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An individual’s actions or opinions are often influ-
enced by the actions of people around her. The way a new
product or fashion gets adopted by a population depends
on how agents are influenced by others, which in turn de-
pends both on the way the population is structured and
on how influenceable agents are.

This paper focuses on one particular account of so-
cial influence, “threshold influence”, as presented in e.g.
[10,27], relying on an imitation or conformity pressure
effect: agents adopt a behavior/product/opinion/fashion
whenever a critical fraction of their “friends" (neighbors
in the network) have adopted it already. In this sense,
diffusion in social networks can be seen as a study of
local influence, triggering agents to adopt a similar be-
havior/opinion/product as their neighbors [28,13]. The
so-called threshold models, first introduced in [12,24],
are used precisely to represent the dynamics of diffusion
under threshold-limited influence. This type of models
has received a lot of attention in the recent literature
[10,15,19,26,1,11,16,18], also within the logic commu-
nity [25,29,23,17,7,8,5,20,21].

The contributions of this paper are three-fold: 1) We
introduce an epistemic dimension to threshold models,
thus taking into account the real-life limitations posed
by the agents’ limited access to information; for this,
we propose an epistemic variant of the above adoption
rule: agents adopt a behavior only they know that enough
many of their neighbors have adopted it. 2) We investi-
gate foresighted agents, who look ahead trying to predict
the others’ behavior based on their current information,
with the aim of coordinating with their friends by adopt-
ing the new behavior whenever they know that enough
many of their neighbors will adopt it at the same time. 3)
We provide logical formalisms for reasoning about thresh-
old models, for each of three variants: standard, epistemic
and predictive adoption rules.

In this extended abstract, most proofs are omitted.
They may be found in [3], the full version of this paper.

1 Threshold Models

Threshold Models. A threshold model is a tuple M =
(A , N , B,θ ) where A is a finite set of agents, N ⊆
A ×A is a network (described as a relation of “neigbor-
hood" or “friendship" between agents), B ⊆A is a behav-
ior (identified with the set of agents who have adopted
this behavior), and θ ∈ [0,1] is an adoption threshold.4

N is assumed irreflexive, symmetric and serial.

A threshold model includes a network N of agentsA
and a behavior B distributed over the agents. As such,
it represents the current spread of B through the net-
work. An adoption threshold prescribes how the state
will evolve: agents adopt B when the proportion of their
neighbors who have already adopted it meets the thresh-
old.

Fig. 1. A threshold model with θ = 1
4 and B marked by gray,

updated according to (1) (top) and (2) (bottom).

Threshold Model Update. Several update policies for the
behavior set B exist. The most popular [15,10] is given by
the following threshold adoption rule:

B′ = B ∪
§

a :
|N(a)∩ B|
|N(a)|

≥ θ
ª

. (1)

4 The literature contains several variations, including infinite networks [19], non-inflating behavior [19], agent-specific threshold
[15], weighted links [15], and multiple behaviors [1].
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(1) states that a adopts B at time tn+1 iff either a adopted
B at time tn, or the proportion of a’s neighbors who have
adopted B at tn is larger or equal than the threshold θ .

The former disjunct makes this update inflationary
w.r.t. B, i.e. B ⊆ B′. This guarantees that repeated updates
according to (1) will eventually reach a fixpoint. The ‘or
equal to’ clause embeds a tie-breaking rule favoring B.

Another popular option uses an alternative policy, that
drops inflation and invokes a conservative tie-breaking
rule:

B′ =
¦

a : |N(a)∩B|
|N(a)| > θ

©

∪
¦

a : |N(a)∩B|
|N(a)| = θ and a ∈ B

©

.
(2)

Since (2) does not cause B to inflate, this alternative
rule allows the possibility of loops in behavior, i.e. where
B = B′′ 6= B′. Thereby repeated updates according to 2)
do not necessarily reach a fixpoint. For this and other rea-
sons, in this paper we focus on the adoption policy given
by (1).

Dynamics as Induced by Game Play. (1) and (2) corre-
spond to the best response dynamics of agents playing an
instance of a coordination game

B ¬B
B x , x 0, 0
¬B 0, 0 y, y

with each of their neighbors at each timestep, under the
constraint that at each timestep, each agent may pick only
one strategy. The utility of a play round for an agent a is
the sum of utilities of the individual coordination games
played by a in that round. With B the set of agents cur-
rently playing B, B is thus a best response for agent a iff

x · |N(a)∩B|
|N(a)| ≥ y · |N(a)∩¬B|

|N(a)| ⇔
|N(a)∩B|
|N(a)| ≥

y
x+y =: θ .

