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Populärvetenskaplig sammanfattning

Atomkärnan står för den stora merparten av massan i en atom och kan beskrivas som en
samling protoner och neutroner (kärnpartiklar). Många olika kombinationer av antal pro-
toner Z och antal neutroner N kan sättas samman och bilda en atomkärna, men de flesta
atomkärnor är inte stabila utan sönderfaller efter en tid. Det radioaktiva sönderfallet innebär
att byggstenarna i atomkärnan spontant ändrar om sig till en mer gynnsam konfiguration.

I denna avhandling undersöks sönderfall av tunga atomkärnor med hjälp av detaljerade
teoretiska modeller. Metoder för att beskriva α-sönderfall och fission utvecklas genom att
kombinera moderna modeller för atomkärnans form och struktur med modeller för de dy-
namiska processer som ger upphov till sönderfall. α-sönderfall innebär att en atomkärna
delar upp sig i en Heliumkärna (α-partikel) och en ny dotterkärna med två färre protoner
och två färre neutroner. Vi visar att den väletablerade Skyrme-Hartree-Fock-Bogoliubov
strukturmodellen, som ger en bra beskrivning av bland annat kärnans bindningsenergi och
form, även ger en bra beskrivning av relativa sönderfallssannolikheter i olika tävlande α-
sönderfallsvägar. De olika sönderfallsvägarna utgörs av att dotterkärnan hamnar i olika ex-
citerade tillstånd. Med den utvecklade metoden kan strukturens betydelse för vilken väg
som tas studeras i många olika kärnor. Metoden tillämpas för att förutsäga när dotterkär-
nan hamnar i ett exciterat tillstånd efter utsändning av en α-partikel från s.k. supertunga
atomkärnor (se nedan). När detta sker kan sedan den exciterade kärnan sända ut rönt-
genstrålning, och genom att mäta denna och liknande strålning i experiment kan man
identifiera grundämnet och få viktig information om strukturen i kärnan.

Fission innebär en uppdelning av en atomkärna i två ungefär lika stora kärnor. Fission av
tunga kärnor kan induceras genom beskjutning med en neutron. Med en ny metod gör vi
förutsägelser för fissionsuppdelningens beroende av neutronenergin. Vi beräknar hur struk-
turen i atomkärnan ger upphov till ett komplicerat energiberoende för hur sannolikt det
är att båda fragmenten från fissionen blir lika stora. I beräkningarna tydliggörs även att
kärnpartiklarnas tendens att para ihop sig två-och-två spelar en viktig roll under fissions-
processen.

Inget av de kända grundämnena tyngre än Vismut är stabila, utan samtliga sönderfaller
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till lättare grundämnen. I naturen skapas tunga grundämnen i våldsamma astrofysikaliska
processer i universum. I vissa fall som t.ex. Uran kan de vara långlivade nog för att hittas
i solsystem miljarder år senare. Hur tunga atomkärnor som kan existera, och därmed var
det periodiska systemet tar slut, är en fråga som aktivt undersöks inom kärnfysikens grund-
forskning¹. Den kvantmekaniska skalstrukturen för protoner och neutroner, likande skalen
för elektronerna i atomen som ger upphov till ädelgaser vid fyllda skal, möjliggör existensen
av supertunga (Z ≥ 104) grundämnen. Teoretiska modeller förutsäger att slutna skal kan
ge upphov till mycket långlivade supertunga grundämnen. Det förutspådda läget i N-Z-
planet för dessa skal ligger bortom hittills kända grundämnen, och kan liknas med en ö i
ett outforskat hav. Eftersom modellerna är anpassade för att beskriva kända atomkärnor,
så kan tillämpningen i okända områden innebära stora fel i förutsägelserna.

I experiment har man lyckats skapa supertunga kärnor upp till Z = 118, som nyligen
fick namnet Oganesson efter Yuri Oganessian, chefen för forskargruppen på laboratoriet i
Dubna, Ryssland, där upptäckten gjordes. Hittills är det dock en bit kvar till möjliga lägen
för den stabila ön, framförallt i antal neutroner. För att förbättra modellerna är det viktigt
att ha så mycket säker information som möjligt om strukturen hos de ämnen som går att
skapa experimentellt. Med hjälp av detta kan man falsifiera teoretiska förutsägelser och få
en bättre inblick i de fenomen, exempelvis ökande påverkan av många positivt laddade
protoner i kärnan, som blir viktigare i de supertunga kärnorna än i de mer välstuderade
grundämnena. Utvecklingen av en detaljerad teoretisk beskrivning avα-sönderfall som görs
i den här avhandlingen kan förhoppningsvis bidra som ett led i detta arbete, med målet att
kartlägga den yttre gränsen för det periodiska systemet.

Fission är den grundläggande processen som utnyttjas för att generera energi i dagens kärn-
kraftsreaktorer. Sett ur ett teoretiskt perspektiv är fissionsprocessen mycket utmanande att
beskriva, då det handlar om ett stort antal starkt växelverkande kärnpartiklar som rör sig
tillsammans under uppdelningen. I den här avhandlingen undersöks hur strukturen hos de
exciterade tillstånden i systemet kan påverka processen. Resultaten kan direkt användas för
att göra förutsägelser om fördelningen av fissionsfragmentens massa, och undersökningen
kan förhoppningsvis öka förståelsen för fissionsprocessen och bidra till fortsatt utveckling
av teoretiska kärnmodeller.

¹Lund är en av de platser där det bedrivs forskning på detta område, både experimentell och teoretisk. Den
experimentella kärnstrukturgruppens lyckade experiment med grundämne  behandlas i Ulrika Forsbergs
doktorsavhandling []. Experimentet fick även stort genomslag i media, en lista över nyhetsartiklar finns på
http://www.fysik.lu.se/intranat/organisation/service-info/nyhetsarkiv/nyheter-/element--news-feed/.

http://www.fysik.lu.se/intranat/organisation/service-info/nyhetsarkiv/nyheter-2013/element-115-news-feed/
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Chapter 

Introduction

Currently, more than  different nuclides are known from nuclear-physics experiments
[]. Only  of these are stable, or have life times comparable to the age of our solar system
and can be considered practically stable []. is implies that exploring and understanding
the decay of atomic nuclei is a central topic in nuclear physics. e atomic nucleus is a
many-body quantum system composed of strongly interacting particles, and it can have
complex decay properties. While some basic features of nuclear stability can be understood
in terms of binding energies, to describe the decay processes in detail, the structure of the
nucleus must be taken into account. is thesis is devoted to the theoretical description
of the influence of nuclear structure on decay properties of heavy nuclei. α-decay, the
emission of a 4He nucleus from an unstable larger nucleus, is considered in the first part,
which comprises papers I, II, and III. α-decay is a common decay mode for heavy nuclides,
and an important decay mode for superheavy nuclei.

Superheavy nuclei (SHN) are the heaviest nuclei and owe their stability to quantum shell
effects []. Until the late s the standard view in the scientific community was that
the highest atomic number was uranium Z = 92 []. In  Bohr and Wheeler used
their liquid-drop model to describe fission []. is model put the upper limit of possible
elements at Z ∼ 110. Myers and Swiatecki discussed in  possible locations of spherical
shell closures giving rise to SHN []. In detailed calculations in  Nilsson and coworkers
[] predicted an island of stability for SHN around Z = 114 and N = 184. Superheavy-
element research is still an active field today both on the theory side and with experiments
to create and study new elements.

All known SHN are unstable and must be synthesized in nuclear reactions. Recent ex-
periments have pushed the limit of observed nuclides to proton number Z = 118 [].
During the writing of this thesis, the International Union of Pure and Applied Chemistry
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(IUPAC) announced the names for elements Z = 113, 115, 117, and 118: nihonium
(Nh), moscovium (Mc), tennessine (Ts), and oganesson (Og) []. e observed SHN
commonly decay through a chain of α-decays. Different nuclear states in a given nucleus
can be populated during these decays, especially when the number of protons and/or neu-
trons is odd. To better identify, and study the structure of SHN, combined α-decay and
nuclear-spectroscopy experiments can be carried out [, ]. One motivation for my work
on α-decay is to develop theoretical methods to aid in the prediction and interpretation
of results from such experiments in collaboration with the experimental nuclear structure
group in Lund. Which states are populated during the α-decay can be estimated by ap-
proximate selection rules [], but due to the complexity of the decay process these rules are
often very inaccurate. To properly predict the probability of ending up in a given nuclear
state requires detailed calculations.

e nucleus is composed ofmany interacting protons and neutrons, and these particles have
in turn internal structure described by the quarks and gluons of the theory of quantum
chromodynamics. is makes it practically impossible to describe the nuclear quantum
system exactly. One has to choose a model with a suitable level of approximation. e
first step is to consider protons and neutrons as structureless particles interacting through
effective interactions. e resulting many-body problem can then be treated at different
levels of approximation. e goal for the theoretical description is to be able to reasonably
predict both static and decay properties using the same model applicable to many different
nuclei.

To be able to effectively describe heavy nuclei, systems containing hundreds of particles,
a mean-field model can be employed. In this work, a Skyrme-Hartree-Fock-Bogoliubov
(SHFB) model is used to describe the α-decaying nuclei. SHFB models can successfully
describe many static properties such as binding energies and densities of a large number of
heavy nuclei, while not being too costly in terms of computational resources []. Due to
the general applicability of SHFB models, the possibility to extend these models to include
beyond mean-field effects [, ], and their adoption to describe other decay properties
such as fission [, ] and β-decay [, ] it is interesting to explore the description of
α-decay within this framework.

In paper I, spherical nuclei with even numbers of protons and neutrons are considered.
Several aspects of the description of α-decay rates connecting ground states of the decaying
parent and resulting daughter nuclei are investigated. In paper II, the effects of using a
different SHFB parameterization, and the sensitivity of the decay rate to changing the
spatial extent of the α-particle wave function are investigated. Paper III contains results
for spherical nuclei with an odd number of nucleons. α-decay leading to different excited
states in the daughter nucleus, the hindrance of certain decays and the relation to empirical
selection rules are investigated. All three papers contain comparisons with experimental
data, and papers I and III contain predictions for α-decay properties of SHN.
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e second part of the thesis concerns the description of low-lying states in SHN. Several
decay chains of the SHN 288115 where observed in combined α-decay and spectroscopy
experiments performed by D. Rudolph and coworkers of the Lund experimental nuclear
structure group []. ese experiments were the first to resolve different excited states and
electromagnetic transitions between these states for several SHN. In paper IV the structure
of nuclei in the α-decay chain were investigated using two different models, with the aim
of better understanding the experimental results and the constraints they imply on nuclear
structure models for this region of the nuclear chart. e models were a SHFB model and
a Macroscopic-Microscopic particles+rotor model.

Macroscopic-Microscopic (MM) models can be seen as a further simplification of the
many-body problem compared to HFB-models. While HFB treats all nucleons on the
same footing, in the MM approach the bulk properties of the nucleus is treated separately
from the influence of the least bound nucleons. e bulk contribution to the binding en-
ergy is given by a model for a drop of structureless nuclear matter. e least bound nucleons
give a correction to the bulk energy obtained by considering an approximate mean field.

To describe excited states when the nucleus is deformed, the particles+rotor model is used.
By coupling the odd proton and the odd neutron to the remaining nucleons, approximated
as a rotating structureless core, many features of the low-energy part of the excitation spec-
trum can be described.

e last part of this thesis concerns the influence of nuclear structure on the fission pro-
cess. It has been shown that a MM model combined with a simple statistical treatment
of highly-damped shape evolution gives a good description of observed fragment yields in
induced fission [, ]. e shape evolution of the excited nucleus is mainly determined
by how the number of possible configurations of the nucleus changes with shape. In paper
V the fission model is improved by including the microscopically calculated level density at
different deformations. e level densities are obtained in a combinatorial model [] us-
ing many-particle-many-hole excitations of the mean-field corresponding to the employed
MMmodel. e nuclear excitations are described using a pairing residual interaction, with
blocking taking into account, and include the rotational bands built upon the different
quasiparticle configurations.







Chapter 

SHFB description of heavy nuclei

. Introduction

For the calculations of α-decay properties described in chapter , nuclear wave functions
for the parent and daughter nuclei are needed as input. To tractably calculate the wave
functions for these heavy nuclei, with hundreds of interacting nucleons, approximate treat-
ments are needed. In the α-decay studies, the Skyrme-Hartree-Fock-Bogoliubov (SHFB)
approach is chosen.

A wide variety of approaches to describe nuclear structure can be found in the literature,
employing different levels of approximation. At one end are the ab-inito approaches, e.g.
[–], where one tries to describe the nucleus at the most basic level allowed by current
computational resources. e basic degrees of freedom are chosen to be the protons and
neutrons, interacting through realistic nucleon-nucleon potentials. ese potentials should
describe the scattering of free nucleons and be as closely connected to the underlying theory
of quantum chromodynamics as possible. Solving the models requires advanced many-
body techniques and large-scale computing, which limits the applicability to lighter nuclei.

