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Abstract

Recent industrial interest in producing smaller volumes of products in shorter time
frames, in contrast to mass production in previous decades, motivated the introduc-
tion of human–robot collaboration (HRC) in industrial settings, to increase flexibil-
ity in manufacturing applications. As a consequence, industrial environments would
lose their fixed structure, thus increasing the uncertainties present in this workspace
shared between humans and robots. This thesis presents robot control methods to
mitigate such uncertainties and to improve the involvement of human operators in
industrial settings where robots are present, with a particular focus on manual robot
guidance, or kinesthetic teaching.

First, the accuracy of manual robot guidance was increased by reducing the joint
static friction without altering the robotic task execution, using additional degrees
of freedom (DOFs) available in collaborative robots. Additionally, previous meth-
ods for a fast identification of the source of robot–environment physical contact
in partially-unknown industrial environments were evaluated, extended, and modi-
fied to perform effective manual corrections of the robot motion. Then, an iterative
learning method was proposed to achieve a more accurate use of manually-defined
trajectories, while allowing a safe physical robot–environment interaction.

Moreover, safety is a major concern in uncertain scenarios where humans and
robots collaborate. Regulating the robot–environment interaction forces, e.g., using
impedance control, would improve safety, yet undesired parts of the collaborative
workspace might need to be entirely avoided. To this purpose, a stable online vari-
ation of robot impedance during the manual guidance of the robot was proposed.
This proposal was later extended to further improve safety by considering a predic-
tion of human guidance with coordinated robot control. Furthermore, the additional
DOFs in collaborative robots were used to develop a stable online impedance varia-
tion method for robot obstacle avoidance without requiring modification of the main
robot task.

All methods presented were tested experimentally on a real collaborative robot.
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1
Introduction

Robot manipulators were largely adopted in industry during the second half of the
twentieth century, as they were deemed as the machinery needed to automate mass
production. These industrial robots could reproduce repetitive tasks with high speed
and accuracy, thus increasing the productivity of an industry whose goal at the time
was to manufacture large amounts of identical products in their assembly lines [Kur-
fess, 2005, Ch. 1]. Human workers were then displaced out of such industrial envi-
ronments, characterized by being rigid and structured to facilitate mass production.

However, recent trends in the manufacturing industry indicate a shift from mass
production to mass customization [Schou et al., 2013], where smaller volumes of
products are manufactured during shorter time frames. The intelligence and dex-
terity of human operators can be useful to increase the manufacturing flexibility
required in this novel scenario [Cencen et al., 2018]. Thereby, the robots that were
once used to replace human labor are currently starting to be seen as direct collab-
orators to humans in an industrial working structure that can best exploit the dif-
ferent and complementary aptitudes of humans and robots [IFR, 2018b]. Moreover,
the robot manufacturing industry has addressed this trend by developing collabora-
tive robots, also known as cobots [Colgate et al., 1996; El Zaatari et al., 2019], in
recent years. The lightweight and compliant design of collaborative robots makes
them better suited to share their workspace with human operators than traditional
industrial robots [IFR, 2020]. There is an increasing interest in the use of collabora-
tive robots, especially by Small and Medium-sized Enterprises (SMEs), since these
robots are economically more viable than traditional industrial robots [Cencen et
al., 2018; Suomalainen et al., 2022], thus providing an economically-viable entry-
point to robotic automation [IFR, 2020], which historically has been restricted to
large companies, since they could finance its high capital cost [IFR, 2018a].

An interesting way that humans and robots can collaborate in a manufactur-
ing task is through physical Human–Robot Interaction (pHRI), i.e., by manually
guiding the robot [Hirzinger, 1986]. This method is known as kinesthetic teach-
ing [Argall et al., 2009; Akgun et al., 2012; Wrede et al., 2013; Karayiannidis et
al., 2014] and consists in leading-through the robot to program a robot trajectory,
or to reprogram a segment of a pre-existing trajectory, allowing a human operator

11



Chapter 1. Introduction

to easily modify the robot’s motion online to adapt it to a manufacturing process,
whose requirements have changed. Kinesthetic teaching is the most common ap-
proach for introducing human demonstrations in manufacturing applications, since
it facilitates non-expert robot programming [Ravichandar et al., 2020] by assum-
ing that a human can perform the manufacturing task efficiently [Suomalainen et
al., 2022]. However, the effective and efficient integration of humans and robots
in a shared workspace still represents a significant challenge [Cencen et al., 2018],
which hinders the advantages that the adoption of collaborative robots by industry
can provide to meet the current demand for flexibility in industrial manufacturing
processes.

From a robot control perspective, this challenge is primarily because of the in-
herent complexity of robot physical interaction with its surroundings, particularly
in collaborative scenarios due to the dynamic nature of human behavior, and as a
result of the need for robots to adapt to varying tasks and scenarios with minimal
downtime [Vicentini, 2021]. Existing robot control solutions might lack the neces-
sary versatility to handle robot physical interaction in collaborative environments,
not fully utilize the capabilities of collaborative robots, and/or require significant
time or additional resources to reconfigure collaborative robot tasks, thus increas-
ing downtime and reducing overall efficiency [Ajoudani et al., 2018].

1.1 Problem Formulation

The previously described circumstances have motivated the research presented in
this thesis, whose objective is to improve the involvement of human operators in
industrial environments where robots are present through kinesthetic teaching ap-
plications (an application example is shown in Fig. 1.1), to increase the flexibility
of the manufacturing industry. Two main research questions have arisen from this
research problem:

1. How to improve the use of human manual guidance of a robot for an effective
robot adaptation to changing conditions in collaborative industrial environ-
ments?

2. How to improve robot control strategies to increase functional safety in col-
laborative industrial environments without compromising efficiency?

The first research question has been addressed in this thesis by

• Decreasing the uncertainty of the necessary force that a human should apply
to the robot, to improve the accuracy of kinesthetic teaching (Paper I).

• Quickly detecting robot–environment contacts and distinguishing their source
(Paper II).

12



1.2 Thesis Outline

• Improving robot tracking of a human manual demonstration without altering
the robot–environment interaction (Paper III).

and the second research question has been addressed by

• Adapting the behavior of the robot with respect to the external forces/torques
applied from its environment, including human manual guidance, to avoid
undesired collisions (Papers IV and VI).

• Avoid perturbing the main robot task if it is not necessary to avoid undesired
collisions (Paper V).

Figure 1.1 Example of the use of kinesthetic teaching for a collaborative assembly
task. The image shows a human operator manually guiding a Franka Emika Panda
robot [Franka Emika, 2019] mounted on a table to demonstrate a cylinder insertion
(peg-in-hole) task.

1.2 Thesis Outline

This thesis is structured as four chapters followed by a collection of papers, and has
the following outline:

13



Chapter 1. Introduction

Chapter I – Introduction
The introduction chapter presents the motivation and problem formulation of the
thesis. Also, the publications included in the thesis and their main contributions are
introduced in this chapter.

Chapter II – Background
The background chapter presents concepts in the fields of robotics and automatic
control that are relevant for the thesis. The contents of this chapter are based on
previous knowledge, and their use in this thesis is highlighted when appropriate.

Chapter III – Physical Human–Robot Interaction (pHRI)
This chapter contextualizes the problems that have been studied throughout this
thesis and provides a comparative analysis of the previous solutions available in the
literature with respect to the proposals included in this thesis.

Chapter IV – Conclusion and Future Research
The final chapter provides a conclusion for this thesis and discusses future research
topics.

1.3 Publications

In this section, the publications that have been included in the thesis are presented.
Preliminary versions of parts of the research presented in this thesis have been pub-
lished in the Licentiate Thesis by the author:

Salt Ducaju, J. M. (2023). Human-Robot Collaboration for Kinesthetic Teaching.
Licentiate Thesis TRFT-3278. Department of Automatic Control, Lund Univer-
sity, Lund, Sweden.

The publications included in this thesis are:

Paper I
Salt Ducaju, J. M., B. Olofsson, A. Robertsson, and R. Johansson (2021). “Joint

stiction avoidance with null-space motion in real-time model predictive con-
trol for redundant collaborative robots”. In: IEEE International Conference on
Robot and Human Interactive Communication (RO-MAN). Aug. 8–12. Vancou-
ver, Canada (Virtual), pp. 307–314.

Null-space motion was used to reduce the friction-torque dispersion at the joints
of a redundant collaborative robot to aid a human collaborator in applying the
force/torque necessary to guide the robot, thus facilitating kinesthetic teaching. An
experimental evaluation of the proposed method for a trajectory generated online

14



1.3 Publications

using model predictive control [Ghazaei Ardakani et al., 2019] was included in this
paper.

Paper II
Salt Ducaju, J. M., B. Olofsson, A. Robertsson, and R. Johansson (2022). “Fast con-

tact detection and classification for kinesthetic teaching in robots using only em-
bedded sensors”. In: IEEE International Conference on Robot and Human In-
teractive Communication (RO-MAN). Aug. 29–Sep. 2. Naples, Italy, pp. 1138–
1145.

Fast contact detection and classification methods based on the frequency-
response analysis of the estimated external force [Kouris et al., 2016; Kouris et
al., 2018] were experimentally evaluated in this paper, and necessary modifications
and extensions were proposed for kinesthetic teaching applications in an assembly
task when only using sensors conventionally embedded in commercial collaborative
robots and using robot impedance control1.

Paper III
Salt Ducaju, J. M., B. Olofsson, and R. Johansson (2024). “Iterative reference

learning for Cartesian impedance control of robot manipulators”. Submitted
to review for presentation at IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) 2024.

An iterative learning strategy has been used to improve the trajectory tracking
of robot manipulators in collaborative scenarios by updating the Cartesian reference
of a robot impedance controller. The impedance dynamics of the robot were con-
sidered when analyzing the convergence of the proposed method. An experimental
evaluation of the proposal for different robot tasks and scenarios was included in
this paper.

Paper IV
Salt Ducaju, J. M., B. Olofsson, A. Robertsson, and R. Johansson (2022). “Robot

Cartesian compliance variation for safe kinesthetic teaching using safety control
barrier functions”. In: IEEE International Conference on Automation Science
and Engineering (CASE). Aug. 20–24. Mexico City, pp. 2259–2266.

Safety control barrier functions [Ames et al., 2019] have been used in this paper
to online modify the Cartesian impedance behavior of a robot to avoid that an oper-
ator could guide the end-effector of the robot to an unsafe position, in the context of

1 A video that includes the most relevant aspects of the experiments per-
formed for Paper II is available in the Lund University Research Portal:
https://lucris.lub.lu.se/ws/portalfiles/portal/173495591/PaperII.mp4.
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Chapter 1. Introduction

safe kinesthetic teaching. A passivity-based energy-storage formulation [Ferraguti
et al., 2013] has been modified to include a strict Lyapunov function, which subse-
quently was used to ensure stability of the proposed method.

Paper V
Salt Ducaju, J. M., B. Olofsson, A. Robertsson, and R. Johansson (2023). “Null-

space compliance variation for safe human-robot collaboration in redundant
manipulators using safety control barrier functions”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). October 1–5. Detroit, MI,
USA, pp. 5903–5909.

In this paper, the null-space compliant behavior of a robot has been modified
online using safety control barrier functions [Ames et al., 2019] for collaborative
scenarios that do not require to alter the main robot task to achieve robot obsta-
cle avoidance. Conditions that guarantee the stability of the proposed method were
included when formulating the variation of the null-space compliance of the robot2.

Paper VI
Salt Ducaju, J. M., B. Olofsson, and R. Johansson (2024). “Model-based predictive

impedance variation for robot obstacle avoidance in safe human-robot collabo-
ration”. Submitted to review for publication in IEEE Transactions on Automa-
tion Science and Engineering.

A model predictive control strategy that included linearized control barrier func-
tions [Ames et al., 2019] was proposed in this paper to improve physical safety dur-
ing human guidance of a robot by considering a prediction of the robot motion and
the human behavior. Stability of the resulting online modification of the Cartesian
impedance behavior of the robot was proven using Lyapunov theory3.

Moreover, an overview of the notation used in each of the publications included
in this thesis is presented in Appendix A.

Contributions to Publications by the Author
These publications were developed by J. M. Salt Ducaju as the main contributor.
J.M. Salt Ducaju proposed the initial ideas, conducted the experiments, and drafted
the first version of the manuscripts. B. Olofsson, A. Robertsson, and R. Johans-
son provided constructive comments on the research and assisted in structuring the
manuscripts.

2 A video that includes the most relevant aspects of the experiments per-
formed for Paper V is available in the Lund University Research Portal:
https://lucris.lub.lu.se/ws/portalfiles/portal/173495629/PaperV.mp4.

3 A video that includes the most relevant aspects of the experiments performed for Paper VI is available
at YouTube: https://youtu.be/020LBMCWKAY.
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1.4 Contributions

Additional Publications
The following publications, where the author has made contributions, were decided
not to be part of the present thesis:

Mayr, M. and J. M. Salt Ducaju (2024). “A C++ implementation of a Cartesian
impedance controller for robotic manipulators”. Journal of Open Source Soft-
ware (JOSS) 9:93, p. 5194.

Salt Ducaju, J. M., J. J. Salt Llobregat, Á. Cuenca, and M. Tomizuka (2021). “Au-
tonomous ground vehicle lane-keeping LPV model-based control: Dual-rate
state estimation and comparison of different real-time control strategies”. Sen-
sors 21:4, p. 1531.

Salt Ducaju, J. M., C. Tang, M. Tomizuka, and C.-Y. Chan (2020). “Application
specific system identification for model-based control in self-driving cars”. In:
IEEE Intelligent Vehicles Symposium (IV). Oct. 19–Nov. 13. Las Vegas, NV,
USA (Virtual), pp. 384–390.

1.4 Contributions

The main contributions of this thesis are:

• The formulation of a method to facilitate kinesthetic teaching in redundant
robots by the use of null-space motion, complemented by an experimental
analysis.

• The empirical evaluation of fast contact detection and classification methods
for impedance-controlled robots using data only from embedded sensors, and
the proposal of necessary modifications and extensions to use these methods
for kinesthetic teaching applications in an assembly task.

• The development of an iterative learning method to improve trajectory track-
ing for impedance-controlled robots in collaborative scenarios, evaluated in
experimental assembly scenarios.

• The proposal and experimental evaluation of a method to modify the Carte-
sian impedance behavior of a robot (while ensuring strict stability at the con-
troller) to avoid unsafe situations during kinesthetic teaching using safety
control barrier functions.

• The extension of the previous contribution to further improve functional
safety during human guidance by considering prediction of human behavior
with coordinated robot control using model predictive control with linearized
control barrier functions, supported by an experimental evaluation.
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• The proposal of a method, which was evaluated through experiments, to mod-
ify the null-space compliant behavior of a robot to avoid collisions without
altering the main robot task, in a stable manner, using safety control barrier
functions.
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2
Background

The most relevant concepts for this thesis in the fields of robotics and automatic
control have been summarized in this chapter.

2.1 Robot Manipulators

Stationary robot manipulators have immobile bases and limited workspaces, as op-
posed to mobile robots that are able to modify their entire position with respect to
a world frame [Corke, 2013]. Robot manipulators are defined by two key elements:
joints and links. Joints, which can be rotational or translational, are the actuated
elements of the robot, i.e., their degrees of freedom (DOFs); whereas links are the
unactuated elements of the robot that connect the joints.

Moreover, there are several types of robot manipulators such as serial-link,
parallel-link, Selective Compliance Assembly Robot Arms (SCARA), gantry
robots, and humanoids. In this thesis, the focus is on serial-link robot manipu-
lators, which are composed of a chain of rigid links and rotational joints, and where
one end of the chain is fixed to a static base and the other end is free to move and
has an end-effector attached.

Robot Kinematics
Robot kinematics study the geometric relationship between the position of the joints
of a robot manipulator, and the pose (i.e., position and orientation) of its end-
effector, without considering the masses or the forces and torques acting on it,

ξ = K (q) (2.1)

where ξ ∈ Rm represents the m coordinates of the robot end-effector pose in oper-
ational space [Khatib, 1987], and q ∈ Rn represents the n coordinates of the joint
space of the robot. Cartesian space coordinates have been used to represent the
operational space of the robot throughout this thesis, although different operational
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Chapter 2. Background

space coordinates could be chosen depending on the particular robot tasks to be per-
formed. Additionally, the manipulator Jacobian J(q)∈Rm×n relates the end-effector
velocity ξ̇ to the joint angular velocity q̇ by the differential kinematics

ξ̇ = J(q)q̇ (2.2)

with

J(q) =
∂K (q)

∂q
(2.3)

Robot Dynamics
Robot dynamics study the motion of robots considering the forces and torques that
cause it [Lynch and Park, 2017]. The rigid-body dynamics of robot manipulators
can be described, in the joint space of the robot, q ∈ Rn, [Bejczy, 1974]

M(q)q̈+C(q, q̇)q̇+G(q) = τ + τ
ext (2.4)

where M(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n describes the Coriolis
and centripetal forces effects, and G(q) ∈ Rn captures the gravity-induced torques.
Finally, τ ∈ Rn represents the joints input torques, and τext ∈ Rn are the external
torques.

Moreover, since the main robot task is usually represented in terms of its end-
effector pose ξ , it might be relevant to express the rigid-body dynamics description
of the robot in these coordinates,

Mξ (q)ξ̈ +Cξ (q, q̇)ξ̇ +Gξ (q) = F +Fext (2.5)

where F ∈ Rm is the input force, and, for a fully-actuated nonredundant robot
(n = m), Mξ ∈ Rm×m, Cξ ∈ Rm×m, and Gξ ∈ Rm are equal to

Mξ = J−T(q)M(q)J−1(q) (2.6)

Cξ = J−T(q)(C(q, q̇)−M(q)J−1(q)J̇(q))J−1(q) (2.7)

Gξ = J−T(q)G(q) (2.8)

assuming that the Jacobian relative to the base frame of the robot, J(q) ∈ Rm×m, to
have full rank [Khatib, 1987]; see [Chiaverini et al., 1994] for a review of Jacobian
inversion techniques in the neighborhood of singular joint configurations.

Furthermore, two relevant properties of the robot dynamics should be high-
lighted, since they were relevant for some of the controllers synthesized in the pa-
pers included in this thesis (Papers III–VI). First, the inertia matrix is a positive
definite matrix,

xTMx > 0, ∀x ̸= 0 (2.9)

Second, the matrix Ṁ−2C is skew-symmetric,

xT
(

Ṁ−2C
)

x = 0, ∀x ̸= 0 (2.10)
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2.1 Robot Manipulators

It is noted that, even though (contrary to joint coordinates) a Cartesian representa-
tion does not necessarily have the properties of canonical coordinates, it was shown
in [Ott, 2008, Ch. 3] that these two properties are valid both in joint space and in
Cartesian space.

Joint Redundancy
A robot manipulator is kinematically redundant if it has a greater number n of joints
than the m coordinates used to define its main task, which are usually the Cartesian
coordinates that represent its end-effector pose ξ . Joint redundancy has been used
in this thesis (Papers I and V) to perform additional robot tasks complementary to
the main robot task to augment the collaborative abilities of the robot.

For redundant manipulators, a possible solution for the inverse of the kinematic
relationship presented in Eq. (2.2) is [Corke, 2013]

q̇ = J†
W (q)ξ̇ +P(q)q̇0 (2.11)

where q̇0 ∈ Rn is an arbitrary vector in the joint space of the robot, P(q) ∈ Rn×n is
a matrix that projects q̇0 into the null-space of the main task,

P(q) = In− J†
W (q)J(q) (2.12)

with In ∈ Rn×n representing an identity matrix, and J†
W (q) being the weighted gen-

eralized inverse

J†
W (q) =W−1(q)JT(q)(J(q)W−1(q)JT(q))−1 (2.13)

with W ∈ Rn×n being a symmetric positive definite matrix, W ∈ Sn
++.

Moreover, a kinematic relationship analogous to Eq. (2.2) but for the null-space
of the main task was proposed by [Park, 2000] by defining null-space velocities, vN ,

vN = JN(q)q̇ (2.14)

with a null-space Jacobian JN(q) ∈ Rr×n,

JN(q) = (ZWZT)−1ZW (2.15)

where Z(q) ∈ Rr×n is composed by linearly independent vectors in the null-space
of the main task, J(q)ZT(q) = 0, with r = n−m being the degrees of redundancy,
and where the velocity in the null-space of the main task can be rewritten as [Park,
2000]

q̇NS = P(q)q̇0 = ZT(q)vN (2.16)

Furthermore, for a kinematically redundant robot, the input torques in Eq. (2.4)
can also be decoupled into the torques involved in the Cartesian space, τξ , and the
torques in the null-space of the Cartesian space, τns,

τ = τξ + τns (2.17)
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where

τξ = JT(q)Fξ (2.18)

τns = JT
N(q)FN (2.19)

with Fξ being the forces that are involved in the robot’s main task and FN being
the forces acting in the null-space of the main task. Then, it has been shown in
[Khatib, 1995] that if the inertia matrix M of Eq. (2.4) is chosen as the weighting
matrix W of the generalized inverse in Eq. (2.13), W = M, the null-space torque,
τns in Eq. (2.17), would not cause an acceleration in the Cartesian coordinates of
the robot end-effector ξ . Therefore, the dynamics of each space can be considered
separately,

Mξ (q)ξ̈ +Cξ (q, q̇)ξ̇ +Gξ (q) = Fξ +Fext
ξ

(2.20)

MN(q)v̇N +CN(q, q̇)vN +GN(q) = FN +Fext
N (2.21)

However, to obtain fully decoupled dynamics as in Eqs. (2.20) and (2.21), a power-
preserving feedback compensation on the centrifugal and Coriolis cross-terms
should be included [Ott et al., 2008].

Additional Robot Hardware: Sensing and Actuation
Links and joints are not the only components of robot manipulators. Electric motors
are often used for the actuation of rotational joints (alternatively, pneumatic or hy-
draulic cylinders would be used for translational joints), and a transmission mechan-
ically connects these two components. Also, this transmission is used to amplify
the torque transferred to the joints at the expense of reducing the angular velocity
[Lynch and Park, 2017], and incorporates additional rotational parts that contribute
to detrimental frictional effects that were discussed in Paper I. Moreover, brakes
can be used to stop the robot fast, usually in combination with a prior active braking
from the motors, or to keep a stationary posture. Additionally, the end-effector of a
robot could be chosen depending on the requirements of the task performed by the
robot and range in complexity, although task-specific end-effectors might reduce
the versatility of a robot manipulator. Examples of possible robot end-effectors are
2-finger grippers, suction cups, or fully-actuated robot hands, but also more dedi-
cated tools, such as welding guns or drills. Additionally, tool changers [Voellmer,
1991] could be used to allow interchanging different end-effectors for a single robot.

Furthermore, a number of sensors are often embedded in a robot manipulator
and provide useful data regarding the state of the robot (called proprioceptive sen-
sors, as opposed to exteroceptive sensors that provide data related to the surround-
ings of the robot [Christensen and Hager, 2008]). First, encoders, potentiometers, or
resolvers are utilized to measure the joint angular displacement. Second, to measure
forces and torques, either torque sensors are placed at each joint or wrist-mounted
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(i.e., placed between the last robot joint and the robot end-effector) six-axis force-
torque sensors can be used. Strain gauges are often used inside these two compo-
nents. Also, other equipment can be mounted on the robot, such as cameras (both
able to record color and depth), as shown in the application scenario of Paper IV, or
capacitive proximity sensors [Ergun et al., 2021]. However, maximizing the use of
sensors that are conventionally embedded in robots for proprioception allows to in-
crease the adaptability of collaborative robots by reducing the need for task-specific
work setups, as discussed in Paper II.

Collaborative Robots
Collaborative robots, also known as cobots, are robots that have been designed to
share their workspace with humans [Colgate et al., 1996; El Zaatari et al., 2019], as
mentioned in Ch. 1. Before collaborative robots were introduced in industrial set-
tings, robots were placed in cages that separated them from human operators. This
precaution was necessary to prevent any physical injuries to the operators from the
motion of the robots. Nevertheless, safety is still a central concern in industrial ap-
plications where collaborative robots and operators share their workspace. To regu-
late these collaborative workspaces, international standard rules and specifications
have been developed, such as ISO/TS 15066 [ISO, 2016]. This international stan-
dard is focused on safety when using collaborative robots and it was created as an
addition to previous international standards on industrial robots, ISO 10218-1 [ISO,
2011a] and ISO 10218-2 [ISO, 2011b].

2.2 Robot Control

The aim of robot control is for a robotic manipulator to achieve a desired behavior,
which might be focused on either the motion of the robot (motion control) or on the
forces and torques that the robot applies to its environment (force control, discussed
in Sec. 2.3). Additionally, the desired robot behavior might be defined in the robot
joint space, but it is also possible to define it in the Cartesian space of its end-effector
for a higher correspondence with the robot task design. The kinematic expressions
that relate these two spaces were presented in Sec. 2.1.

Moreover, direct actuation of the motors that drive the joints of commercial col-
laborative robots is usually not possible from a robot operator standpoint. Instead, a
robot operator might design a controller that inputs position references qr, velocity
references q̇r (as in Paper I), and/or torque references τr (as in Papers I–VI) through
a robot control interface designed by the manufacturer of the robot. Then, the er-
ror signals (eq, eq̇, and eτ ) resulting from comparing these inputs to the position q,
velocity q̇, and/or torque τ feedback data obtained from the robot sensors [Åström
and Murray, 2021], would be handled by an internal robot controller to determine,
for example, the electrical current, i, commanded to each joint motor that would
achieve a torque τ at its driven joint. A schematic view of a possible joint internal
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controller is provided in Fig. 2.1 (see [Johansson et al., 2014] or [Chung et al., 2008]
for similar proposals for robot internal joint controllers). It should be noted that the
block Joint of Fig. 2.1 represents the dynamics behavior of the joint as expressed
in Eq. (2.4), but joint acceleration q̈ is rarely measured by the robot proprioceptive
sensors. Instead, as commented in Sec. 2.1 and represented in Fig. 2.1, joint position
q is often measured and then differentiated to obtain joint velocity q̇.

Position
Controller

qr
+ + Velocity

Controller
+ Torque

Controller

eq eq̇ eτ i Joint
Motor

τ
Joint

d
dt

q
q̇

q̇r

τr

-1 -1 -1

Figure 2.1 Schematic view of a possible robot joint internal controller.

Furthermore, robots are physical systems with continuous-time input and output
signals, whereas robot controllers are implemented using digital systems, which
work at discrete-time instants; see [Åström and Wittenmark, 2013] for an extensive
explanation of the implications regarding the communication between these two
entities.

Optimization-Based Control
Optimization-based control can be used to determine the input u commanded to a
robot, with state x and dynamics described by ẋ = f (x,u), by minimizing a cost
function

J(x,u) =
∫ T

0
L(x,u)dt +V (x(T )) (2.22)

where
∫ T

0 L(x,u)dt is called integral cost and V (x(T )) is the terminal cost [Murray,
2023], with T being the time horizon of the control problem.

In optimization-based control, equality and inequality constraints are often use-
ful to define the optimization problem. First, equality constraints (2.24) allow to ad-
here the robot to its model ẋ = f (x,u) and to define initial and final conditions. Sec-
ond, inequality constraints (2.25) allow to set up bounds on the robot input and/or
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states. An overview of the optimization-based control problem is

minimize
u(·)

J(x,u) =
∫ T

0
L(x,u)dt +V (x(T )) (2.23)

s.t. g1(x,u) = 0 (2.24)
g2(x,u)≤ 0 (2.25)

Moreover, a distinction can be made between infinite horizon optimal control
problems (T = +∞) and finite horizon optimal control problems (T < +∞), the
latter being more common in robotic manipulators, since usually robots are required
to complete a task with defined time requirements rather than to reach a stationary,
or time-invariant, robot state. Additionally, the optimal control signal u could be
computed at time k over a finite time horizon T , used for a short period of time
δ < T , and then recomputed at time k+δ , in a receding horizon fashion, which is
called Model Predictive Control (MPC) [Garcia et al., 1989]. This control strategy
has been used in Papers I and VI of this thesis.

Furthermore, the computational time that a controller would need to numerically
solve the optimal control problem (2.23)–(2.25) would depend on its formulation,
which in its general form is NP-hard [Lewis, 1996]. Then, to be able to compute
an input at every sampling time k, it can be advantageous that the cost function
to be minimized (2.23) is chosen as (convex) quadratic and the constraint functions
(2.24) and (2.25) are affine. By this choice of cost function and constraints, a special
type of optimization problem, called Quadratic Program (QP) [Boyd and Vanden-
berghe, 2004], which can be solved in polynomial time [Kozlov et al., 1979], can
be obtained.

Control Barrier Functions (CBFs)
It is possible to make a robot avoid obstacles in the previously introduced
optimization-based formulation (2.23)–(2.25), e.g., by including an inequality con-
straint in (2.25) that bounds the robot behavior within some safe limits. To this
purpose, Control Barrier Functions (CBFs) have gained popularity in recent years.
To use CBFs, first, a safe set C of robot states x, with boundary ∂C and interior
Int(C ), is defined as [Ames et al., 2019]

C = {x ∈ Rn | h(x)≥ 0} (2.26)
∂C = {x ∈ Rn | h(x) = 0} (2.27)

Int(C ) = {x ∈ Rn | h(x)> 0} (2.28)

Then, the sufficient and necessary forward-invariance condition of the safe set
C , i.e., the condition that, if guaranteed, ensures that the robot states would stay in
C for t ∈ [0,+∞], is [Ames et al., 2019]

sup
u∈U

[L f h(x)+Lgh(x)u]≥−κ(h(x)) (2.29)
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for all x ∈ D , h being the barrier function, h : D −→ R with C ⊆ D ⊂ Rn,
κ an extended class-K∞ function (strictly monotonically increasing), and
L f h(x) = (∂h/∂x) f (x) and Lgh(x) = (∂h/∂x)g(x), with robot dynamics described
by ẋ = f (x)+g(x)u. Therefore, collision avoidance can be achieved using CBFs by
including the forward-invariance condition (2.29) of the safe set C (2.26) as an in-
equality constraint in (2.25). This strategy for robot safety was used in Papers IV–VI
of this thesis.

Moreover, alternative methods such as Artificial Potential Fields (APFs)
[Khatib, 1985] have been used extensively. This method aims to achieve robot
obstacle avoidance by positioning virtual repulsive fields centered around obsta-
cles. After adequate tuning, APFs might provide similar results to CBFs for certain
scenarios, and a broad class of APFs could even be used to construct CBFs [Sin-
gletary et al., 2021a]. However, compared to CBFs, APFs would not encode the
dynamics behavior of the robot in its formulation, leading to reduced formal safety
guarantees and to possible overcompensation for collision avoidance [Rauscher et
al., 2016], which would be worsen if APFs disregarded the directionality of robot
motion in its formulation. Additionally, for reasons of high-gain feedback, APFs
may induce instability [Johansson et al., 2009], and restrictions to stable cases may
impose serious application restraints. Also, it should be noted that APFs might in-
duce local minima problems that could prevent robot task completion [Koren et al.,
1991]. This issue does not seem to be inherently solved by the CBFs formulation
and these methods would require further considerations in this regard [Stavridis et
al., 2017].

Furthermore, robot obstacle avoidance remains an open problem and might not
be limited to robot behavior-constraining methods that use inequality constraints
as in (2.29). Indeed, equality-constraint based methods such as virtual holonomic
constraints (used for robot stabilization [Shiriaev et al., 2007] and haptic robot in-
terfacing [Ardakani et al., 2018], among other applications), could also be used to
improve robot physical safety. However, the application of virtual holonomic con-
straints in the context of robot collision avoidance might overrestrict the robot mo-
tion depending on the definition of safe paths to be followed by robot manipulators.

Iterative Learning Control
The controllers introduced previously in this chapter were intended to be applied
in an online feedback fashion, i.e., an input signal commanded to the robot was
being computed based on the error between the robot output signal and the reference
signal occurring at the moment of the robot task execution. However, for repetitive
tasks, such as the ones that robotic manipulators often perform, this reference error
can be reduced for the entire robot task by learning an improved input signal from
previous trials, or iterations, as was done in Paper III of this thesis. This is shown
in Fig. 2.2, where the entire input sequence for iteration j + 1 is calculated based
on the entire input and output sequences (U j and Yj, respectively) of the previous
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iteration, j.

U j Yj
Robot

Y r+
Learning

U j+1

E j

-1

Figure 2.2 Schematic view of an iterative learning robot control loop.

Moreover, a common update law for robot controller iterative learning is

U j+1 = Q
(
U j +LE j

)
(2.30)

where L is the learning filter, and Q is often chosen as a low-pass filter for robustness
purposes [Arimoto et al., 1984]. Note that these filters may use forward-looking
anticipative learning action, since the entire input and error sequences of iteration
j (U j and E j, respectively) are available at the time of the computation of U j+1. A
general framework for the convergence analysis of these learning algorithms was
provided in [Norrlöf and Gunnarsson, 2002].

2.3 Robot Interaction with its Environment

Robot tasks could be classified in terms of the need for interaction between the
robot and its environment. On the one side, free motion tasks [Villani and De Schut-
ter, 2008] do not imply a physical interaction of the robot with its surroundings.
These robot tasks require the displacement of the robot end-effector from an ini-
tial pose to a number of target poses, and often include a notion of time associated
with the completion of a robot task. Examples of these tasks in industrial settings
are spray painting [Egeland, 1987], visual inspection/quality control [Zhu et al.,
2021], or pick-and-place operations [Lozano-Pérez et al., 1989]. On the other side,
contact-rich tasks intrinsically consider a physical interaction between the robot
and its environment for the completion of the task, which increases their complex-
ity. Assembly tasks (e.g., peg-in-hole insertion [Abu-Dakka et al., 2014] or snap-fit
assembly [Stolt et al., 2011]) or machining tasks (e.g., drilling [Olsson et al., 2010],
milling [Sörnmo et al., 2012; Schneider et al., 2014], deburring [Robertsson et al.,
2006], or friction stir welding [Karlsson et al., 2023]) are examples of robot contact-
rich tasks.

However, examining only interaction scenarios that require physical contact be-
tween the robot and its environment to complete a robot task would limit the appli-
cability of robot manipulators, especially taking into consideration the latest trends
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of industrial manufacturing introduced in Ch. 1 that aim at allowing robot operation
in less structured layouts. Indeed, accidental contacts, or collisions, between a robot
manipulator and its environment might occur during nominal robot operation, and
therefore, should also be taken into consideration when programming robot tasks.

Moreover, the involvement of human operators during robot tasks should not
be disregarded. Human–robot interaction can be included in the previously intro-
duced robot task classification: some contact-rich robot tasks would be expected to
involve a physical cooperation between a robot manipulator and a human operator,
i.e., the robot and the operator work toward the same goal by physically interact-
ing. Nevertheless, human–robot cooperation might not imply physical human–robot
interaction (pHRI), e.g., a cooperative assembly task that is divided in subtasks per-
formed either by a robot or by an operator would not necessarily involve pHRI, as
discussed in Paper V [Salt Ducaju et al., 2023], whereas a cooperative pick-and-
place task of a workpiece where a robot and an operator grasp different ends of this
workpiece would involve pHRI [Caliskan et al., 2022].

Furthermore, this may not be the only situation in pHRI, and antagonist relation-
ships between robot and the operator might occur instead, where the robot-operator
contact (already taking place or about to take place in the near future) is not desired
from the current robot task-completion standpoint. It should be mentioned that, in
this perspective, an antagonistic relationship might be caused by an accidental col-
lision, but might also serve the role of robot trajectory definition or modification by
means of human guidance, e.g., using kinesthetic teaching [Schou et al., 2013].

Robot Control Strategies for Physical Interaction
As introduced in Sec. 2.1, force control is used to handle physical interaction be-
tween the robot and its surroundings. In the literature, robot force controllers are
often classified based on whether the behavior of the robot with respect to its ex-
ternal forces is regulated by the robot hardware [González Rodríguez et al., 2009]
(called passive force control) or its software (called active force control) [Villani
and De Schutter, 2008].