Specifically, (2) captures such plays’ best response dy-
namics with conservative tie-breaking [19]: B′ as given
by (2) is exactly the set of agents for whom B is a best
response. Hence the diffusion dynamics arising from up-
dating a network using best response analysis is step-wise
equivalent with those given by (2). Moreover, for any
θ ∈ [0, 1], there exists coordination game payoffs that
yield best response dynamics equivalent to those of (2)
instantiated with the given θ .

Equation (1) captures the same dynamics with dis-
criminating tie-breaking, but also the added assumption
of a (possibly irrational) ‘seed’ of agents always playing
B (see [19,10] for game theoretic details and [20] for an
action model approach).

This paper focuses on the dynamics given by (1) with
a game-theoretic interpretation of the choice to adopt, i.e.
when agents choose to play B over ¬B. As agents cannot
unadopt, this is the only rationality consideration in play.

2 Epistemic Threshold Models

In the update policies described by (1) and (2), agents
react to their actual environment: they are always influ-
enced by the actual behavior of their direct neighbors.
In situations of imperfect information, this “nomothetic”
update style seems unrealistic: it requires agents to act
based on information that they may not actually possess!
This is exemplified in Fig. 2.

Fig. 2. A situation of uncertainty. Agent a cannot tell whether
world w or world v is the actual one, as indicated by the dashed
line (when representing indistinguishability relations we omit
reflexive and transitive links). Hence, a does not know whether
c has adopted or not. Assume that the threshold is θ > 1/2 and
that v is the actual world. Then, according to the ‘threshold
model update’, a should adopt – but a does not know that!

To accommodate this shortcoming, we extend the
standard threshold models with an epistemic dimension
and define a refined adoption policy where agents’ be-
havioral change depends on their knowledge of oth-
ers’ behavior. To this end, we follow current practice
in Logic, Economics and Computer Science, by adopt-
ing a possible-worlds’ semantics where each agent is
endowed with an epistemic indistinguishability relation
over worlds [14], as illustrated in Fig. 2. This induces an
“information partition” [2] of the set of worlds. Each par-
tition cell captures the uncertainty of the agent: i.e. the
worlds she cannot tell apart.

Definition 1 (ETM). An epistemic threshold model
(ETM) is a tupleM = (W ,A , N , B,θ , {∼a}a∈A ) where
W is a finite, non-empty set of possible worlds/states,

A is a finite non-empty set of agents,

∼a⊆W ×W is an equivalence relation, for each a ∈A ,

N :W → (A →P (A )) assigns a to each a ∈A and
each w ∈W a neighborhood N(w)(a) such that:

a /∈ N(w)(a) (Irreflexivity)
b ∈ N(w)(a)⇔ a ∈ N(w)(b) (Symmetry)
N(w)(a) 6= ; (Seriality)

B :W →P (A ) gives each w ∈W an adoption set B(w).

θ ∈ [0,1] is a uniform adoption threshold.

To reason about the impact of knowledge on diffu-
sion in network situations, we want to impose limiting
assumptions regarding the agents’ uncertainty. It is for
example natural to assume that agents know how many
direct neighbors they have, and know their neighbors’
behavior. But cases exist where it is natural that agents
know more about the network: they may know how many
neighbors their neighbors have, or maybe the entire net-
work structure is even common knowledge; they may
know the behavior of their neighbors’ neighbors, etc.

2
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One way to impose restrictions on uncertainty is by
giving agents an ego-centric “sphere of sight”, corre-
sponding to how far they can “see” in the network, as-
suming that if they can see further, they can see closer. We
will say that an agent has sight n when she can “see” at
least n agents away, i.e., when she knows at least both the
network structure and the behavior of all agents within
n-distance.

Definition 2 (n-distant, n-sight). Let n ∈ N and let
M = (W ,A , N , B,θ , {∼a}a∈A ) be an ETM. Define
N n :W →A →P (A ) by ∀w ∈W and ∀a, b, c ∈A :

N0(w)(a) = {a}
N n+1(w)(a) = N n(w)(a) ∪

{b ∈A : ∃c ∈ N n(w)(a) and b ∈ N(w)(c)}
If b ∈ N n(w)(a), then b belongs to the set of agents that a
has within her sight at world w. Moreover, if b ∈ N n(w)(a)
we say that b is n-distant from a in w. An ETM M =
(W ,A , N , B,θ , {∼a}a∈A ) has sight n if, for all a, b ∈ A
and all w, v ∈W , we have that:
i) If w∼a v and b ∈ N n(w)(a), then b ∈ B(w) iff b ∈ B(v),
and
ii) If w ∼a v and b ∈ N n−1(w)(a), then N(w)(b) =
N(v)(b).