At the other end are macroscopic-microscopic approaches, e.g. [, , ], employed in
the studies presented in papers IV and V, and discussed in Chapters  and . is type of
approach can be applied throughout the nuclear chart, and to a relatively low computational
cost, but relies heavily on phenomenological modeling.

e SHFB and other similar self-consistent mean-field approaches fall somewhere in be-
tween these two categories. With SHFB all nucleons are considered explicitly, but they
interact through effective interactions and the type of nucleon correlations allowed are re-
stricted to simplify the calculations. In the Hartree-Fock (HF) approach, nucleons are
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described as independent particles, with only the correlations stemming from the Pauli
exclusion principle treated explicitly. In the employed Hartree-Fock-Bogoliubov (HFB)
approach, the pairing correlations between like nucleons are also included in the wave func-
tion by considering independent Bogoliubov quasiparticles. e effective interactions be-
tween nucleons is tuned at the mean-field level, so that the solutions give a good description
of bulk properties such as binding energies and charge densities.

e approach has many connections to density functional theory for electronic systems,
and modern formulations of the SHFB approach are constructed using energy-density-
functionals (EDFs) [, , ], instead of the picture of HFB wave functions and effective
interactions. For practical purposes of computation the two pictures are very similar, and in
this chapter I will outline the employed SHFB method in the latter picture. e effective-
interaction picture is closer to the historical development of the model, but it is not my
intention to review these developments. is choice is made in the hope of making the
presentation of the method more pedagogical.

is Chapter is organized as follows: Section . describes the HFB equations obtained
when minimizing the energy with an effective interaction. In Sec. ., the Skyrme effective
interaction is presented, along with some discussion on the approach. Finally, Sec. .
briefly describes the computational application of the method.

. Hartree Fock Bogoliubov equations

.. HFB wave function

An HFB wave function can be defined in terms of the quasiparticle operators [],

β†k =
∑
l

Ulka
†
l + Vlkal, (.)

where the operator a†l creates a particle, and al annihilates a particle in state l. e matrices
U and V define a unitary transformation from the set of operators (a, a†) to the set of
quasiparticle operators (β, β†), (

β
β†

)
= W†

(
a
a†

)
, (.)

with

W =

(
U V∗

V U∗

)
. (.)

e HFB state |HFB⟩ is the vacuum to the quasiparticle excitations (.),

βk|HFB⟩ = 0, ∀k. (.)
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e benefit of this construction is that the state contains explicitly pairing correlations
[], while retaining the characteristics of a product state, simplifying calculations. e
quasiparticles obey fermion commutation relations, together with (.) andWick’s theorem
[], this implies that expectation values of operators can be expressed in terms of the density
matrix ρij = ⟨HFB|a†j ai|HFB⟩, and the pairing tensor κij = ⟨HFB|ajai|HFB⟩.

e density matrix and pairing tensor defines the state |HFB⟩ uniquely (up to a phase) [],
and are related to the U and Vmatrices through ρ = V∗VT, κ = V∗UT. A state is an HFB
state if and only if the generalized density matrix,

R =

(
ρ κ

−κ∗ 1− ρ∗

)
, (.)

obeys R2 = R []. e eigenvalues of R are thus either  or . R is diagonal in the
quasiparticle basis,

W†RW =

(
0 0
0 1

)
. (.)

e quasiparticles β† are linear combinations of annihilation and creation operators, and
thus do not conserve the number of particles. To get the correct particle number on average,
the energy is minimized with a constraint.

.. Variation of the energy with a two-body interaction

A nuclear Hamiltonian with a two-body interaction can be written,

H =
∑
ij

tija
†
i aj +

1
4

∑
ijkl

v̄ijkla
†
i a

†
j alak, (.)

where tij is a matrix element of the kinetic energy, and v̄ijkl is an antisymmetrized two-body
matrix element of the nucleon-nucleon interaction. To fix the average particle number a
Lagrange parameter λ multiplying the particle number operator N is added to H giving
H′ = H− λN.

e expectation value of H′ is given by,

E′ = ⟨HFB|H′|HFB⟩ =
∑
ij

(tij − λδij)ρji +
1
4

∑
ijkl

v̄ijkl
(
κ∗ijκkl − ρliρkj + ρkiρlj

)
= Tr[

(
t− λ+

1
2
Γ

)
ρ]− 1

2
Tr[Δκ∗], (.)
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with the self-consistent particle-hole fieldΓjk =
∑

il v̄jiklρli, and particle-particle field Δij =
1
2
∑

kl v̄ijklκkl.

Variation of Eq. (.) with respect to the independent matrix elements of ρ and κ, under
the constraint R2 = R, leads to a condition for a stationary point of the energy [],

[H,R] = 0, (.)

whereH is the generalized mean-field Hamiltonian,

H =

(
h Δ

−Δ∗ −h∗

)
, (.)

where h = t+Γ− λ. e matrixR is diagonal in the basis of quasiparticles, Eq. (.), so
the minimization of Eq. (.) amounts to diagonalizingH, leading to the HFB equations,

HW = W
(

E 0
0 −E

)
, (.)

where E is a diagonal matrix of eigenvalues Ek. is equation is non-linear due to the self-
consistent fields. In most situations for even-even nuclei, the lowest-energy solution of Eq.
(.) has all Ek positive [].

.. Qusiparticle states

e Hamiltonian H′, expressed in the quasiparticle basis withW satisfying Eq. (.), can
be written,

H′ = ⟨HFB|H′|HFB⟩+
∑
k

Ekβ
†
kβk +H′

int, (.)

where H′
int contains products of four quasiparticle operators. Terms containing ββ and

β†β† vanish at the stationary point. is form corresponds to arranging H′ in normal
order with respect to the solution |HFB⟩ in the sense ofWick’s theorem []. e termH′

int
contains uncontracted products of operators and is similar to a two-body interaction among
quasiparticles. If one neglects this term H′ has eigenstates |HFB⟩ and β†k |HFB⟩, with
excitation energies 0 and Ek, respectively. e eigenvalues Ek are thus called quasiparticle
energies. For an even-even vacuum |HFB⟩, the one-quasiparticle states β†k |HFB⟩ define
approximate HFB wave functions for states in neighboring odd-A nuclei.
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. Skyrme energy density

.. Effective interaction

As mentioned in the Sec. ., the correlations in the HFB wave functions are limited by
construction, and an effective interaction is used. e Skyrme effective interaction used
in the calculations is perhaps best motivated by considering the energy density, see subsec-
tion .. below. An alternative view is to consider it as an approximation to an effective
interaction tuned to a class of model wave functions.

Several methods employing model wave functions and effective interactions are employed
in no-core shell model calculations [, ]. In these calculations, the nucleon correlations
are limited by expanding the nuclear wave function in a truncated basis of Slater determi-
nants, the model space. For this limited model space, an effective-interaction Hamiltonian
Heff is introduced. Formally, one can define a similarity transformation e−S taking an
eigenstate |Ψn⟩ of the exact Hamiltonian H, with eigenvalue En, to a state in the model
space |Φn⟩ [],

|Φn⟩ = e−S|Ψn⟩. (.)

e effective Hamiltonian Heff = e−SHeS acting on |Φn⟩ then gives the exact eigenvalue
En. Heff contains in general one-, two-, three- and higher-body operators. To determine the
effective interaction exactly is a formidable problem. In practice one must use approximate
effective interactions. is can be done at various levels of approximation starting from a
realistic nucleon-nucleon interaction [].

For HFB calculations, one wants an effective interaction so that the ground-state energy
can be approximated by minimizing the expectation value E[Φ],

E[Φ] = ⟨Φ|Heff|Φ⟩, (.)

with the model wave functions |Φ⟩ = |HFB⟩, which are varied as in Sec. .. e effective
interaction used in Eq. (.) should absorb most of the correlation effects not included
in the HFB wave functions. Most importantly, the effective interaction should remove
the strong repulsion at short ranges in the bare nucleon-nucleon interaction. One ab-
inito approach to obtain an effective interaction to use in Eq. (.) is the Brückner G-
matrix approach [, ]. Another more recent approach, allowing to make systematic
approximations for the effective interaction, is the method of low-momentum effective
interactions []. Both approaches have been employed in recent studies, e.g. [, ],
on how to move towards ab-inito mean-field models for heavy nuclei. However, presently
phenomenological approaches need to be employed to successfully describe nuclei across
the nuclear chart. One starting point for a such a description is to postulate the form of
the effective interaction with the strengths of the various terms as free parameters. ese
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free parameters are then fitted so that binding energies, radii and other bulk properties of
heavy nuclei are reproduced.

.. Skyrme effective interaction

e original Skyrme interaction [] is a phenomenological effective interaction describing
the strong-force interactions between nucleons. It contains two-body terms which have the
form of expansions in the relative momentum of the colliding and scattered nucleons up
to second order. It also has a three-body contact interaction term, which is equivalent to a
density dependent two-body interaction in HF calculations for even-even nuclei []. e
interaction obeys the symmetries of a general strong-force interaction, e.g., it is invariant
under exchange of identical particles, rotations, parity, isospin, and obeys translational and
Galilean invariance.

e position-spin matrix element of the Skyrme interaction used for this work reads [],

⟨⃗r′1s′1⃗r′2s′2|V̂|⃗r1s1⃗r2s2⟩

= ⟨s′1s′2|
{
t0 (1+ x0Pσ) +

1
2
t1 (1+ x1Pσ)

[⃗
k′2 + k⃗2

]
+ t2 (1+ x2Pσ) k⃗′∗ · k⃗+

1
6
t3 (1+ x3Pσ)

[
ρ0

(
r⃗1 + r⃗2

2

)]α
(.)

+iW0S⃗ ·
(⃗
k′∗ × k⃗

)}
|s1s2⟩δ(⃗r′1 − r⃗1)δ(⃗r′2 − r⃗2)δ(⃗r1 − r⃗2),

where Pσ is the spin-exchange operator,

⟨s′1s′2|Pσ|s1s2⟩ = δs′1s2δs′2s1 , (.)

and S⃗ is the spin operator,

⟨s′1s′2 |⃗S|s1s2⟩ = σ⃗s′1s1δs′2s2 + δs′1s1 σ⃗s′2s2 , (.)

where σ⃗ = (σx, σy, σz) are vectors of Pauli spin matrices. e relative-momentum op-
erators k⃗ = 1

2i (∇1 −∇2) and k⃗′ = 1
2i(∇

′
1 − ∇′

2) act on the δ-functions in the sense of
distributions. ρ0(R⃗) = ρp(R⃗)+ρn(R⃗) is the sum of the proton and neutron local densities.
e parameters of the interaction are t0, t1, t2, t3,x0, x1, x2, x3,W0, and α. e power α of
the density dependence generalizes the density dependence α = 1 found with the original
Skyrme force, and a smaller power between 1/6 and 1/3 is generally used [].

.. Pairing interaction

e HFB energy depends on the particle-hole (ph) mean field Γ and the particle-particle
(pp) mean field Δ, c.f. Eq. (.). In order to obtain a simple description of the pairing
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properties, the effective interaction generating the pp field is parametrized differently from
the ph interaction. A commonly used parameterization for SHFB calculations is [],

V̂q
pair = Vq

(
1− Pσ

2

)[
1− d

(
ρ0(⃗r1)
ρsat

)]
δ(⃗r1 − r⃗2), (.)

where q = n(p), refers to neutrons(protons), ρsat = 0.16 fm−3 is the saturation density,
and d is a unitless parameter controlling the density dependence. is interaction has the
form of a Skyrme interaction with only t0 and t3 terms. It only contributes in the isovector-
spin-singlet channel, for two like particles the protons or neutrons must have anti-parallel
spin projections. e interaction (.) is used in the calculations presented in papers I-III.
Pairing between protons and neutrons is not considered. e coulomb repulsion between
two protons is also not included explicitly in the pp channel, but is taken account through
different coupling constants for protons Vp and neutrons Vn.

If the interaction (.) or another Skyrme interaction is used in the particle-particle chan-
nel, a cutoff to prevent divergences in the pairing energy is needed []. In papers I-III the
truncation is performed using the equivalent-spectrum method [].

.. Coulomb interaction

e Coulomb interaction is approximated by considering Coulomb interactions only in
the particle-hole channel and using the Slater approximation [] for the exchange term
when calculating the expectation value of the Coulomb energy,

ECoul =
e2

2

ˆ
d⃗rd⃗r′

ρp(⃗r)ρp(⃗r′)
|⃗r− r⃗′|

− 3e2

4

(
3
π

)1/3 ˆ
d⃗r
[
ρp(⃗r)

]4/3
. (.)

.. Rearrangement potentials

In the employed SHFB approach, with different density-dependent effective interactions
in the particle-hole (ph) and particle-particle (pp) channels, the expectation value of the
energy, Eq. (.), should be modified,

E′ =
∑
ij

(tij − λδij)ρji +
1
4

∑
ijkl

v̄(pp)ijkl [ρ]κ
∗
ijκkl + v̄(ph)ijkl [ρ]

(
ρkiρlj − ρliρkj

)
. (.)

e mean-fields in Eqs. (.-.) obtained from variation are given by,

hij =
δE′

δρji
, Δij =

δE′

δκ∗ij
. (.)
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e ph mean-field h will contain additional terms due to the density dependence of both
v̄(pp)ijkl [ρ] and v̄(ph)ijkl [ρ], called rearrangement potentials.