Most industrial robot manipulators that perform force control use active force
controllers, since they offer a more versatile implementation compared to passive
force controllers, which are often designed for a particular task. Within active force
controllers, a further categorization can be made into direct force control and indi-
rect force control [Villani and De Schutter, 2008]:

• Direct force control: Direct force control implements a force feedback loop
to control the external force applied by the robot. For its effective implemen-
tation, it requires a model of the interaction of the robot environment [Villani
and De Schutter, 2016].

• Indirect force control: Indirect force control addresses the direct force-control
limitations caused by the difficulty to obtain an accurate description of the
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Robot Force Control
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Direct HybridIndirect
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Figure 2.3 Schematic view of a classification for robot force control strategies.

robot environment. It aims to control the relationship between the robot-
environment interaction forces and the robot motion. Widely used implemen-
tations of indirect force control include impedance control and admittance
control [Hogan, 1985]. A mass-spring-damper relationship between the mo-
tion deviation from a reference and the interaction force is established in both
of these implementations. In robotics, the difference between them is that in
impedance control (used in Papers II–VI), the robot applies a force to its envi-
ronment (response) because of a motion deviation (input), whereas in admit-
tance control (used in Paper I), a force applied to the robot by its environment
(input) causes a motion deviation (response).

• Hybrid force/motion control: Hybrid force/motion control implements force
control along the desired directions of the robot task frame and implements
motion control along the remaining directions [Raibert and Craig, 1981].

A schematic view of the different robot control strategies discussed for physical
interaction with its environment is shown in Fig. 2.3.

Moreover, the aforementioned capacity of indirect force controllers to be de-
ployed into partially-unknown robot environments makes this type of force con-
trollers attractive for pHRI scenarios. Also, force controllers can be formulated
in a Cartesian frame of reference that often corresponds to the robot task being
performed, which eases the robot task planning for tasks involving pHRI. Thus, a
Cartesian impedance controller formulation (used in Papers II–VI) [Hogan, 1985]

29



Chapter 2. Background

[Ott, 2008, Ch. 3] would allow to define the robot desired trajectory by choosing
appropriate Cartesian reference poses for its end-effector, ξd(t):

F = K∆ξ +D∆ξ̇ +Gξ (q) (2.31)

with F being the input force commanded to the robot (2.5), the Cartesian pose and
velocity variations from their reference being ∆ξ = ξd−ξ and ∆ξ̇ = ξ̇d− ξ̇ , respec-
tively, and where Gξ (q) handles gravity compensation. Also, K ∈ Sm

++ and D∈ Sm
++

are diagonal matrices that represent the control-induced, i.e., virtual, stiffness and
damping, respectively. As mentioned earlier, an impedance controller input would
shape the rigid-body dynamics of the robot as a mass-spring-damper system:

Fext = Mξ (q)ξ̈ +Cξ (q, q̇)ξ̇ −D∆ξ̇ −K∆ξ (2.32)

Furthermore, the Cartesian space is not the only frame of reference that these
indirect force control methods can be formulated in. Indeed, for redundant manipu-
lators (see Sec. 2.1), it might be advantageous to formulate an impedance controller
in the null-space of the Cartesian, or task, frame (2.21) (used in Paper V) [Ott et al.,
2008]. A null-space component of the commanded input force equal to

FN = knZ(q)∆q−dnvN (2.33)

would achieve an impedance behavior in the null-space of the Cartesian space:

Fext
N = MN(q)v̇N +(dn +CN(q, q̇))vN− knZ(q)∆q (2.34)

with Fext
N being the external forces acting on the null-space of the Cartesian frame,

kn being a virtual spring stiffness term with respect to the joint position variation
from its reference, ∆q = qd − q, and dn being a virtual damping term for the null-
space velocities, vN (2.14).

Finally, it is important that robot force-control methods are designed so that
robot end-effector overshoots are minimized in contact operations, as studied in the
rendezvous problem [Book et al., 1985], which considers the relative robot position
and velocity with respect to the manipulated object at the time of collision when
establishing contacts.
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3
Physical Human–Robot
Interaction (pHRI)

As introduced in Ch. 1, in previous decades, industrial manufacturing environments
were designed for mass production of identical products, which hinders their capac-
ity to adapt to the increasingly changing requirements from industrial production
tasks. To address these adaptation issues, a new generation of industrial manufac-
turing environments should be designed. Collaborative industrial scenarios are a
promising strategy to progress toward this goal. In these collaborative scenarios,
human operators and robot manipulators share a common workspace and are al-
lowed to physically interact among themselves to benefit from the aforementioned
inherent intelligence and dexterity of humans.

Nevertheless, transitioning from a situation where robots in industrial environ-
ments were isolated in safety cells to one where robot manipulators occupy the
same workspace as their human counterparts, introduces its own set of challenges.
The goal of this chapter is to provide an overview of the most relevant challenges
regarding pHRI in industrial environments from a robot-control perspective. Addi-
tionally, it is detailed in this chapter how the contributions presented in this thesis
can improve the use of pHRI in industrial environments, including a comparison
between the research presented in this thesis and previously proposed solutions.

3.1 Uncertainty in pHRI

From a robot-control perspective, the challenges presented by pHRI, and in general
with less-structured industrial work environments with robots, are caused by the in-
crease of uncertainty in different elements involved in robot tasks. A categorization
of these uncertainties with respect to their relationship with robots is presented in
this section. Additionally, this section includes a description of the limitations, in
the context of pHRI, presented by solutions that have been proposed in literature to
address these uncertainties.
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Uncertainties in the Robot Dynamics
An incomplete knowledge of the robot behavior would lead to uncertainty regarding
the relationship between the input commanded to the robot, and both the position of
each of the different components of the robot manipulator and the force interaction
by the robot with its surroundings. It should be noted that uncertainties in the robot
dynamics are not exclusively found in pHRI and have been extensively addressed
in the past, because of their long-standing presence in robot industrial scenarios.
Therefore, this section provides an overview of uncertainties in the robot dynamics
with a focus on the issues that manifest in pHRI.

Unmodeled Robot Dynamics
The robot dynamics description presented in Eq. (2.4),

M(q)q̈+C(q, q̇)q̇+G(q) = τ + τ
ext (3.1)

implies the availability of accurate and complete sensor data regarding the angular
position and velocity of the robot joints, and regarding the external force applied
to the robot by the environment to be able to map the torque input commanded to
the robot to the motion of the robot. Also, this expression assumes a correct map-
ping of the angular position and velocity of the robot joints to the inertia, Coriolis,
centripetal and gravitational forces that the robot would experience throughout its
motion.

Additionally, several physical phenomena were omitted in Eq. (3.1) for the sake
of simplicity, such as joint friction. Joint friction has extensively been studied, and
several friction models have been formulated, e.g., the Dahl model [Dahl, 1968], the
Armstrong model [Armstrong-Hélouvry et al., 1994], or the LuGre model [Canudas
de Wit et al., 1995]. In robotics, friction models have been used to compensate joint
friction effects [Freidovich et al., 2009; Shiriaev et al., 2003] so that a torque input
τ ′ ∈ Rn,

τ
′ = τ + τf (3.2)

where τf ∈ Rn is the input torque commanded to the robot to compensate its joint
friction, can be implemented to achieve the robot dynamics behavior in Eq. (3.1).

Compensating the modeled joint friction is a strategy used to deal with most
of friction-related effects, since joint friction modeling can effectively create a map
between joint friction and the velocity, load, and temperature of the robot joints.
However, as shown in Fig. 3.1, in the vicinity of zero-crossings of the joint veloc-
ity, the magnitude of joint friction would not be repeatable, in the sense that under
the same measurable conditions, the magnitude of joint friction might change. This
phenomenon is known as joint static friction, or stiction [Haug et al., 1986] and it
is caused by the interactions between the asperities of the surfaces (such as gears,
bearings, and shafts) in contact inside the joints of robot manipulators [Bittencourt
and Gunnarsson, 2012; Bagge Carlson et al., 2015]. A common strategy to mitigate
joint static friction is the use of a high-frequency oscillatory signal as torque feed-
forward, which is known as dithering [Ipri and Asada, 1995]. Nevertheless, a high
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amplitude of the feedforward torque signal used in the dithering method may cause
structural vibrations in the robot. In the context of pHRI, the manual guidance of a
vibrating robot could cause, at least, discomfort in the guiding human operator and
reduce the effectiveness of the manual guidance, hence the appeal for an alternative
approach to mitigate joint stiction.

0 q̇

τfriction

Figure 3.1 Simplified plot of the relationship between joint friction torque, τfriction,
and joint angular velocity, q̇.

Control-Induced Uncertainties

Indirect force controllers used in robot tasks where pHRI is often present, such
as the Cartesian impedance controller formulation discussed in Sec. 2.3, would al-
low the end-effector pose of the robot to reach a user-defined Cartesian reference,
ξd(t), while also allowing the robot to behave as a mass-spring-damper system,
Eq. (2.32), at its end-effector, which is beneficial in an unknown robot-environment
interaction scenario. However, as a trade-off, these force controllers might be re-
sponsible for a series of uncertainties. Contrary to stiffer position controllers, as
presented in Sec. 2.2, impedance controllers would introduce a robot tracking er-
ror with respect to a user-defined reference that might cause a robot task to not be
completed.

Moreover, feedback-control strategies, which have been extensively used to im-
prove robot trajectory tracking, are not catered for these force controllers since their
implementation would increase the robot stiffness when interacting with its sur-
roundings, to the point of being able to cause unforeseeable damages. Also, al-
ternative tracking strategies that involve time-scaling of the trajectory along a de-
sired robot end-effector path [Dahl, 1992; Olofsson and Nielsen, 2017; Dahlin and
Karayiannidis, 2021] would inherently disregard the temporal characteristics of the
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desired robot trajectory and might not ensure the robot task completion for not fully-
modeled robot dynamics.

Therefore, robot trajectory following should be improved in these controllers to
achieve robot task completion, while minimally modifying the possible force ex-
change between the robot and its surroundings. Additionally, obtaining, or learning,
robot controller improvements should not require time-consuming learning pro-
cesses, such as the ones that can be seen when applying reinforcement learning
to robot task-learning [Ibarz et al., 2021], since the new industrial manufacturing
trends that motivate the use of pHRI also require flexibility to adapt to rapidly-
changing industrial settings.

Uncertainty Sources External to the Robot
Collaborative industrial scenarios would also be populated by human operators and
other agents, which might interact with the robot, thus increasing the complexity of
robot control.

Human Behavior

Human operators that share their workspace with robot manipulators might be-
have in different ways with respect to the robot tasks. An overview of the different
HRC scenarios was presented in Sec. 2.3: physical human–robot interaction might
occur or not, and might be voluntary (from the human operator standpoint) or acci-
dental; also, it might be cooperative (from the robot-task design standpoint, e.g., a
collaborative pick-and-place operation [Sadrfaridpour and Wang, 2018]) or antago-
nistic. Depending on the scenario, a proper robot reaction could be to anticipate and
avoid the involuntary contact by using a robot collision-avoidance strategy (if the
collision should be avoided and the available sensor data contain enough informa-
tion to achieve a successful avoidance), or to allow the collision and handle it using
one of the force control strategies discussed in Sec. 2.3.

Moreover, robot collision-avoidance strategies could be used to avoid that hu-
man guidance leads a robot to unsafe situations in the collaborative industrial en-
vironment. Control Barrier Functions (CBFs) [Ames et al., 2019] have been used
for robot collision avoidance in recent years [Landi et al., 2019; Ferraguti et al.,
2020; Rauscher et al., 2016; Singletary et al., 2021b] (a comparison of CBFs with
respect to alternative robot collision-avoidance strategies can be found in Sec. 2.2).
Barrier functions incorporate a model of the robot to minimally modify its behavior
while achieving robot safety, thus addressing the industry interest in not compromis-
ing task efficiency [El Zaatari et al., 2019]. However, the simplified models (both
kinematics and dynamics models) that have been used so far to formulate CBFs
with robot manipulators might lead to safety violations [Singletary et al., 2021b;
Rauscher et al., 2016]. Additionally, CBFs have often been used to command po-
sition or velocity references to the robot, which would disregard the ability of the
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internal controller at the robot joints (see Fig. 2.1) to accurately track such position
or velocity references.

Furthermore, robot joint redundancy, as presented in Sec. 2.1, could be used for
robot collision avoidance without modifying the main (Cartesian) robot task. This
would further decrease the cost, in terms of task-efficiency reduction, of achieving
robot safety. Nevertheless, previous contributions in this regard have used APFs
(see Sec. 2.2) that did not consider the dynamics behavior of the robot [Flacco et
al., 2012; Lin et al., 2016; Liu et al., 2022], which, as mentioned earlier, might lead
to robot safety violations.

Finally, a longer-time prediction of the behaviors of human operators and robots
would allow anticipatory robot control action for collision avoidance, which might
be useful to increase robot safety. For safety purposes, MPC strategies (see Sec. 2.2)
have been combined with the aforementioned barrier functions formulation, so far,
in other types of robotic systems, such as legged robots ([González Rodríguez et
al., 2011]) [Grandia et al., 2021] and ground vehicles [Zeng et al., 2021]. How-
ever, these contributions proposed nonlinear MPC formulations, which cannot en-
sure achieving optimal solutions, and, more critically, have been shown to require
long computational times that would invalidate their use in the context of robot
safety during human–robot collaboration [Mukherjee et al., 2022].

Other Agents in Workspace
It should not be disregarded that additional agents, possibly with time-changing
position and geometry, would also occupy the workspace shared by robot manip-
ulators and human operators. Therefore, one of the main challenges that comes
from the desire in the manufacturing industry to increase its flexibility is having
to deal with partially unknown industrial environments, where humans and robots
can effectively cooperate [Jaberzadeh Ansari and Karayiannidis, 2017], but where
unexpected collisions with the environment may also occur. In such partially un-
known environments, it is necessary to detect in a quick and accurate manner if a
contact has occurred between the robot and its environment, and also to distinguish
if this contact has been caused by voluntary human cooperation or by an accidental
collision with an obstacle to identify the source of robot–environment contact.

External force/torque measurements or estimates [Haddadin et al., 2017] are of-
ten used for this purpose, and there are two main sets of methods, namely analyzing
the frequency response of these signals or using machine learning (ML) [Cioffi et
al., 2020], where the faster detection and classification provided by frequency re-
sponse analysis can be advantageous compared to ML proposals to allow an online
adaptation of the robot behavior. However, methods based on analyzing the fre-
quency response require tuning numerous threshold parameters (e.g., six per robot
joint in [Geravand et al., 2013]), thus reducing the efficiency of these methods, and
are yet to be tested alongside indirect robot force control methods used for pHRI
(see Sec. 2.3) and without the use of sensors that are not embedded in collaborative
robots [Kouris et al., 2016; Kouris et al., 2018].
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Sources of Uncertainty in pHRI

Robot-related External to Robot

Unmodeled
Dynamics

Induced by
Control

Human
Behavior

Other Agents
in Workspace

Figure 3.2 Schematic view of possible sources of uncertainty in pHRI.

Consequences of Uncertainty in pHRI
The aforementioned uncertainties that are present in collaborative scenarios alter
the robot perception of its surroundings, including the robot awareness regarding
the intentions and actions of human collaborators, and hinder the ability to achieve
intuitive robot programming by human operators [Hägele et al., 2016]. Therefore,
these uncertainties have detrimental effects in both the functional safety of all the
agents present in the shared workspace, and in a successful use of human manual
guidance to modify the behavior of a robot. The remaining sections of this chapter
have been dedicated to explaining how the contributions presented in this thesis
have addressed the challenges motivated by these uncertainties, and also to compare
the presented contributions to solutions available in the literature.

3.2 Safety in pHRI

As instructed in the international standards for collaborative robots [ISO, 2016]
introduced in Sec. 2.1, safety related to robot operation (i.e., functional safety [IEC,
2021]), requires to identify and eliminate hazards for the sake of risk reduction in
human–robot collaborative operation. Hazards related to safety in pHRI would be
caused by uncertainties in the relative position and motion of human operators and
robots, and in terms of the force exchange between these two actors and between
the robot manipulator and the rest of their workspace, as discussed in Sec. 3.1.

Methods suggested in [ISO, 2016, Sec. 5.5] to eliminate safety hazards could be
summarized in two strategies, as shown in Fig. 3.3. The first strategy would be some
form of obstacle avoidance, which could range from a complete stop of the robot
before the operator enters the collaborative workspace, to maintaining at all times a
protective separation distance between robot and operator (including, or not, speed
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monitoring based on this distance). Second, the other strategy would be to assume
that in the case of physical contact between robot and operator, the power and force
exchange should be limited. These limits on the force exchange would also depend
on the human body part involved, the head being the most sensitive part of operators
bodies [ISO, 2016, Annex A.2].

Furthermore, within the force/power-limitation strategy, a categorization be-
tween active and passive safety-design methods, analogous to the one found for
robot force controllers in Sec. 2.3 can be found in the international standards on col-
laborative robots [ISO, 2016, Sec. 5.5.5.4]. Indeed, the force controllers presented
in Sec. 2.3 would fall into their corresponding category. Additionally, [ISO, 2016,
Sec. 5.5.5.4] covers other non-functional aspects such as design strategies currently
used in the production of collaborative robots [Franka Emika, 2019; Bischoff et al.,
2010] as passive safety methods (e.g., rounded edges and corners, smooth surfaces,
padding and cushioning), or software (computed-controlled) limitations of robot
characteristics (e.g., forces, torques, and velocities) as active safety methods.

Functional Safety in ISO/TS 15066

Obstacle Avoidance Power and Force Limiting

Design StrategiesSpeed and Separation
Monitoring

Monitored
Stop

Software Limitations (Active) Passive

Robot Force
Control

(see Fig. 2.3)

Figure 3.3 Schematic view of strategies for functional safety proposed in the in-
ternational standards for collaborative robots [ISO, 2016].

As mentioned in [ISO, 2016, Sec. 5.5], the two strategies for eliminating func-
tional safety hazards (obstacle avoidance and force/power limitation) can be com-
bined. A proposal that would achieve this desirable combination from a robot con-
trol perspective could be to modulate the impedance behavior of a robot depending
on a particular need for obstacle avoidance, e.g., using CBFs (see Ch. 2.2), as pre-
sented in Paper IV [Salt Ducaju et al., 2022b] (included in the Licentiate Thesis
by the author [Salt Ducaju, 2023]), and then further developed in Papers V and VI
[Salt Ducaju et al., 2023; Salt Ducaju et al., 2024b]. This proposal would allow
pHRI, including manual guidance of a robot operator, while establishing prohibited
robot behaviors, i.e., scenarios where a safety hazard would need to be addressed
by a robot collision-avoidance strategy, such as speed or separation monitoring.
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A suitable indirect force-control implementation should be able to ensure safe
robot operation for most of the collisions (i.e., involuntary contacts) with operators.
However, it is known that further protection should be considered for the opera-
tors heads [ISO, 2016, Annex A.2], thus the appeal of impedance control imple-
mentations that incorporate certain obstacle-avoidance strategies, as presented in
Paper V [Salt Ducaju et al., 2023]. Additionally, most of the international standards
on robot safety focus on the health of human operators. However, a truly flexible
workspace would also protect other actors (e.g., other equipment) present in the
robot workspace that might take the role of obstacles during pHRI, and would also
avoid that this other equipment could harm robots (which might also be a limita-
tion of the current international standards that advise against the presence of ob-
jects with sharp, pointed, or cutting edges in the collaborative environment [ISO,
2016, Subclause 5.5.5.3]). Therefore, to maximize the capabilities of collaborative
environments, robot impedance modulation should allow these scenarios, but di-
rectly translate into an arduous manual guidance of the robot that would first dis-
courage, and then disallow, a collision with any of these obstacles, as proposed in
Papers IV and VI [Salt Ducaju et al., 2022b; Salt Ducaju et al., 2024b].

As a common trait of these collaborative scenarios, the capacity of the func-
tional safety strategies to address possible hazards would rely on the knowledge of
the scenario and the capacity to react to changes in it. First, in Paper IV [Salt Ducaju
et al., 2022b], CBFs (see Sec. 2.2) were used for a minimal variation of the nominal
Cartesian impedance behavior of a robot in a collaborative scenario to avoid human
guidance of this robot toward an unsafe situation. A model of rigid-body dynamics
was used to achieve a more accurate description of the robot behavior than in previ-
ous contributions [Landi et al., 2019; Ferraguti et al., 2020; Rauscher et al., 2016;
Singletary et al., 2021b], thus increasing robot safety guarantees. Not only was the
model used to describe the robot behavior more accurately, but also, global stability
guarantees, valid for passive environments [Lozano et al., 2013, Ch. 7], and novel
in the context of modifying the behavior of robotic manipulators using CBFs, were
provided.

Nevertheless, these functional safety strategies would modify the main (Carte-
sian) robot task. However, as mentioned in Sec. 2.1, a redundant robot would be
allowed to perform additional subtasks, such as collision avoidance, without modi-
fying its main task, by executing these subtasks in the null-space of the main task.
Compared to previous contributions found in literature [Flacco et al., 2012; Lin
et al., 2016; Liu et al., 2022], the novel use of CBFs presented in Paper V [Salt
Ducaju et al., 2023] allowed to improve safety in collaborative scenarios by con-
sidering robot dynamics to control the null-space motion of the robot. In Paper V
[Salt Ducaju et al., 2023], the null-space impedance behavior of Eq. (2.34) of the
robot was modulated (using CBFs), which had the additional benefit of allowing
the execution of other robot subtasks beneficial to HRC, such as improving the joint
range available [Egeland et al., 1988] for manual guidance of the robot, in a single
shared null-space DOF of the main robot task. Also, analogous to the formulation
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in Paper IV [Salt Ducaju et al., 2022b], novel stability guarantees were provided
for null-space impedance modulation. Moreover, it must be noted that the scenar-
ios where null-space impedance modulation would improve functional safety, often
would not achieve obstacle avoidance with respect to the robot end-effector, but
only with respect to the rest of the body of the robot, as discussed in Paper V [Salt
Ducaju et al., 2023]. However, null-space modulation could be combined with the
previously presented Cartesian impedance formulation in Paper IV [Salt Ducaju et
al., 2022b] to achieve more complete safety characteristics together with minimal
perturbation of the robot main task that would avoid unnecessarily compromising
robot task execution.

Furthermore, another shortcoming of the aforementioned robot collision-
avoidance strategies [Landi et al., 2019; Ferraguti et al., 2020; Rauscher et al.,
2016; Singletary et al., 2021b], which is also present in the contributions found
in Paper IV [Salt Ducaju et al., 2022b] and Paper V [Salt Ducaju et al., 2023]
is the lack of a longer time prediction of the robot behavior to anticipate possi-
ble undesired collisions and further decrease risks in human–robot collaboration.
Paper VI [Salt Ducaju et al., 2024b] addressed this by using MPC (see Sec. 2.2)
to include a longer time-frame prediction of both the behavior of the robot and of
the human operator guiding it. Additionally, as an advantage compared to previous
contributions [Grandia et al., 2021; Zeng et al., 2021] that also combined MPC with
barrier functions for robot collision avoidance, the formulation in Paper VI could
guarantee optimality in its computed solutions and allowed a fast computation of
the MPC optimization problem, thus being able to ensure a fast robot reaction to
changes in the collaborative environment.

3.3 Physical Human–Robot Collaboration (pHRC) for
Kinesthetic Teaching

As discussed in Ch. 1, during kinesthetic teaching, which is also known as Pro-
gramming by Demonstration (PbD) [Billard et al., 2008], a human operator man-
ually guides a robot manipulator to define or modify its trajectory. This robot pro-
gramming strategy aspires to reduce the need for specialized human operators (i.e.,
operators with technical knowledge in robotics) in industrial environments, who
would be complemented by unspecialized operators, by capitalizing skills inherent
to human operators of any level of technical knowledge, such as their intelligence,
dexterity, and responsiveness. The relevance of kinesthetic teaching becomes appar-
ent when addressing the rapidly-changing modern industrial environments and their
need for flexibility. Also, kinesthetic teaching is the quickest method for capturing
a human demonstration and is often preferred by users to similar strategies, such as
teleoperation [Fischer et al., 2016].

However, before the widespread adoption of kinesthetic teaching in industrial
scenarios, it is necessary to first address current technical limitations on the use
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of physical Human–Robot Collaboration (pHRC) from a robot control standpoint,
some of which emerge from the uncertainties described in Sec. 3.1. Not only do
these uncertainties have an effect on the functional safety of robot manipulators (and
the other actors in their shared workspace), as discussed in Sec. 3.2, but they also
have an influence on different aspects that condition the implementation success of
kinesthetic teaching.

Figure 3.4 A human–robot collaborative scenario where an operator was guiding
a Franka Emika Panda robot mounted on a table (figure included in Paper VI [Salt
Ducaju et al., 2024b]).

Facilitating Manual Guidance for Kinesthetic Teaching
A human operator whose role is to define or modify a robot trajectory via kinesthetic
teaching, i.e., by manually guiding the robot manipulator, has to be comfortable
with the physical interaction with the robot [Hägele et al., 2016]. Contributions
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to improve operator ergonomics [Busch et al., 2017] and to reduce muscle fatigue
[Peternel et al., 2016] have been proposed in this regard. However, not repeatable
robot dynamics phenomena might also hinder manual robot guidance since they
cannot be learnt and/or compensated, thus varying the necessary force that operators
should exert to the robot in each interaction.

As described in Ch 3.1 and shown in Fig. 3.1, joint stiction, is not a repeatable
component of joint friction that manifests in the proximity of zero joint-velocities,
which might be mitigated at the risk of causing structural vibrations in the robot
(see dithering [Stolt et al., 2011]). In addition, the problem of stiction becomes
apparent for collaborative robots, since their often redundant joint configuration
(i.e., collaborative robots are often equipped with more than 6 rotational joints),
designed to achieve a greater robot dexterity [Crowe, 2022], also causes that, if the
robot is not at a singular joint configuration, not all of the robot DOFs need to be
used during a robot Cartesian trajectory execution.

Therefore, to avoid the possible structural vibrations that might appear if dither-
ing [Stolt et al., 2011] were used to reduce joint friction-torque dispersion, an al-
ternative method for redundant collaborative robots was proposed in Paper I [Salt
Ducaju et al., 2021] to facilitate the teaching process. The method proposed ex-
ploited joint redundancy and consisted in adding joint motion in the null-space of
the task frame, i.e., a linear combination of joint angular velocities that causes no
change in the velocity of the end-effector of the robot [Sadeghian et al., 2013], to
ensure that no joint remains still during the trajectory execution, thus suppressing
stiction.

Moreover, in the formulation presented in Paper I [Salt Ducaju et al., 2021],
null-space joint velocity references were added to a velocity-based robot controller
(see Fig. 2.1) that used MPC for trajectory tracking. Then, it was suggested in
Paper I that pHRI could be used by implementing a dual-mode robot controller
that would allow to switch between a trajectory-tracking mode and an admittance
(see Sec. 2.3) mode. Nevertheless, applying the joint-stiction suppression proposal
in Paper I would not be limited to this robot control architecture, and it might be
used together with any other strategy that controls robot motion in its task frame,
such as Cartesian impedance control.

Distinguishing Kinesthetic Teaching from other Physical
Interaction Sources
As mentioned in Sec. 3.1, in modern industrial environments, robot manipulators
should be able to share their workspace with human operators and with other actors,
such as equipment and tools. These other actors present in the robot workspace
might obstruct the motion of the robot and cause an involuntary collision with the
robot, thus taking the role of obstacles from the robot task perspective. Then, to
benefit from human operator guidance, it is necessary to detect fast if the robot
is experiencing a contact with respect to its environment, and to distinguish the
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source of this contact, which could be an involuntary collision with an obstacle or a
voluntary human guidance event.

Two are the main uses of fast contact detection and classification in the con-
text of kinesthetic teaching: First, if human guidance occurred during the robot tra-
jectory execution, physical interaction of the robot with its surroundings might be
modified online to ease human guidance. Second, after a robot trajectory execution,
a contact event accurately classified as human guidance can be used for trajectory
correction, whereas possible accidental collisions could be, if determined as persis-
tent, avoided in future trajectory executions.

In Paper II [Salt Ducaju et al., 2022a], a contact detection and classification
strategy compatible with a force controller that allows safe physical interaction be-
tween the robot and its surroundings (see Sec. 2.3) was proposed. The method pro-
posed in Paper II included necessary modifications and extensions to overcome the
limitations observed in previous frequency-based proposals [Kouris et al., 2016;
Kouris et al., 2018] to quickly detect and classify contacts in any direction for a
collaborative assembly task relying only on embedded sensors of an impedance-
controlled robot. Advantageously, removing the need for additional sensors to de-
tect and classify robot collisions would reduce the total hardware costs that would
be derived from purchasing extra components in a robot setup [Hägele et al., 2016].

Moreover, the proposal in Paper II [Salt Ducaju et al., 2022a] required tuning
only of two parameters, and presented novel benefits for its use in HRC compared
to previous contributions in literature [Kouris et al., 2016; Kouris et al., 2018; Ger-
avand et al., 2013; Golz et al., 2015; Popov et al., 2017; Briquet-Kerestedjian et
al., 2019; Cioffi et al., 2020]: it was able to detect and classify human interac-
tion that occurred while the robot was collided (beneficial for corrective trajectory
demonstrations), and also, it was robust to different levels of skill of human oper-
ators (reducing the necessity for specialized human operators for robot guidance).
As a limitation, the proposal in Paper II was only demonstrated for stiff and static
obstacles.

Using Kinesthetic Teaching for Robot Trajectory Correction
Once a human operator has manually guided a robot to define or modify its trajec-
tory, and the human guidance has been properly detected and classified as such, the
use of this acquired information (in terms of data provided by the sensors embed-
ded in the robot) to correct the robot trajectory in future task executions remains an
open problem. It is possible to use these data to modify the reference used in a robot
indirect force controller. In the case of a Cartesian impedance controller, it would
be straightforward to use the Cartesian trajectory recorded during the previous hu-
man guidance as the new reference Cartesian pose, ξd . However, as mentioned in
Sec. 3.1, impedance controllers would introduce a slight trajectory-tracking error
that might cause non-completion of the robot task.

In Paper III [Salt Ducaju et al., 2024a], a strategy to improve robot trajectory
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tracking while using an impedance controller by slightly modifying its Cartesian
reference was proposed. Compared to stiff position-feedback controllers used to
improve robot trajectory tracking, the proposal in Paper III allowed a reasonable
physical interaction between the robot and its surroundings that would not damage
any of the actors involved in this interaction; and also, would not modify the tem-
poral characteristics of the robot trajectory, as opposed to time-scaling alternatives
[Dahl, 1992; Olofsson and Nielsen, 2017; Dahlin and Karayiannidis, 2021].

Additionally, the proposal in Paper III [Salt Ducaju et al., 2024a] provided a
strategy more suitable for learning robot impedance-controller references than pre-
vious learning formulations. First, iterative learning control (ILC) [Arimoto et al.,
1984], in its linear formulation [Norrlöf and Gunnarsson, 2001; Cano Marchal et
al., 2014], might not fully consider the robot dynamics when defining convergence
guarantees [Norrlöf and Gunnarsson, 2020]. As a consequence, a linear ILC strategy
[Norrlöf and Gunnarsson, 2001] allowed, as shown in the experiments presented
in Paper III, an aggressive reference correction, which translated in an, undesir-
able, large impedance force variation. In comparison, the proposal in Paper III [Salt
Ducaju et al., 2024a] considered the nonlinearities of robot dynamics in its conver-
gence analysis, and provided a smoother, more conservative, reference correction,
that lead to a faster (i.e., in less iterations) convergence to robot task completion.

Moreover, adaptive learning strategies, such as AILC [Park et al., 1996; Lee
et al., 2019], considered nonlinearities in robot dynamics. However, these strate-
gies would online modify the impedance behavior of the robot, hence could not
be used for learning impedance-reference corrections. Furthermore, as discussed in
Sec. 3.1, reinforcement learning (RL) strategies [Ibarz et al., 2021], although ca-
pable of allowing to learn complex robot behaviors, often required a high number
of learning iterations, which would negatively affect the flexibility to adapt to the
rapidly-changing industrial settings that motivated human corrective guidance of
the robot.

43



Chapter 3. Physical Human–Robot Interaction (pHRI)

44



4
Conclusions and Future
Research

The research presented in this thesis aimed to improve the involvement of human
operators in workspaces shared with robot manipulators by addressing the two re-
search questions that arose from this research problem, namely improving the ef-
fectiveness of kinesthetic teaching and increasing safety in collaborative industrial
environments. Different methods were proposed to achieve this goal from a robot
control perspective.

First, the addition of null-space motion to robot trajectories showed to reduce
uncertainty in the force needed for human guidance caused by joint static friction,
thus facilitating kinesthetic teaching. The structural vibrations and possible wear
of the robot components caused using alternative state-of-the-art methods, such as
dithering, was avoided in the proposed method, although the application scope of
the proposed method might be limited to redundant manipulators.

Second, necessary modifications and extensions were proposed in this thesis to
state-of-the-art methods to achieve fast contact detection and classification in any
contact direction for kinesthetic teaching applications. The proposed method pro-
vided an accurate distinction between voluntary human cooperation and accidental
collisions with stiff and static obstacles in a collaborative assembly task with col-
laborative robots.

Third, an iterative reference-learning strategy was proposed to improve the robot
trajectory tracking of human manual demonstrations for impedance-controlled
robots, while allowing the physical interaction of the robot with its surroundings.
The impedance dynamics of the robot were included in its convergence analysis.

Forth, using CBFs to online modify the Cartesian impedance behavior of a robot
provided a stable and effective method for improving safety in kinesthetic teaching
applications. The method proposed was able to avoid that a human operator could
guide a robotic manipulator to an undesired part of the workspace of the robot.
Additionally, this online Cartesian impedance variation method was included in the
Licentiate Thesis by the author [Salt Ducaju, 2023] and later extended including
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linearized CBFs in a linear MPC strategy to consider a prediction of human behavior
with coordinated robot control that further improved physical safety in collaborative
applications.

Fifth, the null-space impedance behavior of a redundant robot was modulated
online using CBFs to achieve robot obstacle avoidance for scenarios that did not
involve the end-effector of the robot, thus avoiding unnecessary modifications of
the main robot task while increasing the robot functional safety.

4.1 Future Research

Different contributions have been presented in this thesis to improve the involve-
ment of human operators in industrial environments by the use of kinesthetic teach-
ing and while considering functional safety aspects in these collaborative scenarios.
Nevertheless, the robot control questions addressed throughout this thesis can be
further studied toward a desirable enhanced integration of humans and robots in
industrial collaborative environments in certain research directions.

First, to further improve the use of human guidance for robot task adaptation,
the concept presented in Paper I of using null-space motion to avoid stiction by
ensuring the motion of all robot joints during robot trajectory execution could be
included alongside other tasks performed in shared null-space DOFs, as shown
in Paper IV for robot obstacle avoidance together with manipulability maximiza-
tion. Moreover, the method for fast collision detection and classification presented
in Paper II could be tested and, if needed, additional extensions might be sug-
gested to enable its application for soft and/or non-static obstacles. Furthermore,
the impedance-controlled robot dynamics used in Paper III to show the conver-
gence of the learning proposal might be incorporated in the selection of a learning
gain that further improved iterative learning for bettering robot tracking of human
manual demonstrations.