In other words: in an ETM of sight n, the structure of the
network and the others’ behavior are known at least up to
distance n, and this is common knowledge.
Knowledge-Dependent Diffusion. To remedy the prob-
lem of agents acting on information they may not pos-
sess, we introduce a knowledge-dependent adoption pol-
icy, that captures the intuitive idea that an agent should
only be influenced by what she knows about other agents
around him. More precisely, the agents adopt whenever
they know that enough of their neighbors have adopted
already:

Definition 3 (Informed Update). Let M =
(W ,A , N , B,θ , {∼a}a∈A ) be an ETM of sight n. the
informed adoption update of M results in an ETM
M i = (W ,A , N , Bi ,θ , {∼i

a}a∈A ) where, for all a ∈ A
and all w, w′ ∈W , we put:

Bi(w) = B(w)∪ {a ∈A : ∀v ∼a w |N(v)(a)∩B(v)|
|N(v)(a)| ≥ θ}, and

w∼i
a w′ iff i) w∼a w′ and

ii) ∀b ∈ N n(w)(a) : b ∈ Bi(w)⇔b ∈ Bi(w′).

The first condition tells us that the new set of adopters at
world w includes the previous set of adopters B(w) (hence
agents do not give up their previously adopted behavior)
and it includes also all agents who, as far as they know,
are certain of the fact that enough influential neighbors
(given by θ) have adopted already. The second condition
ensures that the informed update of an ETM with sight n
is again an ETM with sight n, i.e., agents can still see the
(new) behavior of n-distant neighbors after the update.

Implicit Information and Redundant Knowledge. Un-
der some epistemic conditions, the epistemic and non-

epistemic diffusion policies are equivalent. If each agent
always knows at least who her immediate neighbors are
and how they are behaving, then the two policies give rise
to the same diffusion dynamics, in the following sense:
the diffusion dynamics resulting from the informed up-
date on an ETM reduces to the diffusion dynamics under
the initial (non-epistemic) update applied to each possi-
ble world of the ETM. This is the content of Proposition
1 below.

Proposition 1 relates two important insights. The first
is that standard threshold models make the implicit epis-
temic assumption that agents know their neighborhood
and its behavior. The second is that knowledge about more
distant agents is redundant as it will not affect behavior.

To prove the result, we first define how to generate a
(non-epistemic) threshold model from a possible state of
an epistemic threshold model:

Definition 4 (State-Generated Model). With an ETM
M = (W ,A , N , B,θ , {∼a}a∈A ), let w ∈ W and
a ∈ A . The state-generated threshold model M (w) =
(A , NM (w), BM (w),θ ) is given by:

NM (w)(a) = N(w)(a), and a ∈ BM (w)⇔ a ∈ B(w).

Proposition 1. LetM = (W ,A , N , B,θ , {∼a}a∈A ) be an
ETM and w ∈ W . Let M i and M (w) be respectively the
informed update and state-generated models of M . Let
M i(w) be the state-generated model ofM i and letM (w)′

be standard (non-epistemic) threshold update ofM (w) ac-
cording to the rule (1). Then:

IfM has sight n≥ 1, thenM i(w) =M (w)′.

Proposition 1 provides a precise, but partial, interpreta-
tion of the dynamics of non-epistemic threshold models
as a process of information-dependent behavior diffusion.
As witnessed by its proof, only the immediate neighbor-
hood of agents matters for the adoption behavior in a
threshold model. A next step is to investigate how this
changes when agents are equipped with predictive abili-
ties; see Section 3.

The interpretation is partial, since the restriction to
the case of sight n ≥ 1 does not fully characterize the
standard threshold dynamics (1). In the case of no sight
(n = 0), the agent may have uncertainty about some
neighbor b’s behavior, and might not even know exactly
who are all her neighbors; but she might still know that a
large enough proportion of these neighbors have adopted
B: in which case she will still update according to the stan-
dard threshold dynamics!