.. Energy density

e expectation value of the energy with the Skyrme interaction leads to an expression
involving energy-density functionals,

⟨HFB|H|HFB⟩ = T+

ˆ
d⃗rESkyrme(⃗r) +

ˆ
d⃗rEpair(⃗r) + ECoul, (.)

where T and ECoul are the expectation values of the kinetic and Coulomb energies respec-
tively. e functionals are integrals over the energy densities E (⃗r), which are functions of
local densities and derivatives of local densities up to second order.

An energy-density functional (EDF) with a similar form as
´
d⃗rESkyrme(⃗r) can also be ob-

tained from a finite-range interaction using a density matrix expansion (DME). e DME
includes expanding the density ρ(⃗r1, r⃗2) in the relative coordinate r⃗ = r⃗1 − r⃗2, around the
local density ρ(⃗r1) []. Negele and Vautherin [] showed that an energy density sim-
ilar to what is obtained with the Skyrme interaction arises when performing a variant of
DME.ey considered the energy density in the HF approach with an effective interaction
obtained from a realistic nucleon-nucleon interaction, and expanded up to second order
in derivatives. e density expansion is done in a way so it contains the behavior of the
exact infinite nuclear-matter density in the first order. e energy functional is thus a lo-
cal density approximation with corrections due to finite size effects. e similarity of this
more realistic energy density with the Skyrme energy density provides a motivation for the
Skyrme interaction.

It also shows that the Skyrme interaction (.) is not a pure low-momentum expansion
of an effective interaction. Realistic effective interactions should contain the long-range
one-pion exchange part, which cannot be approximated by its momentum-space Taylor
series when comparing with typical Fermi momenta kF []. e long-range part is instead
absorbed in the coupling constants of the functional obtained with the DME [].

A more flexible formulation of the SHFB approach is obtained if one starts from an EDF,
E =

´
d⃗rE (⃗r), instead of with the effective interaction. In the context of energy-density

functionals, the energy density can have different density dependences than obtained with
the original Skyrme interaction. In this way one can better motivate the non-integer power
of the density dependence in the effective interaction (.), and the use of different inter-
actions in the particle-hole and particle-particle channels, c.f. Eq. (.). e coupling
constants appearing in E (⃗r), which are more numerous than the number of Skyrme force
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parameters, also need not to obey the same interrelations as with the Skyrme interaction
(.) [].

. Solving the HFB equations

In papers I-III spherical nuclei were considered. eHFB equations are restricted to spher-
ical symmetry and solved using the code  [] in an updated version developed by
B. G. Carlsson, J. Toivanen, and Yue Shi. e HFB quasiparticles, Eq. (.), are expanded
in the spherical-harmonic-oscillator (SHO) basis []. e basis is truncated to include all
single-particle states with major oscillator quantum number N ≤ Nmax.

Equation (.) is solved by iterative diagonalization. e iterations are started with an
initial guess for the densities ρ and κ. An iteration then consists of the steps:

. Use the densities obtained in the previous iteration to compute the mean fields h and
Δ represented as matrices in the SHO basis. e matrix elements of the mean-fields
are efficiently computed using the coordinate-space representation. With the Skyrme
interaction and the spherical symmetry, the needed matrix elements can be expressed
as radial integrals over products of one-dimensional functions, and evaluated using
numerical quadrature [].

. DiagonalizeH, c.f. Eq. (.), to obtain U and V matrices.

. Construct new densities ρ and κ from theU and Vmatrices. e quasiparticles with
positive eigenvalues E are used.

. If a convergence criteria for the total energy is met, stop the iteration, otherwise
repeat steps .-.

.. Avoiding collapse of the pairing correlations

When the strength of the pairing interaction (.) is weak compared to the energy spacing
of the HF single-particle levels, the pairing correlations collapse and the solution to the
HFB equations becomes an uncorrelated HF determinant. is typically happens when
considering a closed shell nucleus such as 208Pb. For a nucleus, which is a finite quantum
system, this sharp pairing phase transition should not occur.

Inmodels employingmore complicated trial wave functions pairing correlations are present,
but smaller in magnitude, also for closed shell nuclei. An extension of the HFB approach,
where the collapse of the pairing is absent, and where the trial wave functions have good
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particle number, is the variation-after-projection (VAP) method. e trial wave function
in the VAP approach is the projection of a HFB state onto good particle number, which is
then varied. is extension is unfortunately much more costly in terms of computation.

To avoid the collapse of the pairing in the HFB calculations, the Lipkin-Nogami method
[] is used instead. e Lipkin-Nogami (LN) approach [, ] corresponds to an approx-
imate variation after projection []. In the LN approach an additional term is added to
the effective Hamiltonian, which becomes,

H′ = H− λ1N− λ2N2. (.)

e λ2 term arises as a correction term to the energy when using particle-nonconserving
wave functions []. Its value is determined through an auxiliary equation and changes
during the HFB iterations [].
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Chapter 

Model for α-decay

Introduction

α-decay is the process of an unstable mother nucleus splitting into an α particle (a 4He
nucleus), and a daughter nucleus. e decay process consists of the four nucleons making
up the α particle clustering together and then escaping, leaving the daughter nucleus, see
Fig. .. In the work presented in this thesis this process is modeled microscopically by
considering interacting nucleons as the basic degrees of freedom.

e Qα value measures the difference in binding energy of the mother nucleus in its initial
state, EM, and the sum of the binding energies for the daughter and α particle, ED and Eα,

Figure 3.1: Artist's rendition of α-decay. The figure is taken from [53], and is in the public domain.
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in their respective states after the split,

Qα = EM − ED − Eα. (.)

When the two fragments are far apart, the energy Qα becomes the kinetic energy of the
relative motion with the reduced mass µ = mαmD

mα+mD
. For a mother nucleus at rest in the

laboratory, Qα is the sum of the daughter nucleus recoil energy and the α-particle kinetic
energy. e total angular momentum IM and parity πM are conserved during the decay. e
total system after the split can be described by the internal daughter nucleus wave function,
with angular momentum ID and parity πD, the internal alpha particle wave function which
has Iπ = 0+, and the relative motion part. e relative motion can be decomposed in
partial waves with angular momentum lα, and parity π = (−1)lα . e conservation of
angular momentum and parity then implies that the triangular rule |IM − ID| ≤ lα ≤
IM + ID should be obeyed, and only even or odd partial waves are allowed according to
(−1)lα = πDπM.

e investigated α-decays start from the ground-state or a low-lying state in the mother
nucleus. is implies that the α particle must escape a high Coulomb barrier through
quantum-mechanical tunneling. is leads to half-lives T1/2 > 10−10 s, that are many
orders of magnitude longer than typical nucleon time scales, e.g. the classical period of os-
cillation of a nucleon inside the nuclear mean field t ≈ 10−22 s. In a semi-classical picture,
the α-particle bounces against the inside of the Coulomb barrier a very large number of
times before tunneling through. e initial mother nucleus state is thus almost stationary.

e initial state can be described using a Gamow state [], see Sec. ... With a slow
decay rate the Gamow state becomes very similar to a bound state inside and well into the
Coulomb barrier. e decay rate depends on the nuclear wave function in the Coulomb
barrier, a small fraction of the wave function tail penetrates the barrier leading to the tun-
neling. e part of the wave function governing the α-decay is the part composed of the
daughter nucleus and α particle. e magnitude of this component, or formation ampli-
tude, depends on the overlap of the mother nucleus wave function with that of the com-
bined α-cluster and daughter wave function, and is sensitive to the nuclear structure.

e flow of α-particle probability passing through the Coulomb barrier is exponentially
sensitive to the decay energy, so the most important quantity determining the half life is
the Qα value. For the decay of odd nuclei, several daughter nucleus states can be accessible
with only small differences inQα values. In this case the differences in formation amplitude
can play a large role in determining the decay paths. In the formalism employed in this
work the decay rate is divided into two factors, one containing the formation amplitude and
one containing the energy-dependent barrier penetrability. is is similar to the division of
the electromagnetic quadrupole transition rate where the B(E2) value contains the effect
of nuclear structure, and another factor contains the strong energy dependence.





is chapter is organized in the following way: Sec. . presents the theory for the micro-
scopic description of α-decay, Sec. . outlines the calculation of the formation amplitudes
using SHFB wave functions, Sec. . includes a summary of some of the results using this
approach, and finally Sec. . contains an outlook on further developments.

. eory

e decay formalism used is the microscopic approach to cluster emission reviewed in Refs.
[, ]. e calculations follow essentially what is denoted “BCS approach to α-decay” in
Ref. [], but instead the HFB wave functions described in chapter  are used.

e approach is based on the time-independent Schrödinger equation in the coordinate
representation of the inter-fragment distance r. An approximation for the decay width can
be derived using tools from R-matrix theory [], as done for instance in the pioneering
work of omas [], and in the review []. Exponential decay can be described using
Gamow states [, , ], and the concept of an exponential time dependence can be
used as the basis for the derivation of the microscopic description of α decay [, ].
Both approaches result in similar expressions for the decay width. I consider the latter
formulation more instructive, so in the following sections I will describe the formalism
following the literature using this latter picture. A similar shorter outline of the theory was
included in paper I. Here some more details are included, which I hope can be useful for
students and non-specialists.

.. Gamow states for α decay

Gamow states generalize the solution of the time-independent Schrödinger equation to
complex energies,

H|Ψ⟩ = E|Ψ⟩ = (Er − i
Γ

2
)|Ψ⟩, (.)

where Er is the real part, and −Γ/2 the imaginary part of the energy E. With a complex
energy, the time dependence of the state |Ψ(t)⟩,

|Ψ(t)⟩ = e−iHt/ℏ|Ψ⟩ = e−iErt/ℏe−Γt/2ℏ|Ψ⟩, (.)

implies an exponential decay of probabilities when Γ > 0, as the time dependence is
governed by

|e−iErt/ℏe−Γt/2ℏ|2 = e−Γt/ℏ. (.)

An introduction to Gamow states, and their physical interpretation can be found in Ref.
[].
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If the daughter nucleus and α particle can be approximated as point particles interacting
through a local potential V(r), Eq. (.) can be written,

d2ul(r)
dr2

=

[
l(l+ 1)

r2
+

2µ
ℏ2

(V(r)− E)
]
ul(r), (.)

where r is the distance between the particles, µ is the reduced mass, and l is the angular mo-
mentum associated with their relative motion. ul(r) is the partial wave function, appearing
in the following decomposition of the wave function ψ(⃗r),

ψ(⃗r) =
∑
l

Rl(r)Ylm(̂r) =
∑
l

ul(r)
r

Ylm(̂r), (.)

where the Ylm(̂r) are spherical harmonics. At long distances the nuclear interaction vanishes

and only the Coulomb interaction remains. In terms of the wavenumber κ =

√
2µE
ℏ ;

Sommerfeld parameter η =
ZαZDe2µ

ℏ2κ , where Zα(D) is the charge of the α particle(daughter
nucleus); and the dimensionless radius ρ = κr, the radial equation (.) then becomes,

d2ul(ρ)
dρ2

=

[
l(l+ 1)
ρ2

+
2η
ρ

− 1
]
ul(ρ). (.)

e regular and irregular Coulomb wave functions, Fl(η, ρ) and Gl(η, ρ), are solutions to
this equation [, ]. e linear combinations

H(±)
l (η, ρ) = Gl(η, ρ)± iFl(η, ρ), (.)

behave asymptotically as

H(±)
l (η, ρ) −−−→

ρ→∞
exp

[
±i(ρ− 1

2
lπ − η ln(2ρ) + σl)

]
, (.)

where σl is the Coulomb phase shift []. us, far away from the origin the solutionsH(±)

will behave as outgoing (+) or incoming (−) spherical waves. e phase −η ln(2ρ) + σl
comes from the Coulomb interaction, which is felt even at large distances.

For scattering problems the following asymptotic form can be used [, ],

ul(r) → Cl

[
H(−)

l (η, ρ)− Sl(E)H
(+)
l (η, ρ)

]
, (.)

where Cl is a normalization constant, and the scattering matrix Sl(E) has modulus 1 for
real energies. Sl(E) = 1 corresponds to pure-Coulomb (Rutherford) scattering, while the
nuclear interactions can cause additional scattering giving Sl(E) ̸= 1 [].
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Gamow states with Γ > 0 can be obtained by imposing a boundary condition of a purely
outgoing state,

ul(r) −−−→r→∞
uasl (r) ∝ H(+)

l (η, κr), (.)

on the solutions of Eq. .. is boundary condition is only satisfied by a discrete set of
complex energies E, corresponding to resonance poles of the scattering matrix Sl(E) [].

With the complex energy E = Er − iΓ/2, the wave number κ becomes complex,

κ =
√

2µE/ℏ = ℜ(κ) + iℑ(κ), (.)

with the real part ℜ(κ) > 0 and the imaginary part ℑ(κ) < 0 for a decaying state with
purely outgoing boundary conditions [, ]. e imaginary part ℑ(κ) will modulate the
amplitude of the outgoing wave,

|uasl (r)| ≈ e−ℑ(κ)r, (.)

causing an increase in amplitude with increasing distance. is increase is interpreted as
coming from the larger number of particles situated at smaller radii at earlier times (due to
the decay), which have then traveled out from the origin to the point r [].