Second, to further increase functional safety in collaborative environments with-
out compromising efficiency, stability conditions for the implementation of the
Cartesian impedance-modulation method presented in Paper IV in non-passive
robot environments [Müller et al., 2019] could be developed. Moreover, experi-
ments could be proposed to evaluate the behavior of the robot collision-avoidance
method presented in Papers IV and VI in multi-obstacle collaborative scenarios,
and possible extensions might be proposed to deal with the possible appearance of
problems related to local minima. Furthermore, the prediction capabilities of the
impedance-variation method proposed in Paper VI could be further improved by
including more complex strategies to anticipate the intention and future motion of
the human operator [Bandi and Thomas, 2021]. These strategies might involve con-
sidering the neurological ability of human operators to estimate the behavior of
collaborative robots [Wolpert and Ghahramani, 2000].
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A
Notation Overview

Some symbols have been used with different meanings in each of the papers in-
cluded in this thesis. This section shows the symbols that have been used differently,
and also their meaning for each of the papers.
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Paper I

Joint Stiction Avoidance with Null-Space
Motion in Real-Time Model Predictive

Control for Redundant Collaborative Robots

Julian M. Salt Ducaju Björn Olofsson

Anders Robertsson Rolf Johansson

Abstract

Model Predictive Control (MPC) is an efficient point-to-point trajectory-
generation method for robots that can be used in situations that occur under
time constraints. The motion plan can be recalculated online to increase the
accuracy of the trajectory when getting close to the goal position. We have
implemented this strategy in a Franka Emika Panda robot, a redundant collab-
orative robot, by extending previous research that was performed on a 6-DOFs
robot. We have also used null-space motion to ensure a continuous movement
of all joints during the entire trajectory execution as an approach to avoid joint
stiction and allow accurate kinesthetic teaching. As is conventional for col-
laborative and industrial robots, the Panda robot is equipped with an internal
controller, which allows to send position and velocity references directly to
the robot. Therefore, null-space motion can be added directly to the MPC-
generated velocity references. The observed trajectory deviation caused by dis-
cretization approximations of the Jacobian matrix when implementing null-
space motion has been corrected experimentally using sensor feedback for the
real-time velocity-reference recalculation and by performing a fast sampling
of the null-space vector. Null-space motion has been experimentally seen to
contribute to reducing the friction torque dispersion present in static joints.

© 2021 IEEE. Reprinted, with permission, from 2021 IEEE International Confer-
ence on Robot and Human Interactive Communication (RO-MAN), August 8-12,
Virtual, pp. 307–314.
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1. Introduction

Trajectory generation is a well-studied problem in the robotics field. It consists of
defining the path and the course of motion as a function of time. An overview of the
many ways for doing this task is provided in [Kröger, 2010]. In an industrial setting,
it is common to aim for performing a task in the shortest time possible to increase
productivity. To this purpose, the robot should perform the given task under time
constraints, making it convenient to formulate the problem as an optimal control
problem, which provides a performance metric by means of an objective function
[LaValle, 2006].

Model Predictive Control (MPC) [Mayne et al., 2000; Maciejowski, 2002] is
a well-grounded option for trajectory generation in robotic applications, since its
formulation can include a final-state constraint to be satisfied at the end of its pre-
diction horizon while respecting states’ and inputs’ limits during the motion. MPC
uses a model of the robot to predict the future states and outputs based on the solu-
tion’s choice of the input sequence. In the presence of an internal controller with a
short time constant considering the robot dynamics, position or velocity references
can be used directly making a complex dynamic model not necessary in the MPC.
Therefore, a purely kinematic model can be used.

Moreover, online MPC trajectory recalculation can be performed to increase the
resolution of the computed trajectory by setting a fixed final time while keeping the
number of discretization points of the MPC prediction horizon constant. Then, the
continuous-time prediction horizon of the MPC problem will shrink, successively
causing a reduction of the sampling period every time the trajectory is recalculated
online [Ghazaei Ardakani et al., 2019].

Figure 1. Franka Emika Panda robot used in the experiments.

In the context of robot trajectory reprogramming, it is convenient that a human
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operator guides the robot through direct interaction [Capurso et al., 2017], which is
known as kinesthetic teaching [Wrede et al., 2013] or lead-through programming
(LTP), throughout the entire trajectory or parts of it. For an operator to be able to
teach the robot, it is necessary to apply force on the robot end-effector or links. In
this situation, the human operator should be comfortable with the physical interac-
tion with the robot. Thus, it is important to be familiar with the force/torque required
for leading the robot. Furthermore, the online MPC trajectory recalculation scheme
is useful in the presence of human-robot interaction (HRI) since, after the human
intervention is over, it can still be possible to reach the robot’s goal pose without
violating the problem’s fixed-time constraint.

Therefore, the necessary force should not vary greatly between different human
interventions. In order to ensure that the force that the operator needs to apply is
always similar, joint stiction should be avoided. Joint static friction, or stiction, oc-
curs when a joint has zero velocity and it becomes locked and constrained against
relative motion [Haug et al., 1986]. This phenomenon is caused by the interactions
between the asperities of the surface in contact in a robot joint, such as gears, bear-
ings, and shafts [Bittencourt and Gunnarsson, 2012].

Dithering has been proven as a successful method to reduce these uncertainties
[Linderoth et al., 2013]. However, it may cause vibration of the robot if the torque
feedforward signal’s amplitude is too high. Another option to avoid stiction, only
available for robots that have more than 6 degrees of freedom (DOF), is to use null-
space motion [Sadeghian et al., 2013]. Null-space motion is a linear combination of
joint angular velocities in an over-actuated robot that causes no change in the end-
effector’s pose (Jb = 0 with b ̸= 0, being J the Jacobian and b the null-space vector)
[Siciliano and Khatib, 2016]. It has previously been used in kinesthetic teaching to
modify the robot’s configuration without altering the end-effector’s pose [Wahrburg
et al., 2016]. However, it can also be added to the trajectory reference to ensure that
no joint remains still during the trajectory execution.

A trajectory generated for a 7 (or more) DOF robot may not necessarily involve
varying the angular position of all of its joints, since it is a redundant system and it
might be able to reach any end-effector’s goal pose by only moving 6 of its joints.
However, there could be an unexpected robot response if the operator tries to move a
stationary joint since the force/torque required will be difficult to predict because of
joint stiction [Haug et al., 1986]. The method that we propose to avoid joint stiction
consists of adding null-space motion to an MPC-generated trajectory reference.

The purpose of this paper is to experimentally analyze the effects of adding null-
space motion to an MPC-generated point-to-point trajectory reference to evaluate
the possible advantages and drawbacks of this method. Moreover, HRI, facilitated
by the addition of null-space motion, would allow the operator to locally modify
the robot’s path, which could be relevant in this context since the trajectory refer-
ence is generated considering only an initial and a final point. The implementation
has been performed on the Panda robot by Franka Emika [Franka Emika, 2019], a
collaborative robot [Colgate et al., 1996], which can be seen in Fig. 1.
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Furthermore, in previous research [Ghazaei Ardakani et al., 2019], an open-loop
strategy was implemented for the online trajectory recalculation where the initial
state of the robot used to solve the MPC problem was estimated using the previous
MPC solution. However, the addition of null-space motion to the MPC-generated
reference may increase the error in the initial state estimation at every trajectory
recalculation period, or metaperiod, and this error will accumulate at every online
recalculation. For this reason, it is also a goal of this paper to evaluate the influence
of joint angular position sensor feedback in the estimation of the initial state of
the robot at the beginning of every metaperiod when adding null-space motion to
an MPC-generated trajectory reference. The use of sensor feedback is referred to
as the closed-loop strategy, as opposed to the previously used open-loop strategy
[Ghazaei Ardakani et al., 2019].

This paper is outlined as follows: Sec. 2 presents the method for solving the
problem that is being considered. Section 3 explains the experimental setup and the
experiments performed, and presents the results obtained. Finally, conclusions are
drawn in Sec. 4.

2. Methods

In this section, we introduce the MPC formulation used for trajectory generation
and explain a strategy to add null-space motion to it. The goal of the trajectory-
generation formulation used is that the robot reaches a final configuration under a
time constraint. Additionally, we outline a hybrid dual-mode controller that would
allow to switch between an MPC-based trajectory-following controller with null-
space motion, and an admittance controller for human interaction.

2.1 Trajectory Generation Using MPC
The motion plan generated by MPC consists of a sequence of joint angular velocity
references, since the robot’s internal controller takes care of applying the necessary
torques to each of the joints. Therefore, the optimization problem can be formulated
in the joint space of the robot, using the robot’s joint configuration q ∈R7 since the
robot has 7 joints, instead of formulating the problem in terms of the robot end-
effector pose, ξ ∈ SE(3), which is composed by the end-effector’s position and
orientation.

The initial and final joint configurations, q0 and qF , of the problem are obtained
from the initial and desired end-effector poses, ξ0 and ξF , respectively, by means of
inverse kinematics [Corke, 2013]:

q = K −1(ξ ) (1)

Since this problem considers a 7 DOF robot, there will be an infinite number of
solutions. Therefore, redundancy can be conveniently exploited to meet additional
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constraints on the kinematic control problem in order to obtain greater manipula-
bility in terms of manipulator configurations, interaction with the environment, and
null-space motion.

Moreover, since the robot is equipped with an internal controller that allows a
velocity-reference control mode and we assume good tracking performance without
exceeding the torque limits [Bäuml et al., 2010], the MPC does not need to use
a complex nonlinear robot dynamic model where the torque is the input, and a
simpler kinematic linear model is considered where the motion is defined in terms
of position, velocity, and other higher-order time derivatives of position [Ghazaei,
2016]. Also, the internal controller reduces the effect of dynamic coupling between
joints by means of torque feedforward.

Then, as in previous research [Ghazaei Ardakani et al., 2019], the continuous-
time model chosen can be constructed by multiple decoupled chains of integrators.
Thus, the continuous-time state vector, xc ∈ R21, is composed by the angular posi-
tion, qi, velocity, q̇i, and acceleration, q̈i, of each of the robot joints i = 1, . . . ,7:

xc =
[
q1 q̇1 q̈1 . . . q7 q̇7 q̈7

]T (2)

The continuous-time linear model can thus be written as:

ẋc(t) = Acxc(t)+Bcuc(t) (3)
yc(t) =Ccxc(t) (4)

with
Ac = blkdiag([Ãc, . . . , Ãc]), Bc = blkdiag([B̃c, . . . , B̃c])

and Cc = I21, where I21 is the identity matrix in R21x21, blkdiag(·) forms a block
diagonal matrix from the given list of matrices, Ac ∈ R21x21, Bc ∈ R21x7, and

Ãc =

0 1 0
0 0 1
0 0 0

 , B̃c =
[
0 0 1

]T
The continuous-time input is the angular jerk of the joints, uc =

...q ∈ R7.
For the choice of sampling period, h, to discretize the continuous-time linear

system, a sampling period different from the one of the controlled system was cho-
sen for the discretization of the kinematics in the optimization. Then, a linear in-
terpolation of the calculated input sequence is used to provide references at the
sampling rate of the robot [Ghazaei Ardakani et al., 2019]. This justifies the use
of a predictive first-order-hold (FOH) sampling method [Åström and Wittenmark,
2013]:

xk+1 = Φxk +
1
h

Γ1uk+1 +

(
Γ− 1

h
Γ1

)
uk (5)

yk =Cxk (6)
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with

Φ = blkdiag([Φ̃, . . . ,Φ̃]), Γ1 = blkdiag([Γ̃1, . . . , Γ̃1]),

Γ = blkdiag([Γ̃, . . . , Γ̃])

where Φ ∈ R21x21, Γ1,Γ ∈ R21x7, and:

Φ̃ =

1 h h2/2
0 1 h
0 0 1


Γ̃ =

[
h3/6 h2/2 h

]T
Γ̃1 =

[
h4/24 h3/6 h2/2

]T
C =Cc

As developed in previous research [Ghazaei Ardakani et al., 2019], the discrete-
time model obtained from the FOH sampling method (5), (6) can be rewritten in the
standard form by using a new discrete state variable, ζ ∈ R21:

ζk+1 = Aζk +Buk (7)
yk =Cζk +Duk (8)

where

A = Φ, B = Γ+
1
h
(Φ− I21)Γ1, D =

Γ1

h
Since yk = xk because of (6) and C = I21, we can from (8) obtain the relation:

xk =Cζk +Duk (9)

It should be mentioned that the input u is the discretized counterpart of uc, and
the discrete controlled variable x is the discretized counterpart of xc. On the contrary,
the discrete-time state ζ is not a discretized version of any variable found in the
continuous-time state-space system formulation (3), (4).

Moreover, the quadratic cost function chosen for solving this problem at time
step k is:

Vk(Uk) =
k+H

∑
j=k+1

xT
j Qx j +

k+H−1

∑
j=k

uT
j Ru j (10)

where Uk = [uk, . . . ,uk+H−1] ∈ R7xH is the input signal sequence over the control
horizon of H steps that minimizes the cost function over the MPC prediction hori-
zon of H steps at every metaperiod, and Q ∈R21x21 and R ∈R7x7 are positive semi-
definite weight matrices that penalize the controlled variables and inputs, respec-
tively.

70



2 Methods

This optimization problem is subject to the discrete-time model of the system
(7), (9). Additionally, a hard constraint on the value of the discrete-time final con-
trolled variables is used to ensure that the robot reaches the desired configuration at
the end of the trajectory:

xk+H = xgoal (11)

In addition, a set of linear constraints must be included to bound the admissible
range of the inputs and controlled variables:

F [uT
k , . . . ,u

T
k+H−1]

T ≤ f (12)

G[xT
k+1, . . . ,x

T
k+H ]

T ≤ g (13)

The choice of the cost function as convex, as well as a linear model and convex
constraint sets, makes the whole problem convex, which is beneficial for the com-
putation of the problem since if a solution exists, it is the globally optimal [Boyd
and Vandenberghe, 2004].

Finally, this convex problem is solved at every trajectory recalculation period,
or metaperiod. The sampling period, h, used in the discretization is equal to:

h =
TF − tk

H
(14)

where H is the number of discrete steps in the prediction horizon, TF is the final time
where the goal state must be reached, and tk is the time when the robot starts using
the newly recalculated trajectory reference. As mentioned earlier, the continuous-
time prediction horizon of the problem will shrink since, as time goes by, tk will
increase while the final time TF and H are constant, thus increasing the resolution
of the computed trajectory as the goal state, xgoal, is approached.

2.2 Null-Space Motion Addition to the Reference Trajectory
The manipulator’s Jacobian matrix, J(q) ∈ R6x7, maps the joint angular velocities,
q̇, to the end-effector’s twist, γ = [ωT,vT]T ∈ R6, with v and ω denoting the linear
and angular velocity of the end-effector, respectively:

γ = J(q)q̇ (15)

Therefore, null-space motion is constructed by using the null-space vector of this
Jacobian matrix:

q̇ = J†(q)γ +N(q)q̇a (16)

where the matrix N(q)= I7−J†(q)J(q)∈R7x7 projects the additional arbitrary joint
angular velocity, q̇a, into the null space so that it is independent of the end-effector
Cartesian motion [Corke, 2013].

The first term of (16) is the relationship between the joint velocity q̇ and the
end-effector’s twist γ by means of the manipulator Jacobian (15), and superscript †
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denotes the Moore-Penrose pseudoinverse matrix given by J† = (JTJ)−1JT [Ben-
Israel and Greville, 2003]. This term is shared for both 6 and 7 DOF robots, although
in the case of 6 DOFs, the Jacobian is a square matrix. However, the second term of
(16) is the null-space motion, which only appears in redundant manipulators. The
null-space motion unitary vector is calculated as:

q̇nsu =
N(q)q̇a

∥N(q)q̇a∥
(17)

Also, since the Jacobian matrix is particular for each robot configuration, this vector
should be sampled in real-time.

The null-space unitary vector given in (17) has to be scaled before being in-
cluded with the MPC-generated angular velocity references. A sinusoidal signal has
been chosen to smoothly transition between positive and negative scaling values to
avoid reaching any joint limit. Its frequency depends on the length of the trajectory
execution, to make sure that the first and last velocity references sent are equal to 0.
Additionally, α ∈ R is a constant used to scale its amplitude:

q̇NS = q̇nsuα sin
(

2πt
TF

)
(18)

Then, null-space motion is calculated at each robot sampling instant and added
to the velocity references calculated by the optimization to avoid joint stiction:

q̇ref = q̇MPC + q̇NS (19)

where q̇ref is the velocity references sent to the robot, q̇MPC is the linearly interpo-
lated velocity reference sequence calculated by the MPC, and q̇NS is the null-space
motion component obtained from (18).

Moreover, the controlled-variable constraint (13) should consider the superpo-
sition of the null-space motion on the MPC solution to avoid any possible constraint
violation. Therefore, when solving the MPC optimization the joint-velocity range
should be reduced for every joint in a proportional way to the maximum possible
joint-velocity component corresponding to the added null-space motion. With this
approach, it is guaranteed that the joint-velocity limits are fulfilled. Also, the joint-
acceleration range should be conservative to never exceed the joints’ torque limits
[Bäuml et al., 2010].

Finally, joint angular position sensor feedback can be used to reduce the mis-
match between the estimation of the initial state used for the online optimization-
problem calculation at every metaperiod and its real value caused by the addition of
null-space motion to the MPC-generated trajectory. Therefore, a closed-loop form
of the problem is proposed to obtain a more accurate estimation of the initial state
to be used in the MPC. However, data samples from the robot’s sensors cannot be
directly used as the initial state, since there is a planned computational delay that
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accounts for the time required to solve the optimization problem in the MPC. There-
fore, in order to provide a precise initial state estimation it is necessary to use the
system’s model described by (7) and (9) to estimate the state evolution between the
sampling time of the sensor feedback and the time where the new trajectory velocity
references are deployed to the system.

2.3 Human-Robot Interaction (HRI)
Even though the main focus of this research is to analyze the effects of a method that
facilitates HRI by reducing joint stiction, we also provide an illustrative example
of one possible way that a human operator can interact with the robot. Then, we
outline a hybrid dual-mode controller where the robot receives commands from the
MPC-generated trajectory that includes null-space motion (19), or from human-
robot interaction, but never from both sources simultaneously, as summarized in
Algorithm 1.

Since human input is, in this scenario, a path correction to the previously gen-
erated MPC trajectory reference, admittance control [Wahrburg et al., 2016] is a
suitable strategy for the human-interaction control mode. Another common human-
robot interaction control strategy such as compliance control [Hogan, 1985] is less
appropriate for this application since its virtual spring component would try to bring
the robot closer to the MPC reference rather than allowing the human to freely op-
erate the robot.

If a joint-torque interface is available, a simple way to implement admittance
control is to supply the robot with joint torque commands. For this, the rigid-body
dynamics of the robot is used [Siciliano and Khatib, 2016]:

M(q)q̈+C(q, q̇)q̇+g(q)+ τfric = τmot (20)

where M(q) ∈ R7x7 is the generalized inertia matrix, C(q, q̇) ∈ R7x7 describes the
Coriolis and centripetal forces effects, g(q) ∈ R7x1 captures the gravity-induced
torques, and τfric ∈ R7x1 and τmot ∈ R7x1 represent the friction and motor torques,
respectively.

Then, if the admittance controller is active (Algorithm 1, Line 2), it will send
commanding torques to joint motors that are equal to the sensed external joint
torques, τext ∈ R7x1:

τmot = τext (21)

where part of the commanded joint torque is used for robot motion, but a fraction of
the commanded joint torque is used to overcome joint friction, as seen in Eq. (20).

Friction is present in any element that involves relative motion in robot mech-
anisms. All friction models have in common a significant change of friction mag-
nitude in the zero-velocity vicinity, as shown in Fig. 2, which is the major concern
of friction compensation [Cai and Song, 1993; Karnopp, 1985; Freidovich et al.,
2009; Shiriaev et al., 2003]. For this reason, avoiding joint stiction is helpful for
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the human operator that interacts with the robot to predict beforehand the necessary
force that he/she should apply to the robot to achieve the desired displacement.

Figure 2. Joint friction as a function of joint angular velocity.

Finally, a switching mechanism between both control modes (Algorithm 1,
Line 1), trajectory following with null-space motion addition and admittance con-
trol, based on external torque sensor feedback, can be either automatic, following a
collision detection and classification method (a summary of different strategies can
be found in [Cioffi et al., 2020]), or manually determined by the human operator.

Algorithm 1 Hybrid Dual-Mode Controller
1: if human is interacting with robot then
2: HRI mode: Send τext (21) as command to the robot’s torque-reference inter-

face.
3: else
4: Trajectory-following mode: Send q̇ref (19) as command to the robot’s

velocity-reference interface.
5: end if

3. Experiments and Results

The experiments presented in this section evaluated the performance of the addition
of null-space motion onto an MPC-generated trajectory.

3.1 Implementation and Experimental Setup
The robot used in the experiments is the Franka Emika Panda [Franka Emika, 2019],
a 7-DOF robotic arm. In addition to the joint velocity interface, the robot’s internal
controller also allows the operator to send joint position and torque commands. The
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Panda robot has a sampling rate of 1 kHz, and therefore, references should be sent
to it every 1 ms. A photo of the robot used is shown in Fig. 1.

This collaborative robot, or cobot [Colgate et al., 1996], is designed to share its
workspace with humans in a safe manner, and it allows the human operator to set
different maximum external-torque thresholds for each of the control modes so that
if an accidental collision between the robot and the operator happened, the robot
would perform a security shutdown.

As for the design choices for trajectory generation, the MPC prediction horizon
was chosen to be equal to H = 25 as a trade-off between trajectory resolution and
real-time computational cost, and the recalculation metaperiod was equal to 0.1 s.
Also, the weighting matrix Q penalized the joint velocity and acceleration, but not
the joint angular position, since there was no specific desired position between the
initial and the final states [Ghazaei Ardakani et al., 2019], and since a hard con-
straint (11) was imposed on the final joint position, Q = blkdiag([Q̃, . . . , Q̃]) where
Q̃ = diag(

[
0 1 1

]
). Additionally, the input was less penalized than the states,

R = 0.001 I7.
The first experiment presented analyzed the detrimental effects of slowing the

sampling rate of the null-space vector of the Jacobian matrix. Then, the second ex-
periment showed the suitability of using sensor feedback when adding null-space
motion to MPC-generated trajectory references. Moreover, the third experiment fo-
cused on the results obtained for a closed-loop, fast null-space sampling approach
where one of the joints would have remained static if null-space motion had not been
included. Finally, the last experiment evaluated the dispersion of friction torque as
a function of the joint angular velocity.

3.2 Experiment 1: Analysis of the effects of the null-space
sampling rate on the trajectory accuracy

This experiment studied the effects of null-space discretization by performing the
same trajectory in different runs, the only difference being that each run was per-
formed at a different sampling rate of the null-space vector of the Jacobian matrix
(1, 2, 5, and 10 ms). Since the null-space vector depends on the robot’s configura-
tion, a slower null-space sampling increases the difference between the null-space
vector that is used for the velocity reference and the actual null-space vector.

The robot’s initial configuration, randomly chosen, was, in radians:

q0 =
[
0 −0.79 0.0 −2.36 0.0 1.57 0.0

]
(22)

Moreover, the trajectory lasted 10 s, enough time to clearly see the detrimental
effects of a slower sampling rate of the null-space vector. Also, the trajectory con-
sisted only of null-space motion, and the unitary null-space vector was scaled by a
sinusoidal wave of frequency equal to 1 Hz and an amplitude constant, α , equal to 3
in (18). Therefore, at the end of the trajectory, the end-effector should ideally have
the same pose as the initial one. Furthermore, an open-loop strategy was used for
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this experiment in an attempt to isolate the effects of having an insufficient sampling
frequency of the null-space vector.

The temporal evolution of the robot’s pose has been analyzed using
Figs. 3 and 4. Figure 3 shows the temporal evolution of the end-effector’s Cartesian
coordinates and Fig. 4 the temporal evolution of the end-effector’s orientation, by
means of the Euler rotation angles (ZYX) from the robot base coordinate refer-
ence system to the end-effector’s coordinate reference system. It can be observed
how slowing the sampling rate caused the robot to drift from the desired constant
end-effector’s Cartesian pose.

Figure 3. Experiment 1 — End-effector’s position with respect to base frame.

Consequently, the null-space vector should be updated at the fastest update rate
available, which in this case was the robot’s sampling frequency (1 kHz). How-
ever, varying the null-space velocity references in intervals of 1 ms still introduced
a slight deviation from the planned trajectory, as seen in Figs. 3 and 4. For this
reason, the next experiment considered a closed-loop approach to compensate the
disturbances introduced by the approximate null-space motion.

3.3 Experiment 2: Comparison of the open-loop and the
closed-loop strategies

Sensor feedback from joint position sensors can be used when updating the initial
state estimation for online optimization in the MPC to account for the degrading
effects of low-rate null-space sampling observed in the previous experiment. To
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Figure 4. Experiment 1 — End-effector’s orientation with respect to base frame.

show the benefits of using sensor feedback, it was necessary to compare the results
of the implementation of null-space motion in the closed-loop MPC strategy versus
the open-loop MPC strategy.

Several reference trajectories with different initial and goal robot configurations
were used for this experiment. Additionally, each of them was executed five times.
These trajectories combined null-space motion and MPC-generated trajectory refer-
ences. Also, the null-space vector was sampled every ms and the sinusoidal scaling
function’s period was equal to the length of the trajectory.

The results of Experiment 2 are presented in Table 1, which shows the mean
and standard deviation of the end-effector’s Cartesian position error at the end of
the trajectory. The following expression was used for calculating this error:

e =
√

(xG− xF)2 +(yG− yF)2 +(zG− zF)2 (23)

where the subindex G refers to the goal position and the subindex F refers to the
final position end-effector coordinate of the corresponding trial.

Table 1. End-effector’s Final Cartesian Position Errors [mm]

CL - NS CL OL - NS OL
Mean 1.43 0.48 5.97 1.18

Std. Dev. 0.78 0.25 0.39 0.11
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In Table 1, CL and OL refer to the closed-loop and the open-loop implemen-
tations, respectively, and NS to the runs that included null-space motion. Several
assertions can be made based on Table 1. First, when no null-space motion was
added, the closed-loop strategy provided a more precise final Cartesian position,
since there was a better initial state estimation at each MPC trajectory recalcula-
tion. Also, in both open-loop and closed-loop scenarios, including null-space mo-
tion was detrimental to the final state precision of the trajectory. Finally, using an
open-loop strategy caused a greater total final Cartesian position error and therefore,
if possible, a closed-loop scheme should be used to implement null-space motion.

3.4 Experiment 3: Null-space motion integration with
closed-loop MPC in a trajectory that would have left one
joint static

Once the two previous sets of experiments had shown the suitability of sampling
the null-space vector as fast as possible and using a closed-loop control strategy
to compensate for the degrading effects of adding null-space motion to an MPC-
generated trajectory reference, the results for the closed-loop controller in one of
the trajectories of Experiment 2 were analyzed.

Figure 5 shows how the addition of null-space motion modified the total velocity
references (19). It can be seen that Joint 3 was not used in the MPC-generated
trajectory, but it was desired to have it continuously moving to avoid its stiction,
thus justifying the addition of null-space motion to the trajectory.

Figures 6 and 7 show the temporal evolution of the end-effector’s position in
Cartesian coordinates and the temporal evolution of the end-effector’s orientation
parameterized in the Euler rotation angles (ZYX) between the robot’s base frame
and the end-effector’s frame, respectively. Even though the velocity references were
different, null-space motion was properly implemented in the MPC trajectory gen-
eration since the temporal evolution of the end-effector pose was very similar in
both trials, and it only showed slight deviations in the y-position in Fig. 6 and in the
x-axis rotation in Fig. 7, which were compensated before the motion was finished.
Therefore, joint stiction in Joint 3 was addressed by adding null-space motion, while
still being able to perform an accurate trajectory under the task time constraints.

3.5 Experiment 4: Friction torque dispersion
The final experiment evaluated the dispersion of the friction torque in a joint as
a function of its angular velocity. For this purpose, the torque-based admittance
controller in Sec. 2.3 was implemented, so that the commanded torque to each of
the joints was equal to their sensed external torque signals. Also, the friction torque
for all joints was estimated by rewriting Eq. (20) as:

τ̂fric = τ̂ext− (M(q̂) ˆ̈q+C(q̂, ˆ̇q) ˆ̇q+g(q̂)) (24)
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Figure 5. Experiment 3 — Joint angular commanded velocities’ evolution.
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Figure 6. Experiment 3 — End-effector’s position with respect to base frame.
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Figure 7. Experiment 3 — End-effector’s orientation with respect to base frame.

where the superscript ˆ denotes a variable that has been estimated using joint posi-
tion or torque sensor data.

Then, the experiment consisted of a human operator leading-through the robot
for 15 s using this torque-based admittance controller. Figure 8 shows the results
in terms of the standard deviation, σ , of the estimated friction torque of a joint in
Eq. (24) with respect to its angular velocity.
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Figure 8. Experiment 4 — Standard deviation of the friction torque as a function
of angular velocity of Joint 3.

The choice of joint and its angular-velocity range, shown in Fig. 8, was related to
the experiment presented in Sec. 3.4, since the motion of Joint 3 was generated only
by null-space motion and had the same angular velocity range, as seen in Fig. 5.

It can be seen that the standard deviation of the friction torque was greater when
the angular velocity of the joint was close to zero: σ(τ̂fric) = 0.13 Nm in the vicinity
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of zero velocity compared to an average value of σ(τ̂fric) = 0.03 Nm in the rest of
the angular velocity range analyzed. Therefore, adding null-space motion to a static
joint can contribute to reducing the friction torque dispersion.

4. Conclusion

We have proposed the addition of null-space motion to an MPC fixed-time point-
to-point online trajectory generation method in order to facilitate kinesthetic teach-
ing in a redundant robot. This approach allows a continuous motion of all joints
throughout the trajectory execution, even if the MPC-generated trajectory does not
include them in its planning, so that joint stiction is suppressed and a human op-
erator can predict the force/torque necessary to move the robot. A reduction of the
friction-torque dispersion has been experimentally observed as a consequence of
adding null-space motion in a static joint.

The discrete-time control of null-space motion has been observed to be sensitive
to discretization approximations of the Jacobian matrix. The experiments performed
have justified the extension of a previously studied open-loop scheme [Ghazaei Ar-
dakani et al., 2019] to a closed-loop scheme and a fast Jacobian matrix sampling
to correct these slight degrading effects on the trajectory execution performance,
thus allowing the addition of null-space motion to the trajectory without causing a
significant loss of final-state accuracy.

An additional benefit of the presented closed-loop strategy is that, if human
intervention takes place during the trajectory execution, the trajectory can be recal-
culated online once human intervention is concluded using an accurate estimation
of the initial state in the MPC problem.
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Fast Contact Detection and Classification for
Kinesthetic Teaching in Robots using only

Embedded Sensors
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Abstract

Collaborative robots have been designed to perform tasks where human coop-
eration may occur. Additionally, undesired collisions can happen in the robot’s
environment. A contact classifier may be needed if robot trajectory recalcula-
tion is to be activated depending on the source of robot–environment contact.
For this reason, we have evaluated a fast contact detection and classification
method and we propose necessary modifications and extensions so that it is
able to detect a contact in any direction and distinguish if it has been caused
by voluntary human cooperation or by accidental collision with a static ob-
stacle for kinesthetic teaching applications. Robot compliance control is used
for trajectory following as an active strategy to ensure safety of the robot and
its environment. Only sensor data that are conventionally available in com-
mercial collaborative robots, such as joint-torque sensors and joint-position
encoders/resolvers, are used in our method. Moreover, fast contact detection
is ensured by using the frequency content of the estimated external forces,
whereas external force direction and sense relative to the robot’s motion is
used to classify its source. Our method has been experimentally proven to be
successful in a collaborative assembly task for a number of different experi-
mentally recorded trajectories and with the intervention of different operators.

© 2022 IEEE. Reprinted, with permission, from 2022 IEEE International Con-
ference on Robot and Human Interactive Communication (RO-MAN), August 29-
September 2, Naples, Italy, pp. 1138–1145.
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1. Introduction

Physical Human–Robot Interaction (pHRI) has become a research topic of major
interest during the later years in the robotics community [Villani et al., 2018]. The
reason behind this is allowing robots to safely work in partially unknown environ-
ments where humans and robots can cooperate. One way that human operators can
cooperate with the robot is through direct interaction, known as kinesthetic teaching
[Wrede et al., 2013], which is useful for robot trajectory reprogramming [Karlsson
et al., 2017]. Consequently, collaborative robots have increased in popularity since
their lightweight, compliant design is especially convenient when robots share their
workspace with humans.

As part of the desire of increasing the flexibility and versatility of robots, it is
common to find applications (e.g., collaborative assembly [Sadrfaridpour and Wang,
2018]) where human cooperation is not the only contact that the robots may expe-
rience with their environment, and where unexpected collisions with obstacles may
also occur. For this reason, it is essential that robots are capable of quickly distin-
guishing if a contact has occurred, and if so, whether it has been caused by human
cooperation (defined as intentional) or by an obstacle collision (defined as acciden-
tal). Therefore, contact detection and classification, while the robot behaves in a
compliant way with respect to its environment, is a key concern in these applica-
tions.

1.1 Previous Research
As summarized in [Cioffi et al., 2020], there are two main sets of methods, which
are primarily based on external force/torque estimation, being used to detect and
classify contacts: using machine-learning approaches [Golz et al., 2015; Popov et
al., 2017; Briquet-Kerestedjian et al., 2019; Cioffi et al., 2020], or analyzing their
frequency content [Geravand et al., 2013; Kouris et al., 2016; Kouris et al., 2018].
In such scenarios, a fast detection and classification is essential since a successful
robot trajectory reprogramming should depend on it [Karlsson et al., 2017; Wrede
et al., 2013; Haddadin et al., 2008].

Machine-learning approaches have shown to provide promising results for con-
tact detection and classification, but their fast execution may be challenging. In
[Golz et al., 2015], the authors used the entire contact event to extract features
that allow to discriminate between intended and unintended contacts. An extensive
classification approach was presented in [Popov et al., 2017], but it cannot run in
real-time. In [Briquet-Kerestedjian et al., 2019], the authors were able to classify a
detected contact in a minimum of 160 ms. Finally, an online classification method
using machine learning was proposed in [Cioffi et al., 2020], but it is operator de-
pendent and needs the joint load-torque signals of a previous, uncollided, execution
of the trajectory.

In contrast, frequency-response analysis methods can achieve a faster detection
and classification: in [Geravand et al., 2013], the authors detected contacts in less
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than 50 ms, and the authors of [Kouris et al., 2016; Kouris et al., 2018] detected
and classified contacts in a single force direction in less than 10 ms. However,
frequency-based methods come with their own challenges, one of the more sig-
nificant being the difficulty of tuning their thresholds and cut-off frequencies. In
[Geravand et al., 2013], six different thresholding parameters per joint were needed
to classify the contact situation based on filtered motor-current signals, which, un-
fortunately, are not available in some robot controller interfaces.

Moreover, these frequency-based contact-detection and classification methods
are based on the premise that human voluntary cooperation with the robot presents
forces with a lower rate of change than accidental collisions, and therefore, their
frequency characteristics can be differentiated: cooperation will present lower fre-
quency components than the accidental collisions. To sustain this assumption, the
authors in [Kouris et al., 2016] and [Kouris et al., 2018] presented experimental data
for one force direction recorded from an external force sensor mounted between the
robot’s flange and a handle.

1.2 Problem Formulation
In this paper, we address the problem of fast contact-detection and classification
for kinesthetic teaching applications in collaborative robots relying only on avail-
able information provided by its embedded sensors, which in most cases are the
joint motor encoders/resolvers that are able to provide joint angular positions (and
joint angular velocity and possibly acceleration by differentiation), and the joint-
torque sensors that are used to measure the joint applied torques. These variables
are then used to estimate the external forces/torques applied to the robot. We refer to
[Haddadin et al., 2017] for a summary of different methods to obtain these external
forces/torques, and especially for the justification of the generalized momentum ob-
server that was used in our experiments. Moreover, robot compliant control is used
to ensure safety in a contact-rich environment and to allow human cooperation.

To solve the problem addressed in this paper, while ensuring fast contact detec-
tion, we evaluated the use of frequency-response analysis of the estimated external
force and the benefits of comparing the robot Cartesian motion and its sensed ex-
ternal force. The method should allow a fast detection and to distinguish between
human cooperation and accidental collisions in any contact direction for a collab-
orative assembly task using data only from robot embedded sensors. To evaluate
this method, several experiments were performed, using the Panda robot by Franka
Emika [Franka Emika, 2019] with a peg-in-hole setup as seen in Fig. 2.