Situations in which agents lack knowledge of some
of their immediate neighbors’ behavior are interesting in
that they may cause the diffusion process to slow down
compared to the standard update policy:

3
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Proposition 2. There exists an ETM with sight n = 0,
M = (W ,A , N , B,θ , {∼ a}a∈A ), such that

BM i(w) ⊂ BM (w)′ ,

where M i and M (w) are resp. the informed update and
state-generated models of M , and M i(w) is the state-
generated model of M i and M (w)′ is the Eq. (1) update
ofM (w).

Fig. 3 illustrates this “slower” diffusion process.

A sound and complete logic for epistemic threshold
models and informed update is presented in Section 4.
Full details may be found in [3].

Fig. 3. A diffusion process slowed down by the uncertainty of b.
Threshold: θ = 1

2 . Consider w inM0: a has adopted, but b does
not know it. Therefore, b will not adopt immediately. The dif-
fusion according to the informed update policy in state w will
only stabilize after updating twice. Under the non-epistemic Eq.
(1) update, or if agent b knew whether a has adopted, the sit-
uation depicted in w would stabilize after one step, hence the
slow-down.

3 Prediction Update

In defining our informed update rule based on epistemic
threshold models, we ensure that agents do not act on in-
formation they do not possess. Such agents are however
still limited, in that they do not take all their available in-
formation into account. This section investigates effects
of agents that are allowed to reason about more than only
the present behavior of the network. In particular, we fo-
cus on providing agents with predictive power.

Consider the “no uncertainty" ETM illustrated in Fig.
4, in which all the network and behaviors are assumed to
be common knowledge, so the informed dynamics coin-
cides with the standard, non-epistemic dynamics.

Fig. 4. An ETM with no uncertainty about the actual state w,
developing according to informed update. B is marked by gray,
and a threshold θ < 1/2 is assumed. At time 0 (w0), only a has
adopted. According to informed adoption, b adopts at time 1.
At time 2, c also adopts the behavior, etc.

Given a game-theoretic interpretation of agents’ choices,
the dynamics in Fig. 4 seems “irrational". In particular,
as the network and behavior distribution are known to
c, and as θ < 1/2 means that the payoff of successfully
coordinating with a neighbor on B is higher than that
for coordinating on ¬B, c seems to lack foresight when
choosing not to adopt during the first update. As c knows
that a has adopted, she also knows that b will adopt dur-
ing round 1. Hence c would successfully coordinate with
more neighbors and thus be better off in round 1 if she,
too, has chosen to adopt. To represent this “predictive ra-
tionality” we define a new update mechanism.

Prediction Update as the Least Fixed Point. In defin-
ing “prediction update”, we make use of the notion of
least fixed point. This is necessary because of the circu-
lar character of prediction update: an agent adopts based
on the predicted behavior of her neighbors, but that be-
havior is in its turn based on their predictions about the
first agent’s behavior (among others), etc. This fixed point
may be approximated using a chain of lower level pre-
dictions. The intuitive idea of the approximation may be
illustrated by reference to Fig. 4: assume agent a pre-
dicts that his only neighbor b will adopt B in round 2,
even if b follows the (non-predictive) informed update
policy. Then a may act preemptively, by also adopting B
in round 2, rather than in round 3 as the informed update
prescribes.5 In this case, a may be thought of as a level 1
predictor: he assumes no-one else makes predictions, that
the others are of level 0. However, a may come to think
that b is as smart as he is, i.e., that also b is a level 1 pre-
dictor. Assuming this, a now foresees that b will not wait
till round 2 to adopt, but instead she adopts B already in
round 1; based on this prediction about b’s predictions, a
may now also adopt in round 1. In this case, a is a level 2
predictor, etc. If this reasoning is pushed to its limit, it will
“catch up with itself”: in the fixed point, every agent will
be a level ω predictor, predicting under the assumption
that all others are the same.

Common Knowledge of Predictive Rationality and of
Complete Information Use. Prediction update incorpo-
rates two epistemic assumptions. One is that it is common
knowledge that all agents try to foresee the behavior of
their neighbors. The second assumption is that it is com-
mon knowledge that predictors use all their available in-
formation (about the network structure, the current be-

5 If a acted according to the informed update policy, he must first see b adopt before he is influenced by b’s choice

4
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havior spread and information available to others when
determining their next action).

Before defining the prediction update, a few prelimi-
naries are required.