.. Current expression for decay width

edecay widthΓ can be extracted from the probability current passing through the surface
of a sphere. For the Gamow state (.) the rate of decrease of the probability density within
a volume V at time t = 0 is given by,

∂

∂t

ˆ
V
d⃗rψ∗(⃗r, t)ψ(⃗r, t)

∣∣∣∣
t=0

=
−Γ

ℏ

ˆ
V
d⃗rψ∗(⃗r)ψ(⃗r). (.)

e same quantity can be calculated using the Schrödinger equation,

∂

∂t

ˆ
V
d⃗rψ∗(⃗r, t)ψ(⃗r, t)

∣∣∣∣
t=0

= − iℏ
2µ

ˆ
V
d⃗r∇ · (ψ∇ψ∗ − ψ∗∇ψ)

= − iℏ
2µ

ˆ
r=rV

r2 sin θdθdϕ
(
ψ
∂ψ∗

∂r
− ψ∗∂ψ

∂r

)
(.)

= − iℏ
2µ

∑
l

r2V

(
Rl
∂R∗l
∂r

− R∗l
∂Rl
∂r

)
r=rV

,
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where rV is the radius of the sphere defining the volume V, and for the second line it is
assumed that the potential V(r) is real. Comparing Eqs. (.) and (.), and choosing the
normalization ˆ

V
d⃗rψ∗(⃗r, t)ψ(⃗r, t)

∣∣∣∣
t=0

= 1, (.)

a current expression for Γ is obtained,

Γ =
iℏ2

2µ

∑
l

r2V

(
Rl
∂R∗l
∂r

− R∗l
∂Rl
∂r

)
r=rV

. (.)

Beyond the range of inter-fragment nuclear forces the partial waves ul(r) assume the form of
outgoing Coulombwave functions giving the radial wave functions Rl(r) ∝ H(+)

l (η, κr)/r.
In the following, rV is assumed to be in this region, where only Coulomb forces act between
the fragments. Given a radial wave function valid in the interior and out to rV, R

(int)
l (r),

the amplitude of the Coulomb wave can be determined,

Rl(r) = Cl(rV)H
(+)
l (η, κr)/r, (.)

where Cl(rV) is the matching constant,

Cl(rV) = rV
R(int)l (rV)

H(+)
l (η, κrV)

. (.)

If the decay widthΓ is small, the small imaginary part of the wavenumberκ can be neglected
if rV is not too large. When κ is real the probability current through the sphere given by
rV is the same as through any larger sphere around the origin. Using the asymptotic form
(.), Eq. ., can be simplified,

Γ =
∑
l

ℏ2κ
µ

|Cl(rV)|2. (.)

If the interior solution is exact, rR(int)l (r) will be proportional to the outgoing Coulomb
wave function for radii beyond the nuclear forces, and the decay width given by Eq. (.)
will not be sensitive to the choice of matching radius rV. Using an approximate interior
solution might introduce a dependence on rV, and one has to check the sensitivity of the
results to the choice of matching radius.

.. Microscopic description

In the microscopic description of α decay, the mother nucleus, daughter nucleus and α
cluster are described by many-body wave functions. e mother-nucleus wave function





should approximate a Gamow state |Ψ(M)
IMMM

⟩, with nuclear spin IM and projection MM,
satisfying H|Ψ(M)

IMMM
⟩ = (Er − iΓ/2)|Ψ(M)

IMMM
⟩. An appropriate coordinate representation

for α decay is,
Ψ

(M)
IMMM

(xD, xα, r⃗), (.)

where xD represents the internal coordinates for the daughter nucleus, xα the internal co-
ordinates of the α cluster, and r⃗ the vector between the center of mass of the daughter
and α cluster. Internal coordinates are the Jacobi coordinates corresponding to distances
between nucleons and the spin and isospin coordinates of the nucleons. e daughter state
for a given α-decay channel k is represented by Ψ

(D)
k (xD), where k contains the spin ID

and projection MD as well as other quantum numbers to label this state. e α cluster is
represented by Φ(α)

00 (xα) describing the 4He ground state with I = M = 0.

e following representation of the nuclear Hamiltonian is useful for the description of the
decay,

H = Hα +HD − ℏ2

2µ
∇2

r⃗ + VαD(xD, xα, r⃗), (.)

where the first two terms give the energy of the two subsystems,

HαΦ
(α)
00 (xα) = EαΦ

(α)
00 (xα), (.)

HDΨ
(D)
k (xD) = ED,kΨ

(D)
k (xD). (.)

e third term in (.) corresponds to the kinetic energy of the relative motion of the two
fragments, and the last term the inter-fragment interaction.

e decay width Γ is assumed to arise only from α-decay contributions, generated by the
two-cluster component of the mother nucleus,

Ψ
(M)
IMMM

∼
∑
k,lk

AαDRklk(r)Ψ
(Dα)
klk

(xDxαr̂), (.)

where Ψ(Dα)
klk

is the cluster-angular function,

Ψ
(Dα)
klk

(xDxαr̂) =
[
Ψ

(D)
k (xD),Φ

(α)
00 (xα)Ylk (̂r)

]
IMMM

. (.)

e bracket denotes coupling of angular momentum of the daughter state, ID, and of the
relative motion, lk, to that of the mother nucleus. e operator AαD antisymmetrizes the
product of the radial function Rklk(r) and the two internally antisymmetric wave functions
Ψ

(D)
k and Φ

(α)
00 by exchanging coordinates. It contains the normalization factor N−1/2 =(NM

2
)− 1

2
(ZM

2
)− 1

2 preserving the normalization of the cluster angular functions,ˆ
dxDdxαd̂rΨ

(Dα)∗
klk

(xDxαr̂)Ψ
(Dα)
k′l′k

(xDxαr̂) = δkk′δll′k , (.)
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when the fragments (D) and (α) are separated far enough apart to not have any spatial
overlap.

It is assumed that beyond some separation r > r0, the Hamiltonian (.) does not mix the
cluster component (.) with the other components of the mother-nucleus wave function,
and that the following coordinate-space Schrödinger equation then holds,

H
∑
k,lk

AαDRklk(r)Ψ
(Dα)
klk

(xDxαr̂) = E
∑
k,lk

AαDRklk(r)Ψ
(Dα)
klk

(xDxαr̂). (.)

Considering the case where the fragments have no spatial overlap, and acting on Eq. (.)
from the left with ˆ

dxDdxαd̂rΨ
(Dα)∗
klk

(xDxαr̂) (.)

gives,

d2uklk(r)
dr2

=

[
lk(lk + 1)

r2
− 2µ

ℏ2
Qk

]
uklk(r) +

2µ
ℏ2

∑
k′l′k

Vklk;k′l′k
(r)uk′l′k(r), (.)

where Qk = E− ED,k − Eα and, Vkl;k′l′k
(r) is a potential matrix,

Vklk;k′l′k
(r) =

ˆ
dxDdxαd̂rΨ

(Dα)∗
klk

(xDxαr̂) (.)

× VαD(xD, xα, r⃗)Ψ
(Dα)
k′l′k

(xDxαr̂).

If the α particle is beyond the range of the strong-force interaction, VαD(xD, xα, r⃗) only
contains Coulomb terms. For spherical mother and daughter nuclei, only the diagonal
term in the potential matrix is important,

Vklk;klk(r) =
ZαZDe2

r
. (.)

Without the off-diagonal terms of the potential matrix, the different channels klk decouple
and Eq. (.) assumes the form of the radial equation for point-like particles, Eq. (.), in
each channel. A current expression for the decay width can then be obtained, as described
below.

e mother nucleus wave function is normalized to 1 within the sphere defined by r = rV,ˆ
r≤rV

r2dr
ˆ

dxDdxαd̂r|Ψ(M)
IMMM

(xD, xα, r⃗)|2 = 1. (.)

Using that the potential terms in theHamiltonian (.) are real, and that the wave function
Ψ

(M)
IMMM

is normalizable in the cluster angular coordinates xDxαr̂, the derivation in Eqs.
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(.-.) can be repeated. e result is that the decay width can be calculated using the
current expression (.), employing the amplitudes of the radial functions Rklk(r) in the
cluster component of the mother nucleus, Eq. (.).

e amplitude in a given channel klk is extracted through an overlap integral called the
formation amplitude, fklk , given by,

fklk(r
′) =

ˆ
dxDdxαd⃗rADα

[
δ(r− r′)

r2
Ψ

(Dα)
klk

(xDxαr̂)
]∗

Ψ
(M)
IM (XM). (.)

Inserting the formation amplitudes in the current expression (.) gives theα-decay width,

Γ =
∑
klk

Γklk , (.)

where Γklk is the partial width for channel klk,

Γklk =
ℏ2κ
µ

|rVfklk(rV)|2

|H(+)
lk

(η, κrV)|2
, (.)

where the outgoing Coulomb wave function H(+)
lk

is evaluated for the channel energy Qk.
e product appearing in the partial width (.), is often grouped in two factors: the
reduced width,

γ2klk(rV) =
ℏ2

2µrV
|rVfklk(rV)|

2, (.)

which has the unit of energy (e.g. MeV), and the unit-less Coulomb penetrability,

Plk(Qk, rV) =
κrV

|H(+)
lk

(η, κrV)|2
, (.)

leading to the following expression for the partial decay width,

Γklk = 2γ2klk(rV)Plk(Qk, rV). (.)

e reduced width γ2klk(rV) contains all the effects of nuclear structure through the forma-
tion amplitude, whereas the penetrability Plk(Qk, rV) is a strongly energy dependent factor
describing the tunneling probability of structureless particles. In this work, the penetra-
bility is calculated using the Coulomb wave function code of N. Michel []. Due to the
very strong energy dependence of this factor, the experimental Qk values are used when
available. e calculation of the formation amplitudes is discussed in the next section.
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. Calculation of formation amplitudes

In this thesis α-decay is modeled using HFB wave functions for the mother and daughter
states. To use the HFB wave functions described in chapter  the two following approxi-
mations are needed:

Pseudo-bound states: e HFB states are approximate bound-state eigenfunctions, that
implies they do not satisfy the outgoing boundary condition in the α-daughter channels
(.), assumed for the Gamow state. On the other hand, the α-decay widths Γ are so small
that one can neglect the complex energy in the wave function up to α-daughter separations
r well into the Coulomb barrier. Furthermore, due to the large barrier, the normalization
of a bound state wave function will be very similar to the normalization employed in the
current expression, c.f. Eq. (.), when rV is in the Coulomb barrier.

Heavy-core approximation: e description in Section .. employs internal coordinates
for the mother and daughter nuclei, where the center of mass coordinate is not included.
Use of such Jacobi coordinates for large systems becomes technically very challenging due
to antisymmetrization. e HFB wave functions are defined in an oscillator basis and thus
includes a redundant center of mass coordinate.

To proceed we consider the mother and daughter nuclei fixed at the origin. e vector be-
tween the daughter and α particle, r⃗, is approximated by the vector between the origin and
the α-particle center of mass, and the internal coordinates of the daughter nucleus xD is
taken to include its center of mass. e formation amplitude in this approximation is com-
pared to the amplitude when using intrinsic wave functions in Ref. []. e heavy-core
approximation underestimates the formation amplitude slightly, with the error decreasing
when the ratio 4/AD between the α-particle and daughter nucleus masses becomes smaller.

e coordinate system used is the “lab” coordinates for AD + 4 particles with coordinate
i = 1, 2 referring to protons, and i = 3, 4 to neutrons in the α cluster. e internal
coordinates of the α cluster, xα, are the spins si and the Jacobi coordinates r⃗π , r⃗ν , r⃗α, R⃗α,
related to lab coordinates through,

r⃗π
r⃗ν
r⃗α
R⃗α

 =
1
2


√
2 −

√
2 0 0

0 0
√
2 −

√
2

1 1 −1 −1
1 1 1 1




r⃗1
r⃗2
r⃗3
r⃗4

 . (.)

For a daughter nucleus with AD particles the employed internal coordinates are

xD = {x5, x6, . . . , xZD+4; xZD+5, . . . , xAD+4} , (.)

where xi refers to the lab coordinate and spin of particle i, with 5 ≤ i ≤ ZD + 4 referring
to protons and the rest to neutrons. e coordinates xα, Eq. (.), are chosen to make
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transformations of harmonic-oscillator wave functions more symmetric. e functional
determinant of the transformation (.) has modulus 1, so the lab integration measure is
preserved:

d⃗r1d⃗r2d⃗r3d⃗r4 = dR⃗αd⃗rαd⃗rπ d⃗rν (.)

e vector R⃗α is twice the physical center of mass vector r⃗,

R⃗α = 2⃗r. (.)