1.3 Outline
The paper is organized as follows: Sec. 2 presents the method for solving the prob-
lem described in Sec. 1. Section 3 explains the experiments performed. Then, Sec. 4
presents the results obtained. Finally, a discussion is included in Sec. 5 and conclu-
sions are drawn in Sec. 6.
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2. Method

First, we introduce the robot compliance controller used. Then, we evaluate the use
of frequency-based contact detection and classification for our problem. Finally, we
propose modifications and extensions to ensure contact detection in any direction
and classification between human cooperation and obstacle collision for a collabo-
rative assembly task.

2.1 Torque-Based Cartesian Impedance Control
External forces may be applied to the robot at any moment while executing a de-
sired trajectory. Therefore, the robot must behave in a compliant way toward these
forces to avoid any harm of both the robot and the colliding object. Also, a compli-
ant robot behavior allows direct human cooperation without the need of switching
to a dedicated admittance controller. The aim of a Cartesian impedance controller
[Hogan, 1985] is to establish a mass-damper-spring relationship between the Carte-
sian pose variation from its reference, ∆ξ , and the Cartesian force, F [Albu-Schäffer
and Hirzinger, 2002]:

F = Iξ̈ +Bξ̇ +K∆ξ (1)

where I, B, and K are the virtual inertia, damping, and stiffness matrices, respec-
tively. Further, ∆ξ =

[
∆pT ∆εT

]T, where the translation variations in the Cartesian
pose are calculated with ∆p = pd− p̂, and the rotation variations are calculated with
∆Q = Q̂−1Qd , ∆ε being the vector part of the unit-quaternion representation of the
rotation variation with respect to the base frame, ∆Q. Here, ξ̂ =

[
p̂T Q̂T

]T is
the estimated Cartesian pose of the robot end-effector computed from joint angle
measurements, and ξd =

[
pT

d QT
d

]T is the reference Cartesian pose of the robot
end-effector.

With F from Eq. (1), the task torque is calculated as:

τtask = JT(q)F (2)

where J(q) is the Jacobian relative to the base frame of the robot and q are the
sensed joint angular positions. Finally, the contribution from Coriolis and cen-
tripetal forces, C(q, q̇), is added to the task torque to obtain the reference torque:

τref = τtask +C(q, q̇)q̇ (3)

where q̇ represents the sensed joint angular velocities. The gravitational-forces term
does not appear in Eq. (3) since the robot’s internal controller takes care of the
gravity compensation.

2.2 Frequency-Based Contact Detection and Classification
Previous research on frequency-based contact detection and classification is based
on the idea that the frequency characteristics of motor currents or external force
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acting on the robot in an accidental collision situation are different from the ones
obtained while a human is cooperating with the robot [Geravand et al., 2013; Kouris
et al., 2016; Kouris et al., 2018]. For a sliding time window, if the p–norm of the
discrete Fourier transform of the force signal over a given frequency interval is
greater than a user-defined force threshold, Fth, then it is considered that the contact
should be classified an accidental obstacle collision [Kouris et al., 2016; Kouris et
al., 2018]. If not, then it is classified as interference from human cooperation.

Figure 1 illustrates the L∞-norm of the frequency content of the force signal in
the frequency range between ωmin and ωmax using a sliding window of N samples at
every time step, as suggested in [Kouris et al., 2016], but using the joint-torque sen-
sors embedded in the robot to estimate the external force. This frequency range has
an upper limit determined by the Nyquist frequency (ωmax ≤ 1/2h) and a lower limit
determined by the measurement duration (ωmin ≥ 1/Nh), with h being the sample
period. Moreover, the Cartesian impedance control parameters used are the same as
in Sec. 3.1.
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Figure 1. Temporal evolution of the L∞-norm of the frequency content for all three
force directions: FX , FY , and FZ , in a collaborative assembly task (peg-in-hole).
The frequency range used is ω ∈ [10,100] Hz, and the temporal sliding window is
N = 500 samples long.

In the trajectory used for Fig. 1, the robot transitions from free, undisturbed
motion (white background), to obstacle collision (red background), and then to hu-
man cooperation (green background). The obstacle collision, which occurs along
the Z-direction, can be distinguishable from the free motion when analyzing the
frequency content that belongs to FZ . However, human cooperation also causes
an identifiable spike in this same force direction later in the trajectory. Therefore,
when the experiments are performed for a robot with compliant behavior using the
joint-torque sensors embedded in the robot instead of external force sensors, the
distinction of frequency content between accidental collisions and cooperation be-
comes uncertain, which motivates the proposal of modifications and extensions to
the method.
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2.3 Contact Detection
From the analysis of Fig. 1, it can be concluded that force-thresholding can be use-
ful for contact detection, but extra variables are needed for classifying the contact if
only joint-torque sensors are used. Thus, our proposal consists of a decoupled pro-
cess between contact detection and classification. For contact detection, the method
presented in [Kouris et al., 2016; Kouris et al., 2018] was extended to all three force
directions. Therefore, the proposed detection process consists of evaluating if

F̂ i
ω > Fth (4)

for i ∈ {X ,Y,Z}, where Fth is the selected frequency-based threshold valid for any
direction i for each time step, and F̂ i

ω is equal to the L∞-norm of the discrete Fourier
transform of the external sensed force along direction i in the frequency range be-
tween ωmin and ωmax using a sliding window of N samples.

The contact-detection method, which is called at each time step, has been sum-
marized in Algorithm 1. If the robot is moving in free motion (STATE = FREE),
the condition (4) is evaluated in all directions (Algorithm 1, Line 2). If this con-
dition is true, a contact is detected, and the classifier takes care of evaluating if
the contact is accidental or if a human operator is collaborating with the robot
(Algorithm 1, Line 5; detailed in Algorithm 2). The contact classifier uses the sys-
tem’s state at the exact time of the contact, which is obtained (in Algorithm 1, Line
4) by performing a backwards search in the external force signal from the contact-
detection time along the contact’s direction (determined in Algorithm 1, Line 3).

Algorithm 1 Contact Detection
1: if STATE == FREE then
2: if Check contact == TRUE then
3: Get contact direction
4: Get contact time
5: STATE← Contact Classifier (Algorithm 2)
6: end if
7: else if STATE == COLL then
8: Get contact direction
9: if Check new contact direction == TRUE then

10: Get contact time
11: STATE← Contact Classifier (Algorithm 2)
12: end if
13: Update active collision directions
14: else if STATE == COOP then
15: if Check cooperation stopped == TRUE then
16: STATE← FREE
17: end if
18: end if
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Moreover, while an accidental collision is occurring (STATE = COLL), an ad-
ditional contact could be detected (whose source can be human cooperation) if the
force threshold is violated again along any direction, with the exception of the direc-
tions that previously experienced the accidental collision (Algorithm 1, Line 9). The
contact-detection algorithm will update the active collision directions if a collision
along a new direction is detected or if the value of a previously collided direction
has stopped violating the threshold (Algorithm 1, Line 13).

Furthermore, when a contact has been labelled as human cooperation
(STATE = COOP), the contact-detection algorithm will only determine that the
cooperation has stopped if the forces along all three directions are below the force
threshold, Fth (Algorithm 1, Line 15).

2.4 Contact Classification
In contrast with contact detection, the frequency content of the estimated external
force is not enough to classify the contact event when only using embedded sensors
(as indicated in Fig. 1). Therefore, to properly categorize the contact in a kinesthetic
teaching application, knowledge of the performed robot motion can be used.

Our classifier algorithm is based on two assumptions:

• Assumption A1: An accidental collision of the robot end-effector or attached
tool with a static obstacle must occur in the direction of the movement and
with the opposite sense from the one of the motion.

• Assumption A2: Human cooperation should have less dominant external
force components in the direction of the robot’s motion because of the typical
spatial layout and interaction of a human operator and a robotic manipulator
in kinesthetic teaching.

These two ideas are used to formulate an algorithm next, along with the explanation
of the steps of the classifier algorithm.

The contact classifier will be activated once contact has been detected. The
contact-classifying algorithm has been summarized in Algorithm 2. The first step is
to analyze if, for any of the external forces sensed that have trespassed their thresh-
old (where inequality (4) holds), the force is being applied in the same sense as the
motion at the moment that this force signal started rising (Algorithm 2, Line 1). If
this is the case, it is straightforward to affirm that human cooperation is occurring
(A1):

sign
(

˙̂F i
ext

˙̂
ξ

i
)
> 0 (5)

only when F̂ i
ω > Fth, i∈ {X ,Y,Z}, Fth being the selected frequency-based threshold,

and ˙̂
ξ being the time derivative of the estimated Cartesian pose of the robot end-

effector. The time derivative of the estimated external force along direction i, ˙̂F i
ext,
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is preferred compared to the estimated external force along direction i, F̂ i

ext, since
the time step where this condition is evaluated is when the force signal starts rising.

The second step is, if the inequality (5) is not true for any of the detected con-
tact directions, to perform a new test that evaluates the direction of the external
force vector relative to the Cartesian velocity vector (Algorithm 2, Line 4). The rea-
son for this is that compared to intuitive human cooperation for kinesthetic teaching,
the largest external force components in accidental collisions must come from di-
rections where the robot’s velocity is the highest (A2):

||⃗u ˙̂Fext
⊘ u⃗ ˙̂

ξ
||2 < γ (6)

where u⃗ j represents a unitary vector of variable j, γ is the threshold coefficient, and
|| · ||2 is the L2-norm. Also, ⊘ represents the Hadamard division: C jk = A jk/B jk if
C = A⊘B. The smaller the threshold coefficient γ is, the closer the external force
will be when compared to the Cartesian velocity. If the inequality (6) is evaluated
as true, the contact is classified as accidental collision.

Moreover, the inequality (6) is equivalent to evaluating if the unitary external
force vector is contained in the ellipsoid defined by the robot’s unitary Cartesian
velocity vector:

x2

a2 +
y2

b2 +
z2

c2 < 1 (7)

where [x,y,z] = u⃗ ˙̂Fext
and [a,b,c] = γ u⃗ ˙̂

ξ
.

Furthermore, unitary vectors have been chosen to avoid having a dependence on
the trajectory or on the applied force magnitude, since the classification should be
trajectory-independent and also human-operator independent. Therefore, the algo-
rithm only relies on the external force-vector direction with respect to the tangential
direction of the motion.

Algorithm 2 Contact Classification
1: if A1 == TRUE then
2: STATE← COOP
3: else
4: if A2 == TRUE then
5: STATE← COLL
6: else
7: STATE← COOP
8: end if
9: end if

3. Experiments

The goal of the experiments was to obtain realistic data of a collaborative assembly
task where human operators were instructed to cooperate intuitively with the robot
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to evaluate the contact detection and classification method for kinesthetic teaching
applications proposed in Sec. 2.

3.1 Experimental Platform
The experiments were performed using the Panda robot by Franka Emika [Franka
Emika, 2019] mounted onto a table; the robot was able to record with a sample
frequency of 1 kHz (sample period h = 1 ms), using the setup shown in Fig. 2.
As mentioned earlier, we only used data from embedded sensors to estimate the
variables of interest, ξ̂ and F̂ext, which were used for selecting and evaluating the
threshold parameters for contact detection, Fth, and contact classification, γ . The
end-effector Cartesian pose was obtained by applying forward kinematics, K , to
the joint angular-position readings provided by the joint encoders [Corke, 2013]:

ξ̂ = K (q) (8)

Moreover, the estimate of the external forces was obtained from the external joint-
torques, which were estimated based on the generalized momentum observer for
the Panda robot that was introduced in [Haddadin et al., 2017], by using the Jaco-
bian relative to the base frame of the robot in an inverse way compared to the one
presented in Eq. (2):

F̂ext = J†(q)τ̂ext (9)

where the superscript † denotes the Moore-Penrose pseudoinverse.
Furthermore, the Cartesian impedance control parameters (K, B, and I) of

Eq. (1) were chosen to be as follows:

• The stiffness K was equal to 150 [N/m] for the translational degrees of free-
dom and equals to 10 [N/rad] for the rotational degrees of freedom.

• The damping B was equal to 2
√

K.

• The inertia I was equal to 0.

The relationship between the Cartesian position variation and the task force will,
with these parameters, behave along all degrees of freedom as a first-order system
with a time constant equal to 2/

√
K [Lawrence, 1988]. This way, we ensured sta-

bility of the system and proper following of the trajectory reference (overdamped
behavior).

3.2 Experimental Procedure
A cylinder insertion, or peg-in-hole, was the collaborative assembly task chosen for
the experiments, as shown in Fig. 2. The reason for the selection of this task was
that it presents a high amount of interaction with the environment: the hole where
the piston must be inserted was narrow in comparison to the piston, and also the
piston must make a vertical descent to avoid contacts. Therefore, the probability of
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an accidental collision was high if the reference trajectory was not accurate or if the
controller introduced uncertainty in the motion. Furthermore, it is an application
where the aid of a human operator can be valuable and it did not require a high level
of skill for the operator.

Figure 2. Setup for the collaborative assembly task (peg-in-hole) used for the ex-
periments. Figure 2-A (top) shows an accidental collision scenario, and Fig. 2-B
(bottom) shows a human cooperation event. The unitary vector of external forces
(white) and the unitary vector of Cartesian velocity (blue) were used in the contact-
classification algorithm proposed in Sec. 2.4. A video of the experiments can be
found at [Experiments video 2022].

The trajectories used range from almost-ideal trajectories, where the robot could
complete the insertion task and the only collisions were with the borders of the
hole of the box, to failed trajectories where the robot collided with the side of the
box and the robot was not able to overcome this collision and insert the piston
in the hole without human intervention. Other trajectories used were flawed with
manifest collisions with the top of the box, and depending on the nature of the
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trajectory, the robot might be able to find its way to the hole with no human input.
All trajectories were recorded several times using different initial poses to avoid a
trajectory-dependent contact detection and classification.

The desired trajectory of Cartesian poses, ξd(t), were recorded before the exper-
iments by leading through the robot and recording the Cartesian pose of the robot
end-effector. These trajectories served as the reference for the Cartesian impedance
controller of Eq. (1). The reference trajectory was solely time-dependent and did
not rely on the robot’s current pose, since ideally, the contact-detection and classifi-
cation algorithm should be implemented in a time-constrained scenario.

Additionally, regarding human cooperation, to test the validity of the assump-
tions proposed in Sec. 2.4 for a kinesthetic teaching application, the operators were
instructed to cooperate in an intuitive manner with the robot to either help the robot
with its cylinder insertion task or to push/pull the robot out of its trajectory to avoid
colliding with the box. Moreover, since human cooperation in a kinesthetic teach-
ing application may occur at different points of the trajectory in each of the runs,
some of the human interventions occurred while the piston was in collision with
the box and others while the robot was in free motion. Also, for the sake of data
completeness, the operators were also instructed to vary the location of contact with
the robot so that the human-cooperation events took place throughout all the links
of the robot and not only at a location close to the robot end-effector.

Furthermore, as commented in previous research, human–robot cooperation
may be very operator-dependent [Geravand et al., 2013; Briquet-Kerestedjian et al.,
2019; Cioffi et al., 2020]. Therefore, a total of four different operators (including
three external participants) individually manipulated the robot during the recording
of the experiments to test the sensitivity and robustness of the classification. Also,
the operators had different experience levels with robot manipulation to analyze the
role of this variable for the contact-classification method proposed.

4. Results

The total amount of data that were recorded included 266 contact events. These col-
lision events were divided into 148 accidental obstacle collisions and 118 voluntary
human cooperation events. In total, 28 accidental collisions and 28 human coopera-
tion events (from a single human operator) were used for the parameter tuning, and
the remaining contact events were used for the method’s evaluation.

4.1 Tuning and Evaluation of the Method
First, for contact detection, the force threshold parameter has been assigned a value
of Fth = 0.85 N, for all Cartesian directions. This value of the force-detection thresh-
old allowed that all contacts recorded in the evaluation experiments were detected,
and that no contact-detection false positive was detected. The frequency range used
for detection was ω ∈ [10,100] Hz.
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Accidental collisions were detected within 71 ms on average, with a standard
deviation of 31 ms. On the contrary, voluntary human-cooperation events were de-
tected within 133 ms on average, with a standard deviation of 66 ms. Thus, the
capacity of this method to detect contacts fast can be confirmed.

Additionally, the contact-classification threshold parameter was chosen to have
a value of γ = 6.2. This value should be chosen conservatively high, since it is
preferred to misclassify human cooperation events than accidental collisions. This
idea will be further developed in Sec. 5.

The results for the evaluation of the classification method are shown in
Tables 1 and 2. Table 1 displays the confusion matrix for all evaluation experiments
performed. It can be seen how 93.3% of the accidental collisions were correctly
classified (specificity), whereas for the cooperation events, 88.9% of them were
correctly classified (sensitivity).

Table 1. Confusion Matrix for Evaluation Experiments

Classified as
Collision Cooperation

Collision 112 (93.3%) 8 (6.7%)
Cooperation 10 (11.1%) 80 (88.9%)

Moreover, Table 2 breaks down the recorded cooperation events of Table 1 into
the four different operators involved in the evaluation experiments. As commented
before, the success rate of the contact classifier varied depending on the human op-
erator. For the method proposed, the sensitivity ranged from 85.2% to 96.2%. There-
fore, the sensitivity achieved using this method was still high for the human oper-
ator with the lowest classification rate. Furthermore, the sensitivity of the method
for experienced operators (Operators 1 and 2 in Table 2) was on average 91% with
a standard deviation of 5.3%, which is higher than the sensitivity of the method for
inexperienced operators (Operators 3 and 4 in Table 2), which was equal to 86.4%
with a standard deviation of 1.2%.

Table 2. Detail of Confusion Matrix for each Human Operator

Cooperation classified as
Collision Cooperation

Operator 1 1 (3.8%) 25 (96.2%)
Operator 2 3 (14.3%) 18 (85.7%)
Operator 3 4 (14.8%) 23 (85.2%)
Operator 4 2 (12.5%) 14 (87.5%)
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4.2 Contact Detection and Classification Example
Figure 1 provides an example of the data extracted for one trajectory execution. The
robot was initialized in free motion. It can be seen that at t = 2.616 s, a contact
was detected along the Z-direction. The contact was detected 87 ms after the ex-
ternal force signal along the Z-direction starts rising. Once contact was detected,
the contact-classifying part of the algorithm analyzed the force sense along the
Z-direction and compared it to the motion component along this direction using
condition (5). Since their signs were opposite, it cannot be determined that the
contact was a human-cooperation event. Then, the inequality (6) was used. Since
||⃗u ˙̂Fext

⊘ u⃗ ˙̂
ξ
||2 = 2.97 < 6.2 = γ , it can be concluded that the contact was an acci-

dental collision.
Moreover, at t = 4.290 s, a new contact was detected along the Y -direction

just 85 ms after this new contact occurred. Now, by evaluating condition (5) at
the contact time, it was seen that both the force component along the Y -direction
and the motion along this direction share the same sign and therefore it is con-
cluded that the contact belongs to the human cooperation category. Furthermore, if
the inequality (6) had been evaluated in this situation, the contact would also have
been labelled as a human cooperation, since ||⃗u ˙̂Fext

⊘ u⃗ ˙̂
ξ
||2 = 41.84 > 6.2 = γ .

Finally, no false positives occurred for contact detection for the entire trajectory
shown in Fig. 1, since, for the accidental collision, no force violated the thresh-
old along the X and Y -directions and no force violated the threshold along the
Z-direction once the value was lower than this threshold. Also, for the human-
cooperation segment, the force was at all times above the force threshold for some
of the three Cartesian directions after t = 4.290 s.

5. Discussion

In the event that only embedded sensors are available and the external force signal is
estimated using the generalized momentum observer [Haddadin et al., 2017], which
is currently implemented in commercial collaborative robots such as the Franka
Emika Panda [Franka Emika, 2019] and the KUKA LBR product family [Bischoff
et al., 2010], the assumption, considered in [Geravand et al., 2013; Kouris et al.,
2016; Kouris et al., 2018], that the frequency content of the estimated force is
easily distinguishable between voluntary human cooperation and accidental colli-
sions with static obstacles is not certain anymore in a collaborative assembly task.
However, we have experimentally demonstrated that the frequency content of the
external force signal can still be used for contact detection in this application. Nev-
ertheless, additional sensor information, provided by the embedded joint-position
sensors, regarding the robot’s motion prior to the detected contact, can be used to
classify the contact.

Moreover, several aspects of the implementation of the proposed method allow
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freedom to the designer for their selection, and this also has several consequences.
First, there is a trade-off between the contact-detection time, defined as the time
between the contact occurs and when it is detected, and the force threshold param-
eter Fth: if shorter detection times are desired, more false positives in the contact
detection will occur since Fth would be smaller. Using only embedded joint-torque
sensors causes longer detection times when compared to previous research that in-
cluded this same force threshold parameter but used external force/torque sensors
for a single force-direction detection [Kouris et al., 2016], [Kouris et al., 2018].
Nevertheless, the force-threshold parameter value used in our experiments has been
proven able to provide faster response times for all three force directions than al-
ternative machine-learning methods [Golz et al., 2015; Popov et al., 2017; Briquet-
Kerestedjian et al., 2019], while presenting no false positives in contact detection.

Second, the contact classifier’s threshold parameter, γ , can be varied depending
on the desired ratio between the sensitivity (percentage of human cooperation events
correctly classified) and the specificity (percentage of accidental collisions correctly
classified), since it is not possible to obtain a threshold parameter that allows no
ambiguity in the classifier part. Here, specificity must be prioritized to avoid false
positives in human cooperation. This is because the proposed method is aimed to be
used in a collaborative assembly task where the presence of accidental collisions is
expected, and if human cooperation is detected, the cooperation event can be used
for trajectory reprogramming using kinesthetic teaching [Karlsson et al., 2017].

Third, the method proposed solely requires tuning of two thresholding param-
eters (Fth and γ) to achieve a proper contact detection and classification along all
three force directions, compared to the 6 parameters per joint used for tuning the
method in [Geravand et al., 2013] and to the single parameter needed in [Kouris
et al., 2016; Kouris et al., 2018] for a single force direction. Also, as discussed
in [Kouris et al., 2016], the choice of the virtual inertia, damping, and mass of
Eq. (1) will have an effect on the sensed external force signal, and therefore, the
two thresholding parameters used in our proposed method must be varied if the de-
sired impedance behavior of the robot is different from the one described using the
values defined in Sec. 3.1.

The proposed method was not tested to detect transitions between acciden-
tal collision to free motion, or from cooperation to accidental collision since
we were not interested in these situations in the experimental application used
for evaluation. First, the peg-in-hole application would not have the accidental-
collision to free-motion situation, since when the piston impacts the cylinder,
it would not stop its impact without human intervention. Second, for this ap-
plication, a human intervention for kinesthetic teaching would not end up in a
purposeful direct transition to an obstacle collision. Also, the proposed method
can detect human-cooperation events while an accidental collision with an obsta-
cle is occurring, whereas this transition has not been tested by machine-learning
methods [Golz et al., 2015; Popov et al., 2017; Briquet-Kerestedjian et al.,
2019; Cioffi et al., 2020] or by the previously-proposed frequency-based meth-
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ods [Geravand et al., 2013; Kouris et al., 2016; Kouris et al., 2018]. This feature is
especially relevant for applications that use kinesthetic teaching for corrective
trajectory demonstration [Karlsson et al., 2017].

In addition, the proposed method’s accuracy (percentage of total contacts cor-
rectly classified) outperformed other methods previously presented (91.4% for the
proposed method, 86.3% for the method in [Cioffi et al., 2020], 89.5% for the
method in [Popov et al., 2017], and 81.9% for the method in [Briquet-Kerestedjian
et al., 2019]). The method presented in [Golz et al., 2015] provides the highest accu-
racy, 97.8%, but only one human operator was used for gathering experimental data.
Also, the proposed method’s accuracy (91.4%) was higher than the accuracy ob-
tained when using the same relevant variables (⃗u ˙̂Fext

and u⃗ ˙̂
ξ

) as parameter estimates
in Fisher’s Linear Discriminant [Fisher, 1938] for contact classification (83.3%).

Moreover, our method is novel compared to the methods in [Cioffi et al., 2020;
Golz et al., 2015; Popov et al., 2017; Briquet-Kerestedjian et al., 2019] in that it
has been designed for kinesthetic teaching applications, where a human operator
can lead-through the robot for trajectory reprogramming [Karlsson et al., 2017]:
the robot’s compliant behavior, contrary to the stiffer robot behavior in [Cioffi et
al., 2020; Golz et al., 2015; Popov et al., 2017; Briquet-Kerestedjian et al., 2019],
allows lead-through without controller switching (as well as providing safety for
both the robot and its environment), and also the method is able to classify a human-
cooperation event happening while an accidental collision is occurring.

Furthermore, the proposed method, although its evaluation involved only four
participants, can be considered robust with respect to different operators since the
standard deviation between operators of the sensitivity was equal to 4.4 percentage
points, which was lower than in other methods (10.1 percentage points in [Cioffi
et al., 2020], where four operators were involved, and 7.3 percentage points in
[Briquet-Kerestedjian et al., 2019], where three operators were involved). Also, the
difference in accuracy between trained and untrained operators was lower than in
[Briquet-Kerestedjian et al., 2019], being 4.6 percentage points (91% and 86.4%, re-
spectively) the difference in our method compared to 14.6 percentage points (86.4%
and 71.9%, respectively) in [Briquet-Kerestedjian et al., 2019], which showed the
validity of the assumptions for the intuitive human cooperation in kinesthetic teach-
ing that were included in Sec. 2.4 for both trained and untrained operators in a
collaborative assembly task. Thus, the proposed method can be used by different
operators for kinesthetic teaching in these tasks without the need for retuning.

6. Conclusion

Fast contact detection and classification based on the frequency-response analysis
of the estimated external force signals was evaluated, and necessary modifications
and extensions to detect and classify a contact in any direction for kinesthetic teach-
ing applications were proposed. Cartesian impedance control was used to allow safe
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human cooperation. The only sensors used for obtaining the external force estimate
were sensors that are conventionally embedded in commercial collaborative robots
and whose values were easily attainable: joint-torque sensors and joint-position en-
coders/resolvers.

The proposed modified method was proven to provide accurate results for both
accidental collision with stiff and static obstacles and voluntary human cooperation
in a collaborative assembly task. In addition, the method is trajectory-independent,
and was tested for a meaningful number of different operators, showing interesting
results for both trained and untrained operators.
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Paper III

Iterative Reference Learning for Cartesian
Impedance Control of Robot Manipulators

Julian M. Salt Ducaju Björn Olofsson Rolf Johansson

Abstract

In this paper, an iterative reference learning strategy was developed to im-
prove trajectory tracking for an impedance-controlled robot manipulator. In
this learning strategy, an update law to modify the Cartesian reference of an
impedance controller was proposed, and the conditions that ensured its con-
vergence considering the dynamics of the robot were provided. Finally, an ex-
perimental evaluation was performed using a Franka Emika Panda robot in two
different robot tasks, and its results showed that robot task completion could be
achieved in a small number of iterations, while maintaining a smooth physical
interaction between the robot and its surroundings.

Submitted to review for presentation at IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS) 2024.
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1. Introduction

The recent trends in the manufacturing industry to replace mass production for mass
customization could not be addressed by former industrial settings, characterized
by a fixed-structure workplace [Schou et al., 2013]. To avoid these limitations in
modern-day industrial environments, manufacturing processes should be able to
adapt with ease to rapidly changing requirements. Kinesthetic teaching, which is
a human–robot collaboration (HRC) strategy where a human collaborator manu-
ally guides a robot to define or modify a robot trajectory [Argall et al., 2009], has
been proposed for this purpose in the last years, since it allowed the use of human
dexterity and intelligence in robot task adaptation [Cencen et al., 2018].

In less-structured industrial environments, indirect force-control strategies, such
as impedance control [Hogan, 1985], are widely used, since, compared to other
force-control strategies, they rely less on an accurate description of the robot en-
vironment [Villani and De Schutter, 2016]. Impedance control regulates the inter-
acting forces between a robot and its environment by modeling the external force
applied to the robot as a mass-spring-damper relationship between the robot state
variation from a user-defined reference. By regulating the interaction force between
a robot and its environment, impedance control allows the physical guidance of
a robot by human operators, and provides physical safety to the actors involved.
However, the dynamical relationship imposed by impedance-control strategies in-
herently introduces a deviation in the robot trajectory, which might cause a robot
to not complete its designated task, e.g., in an insertion task where the peg–hole
tolerance is small.

Several strategies proposed in the past to improve trajectory tracking in a robotic
manipulator might cause undesired effects in collaborative environments. First,
position-feedback control [Kawamura et al., 1988] would modify the interaction
forces between the robot and its environment by increasing the robot stiffness,
which might damage the manipulated objects and pose a safety threat to robots
and/or humans involved. Also, other strategies that consist in trajectory scaling
[Dahl, 1992; Dahlin and Karayiannidis, 2021] would inherently slow down the ex-
ecution of the robot motion and might not be able to complete the robot task if the
dynamics of the robot is not fully modeled, e.g., joint elasticity or friction.

Moreover, strategies based on learning the desired robot behavior could be used
in this context [Bristow et al., 2006]. Among these strategies, Reinforcement Learn-
ing (RL) has gained popularity in recent years [Ibarz et al., 2021], although it might
still be too time-consuming for these robot applications, since this strategy often
requires a high number of trials to learn a desired robot behavior [Pierallini et al.,
2023]. Also, Iterative Learning Control (ILC) [Arimoto et al., 1984] has been used
extensively in the past to improve robot behavior. Nevertheless, in its linear formula-
tion [Norrlöf, 2000; Cano Marchal et al., 2014], ILC might not allow to fully exploit
the robot dynamics. Alternatively, adaptive iterative learning techniques (AILC)
[Park et al., 1996; Lee et al., 2019] can deal with robot nonlinearities, while re-
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lieving the high-stiffness requirements of previously-proposed strategies [Kuc et
al., 1991] (which had the same limitations as position-feedback controllers [Kawa-
mura et al., 1988] for physical interaction). However, the adaptive terms in AILC
would online modify the impedance behavior of a robot [Della Santina et al., 2017].
Finally, the use of learning techniques for impedance-controlled robots has been ex-
plored in the past [Cheah and Wang, 1998; Arimoto et al., 1999], but it was focused
on impedance matching, i.e., matching a desired physical interaction, instead of
reducing trajectory tracking error.

In this paper, we address the problem of improving trajectory tracking in robotic
applications where impedance control is used by proposing an iterative learning
strategy that provides a Cartesian reference update. To validate our proposal, several
experiments have been performed using a real robotic manipulator: a peg-in-hole
experiment, and the snap-fit assembly of a switch.

The paper is organized as follows: Sec. 2 introduces the dynamics model used
for Cartesian impedance control of robot manipulators. Then, Sec. 3 presents an
iterative reference learning strategy to improve robot Cartesian reference tracking.
The method proposed in Sec. 3 was extensively evaluated in experiments with a real
robot, presented in Sec. 4. Finally, a discussion is included in Sec. 5 and conclusions
are drawn in Sec. 6.

2. Modeling Background

The dynamic behavior of a robot manipulator controlled by a Cartesian impedance
strategy is introduced in this section.

2.1 Robot Dynamics
The dynamics of the robot can be written in the joint space of the robot, q ∈ Rn, as
[Siciliano and Khatib, 2016]

M(q)q̈+C(q, q̇)q̇+G(q) = τ + τ
ext (1)

where M(q) ∈ Rn×n is the generalized inertia matrix, C(q, q̇) ∈ Rn×n describes the
Coriolis and centripetal forces effects, and G(q) ∈ Rn captures the gravity-induced
torques. Finally, τ ∈ Rn represents the input torques, n being the number of joints
of the robot, and τext ∈ Rn are the external torques.

Moreover, the rigid-body equation of the robot can be rewritten in terms of its
end-effector pose ξ ∈Rm, which is composed by the position and orientation of the
end-effector

Mξ (q)ξ̈ +Cξ (q, q̇)ξ̇ +Gξ (q) = F +Fext (2)

where F ∈Rm is the input force, and Fext ∈Rm the external Cartesian forces. Addi-
tionally, for a fully-actuated robot (n = m), Mξ ∈ Rm×m, Cξ ∈ Rm×m, and Gξ ∈ Rm
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are equal to

Mξ = J−T(q)M(q)J−1(q) (3)

Cξ = J−T(q)(C(q, q̇)−M(q)J−1(q)J̇(q))J−1(q) (4)

Gξ = J−T(q)G(q) (5)

assuming that the Jacobian relative to the base frame of the robot, J(q)∈Rm×m, has
full rank [Khatib, 1987].

Furthermore, it is relevant to highlight two properties of a robot manipulator
[Ott, 2008, Ch. 3]:

• The robot inertia matrix Mξ in (2) is a positive definite matrix,

xTMξ x > 0, ∀x ̸= 0 (6)

• The matrix Ṁξ −2Cξ is skew symmetric,

xT
(

Ṁξ −2Cξ

)
x = 0, ∀x ̸= 0 (7)

2.2 Robot Cartesian Impedance Control
An input force F in (2) equal to [Ott, 2008, Ch. 3]

F = K∆ξ −Dξ̇ +Gξ (q) (8)

would achieve a Cartesian impedance control of the robot end-effector, i.e., a mass-
spring-damper relationship between the Cartesian pose variation from its reference,
∆ξ = ξd − ξ (ξd being the Cartesian reference) and the external Cartesian force
Fext,

Fext = Mξ (q)ξ̈ +(Cξ (q, q̇)+D)ξ̇ −K∆ξ (9)

where K ∈ Sm
++ and D ∈ Sm

++ (S++ denoting symmetric positive-definiteness) are
diagonal matrices that represent the control-induced stiffness and damping, respec-
tively.

3. Iterative Reference Learning Control

An iterative learning strategy to improve the Cartesian pose reference tracking for a
Cartesian impedance-controlled robot is presented in this section.
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3.1 Robot Input Feedforward and Error Dynamics
The input force F in (2) commanded to the robot could include an additional feed-
forward term Ff f [Kuc et al., 1991; Park et al., 1996] computed using iterative
learning

F = Ff b +Ff f (10)

where Ff f = 0 at the first learning iteration, and the input force feedback term Ff b
is given by the desired Cartesian impedance behavior (9). Then, choosing an error
variable e ∈ R6 with respect to a desired Cartesian pose, ξR ∈ R6, as

e = ξR−ξ (11)

the error dynamics of the system in the absence of external forces acting on the
robot would be equal to

Mξ ë+(Cξ +D)ė+Ke =−Ff f (12)

with ξ̇R = ξ̈R = 0.

3.2 Learning Update Law
An update law at iteration i+1 for the Cartesian impedance controller reference
used in (9),

i+1
ξd = i

ξd +βK−1D
[
R(ξR− i

ξ )− i
ξ̇

]
(13)

where β > 0 is the iterative learning gain, 0
ξd = ξR, and

R = D−1(K−ϒ)> 0 (14)

was obtained from the following force input feedforward strategy

i+1Ff f =
iFf f +βD i

ζ (15)

with i
ζ ∈ R6 that considered the Cartesian pose error (11) and its time derivative,

i
ζ = iė+R ie (16)

REMARK The impedance-controlled robot behavior resulting from an iterative
strategy where ξd in (9) is modified at every iteration step so that the error sig-
nal e in (11) converges to 0, would be stable by design. See [Salt Ducaju et al.,
2022, Lemma III.2] for more details of the stability justification for such impedance-
controlled robots. 2

The structure for the proposed Iterative Reference Learning Controller (IRLC)
was illustrated in Fig. 1. It can be seen that at every iteration, the Cartesian
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i+1
ξd

i
ξ ,

i
ξ̇

ξRIRLC

Robot with Cartesian
Impedance Controller

Figure 1. Illustration of the iterative learning controller proposed to reduce the
robot trajectory error.

impedance reference sent to the controller is calculated considering the robot mo-
tion at the previous iteration, and the desired Cartesian pose.