Definition 5 (The Lattice of Behaviors and the
Informed-Update Map). For a given ETM M =
(W ,A , N , B,θ , {∼a}a∈A ) let P (A )W be the set of all
possible “behaviors", i.e. all functions f : W → P (A ).
We can convert this set into a lattice, by defining a partial
order � on P (A )W , given by:

f � g ⇔ f (w) ⊆ g(w).

The informed-update map is a function

ΓB :P (A )W −→P (A )W

, mapping any behavior f ∈ P (A )W to some behavior
ΓB( f ), given by, for all w ∈W ,

ΓB( f )(w) = B(w)∪
¦

a ∈A : ∀v ∼a w, |N(v)(a)∩ f (v)|
|N(v)(a)| ≥ θ

©

.

Lemma 1. LetM , P (A )W , � and ΓB be as in Definition
5. Then 1) (P (A )W ,�) is a finite, and hence complete, lat-
tice. 2) Informed update ΓB is an order-preserving (mono-
tonic) map.

Definition 6 (Least Fixed Point). Let M =
(W ,A , N , B,θ , {∼a}a∈A ) be an ETM, and P (A )W ,�, ΓB
be as in Definition 5. The least fixed point of ΓB, denoted
by lfp(ΓB), is the unique behavior x ∈ P (A )W such that

ΓB(x) = x , and

∀y ∈ P (A )W , if ΓB(y) = y, then x � y

Theorem 1 (lfp Existence, Uniqueness and Approxi-
mation). LetM , (P (A )W ,�) and ΓB be as in Definition
6. Then lfp(ΓB) exists. Moreover, this least fixed point is
unique, and it can actually be reached by finite iterations
of the informed-update map starting on the bottom element
of the lattice. More precisely: if we put

Γ 0
B =⊥, where ⊥(w) = ; for all w ∈W ,

Γ n+1
B = ΓB(Γ

n
B ), for all n≥ 1,

then there exists some N ∈ N, such that the sequence sta-
bilizes at stage N, and we have: lfp(ΓB)(w) = Γ N

B (w) =
Γ N+1

B (w).

Proof. By Lemma 1, ΓB is a monotonic map on the com-
plete lattice (P (A )W ,�). Hence, the least fixed point
lfp(ΓB) exists by the Knaster-Tarski Fixed Point Theorem
(see e.g. [9, p. 50]). Moreover, since our lattice is finite,
the proof of that theorem shows in fact that lfp(ΓB) is
reached at some finite iteration Γ N

B . ut

Defining Prediction Update. Given the previous para-
graph, we may now define prediction update as follows:

Definition 7 (Prediction Update). Let M =
(W ,A , N , B,θ , {∼a}a∈A ) be an ETM of sight n,
and let (P (A )W ,�) be as in Lemma 1. Let ΓB :
P (A )W −→ P (A )W be given as in Definition
5. The prediction update of M results in the ETM
M p = (W ,A , N , Bp,θ , {∼p

a}a∈A ) where ∀w, w′ ∈W ,

Bp(w) = lfp(ΓB)(w), and

w∼p
a w′ iff i) w∼a w′ and

ii) ∀b ∈ N≤n(w)(a) : b ∈ Bp(w)⇔ b ∈ Bp(w′).

Theorem 1 is important, since it ensures first, that our
prediction update is well-defined, and second that, when
engaged in prediction update agents do not run the risk of
falling into infinite chains of reasoning about each other
(which presumably would take an infinite time): they can
compute the resulting prediction (and update) in finitely
many steps.

Fig. 5. The prediction update of a finite sight 2 ETM with actual
state w, θ < 1/2. Agents a, b, c know the actual state; d, e are
uncertain. The development follows informed adoption; states
w0–w4 are from Fig. 4. The arrow shows the prediction up-
date dynamics of the actual world. With informed update, w
reaches a fixed point after 4 updates; with prediction update,
it reaches the same fixed point after only 2 steps. Due to uncer-
tainty, the prediction update does not jump to the fixed point
in 1 step: as d does not know whether a has adopted at time
0, she does not know that c will adopt under the prediction
update. Hence, she will refrain herself from adopting until w3.
Similar considerations goes for e.