Using the coordinate system (.), the formation amplitude fklk(r) can be expressed as,

fklk(r) =
√
8gklk(2r), (.)

with the overlap integral gklk defined below. e factor
√
8 = 23/2 arises when comparing

the normalization implied by the current expression, Eq. (.), to the lab-system normal-
ization of the HFB wave function, and taking into account the relation (.). e overlap
integral entering in Eq. (.) is defined,

gklk(R
′
α) =

ˆ
dxDdxαdR⃗αADα[Ψ

(D)
k (xD),Φ

(c)
lk
(R′α; xα, R⃗α)]

∗
IMΨ

(M)
IM (xM), (.)

where Ψ
(M)
IM and Ψ

(D)
k are the HFB wave functions for the mother and daughter. e

localized cluster state Φ(c)
lkmlk

is defined,

Φ
(c)
lkmlk

(R′α; xα, R⃗α) = Φ
(α)
00 (xα)

δ(Rα − R′α)
R2α

Ylkmlk
(R̂α), (.)

where Φ(α)
00 (xα) is the intrinsic α-particle wave function. We employ the standard approx-

imation for the α-particle wave function [],

Φ
(α)
00 (⃗rπ , r⃗ν , r⃗α, s1, s2, s3, s4)

=

(
4

b3α
√
π

)3/2

e
− r2π+r2ν+r2α

2b2α

(
1√
4π

)3

(.)

× [χ 1
2
(s1), χ 1

2
(s2)]00[χ 1

2
(s3), χ 1

2
(s4)]00,

where χ 1
2ms

(si) = δmssi is a spin wave function. e commonly used value of the oscillator
length bα = 1.42 fm [], giving a reasonable approximation of the 4He charge density, is
employed in this work.

e localized cluster state (.) can be expanded in a basis,

|Φ(c)
lkmlk

(R′α)⟩ =
∑
i<j

∑
k<l

|ijkl⟩⟨ijkl|Φ(c)
lkmlk

(R′α)⟩, (.)
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where |ijkl⟩ = a†πia
†
πja

†
νka

†
νl|0⟩ and the overlaps appearing in the sum are given by,

⟨ijkl|Φ(c)
lkmlk

(R′α)⟩ =
ˆ

dR⃗αdxαϕ∗ij(x1x2)ϕ
∗
kl(x3x4)Φ

(c)
lkmlk

(R′α; xα, R⃗α), (.)

with the two-particle wave functions,

ϕij(x1x2) =
1√
2

(
ϕi(x1)ϕj(x2)− ϕi(x2)ϕj(x1)

)
. (.)

Inserting the expansion (.) into (.), we get,

gklk(R
′
α) =

1
2

∑
MDmlk

CIMMM
IDMDlkmlk

∑
ij

∑
kl

⟨D; k|aνlaνkaπjaπi|M; IMMM⟩

×
ˆ

dR⃗αdxαΦ
(c)∗
lkmlk

(R′α; xα, R⃗α)ϕi(x1)ϕj(x2)ϕk(x3)ϕl(x4), (.)

where ⟨D; k|aνlaνkaπjaπi|M; IMMM⟩ is a four-particle transfer amplitude.

e overlap integral, Eq. (.), is evaluated by using the spherical harmonic oscillator
(SHO) basis. For each combination of four oscillator basis states ijkl, the overlap integral
Iijkl(R′α),

Iijkl(R′α) =
ˆ

dR⃗αdxαΦ
(c)∗
lkmlk

(R′α; xα, R⃗α)ϕi(x1)ϕj(x2)ϕk(x3)ϕl(x4), (.)

is evaluated by transforming the product of the four oscillator wave functions to the coor-
dinate system (.) using Talmi-Moshinsky brackets []. is transformation turns the
integral Iijkl(R′α) into sums over products of one-dimensional integrals weighted by trans-
formations coefficients. Many of the factors appearing are common for different combina-
tions of oscillator indexes ijkl, and can be pre-calculated and stored allowing for an efficient
numerical evaluation. is is used in the code presented in the Appendix.

e formula (.) is quite general and is valid for general mother and daughter many-body
wave functions defined in the lab system and having good spin quantum numbers. ese
wave functions enter through the four-particle transfer amplitudes ⟨D; k|aνlaνkaπjaπi|M; IMMM⟩.

.. Pauli effects

e formation amplitude defined in Sections .. and . should be used only when the
distance r between the α cluster and daughter nucleus is large enough so that they do
not have appreciable spacial overlap. is formation amplitude obeys the Pauli principle
through the anti-symmetrization ADα in Eq. (.). e Pauli principle translates to the
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Figure 3.2: Ground-state-to-ground-state α-decay of 212Po described using HFB wave functions obtained with the Skyrme inter-
action SLy4 [69] and the ``mixed pairing'' of paper III. (a) Local density ρM(D)

0 (r) for the mother(daughter) nucleus. (b)
The formation amplitude f0(r), Eq. (3.44), multiplied by r. The red triangles show rA = 1.2 fm × 2081/3 = 7.1 fm,
the standard nuclear radius for the daughter, and the touching radius rt = 9.0 fm, Eq. (3.53).

fermion commutation relations for the annihilation operators in the four-particle transfer
amplitudes.

When the α particle and daughter have spacial overlap, the wave function,

ADα[Ψ
(D)
k (xD),Φ

(c)
lk
(R′α; xα, R⃗α)]

∗
IM,

appearing in the overlap (.) is not normalized in the cluster-angular coordinates xDxαr̂.
e localized cluster state Φ(c)

lk
will then have components corresponding to Pauli-blocked

orbitals in Ψ
(D)
k , and the norm will be smaller than 1, c.f. the discussion in Ref. []. is

suppresses the formation amplitude (.) in the interior of the daughter nucleus, giving
rise to a surface-peaked function fklk(r), see Fig. ..

is suppression can be corrected for by using the modified formation amplitude intro-
duced by Fliessbach [, ], and discussed in the review []. e modified formation
amplitude becomes much larger in the nuclear interior and reduces to the formation am-
plitude employed in this thesis when r becomes large. e modified formation amplitude
has a more clear interpretation as a clustering amplitude in the nuclear interior, and can be
used to define an α-cluster spectroscopic factor. To obtain the modified formation ampli-
tude requires the calculation of norm-kernels, which was done in e.g. Refs. [, ].

To obtain the decay rate, the α-daughter potential is needed. At small radii r the strong-
force contributions become important, whereas for larger r only the well-known Coulomb
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interaction is needed. If the mother and daughter wave functions are well described to large
radii, the complications associated with calculating the modified formation amplitude and
the uncertainty of the strong-force α-daughter interaction can be avoided. e cost is that
a large oscillator basis has to be used in the calculations to obtain a converged formation
amplitude at large separations r. In the calculations presented in papers I-III the decay
width is evaluated at the touching radius,

rt = r0(41/3 + A1/3
D ), (.)

where r0 = 1.2 fm. e convergence of the formation amplitude with respect to the size
of the oscillator basis is investigated in papers I and II. At least  major oscillator shells
should be used for the mother and daughter HFB wave functions; in the papers I-III, 
major oscillator shells are used.

.. Two-particle transfer amplitudes

In this work proton-neutron mixing is not considered so the four-particle transfer ampli-
tudes in Eq. (.) factorize into a product of two two-particle transfer densities,

Xk(q)ij = ⟨D(q); k|ajai|M(q); IMMM⟩, (.)

where q = n(p) indicates the neutron(proton) part. In papers I and II, ground-state-to-
ground-state α-decays of even-even near-spherical nuclei are considered. e states eneter-
ing in Eq. (.) are then,

|M; IMMM⟩ = |M00⟩, (.)

and
|D; k⟩ = |D00⟩, (.)

where |M(D)00⟩ is the spin I = 0 HFB vacuum for the mother(daughter) nucleus, see Sec.
..). Both states are represented in the same SHO basis trough their respective HFB U
and V matrices, cf. Eq. (.).

For paper III, α-decay of odd-A near spherical nuclei are considered. e mother and
daughter states are approximated by one-quasiparticle states, discussed in Sec. ... For a
fixed mother nucleus state a with spin IM and projectionMM, the states considered can be
written,

|M; IMMM⟩ = β
(M)†
aIMMM

|M00⟩, (.)

and
|D; k⟩ = β

(D)†
k |D00⟩. (.)

Here |M(D)00⟩ is the spin I = 0HFB vacuum of an even-even nucleus with average particle
numbers corresponding to the studied odd-A nuclei. e quasiparticle creation operators
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β(M)† and β(D)† are defined with respect to their respective vacuums |M00⟩ and |D00⟩, i.e.
the expansion (.) of these operators in terms of the SHO basis involve different U and V
matrices.

As the mother and daughter HFB vacua generally have non-zero overlap, ⟨D00|M00⟩ ̸= 0,
the ouless theorem can be used to compute the required two-body transfer amplitudes
(.). Expanding |M00⟩ in terms of |D00⟩ and using Wick’s theorem, the transfer den-
sities can be expressed in terms of the U and V matrices for the mother and daughter,
U(M),V(M),U(D),V(D) []. is results in the expressions found in Appendix B of paper
III. e formulas for the transfer densities involve the common factor ⟨D00|M00⟩. For the
α-decay calculations in this thesis only the modulus squared of this factor |⟨D00|M00⟩|2
enter in the physical observables, so the Onishi formula [] can be used.

. Results

e description of α decay employs the well established SHFB model, outlined in Chap.
. is model can be applied in the whole nuclear chart, and contains no free parameters
tuned to α-decay rates. e explicit correlations in the SHFB wave functions are on the
other hand quite simple, with only pairing between like nucleons included. As shown in e.g.
Refs. [, , ], the formation amplitude is sensitive to nucleon correlations, and increases
substantially when wave functions containing more correlations are used. e formation
amplitude probes surface correlations of four nucleons, and to reproduce the absolute value
of the experimental decay width Γ requires the explicit inclusion of correlations that are
not included in the SHFB models. As shown in these studies the slope of the tail of the
formation amplitude is also sensitive to correlations, moving towards the value implied by
the experimental Qα-value when the correlations increase.

By using a large spherical harmonic oscillator basis, it is shown in papers I and II that the
SHFB formation amplitudes at the touching radius rt are numerically stable with respect
to the basis size. However, the slope of the tail of the formation amplitude turns out to be
too steep, and the absolute values turn out too small when using the SHFB wave functions.
e description of relative decay rates is on the other hand good.

.. Relative decay rates

e decay widths Γ, Eq. (.), are evaluated using experimental Qα values when available
and using the matching radius rV = rt, where rt is the touching radius, Eq. (.). e
method as implemented uses spherical SHFB wave functions, implying only near-spherical
nuclei can be described. We limit the application to nuclei where the quadrupole deforma-
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the half-life only taking into account the s-wave Coulomb penetrability, with the reduced width γ2

k0(rt), Eq. (3.37),
set to an average value for even nuclei. The red diamonds show results of the microscopic calculations, for calculation
details see paper III.

tion parameter β2 is small, |β2| < 0.1.

Figure . shows the quality of the description of relative α-decay rates for Po isotopes. e
theoretical ground-state-to-ground-state (gs-to-gs) partial half lives shown are defined,

Tgs-gs =
ℏ ln(2)

S
∑

lk Γklk
, (.)

where k labels the daughter nucleus gs configuration, and the sum is over all partial waves
lk allowed by angular momentum and parity conservation. e decay widths for all cases
are multiplied by a same phenomenological factor S . is single free parameter S is de-
termined so that the gs-gs reduced widths, Eq. (.), for all the near-spherical even-even
nuclei studied in paper I, are on average equal to the corresponding quantities extracted
from experimental data. e results in Fig. . show the strong dependence of the half
life on the Qα value, which starts around 8.0 MeV for the lightest isotopes and decreases
rather smoothly until theN = 126 gap is crossed, whereQα jumps to a higher value before
it decreases again. e microscopic results also capture the fluctuations in the half-life rel-
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ative to the purely energy dependent barrier penetration (blue circles). e most striking
fluctuations are associated with the hindered decays when the odd particle changes orbital.

e reduced width in Eq. (.) is valid for a given partial wave lk. For decay of odd-A
nuclei several partial waves contribute. To study the overall structure dependence of the
decay rate an equivalent s-wave reduced width γ̄2k can be defined,

γ̄2k =
S
∑

lk Γklk

2P0(Q
exp
k , rt)

, (.)

where k indicates that the partial decay widths Γklk are for a given mother nucleus state
to a given daughter nucleus state. P0 is the s-wave Coulomb penetrability, Eq. (.),
and Qexp

k is the measured Q value for this decay. From the experimental partial decay rate
λk = Ik ln(2)/T, where T is the measured half-life and Ik is the branching ratio for the
particular decay, a corresponding experimental equivalent reduced width can be obtained,

γ̄2exp,k =
ℏλk

2P0(Q
exp
k , rt)

. (.)

ese reduced widths give a measure of the hindrance of different α-decay channels; by
comparing with an average value for even-even nuclei ⟨γ̄2⟩, a smaller γ̄2 indicates a hin-
drance due to nuclear structure. e reduced widths extracted from experiment (.) and
results from microscopic calculations (.) are compared in Fig. ..
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α-decay of near-spherical even-even and odd-A nuclei where the spin and parity of the
mother and daughter states are well known are considered in the study. All cases where
the mother and daughter states can be interpreted as zero or one-quasiparticle states are
included (excluding cases involving states interpreted as having a large vibrational compo-
nent). For the odd-A cases shown, several data points can belong to different decay paths
of the same mother nucleus. Resolved case-by-case most of the theoretical data points lie
within a factor of  from experiment, see Fig  in paper III.

e odd-A cases are labeled according to how the orbital of the odd particle changes in
the decay. e horizontal lines show the geometrical average of the reduced width for a
given group of decays. From the fluctuation around the average values within the different
groups, exhibited by the experimental data and fairly well reproduced by the microscopic
calculations, one can conclude that the hindrance of a given decay channel is sensitive to
the details of the nuclear wave functions. To describe the competition between different
α-decay paths for the mother nucleus, approximate selection rules for the hindrance factor,
e.g. those in Ref. [] or using the average horizontal lines, can give only a rough approx-
imation to the hindrance. To describe the competition in detail, microscopic calculations
should be carried out.