Moreover, the update law in (13) is equivalent to, after N > 0 iterations

N
ξd = ξR +βK−1D

[
R
(

NξR−
N−1

∑
j=0

j
ξ

)
−

N−1

∑
j=0

j
ξ̇

]
(17)

3.3 Convergence Analysis
A convergence analysis of the update law provided in Sec. 3.2 is presented in this
section.

THEOREM 3.1
The proposed update law (13) would allow ξ to converge to ξR provided that the
learning gain β > 0 of the iterative scheme is chosen so that the following condi-
tions are fulfilled

gė = (2−β )λm(D)−2RλM(Mξ )> 0 (18)

ge = (2−β )λm(D)−2λM(Cξ )+2λm(R−1
ϒ)> 0 (19)

√
gėge > λM(∥R−1

ϒ−RMξ −Cξ∥) (20)

where λm and λM refer to the minimum and maximum eigenvalues, for all t ∈ [0, tF],
respectively, with tF being the final time of the robot task execution. 2

Proof. Using the performance index

iV = β

∫ t

0

(
i
ζ

)T
D
(

i
ζ

)
dt > 0 (21)
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and (15), it can be shown that

i+1V = β

∫ t

0

(
i+1

ζ

)T
D
(

i+1
ζ

)
dt

= β

∫ t

0

[(
i
ζ

)T
D
(

i
ζ

)
+
( i

∆ζ
)TD

( i
∆ζ
)
+2
( i

∆ζ
)TD i

ζ

]
dt (22)

where i+1
ζ = i

ζ + i
∆ζ . Then, the error dynamics of the system (12) expressed in

terms of the variable ∆ζ (and assuming that Mξ and Cξ do not vary between the
same sample time of consecutive iterations) is equal to

Mξ

i
∆ζ̇ +(Cξ +D−RMξ )

i
∆ζ +(−RCξ +R2Mξ +ϒ) i

∆e =−βD i
ζ (23)

and it can be obtained that

i
∆V = i+1V − iV =

∫ t

0

[
β
( i

∆ζ
)TD

( i
∆ζ
)
−2
( i

∆ζ
)TMξ

i
∆ζ̇

−2
( i

∆ζ
)T
(Cξ −D−RMξ )

i
∆ζ −2

( i
∆ζ
)T
(R2Mξ −RCξ +ϒ) i

∆e
]
dt (24)

Moreover,

d
dt

(( i
∆ζ
)TMξ

i
∆ζ

)
=
( i

∆ζ
)TṀξ

i
∆ζ +2

( i
∆ζ̇
)TMξ

i
∆ζ (25)

so (24) can be rewritten as

i
∆V =−

( i
∆ζ
)TMξ

( i
∆ζ
)
+
∫ t

0

[( i
∆ζ
)TMξ

( i
∆ζ
)
+β

( i
∆ζ
)TD

( i
∆ζ
)

−2
( i

∆ζ
)T
(Cξ +D−RMξ )

( i
∆ζ
)
−2
( i

∆ζ
)T
(R2Mξ −RCξ +ϒ)

( i
∆e
)]

dt

(26)

Since Mξ is positive definite, (6), and Ṁξ −2Cξ is a skew-symmetric matrix, (7),

i
∆V ≤

∫ t

0

[
β
( i

∆ζ
)TD

( i
∆ζ
)
−2
( i

∆ζ
)T
(D−RMξ )

( i
∆ζ
)

−2
( i

∆ζ
)T
(R2Mξ −RCξ +ϒ)

( i
∆e
)]

dt (27)

which is equivalent to

i
∆V ≤

∫ t

0

[( i
∆ζ
)T
((β −2)D+2RMξ )

( i
∆ζ
)

−2
( i

∆ζ
)T
(R2Mξ −RCξ +ϒ)

( i
∆e
)]

dt (28)
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Using (16) to substitute i

∆ζ ,∫ t

0

( i
∆ζ
)T
((β −2)D+2RMξ )

( i
∆ζ
)
dt =∫ t

0

( i
∆ė
)T
((β −2)D+2RMξ )

( i
∆ė
)
dt

+
∫ t

0

(
R i

∆e
)T
((β −2)D+2RMξ )

(
R i

∆e
)
dt

+2
∫ t

0

(
R i

∆e
)T
((β −2)D+2RMξ )

( i
∆ė
)
dt (29)

and, ∫ t

0
−2β

( i
∆ζ
)T
(R2Mξ −RCξ +ϒ)

( i
∆e
)
dt =

−2R
∫ t

0
β
( i

∆e
)T
(RMξ −Cξ +R−1

ϒ)
(
R i

∆e
)
dt

−2
∫ t

0
β
( i

∆ė
)T
(RMξ −Cξ +R−1

ϒ)
(
R i

∆e
)
dt (30)

Therefore,

i
∆V ≤

∫ t

0

( i
∆ė
)T
((β −2)D+2RMξ )

( i
∆ė
)
dt

+2
∫ t

0

( i
∆ė
)T
((β −2)D+RMξ +Cξ −R−1

ϒ)
(
R i

∆e
)
dt

+
∫ t

0

(
R i

∆e
)T
((β −2)D+2Cξ −2R−1

ϒ)
(
R i

∆e
)
dt (31)

Then, applying integration by parts,

i
∆V ≤

∫ t

0

( i
∆ė
)T
((β −2)D+2RMξ )

( i
∆ė
)
dt

+2
∫ t

0

( i
∆ė
)T
(RMξ +Cξ −R−1

ϒ)
(
R i

∆e
)
dt

+
∫ t

0

(
R i

∆e
)T
((β −2)−2R−1

ϒ+2Cξ )
(
R i

∆e
)
dt

+
( i

∆e
)TD((β −2)D)

(
R i

∆e
)

(32)

where
( i

∆e
)T
((β −2)D)

(
R i

∆e
)
≤ 0 for β < 2. This expression can be rewritten as

i
∆V ≤−

∫ t

0

[ i
∆ė

R i
∆e

]T

Ω

[ i
∆ė

R i
∆e

]
dt (33)
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for

Ω =

[
gėI6 R−1ϒ−RMξ −Cξ

R−1ϒ−RMξ −Cξ geI6

]
(34)

where I6 ∈ R6×6 represents an identity matrix. If conditions (18), (19), (20) are
fulfilled, Ω ≥ 0, i.e., all the eigenvalues of Ω would be nonnegative. Therefore,

i
∆V ≤ 0, where i

∆V = 0 would only hold for i
∆e = i

∆ė = 0. As discussed in [Kuc
et al., 1991], where a performance index similar to (21) was used, this would imply
that limi→∞

ie = 0 for all t ∈ [0, tF]. 2

4. Experiments

The IRLC strategy proposed in Sec. 3 was evaluated for several robot tasks.

4.1 Application Scenario
Kinesthetic teaching [Wrede et al., 2013] allows a human operator to manually
guide a robot manipulator to define or to correct a robot trajectory, which corre-
sponds to a certain robot task (see Fig. 2). However, a robot controlled with an
impedance controller, such as the Cartesian impedance controller in (8), that uses
these operator-defined Cartesian poses as references might not be able to complete
its task because of the trajectory-tracking deviation introduced by these controllers
(to the advantage of allowing physical interaction between the robot and its sur-
roundings).

Therefore, the goal of the experiments presented in this section is to evaluate if
the iterative learning strategy proposed in Sec. 3 would allow a robot to complete its
desired task by updating a manually-defined Cartesian reference used in a Cartesian
impedance-controlled robot.

The experiments presented in this section were performed using a Franka Emika
Panda [Panda – Data Sheet 2019] robot mounted on a table, as shown in Fig. 2.
Since robot joint redundancy is out of the scope of this paper, the seventh joint of
the robot was locked at θ7 = π/2 rad, and only the first six joints of the robot were
controlled. The robot was controlled at a sampling rate equal to 1 kHz.

4.2 Peg-in-Hole Task
In a peg-in-hole robot task, a robot manipulator should insert a peg (in this experi-
ment, with cylindrical shape) attached to its end-effector in a hole whose dimensions
are slightly larger than the ones of the peg.

For this experiment, the Cartesian impedance values selected were:

• The virtual stiffness K was chosen as 150 [N/m] for the translational degrees
of freedom and as 15 [N/rad] for the rotational degrees of freedom.

• The virtual damping D was chosen as 50 [Ns/m] for the translational degrees
of freedom and as 10 [Ns/rad] for the rotational degrees of freedom.
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Figure 2. A human operator manually guiding a Franka Emika Panda [Panda –
Data Sheet 2019] robot mounted on a table to define the desired robot Cartesian
poses, ξR in (11), for a peg-in-hole task.

Moreover, for the learning update law (presented in Sec. 3.2), the Cartesian
impedance parameters selected (K and D), together with the iterative convergence
conditions (18)–(20) of Theorem 3.1, allowed to choose β = 0.5, and R= 2.5 for the
translational degrees of freedom and R = 0.92 for the rotational degrees of freedom.

The results for this experiment are shown in Figs. 3, 4, and 5. Figure 3 shows
the temporal evolution of the end-effector position of the robot. It can be seen in
Fig. 3 that before using the iterative learning strategy proposed (labeled No IRLC),
the Cartesian impedance controller deviated from the desired trajectory (labeled
ξR), which prevented the robot to complete its task, i.e., to insert the peg in the
hole. This is also shown in the left image of Fig. 4, which displays the position
of the peg once the robot trajectory is executed for two different scenarios: before
learning (left) and after learning (right). Finally, Fig. 3 shows that the deviation with
respect to the desired trajectory decreased at every learning iteration, with the robot
being able to complete its task after only two learning iterations. Consistent with
the tracking-error reduction at each learning iteration, the performance index i V of
Eq. (21) decreased at each iteration, i.e., the performance index variation, i

∆V of
Eq. (24), is negative for all learning iterations, as shown in Fig. 5, which matches
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the convergence analysis of this method presented in Theorem 3.1.
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Figure 3. Temporal evolution of the position of the robot end-effector along each
Cartesian direction x,y,z with respect to its desired values for a peg-in-hole task.

Comparison with an Alternative ILC Method The benefits of the iterative ref-
erence learning proposal presented in Sec. 3 is highlighted by comparing its perfor-
mance to one of the methods that have been used extensively in literature, namely
ILC [Arimoto et al., 1984; Norrlöf, 2000]. An ILC strategy could be defined using
an input update law

i+1U(z) = Q(z)(iU(z)+L(z) iE(z)) (35)

with iE(z)=YR(z)− i Y (z) being the output error signal, L(z) representing a learning
filter, Q(z) being a low-pass filter used to improve the robustness of the ILC method,
and z representing the discrete-time operator. Then, the Cartesian impedance be-
havior (9) of the robot was used to obtain m transfer functions where each output,
ym ∈ R, of the system would be equal to the corresponding component of ξ and
each input, um ∈ R, of the system would be equal to the corresponding component
of ξR, by considering the behavior of the robot during the initial execution of the
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Figure 4. Comparison between the final position of the peg before the proposed
iterative learning strategy was used (left) and after six iterations of the proposed
learning controller (right) for a peg-in-hole task.
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Figure 5. Performance index (left), i V of Eq. (21), and performance index varia-
tion (right), i

∆V of Eq. (24), for each learning iteration i for a peg-in-hole task.

peg-insertion task to formulate each of these transfer functions. The transfer func-
tions obtained, in the Laplace domain, are

Gc(s) =
ω2

n

s2 +2δωns+ω2
n

(36)

with ωn = 3.78 rad/s and δ = 0.64 for the position DOFs, and ωn = 2.58 rad/s and
δ = 1.44 for the orientation DOFs, which are then discretized using a zero-order
hold (ZOH) method at the sampling period of the robot, i.e., h = 0.001 s, to obtain
each G(z). The learning gain L(z) in (35) was chosen as

L(z) = G̃−1(z)(1−H(z)) (37)

with G̃−1(z) being an approximation to the inverse of G(z), where the inverted ze-
ros of G(z) that have a negative real part were mirrored to the unit circle to avoid
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obtaining a ringing behavior [Cano Marchal et al., 2014], and H(z) is a first-order
high-pass filter used to determine the convergence rate [Norrlöf, 2000]. The selec-
tion of the learning gain L(z) as in (37), together with choosing Q(z) as a first-order
low-pass filter with cut-off frequency ωc = 50 Hz for robustness, fulfills the conver-
gence criterion for this formulation [Norrlöf, 2000]:

sup
ω∈[−π,π]

∣∣∣∣1−G(eiωh)L(eiωh)
∣∣∣∣< Q(eiωh)−1 (38)

for all DOFs.
Moreover, Figs. 6 and 7 show a comparison between the proposed IRLC so-

lution presented in Sec. 3 and the alternative ILC method. The differences in the
temporal evolution of the Euclidean norm of the position error between these two
methods are observed in Fig. 6: the ILC method (right) commanded more aggressive
position corrections, yet fourteen iterations were necessary for robot task comple-
tion. On the contrary, the IRLC solution proposed (left) provided a smoother conver-
gence for all iterations that allowed a faster robot task completion (since its second
iteration). Furthermore, Fig. 7 shows a comparison of the absolute input force (8)
variation ||∆F || between our proposal and the alternative ILC at their final iteration,
i.e., the iteration where the peg insertion task was completed (without the peg im-
pacting the box containing the hole before its insertion) for each formulation. It can
be observed in Fig. 7 that the aggressive corrections performed by the alternative
ILC method translated into much greater impedance force variation requirements
(21.2 N on average) compared to the IRLC proposal (4.4 N on average).

0 2 4 6 8 10

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 2 4 6 8 10

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 6. Temporal evolution of the Euclidean norm of the position error of the
robot end-effector for a peg-in-hole task. Comparison between the proposed IRLC
solution (left) and an ILC alternative (right).
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Figure 7. Comparison of the input force variation ||∆F || between the proposed
IRLC solution (blue) and an ILC alternative (red).

Choosing Different Cartesian Impedance Parameters The impedance require-
ments of a robot task might change over time, which would imply the selection of a
different set of robot impedance parameters, i.e., its virtual stiffness K and damping
D. As a result, the trajectory tracking behavior of the robot would be modified in
this scenario, thus leading to the possibility that a, previously-successful, robot task
might not be completed when the robot impedance parameter values are updated.

In this experiment, the translational Cartesian impedance parameters of the pre-
vious experiment were changed from 150 to 200 [N/m] for the virtual stiffness K,
and from 50 to 70 [Ns/m] for the virtual damping D. The initial Cartesian reference
for this experiment was chosen as the one used at the last iteration (i.e., Iteration 6)
of the previous experiment.

Figure 8 shows the temporal evolution of the position of the robot end-effector
when varying the Cartesian impedance values in this peg-in-hole task, zoomed at
the proximity of the inserted-peg position, see Fig. 4 (right). It is observed in Fig. 8
how the trajectory-tracking variation that occurred when selecting different robot
impedance parameters caused the robot to not complete its task (labeled Iter. 0).
However, using the iterative reference learning strategy proposed in Sec. 3, peg-in-
hole task completion was achieved after only three additional iterations.

4.3 Snap-Fit Assembly of a Switch
The use of the IRLC strategy proposed in Sec. 3 to improve robot trajectory tracking
was also evaluated for the snap-fit assembly of a switch, where the same values
for impedance (K and D) and learning parameters (β and R) as in the previous
experiments were selected. The workpieces involved in this assembly, which were
components of an emergency stop button [Stolt et al., 2011], can be seen in Fig. 9,
i.e., the switch, in a dark grey color and gripped by the robot, and a light gray piece
with slots where the two lateral tabs of the switch should be inserted.
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Figure 8. Temporal evolution of the position of the robot end-effector along each
Cartesian direction x,y,z with respect to its desired values for a peg-in-hole task with
different Cartesian impedance values (zoom at the proximity of peg insertion).

Figure 9. Comparison between the final position of the switch before iterative
learning was used (left) and after eight iterations of the proposed learning controller
(right) for the snap-fit assembly of a switch.
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Figure 10 shows the robot end-effector position throughout the switch snap-fit
assembly experiments for different iterations. It can be seen in Fig. 10 that trajec-
tory tracking improved at each iteration, which, as in the peg-in-hole experiment, is
consistent with the monotonous decrease of the performance index i V of Eq. (21),
and the negative performance index variation, i

∆V of Eq. (24), shown in Fig. 11 for
all learning iterations. Also, the robot was able to complete its task after only eight
iterations.

0 1 2 3 4 5 6 7 8 9 10

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10

-0.01

-0.005

0

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

Figure 10. Temporal evolution of the position of the robot end-effector along each
Cartesian direction x,y,z with respect to its desired values for the snap-fit assembly
of a switch.

The trajectory-tracking requirements of this switch snap-fit assembly task were
more demanding than in the previous peg-in-hole scenario in terms of the assembly
tolerance and in the greater possibility of the two pieces involved in the robot task
getting stuck, see, e.g., Fig. 9 (left). Also, compared to the previously-presented
peg-in-hole experiment, these assembly experiments would require to compensate
for the external force needed to snap-fit the switch. For these reasons, slightly more
iterations (eight) than in the peg-in-hole scenario were needed to obtain an updated
Cartesian reference that allowed robot task completion.
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Figure 11. Performance index (left), i V of Eq. (21), and performance index vari-
ation (right), i

∆V of Eq. (24), for each iterative learning iteration i for the snap-fit
assembly of a switch.

5. Discussion

In this paper, we have proposed an iterative reference learning strategy that mod-
ifies the Cartesian reference of a robot impedance controller to achieve robot task
completion. The proposed strategy has shown to improve the tracking of a robot
Cartesian trajectory defined by human guidance in the context of kinesthetic teach-
ing.

Moreover, the proposed strategy is compatible with a selection of robot
impedance parameters (virtual stiffness K and damping D) that allowed a
non-damaging interaction with the environment of the robot. This would have
been a limitation of previously-proposed high-stiffness learning techniques [Kuc et
al., 1991], where a performance index similar to the one in Eq. (21) was used. Also,
contrary to adaptive learning techniques [Park et al., 1996; Lee et al., 2019], the
selection of impedance parameters needed not be modified online in our proposal.
These previous adaptive learning techniques [Park et al., 1996; Lee et al., 2019]
formulated update laws for the force input feedforward signal similar to our pro-
posal in Eq. (15). However, in comparison, the update law in our proposal allowed
to choose difference position gain values, R in Eq. (16), for each DOF.

Furthermore, the extensive evaluation experiments performed with a real col-
laborative robot manipulator showed that our proposal was able to achieve task
completion for several robot tasks in a few iterations, which contrasted with the
high number of iterations often required in other learning techniques, such as in
Reinforcement Learning [Pierallini et al., 2023]. Additionally, as seen in the ex-
perimental comparison performed between the proposed method and an alternative
ILC method [Arimoto et al., 1984], the linearity assumptions in the alternative ILC
method [Norrlöf, 2000; Cano Marchal et al., 2014] allowed convergence guaran-
tees for aggressive compensations that turned inferior in the experimental task per-
formed, resulting in slower robot task completion and larger impedance force vari-
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ation. In comparison, our proposal considered the nonlinearities of robot dynamics
in its convergence analysis, which translated into a more conservative trajectory ref-
erence update that lead to a faster (i.e., in less iterations) convergence to robot task
completion.

6. Conclusion

Iterative learning can improve trajectory tracking for robot applications where
impedance control is used by providing a Cartesian reference update. The proposed
IRLC strategy was evaluated in several experiments using a real collaborative robot.
These experiments showed a smooth convergence toward robot task completion in
a small number of learning iterations, also compared to an alternative ILC method,
which highlighted the suitability of the proposed method for collaborative human–
robot applications.
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Robot Cartesian Compliance Variation for
Safe Kinesthetic Teaching using Safety

Control Barrier Functions
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Abstract

Kinesthetic teaching allows human operators to reprogram part of a robot’s tra-
jectory by manually guiding the robot. To allow kinesthetic teaching, and also
to avoid any harm to both the robot and its environment, Cartesian impedance
control is here used for trajectory following. In this paper, we present an online
method to modify the compliant behavior of a robot toward its environment,
so that undesired parts of the robot’s workspace are avoided during kinesthetic
teaching. The stability of the method is guaranteed by a well-known passivity-
based energy-storage formulation that has been modified to include a strict
Lyapunov function, i.e., its time derivative is a globally negative-definite func-
tion. Safety Control Barrier Functions (SCBFs) that consider the rigid-body
dynamics of the robot are formulated as inequality constraints of a quadratic
optimization (QP) problem to ensure forward invariance of the robot’s states
in a safe set. An experimental evaluation using a Franka Emika Panda robot is
provided.

© 2022 IEEE. Reprinted, with permission, from 2022 IEEE International Confer-
ence on Automation Science and Engineering (CASE), August 20-24, Mexico City,
Mexico, pp. 2259–2266.

123



Paper IV. Robot Cartesian Compliance Variation for Safe Kinesthetic Teaching
using Safety Control Barrier Functions
1. Introduction

Physical Human–Robot Interaction (pHRI) has become a popular topic in the
robotics community, since it addresses the recent trend in the manufacturing in-
dustry to replace mass production for mass customization [Schou et al., 2013]. As
part of this change of paradigm, human operators have become direct collaborators
in robotic tasks, and robots that are compliant toward their environment have gained
relevance.

An interesting application of human collaboration in robotics is to reprogram
part of the robot’s trajectory [Karlsson et al., 2017] by manually guiding the
robot, which is known as kinesthetic teaching [Schou et al., 2013]. However, the
workspace that humans and robots share may not be entirely available, e.g., if an-
other robot arm is occupying part of the workspace, or if there is sensitive equip-
ment in the workspace. Then, the robot’s compliant behavior toward its environment
should be modified so that the human operator cannot guide the robot to unsafe sit-
uations. In addition, the compliance variations must be done in such a way that the
stability of the robot’s controller is ensured. Passivity-based energy storage has been
used previously to provide a stable variation of the impedance parameters of a robot
[Ferraguti et al., 2013; Landi et al., 2018].

Moreover, Safety Control Barrier Functions (SCBFs) have gained attention in
recent years [Ames et al., 2019; Wang et al., 2017; Landi et al., 2019; Ferraguti et
al., 2020; Rauscher et al., 2016; Singletary et al., 2021], because they provide more
formal guarantees for obstacle avoidance than the artificial potential-field methods
used in the past for this purpose [Khatib, 1985]. Safety control barrier functions
provide safety by enforcing forward invariance of a set, i.e., SCBFs ensure that a
system does not leave a safe set [Ames et al., 2019]. They can be formulated as
inequality constraints of a quadratic optimization (QP) problem to modify the input
to the system [Ames et al., 2019; Wang et al., 2017]. Additionally, SCBFs have
been used to perform a minimally-invasive modification of the robot’s behavior to
avoid safety threats, such as obstacle collisions [Landi et al., 2019; Ferraguti et al.,
2020; Rauscher et al., 2016; Singletary et al., 2021].

In this paper, we address the problem of safe kinesthetic teaching by modify-
ing the Cartesian compliant behavior of a robot with respect to its environment
in a strictly stable manner, such that we can ensure that the robot’s end-effector
avoids undesired parts of its workspace. Safety control barrier functions that con-
sider the rigid-body dynamics of the robot are used as inequality constraints of a
quadratic optimization problem to online modify the robot’s compliance behavior
in a minimally-invasive way, so that the human operator can still manipulate the
robot while avoiding any safety threat.

The paper is organized as follows: Sec. 2 introduces relevant mathematical con-
cepts that are used in our method. Then, Sec. 3 presents the method for solving
the described problem. Section 4 explains the experiments performed, and Sec. 5
presents the results obtained. Finally, a discussion is included in Sec. 6 and conclu-
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sions are drawn in Sec. 7.

2. Mathematical Background

In this section, we discuss two relevant mathematical concepts. First, SCBFs for safe
set forward invariance. Second, passivity-based energy storage for stable variation
of the robot compliant behavior with respect to its environment.

2.1 Safety Control Barrier Functions (SCBFs)
Consider a nonlinear control-affine system:

ẋ = f (x)+g(x)u (1)

that has closed-loop system dynamics with a state-feedback controller k according
to

ẋ = fcl(x, t) = f (x)+g(x)k(x, t) (2)

Moreover, define a safe set C , with boundary ∂C and interior Int(C ), as [Ames et
al., 2019]

C = {x ∈ Rn | h(x)≥ 0} (3)
∂C = {x ∈ Rn | h(x) = 0} (4)

Int(C ) = {x ∈ Rn | h(x)> 0} (5)

For C to be forward invariant [Ames et al., 2019],

sup
u∈U

[L f h(x)+Lgh(x)u]≥−κ(h(x)) (6)

for all x ∈ D , being h the SCBF, h : D −→ R with C ⊆ D ⊂ Rn, κ an extended
class-K∞ function (strictly monotonically increasing), L f h(x) = (∂h/∂x) f (x), and
Lgh(x) = (∂h/∂x)g(x). Also, the authors in [Wang et al., 2017] highlight the pos-
sibility of choosing κ(h) = γhZ (γ > 0) for any positive odd integer Z.

Furthermore, a quadratic optimization (QP) problem can be formulated to min-
imize the difference between the input to the system, u, and the nominal state-
feedback controller in (2), kd , while using SCBFs to formulate an inequality con-
straint that allows obstacle avoidance [Ames et al., 2019]:

k(x, t) =arg minu∈Rm
1
2

∣∣∣∣u− kd(x, t)
∣∣∣∣2

2

s.t. ḣ(x, t,u)≥−κ(h(x, t)) (7)
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2.2 Passivity-Based Energy Storage
Energy storage has previously been used to handle stiffness variations in robots
[Ferraguti et al., 2013; Landi et al., 2018]. This formulation is based on the idea
of keeping the energy introduced to the system lower that the energy dissipated by
the system. The energy dissipated by the system’s damping is stored in an energy
reservoir with state z(t) ∈ R and dynamics

ż =
ϕ

z
PD−

σ

z
PK (8)

where PD and PK represent the dissipated power due to damping and the power
caused by the stiffness variation, respectively. Also, the parameter ϕ ∈ {0,1} con-
trols the storage of dissipated energy and disables the storage if the energy stored is
higher than an upper bound T̄ , and the parameter σ ∈ {ϕ,1} controls the injection
or extraction of energy from the storage. The energy stored is

T (z) =
1
2

z2 (9)

and its time derivative is
Ṫ (z) = zż = ϕPD−σPK (10)

A lower bound δ is used for the minimum amount of energy stored. In addition, to
avoid singularities, z(t = 0) > 0 with T (z(0)) ≥ δ . Then, the authors in [Ferraguti
et al., 2013; Landi et al., 2018] showed that the system is passive with respect to
the pair (Fext, ξ̇ ) if T (t)≥ δ , where Fext ∈ R6 is the external force and ξ ∈ SE(3)
is the end-effector pose of the robot.

3. Method

We aim to formulate a state-feedback controller (2) that allows safe kinesthetic
teaching. Here, the nominal state-feedback controller, kd , represents the robot’s de-
sired Cartesian compliant behavior. Then, the robot’s compliant behavior is modi-
fied by a quadratic optimization problem (7) to ensure that the robot’s states stay in
a safe set.

3.1 Robot System
The rigid-body dynamics of the robot can be written in the joint space of the robot,
q ∈ Rn, as [Siciliano and Khatib, 2016]

M(q)q̈+C(q, q̇)q̇+G(q) = τ + τ
ext (11)

where M(q) ∈ Rn×n is the generalized inertia matrix, C(q, q̇) ∈ Rn×n describes
the Coriolis and centripetal forces effects, G(q) ∈ Rn captures the gravity-induced
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torques, and τ ∈Rn represents the input torques, n being the number of joints of the
robot. Finally, τext ∈ Rn represents the external torques.

The rigid-body equation of the robot can be written in terms of its end-effector
pose, ξ , which is composed by the end-effector’s position and orientation:

Mξ (q)ξ̈ +Cξ (q, q̇)ξ̇ +Gξ (q) = F +Fext (12)

where F ∈R6 is the input force, and, for a fully-actuated robot (n = 6), Mξ ∈R6×6,
Cξ ∈ R6×6, and Gξ ∈ R6 are equal to

Mξ = J−T(q)M(q)J−1(q) (13)

Cξ = J−T(q)(C(q, q̇)−M(q)J−1(q)J̇(q))J−1(q) (14)

Gξ = J−T(q)G(q) (15)

assuming that the Jacobian relative to the base frame of the robot, J(q) ∈R6×6, has
full rank [Khatib, 1987].

By applying partial feedback linearization [Khalil, 2014, Ch. 9], we can write
the input, u ∈ R6, to the system as the gravity-compensated force:

u = F +Fext−Gξ (q) (16)

Then, by choosing the state vector as x = [ξ T, ξ̇ T]T ∈ R12, the linearized system is

ẋ = A(q, q̇)x+B(q)u (17)

where

A =

[
06 I6
06 −M−1

ξ
(q)Cξ (q, q̇)

]
, B =

[
06

M−1
ξ

(q)

]
(18)

LEMMA 3.1
Mξ (q) is invertible since J(q) is also invertible. 2

Proof. We know that M(q) is invertible because M(q) is a symmetric positive-
definite matrix (M(q)∈ Sn

++) [Siciliano and Khatib, 2016]. Then, it can be obtained
from (13) that

M−1
ξ

(q) = (J−T(q)M(q)J−1(q))−1 = J(q)M−1(q)JT(q) (19)

which holds since we have assumed that J(q) has full rank to formulate the rigid-
body equation (12). 2
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3.2 Cost Function
The nominal state-feedback controller (2), kd ∈ R6, should achieve the robot’s
desired Cartesian compliant behavior. A Cartesian impedance controller [Hogan,
1985] is used to establish a mass-spring-damper relationship between the Cartesian
pose variation from its reference, ∆ξ = ξd − ξ , ξd being the Cartesian reference,
and the external Cartesian force, Fext:

Fext = Mξ (q)ξ̈ +(D+Cξ (q, q̇))ξ̇ −K∆ξ (20)

where D and K are the virtual damping and stiffness matrices, respectively. The
virtual inertia is chosen equal to the robot inertia, Mξ (q), to avoid inertia shaping
[Ott, 2008, Ch. 3.2], so that the input force F does not require feedback from the
external forces and is equal to

F = K∆ξ −Dξ̇ +Gξ (q) (21)

Therefore, the gravity-compensated nominal state-feedback controller is

kd = K∆ξ −Dξ̇ +Fext (22)

and we can formulate a new cost function analogous to the cost function in (7),

L(ξ , ξ̇ ,u,Fext) =
1
2

∣∣∣∣u−K∆ξ +Dξ̇ −Fext∣∣∣∣2
2 (23)

Then, the cost function (23) can be expressed in terms of the states and inputs
of the system, assuming that ξ̇d = 0, (x− xd) =

[
−∆ξ T, ξ̇ T

]T
:

L(x,u,Fext) =
1
2

∣∣∣∣u+ [K, D
]
(x− xd)−Fext∣∣∣∣2

2 (24)

3.3 Inequality Constraint
A safety function can be formulated to ensure that the safety distance is always
greater or equal than the current distance to the obstacles subtracted by the distance
needed to brake the system into a full stop with constant and instantaneous accel-
eration [Wang et al., 2017; Ferraguti et al., 2020]. For our problem, each of these
three elements can be formulated as:

• The safety distance Ds is a constant parameter that can be formulated as

Ds = rrb + ro (25)

where rrb and ro are the radii of two protective spheres around the robot end-
effector and an obstacle that represents the undesired part of the workspace,
respectively.
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• The current distance ||∆ρ|| is defined using the difference between the robot
end-effector position and the obstacle’s position,

∆ρ = ρ−ρo (26)

where ρ =
[
ξx, ξy, ξz

]T is the robot’s position vector and ρo =[
ξo,x, ξo,y, ξo,z

]T is the position of the obstacle. The parameters in ρo
are constant parameters, since we are considering a static (or semi-static)
obstacle.

• The distance needed to brake the robot to full stop is slightly more elaborated.
For a constant acceleration, abr > 0, the total distance between a final position
ρF and an initial position ρ0 after an elapsed time t of an object that starts at
ρ0 with relative velocity vrel < 0 is

||ρF−ρ0||=−vrelt−
1
2

abrt2 (27)

and since the time to brake to full stop is t =−vrel/abr, the braking distance
is equal to

||ρF−ρ0||=
v2

rel
2abr

(28)

vrel being the velocity prior to braking in the direction of the obstacle,

vrel =
∆ρT

||∆ρ||
v (29)

where v =
[
ξ̇x, ξ̇y, ξ̇z

]T
. Also, abr is a parameter defined by the user that

other authors commonly define as the maximum braking ability of the robot
[Wang et al., 2017; Ferraguti et al., 2020]. However, one could decide to
choose a smaller value to have even larger margins.

Finally, the safety function is formulated as

Ds ≥ ||∆ρ||−
v2

rel
2abr

(30)

so the SCBF candidate h : Rn −→ R is

h(x) =
√

2abr(||∆ρ||−Ds)+
∆ρT

||∆ρ||
v (31)

In addition, we know that

d(||∆ρ||)
dt

= vrel =
∆ρT

||∆ρ||
v (32)
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and from the system’s model (17), (18),

d(∆ρ)

dt
= v (33)

dv
dt

=−Φv+Γ
[
I3, 03

]
u (34)

where

Φ =
(

M−1
ξ

(q)Cξ (q, q̇)
)
[1:3,1:3]

∈ R3×3 (35)

Γ =
(

M−1
ξ

(q)
)
[1:3,1:3]

∈ R3×3 (36)

are submatrices composed by the first three rows and columns of their original ma-
trices (Matlab notation). Then, considering that

d
(√

2abr(||∆ρ||−Ds)
)

dt
=

abr√
2abr(||∆ρ||−Ds)

d(||∆ρ||)
dt

(37)

and
d
(

∆ρT

||∆ρ||v
)

dt
=

d
(

∆ρT

||∆ρ||

)
dt

v+
∆ρT

||∆ρ||
dv
dt

(38)

with
d
(

∆ρT

||∆ρ||

)
dt

v =
(

vT

||∆ρ||
− ∆ρTv∆ρT

||∆ρ||3

)
v (39)

the time derivative of h(x) in (31) is equal to

dh(x)
dt

=
abr∆ρTv

||∆ρ||
√

2abr(||∆ρ||−Ds)
+

∆ρTΓ
[
I3, 03

]
u

||∆ρ||

− ∆ρTΦv
||∆ρ||

+
||v||2

||∆ρ||
− (∆ρTv)2

||∆ρ||3
(40)

Therefore, to fulfill the condition (6) that ensures that the safe set is forward
invariant, we must satisfy the inequality constraint

abr∆ρTv

||∆ρ||
√

2abr(||∆ρ||−Ds)
+

∆ρTΓ
[
I3, 03

]
u

||∆ρ||

− ∆ρTΦv
||∆ρ||

+
||v||2

||∆ρ||
− (∆ρTv)2

||∆ρ||3
+ γhZ ≥ 0 (41)

which can be rewritten as
ACBFu≤ bCBF (42)
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where

ACBF =−∆ρ
T

Γ
[
I3, 03

]
(43)

bCBF =
abr∆ρTv√

2abr(||∆ρ||−Ds)
+ ||v||2− (∆ρTv)2

||∆ρ||2
+ ||∆ρ||γhZ−∆ρ

T
Φv (44)

3.4 Discrete-Time QP Problem Implementation
The discrete-time implementation of the nominal state-feedback controller in (22)
allows to obtain the input at time-step i by using the robot state (xi) and the estimated
external force (F̂ext

i ) at the same time-step. Therefore, the only free variable of the
cost function in (24) is ui,

L(ui) =
1
2

∣∣∣∣ui +
[
K, D

]
(xi− xd,i)− F̂ext

i
∣∣∣∣2

2 (45)

The cost function in (45) can be reduced (by eliminating its constant terms) to a
standard Quadratic Program (QP) problem:

Lr(ui) =
1
2

uT
i Qui + cTui (46)

where Q= I6 and cT =
[
K, D

]
(xi−xd,i)− F̂ext

i . It is trivial to see that the quadratic
term of the cost function in (46) is positive definite, Q ∈ Sn

++.
Moreover, similar to the cost function (46), ACBF and bCBF of the SCBF-based

inequality constraint (42) only depend on xi and therefore they can be treated as
constants at each time-step for this problem. Therefore, analogous to (7), the QP
problem to online modify the robot’s compliant behavior at each time-step i is

ki =arg minui∈R6 Lr(ui)

s.t. ACBFui ≤ bCBF (47)

3.5 Varying the Compliant Behavior of the System
If the inequality constraint (42) of the QP problem is active, the cost function (46)
will not be equal to zero (Lr(u)> 0). In this case, since u ̸= kd −Gξ (q), the rela-
tionship between the Cartesian pose variation from its reference and the external
Cartesian force (20) is modified,

Fext = Mξ (q)ξ̈ +(D+Cξ (q, q̇))ξ̇ −K∆ξ −∆u (48)

Then, the additional force ∆u can used to vary the stiffness and damping parameters,

K′(t) = K +∆K(t) (49)
D′(t) = D+∆D(t) (50)
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where K′,D′ ∈ Sn

++, and
∆u = ∆K∆ξ −∆Dξ̇ (51)

To vary the Cartesian compliance parameters in a stable manner, we first show
that, using an approach based on [Santibáñez and Kelly, 1997], the nominal state-
feedback controller (22) is stable.