5
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Iterated Dynamics, Fixed Point, Cascades, Speed of
Convergence. When any of our adoption updates is it-
erated, a long-term dynamics is produced, in the form of
an infinite sequence of modelsM ,M (1),M (2), . . . ,M (n).
Since all the update rules considered in this paper are
inflationary, a fixed point is always eventually reached:
some stage N such thatM (N) =M (N+1). The extent of the
cascade produced by each update type on an initial model
M is given by the behavior B(N) in the fixed pointM (N),
which comprises the set of all agents who will eventually
adopt B (in a given world). A full cascade is produced if all
agents will eventually adopt B, i.e. BN (w) =A . It is easy
to see that prediction update accelerates the cascading be-
havior in comparison to informed updated: the fixed point
of the adoption process is typically reached earlier if the
agents use prediction update than if they use informed
update. A full analysis of the relationship between the
three types of update is left for future work. But a con-
crete example in this sense is given below.

Example, Sanity Check and Proof of Concept. The “ir-
rational” behavior illustrated in Fig. 4 is solved by predic-
tion update. The dynamics are illustrated in Fig. 5. Notice
that now c adopts B as soon as she knowns B is preferred.

Bounded Rationality. Prediction assumes that agents
have unbounded rationality (maximal predictive and rea-
soning power given the available information). A bounded
rationality version of prediction update could be defined,
in which agents can only compute a fixed finite number
n of steps of the prediction chain. A natural way of do-
ing this would be by defining an update that uses Γ n

B in-
stead of lfp(ΓB). When n is low enough, the dynamics
of bounded-rationality update would differ from the dy-
namics of unbounded prediction update. We leave the ex-
ploration of bounded-rationality updates for future work.

4 Logics

Definition 8 (Languages LK[] and LK). Let the set of
atomic propositions be given by {Nab : a, b ∈ A} ∪ {βa :
a ∈ A} for a finite set A . Where a, b ∈ A , the formulas
of LK[] are given by

ϕ := Nab | βa | ¬ϕ | ϕ ∧ϕ | Kaϕ | [adopt]ϕ

The formulas of that “static" fragmentLK are those ofLK[]

that do not involve the dynamic [adopt] modality.

Intuitively, Nab means that agent b is a neighbor of a, βa

means that agent a has adopted behavior B, Kaϕ means
the agent a knows ϕ, and [adopt]ϕ means that ϕ will
hold after the next adoption update. The other Boolean
operators (disjunction, implication) can be defined as ab-
breviations using negation and conjunction, in the usual
way. We will consider two different interpretations for the
language LK[]: the logic of informed update, and the logic
of prediction update.

Definition 9 (Class: Cθn). For θ ∈ [0, 1] and n ∈ N, the
class Cθn consists of all ETM’s with threshold θ and sight
n.

Definition 10 (Informed Update Semantics). Let
θ ∈ [0,1] and n ∈ N. Given any ETM M =
(W ,A , N , B,θ , {∼a}a∈A ) ∈ Cθn of threshold θ and sight
n, we recursively define a satisfaction relation |= between
worlds w ∈W in modelM and formulas ϕ ∈ LK[]:

M , w |= βa iff a ∈ B(w)
M , w |= Nab iff b ∈ N(w)(a)
M , w |= ¬ϕ iff M , w 2 ϕ
M , w |= ϕ ∧ψ iff M , w |= ϕ andM , w |=ψ
M , w |= Kaϕ iff ∀v ∈W : v ∼a w⇒M , v |= ϕ
M , w |= [adopt]ϕ iff M i , w |= ϕ, withM i the inform-

ed update ofM (Def. 3).

Validity: as usual, we write |=Cθn
ϕ if ϕ is true at all worlds

in all modelsM ∈Cθn.

Axiomatization. In the specification of the epistemic re-
duction axioms, the syntactic shorthand in Table 1 are
used. Using these shorthands, the axioms for Epistemic
Threshold Models and the dynamics of Informed Update
are given in Table 2.

The reduction law Ep.Red.Ax.β states that a has
adopted β after the update just in case she had already
adopted it before the update, or she knew that she had a
large enough proportion of neighbors who had already
adopted it before the update. Ep.Red.Ax.K.sight.n cap-
tures that an agent knows that ϕ will be the case after
the update if, and only if, she knows that, if those very
agents who actually are going to adopt do adopt, then ϕ
will hold after the update.

Definition 11 (Logic of Informed Update). The logic
Lθn consists of the axioms and rules of Table 2, together
with any complete set of axioms and rules for propositional
logic. We write `Lθn

ϕ if ϕ is a theorem in the logic Lθn.

Theorem 2. (Soundness, Completeness, Expressivity and
Decidability of Lθn) Let θ ∈ [0, 1], n ∈ N and ϕ ∈ LK[].
Then:

|=Cθn
ϕ iff `Lθn

ϕ.