.. α decay to excited states in superheavy nuclei

As mentioned in Chapter  superheavy nuclei (SHN) formed in heavy-ion fusion reac-
tions often decay through a chain of α decays. In odd nuclei the gs-gs α decay can be
significantly hindered when the odd nucleons occupy different orbitals in the mother and
daughter. e previous section contained some examples of this for odd-A nuclei. If the
gs-gs decay is sufficiently suppressed compared to the favored decay, where the odd particle
remains in the same orbital, the favored α-decay path can dominate although its Qα value
is smaller. e daughter nucleus then ends up in an excited state after the α decay. is
state can subsequently decay electromagnetically, e.g. by γ-emission or internal conversion.
By measuring this subsequent decay in an α-γ spectroscopy experiment, one can obtain
detailed nuclear-structure information for the superheavy daughter nucleus [, ].

Predicting for which nuclei α-decay to excited states takes place provides and important
guide to experiment. Figure . shows calculated Qα values for gs-gs decays (solid lines)
and for favored decays when the excitation energy of the favored state is below 0.5 MeV
(dashed lines). e locations where the dashed lines deviate from the solid lines indicate
good candidates where one might observe α decay followed by γ emission. e available
experimental data (solid circles) show that theQα values and excitation energies are reason-
ably well described by the present theory in the region of lower neutron numbers. Favored
decays to excited states have been observed (open circles) at the locations suggested by the
calculations in many cases.
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e microscopic calculation of α-decay of deformed nuclei is beyond the present applica-
tion of the method presented in this thesis. For the spherical SHN in figure ., calculations
can be carried out. e gs-gs partial half lives for even-even and odd-N nuclei are shown
in Fig. .. e gs-gs decays are hindered for N = 179, 183, and 185, due to different
orbitals for the odd neutrons in the mother and daughter nucleus ground states, for details
see paper III.
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Figure 3.6: Figure from paper III, gs-gs partial half lives for superheavy nuclei. The lines show results of calculations using the
gs-gs Qα values in Fig. 3.5. Solid lines -- microscopic calculation. Dahsed lines -- calculation not taking into account
variations in nuclear structure, obtained in the same way as the open circles in Fig. 3.3. Circles -- experimental data
[75].

. Outlook

e spherical HFB approach provides a good staring point for considering more involved
nuclear wave functions. One possible extension is to consider α-decay of deformed nuclei.
e next PhD student in the Lund nuclear theory group, M. Albertsson, has already started
work in this direction.

e calculation of formation amplitudes using Eq. (.), makes the use of four-particle
transfer amplitudes obtained from other types of wave functions straightforward. An inter-





esting prospect is to study α-clustering effects of beyond-mean-field correlations contained
in wave functions of ab-inito nuclear structure models.

If additional correlations can be included in a way that is not too numerically costly, one
could consider to include the open-channel α-decay boundary condition in the nuclear-
structure calculation. is could be done in an approximate way by introducing a constraint
on the slope of the formation amplitude f(r). is type of boundary condition, fixing the
asymptotics in the decay channel to those implied by the Q value, is employed in some
quantum-monte-carlo calculations for light nuclei, see e.g. [], and would remove any
dependence on the matching radius rV.
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Chapter 

Nuclear states in superheavy elements

Shell structure plays a very important role for the stability of superheavy elements [].
Without quantum-mechanical shell effects, superheavy nuclei (SHN) would spontaneously
fission with a very short lifetime. Predictions for the location in the nuclear chart of the
most stable SHN are strongly dependent on the shell structure obtained in the nuclear-
structure models. e shell structure also plays a large role in the low-energy excitation
spectra of odd-A and odd-odd nuclei, providing a link between the shell gaps stabilizing
SHN and the spectra.

e description of the low-energy spectra of deformed nuclei in the No-region (Z = 102)
with SHFB models was investigated by Yue Shi and coworkers in Jyväskylä []. Nuclei in
this region are the heaviest where good spectroscopic data is currently available. Similar to
many commonly employed Skyrme parameterizations, themodern SHFB parameterization
UNEDF [] employed in that study provides a good description of bulk properties across
the nuclear chart, but cannot describe spectra with the high accuracy required to reproduce
experimental data. By tuning the spin-orbit and pairing properties locally in this region,
the description of the low-energy spectrum could be improved. In deformed nuclei, single-
particle states linked to high-lying spherical shells can show up as intruder states. Improving
the description of these intruder states might then also improve the predictions for SHN.

e first direct experimental spectroscopic information for SHN is provided by the exper-
iment on element  [] lead by the Lund experimental nuclear structure group. Paper
IV in this thesis is a collaboration between the Jyväskylä group and Lund investigating the
structure of nuclei produced in the α-decay chains of 288115173.

In this paper the tuned UNEDF parameterization, UNEDFSO, is tested against the ex-
perimental data. An alternative to the SHFB and similar self-consistent mean field models
is the Macroscopic-Microscopic (MM) models. Using parameters tuned for actinide nuclei
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[], the Nilsson-Strutinsky MM model is expected to provide reasonable predictions for
SHN, which are compared with the experimental data and the predictions of the SHFB
model. To describe the spectra in the odd-odd SHN studied in the experiment, theNilsson-
model single-particle wave functions are used in the particles+rotor model of Ref. [].

. Macroscopic-Microscopic models

e Macroscopic-Microscopic model is based on a division of the binding energy E into a
macroscopic part Emac and a microscopic part Emic:

E(N,Z, shape) = Emac(N,Z, shape) + Emic(N,Z, shape). (.)

e macroscopic part accounts for most of the binding energy, and describes the smooth
variations in energy when N, Z, and the nuclear shape are varied. Emac can be obtained
from a Liquid-drop model of the nucleus, e.g. [], or similar models such as the finite-
range droplet model []. ese models share many features with the early semi-empirical
mass formulas such as that of von Weizsäcker [].

e microscopic part accounts for the fluctuation of the energy around the smooth trends,
due to the shell structure. Emic consists of the shell-correction energy δEsh and the pairing-
correction energy δEpc. δEsh can be extracted using the Strutinsky approach [, ], which
employs the single-particle energies from a phenomenological mean-field potential. Sev-
eral different parameterizations of the mean-field can be used, e.g. the Nilsson Modified
oscillator [], the Woods-Saxon potential [], or the Folded-Yukawa potential []. e
shell correction captures the fluctuations in energy when filling single-particle levels in the
mean-field potential, relative to the filling of particles in a smooth distribution of levels
[]. e pairing-correction energy is typically calculated using the BCS approach, which
can be regarded as a simplified version of the HFB approach. In a similar way as the shell-
correction energy, δEpc is defined as a difference between the pairing correlations obtained
with the mean-field level structure compared with a smooth level structure.

. Particles + rotor model

In the particles-plus-rotor model, a deformed nucleus is described by dividing the system
into a few valence particles and rotor, which models the collective rotation of the remain-
ing particles. e rotor allows for an efficient description of the rotational bands in the
spectrum. By coupling the single-particle orbitals of the deformed mean field, where the
rotational symmetry is broken, to the phenomenological rotor wave function, states with
good total angular momentum I are obtained.
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e Hamiltonian employed in the model is,

H = Hval +Hcoll, (.)

where Hval describes the valence particles in the intrinsic body-fixed system, and Hcoll de-
scribes the rotational energy of the rotor. e valence particles are described using BCS
quasiparticles, α†

k, obtained from a phenomenological mean-field single-particle Hamilto-
nian and a residual pairing interaction. e valence part of the Hamiltonian can be put in
the form,

Hval = E0 +
∑
k

Ekα
†
kαk + Vpn, (.)

where E0 is the gs energy of the BCS vacuum, and Ek the quasiparticle energies. For odd-
odd nuclei a proton-neutron interaction among the valence particles Vpn can also be in-
cluded.

e rotor part is given by,

Hcoll =

3∑
i=1

R2i
2Ji

, (.)

where Ri is the projection of the rotor angular momentum R⃗ on body-fixed axis i, and Ji
is the corresponding moment of inertia. e total angular angular momentum I⃗ is given
by the sum of the angular momentum of the rotor R⃗ and of the valence particles J⃗,

I⃗ = R⃗+ J⃗. (.)

e Hamiltonian (.) is diagonalized using the strong-coupling basis. e basis states
|ΨI

MKn⟩ are defined,

|ΨI
MKn⟩ =

1√
2
(1+R1)|IMK⟩|n⟩ (.)

=
1√
2

(
|IMK⟩|n⟩+ (−1)I|IM− K⟩e−iπJ1/ℏ|n⟩

)
,

where |IMK⟩ represents a normalized Wigner rotation matrix
√

2I+1
8π2 D I

MK. |n⟩ represents
a state of the intrinsic system, for the odd-odd nuclei a one-quasiproton-one-quasineutron
state is used,

|n⟩ = α†
πnα

†
νn |BCS⟩. (.)

For reflection symmetric deformations (no odd multipoles), the system is invariant to 180◦

rotations around the body-fixed axes. It is customary to symmetrize the basis state with
respect to R1 = eiπR1/ℏ, a 180◦ rotation of the rotor around the body-fixed 1-axis [].
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Choosing the basis states to be symmetric eigenstates to the 180◦ rotations, Ri|ΨI
MKn⟩ =

|ΨI
MKn⟩, for i = 1, 2, 3, ensures that the rotor describes an even-even rotating core []. In

the case of no quasi-particles the symmetrization removes states with odd spins, implying
the spin sequence I = 0, 2, 4, . . . characteristic of the ground-state (gs) band in even-even
deformed nuclei.

.. Basic features of the particles-rotor spectrum

e particles+rotor model has been widely used, and is discussed in detail in many text-
books, e.g. [, ]. For the odd-odd SHN, we are interested in the low-energy states of
the spectra, and we shall below discuss how Hcoll affects the spectrum of the Hamiltonian
(.).

e considered nuclei are predicted to be axially symmetric, which simplifies the calcula-
tions somewhat. Choosing the -axis as symmetry axis impliesJ1 = J2 = J , and R3 = 0.
With Eq. (.), the rotor Hamiltonian (.) can then be written [],

Hcoll = Hrot +Hrec +Hcor, (.)

where Hrot is the simple rotational-band contribution,

Hrot =
1
2J

(I2 − I23). (.)

Hrot does not mix the different basis states (.); it gives a diagonal contribution 1
2J (I(I+

1) − K2), with the characteristic I-dependence of the energy for low-spin members of
a rotational band. If the mixing introduced by the other terms are small, the dominating
odd-odd band-head configuration |n⟩ can be used to label rotational bands with I = K,K+
1, . . . . is is typically the case for well-deformed nuclei where the moment of inertia J
is large. Hrec is the “recoil” term,

Hrec =
1
2J

(J2 − J23). (.)

Since it only depends on the valence-particle angular momentum J⃗ it acts only on the
intrinsic part of the basis states (.). e most important effect of this term is to move the
whole band up or down in energy. e size of this shift depends on the intrinsic band-head
wave function []. Hcor is the “Coriolis” term,

Hcor = − 1
J
(I1J1 + I2J2) = − 1

2J
(I+J− + I−J+). (.)

is term couples the intrinsic system to the rotor, and causes a gradual alignment of the
intrinsic spin J⃗ with the total angular momentum I⃗. It mixes states differing in K by one
unit, ΔK = ±1. For the odd-odd case the K values of the band-heads are integers, so there
are no diagonal contributions from this term, and thus no decoupled K = 1/2 bands.
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. Element  decay chain

e decay chains of element  were studied in an experiment [] lead by the Lund nu-
clear structure group, with measurements performed in  at GSI Helmholtzzentrum
für Schwerionenforschung, Darmstadt, Germany. e experiment was the first study us-
ing combined α-decay and γ/X-ray spectroscopy measurements to study the superheavy
elements created in the 48

20Ca28 + 243
95 Am148 reaction. Several α-decay chains assigned to

288115173 were detected.

e 288115173 chains consist of five α-decays ending in 268
105Db163, that decays by sponta-

neous fission. e spectra of these odd-odd nuclei are investigated using the two-quasi-
particles+rotor model. e deformation parameters are obtained by minimizing the gs
energy in the MMmodel employed in Ref. [], using the Lublin-Strasbourg macroscopic
energy [], and the Modified-Oscillator (MO) potential, with parameters adjusted to ac-
tinide data from Ref. []. e particle-rotor model employed is that of Ref. [], and
the calculations are performed using the associated code written by I. Ragnarsson and P.
B. Semmes.

