
understanding of the loss of the PFK-A from a practical and an evolutionary 
perspective. The real function of the two assigned genes for the PFK-B type 
in Lb. reuteri need to be further investigated. A possible experiment would 
be a knock-out approach for each gene and overexpressing it in another 
microorganism.  

4. A full characterisation of S. cerevisiae expressing the vacuolar H+-PPase 
with is required for a complete elucidation of the mechanism behind the 
observed improvement of growth under stressful conditions. It could 
include strains producing other heterologous proteins and testing them for 
growth on xylose. 

5. The effect of the vacuolar H+-PPase expression in S. cerevisiae on 
fermentation in lignocellulosic hydrolysates is of interest to establish 
whether it improves the resistance to inhibitory compounds. 
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