In fact, the reduction axioms can be used to show that the
language LK[], endowed with the informed update seman-
tics, has the same expressivity as its static counterpart LK .
Moreover, Lθn is decidable.

Definition 12 (Prediction Update Semantics). Given
θ ∈ [0,1], n ∈ N and any ETM M ∈ Cθn, the satisfac-
tion relation for the prediction update semantics can be
defined using the same truth clauses as in Def. 10, except
for the formulas of the form [adopt]ϕ, for which we put:

M , w |= [adopt]ϕ iff M p, w |= ϕ, withM p the predic-
tion update ofM .

6
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1) βN(a) ≥ θ :=
∨

{G⊆N ⊆A : |G ||N |≥θ}

(
∧

b∈N
Nab ∧

∧

b/∈N
¬Nab ∧

∧

b∈G
βb)

2)
N1

ab := Nab

N k+1
ab := N k

ab ∨
∨

c∈A

�

N k
ac ∧ Ncb

�

3)
�

B = N k
a β
+
�

:=
∧

b∈B

�

N k
ab ∧ [adopt]βb

�

∧
∧

b∈A\B

�

N k
ab → [adopt]¬βb

�

Table 1 (Abbreviations). 1) βN(a) ≥ θ means that the proportion of agent a’s neighbors who have adopted is equal to or above
the threshold θ . 2) For any k ∈ N≥ 1, the formula N k

ab means that b is k-distant from a. 3) ForB ⊆A , the formulaB = N k
a β
+

says thatB is the set of agents who are k-distant from a and will have adopted after the next update.

Network Axioms Knowledge Axioms Inference Rules

¬Naa Irreflexivity Kaϕ→ ϕ Ax.T From ϕ and ϕ→ψ, infer ψ Modus Ponens
Nab ↔ Nba Symmetry Kaϕ→ KaKaϕ Ax.4 From ϕ, infer Kaϕ for any a ∈A Nec.Ka
∨

b∈A
Nab Seriality ¬Kaϕ→ Ka¬Kaϕ Ax.5 From ϕ, infer [adopt]ϕ Nec.[adopt]

Knowledge-Network Axioms Boolean Reduction Axioms

(N n
ab ∧ βb)→ Kaβb Known Behavior [adopt]Nab ↔ Nab Red.Ax.N

(N n−1
ab ∧ Nbc)→ KaNbc Known Neighbors [adopt]¬ϕ↔¬[adopt]ϕ Red.Ax.¬

[adopt]ϕ ∧ψ↔ [adopt]ϕ ∧ [adopt]ψ Red.Ax.∧

Epistemic Reduction Axioms

[adopt]βa ↔ βa ∨ Ka(βN(a) ≥ θ ) Ep.Red.Ax.β
[adopt]Kaϕ↔

∨

B⊆A

�

B = N n
a β
+ ∧ Ka (B = Naβ

+→ [adopt]ϕ)
�

Ep.Red.Ax.K .sight.n

Table 2: Axioms and inference rules for the logic of sight n ETMs and informed update. Subscripts a, b are arbitrary overA .

Axiomatization. We present an axiomatic system that is
sound for the logic of prediction update, although com-
pleteness remains an open question. Note that in this sec-
tion, the [adopt] modality is a fixed point operator and
hence may no longer be reduced away. In contrast to the
informed update logic, the prediction update logic ap-
pears to be strictly more expressive than its static coun-
terpart.

To state the proof system, we need a more general
version of the abbreviation βN(a) ≥ θ that was intro-
duced in Table 1. For this, we make a new abbreviation
Ka(ϕN(a) ≥ θ ), introduced in Table 3, whose intended
meaning is that a knows that a fraction of at least θ of her
neighbors has the property ϕ (where for instance ϕb can
stand for Nab ∧ βb). In particular, Ka([adopt]βN(a) ≥ θ )
expresses that a knows that a fraction of at least θ of her
neighbors will have adopted β after the next prediction
update step.

Definition 13 (The Logic of Prediction Update). The
logic Lpredic t

θn consists of the same axioms and rules as
the logic Lθn above, except for two changes: the axiom
Ep.Red.Ax .β is replaced by the Fixed Point Axiom in Ta-
ble 4, and the set of rules is extended with the Least Fixed
point Inference Rule in Table 4.

As before, we write `Lpredic t
θn

ϕ if ϕ is a theorem in the

logic Lpredic t
θn .