Since there is no well-established proton-neutron residual interaction applicable to this re-
gion, the calculations are performed with Vpn = 0. Studies of deformed odd-odd nuclei
in the rare-earth region suggest that a finite-range effective interaction containing tensor
terms should be used [–]. e most basic effect that should be modeled with the
proton-neutron interaction is the Gallagher and Moszkowski rule []. For the two pos-
sible band-heads that are obtained by coupling the neutron(proton) quasiparticle angular-
momentum projections Ων(π): K> = Ων +Ωπ , and K< = |Ων −Ωπ |, the one where the
intrinsic spins are parallel is favored. e associated energy splittings introduced by Vpn
are on the order of 100 keV in the rare-earth region []. A very rough estimation for the
effects of the neglected residual proton-neutron interaction is thus shifts of bands relative
to each other by similar amounts, ∼ 100 keV.

.. E transition and constraints on theory

In the detailed analysis of the experimental data it was found that the α-decay of 280111Rg169
leaves the daughter nucleus 276109Mt165 in an excited state, which then decays via E1 γ-decay
[, ]. e E1 transition connects states with different parity, and difference in total an-
gular momentum ΔI = 0,±1. For the body-fixed intrinsic system, these selection rules
implies intrinsic configurations with different parity and with the projection of the angular-
momentum on the symmetry axis, Ω, differing at most by one unit, ΔΩ = 0,±1. e
single-particle spectrum predicted with the MO allows for two single-quasiparticle transi-
tions that fit these selection rules. e proton transition π[615]11/2 → π[505]9/2, and





the neutron ν[716]13/2 → ν[606]11/2. In the particle-rotor results, low-lying states
involving these orbitals allow for either the proton or neutron E1 transition, both with
roughly the same energy,  keV, as observed in experiment.

e particle+rotor calculations reveal the large amount of low-lying levels implied by both
the many possible two-quasiparticle band heads and the rotational bands build upon these
configurations, see Fig.  in paper IV. e details of the predicted spectrum is subject to
quite large uncertainties. e energy order of the quasiparticle states is sensitive to details of
the mean-field potential, that most likely involves errors due to the extrapolation to 276Mt
from the region where it was adjusted. e ordering of the band-heads is in turn sensitive
to the recoil term in the rotor Hamiltonian, which is included in the calculations, and also
to the proton-neutron interaction, which is not included. Due to the many close-lying
levels, and the above mentioned uncertainties one cannot suggest a detailed decay scenario,
such as spin or parity assignments of the states connected by the E1 transition.

e most robust constraint on theory is that of differing parity orbitals. Interestingly the
SHFB parameterization, UNEDFSO, tuned to the No-region data does not allow for a
simple explanation in terms of either neutron or proton single-quasiparticle transitions. It
should be noted that configuration mixing can produce low-lying states that can be con-
nected by an E1, implying that the spectra predicted by the model cannot be completely
ruled out. e unmodified UNEDF parameterization allows for the single-proton transi-
tion suggested by the MO, but not for the neutron transition. Due to the self-consistent
nature of the SHFB approach, several parameters simultaneously influence the location
of the shells. When more data become available one can ascertain if the adjustment of
the UNEDF parameterization locally in the Nobelium region implied an “overfitting”,
causing bad extrapolation properties compared to the original parametrization.

Observation of E1 transitions in neighboring odd-A nuclei would help to clarify the sit-
uation, and place a stronger constraint on models. Experiments on odd-proton and odd-
neutron decay chains could possibly place the E1 on either the proton or neutron side. For
odd-A nuclei predictions of the low-energy spectrum become less complex, allowing for a
more direct comparisons with predicted quasiparticle spectra. In this context an interesting
future project would be to predict α-decay branching ratios for these odd-A nuclei. is
will be possible when the α-decay approach described in chapter  is extended to deformed
nuclei.





Chapter 

Fission fragment yields

Fission in a heavy nucleus may be induced by neutron capture, where the new combined
system is excited by several MeV. If the excitation energy is higher than the fission barrier
the nucleus splits into two fragments in a dynamical process. Measuring the fragment
masses from a large number of fission events reveals a distribution of the fission yield. For
fission of actinides such as uranium and plutonium, the yield distribution has two peaks
showing that the split where one of the fragments is heavier is the most common. When
the energy of the incoming neutron is increased these peaks decrease while the number of
events where the fragments have similar masses increases.

Shortly after the discovery of nuclear fission, Bohr and Wheeler [] proposed a theoretical
description in terms of the liquid-drop model. Using the concept of an energy surface
depending on parameters describing the nuclear shape, the basic features of fission could
be explained. e driving mechanism is the Coulomb repulsion between protons which
competes against the short-range attractive nuclear interactions. In the liquid-drop model
these counteracting effects give rise to a fission barrier in the potential energy as a function
of the elongation shape parameter.

e elongation and other shape parameters are in a classical description collective degrees of
freedom for the nucleus. In a quantum-mechanical mean-field description the shape is in-
stead described by a symmetry-breaking local density ρ(⃗r). After the capture of the neutron
the shape of the excited nucleus evolves with time to that of the separated fragments.

Important quantities to be described by a model for fission are the threshold energy for
the reaction, the fragment mass distribution, what the excitation energies of the fragments
are, and how many neutrons are released that can induce fission in other nuclei and drive
a chain reaction. To describe in detail the mass and charge distribution of the fragments
requires dynamical models for the shape evolution []. Different approaches to treat the
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time-dependent dynamics employed in recent studies include the non-adiabatic energy-
density-functional (EDF) [], adiabatic-EDF [], and the Langevin approach [].

In paper V in this thesis, the energy dependence of the fission-fragment mass distribution is
studied using the Brownian shape-motion (randomwalk) approach introduced by Randrup
andMöller []. e random-walk approach offers an efficientmethod to calculate the frag-
ment mass distribution, avoiding the complications of dealing with the time-dependence
explicitly. It employs the macroscopic-microscopic mass model of Möller et al. [], which
has been very successful in describing ground-state masses. e mass model has been im-
proved in several iterations [, , ] and applied successfully to other observables such
as β-decay half-lives [] and fission-barriers []. e description of asymmetric fission
requires a flexible shape parametrization. Employing five independent shape parameters,
calculations with the model reveal the complex topology of valleys and separating ridges in
the potential energy landscape influencing the fission process [].

e random-walk approach has proven to give a good description of observed fragment
mass yields for many nuclei [, , ]. During the random walk the nuclear level
density at different shapes plays a large role for the shape evolution. In the previous studies
the level densities were included using a Fermi-gas expression, modified to approximately
take into account the gradual damping of shell effects. e most recent prescription in Ref.
[] captures the overall trends in the energy dependence of the fission yields, but needed
to be adjusted to data and does not include effects of the structure of the level density at
lower energies. In paper V we explore the effect of the nuclear structure on the fission
yields obtained when combining the Brownian shape-motion model with the microscopic
level-density model of Ref. [].

. Random-walk model for fission yields

In the random-walk model the nuclear shape is described by five shape coordinates χ =
(χ1, . . . , χ5). e shape space is discretized giving a lattice of over five million different
shapes with potential energies U(χ) []. e shape evolution is assumed to be strongly
damped so the collective kinetic energy is negligible. For a system with total energy E and
total angular momentum I, all of the local excitation energy E∗(χ) = E−U(χ) is assumed
to go to the intrinsic degrees of freedom described by the level density ρ(I,E∗).

To obtain the yields a large number of random walks are performed. e steps in the
random walk are determined by the Metropolis algorithm. From the current shape i a
neighboring candidate shape j is selected at random. e probability Pi→j to accept a step
is given by,

Pi→j = min
[
1, ρj(I,E∗(χj))/ρi(I,E

∗(χi))
]
, (.)
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where ρi(j)(I,E∗) is the microscopic level density for the shape i(j).

. Nuclear level densities

e nuclear level densities are calculated using the combinatorial model of Ref. []. e
level densities in the combinatorial model give a fair description of available experimental
data. e previous application was to ground-state shapes, and we now apply the model to
all shapes in the lattice. emethod as implemented for this fission study takes into account
rotation and pairing for each level, giving a micro-canonical description. For each shape,
blocked BCS calculations are performed for each combination of particle-hole excitations
in the Folded-Yukawa mean-field. e same mean-field is used to determine the shell and
pairing correction energies that enters in the potential energy U(χ). e lowest potential-
energy surface is obtained for even-even 0+ configurations. In this section the energies E
refer to the energy relative to this reference energy at the given shape χ.

All shapes considered have axial symmetry. Rotation is treated by considering the diagonal
contribution from the collective rotation in the particles+rotor model, c.f. Sec. ... is
gives the rotational contribution Erot to the energy,

Erot =
1

2J (χ)
(I(I+ 1)− K2). (.)

Most of the fivemillion shapes have considerablemass-asymmetry, and thus break the parity
symmetry associated with invariance of the system to space inversions, described by the
operator π̂. In the level density calculations for paper V all shapes are treated in the same
way, by considering the rotational bands suitable for large parity-breaking deformations
[]. e angular momentum I and parity π of the rotational band members built on the
intrinsic multi-particle-multi-hole state |i⟩ are given by,

Iπ =

{
0+, 1−, 2+, 3− . . . , if e−iπJ1 π̂|i⟩ = |i⟩
K±, (K+ 1)±, (K+ 2)± . . . , if e−iπJ1 π̂|i⟩ ̸= |i⟩

, (.)

where e−iπJ1 comes from the symmetrization of the rotor R1 (c.f. Sec. .), and π̂ from
the symmetrization of a degenerate asymmetric intrinsic state, c.f. Ref. []. Of the
intrinsic states |i⟩, only the seniority-zero states, where all quasiparticles are paired off in
time-reversed orbitals are eigenstates to e−iπJ1 π̂. e contribution to the level density from
these states is small for all but the lowest energies [].

e level density for a fixed angular momentum I is obtained by counting the states Ek(I, π)
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in a bin of width ΔE centered around Eb, and averaging over parities,

ρ(I,Eb) =
1
2

∑
π

1
ΔE

ˆ Eb− ΔE
2

Eb− ΔE
2

∑
k

δ (E− Ek(I, π)) dE. (.)

For the mass-symmetric shapes a different rotational sequence, giving a level density with
half the number of states [], should in principle be used. e doubling of the level
density associated with breaking the parity symmetry is instead taken into account approx-
imately in the random walk. e lattice of shapes includes both of the asymmetric shapes
that can be mapped onto each other by space inversion, effectively giving twice the level
density for asymmetric shapes compared to symmetric shapes. When the mass asymmetry
is non-zero, but not strongly symmetry breaking, mixing in this degree of freedom causes
a splitting of parity doublets [, , ]. is should lead to a level density with values
that are on the average in between those for symmetric and strongly asymmetric shapes.
is gradual increase is neglected in the current approach.

. Influence of nuclear structure on fission yield distributions

e potential energies U(χ) and the microscopic level densities ρ(I,E∗(χ)) at each shape
are inputs to the fission calculations and enter at each step of the random walk through
Eq. (.). e fragment charge yields for fission of 234U obtained with the approach are
shown in Fig. .. Results obtained using the microscopic level densities are compared to
the yields obtained using the previous prescription of Ref. [], employing a Fermi-gas
level density with a phenomenological damping function acting on the shell- and pairing-
correction energies δEsh and δEpc (c.f. Sec. .) that was adjusted to this case. e new
calculations with the microscopic level densities reproduce the energy dependence of the
yields well without any adjustable parameters.

Figure . shows the symmetric mass yield for the fission of the compound nucleus 236U
as a function of excitation energy. e yields resulting from calculations with the standard
microscopic level densities reproduce the general increasing trend of the experimental data
with increasing excitation, although the yield is slightly overestimated. e calculations
show a non-monotonic increase of the symmetric yield with increasing energy. e bumps
in the symmetric yield curve are sensitive to the pairing correlations. Increasing the pairing
increases the size of the bumps and moves the second bump up in energy. Without pairing,
the symmetric yield curve is smooth. Since the pairing is strongly damped with increasing
excitation, it not immediately obvious that it should have an effect on the yields.

e structure of the symmetric yield as a function of energy resembles the low-energy struc-
ture of the microscopic level densities, c.f. Figs  and  in paper V. To fission symmetrically,
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Figure 5.1: Figure from paper V. Fragment charge yields for fission of 234U at different excitation energies. Blue solid lines:
Results from calculations with microscopic level densities ρmic. Red dashed lines: calculations employing the previous
prescription ρeff which was adjusted to reproduce the energy dependence of the experimental data (black dots). The
new approach with ρmic reproduces the energy dependence without any adjustment to fission data.

the system has to cross a ridge separating the favorable asymmetric fission path from sym-
metric shapes (c.f. Figs  and  in paper V). At a ridge the local excitation energy E∗ is
several MeV smaller than for the second minimum and fission valleys, so the level density
at low energies becomes important here. e single-particle level spacing is usually smaller
at such ridges, giving a positive shell-correction energy and a large pairing-correlation en-
ergy. is results in level densities with pronounced bumps, similar to level densities shown
by the blue curve in Fig.  and the curves in Fig.  in paper V.

e ridges are the lowest potential energy saddle points where random walks connecting
the asymmetric fission path to the symmetric fission valley can pass. In general, there is not
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Figure 5.2: Figure from paper V. Symmetric mass yield for fission of 236U as a function of excitation energy. The pairing properties
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a single shape where all random walks giving symmetric fission must pass through. Still,
a good starting point for constructing a simple explanation of the non-monotonic energy
dependence in Fig. . is to consider only one point on the ridge. Consider the probability
to go from a shape χv in the asymmetric fission valley up to a ridge shape χr in a fixed
number of steps n,