LEMMA 3.2
The time-varying Lyapunov function

V (x, t) =
1
2

ξ̇
TMξ (q)ξ̇ +

1
2

∆ξ
TK∆ξ −α∆ξ

TMξ (q)ξ̇ (52)

where x =
[
∆ξ T, ξ̇ T

]T
, shows the global asymptotic stability of the nominal state-

feedback controller kd in (22) for α > 0 satisfying

min

(√
λm,K

λM,Mξ

,
2λm,K

λM,D
,

λm,D

2(λM,Mξ
+ kC||∆ξ ||)

)
> α (53)

where λm,Π and λM,Π are the smallest and largest eigenvalues of a matrix Π, re-
spectively, and kC is a positive constant such that for all x,y,z ∈Rn [Santibáñez and
Kelly, 1997]

||Cξ (x,y)z|| ≤ kC||y||||z|| (54)
2

Proof. See Appendix A. 2

Then, since Mξ (q), K, D ∈ Sn
++, a passive map from the external force Fext to

the velocity ξ̇ is guaranteed,

V̇ < ξ̇
TFext− 1

2
[
ξ̇ −α∆ξ

]T
D
[
ξ̇ −α∆ξ

]
< ξ̇

TFext (55)

where the passivity condition valid for passive environments is

V (t)−V (0)<
∫ t

0
ξ̇

T(τ)Fext(τ)dτ (56)

However, the additional force ∆u (51) produces extra energy, which can break
the passivity of the system if the additional energy that is injected into the system
causes a positive variation of the stiffness, K̇′(t) > 0. Defining H as a Lyapunov
function that is equivalent to considering (52) with time-varying K′(t) and D′(t), its
time derivative is

Ḣ < ξ̇
TFext−PD +PK (57)
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where

PD =
1
2
[
ξ̇ −α∆ξ

]T
D′
[
ξ̇ −α∆ξ

]
(58)

PK =
1
2

∆ξ
TK̇′∆ξ (59)

Then, a storage function for the system can be defined as

W = H +T (60)

where T is the energy stored in a reservoir (9), as in [Ferraguti et al., 2013; Landi
et al., 2018]. The time derivative of W is equal to

Ẇ = Ḣ + Ṫ < ξ̇
TFext− (1−ϕ)PD +(1−σ)PK (61)

Choosing, as in [Landi et al., 2018], that σ = 1 when K̇′(t)> 0,

Ẇ < ξ̇
TFext (62)

Therefore, analogous to (56), the passivity condition valid for passive environments
is

W (t)−W (0)<
∫ t

0
ξ̇

T(τ)Fext(τ)dτ (63)

Moreover, enough stored energy in the reservoir is needed to ensure passivity. We
can use the following metric for an arbitrary time interval

[
ts, t f

]
to ensure that

the storage does not get empty [Ferraguti et al., 2013; Landi et al., 2018],

T (t f ) = T (ts)+
∫ t f

ts
PDdτ−

∫ t f

ts
PKdτ ≥ δ (64)

which gives

T (ts)−δ ≥−
∫ t f

ts
PDdτ +

∫ t f

ts
PKdτ (65)

The energy needed to increase the stiffness is equal to∫ t f

ts
PKdτ =

1
2

∆ξ
T

∆K∆ξ (66)

whereas the energy that we can inject into the reservoir in the time interval [ts, t f ] is∫ t f

ts
PDdτ =

η

2
[
ξ̇ −α∆ξ

]T
D′
[
ξ̇ −α∆ξ

]
(67)

with η = t f − ts being the duration of the time interval [ts, t f ]. Therefore, as
long as K′(t),D′(t) ∈ Sn

++ and (51) is satisfied, the virtual damping coefficient,
D′ = D+∆D(t), can be increased with ∆D(t) ≥ 0 to ensure that the energy stor-
age does not get empty, (65), if the stiffness variation is too high.
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4. Experiments

In this section, we present the experiments performed to evaluate the proposed
method for a kinesthetic teaching application.

4.1 Application Scenario
The application scenario that motivated the experiments regards automatic quality-
assurance processes in the food-packaging industry using images recorded from a
camera mounted onto the end-effector of a robot [Kakani et al., 2020; Zhu et al.,
2021]. Since the distance needed between the camera mounted on the robot and the
food item for a correct food-quality analysis is unknown, and varies for different
types of food, the trajectory of the robot has to be varied. Then, for each type of
food, a human operator can be used to manually guide the robot arbitrarily close
to the food item for robot trajectory reprogramming, while ensuring that a collision
between the end-effector and the food item does not occur, so that neither of the two
is damaged.

4.2 Experimental Setup
The performed experiments consisted of a robot motion in which, during the robot’s
trajectory execution, a human operator manually guided the robot to bring it arbi-
trarily close to the object of interest, here, an egg. The experiment was performed
using the Panda robot by Franka Emika [Franka Emika, 2019] mounted on a table
(see Fig. 1). This robot had seven rotational joints, but since the formulation for the
proposed method was focused on fully-actuated non-redundant robots, we locked
the last joint (θ7 = −π/2 rad), and then the robot used six degrees of freedom,
n = 6.

Moreover, the initial impedance parameters used were:

• The initial virtual stiffness K was equal to 250 [N/m] for the translational
degrees of freedom and equaled to 10 [N/rad] for the rotational degrees of
freedom.

• The initial virtual damping D was equal to 2
√

K for all degrees of freedom.

Furthermore, the choice of additional parameters used for the inequality con-
straint of the quadratic optimization problem (47) were: γ =1, Z=3, Ds =0.05 m,
and abr = 10 m/s2 (abr was chosen conservatively, since its maximum value was
configuration-dependent). Note that γ must be a positive number and Z must be a
positive odd integer to guarantee safety [Wang et al., 2017]. Also, a new quadratic
optimization problem was solved every 1 ms, since the sampling rate of the robot
was 1 kHz.
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Figure 1. Setup for the kinesthetic teaching task described in Sec. 4.2. A Franka
Emika Panda robot is mounted on a table. The blue piece allows to attach a camera
to the robot’s end effector. The human operator is manually guiding the robot and
displacing it away from its original trajectory and arbitrarily close to the object of
interest, here, an egg.

5. Results

In this section, we evaluate the results obtained from the experiments described
in Sec. 4. First, Fig. 2 shows a 3D representation of the path ρ(t) traversed by
the robot. It can be seen how the external force generated by the human operator
displaced the robot from its unperturbed path ρun(t), where no external force acted
on the robot. The robot was able to avoid the undesired parts of its workspace even
when the operator was manually guiding the robot, which was ensured by solving
the quadratic optimization problem in (47) at each time-step.

Moreover, Fig. 3 shows the temporal evolution of the safety control barrier func-
tion h. It can be seen how the robot end-effector stayed inside the forward-invariant
safe set (3), h(x) ≥ 0, throughout the entire trajectory, thus confirming that unde-
sired parts of the robot’s workspace were avoided using the proposed method.

Furthermore, as mentioned in Sec. 3.5, the solution of the quadratic optimiza-
tion problem (47) was used to online modify the impedance parameters of the
Cartesian compliance controller to avoid undesired parts of the robot’s workspace.
Figure 4 shows the temporal variation of the external force, as well as the stable
temporal variation of the virtual stiffness during the trajectory segment where the
inequality constraint of the QP optimization problem (47) was active (t = 2.658 s
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Figure 2. 3D plot of the path ρ(t) traversed by the robot’s end-effector. The op-
erator displaced the robot from its unperturbed path ρun(t). The plotted sphere is
centered at the obstacle (egg) at ρo, and its radius is equal to Ds.
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Figure 3. Temporal variation of the SCBF, h(x) in (31), throughout the experiment.
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to t = 3.575 s). Then, Fig. 5 shows the temporal variation of the joint input torques
τ , which were commanded to the robot to achieve the virtual stiffness variation
seen in Fig. 4. Figure 5 also shows the unmodified input torques τun that would
be commanded for a constant virtual stiffness, K′ = K in (49). It can be seen, in
both Figs. 4 and 5, how the nominal controller of the robot was only modified when
needed in a minimally-invasive fashion. Therefore, when the SCBF-based inequal-
ity constraint (47) was not active, i.e., before t = 2.658 s and after t = 3.575 s, the
desired compliant behavior of the robot, K′ = K and D′ = D, was achieved. Ad-
ditionally, in this experiment, the virtual stiffness K′ in (49) was modified while
leaving the virtual damping constant D′ = D in (50).
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Figure 4. Temporal variation of the external force and the virtual stiffness through-
out the experiment.

6. Discussion

In this paper, we have proposed a method to modify the Cartesian compliance pa-
rameters of a robot to avoid that human operators manually guide a robot to unde-
sired parts of its workspace in the context of safe kinesthetic teaching. The proposed
method modifies a nominal controller, whose goal is to achieve the desired compli-
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Figure 5. Temporal variation of the input torques τ j, compared to the unmodi-
fied (i.e., without SCBF-based compliance variation) input torques τ

j
un for each joint

j ∈ {1, . . . ,6}, throughout the experiment.

ant behavior of the robot, using an SCBF as an inequality constraint of a QP problem
to ensure forward invariance of the safe set of robot states.

Prior to the formulation of SCBF-based methods, artificial potential fields have
been used for robot obstacle avoidance [Khatib, 1985]. However, SCBFs have re-
cently gained popularity, since they ensure formal guarantees for obstacle avoid-
ance. Also, while potential fields do not emphasize optimality [Liu and Tomizuka,
2016], SCBFs are minimally invasive and only modify the nominal controller be-
havior if needed [Ames et al., 2019], as illustrated in Sec. 5. In addition, the
main appeal of artificial potential fields is the low computational loads needed,
but fast problem-solving is also guaranteed for our method, since the proposed QP
problem (47) is a convex problem with positive definite quadratic term, Q ∈ Sn

++:
using a convex optimization solver such as CVXGEN [Mattingley and Boyd, 2012]
with C++ to solve (47) took on average 5.2 µs with an standard deviation of 3.1 µs
using a single PC (Intel Xeon CPU E3-1245, 3.7 GHz, 4 cores, 64-bit).

Moreover, several authors have formulated SCBFs as inequality constraints of a
QP problem for obstacle avoidance in robot manipulators [Landi et al., 2019; Fer-
raguti et al., 2020; Rauscher et al., 2016; Singletary et al., 2021]. However, it is a
novelty of our proposed method to explicitly take the rigid-body dynamics of the
robot into consideration: [Landi et al., 2019] and [Ferraguti et al., 2020] considered
the robot kinematics, [Rauscher et al., 2016] included a simplified version of the dy-
namics that neglects the Coriolis and centripetal forces, and [Singletary et al., 2021]
performed a purely kinematic implementation of a SCBF but guarantees safety at
the level of dynamics by incorporating kinetic energy to the SCBF. The benefit of
considering the robot dynamics when formulating our SCBF is that adherence to the
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constraints can be guaranteed [Rauscher et al., 2016], as illustrated by the experi-
ments performed (see Fig. 3). In contrast, SCBF-based constraint violations may
occur for a kinematic formulation depending on the choice of the optimization pa-
rameters, as illustrated in [Singletary et al., 2021]. Also, slight constraint violations
were observed in [Rauscher et al., 2016] for a simplified-dynamics formulation.

Furthermore, an additional benefit of using an explicit formulation of the dy-
namic model of the robot is that it allows to quantify the additional Cartesian force,
∆u in (48), required to modify the nominal state-feedback controller kd to ensure
safety. It is a novelty of the proposed method to calculate the required variation of
the Cartesian compliant behavior of the system (as shown in Fig. 4) that is neces-
sary to achieve this additional force (49)–(51), so that SCBF-based constraints are
satisfied. This is relevant for kinesthetic teaching applications, e.g., in the scenario
shown in Sec. 4, since it indicates the changes in the robot’s compliant behavior
toward external force that human operators would feel when manually guiding the
robot. Another example of a kinesthetic teaching scenario where our method may
be relevant is for avoiding potential collisions occurring when an operator guides a
robot with a sensitive object grasped in its end-effector.

Finally, previous works [Landi et al., 2019; Ferraguti et al., 2020; Rauscher et
al., 2016; Singletary et al., 2021] where a robot nominal controller was modified
using SCBFs focused on the stability guarantees of the nominal controller. In ad-
dition, we provided global asymptotic stability guarantees of convergence to the
robot’s desired state for the modified controller obtained from the QP problem. We
used a passivity-based energy-storage formulation to ensure that the variation of the
Cartesian compliance parameters determined by the proposed method is stable. This
formulation has previously been used for a robot puncturing task through a three-
layers box that simulated the varying stiffness of a human body [Ferraguti et al.,
2013], and also to allow stable robot controller-switching between position control
and compliance control [Landi et al., 2018]. Therefore, its use in showing stability
for SCBF-based modifications of a nominal controller is novel. In addition, our con-
tribution to this energy-storage formulation, as presented in Lemma 3.2 (Sec. 3.5)
and its proof (Appendix A), is to replace the nonstrict Lyapunov function used in
[Ferraguti et al., 2013; Landi et al., 2018] by a Lyapunov function with strictly neg-
ative time-derivative to ensure the strict stability of our method. As a trade-off, the
power available to fill the energy storage, PD in (58), is smaller for our method.

7. Conclusion

Safety control barrier functions have been used to online modify the Cartesian com-
pliant behavior of a robot in a strictly stable manner (global asymptotic stability), so
as to avoid that human operators manually guide a robot’s end-effector to undesired
parts of its workspace in the context of safe kinesthetic teaching. The rigid-body
dynamics of the robot is considered in our method to guarantee adherence to the
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safety constraints. The proposed method has been successfully evaluated through
experiments using a Franka Emika Panda robot for a kinesthetic teaching applica-
tion.
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A. Proof of Lemma 3.2

It is noted in [Santibáñez and Kelly, 1997] that the time-varying Lyapunov function

V1(ξ ,∆ξ , t) =
1
2

ξ̇
TMξ (q)ξ̇ +

1
2

∆ξ
TK∆ξ (68)

that is often used to show the stability of a Cartesian impedance controller [Ott,
2008, Ch. 3], such as the nominal state-feedback controller kd (22), is a nonstrict
Lyapunov function, i.e., its time derivative is a globally negative-semidefinite func-
tion. Then, the authors in [Santibáñez and Kelly, 1997] have proposed the following
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alternative Lyapunov candidate to obtain a globally negative-definite time derivative
[Santibáñez and Kelly, 1997]:

V2(x, t) =
1
2

ξ̇
TMξ (q)ξ̇ +

1
2

∆ξ
TK∆ξ −α f (∆ξ )TMξ (q)ξ̇ (69)

where
f (∆ξ ) =

1
1+ ||∆ξ ||

∆ξ (70)

and α > 0 must satisfy

min

(√
λm,K

λM,Mξ

,
2λm,K

λM,D
,

λm,D

2(kC +2λM,Mξ
)

)
> α (71)

However, using a scaling factor f (∆ξ ) in the cross-term of the Lya-
punov candidate function can cause slow convergence to the equilibrium point,[
∆ξ T, ξ̇ T

]
= 0 ∈ R2n. Therefore, we present a solution based on the work by

[Santibáñez and Kelly, 1997], but removing the scaling factor f (∆ξ ):

V (x, t) =
1
2

ξ̇
TMξ (q)ξ̇ +

1
2

∆ξ
TK∆ξ −α∆ξ

TMξ (q)ξ̇ (72)

The Lyapunov candidate (72) is equivalent to

V (x) =
1
2
[
ξ̇ −α∆ξ

]T
Mξ (q)

[
ξ̇ −α∆ξ

]
+

1
2

∆ξ
T [K−α2Mξ (q)

]
∆ξ (73)

Therefore, the Lyapunov candidate is strictly positive (V (x ̸= 0)> 0 and
V (x = 0) = 0) for

α <

√
λm,K

λM,Mξ

(74)

which ensures K−α2Mξ (q)> 0.
Moreover, the time-derivative of the Lyapunov candidate (72) is equal to

V̇ (x) =−α∆ξ
T [Ṁξ (q)−Cξ (q, q̇)

]
ξ̇ +αξ̇

TMξ (q)ξ̇

− ξ̇
TDξ̇ −α∆ξ

TK∆ξ +α∆ξ
TDξ̇ (75)

Considering that the matrix Ṁξ (q)−2Cξ (q, q̇) is skew symmetric [Ott, 2008, Ch. 2]:

V̇ (x) =−α∆ξ
TCξ (q, q̇)ξ̇ +αξ̇

TMξ (q)ξ̇ − ξ̇
TDξ̇ −α∆ξ

TK∆ξ +α∆ξ
TDξ̇ (76)

Then, defining the upper bound on certain terms:

−ξ̇
TDξ̇ ≤−1

2
ξ̇

TDξ̇ − 1
2

λm,D
∣∣∣∣ξ̇ ∣∣∣∣2 (77)

αξ̇
TMξ (q)ξ̇ ≤ αλM,Mξ

∣∣∣∣ξ̇ ∣∣∣∣2 (78)

−α∆ξ
TCξ (q, q̇)ξ̇ ≤ αkC

∣∣∣∣∆ξ
∣∣∣∣∣∣∣∣ξ̇ ∣∣∣∣2 (79)
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it follows that

V̇ (x)≤− 1
2
[
ξ̇ −α∆ξ

]T
D
[
ξ̇ −α∆ξ

]
+

1
2

α
2
∆ξ

TD∆ξ − 1
2

λm,D
∣∣∣∣ξ̇ ∣∣∣∣2

−α∆ξ
TK∆ξ +αkC

∣∣∣∣∆ξ
∣∣∣∣∣∣∣∣ξ̇ ∣∣∣∣2 +αλM,Mξ

∣∣∣∣ξ̇ ∣∣∣∣2 (80)

which can be rewritten as

V̇ (x)≤− 1
2
[
ξ̇ −α∆ξ

]T
D
[
ξ̇ −α∆ξ

]
+α∆ξ

T [α

2 D−K
]

∆ξ

− 1
2

λm,D
∣∣∣∣ξ̇ ∣∣∣∣2 +αkC

∣∣∣∣∆ξ
∣∣∣∣∣∣∣∣ξ̇ ∣∣∣∣2 +αλM,Mξ

∣∣∣∣ξ̇ ∣∣∣∣2 (81)

It can be ensured that the term

α∆ξ
T [α

2 D−K
]

∆ξ (82)

is strictly negative for

α <
2λm,K

λM,D
(83)

and that the term

−1
2

λm,D
∣∣∣∣ξ̇ ∣∣∣∣2 +αkC

∣∣∣∣∆ξ
∣∣∣∣∣∣∣∣ξ̇ ∣∣∣∣2 +αλM,Mξ

∣∣∣∣ξ̇ ∣∣∣∣2 (84)

is strictly negative for

α <
λm,D

2(λM,Mξ
+ kC||∆ξ ||)

(85)

Therefore, if α > 0 satisfies (53)

min

(√
λm,K

λM,Mξ

,
2λm,K

λM,D
,

λm,D

2(λM,Mξ
+ kC||∆ξ ||)

)
> α (86)

the Lyapunov candidate function V (x) is strictly positive (V (x ̸= 0) > 0 and
V (x = 0) = 0) and its time-derivative is strictly negative (V̇ (x)< 0).
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Paper V

Null-Space Compliance Variation for Safe
Human–Robot Collaboration in Redundant
Manipulators using Safety Control Barrier

Functions

Julian M. Salt Ducaju Björn Olofsson

Anders Robertsson Rolf Johansson

Abstract

In this paper, Safety Control Barrier Functions (SCBFs) were used to ad-
just the null-space compliant behavior of a redundant robot to improve safety
in Human–Robot Collaboration (HRC) without modifying the robot behavior
with respect to its main Cartesian task. A Lyapunov function was included in
an energy storage formulation compatible with strict passivity to provide global
asymptotic stability guarantees for the null-space compliance variation, and the
necessary conditions for stability were formulated as inequality constraints of
the optimization problem used for the null-space compliance variation. Ex-
perimental validation was performed using a Franka Emika Panda robot for
a collaborative assembly application and its results showed that safety can be
improved by using SCBFs simultaneously to the optimization of the robot con-
figuration, while employing a single degree of freedom.

© 2023 IEEE. Reprinted, with permission, from 2023 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), October 1-5, Detroit, MI, USA,
pp. 5903–5909.
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1. Introduction

The recent interest in the manufacturing industry to replace mass production for
mass customization has caused an increase in the relevance of Human–Robot Col-
laboration (HRC) in the robotics community [Schou et al., 2013]. Human operators
can use their intelligence and dexterity to increase flexibility in robotic manufactur-
ing and to decrease the complexity of the robot tools, while robots can reduce the
operator fatigue, e.g., in industries, such as aeronautics, where assembly applica-
tions are still mainly manual as a result of their complexity [Kousi et al., 2018].

Human safety is a requirement of collaborative applications. A control strategy
often used for human collaboration is impedance control [Hogan, 1985], which es-
tablishes a compliant robot behavior with respect to external forces acting on it, and
has the additional benefit in human–robot collaborative applications of allowing
physical human guidance of the robot. Even though robot compliance effectively
reduces the transferred energy from the robot to the operator during an accidental
collision, additional safety features can be included to further protect the operators
and to avoid contacts with their most sensitive surfaces. In the context of robot ob-
stacle avoidance, Safety Control Barrier Functions (SCBFs)[Forsgren et al., 2002]
have been gaining popularity in recent years [Salt Ducaju et al., 2022; Ferraguti et
al., 2020; Landi et al., 2019; Rauscher et al., 2016; Singletary et al., 2021; Benzi and
Secchi, 2021], since they emphasize optimality and are minimally-invasive [Ames
et al., 2019]. Recently, SCBFs have been used to adjust the Cartesian compliant be-
havior of a robot for obstacle avoidance with respect to its end-effector [Salt Ducaju
et al., 2022].

Moreover, when obstacle avoidance does not involve the Cartesian motion of
the robot end-effector, but rather its link configuration, the main robot task needs
not be modified. In this context, kinematic redundancy allows robotic manipulators
to perform additional subtasks, such as obstacle avoidance, without modifying the
robot behavior with respect to its main task by projecting the additional tasks in
the null-space of the robot main task [Salt Ducaju et al., 2021]. For this, a dynamic
formulation that augments the Cartesian coordinates of the main robotic task by
null-space velocities [Park, 2000] is often used, since it allows decoupling of ki-
netic energies for each task. A compliant controller in the null-space of the robot
main task based on the dynamic formulation in [Park, 2000] was proposed in [Ott
et al., 2008]. By avoiding inertia shaping, the controller in [Ott et al., 2008] avoided
using feedback from the external forces and provided robustness with respect to
model inaccuracies in the controller, while achieving a decoupling of the Carte-
sian and the null-space motion. Semi-definite Lyapunov functions were used in [Ott
et al., 2008] to provide asymptotic stability guarantees for the null-space compli-
ant motion. Nevertheless, stability guarantees for the variation of the stiffness and
damping parameters for null-space compliant behavior have not been provided in
this context so far.

Furthermore, obstacle avoidance is not the only beneficial subtask for HRC,
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and optimizing the robot joint configuration is also desirable, since it can maximize
the robot manipulability, e.g., by controlling that the angular positions of the robot
joints are far from their limits [Nakamura, 1990]. An extension of [Ott et al., 2008]
was presented in [Dietrich et al., 2013] for a hierarchical control structure with
an arbitrary number of subtasks, where each additional subtask is projected on the
null-space of the higher-priority tasks. However, the robots designed to perform
collaborative tasks with humans (cobots) are usually built with 7 rotational joints,
e.g., the KUKA LBR iiwa robot or the Franka Emika Panda robot, and therefore,
in robotic applications where the main task involves controlling the position and
orientation of its end-effector, only one degree of freedom (DOF) would be available
for additional subtasks. Then, it is not guaranteed that more than one subtask can be
performed using the additional DOF with a hierarchical structure as in [Dietrich et
al., 2013].

In this paper, we address the problem of improving safety in HRC for redundant
robots by extending our previous work in [Salt Ducaju et al., 2022] to contact-risk
situations that do not involve the robot end-effector, but rather its link configuration.
A joint impedance controller is projected in the null-space of the Cartesian robot
motion to achieve a compliant motion toward a desired joint configuration, while
keeping the main robotic task unperturbed. The novelty of our proposal consists in
using SCBFs to adjust the null-space compliant behavior of the robot for obstacle
avoidance with respect to the body of the robot. In addition to improved safety, our
proposed method should not affect the Cartesian robot end-effector motion nor re-
quire additional DOFs to be performed, since the SCBF-based obstacle avoidance
shares the null-space DOF with the joint optimization subtask. A Lyapunov func-
tion is proposed to provide global asymptotic stability guarantees for varying the
null-space compliant motion. Laboratory experiments have been performed for a
collaborative assembly application to validate our method on a 7-DOFs manipula-
tor.

The paper is organized as follows: Sec. 2 presents the kinematic and dynamic
models used for redundant robotic manipulators. Then, Sec. 3 presents the nomi-
nal state-feedback controller, which is modified by a Quadratic Optimization (QP)
problem presented in Sec. 4, where SCBFs are used as inequality constraints for
obstacle avoidance. Section 5 explains the experiments performed for a collabora-
tive assembly application and presents the results obtained. Finally, a discussion is
included in Sec. 6 and conclusions are drawn in Sec. 7.

2. Modeling for Redundant Robots

First, we review relevant kinematics and dynamics for redundant manipulators that
show that the dynamics for the robot main task and for its null-space can be decou-
pled.
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2.1 Kinematics for Redundant Robots
The kinematic relation between a robotic manipulator with n degrees of freedom
(DOFs) and its main task in the m-dimensional task space is:

ξ = K (q) (1)

where ξ ∈Rm represents the coordinates of the main robotic task and q ∈Rn repre-
sents the coordinates of the joint space of the robot. Then, the manipulator Jacobian,
J(q) ∈ Rm×n is used to relate the main task velocity, ξ̇ , with respect to the joint ve-
locity, q̇:

ξ̇ = J(q)q̇ (2)

where J(q) is assumed to be of full rank throughout the presented work as in
[Khatib, 1987]. A robotic manipulator is considered to be kinematically redundant
when n > m, and r = n−m is called the degrees of redundancy.

A possible solution to the inverse kinematics for (2) is

q̇ = J†
W (q)ξ̇ +(In− JT(q)J†T

W (q))q̇0 (3)

where q̇0 ∈ Rn is an arbitrary vector in the robot joint space, In ∈ Rn×n represents
an identity matrix, and J†

W (q) is the weighted generalized inverse

J†
W (q) =W−1(q)JT(q)(J(q)W−1(q)JT(q))−1 (4)

with W ∈ Rn×n being a symmetric positive definite matrix, W ∈ Sn
++. The second

term of the right-hand side of (3) projects the arbitrary joint space vector q̇0 into the
null-space of the main task, N (J), and it is necessary for a full decomposition of
the joint motion in redundant manipulators.

Moreover, the velocity in the null-space of the main task can be rewritten by
defining velocities vN ∈ Rr [Park, 2000], so

q̇NS = (In− JT(q)J†T
W (q))q̇0 = ZT(q)vN (5)

where Z(q) ∈ Rr×n is composed by linearly independent vectors in N (J),
J(q)ZT(q) = 0. Analogous to (2), the null-space velocities, vN , can be related
to the robot joint velocity by a Jacobian, N(q) = (ZWZT)−1ZW ∈ Rr×n:

vN = N(q)q̇ (6)

REMARK There might not exist compatible null-space coordinates, s(q), such that
N(q) = ∂ s(q)/∂q, so the null-space velocities, vN , are, in general, not integrable
[Ott et al., 2008]. 2
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2.2 Dynamics for Redundant Robots
The rigid-body dynamics of the robot can be written in the joint space of the robot
as [Siciliano and Khatib, 2016]:

M(q)q̈+C(q, q̇)q̇+G(q) = τ + τ
ext (7)

where M(q) ∈Rn×n is the generalized inertia matrix, C(q, q̇) ∈Rn×n is the Coriolis
matrix, G(q) ∈ Rn captures the gravity-induced torques, and τ ∈ Rn represents the
input torques. Finally, τext ∈Rn represents the external torques. For a kinematically
redundant robot, the input torques can be decoupled as

τ = τξ + τns = JT(q)Fξ +NT(q)FN (8)

where τξ corresponds to the torques that are involved in the robot’s main task, and
τns are torques acting in the null-space of the main task.

Moreover, if the weighting matrix W of the generalized inverse is chosen to be
the generalized inertia matrix, M, W = M in (4), the null-space torque, τns in (8),
does not cause an acceleration in the main task coordinates ξ [Khatib, 1995]. Then,
the task space is inertially decoupled from the minimal null-space motions, and the
dynamics of each space can be considered separately:

Mξ (q)ξ̈ +Cξ (q, q̇)ξ̇ +Gξ (q) = Fξ +Fext
ξ

(9)

MN(q)v̇N +CN(q, q̇)vN +GN(q) = FN +Fext
N (10)

However, to obtain fully-decoupled dynamics as in (9) and (10), a power-conserving
feedback compensation on the centrifugal and Coriolis cross-terms should be in-
cluded [Ott et al., 2008].

3. Nominal State-Feedback Controller

Consider a control-affine system:

ẋ = f (x)+g(x)u (11)

that has closed-loop system dynamics with a state-feedback controller k according
to:

ẋ = fcl(x, t) = f (x)+g(x)k(x, t) (12)

Then, the nominal state-feedback controller, k = kd in (12), should achieve the
robot’s desired behavior for human–robot collaboration: a Cartesian compliant be-
havior of the robot end-effector for safety, and possibly, human guidance, and a joint
compliance behavior in the null-space of the main Cartesian task that increases the
robot manipulability.
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3.1 Main Task: Cartesian Impedance Control
A Cartesian impedance controller [Hogan, 1985] is used to establish a mass-spring-
damper relationship between the Cartesian pose variation of the robot end-effector
from its reference, ∆ξ = ξD−ξ (ξD being the Cartesian reference), and the external
Cartesian force, Fext

ξ
:

Fext
ξ

= Mξ (q)ξ̈ +(D+Cξ (q, q̇))ξ̇ −K∆ξ (13)

where D and K are the virtual damping and stiffness matrices, respectively. The
virtual inertia is chosen equal to the robot inertia, Mξ (q), to avoid inertia shaping
[Ott et al., 2008]. The input force Fξ , when the Cartesian external force is defined
as in (13), should be equal to

Fξ = K∆ξ −Dξ̇ +Gξ (q) (14)

3.2 Redundancy and Null-Space Motion
To obtain a compliant behavior in the null-space of the main task, the null-space
component of the input torque, τns in (8), can be chosen as a projection of a torque
that contains a spring stiffness term, kn, with respect to the joint position variation
from its reference, ∆q = qD−q, and a damping term, dn, for the null-space veloci-
ties, vN [Ott et al., 2008]:

τns = NT(q)knZ(q)∆q−NT(q)dnvN (15)

The desired joint configuration, qD, is chosen as the closest configuration to the mid
of the range of the joints, qmid, where ξD = p(qD) to increase the robot manipula-
bility. An optimization problem can be formulated to obtain qD:

qD =arg minqD∈Rn
1
2

∣∣∣∣qD−qmid
∣∣∣∣2

2

s.t. ξD = p(qD) (16)

Then, the gravity-compensated closed-loop dynamics of the system obtained
from (10) and using the decoupled torque input defined in (8) with (15) is

Fext
N = MN(q)v̇N +(dn +CN(q, q̇))vN− knZ(q)∆q (17)

3.3 Controller Stability
The stability properties of the closed-loop system (13) and (17) have been studied
in [Ott et al., 2008] using conditional stability and proposing a semi-definite Lya-
punov function to show the asymptotic stability of the equilibrium point (q = qD,
q̇ = 0) for free-space motion. However, based on recent research that proved the
global asymptotic stability for the main task (13) in a non-redundant robotic manip-
ulator [Salt Ducaju et al., 2022], we consider a strictly definite Lyapunov candidate
function to provide a stronger proof of stability for the null-space motion:
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LEMMA 3.1
The Lyapunov function candidate

Vns(∆q,vN) =
1
2

vT
NMNvN +

kn

2
∆qT

∆q−α∆qTZTMNvN (18)

shows the global asymptotic stability of the null-space motion with input torque τns
in (15) for α > 0 satisfying:

min

(√
kn

λM,MZ

,
2kn

dn
,

dn

2(λM,MZ + kC||Z∆q||)

)
> α (19)

where λM,MZ is the largest eigenvalue of the matrix ZTMNZ, and kC is a positive
constant such that for all w1,w2,w3 ∈ Rr [Santibáñez and Kelly, 1997]

||CN(w1,w2)w3|| ≤ kC||w2||||w3|| (20)
2

Proof. The detailed proof for the global asymptotic stability of the null-space mo-
tion has been omitted for conciseness since it is analogous to the proof of the stabil-
ity of the Cartesian impedance controller in [Salt Ducaju et al., 2022] but replacing
∆ξ , ξ̇ , Mξ , Cξ , K, and D for ∆q, vN , MN , CN , kn, and dn, respectively. 2

4. Quadratic Optimization

In this section, we modify the robot’s null-space compliant behavior (17) of the
nominal state-feedback controller kd using a quadratic optimization problem that
ensures that the robot states stay in a safe set to improve safety in HRC.

4.1 System Linearization
By applying partial feedback linearization [Khalil, 2014, Ch. 9], the input, u∈Rn, to
the system in joint-space coordinates (7) can be written as the gravity-compensated
joint torque:

u = τ + τ
ext−G(q) (21)

Then, by choosing the state vector as x = [qT, q̇T]T ∈ R2n, the linearized system is

ẋ = A(q, q̇)x+B(q)u (22)

where

A =

[
0n In
0n −M−1(q)C(q, q̇)

]
, B =

[
0n

M−1(q)

]
(23)
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4.2 Cost Function
Obstacle avoidance with respect to the body of the robot can be achieved without
perturbing the robot main task if the additional torque required to avoid obstacles is
applied in the null-space of the main task:

∆u = ∆τns (24)

Then, the compliance parameters of the joint torque (15) in the null-space projection
of the main task can be varied to fulfill (24) so that the desired joint configuration qD
is not modified, thus achieving obstacle avoidance while allowing the optimization
of the robot joint configuration:

∆τns = NT(q)(−∆dnvN +∆knZ(q)∆q) (25)

Therefore, a cost function that minimizes the value of the null-space stiffness
and damping variation,

z =
[
∆kn ∆dn

]T (26)

can be formulated:

L(z) =
1
2

∣∣∣∣Wzz
∣∣∣∣2

2 (27)

where a weighting matrix, Wz ∈ R2×2, is used to select the desired ratio between
the null-space stiffness and damping variations. Since Wz ∈ S2

++ yields Q ∈ S2
++, Q

being the quadratic term of the cost function (27), Wz may be chosen as:

Wz =

[
1 0
0 β

]
(28)

for β ∈ R>0. Then, if β > 1 the variation of the stiffness is prioritized and if β < 1
the damping variation is prioritized. In addition, selecting (27) as the cost function
to be solved in the QP problem yields a minimal variation of the input torque to the
robot, ∆τns of Eq. (25), thus minimizing the difference between the system input u
and the nominal state-feedback kd .