The Fixed Point axiom of Table 4 is almost identical to
Ep.Red.Ax.β of Table 2, except for the inclusion of the
[adopt] modality on the right-hand side. This states that
a will adopt after the prediction update iff she has already
adopted, or if she knows that enough of her neighbors will
have adopted after the next update step (in which they
will apply the same predictive reasoning that she uses).
The Least Fixed Point Inference rule reflects the fact that
prediction update was defined as a least fixed point oper-
ator.

Proposition 3. (Soundness of Lpredic t
θn ) Let θ ∈ [0,1],

n ∈ N and ϕ ∈ LK[]. Then:

`Lθn
ϕ implies |=Cθn

.

We were unable to prove completeness, but we have
reasons to make the following

Conjecture: The system Lpredic t
θn is a complete axiomatiza-

tion of predictive update logic over the class Cθn.

5 Conclusions and Future Work

The paper has focused on two intertwined objectives. On
the one hand, we have developed models for the diffusion
dynamics under uncertainty, based on two natural epis-
temic variants of the standard threshold adoption rule:

7
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4) Ka(ϕN(a) ≥ θ ) := Ka





∨

¦

G⊆N ⊆A : |G ||N |≥θ
©

�

∧

b∈N
Nab ∧

∧

b/∈N
¬Nab ∧

∧

b∈G
ϕb

�





Table 3 (Abbreviations). 4) The expression Ka(ϕN(a) ≥ θ ) is defined for tuples for (ϕb)b∈A , one for each agent a ∈A .

Fixed Point Axiom Least Fixed Point Inference Rule

[adopt]βa ↔ βa ∨ Ka([adopt]βN(a) ≥ θ )
` {ϕa ↔ βa ∨ Ka(ϕN(a) ≥ θ )}a∈A

` {ϕa → [adopt]βa}a∈A

Table 4 (Fixed Point Laws). Fixed point laws of prediction update logic Lpredic t
θn . The fixed point axiom takes the place of the

infor- med update reduction axiom and the least fixed point inference rule is added.

the informed update, and the prediction update. On the
other hand, we presented logical frameworks for reason-
ing about diffusion dynamics. We proved soundness and
completeness for the logic of informed update, and pro-
posed a sound system for the logic of prediction update.
The problem of completeness for the later logic is an open
question.

In epistemic threshold models, if agents’ behavior is
dictated by that of their direct neighbors, then knowledge
of more distant agents is redundant. To act as under the
standard threshold model dynamics, knowledge of neigh-
bors’ behavior is however required. If this information is
not available, the diffusion speed decreases. In the limit
case where no information is available, the diffusion pro-
cess stops. Taken together, the most economical epistemic
interpretation of standard threshold models is that their
dynamics embodies an implicit epistemic assumption that
exactly the network structure and behavior of agents in
distance 1 is known.

Prediction update allows agents to better coordinate
with their neighbors in adopting a spreading behavior, by
using their information about the others’ future behavior.
As a result, prediction-update agents increase a network’s
speed of convergence. In the extreme case when the net-
work and behavior distribution are common knowledge,
the prediction update jumps in one step to the fixed point
of the standard threshold model update. But in general,
even describing the one-step dynamics of prediction up-
date requires a dynamic fixed point operator, which is
atypical of dynamic epistemic logic. As a consequence,
the logic of prediction update does not have full reduc-
tion axioms: the dynamic modality seems to genuinely
add expressivity in this case. This poses technical chal-
lenges to obtaining a completeness proof.

Future work. We plan to tackle in another paper the open
problem about completeness of the logic of prediction up-
date. Besides this question, there are four other main di-
rections for further research: (A) explore the dynamics
induced by boundedly-rational versions of predictive up-

date; (B) explore the game theoretic perspectives of game
play on networks under uncertainty and in particular the
game structure underpinning the intuitive rationality of
prediction update; (C) develop a full comparative analy-
sis of the different update processes that we have outlined
in this paper, in particular the differences with respect
to limit behavior and speed of possible stabilization; (D)
investigate the epistemic and predictive versions of the
non-inflationary adoption rules, such as the policy given
by (2) above. Such rules, that allow agents to unadopt
an already adopted behavior, can lead to very different
limit behavior, e.g. to a cyclic dynamics. Understanding
the epistemic aspects of such oscillating behavior will re-
quire logical tools going beyond the fixed point theory
used in this paper.6
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