P(n)v→r ∝ ρr(I,E∗(χr))/ρv(I,E
∗(χv)), (.)

where the local excitation energy E∗(χv) is much larger than E∗(χr) and thus the level den-
sity ρv(I,E∗(χv)) is much larger than ρr(I,E∗(χr)). It is assumed that at the intermediate
steps the level densities decrease moving towards the ridge. is reasonable assumption
causes the intermediate level densities to cancel out in the product of successive step prob-
abilities given by Eq. (.). For the path down from the ridge to the symmetric valley
the probabilities from Eq. (.) will be 1 with a similar assumption. If only one such sce-
nario, with the sequence of steps giving the probability P(n)v→r, was responsible for all of the
symmetric-fission events, the ratio (.) would give the energy dependence. e low-E∗

level density in the numerator, ρr(I,E∗(χr)), shows the pairing structure giving a non-
monotonic energy dependence, while the level density in the denominator, ρv(I,E∗(χv)),
is for higher local excitation energies, and thus is a smooth monotonically increasing func-
tion only influencing the overall slope of the energy dependence. Although the calculations
allow many random-walk paths leading to symmetric shapes, the level densities at points
along the ridge likely play a large role in determining the energy dependence.
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. Outlook

To limit the computation time, themicroscopic level densities are calculated for local excita-
tion energies up to  MeV, and then extrapolated using a fitted formula. is extrapolation
is motivated by the general properties of level densities and tested to work well for the local
excitation energies relevant for the current study. For high excitation energies the level den-
sity should converge to that of a Fermi gas with local excitation energy determined only by
the macroscopic liquid-drop energy. With the shape-dependent matching constant C(χ)
(Eq. () of paper V), used to connect to the microscopic level densities, it is not guaranteed
that the absolute value of the level density agrees with the limiting case. If the extrapolation
recipe can be improved so that it always gives the correct high-energy limit, fission at higher
excitation energies can be studied. is would allow the study of multi-chance fission for
highly excited compound systems.

Another important fission observable is the kinetic energies of the fragments. e random-
walk approach assumes a high dissipation, and thus no collective kinetic energy in the shape
evolution up to scission. e final kinetic energies obtained with this assumption can be
investigated by considering the fragment kinetic energy implied by the static Coulomb
repulsion for the different scission shapes obtained in the calculations.

In the study in paper V the proton-to-mass ratio Z/A of the fragments cannot vary from
that of the compound nucleus. e system is modeled as an excited even-even compound
system for all shapes, so the odd-even staggering seen in the experimental yields cannot be
described. An extension of the random-walk method including a proton-neutron asymme-
try degree of freedom was proposed in Ref. []. Extending the microscopic level-density
approach to model situations leading to odd numbers of quasiparticles in each fragment
might be challenging, but if it can be achieved it would offer an interesting study of how
the level densities, which are qualitatively different for even-even and odd nuclei, affect the
odd-even staggering of the yields.

In general, fission is a very challenging process to describe fully microscopically in terms
of interacting nucleons. Several aspects of the assumptions leading to, and implicit in, the
random-walk description could be subjects for detailed investigation. e random walk
approach is motivated by the strong-dissipation limit of the classical Langevin equations
together with the wall-formula for dissipation []. e good description of fission yield
distributions motivates work on clarifying the microscopic foundations of the approach. It
might be illuminating to study the approximations needed to go from a general quantum-
mechanical many-body approach to a random-walk on the lattice of shapes. As a starting
point one could perhaps consider the states contained in the level density at the different
lattice sites as basis states for the time evolution. Framing the problem in this way and
working out the needed assumptions might guide work on further improvements.
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Appendix A

Computer codes developed

To perform the calculation of formation amplitudes in papers I-III, and the random-walk
calculations in paper V, two computer codes,  and , were developed. is appendix
contains a brief description of these codes and how to run the calculations. Both codes are
written in Fortran , and employ the Fortran namelist construction for input.

A. α-decay codes

An α-decay calculation involves three codes: , to perform the SHFB calculations,
the code  for the formation amplitudes, and a Coulomb-penetrability code . e
codes produce output files used as input in the successive calculations, as illustrated below,

× 2 →  → .

In the first step,  is run twice, once for the mother and once for the daughter nu-
cleus. In these calculations, the HFB U and V matrices and the quasiparticle energies Ek
are saved to the files filename_m.hfbn, and filename_m.hfbp, where filename_m
is the input given for the “file” namelist variable of  for the mother nucleus cal-
culation. Another filename must be used for the daughter nucleus calculation. Both cal-
culations must be performed using the same oscillator frequency and the same truncation
of the spherical oscillator basis.

ese files are then read by . is code computes the formation amplitudes and prints
them to a file that can be read by  to obtain the decay width Γ(rV), Eq. (.).
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A.. Formation-amplitude code

e code , where the name stands for “Formation Amplitude Hosphe”, calculates the
formation amplitudes. Equation (.) expressed in the spherical oscillator basis is used,
with the four-particle transfer amplitude factorized into a proton and a neutron two-particle
transfer amplitude as described in Sec. ... e calculations are controlled via the Fortran
namelist &inDataFaH. An example run-script for Linux is given below:

#!/bin/bash

fah << end
&inDataFaH oddDecay = 2,
qp_l_M = 3, qp_j2_M = 5, qp_nr_M = 1,
qp_l_D = 1, qp_j2_D = 3, qp_nr_D = 1,
nmax = 30, bN = 2.22576754, step = 0.125, dimr = 200,
outfileFa = 'fah.z84n119.SLy4.MixP.Nmax30',
fileHFBmatMn = 'z84n119.SLy4.MixP.Nmax30.hfbn',
fileHFBmatMp = 'z84n119.SLy4.MixP.Nmax30.hfbp',
fileHFBmatDn = 'z82n117.SLy4.MixP.Nmax30.hfbn',
fileHFBmatDp = 'z82n117.SLy4.MixP.Nmax30.hfbp'/
end

is calculation is for the ground-state-to-ground-state α-decay of 203
84 Po119, where the

mother-nucleus ground state (gs) is described by a f5/2 one-quasiparticle (qp) state, and
the gs of the daughter nucleus 199

82 Pb117 is described by a p3/2 one-qp state. e namelist
entries needed for a calculation, and the values used in this example are listed below:

• oddDecay = 2: Flag to control if even-even ground states or one-qp states in odd-A
nuclei are considered, even-even (), odd-Z-even-N (), even-Z-odd-N ().

• qp_l_M = 3: Orbital angular-momentum quantum number l for the quasiparticle
in the mother nucleus.

• qp_j2_M = 5: Total angular-momentum quantum number 2j for the quasiparticle
in the mother nucleus.

• qp_nr_M = 1: Order in quasiparticle energy Ek among quasiparticle states with the
same lj.

• e same namelist entries as the three above with M replaced by D refer to the quasi-
particle in the daughter nucleus. If oddDecay = 0, these six quasiparticle indexes
are not used.
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• nmax = 30: Largest major oscillator shell Nmax used to expand the HFB wave
function.

• bN = 2.22576754: Oscillator length b =
√

ℏ
mω in fm used in the spherical

oscillator basis. Here m is the nucleon mass and ω is the oscillator frequency.

• step = 0.125: Distance between radial points Δr in fm.

• dimr = 200: Number of radial points where the formation amplitudes fklk(r) are
evaluated, r = nΔr, n = 1, 2, . . . , dimr.

• outfileFa = 'fah.z84n119.SLy4.MixP.Nmax30': Base for filenames of the
output files generated by the code. ese files will start with the base followed by
different suffixes.

• fileHFBmatMn = 'z84n119.SLy4.MixP.Nmax30.hfbn': Name of the file
containing the U and V matrix elements for the neutron part of the mother nucleus
HFB vacuum. As shown in the example script the three other required input files
are specified in a similar way.

A.. Coulomb-penetrability code

To compute the Coulomb penetrabilities, Eq. (.), and the decay widths, Eq. (.), the
code  is used. It is written in C++ and acts as a wrapper around N.Michels Coulomb
wave-function code []. An example run-script for the same α-decay scenario considered
in the previous section is given below:

#!/bin/bash

oddD=2;
LM=3; J2M=5; nrM=1;
LD=1; J2D=3; nrD=1;
dimr=200;
ND=117; ZD=82;
Qa=5.496;
rtscaling=1.0;

if [ $oddD == 0 ]
then

fgamc << end
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fah.z84n119.SLy4.MixP.Nmax30
G.z84n119.SLy4.MixP.Nmax30
$oddD
$dimr
$ND
$ZD
$Qa
$rtscaling
end

else

fgamc << end
fah.z84n119.SLy4.MixP.Nmax30
G.z84n119.SLy4.MixP.Nmax30
$oddD
$LM
$J2M
$nrM
$LD
$J2D
$nrD
$dimr
$ND
$ZD
$Qa
$rtscaling
end

fi

In this bash script the different numerical values are stored in the local variables oddD, LM,
J2M, nrM, LD, J2D, nrD, dimr, ND, ZD, Qa, and rtscaling. ese act as placeholders
and generate a text file which is read line-by-line by the code . e first two lines of
the file is the base filename for the results from , here chosen to be
“fah.z84n119.SLy4.MixP.Nmax30”, and a base filename for the output generated by
, “G.z84n119.SLy4.MixP.Nmax30”. Most of the values to be put in the different
lines of the input to the Coulomb-penetrability code should be obvious by comparing
with the previous section. ere are four additional numbers in the input: e number of
neutrons ND and protons ZD of the daughter nucleus. eQ-value for the decay Qa. e last
additional input controls how the touching radius rt is calculated. For rtscaling=1.0,
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Eq. (.) is used, otherwise a different touching radius is used,

rt → rtscaling× rt.

Note that the number of lines to be read by the code depends on the value of oddD.

A. Fission random-walk code

e random-walk calculation for the fission yields is performed with the code , where
the name is short for “Fission Metropolis”. e code reads files containing the potential
energy and the level densities at the different lattice points. is data is stored in memory
and used to compute the probabilities to accept proposed steps during the random walk.
e necessary interpolation and extrapolation of the level density is performed by the code
during the random walk.

e input to specify parameters for the run and the names of the various input data files are
supplied via the Fortran namelist &inDataFM. Some of the namelist variables and example
values are listed below:

• outfile='z92.n142.Etot10.048.spin3.iter1e5sm2e5.rc2.5': Base for
the names of various output files generated by the program. e different files start
with this base and end with different suffixes.

• Z=92, N=142: Number of protons Z and neutrons N of the compound nucleus.

• Enertot = 10.048: Total energy E of the system, measured relative to the macro-
scopic energy for a spherical shape.

• rneck_c = 2.5: Critical neck radius c0 where the random walk is ended and the
mass asymmetry is binned.

• start_I = 11, start_J = 1, start_K = 13, start_L = 13, start_M
= 2: Starting point for the random walks in terms of the lattice indexes I, J,K, L,M.

• iter_max = 100000: Number of random walks performed to obtain the yield.

• steps_max = 200000: Cutoff on the number of steps in a given random walk,
discussed in Sec. IIIA of paper V.

• ap_model = 3: Allows to use different formulas to determine the probability to
accept a proposed step in the random walk: 1 – the recipe employed in Ref. []
is used, 3 – the microscopic level densities are used as in paper V, 9 – the method
employed in Ref. [] is used.
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• use_wall_bias = .true., wall_bias_II = 8: Controls if the “wall” bias
should be used, and the elongation index of the “wall”.

• level_density_extrapol_ver = 3: Controls the method used to extrapolate
the microscopic level density to higher energies. When equal to , the method of
paper V is used.

• fg_e0param = 10.482643, Edamping = 13.178511, EdampingPair =
4.067328: e parameters e0, Ed,sh, and Ed,pc defined in Sec. II of paper V.

• filename_pot5D = 'pot5D092234.dat': Name of the file containing the po-
tential energy at the different lattice sites.

• filename_emac5D = 'emacr092234.dat': Name of the file containing the
macroscopic energy at the different lattice sites.

• filename_rneck = 'neck5D.dat': Name of the file containing the neck radius
for each shape.

• filename_unphys = 'unphysical_points_3QS.dat': Name of a file con-
taining the lattice locations of unphysical shapes for which level density calculations
are not performed.

• is_read_levsum = .true., filename_levsum = 'levsum092234.dat':
Instructs the code to read level densities from the specified file. If the level densities
are not used, i.e. if a different formula to accept a step that does not require the
microscopic level density is used, these two keywords can be omitted from the input.
Different formats of the level density file can be accepted by the code trough the use
of various flags documented in the start of the source code to the main program.

• spin_select_levsum = 3: Selects the total angular momentum I for the com-
pound nucleus. e level density for the chosen I-value is used in the calculation of
the probability to accept a step in the random walk.

• is_combine_par_levsum = .true.: If the keyword .true. is used, the sum
of the level density for positive and negative parity states are used to determine the
random walk step probabilites. If .false. only one of the parities is used.

• par_select_levsum = 1: Controls which parity is used if
is_combine_par_levsum = .false., 1 is positive parity, -1 is negative parity.
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