4.3 Inequality Constraint for Obstacle Avoidance
An inequality constraint for the input of the linearized system (22)

ABFu≤ bBF (29)

can be used to ensure that the body of the robot stays within a safety distance of
an obstacle by guaranteeing the forward invariance of a safe (i.e., uncollided) set of
robot states [Ames et al., 2019]:
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ρ0

ρi

vre,i

∆ρi

rr,i
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Figure 1. Illustration of the capsules model [Lin et al., 2017; Landi et al., 2019]
(for a 3-link robot) used to determine the safety distance. The blue line represents
the distance, ∆ρi, between the obstacle’s position, ρ0, and its closest point within the
i-th link of the robot, ρi. The red arrow represents the relative velocity, vre,i, of ρi
with respect to the obstacle ρ0 and rr,i, ro are the safety distances around the robot’s
i-th link and the obstacle, respectively.

THEOREM 4.1
A safe set C = {x ∈ R2n | h(x)≥ 0} is forward invariant if

sup
u∈U

[L f h(x)+Lgh(x)u]≥−κ(h(x)) (30)

for all x ∈D , h being the Safety Control Barrier Function (SCBF), h : D −→ R with
C ⊆D ⊂R2n, κ an extended class-K∞ function (strictly monotonically increasing),
L f h(x) = ∂h/∂x f (x), and Lgh(x) = ∂h/∂xg(x) [Ames et al., 2019]. 2

Therefore, a safety function has been formulated so that the safety distance is
always greater than or equal to the current distance from the robot to the obstacle
subtracted by the distance needed to brake the system into a full stop with con-
stant and instantaneous acceleration [Salt Ducaju et al., 2022; Wang et al., 2017;
Ferraguti et al., 2020]. Moreover, to avoid having a computationally-expensive cal-
culation of the distance between the robot and the obstacle, each link of the robot
geometry is simplified using basic geometric models, such as capsules, which have
recently gained popularity [Lin et al., 2017; Landi et al., 2019] for fitting well to
the shape of a robotic manipulator (see Fig. 1).

Then, for each link i ∈ {1, . . . ,n}, the SCBF, hi : D −→ R, that enforces obstacle
avoidance is, as in [Salt Ducaju et al., 2022; Wang et al., 2017; Ferraguti et al.,
2020]:

hi(x) =
√

2abr(||∆ρi||−Ds,i)+
∆ρT

i
||∆ρi||

Jiq̇ (31)

with ∆ρi = ρi−ρo being the distance between the closest point to the obstacle in
the i-th link, ρi, and the obstacle’s position ρo, and Ji ∈ R3×n being a Jacobian that
relates the linear velocity of the selected point in the i-th link, ρi, with the angular
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velocity of the joints q̇. Also, the safety distance, Ds,i = rr,i + ro, uses rr,i and ro
as protective distances around the link i and the obstacle, respectively, and abr > 0
denotes the robot braking acceleration. Moreover, the second term of the right-hand
side of (31) is equivalent to the relative velocity, vre,i of ρi with respect to ρo, as
shown in Fig. 1.

Considering the system model (22), (23) and choosing the inequality con-
straint that must be satisfied to ensure that the safe set is forward invariant (30)
as ḣ(x)+ γhω ≥ 0 [Wang et al., 2017], the elements in (29) are for each link i equal
to

ABF,i =−∆ρ
T
i JiM−1 (32)

bBF,i =
abr∆ρT

i
[
03×n, Ji

]
x√

2abr(||∆ρi||−Ds,i)
+
∣∣∣∣∣∣[03×n, Ji

]
x
∣∣∣∣∣∣2 + ||∆ρi||γhω

i

−
(
∆ρT

i
[
03×n, Ji

]
x
)2

||∆ρi||2
+∆ρ

T
i
[
03×n, J̇i− JiM−1C

]
x (33)

Therefore, the inequality constraint (29) in z (26) is equivalent to

A′BFz≤ b′BF (34)

for A′BF = ABFNT
[
Z∆q, −vN

]
and b′BF = bBF−ABFkd .

4.4 Stable Variation of the Null-Space Compliant Behavior
The strict stability of the null-space motion has previously been shown in
Lemma 3.1 for constant null-space stiffness and damping parameters. Also, analo-
gous to the passivity condition shown for a Cartesian impedance controller in [Salt
Ducaju et al., 2022], since MN ,kn,dn ∈ S++, a passive map from the null-space
external force, Fext

N , to the null-space velocity, vN , was guaranteed:

V̇ns < vT
NFext

N (35)

with V̇ns being the time-derivative of the Lyapunov function (18) with constant null-
space stiffness and damping terms.

However, if these compliance parameters vary with time, additional terms
∆V̇ns(t), which may break the passivity of the system, appear in the time-derivative
of the Lyapunov function used for the stability proof of the null-space motion:

V̇ ′ns(t) = V̇ns +∆V̇ns(t) (36)

with V̇ ′ns(t) being the time-derivative of the Lyapunov function with time-varying
terms. The additional terms are equal to

∆V̇ns(t) =−
∆dn

2
[
vN−αZ∆q

]T [vN−αZ∆q
]
+

k̇n

2
∆qT

∆q (37)
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Moreover, energy-based virtual storage methods can be used to guarantee the
passivity of the system by controlling that the amount of energy introduced to the
robotic manipulator for varying the stiffness of the robot is lower than the energy
dissipated by itself [Ferraguti et al., 2013; Landi et al., 2018]. Being T the energy
stored in a virtual reservoir, the total energy of the system composed by the robot
and the virtual storage is equal to Wns = T +V ′ns > 0, with Ẇns < 0. Then, the only
additional condition needed to ensure the passivity of the system is that there is
enough energy in the storage. For a time interval

[
ts, t f

]
, this condition is [Landi

et al., 2018]:

T (t f ) = T (ts)+
∫ t f

ts
PDdτ−

∫ t f

ts
PKdτ ≥ δ (38)

with δ being the minimum amount of energy allowed in the storage. Also, PD and
PK represent the dissipated power due to damping and the power caused by stiffness
variation, respectively,

PD =
dn +∆dn

2
[
vN−αZ∆q

]T [vN−αZ∆q
]

(39)

PK =
k̇n

2
∆qT

∆q (40)

Then, the condition to ensure that the energy storage used to guarantee the passivity
of the system does not get empty (38) can be rewritten as an inequality constraint:

ATz≤ bT (41)

with

AT =

[
1
2 ∆qT∆q

− t f−ts
2

[
vN−αZ∆q

]T [vN−αZ∆q
]]T

(42)

bT =dn
t f − ts

2
[
vN−αZ∆q

]T [vN−αZ∆q
]
+

∆kn(ts)
2

∆qT
∆q+T (ts)−δ (43)

Additionally, the positive-definiteness of the null-space stiffness and damping,
i.e., kn +∆kn(t) ∈ S++ and dn +∆dn(t) ∈ S++, are necessary conditions to show
the stability of the null-space motion using Lemma 3.1. These conditions can be
enforced by rewriting them as:

Akdz < bkd (44)

with Akd =−I2 and bkd =
[
kn dn

]T.
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4.5 Quadratic Optimization Problem Summary
Finally, the resulting optimization problem to modify the nominal state-feedback
controller for obstacle avoidance is:

z =arg minz∈R2L(z)

s.t. A′BFz≤ b′BF

Akdz < bkd

ATz≤ bT (45)

5. Experiments

In this section, we provide an experimental evaluation of the proposed method for
an assembly application.

5.1 Experimental Setup
The experimental validation consisted in a collaborative assembly of an emergency
button using a redundant robotic manipulator, Franka Emika Panda [Franka Emika,
2019], as seen in Fig. 2. This assembly process consisted of three events. First,
while the robot snapped the switch into the bottom box [Stolt et al., 2011], the
human operator secured the pusher to the top box with a small plastic nut. Finally,
the robot joined the top and bottom boxes.

Figure 2. Experimental setup for the collaborative assembly of an emergency but-
ton.

A Cartesian compliance controller was implemented to allow the operators to
interact with the position and orientation of the robot arm to correct any robot mal-
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function, and also to allow a careful handling of the assembly pieces, while a null-
space compliance controller optimized the robot joint configuration. However, to
increase safety in the most sensitive parts of the operator’s body, i.e., its head, the
operator wore a helmet, which was equipped with a position sensor (see Fig. 2).
Then, the null-space compliance parameters were varied based on the optimization
problem in (45) to avoid any collision between the body of the robot and the opera-
tor’s head.

5.2 Results
The results for a situation where a potential collision was avoided during the assem-
bly event in which the robot joined the top and the bottom of the box are shown
in Figs. 3 and 4 and in Table 1. First, it is seen in Fig. 3 how the safety control
barrier function hmin = min(hi) ∀ i ∈ {1, . . . ,n} had a positive value throughout
this motion, thus the states of the robot stayed inside the safe set C . Also, the
inequality constraint (34) of the QP problem (45) was active between t = 1.18 s
and t = 3.91 s, which caused the variation of the null-space stiffness kn +∆kn and
damping dn +∆dn, so that the forward invariance condition of the safe set C (30)
was fulfilled.

Figure 3. Temporal evolution of the barrier function hmin, the null-space stiffness
kn+∆kn, and the null-space damping dn+∆dn. The yellow background indicated the
time interval when the inequality constraint (34) of the QP problem (45) was active.
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Moreover, Table 1 shows relevant performance metrics for the highest-risk sit-
uation, defined as the time instant where the safety control barrier function hmin
was the closest to zero. As seen in Table 1, the highest-risk situation occurred
at t = 1.19 s, where the minimum distance between the operator’s head and the
body of the robot, Dmin, was equal to 0.25 m. It is also shown in Table 1 that the
time-to-collision, T TC, defined as the time that would elapse until a collision oc-
curred for a constant relative velocity between the operator’s head and the robot’s
body, was equal to 0.37 s, which highlights the minimally-invasive features of the
proposed method.

Table 1. Performance metrics for the highest-risk situation

Time (t) Minimum Distance (Dmin) Time-to-Collision (T TC)
1.19 s 0.25 m 0.37 s

Furthermore, Fig. 4 shows the temporal evolution of the L2-norm of the dif-
ference between the joint configuration q and the midpoint configuration qmid for
the developed controller (NS+QP) compared to the cases where no null-space mo-
tion was implemented (No NS) and where no null-space compliance variation was
used (No QP). The implementation of null-space motion could effectively be used
to decrease the difference between the robot configuration and the midpoints of the
robot joints’ ranges to increase the robot manipulability. Also, since there was only
one DOF available in the null-space of the main (Cartesian) task, the controller was
able to increase the robot manipulability as long as it did not conflict with the safety
condition in (34).

6. Discussion

Several authors have used SCBFs for obstacle avoidance in robotic manipulators
[Landi et al., 2019; Ferraguti et al., 2020; Rauscher et al., 2016; Singletary et al.,
2021; Salt Ducaju et al., 2022; Benzi and Secchi, 2021]. However, these previous
works focused on non-redundant robots, and therefore, obstacle avoidance would
modify the main robotic task. The novelty of the method presented here is that we
consider redundant robots and use their additional DOFs to apply the necessary
joint torque variation in the null-space of the robot’s main task in a dynamically
consistent way such that this main robotic task is not altered unnecessarily. Further,
it is straightforward to combine the proposed method with previous proposals that
achieved obstacle avoidance with respect to the robot end-effector, such as [Salt
Ducaju et al., 2022], thus achieving a safe robot behavior in any contact-risk situa-
tion.
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Figure 4. Temporal evolution of the L2-norm of the difference between the joint
configuration q and the midpoint configuration qmid.

Moreover, the use of the null-space projection of the main robotic task for ob-
stacle avoidance has been studied in the past [Lin et al., 2016]. However, artificial
potential field methods [Khatib, 1985] were used in these works. The main benefits
of using SCBFs instead of artificial potential fields were discussed in [Salt Ducaju et
al., 2022], i.e., SCBFs only modify the nominal behavior of the system when neces-
sary. Additionally, the use of SCBFs in our formulation allows to explicitly take the
dynamics of the robot into consideration when formulating the SCBF to guarantee
adherence to the constraints [Rauscher et al., 2016; Salt Ducaju et al., 2022], thus
avoiding potential constraint violations that may occur when only considering the
robot kinematics in the formulation of SCBFs [Landi et al., 2019; Ferraguti et al.,
2020; Benzi and Secchi, 2021], as illustrated by [Singletary et al., 2021].

Furthermore, the proposed null-space compliance-varying controller achieved
shared use of the only DOF available in the null-space of the main robot task, si-
multaneously, for obstacle avoidance and for the increase of the robot manipulabil-
ity, thus benefiting human–robot collaborative applications. Also, the desired joint
configuration in the proposed null-space controller was chosen as the closest con-
figuration to the midpoints of the joints being ξD = p(qD). An alternative choice
of desired joint configuration could be one where a performance index, such as the
manipulability index [Khatib, 1987; Oh et al., 1998], is maximized. However, de-
pending on the task being executed, the manipulability index in [Khatib, 1987; Oh
et al., 1998] could be locally maximized close to a joint limit, leaving little or no
margin for human guidance. In addition, the condition ξD = p(qD) used to set the
null-space compliant behavior of the robot ensures the global asymptotic stability
of the null-space motion based on Lemma 3.1 [Ott et al., 2008].
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Additionally, showing stability proofs for the null-space compliant motion of a
robotic manipulator is challenging. In [Ott et al., 2008], the authors used the con-
cept of conditional stability to propose a semi-definite Lyapunov function to prove
the asymptotic stability of null-space motion. Our contribution consisted in adding
a cross-term to the Lyapunov function candidate, in the same fashion as it was done
in [Santibáñez and Kelly, 1997; Salt Ducaju et al., 2022] for non-redundant ma-
nipulators, to provide a stronger stability proof, i.e., global asymptotic stability of
the null-space motion. In addition, the stability of the variation of the null-space
stiffness and damping coefficients has been shown by using a passive-energy stor-
age method [Ferraguti et al., 2013], as was done in [Salt Ducaju et al., 2022] for
Cartesian impedance control.

Finally, an interesting novelty of the here presented work with respect to [Salt
Ducaju et al., 2022] is that the optimization problem is formulated with the variation
of the compliance parameters as the optimization variables, which allowed us to
express the necessary conditions for stability as inequality constraints (41), (44) of
the QP problem, as well as ensured that the quadratic term of the QP problem is
positive definite. Also, even though it has not been observed for the experiments
described in Sec. 5, a hypothetical infeasibility of the QP problem would indicate
the conditions for which a safety shutdown of the null-space motion was required,
e.g., if stability could not be ensured.

7. Conclusion

Safety in human–robot collaborative applications can be improved in a stable man-
ner while keeping the main robotic Cartesian task unperturbed. For this, we pro-
posed to modify the joint compliant behavior of a redundant robot projected in
the null-space of the Cartesian task using SCBFs. In experiments with a 7-DOFs
robot for a collaborative assembly application, we demonstrated that safety can be
improved simultaneously to the optimization of the robot joint configuration in a
single DOF.
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Paper VI

Model-Based Predictive Impedance
Variation for Robot Obstacle Avoidance in

Safe Human–Robot Collaboration

Julian M. Salt Ducaju Björn Olofsson Rolf Johansson

Abstract

Human–robot collaboration (HRC) in manufacturing environments requires
that physical safety can be guaranteed. Control methods that implicitly regulate
the interaction forces between a controlled robot and its environment, such as
impedance control, are often used for safety in HRC. However, these methods
could be complemented by restricting the robot operational space for addi-
tional safety guarantees. In this context, obstacle avoidance might benefit from
considering a prediction of the controlled-robot motion and/or the behavior of
the human collaborator. To this end, we proposed to include linearized Safety
Control Barrier Functions (SCBFs) in a linear Model Predictive Control (MPC)
strategy for robot impedance variation online. The convex optimization prob-
lem that was obtained from our proposal presented two advantages compared
to nonlinear MPC alternatives. First, optimality was ensured in our method un-
der linearity assumptions on human guidance and linearized robot dynamics,
whereas a controller synthesized by nonlinear MPC strategies would depend
on the fundamental characteristics of the problem. Second, our method enabled
implementation at a faster control frequency, thus allowing a rapid adaptation
to changes occurring in the robot environment. Finally, experimental validation
was performed using a Franka Emika Panda robot in a human–robot collabo-
rative scenario, and the stability of the method was shown using Lyapunov
theory.

Submitted to review for publication in IEEE Transactions on Automation Science
and Engineering.
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Note to Practitioners

Modern-day industrial manufacturing environments are characterized by col-
laboration between human operators and robot manipulators. In this scenario,
where humans and robots share workspace, physical safety is required. This
research aims to improve safety in human–robot collaboration by proposing a
novel robot control strategy. In our approach, the interaction forces between the
controlled robot and its environment were regulated implicitly using impedance
control, to allow, among other interactions, that an operator could manually
guide the robot. Then, obstacle avoidance was included to modify the robot
impedance behavior for restricting undesired collisions with, for example, the
operator head, while ensuring stability of the method. Our main contribution is
that the proposed formulation allows to consider a prediction of the robot mo-
tion and/or the operator behavior for robot obstacle avoidance. It was shown
in experiments with a real robot that adding prediction capabilities reduced the
risk of undesired collisions, while also decreasing the robot trajectory error.
Moreover, the method could be implemented at a fast rate so that the robot
could react rapidly to changes in its environment. Also, this implementation
allowed to achieve a minimal variation with respect to the nominal impedance
behavior of the robot. To conclude, this method is intended for scenarios where
a robot is required to interact with its, possible restricted, environment: for ex-
ample, a robot with a drill attached to its end-effector that is being guided to
modify its trajectory, but where the operator should not be allowed to acciden-
tally be harmed; or a robot performing a polishing task where a section of the
polished object should remain unpolished. Therefore, a possible extension of
this research would be, using the proposed robot control strategy, to provide an
improved prediction of the human operator intention depending on the desired
robotic task and the role of the operator.

1. Introduction

Former industrial settings, characterized by a fixed-structure workspace, present
limitations when addressing current manufacturing trends, in which mass produc-
tion has been replaced for mass customization, i.e., smaller volumes of products are
manufactured during shorter time frames [Schou et al., 2013]. As an attempt to im-
prove human contribution, in terms of intelligence, dexterity, and responsiveness,
in this rapidly changing industrial environment, human–robot collaboration (HRC)
has increased its relevance in recent years [Cencen et al., 2018]. Several methods
for HRC involve a physical interaction between humans and robots (pHRI), such as
kinesthetic teaching [Wrede et al., 2013], where human guidance is used to modify
a robot trajectory; or human–robot cooperation [Liu et al., 2021], where a robot
provides proactive assistance to a human operator.

The most important requirement of any collaborative manufacturing scenario
is that physical safety can be guaranteed for all humans, robots, and any other ac-
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tor present in the shared workspace. To achieve this, indirect force control meth-
ods, such as impedance control [Hogan, 1985], are often used. Impedance control
improves physical safety in HRC by implicitly regulating the interaction forces be-
tween the controlled robot and its environment, which also allows physical guidance
of the robot. However, the interaction-force regulation achieved by an impedance-
control strategy might not be sufficient to ensure safety in HRC applications, e.g., if
fragile equipment was located in the shared workspace, or if further protection was
desired for the most sensitive body parts of human operators, such as their heads.
In these scenarios, it is necessary to constrain the available operational space of the
robot by creating restricted zones that the robot should avoid.

Safety Control Barrier Functions (SCBFs) [Ames et al., 2019] have been ex-
tensively used in recent years to bound the operational space of robot manipulators
[Landi et al., 2019; Singletary et al., 2021; Ferraguti et al., 2020; Rauscher et al.,
2016; Salt Ducaju et al., 2022] since they provide formal forward-invariance con-
ditions to ensure that a robot does not leave a safe set of states, i.e., a robot that
started its motion in its allowed operational space would not invade a restricted
zone. To achieve a minimally-invasive modification of the nominal behavior of the
robot, SCBFs have been included as inequality constraints in a quadratic optimiza-
tion (QP) problem whose goal was to minimize the difference between a nominal
control signal and a control signal that would satisfy the safety requirements im-
posed by the SCBFs [Ames et al., 2019]. Convexity guarantees in this formulation
ensured optimality, and allowed a fast execution of this safety strategy at the sam-
pling frequency of the controlled robot, which can be as fast as 1 kHz. Moreover,
in the context of HRC, SCBFs have been considered to adapt the acceleration of
a robot depending on a human–robot separation distance [Ferraguti et al., 2020],
resulting in a safety improvement for human–robot contacts. Then, regarding safety
in pHRI, SCBFs have been considered to modify an impedance control structure for
robot obstacle avoidance [Rauscher et al., 2016; Salt Ducaju et al., 2022].

Furthermore, so far, SCBF-based proposals to constrain the operational space of
robot manipulators [Landi et al., 2019; Singletary et al., 2021; Ferraguti et al., 2020;
Rauscher et al., 2016; Salt Ducaju et al., 2022] have been formulated as 1-step QP
problem, thus not containing prediction capabilities regarding robot motion and/or
the behavior of the operator. The advantages of prediction for collision avoidance
have been studied for other types of robotic systems, such as legged robots [Grandia
et al., 2021] and mobile robots [Zeng et al., 2021], where SCBFs were combined
with Model Predictive Control (MPC) strategies to include longer temporal-horizon
predictions for safety improvement. However, nonlinear MPC strategies were pro-
posed in [Grandia et al., 2021; Zeng et al., 2021], which caused their optimization
problem to depend on the fundamental characteristics of the problem, thus no guar-
antees for global optimality could be provided from the obtained solution. Addi-
tionally, the longer computational times of the nonlinear MPC strategies prevented
their implementation at a fast rate, hence reducing the robots capacity to react to
changes in their environment, which is especially relevant in safety-related robotic
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scenarios.

In this paper, we address the problem of improving safety in HRC by consider-
ing a longer temporal-horizon prediction of the behavior of both the controlled robot
and the human operator involved. To this end, we propose to vary the impedance be-
havior of a robot manipulator using a linear MPC strategy that includes the forward-
invariance condition of a SCBF that is linearized at each time-step. The MPC formu-
lation presented results in a convex QP problem that could be solved at the control
rate of a real robot (1 kHz), while ensuring optimality in the proposed method under
linearity assumptions on human guidance and linearized robot dynamics. Addition-
ally, a Lyapunov function is used to provide global asymptotic stability guarantees
and real experiments were performed to evaluate the method on a robot manipulator.

The paper is organized as follows: Sec. 2 introduces the dynamics model used
for impedance control of the robot manipulator. Then, Sec. 3 presents a linearized
barrier function for robot obstacle avoidance, which is used as a linear inequal-
ity constraint in the optimization problem developed in Sec. 4 for safe human–
robot collaboration. The method proposed in Sec. 4 was evaluated in simulations,
included in Section 5, and experiments with a real robot, presented in Section 6.
Finally, a discussion is included in Sec. 7 and conclusions are drawn in Sec. 8.

2. Modeling

First, we show how a Cartesian impedance controller acting on the rigid-body dy-
namics of a robot can be written as a Linear Parameter-Varying (LPV) model.

2.1 Robot Rigid-Body Dynamics
The rigid-body dynamics of the robot can be written in the joint space of the robot,
q ∈ Rn, as [Siciliano and Khatib, 2016]

M(q)q̈+C(q, q̇)q̇+G(q) = τ + τ
ext (1)

where M(q) ∈ Rn×n is the generalized inertia matrix, C(q, q̇) ∈ Rn×n describes
the Coriolis and centripetal forces effects, G(q) ∈ Rn captures the gravity-induced
torques, and τ ∈Rn represents the input torques, n being the number of joints of the
robot. Finally, τext ∈ Rn represents the external torques.

Moreover, the rigid-body equation of the robot can be rewritten in terms of its
end-effector pose ξ ∈ Rm which is composed by the end-effector’s position and
orientation:

Mξ (q)ξ̈ +Cξ (q, q̇)ξ̇ +Gξ (q) = F +Fext (2)

where F ∈ Rm is the input force, and, for a fully-actuated nonredundant robot
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(n = m), Mξ ∈ Rm×m, Cξ ∈ Rm×m, and Gξ ∈ Rm are equal to

Mξ = J−T(q)M(q)J−1(q) (3)

Cξ = J−T(q)(C(q, q̇)−M(q)J−1(q)J̇(q))J−1(q) (4)

Gξ = J−T(q)G(q) (5)

assuming that the Jacobian relative to the base frame of the robot, J(q)∈Rm×m, has
full rank [Khatib, 1987].

2.2 Robot Impedance Control
To achieve a Cartesian impedance control of the robot end-effector [Hogan, 1985],
i.e., a mass-spring-damper relationship between the Cartesian pose variation from
its reference, ∆ξ = ξd−ξ (ξd being the Cartesian pose reference) and the external
Cartesian force Fext,

Fext = Mξ (q)ξ̈ +(Cξ (q, q̇)+D)ξ̇ −K∆ξ (6)

the input force F in Eq. (2) should be equal to

F = K∆ξ −Dξ̇ +Gξ (q) (7)

where K ∈ Sm
++ and D ∈ Sm

++ (S++ denoting symmetric positive-definiteness) are
diagonal matrices that represent the control-induced stiffness and damping, respec-
tively.

REMARK The control-induced inertia was chosen equal to the robot inertia Mξ (q)
to avoid inertia shaping [Ott, 2008, Ch. 3.2], so that the input force F would not
require feedback from the external forces. 2

Moreover, by choosing the state vector as x = [∆ξ T,∆ξ̇ T]T ∈ R2m, the linearized
system is

ẋ = A(q, q̇)x+B(q)u (8)

where the input u ∈ Rm is equal to

u = Fext (9)

and the matrices that define the system are equal to

A =

[
0m Im

−M−1
ξ

(q)K −M−1
ξ

(q)(Cξ (q, q̇)+D)

]
(10)

B =

[
0m

−M−1
ξ

(q)

]
(11)
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where Im ∈ Rm×m represents an identity matrix, and Mξ (q) is invertible since J(q)
is also invertible [Salt Ducaju et al., 2022, Lemma III.1].

Furthermore, the impedance control resulting in Eq. (8) can be shown to be
globally asymptotically stable [Salt Ducaju et al., 2022]. For completeness, a short
version of the proof is provided here, see [Salt Ducaju et al., 2022, Lemma III.2]
for an extended version of this proof.

PROPOSITION 1
The time-varying Lyapunov function

V (x, t) =
1
2

∆ξ̇
TMξ (q)∆ξ̇ +

1
2

∆ξ
TK∆ξ +α∆ξ

TMξ (q)∆ξ̇ (12)

where x =
[
∆ξ T, ∆ξ̇ T

]T
shows the global asymptotic stability of the impedance

robot behavior in Eq. (6) for α > 0 satisfying

min

(√
λm,K

λM,Mξ

,
2λm,K

λM,D
,

λm,D

2(λM,Mξ
+ kC||∆ξ ||)

)
> α (13)

where λm,Π and λM,Π are the smallest and largest eigenvalues of a matrix Π, re-
spectively, and kC is a positive constant such that for all x,y,z ∈Rn [Santibáñez and
Kelly, 1997]

||Cξ (x,y)z|| ≤ kC||y||||z|| (14)
2

Proof. The Lyapunov candidate (12) is strictly positive for

α <

√
λm,K

λM,Mξ

(15)

Moreover, considering that the matrix Ṁξ (q)− 2Cξ (q, q̇) is skew symmetric
[Ott, 2008, Ch. 2], the time-derivative of the Lyapunov candidate (12) is equal to

V̇ (x) =−α∆ξ
TCξ (q, q̇)∆ξ̇ +α∆ξ̇

TMξ (q)∆ξ̇

−∆ξ̇
TD∆ξ̇ −α∆ξ

TK∆ξ +α∆ξ
TD∆ξ̇ (16)

Then, defining the upper bound on certain terms:

−∆ξ̇
TD∆ξ̇ ≤−1

2
∆ξ̇

TD∆ξ̇ − 1
2

λm,D
∣∣∣∣∆ξ̇

∣∣∣∣2 (17)

α∆ξ̇
TMξ (q)∆ξ̇ ≤ αλM,Mξ

∣∣∣∣∆ξ̇
∣∣∣∣2 (18)

−α∆ξ
TCξ (q, q̇)∆ξ̇ ≤ αkC

∣∣∣∣∆ξ
∣∣∣∣∣∣∣∣∆ξ̇

∣∣∣∣2 (19)
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it follows that

V̇ (x)≤−1
2
[
∆ξ̇ −α∆ξ

]T
D
[
∆ξ̇ −α∆ξ

]
+α∆ξ

T [α

2 D−K
]

∆ξ − 1
2

λm,D
∣∣∣∣∆ξ̇

∣∣∣∣2
+αkC

∣∣∣∣∆ξ
∣∣∣∣∣∣∣∣∆ξ̇

∣∣∣∣2 +αλM,Mξ

∣∣∣∣∆ξ̇
∣∣∣∣2 (20)

which is equivalent to

V̇ (x)≤−1
2
[
∆ξ̇ −α∆ξ

]T
D
[
∆ξ̇ −α∆ξ

]
(21)

for

min

(
2λm,K

λM,D
,

λm,D

2(λM,Mξ
+ kC||∆ξ ||)

)
> α (22)

Therefore, if α > 0 satisfies (13), the Lyapunov candidate function V (x) is strictly
positive and its time-derivative V̇ (x) is strictly negative. 2

Additionally, since Mξ (q), K, D ∈ Sm
++, a passive map from the external force

Fext to ∆ξ̇ is guaranteed,

V̇ < ∆ξ̇
TFext− 1

2
[
∆ξ̇ −α∆ξ

]T
D
[
∆ξ̇ −α∆ξ

]
< ∆ξ̇

TFext (23)

where the passivity condition valid for passive environments is

V (x, t)−V (x,0)<
∫ t

0
∆ξ̇

T(τ)Fext(τ)dτ (24)

3. Robot Obstacle Avoidance

Robot obstacle avoidance can be achieved by defining a safe set of robot states
and ensuring that the robot would stay inside this set. For this, a barrier function
h : D −→R was defined for all x ∈D ⊂R2m based on the condition that the distance
from the robot position, ρ(x) ∈ R3, to an obstacle located at position ρobs ∈ R3

would always be greater than or equal to a safety distance Ds ∈ R as

h(x) = ||ρ(x)−ρobs||−Ds ≥ 0 (25)

which is equivalent to

h(x) = (ρ(x)−ρobs)
2−D2

s ≥ 0 (26)
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The forward-invariance of the safe set C ⊆D defined by the barrier function in
(26),

C = {x ∈ R2m | h(x)≥ 0} (27)

can be ensured if the following inequality constraint is satisfied [Ames et al., 2019]

ḣ(x)+ γh(x)≥ 0 (28)

where γ > 0.
Moreover, the forward-invariance condition (28) of the safe set C can be rewrit-

ten for a variable z = [ρT, ρ̇T]T as a quadratic constraint

zTAzz+Bzz+Cz ≥ 0 (29)

where

Az =

[
γI3 I3
I3 03

]
(30)

Bz =−2ρ
T
obs
[
γI3, I3

]
(31)

Cz = γ(ρT
obsρobs−D2

s ) (32)

which is equivalent to a quadratic inequality constraint in x

xTAxx+Bxx+Cx ≥ 0 (33)

since

z =
[

ρd
03×1

]
−Txx (34)

where

Tx =

[
I3 03 03 03
03 03 I3 03

]
(35)

and ρd is the Cartesian position reference. Also, 0m ∈ Rm×m represents a zero ma-
trix.

Furthermore, since including a quadratic constraint would cause an optimization
problem to be a Quadratically Constrained Quadratic Program (QCQP), which is
NP-hard in its general case, the quadratic inequality constraint (29) was linearized
around zint = [ρT

int,0]
T, ρint being the intersection between the vector −−−→ρobsρ and a

sphere with center at ρobs and radius equal to the safety distance Ds. Since this
sphere-vector pair would intersect at two points, ρint would be chosen as the clos-
est of these two points to the position of the robot, ρ . The linearized inequality
constraint is equal to

(ρint−ρobs)
T
([

I3,
1
γ
I3

]
z−ρint

)
≥ 0 (36)
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which is equivalent to a linear inequality constraint in x (34)

ABFx≤ bBF (37)

with

ABF = (ρint−ρobs)
T
[
I3,

1
γ
I3

]
Tx (38)

bBF = (ρint−ρobs)
T (ρd−ρint) (39)

REMARK The linear inequality constraint (37) satisfies the forward-invariance con-
dition in Eq. (28) of the safe set C , and is equivalent to linearizing a protective sur-
face that was defined using an impedance variable equal to

[
I3,

1
γ
I3

]
z around the

obstacle. 2

4. Model Predictive Variable Impedance (MPVI)
Controller

A linear model predictive controller was designed to vary the impedance behavior
of a robot using the safety condition of Eq. (37) defined in Sec. 3 to allow robot
obstacle avoidance for safe HRC.

4.1 Optimization Problem
The proposed model predictive controller solves, at every sampling step k, an opti-
mization problem that minimizes the difference between the behavior of the robot
and a reference impedance behavior defined by reference states xr and inputs ur

throughout a prediction horizon hp. This is equivalent to the minimization of the
cost function

L(Uk,p) =
k+hp

∑
i=k+1

[
(xr

i − xi)
TQ(xr

i − xi)

+(ur
i−1−ui−1)

TR(ur
i−1−ui−1)

]
(40)

with Q∈ S2m
++ and R∈ Sm

++ being symmetric positive-definite matrices that penalize,
respectively, the system states and inputs variation from their impedance reference
at every time step. Also, Uk,p = [uT

k , . . . ,u
T
k+hp−1]

T ∈ Rmhp is the sequence of com-
puted inputs to the system throughout the control horizon (which was chosen to
have the same length as the prediction horizon, hc = hp).

The minimization of the cost function in Eq. (40) was subject to two types of
constraints. First, the robot should exhibit impedance properties. To this purpose,
the continuous-time impedance model of the robot of Eq. (8) was discretized using
a zero-order hold (ZOH) [Åström and Wittenmark, 2013] sampling method

xk+ j = Φxk+ j−1 +Γuk+ j−1 (41)
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with

Φ = eATs , Γ =
∫ Ts

0
eAsdsB (42)

and Ts being the sampling period of the system, which affects the duration of the
prediction horizon.

Second, obstacle avoidance was implemented in the optimization problem as an
inequality constraint to ensure that the states of the system fulfilled the linearized
condition for forward-invariance of Eq. (37) of the safe set C at every time-step
over the prediction horizon

ABFxk+ j ≤ jbBF (43)

REMARK The inequality constraint (43) might take different values for each time-
step k+ j of the prediction horizon since jbBF would depend on the, possibly time-
varying, position reference ρd , as seen in Eq. (39). 2

As a summary, the optimization problem solved at every time-step k in the proposed
Model Predictive Variable Impedance (MPVI) formulation is

U∗k,p = min
Uk,p

L(Uk,p)

s.t. xk+ j = Φxk+ j−1 +Γuk+ j−1,

ABFxk+ j ≤ jbBF ∀ j ∈ [1, . . . ,hp] (44)

4.2 Human-Guidance Force Estimation
In addition to the estimation of the robot motion provided by the equality constraint
in Eq. (41), a prediction of human behavior can be included in the optimization
problem. To this end, a linear model was chosen to describe the temporal variation
of the external force throughout the prediction horizon of the MPC. In discrete time,
the external force was modeled by

Fext
k+ j = Fext

k + rk(tk+ j− tk) (45)

where rk is related to the estimated rate of change of this signal over the prediction
horizon at every sampling step k.

Moreover, the prediction of Fext
k+ j ∀ j ∈ [1, . . . ,hp] determined, using Eq. (9), the

reference input sequence,

U r
k,p =

[
(ur

k)
T, . . . ,(ur

k+hp−1)
T
]T
∈ Rmhp (46)

used in the cost function of Eq. (40), as shown in the continuous-time input (9) of
the impedance-controlled system. Additionally, the reference state sequence,

X r
k,p =

[
(xr

k+1)
T, . . . ,(xr

k+hp
)T
]T
∈ R2mhp (47)

determined by the desired impedance properties of Eq. (41) and the reference input
sequence U r

k,p.
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4.3 Optimality
PROPOSITION 2
An analytic expression for the optimal solution to the optimization problem pre-
sented in Eq. (44) can be derived. 2

Proof. The optimization problem of Eq. (44) could be expressed as a function of
the entire sequence of states over the prediction horizon,

Xk,p = [xT
k+1, . . . ,x

T
k+hp

]T ∈ R2mhp (48)

Then, the equality constraint (41) is equivalent to

Xk,p = MpUk,p +Npxk (49)

with Mp ∈ R2mhp×mhp and Np ∈ R2mhp×2m being

Mp =


Γ 0 . . . 0

ΦΓ Γ 0
...

...
. . .

...
Φhp−1Γ Φhp−2Γ . . . Γ

 , Np =

 Φ

...
Φhp

 (50)

Moreover, the safety condition in Eq. (43) is equivalent to

pABFXk,p ≤ pbBF (51)

with pABF ∈ Rhp×hp and pbBF ∈ Rhp being

pABF = diag([ABF, . . . ,ABF]) (52)
pbBF = [1bBF, . . . ,

hp bBF]
T (53)

where diag(·) forms a block diagonal matrix from a given list of matrices. Also,
Eq. (51) is equivalent, in terms of the sequence Uk,p of inputs over the prediction
horizon, to

TUk,p ≤W1 +W2xk (54)

where
T = pABFMp, W1 =

pbBF, W2 =−pABFNp (55)

Additionally, if these expressions are rewritten in terms of the error dynamics

Ũk,p =U r
k,p−Uk,p, X̃k,p = X r

k,p−Xk,p (56)

the cost function of Eq. (40) is equivalent to

L(Ũk,p) = X̃T
k,pQpX̃k,p +ŨT

k,pRpŨk,p (57)
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where Qp = diag

([
Q, . . . ,Q

])
∈R2mhp×2mhp and Rp = diag

([
R, . . . ,R

])
∈ Rmhp×mhp

and the inequality constraint (54) could be rewritten as:

TeŨk,p ≤W1,e +W2,ex̃k (58)

where
Te =−T, W1,e =W1−U r

k,p +W2xr
k, W2,e =−W2 (59)

Finally, since the system reference (X r
k,p and U r

k,p) followed the same desired
impedance behavior that was imposed as an equality constraint of Eq. (41) of the op-
timization problem, the equality constraint in terms of the error dynamics is equiv-
alent to

X̃k,p = MpŨk,p +Npx̃k (60)

for Mp and Np defined in (50).
Once the optimization problem (44) has been expressed in terms of its error

dynamics sequence, it is straightforward to see that the cost function of Eq. (57),
when considering the equality constraint (60), is equal to

Lu(Ũk,p) = ŨT
k,pFŨk,p +2ŨT

k,pGx̃k + x̃T
k Hx̃k (61)

for
F = MT

p QpMp +Rp, G = MT
p QpNp, H = NT

p QpNp (62)

Then, Lagrange multipliers λk could be used to form the Lagrangian [Johansson,
2020]

L(Ũk,p) =ŨT
k,pFŨk,p +2ŨT

k,pGx̃k + x̃T
k Hx̃k +2λ

T
k
(
TeŨk,p−W1,e−W2,ex̃k

)
(63)

By completion of squares, this expression is equal to

L(Ũk,p) =

(
Ũk,p +F−1 [G, T T

e
][x̃x

λk

])T

F
(

Ũk,p +F−1 [G, T T
e
][x̃x

λk

])
−
[

x̃k
λk

]T([
G, T T

e
]T F−1 [G, T T

e
])[x̃k

λk

]
+ x̃T

k Hx̃k

−2λ
T
k (W1,e +W2,ex̃k) (64)

Therefore, the optimal control sequence is equal to

Ũ∗k,p =−F−1 [G, T T
e,k
][ x̃k

λ ∗k

]
(65)

where only the inequality constraints that were active at time-step k were considered
(Te,k and λ ∗k ). The minimal cost function

minL(Ũk,p) =L(Ũ∗k,p) = x̃T
k
(
H−GTF−1G

)
x̃k +(λ ∗k )

T Te,kF−1T T
e,kλ

∗
k (66)

was obtained from the optimal control sequence of Eq. (65). 2
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4.4 Stability in Error Dynamics
PROPOSITION 3
Asymptotic stability guarantees for the error dynamics of the proposed method can
be provided. 2

Proof. Since the equality constraint of the optimization problem in Eq. (41) ensures
that both the obtained solution and the reference behavior of the system (defined by
the state and input references, xr and ur), followed the desired robot impedance
behavior, the error dynamics could be described with:

˙̃x = A(q, q̇)x̃+B(q)(ur−u) (67)

where

x̃ = xr− x =
[

∆̃ξ
T
,

˙̃
∆ξ

T]T

(68)

Moreover, the Lyapunov function that was used to show the global asymptotic
stability for the system dynamics in Eq. (8) can also be used to show the global
asymptotic stability for the system error dynamics by replacing x for x̃ in Eq. (12):

V (x̃, t) =
1
2

˙̃
∆ξ

T
Mξ (q)

˙̃
∆ξ +

1
2

∆̃ξ
T

K∆̃ξ +α∆ξ
TMξ (q)

˙̃
∆ξ (69)

for analogous conditions on α > 0 as the ones in Eq. (13). 2

5. Simulations

We started the empirical evaluation of the MPVI method by performing simulations
with a two-dimensional double integrator system, which might be used for robot
manipulators if their maximally-allowed accelerations are conservatively chosen
[Bäuml et al., 2010; Ghazaei Ardakani et al., 2019]. The input u∈R2 to this system
was equal to the acceleration of the system

u = ρ̈ ∈ R2 (70)

with the system’s position being ρ = [ρx,ρy]
T ∈ R2. Additionally, analogous to the

impedance controller for the robot dynamics in Eq. (7), an impedance behavior
could be achieved for the double-integrator model with

u = u0 +∆u, u0 = K∆ρ−Dρ̇, ∆ρ = ρd−ρ (71)

such that the continuous-time impedance behavior of the system, with state vector
x = [∆ρT,∆ρ̇T]T ∈ R4 was modeled by

ẋ =
[

02 I2
−K −D

]
x+
[

02
−I2

]
∆u (72)
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where K = kI2 and D = dI2, with k,d > 0.

Moreover, for the simulations performed, it was desired that a system with initial
position ρ0 = [0,0]T followed a trajectory determined by a constant speed of 0.4 m/s
along each direction, which yielded a position reference at each discrete time-step
k equal to:

ρd,k = ρd,k−1 +0.4
[

1
1

]
Ts (73)

with Ts being the discrete-sampling period of the system, which was chosen as 0.1
s for this simulation. The MPVI controller of Eq. (44) was used to achieve robot
obstacle avoidance, and the resulting optimization problem was solved using the
convex optimization solver CVXGEN [Mattingley and Boyd, 2012]. For this sim-
ulation, the obstacle was located at ρobs =

[
2,1.5

]T m, with a safety distance of
Ds = 0.5 m.

Furthermore, the control-induced stiffness and damping were chosen as k = 1
and d = 1/γ for γ = 1.5 and the total simulation time was 10 s. Also, regarding the
parameters of the MPC optimization problem, the control and prediction horizons
were chosen as hp = hc = 10, and the states and input penalization with respect to
their reference in the cost function of Eq. (40) were Q = I4 and R = 0.1I2, respec-
tively.
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Figure 1. Simulated path traversed by the robot compared to its reference path.
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Figures 1 and 2 show the simulation results of modifying the impedance be-
havior of a two-dimensional double integrator for robot obstacle avoidance using
MPVI. Determined by the MPVI controller, the system closely followed the refer-
ence until a detour was commanded to avoid the forbidden area that surrounded the
obstacle (Fig. 1). Once the commanded detour was not needed anymore for obsta-
cle avoidance, the system was able to converge to its nominal path. Additionally,
the input commanded to the system is shown in Fig. 2. The conservative accelera-
tion values seen in this figure justified the use of a double integrator model for this
simulation.
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Figure 2. Temporal evolution of the input signal throughout the simulation.

6. Experiments

We extended the empirical evaluation of the proposed method with a series of exper-
iments performed with a real robot in an experimental setup that allowed human–
robot collaboration. The MPVI solution was compared to a previous formulation
[Salt Ducaju et al., 2022] where prediction was not considered, to highlight the
benefits of using a model-predictive scheme in these collaborative applications.

6.1 Experimental Setup
The experimental setup that was used to evaluate the method on a real robot con-
sisted of a Franka Emika Panda robot [Panda – Data Sheet 2019] mounted on a
table (as seen in Fig. 3). This robot has seven rotational joints, n = 7 > 6 = m, so,
the last joint was locked at θ7 = π/2 rad, and only the first six joints of the robot
were controlled. In addition, the controller was running at the sampling rate of the
Panda robot, equal to 1 kHz, using a single PC (Intel Xeon CPU E3-1245, 3.7 GHz,
4 cores, 64-bit), and CVXGEN [Mattingley and Boyd, 2012] was used to obtain the
optimal control of Eq. (65).

Moreover, the nominal robot impedance that enabled HRC by allowing an op-
erator to guide the robot was defined by a control-induced stiffness, K in Eq. (7),
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Figure 3. A human–robot collaborative scenario where an operator was guiding a
Franka Emika Panda robot mounted on a table.

equal to 150 N/m for the translational degrees of freedom and equal to 10 N/rad
for the rotational degrees of freedom, and a control-induced damping, D in Eq. (7),
equal to 2

√
K for all degrees of freedom [Karlsson et al., 2018].

Furthermore, regarding the parameters of the MPC optimization problem for
the experiments, both the control and the prediction horizons lasted 1 s, divided
into ten discrete-time steps (hp = hc = 10) that were equally spaced at 0.1 s. Also,
the penalization of the states and inputs with respect to their reference in the cost
function of Eq. (40) was chosen as Q = I6 and R = 0.1I3, respectively, and all the
experiments presented lasted 10 s, t ∈ [0, tmax = 10] s.
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6.2 Robot Obstacle Avoidance in Free Motion and Influence of
the Selection of γ

The behavior of the robot was evaluated for a scenario where, in the absence of
external guidance force, the nominal impedance behavior of the robot would have
resulted in an unmodified robot path, ρun, that collided with an obstacle, as shown
in Fig. 4. Figure 4 also shows the 3D plot of the path ρ , traversed by the MPVI-
controlled robot. The initial position of the robot relative to its base frame was
equal to ρ0 = [0.358,−0.2,0.395] m, and the final position of the robot was equal
to ρF = ρ0 +∆ρ for ∆ρ = [0.1,0.5,0.1] m. The position reference of Eq. (6) of the
robot was defined to increase linearly with time

ρd(t) = ρ0 +
∆ρ

tmax
t (74)

Also, the obstacle was placed at ρobs = [0.4,0.0,0.45] m and the safety distance was
equal to Ds = 0.05 m.

As seen in Fig. 4, the MPVI-based strategy was able to avoid any collision
between the robot and the obstacle. Additionally, this controller allowed that the
path followed by the robot converged toward the unmodified path, ρun, once the
robot passed the obstacle. Moreover, it is also observed in Fig. 4 that the selection of
γ in the forward-invariance condition in Eq. (28) of the safe set C had a significant
influence on the behavior of the MPVI-controlled robot, i.e., a higher value of γ

yielded a less conservative solution, where the robot got closer to the obstacle during
the trajectory execution. Indeed, this observation was supported when the temporal
evolution of the barrier function h of Eq. (26) was analyzed, as depicted in Fig. 5.
Even though the MPVI-solution avoided the obstacle for all the analyzed values of
γ , it can be seen in Fig. 5 that the robot motion was less conservative for higher
values of γ .

Furthermore, Fig. 6 shows the difference in the commanded forces to the robot,
F in Eq. (2), along each Cartesian direction depending on the choice of γ compared
to the unperturbed impedance solution with no robot obstacle avoidance. Selecting
a higher value of γ allowed the robot to achieve a less conservative solution where
a smaller deviation with respect to the nominal impedance behavior, both in terms
of the amount of time deviating from the nominal impedance behavior, and in terms
of the magnitude of the deviation, was observed.

6.3 Comparison with a 1-step Solution in Free Motion
The collision-avoidance situation in free motion described in Sec. 6.2 was used for
comparing the MPVI solution with respect to a 1-step formulation [Salt Ducaju et
al., 2022], which was also executed at the sampling frequency of the robot, i.e.,
1 kHz. The same value of γ = 5 in Eq. (28) was used for both formulations. The
advantages of considering a prediction of the robot motion for robot obstacle avoid-
ance were apparent in this situation.
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Figure 4. 3D rendering of the path ρ traversed by the end-effector of the MPC-
controlled robot for different values of γ (28). The unmodified path, ρun, showed the
path that the robot would follow with its nominal impedance behavior. The plotted
sphere was centered at the obstacle position ρobs and its radius was equal to the
safety distance Ds.

First, the MPVI-controlled robot was able to stay less time at risk by acting
earlier to modify the nominal impedance behavior, as shown in Fig. 7, where the
temporal evolution of the velocity of the robot end-effector is depicted. It can be
seen in Fig. 7 that before t = 4 s, the MPVI-controlled robot had started to move
away from the obstacle, while the 1-step controller commanded the robot to keep a
velocity close to zero in all its components until after t = 6 s.

Moreover, the robot-motion prediction, combined with the utilization of the
temporal evolution of the desired impedance behavior of the robot throughout the
prediction horizon, allowed the MPVI controller to reduce the trajectory error. This
is seen in Fig. 8, which showed a comparison of the trajectory of the MPVI formu-
lation and the 1-step formulation with respect to the unperturbed, i.e., without colli-
sion avoidance, impedance behavior of the robot. The MPVI controller was able to
provide a closer tracking of the reference impedance trajectory, which was quanti-
fied using the Mean Absolute Error (MAE) between the nominal (unperturbed) and
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Figure 5. Temporal evolution of the barrier function h in Eq. (26) throughout the
experiment for different values of γ in Eq. (28).
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Figure 6. Commanded force F in Eq. (2) to the robot along each Cartesian direc-
tion x,y,z throughout the experiment for different values of γ in Eq. (28).
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Figure 7. Temporal evolution of the velocity of the robot end-effector along each
Cartesian direction x,y,z for the MPVI-controlled robot compared to a 1-step con-
troller formulation [Salt Ducaju et al., 2022].

the actual position of the robot end-effector

MAE(ρ) =
∑

N
k=0 |ρun,k−ρk|

N
(75)

where N = f · tmax and f = 1000 Hz since experimental data were recorded in these
experiments at the sampling rate of the Panda robot (1 kHz). For the trajectory de-
scribed in Fig. 8, the position MAE of the 1-step controller was 0.0553 m, whereas
the position MAE of the MPVI controller was 0.0185 m, which implied a reduction
of 66.5% of the position MAE.

Additionally, it should be highlighted that not only did the MPVI controller exe-
cute a collision-avoidance strategy earlier than the 1-step alternative, but also, since
it was able to consider a prediction of the robot motion and the desired robot behav-
ior throughout its prediction horizon, the MPVI controller could pursue a different,
and better, path for obstacle avoidance than its 1-step counterpart.

6.4 External Force Prediction
An additional advantage of the MPVI strategy is that it could include a prediction
model of the external force applied to the robot by a human operator guiding it
throughout its prediction horizon, which could be used to improve the performance
of the system. The low-complexity linear model for external force prediction intro-
duced in Sec. 4.2 was evaluated and compared to a model that considered a con-
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Figure 8. Trajectory followed by the robot end-effector along Cartesian direction
x,y,z for both the predictive controller (MPVI) and a 1-step controller [Salt Ducaju
et al., 2022], with respect to the unperturbed, nominal, impedance behavior.

stant external force throughout the entire prediction horizon. For this constant-force
model, both the value of the external force at the current time and a zero value of
the external force were considered as its constant value.

Additionally, the linear model could be estimated using available sensor data
prior to the estimation time:

F̂ext
t|tk = Fext

tk + rk(t− tk) (76)

where F̂ext
t|tk

is the prediction made at time tk of the value of the external force at
time t. The slope rk of the linear model was chosen proportional to the Cartesian
acceleration of the robot at time tk, which was recalculated at the sampling rate of
the robot using a least-squares method that considered the previous Nr = 10 values
of the Cartesian acceleration as a moving average to avoid the detrimental effects of
measurement noise,

rk ∝
∑

Nr
i=1(tk−i− t̄Nr)(ρ̈k−i− ρ̈Nr

)

∑
Nr
i=1(tk−i− t̄Nr)

2
(77)

where t̄Nr and ρ̈Nr
are, respectively, the averages of tk−i and ρ̈k−i for i ∈ [1, . . . ,Nr].
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Moreover, the accuracy of the different models proposed to estimate the guid-
ance force was studied for a situation where an operator was trying to move the
robot away from its nominal trajectory. Because of the impedance behavior of the
robot with respect to its reference, the operator would be required to apply a greater
force to move the robot away from its nominal trajectory, the further away the robot
was positioned with respect to this trajectory. Therefore, the external force would
be expected to increase linearly in this scenario. To evaluate the accuracy of these
models used to predict the external force, the MAE between the predicted and the
actual external force was computed for each time step j of the prediction horizon
hp as

MAE
(
F̂ext

j
)
=

∑
N
k=0

∣∣F̂ext
k+0.1 f · j|k−Fext

k+0.1 f · j
∣∣

N
(78)

where j = [1, . . . ,hp], N = f · tmax, and f = 1000 Hz because of the sampling rate
of the robot, as in Eq. (75). The external-force MAE for the different estimation
models is shown in Fig. 9 for an experiment where the guidance force was exerted
along the negative z-direction.
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Figure 9. Mean Absolute Error (MAE) of the predicted external force along the
negative z-direction throughout the MPVI prediction horizon for different models.

As seen in Fig. 9, the linear model slightly outperformed the constant model that
used the initial external force measurement as its constant value. Also, both of these
models clearly outperformed the constant zero model, except for the last time-steps
of the prediction horizon, where the current state of the robot was not useful for pre-
dicting the external force. Moreover, the advantage of using the linear model with
respect to the constant model became more evident when analyzing the temporal
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evolution of the predicted external force in each of these two models compared to
the measured force, as seen in Fig. 10, where the results of the prediction of the
human guidance situation for a prediction time of 0.5 s ( j = 5) are shown.
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Figure 10. Predicted external force for a human-guidance situation along the neg-
ative z-direction. Fext denotes the measured external force and F̂ext

ze , F̂ext
c , and F̂ext

l
denote the zero, constant, and linear predictions of the external force, respectively,
for a prediction time of 0.5 s.

As expected, the constant model appeared as a delayed version of the measured
external force signal, with a delay equal to the prediction time, which was equal to
0.5 s in Fig. 10. On the other hand, the linear model was able to achieve a faster
response to the changes in the measured external force, which might be useful for
safety-critical scenarios.

6.5 Comparison with a 1-step Solution during Human
Guidance

To obtain a fair comparison between the proposed MPVI controller and a 1-step
controller in a human-guidance situation, the same external force should be applied
to the robot for each of these two controllers. To this end, a simulated guidance force
fs(t) was used. The simulated force fs(t) consisted of a sinusoidal signal with an
amplitude of 30 N and a period of 3 s (to resemble the external force originated from
human guidance seen in Fig. 10), and was applied to the robot along the negative
z-direction

fs(t) =−30sin
(2π

3
(t−2)

)
, t ∈ [2,3.5]s (79)
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Moreover, the trajectory used to compare the MPVI solution to a 1-step con-
troller in this human-guidance situation considered that the initial position of the
robot was ρ0 = [0.357,−0.2,0.395] m, and that the desired position of the robot
varied linearly (Eq. (74)) during 10 s until reaching the final reference position
ρF = [0.357,−0.2,0.1] m. Additionally, the obstacle was positioned to intersect with
the nominal trajectory: ρobs = [0.357,−0.2,0.2] m with radius equal to Ds = 0.05
m.

Figure 11 shows the 3D plot of the path ρMPVI traversed by the robot controlled
using the MPVI formulation, compared with the path obtained when using a 1-step
controller alternative without predictive capabilities, ρONE. It can be seen that, for
the human-guidance scenario illustrated in Fig. 11, the longer-time prediction of the
robot motion and the guidance force allowed the MPVI-controlled robot to circuit
the obstacle, whereas when the robot was controlled using a 1-step formulation it
got stuck in the surroundings of the obstacle.
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Figure 11. 3D rendering of the path traversed by the robot end-effector controlled
using MPVI, ρMPVI, compared to the path traversed by the robot end-effector con-
trolled using a 1-step controller, ρONE, when a simulated guidance force fs in (79)
was applied to the robot along the negative z-direction. The plotted sphere was cen-
tered at the obstacle position ρobs and its radius was equal to the safety distance Ds.
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6.6 Human Guidance for an Assembly Task in the Presence of
an Obstacle

The proposed MPVI controller was evaluated in a collaborative scenario that in-
volved human guidance with an obstacle present in the shared workspace. Manual
guidance of a robot could be used to correct the Cartesian reference, ξd in Eq. (6),
for a robot assembly task after the requirements of this task had changed, e.g., a
peg-in-hole task where the position of the hole had changed. Additionally, a camera
mounted on the same table as the robot was present in the shared workspace to be
used for visual quality inspection of the workpieces involved in the assembly [Zhou
et al., 2022]. From the human-guidance perspective, an accidental collision between
the camera and the guided robot should be avoided to refrain from any damage to
the camera or the other workpieces and to obtain a valid manual correction for the
robot trajectory. An overview of the experimental scenario is shown in Fig. 12.

Figure 12. A human–robot collaborative scenario where the operator was guiding
the robot to teach a peg-in-hole task in the presence of an obstacle (a camera).

In this experimental scenario, the human operator was instructed to man-
ually guide the robot to achieve its task completion, i.e., the insertion of the
peg in the hole, in the shortest time and path possible. However, the pres-
ence of the camera in the shared workspace would condition the manual tra-
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jectory correction. The initial position of the robot relative to its base frame
was equal to ρ0 = [0.3,−0.19,0.683] m, and the position reference of the robot
varied linearly (Eq. (74)) during 10 s until reaching the final reference position
ρF = [0.087,0.34,−0.55] m. Also, the camera was placed at ρobs = [0.38,0.0,0.33]
m and the safety distance was equal to Ds = 0.2 m.
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Figure 13. Input force, F in Eq. (2), commanded to the robot by the MPVI con-
troller of Eq. (44) compared to the reference robot impedance behavior Eq. (7) for
an assembly task in the presence of an obstacle.

A comparison between the input force, F in Eq. (2), commanded to the robot
when using the proposed MPVI controller, and the reference robot impedance be-
havior for this collaborative scenario was shown in Fig. 13. It can be seen in Fig. 13
that the MPVI controller allowed the robot to behave in an equal manner to the
reference robot impedance behavior, until a force input variation was necessary to
avoid that the peg would invade the safety distance with respect to the camera.
Then, it is also shown in Fig. 13 that after the manually-guided robot stopped being
at a risk-of-collision situation, the MPVI controller allowed the robot to resume the
reference robot impedance behavior.

Moreover, the external force recorded from human manual guidance for this
collaborative scenario is shown in Fig. 14. It can be seen in Fig. 14 the response
of the human operator to the robot impedance variation commanded by the MPVI
controller. Additionally, the prediction of the external force obtained using the linear
model in Eqs. (76) and (77) is shown in Fig. 14 for a time (t = 1.5 s) when the MPVI

190



7 Discussion

controller started to command a robot impedance that differed from its reference
to achieve obstacle avoidance. It can be observed in Fig. 14 that the linear model
accurately predicted (with a MAE at t = 1.5 s equal to 1.4 N for the entire prediction
horizon) the guidance force applied by the human operator at this time.
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Figure 14. External force recorded from the manual correction for an assembly
task in the presence of an obstacle, and prediction at time t = 1.5 for the external
force between t = 1.5 s and t = 2.5 s using the linear model in Eqs. (76) and (77).

Furthermore, the optimization problem formulated in Eq. (44) for the proposed
MPVI controller took on average 95.8 µs to solve for this experiment, with a stan-
dard deviation of 20.6 µs, using a single PC with the hardware specifications de-
scribed in Sec. 6.1.

7. Discussion

In this paper, we have proposed an approach to include SCBFs in a linear MPC
strategy so that a longer-time horizon prediction could be considered for safety in
HRC. The advantages in terms of safety obtained by considering a prediction of
both the motion of the controlled robot manipulator and the human collaborator,
compared to 1-step formulations [Salt Ducaju et al., 2022], were shown in the ex-
perimental evaluation presented in Sec. 6. First, this prediction allowed a reduction
of the trajectory error and decreased the time where a risk of obstacle-collision was
present. Additionally, the prediction capabilities of the proposed method prevented
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that the controlled robot would get stuck near an obstacle and allowed the robot to
converge to its nominal trajectory.

Moreover, the linear MPC considered in our method satisfied the forward-
invariance condition of Eq. (28) for the set of robot states that guaranteed safety
during HRC, and resulted in a convex QP problem that was solved within the con-
trol frequency of a real robot, i.e., in less than 1 ms, which is significantly faster than
the computational time of previously proposed nonlinear, nonconvex, MPC formu-
lations, i.e., around 40 Hz [Grandia et al., 2021] and 35 Hz [Zeng et al., 2021].
Also, multi-layer strategies where a slow nonlinear MPC solution was combined
with a faster 1-step QP problem solved at the control frequency of a robot (400 Hz
in [Grandia et al., 2021]), would not allow the use of a longer-time prediction at a
fast rate to rapidly adapt to changes in the robot environment.

Additionally, the control signal obtained from a nonlinear MPC would depend
on the characteristics of the problem, whereas, as shown in Sec. 4.3, optimality was
guaranteed in our proposal under linearity assumptions on human guidance and
linearized robot dynamics, to achieve convexity in the optimization problem formu-
lated in Eq. (44). It becomes apparent that inaccuracies occurring when modeling
the dynamic behavior of the robot and the manual robot guidance might compro-
mise the performance of the proposal. However, in Sec. 6, the proposed formulation
that includes such linearity assumptions was experimentally evaluated in robot ob-
stacle avoidance scenarios, and suitable results were obtained both in the presence
of manual robot guidance and in its absence.

Furthermore, it should be mentioned that the guidance force that would be ex-
erted by a human operator cannot always be predicted. The experimental validation
provided in Sec. 6 showed how a non-complex linear model could be used to predict
the temporal variation of the external force signal based on sensor data recorded
at previous time-steps. However, previous sensor data might not always provide
an accurate prediction, e.g., it can be seen in Fig. 10, how the external-force data
recorded before human interaction had started could not be used to predict the in-
crease in external force shown in this figure. Additionally, an accurate prediction of
early instances of human guidance force was achieved using this linear model for
a collaborative scenario in the presence of an obstacle, as shown in Fig. 14. Accu-
rately predicting such increases in guidance force would allow anticipatory action
for safety-critical scenarios. However, the prediction for other instances of human
guidance might not be as accurate, as shown in Fig. 9, which provided the exter-
nal force MAE for an entire human guidance event. Nevertheless, more complex
strategies that incorporate further information regarding the intention of the human
operator [Wong et al., 2023; Liu et al., 2021], and/or consider biomechanical mod-
els of the human operator and measure its muscle activity [Peternel and Ajoudani,
2023], could be integrated with our method to improve the prediction of physical
human–robot interaction.
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8. Conclusion

Safety in HRC can be improved by considering a longer temporal-horizon predic-
tion of the motion of the controlled robot and the human-collaborator guidance. To
this purpose, the impedance behavior of a robot manipulator was varied, in a sta-
ble manner, by including linearized SCBFs for robot obstacle avoidance in a linear
MPC strategy that ensured optimality. Our MPC-based proposal was evaluated in
experiments using a real robot manipulator that was controlled at a fast rate (1 kHz)
to allow a fast reaction to changes occurring in the robot environment. These ex-
periments showed that adding prediction capabilities to a robot controller led to a
reduced time at risk of collision, improved obstacle bypassing, and decreased the
trajectory error caused by obstacle avoidance.
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How to control robots to
collaborate with humans?
Julian M. Salt Ducaju
Department of Automatic Control

Popular science summary of the doctoral dissertation Control Strategies for Physical
Human–Robot Collaboration, June 2024. The thesis can be downloaded from
http://www.control.lth.se/publications

During the First Industrial Revolution, craftsmen were replaced with machines.
Later, throughout the second half of the twentieth century, robots were adopted to
replace factory workers and automate industry. Over all these years, productivity
in manufacturing increased by capitalizing technological development, at the ex-
pense of human workers, who saw their relevance in manufacturing environments
decrease. Nevertheless, this trend might be disrupted in the upcoming years.

Industrial settings have become very structured environments to allow robots,
and other machinery, to perform the same task repeatedly in a very efficiently man-
ner to maximize production. This has resulted in the manufacturing industry being
able to produce large amounts of identical products. However, structured industrial
settings have the disadvantage of having difficulty adapting to changes, which is
especially relevant considering the current industrial trends that focus on product
customization.

A human operator manually guiding a
robot to teach a peg-in-hole task.

Human–Robot Collaboration (HRC)
has been proposed to improve how in-
dustrial environments adapt robot tasks to
changes in production processes. The logi-
cal argument is the following: humans are
intelligent, and robots are very good do-
ing repetitive tasks and do not get tired in
the process; then, why not combining their
skills and get the best from each? This col-
laboration would ideally be as simple as
having a human operator manually guiding
the robot to teach a correction to the motion
of the robot. However, the challenge of having a versatile industrial environment
where humans are present is that unexpected events can occur. The goal of this the-
sis is to develop robot control methods to deal with these uncertainties to improve
physical collaboration between humans and robots.

The robot control methods presented in this thesis have been focused on improv-
ing different aspects of physical HRC. First, robot guidance was facilitated from a
human operator perspective by reducing uncertainties present in the amount of force
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that the operator should apply to the robot for its guidance. The proposed method
could avoid possible structural vibrations and wear of robot components that might
occur using an alternative state-of-the-art strategy. Second, a method was developed
to distinguish human guidance from an accidental contact between the robot and an
obstacle, without the need for additional equipment. This method could be used for
an effective modification of a robot task once the operator has finished demonstrat-
ing a correction, but also to modify the robot behavior while human guidance is
occurring. Third, a strategy was developed for how a robot would learn from a hu-
man correction by making the robot execute its task several times, and each of these
times using the difference between the robot motion and the human correction to
modify the behavior of the robot.

Additionally, safety is mandatory in industrial scenarios, especially when hu-
mans are involved. For this reason, this thesis includes methods that allow human
guidance of robots only in situations where robots, human operators, and any other
object involved in the robot task would not be at risk of collision. With the proposed
methods, the human operator guiding the robot would be able to feel how the robot
stiffens if there was a risk of collision, making it impossible to cause an accidental
collision. A prediction of how the human will guide the robot and how the robot will
move in the near future was used to provide anticipation capabilities when evaluat-
ing this risk. Moreover, a robot control method to guarantee safety without having
to modify how a robot executes its task was also proposed.

Finally, since the robot control methods presented in this thesis were intended
to be applied in practical scenarios, experimental evaluations for all these methods
were performed on a real collaborative robot.
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¿Cómo controlar robots que
colaboran con humanos?
Julián M. Salt Ducaju
Departamento de Control Automático

Resumen de Divulgación Científica para la Tesis Doctoral Estrategias de Control
para la Colaboración Física Humano–Robot, Junio 2024. Esta tesis puede descar-
garse desde http://www.control.lth.se/publications

Durante la Primera Revolución Industrial, se sustituyó a los artesanos por
máquinas. Después, durante la segunda mitad del siglo XX, los robots se emplearon
para reemplazar a los trabajadores de las fábricas y para automatizar la industria. A
lo largo de estos años, la productividad de las actividades de manufactura aumentó
gracias a que se capitalizó el desarrollo tecnológico, a costa de los trabajadores hu-
manos, cuya relevancia disminuyó en entornos de manufactura. No obstante, esta
tendencia puede verse interrumpida en años venideros.

Las instalaciones industriales se han convertido en espacios muy estructura-
dos para permitir a los robots, así como a otra maquinaria, realizar la misma tarea
repetidamente de una manera muy eficiente para maximizar la producción. Como
consecuencia, la industria manufacturera es capaz de producir grandes cantidades
de productos idénticos. No obstante, una desventaja de estas instalaciones indus-
triales tan estructuradas es la difícil adaptación a cualquier cambio en los procesos
productivos, lo cual es especialmente relevante considerando las tendencias indus-
triales actuales de personalización de los productos.

Un operador humano guiando manual-
mente a un robot para enseñarle una
tarea de inserción.

Se ha propuesto usar la Colaboración
Humano–Robot para mejorar cómo los en-
tornos industriales adaptan las tareas robo-
tizadas a los cambios que puedan ocurrir en
los procesos de producción. El argumento
es el siguiente: si los humanos somos in-
teligentes, y los robots son muy hábiles re-
alizando tareas repetitivas y además no se
cansan realizándolas, ¿por qué no combi-
nar las cualidades de ambos y aprovechar lo
mejor de cada uno? Esta colaboración de-
bería ser tan simple como permitir que un
operador humano guíe manualmente a un
robot para enseñarle una corrección del movimiento del robot. No obstante, el de-
safío de tener entornos industriales versátiles donde trabajadores humanos estén
presentes es que pueden ocurrir eventos inesperados. El objetivo de esta tesis es
desarrollar métodos para controlar robots que sean capaces de tratar con esta incer-
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tidumbre y así mejorar la colaboración física entre humanos y robots.
Los métodos de control de robots presentados en esta tesis se han centrado en

mejorar distintos aspectos de la colaboración física entre humanos y robots. En
primer lugar, se facilitó el guiado manual del robot desde la perspectiva del oper-
ador humano al reducir las incertidumbres presentes en la cantidad de fuerza que el
operador debería ejercer sobre el robot para guiarlo. El método propuesto evitaría
las posibles vibraciones estructurales y el desgaste de los componentes del robot
que pueden ocurrir utilizando una estrategia alternativa que forma parte del estado
del arte actual. En segundo lugar, se desarrolló un método para distinguir entre el
guiado humano y un contacto accidental entre el robot y un obstáculo, sin necesidad
de componentes adicionales. Este método podría usarse para modificar de manera
efectiva una tarea del robot una vez que el operador haya terminado de demostrar
una corrección, pero también para modificar el comportamiento del robot mientras
se produce el guiado humano. En tercer lugar, se desarrolló una estrategia sobre el
aprendizaje de una corrección humana por parte de un robot, haciendo que el robot
ejecutara su tarea varias veces, y usando la diferencia entre el movimiento del robot
y la corrección humana de cada ejecución para modificar el comportamiento del
robot.

Además, la seguridad es fundamental en entornos industriales, especialmente
cuando hay seres humanos involucrados. Por esta razón, esta tesis incluye métodos
que permiten el guiado humano de los robots sólo en situaciones en las que los
robots, los operadores humanos y cualquier otro objeto involucrado en la tarea del
robot no estuvieran en riesgo de colisión. Los métodos propuestos permiten que el
operador humano que guíe el robot pueda sentir cómo el robot se rigidiza si hubiera
riesgo de colisión, haciendo imposible provocar una colisión accidental. A la hora
de evaluar el riesgo de colisión, se utilizó una predicción de cómo el humano guiará
al robot y cómo se moverá el robot en un futuro próximo. Asimismo, también se
propuso un método de control del robot para garantizar la seguridad sin tener que
modificar la ejecución de la tarea principal del robot.

Finalmente, ya que los métodos de control de robots presentados en esta tesis
están destinados a ser implementados en escenarios prácticos, todos estos métodos
han sido evaluados experimentalmente con un robot colaborativo real.
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