
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Evidence-Based Guidelines for Advancing Continuous Experimentation

Ros, Rasmus; Runeson, Per; Bjarnason, Elizabeth

Published in:
IT Professional: technology solutions for the enterprise

DOI:
10.1109/MITP.2024.3397541

2024

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Ros, R., Runeson, P., & Bjarnason, E. (2024). Evidence-Based Guidelines for Advancing Continuous
Experimentation. IT Professional: technology solutions for the enterprise, 26(5), 20-27.
https://doi.org/10.1109/MITP.2024.3397541

Total number of authors:
3

Creative Commons License:
CC BY-ND

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/MITP.2024.3397541
https://portal.research.lu.se/en/publications/6bcac9f0-3659-44f0-8afe-8def5f92cfbb
https://doi.org/10.1109/MITP.2024.3397541


Evidence-Based
Guidelines for Advancing
Continuous
Experimentation
Rasmus Ros
Lund University and Theca Systems AB, Sweden

Per Runeson
Lund University, Sweden

Elizabeth Bjarnason
Lund University, Sweden

Abstract—
Continuous experimentation (CE) is used by many internet-facing companies to improve the value of
their products based on user feedback gathered, e.g. through on-line experiments using A/B testing.
Frameworks and theories for CE have been derived through academic research from applications in
large internet facing companies. To assist practitioners in a broader range of companies, we herein
present guidelines for CE, based on empirical data from interviews with 27 practitioners at 12
companies of varying sizes and CE maturity. The guidelines include advise derived from our
(previously published) theory of factors that affect CE (FACE). These practitioner guidelines may
assist companies in making informed decisions concerning their CE practices and contribute to
efficient and effective experimentation. Our advice includes building processes and infrastructure
gradually, combining quantitative and qualitative methods, focusing on goals and incentives for CE,
and being mindful of ethics.

CONTINUOUS EXPERIMENTATION (CE) is used
by many companies with internet-facing applications
to optimise their value offering, based on user feed-
back. CE is an experiment-driven software engineer-
ing approach where assumptions about markets, cus-
tomers, business models, product features, and require-
ments are continuously tested through experiments
with users. The aim is to ensure offering best possible
value to the users [1].

A/B testing is one method that may be used in
CE, where two versions of a product, A and B, are
exposed to different users and the experiment measures

Digital Object Identifier 10.1109/10.1109/MITP.2024.3397541

Date of publication preprint; date of current version 06 maj 2024

a desired user behavior, e.g. clicks, to assess the “bet-
ter” option w.r.t. desired goals. Mostly, users do not
notice that they are part of experiments, and sometimes
the differences between the versions under test are
negligible, as in the infamous experiment performed
by Google to find out which of 41 shades of blue to
use for clickable links.

The advancement of CE is driven by industrial
applications to a large extent. Already in 2007, Kohavi
et al. [2] published an experience report on exper-
imentation at Microsoft and provided guidelines on
how to conduct randomized controlled experiments in
software engineering practice. Several industry leaders
have adopted the practice of CE and published infor-

xxx/xxx 2024 Published by the IEEE Computer Society xxxx-xxxx © 2024 IEEE 1



Industry Practice

mation on their CE processes or infrastructure, such
as Microsoft [3], Google [4] and Facebook [5].

Academic researchers have generalized the experi-
ence from industry reports and case studies from dif-
ferent perspectives, such as the process and activities
for CE, and factors that affect CE. Fagerholm et al. [6]
defined the RIGHT process model and infrastructure
architecture. Fitzgerald and Stol [7] positioned the
activities in a reference model that integrates CE into
business, development, and operations. Our previous
research complements these process-oriented views
with a theory of factors affecting continuous experi-
mentation (FACE) [1] that explains why CE is more or
less effective for different contexts. The FACE theory
is summarized in Figure 2.

There is an increasing need for guidelines on
how to implement CE in practice. This is due to the
wider adoption of CE in a range of companies of
varying sizes, domains, and business models, where
the general approaches reported from companies with
millions of users may not be applicable as-is. To
meet this need, and to reach beyond existing academic
research towards guiding practitioners, we here provide
guidelines based on empirical evidence for advanc-
ing towards best CE practices. While Schermann et
al. [8] guide the technical implementation of CE,
we take a broader scope and address engineering,
organizational, and business aspects of the uptake and
evolution of CE for companies of different sizes. We
include companies in the business-to-business (B2B)
domain, as well as, the more commonly explored
business-to-customer (B2C) domain. An overview of
our research approach is presented in the sidebar
Research approach.

CE in a Nutshell
CE is essentially a continuous process of launching

randomized controlled experiments on a company’s
market offering (product, service, or feature), to op-
timize the utility for users and thereby the business
value for the provider. At the core is the experiment
process, summarized in five major steps: 1) ideation,
2) implementation, 3) experiment design, 4) execution,
and 5) analysis [6].

Hypotheses that are to be tested in experiments are
defined during ideation in terms of a desired outcome,
e.g. in e-commerce contexts typically increased sales.
These hypotheses may range from the above men-
tioned shades of blue in clickable links, to variants of

Research approach

Th
eo

re
tic

al
 le

ve
l

Em
pi

ric
al

 le
ve

l

CE literature

CE 
guidelines

FACE 
theory

Conceptual-
ization

General-
ization

Deriviation

Previous studies This study

Study 
execution

Case 
study 
design

Case 
study data 
collection

Analysis Identification

Figure 1. Overview of our research approach,
where the previous studies [9], [1] are shaded.

Our overall research approach follows Stol and
Fitzgerald’s principles for theory-oriented soft-
ware engineering [10], and is depicted in Fig-
ure 1. Previous studies comprised a review of
CE literature [9] and an interview based multi-
case study, resulting in the FACE theory [1],
see Figure 2. The data collection included semi-
structured interviews with 27 industry practition-
ers in 12 companies selected through job listings
on CE topics, see Table 1. We analyzed the
interviews through thematic coding where codes
were clustered into themes, and then performed
cross-case analysis of these themes. For further
details, see Ros et al. [1].

The interviews also revealed examples of
successful CE practices and experiences from
the companies’ introduction of those. For this
study, we identified these examples of best CE
practice descriptions by clustering similar ap-
proaches across companies. Further, we derived
practitioner guidelines on which strategies to
apply to achieve best practice CE by analytically
validating recommendations from the interviews
in relation to the factors in the FACE theory [1]
and the RIGHT model [6].

user interfaces or information elements to be presented
to the users. For most companies, more hypotheses are
generated than for which there are resources available
for experiments, and thus they must be prioritized.

Next, the product or feature under experimentation
is implemented. Either two or more new versions are
compared, or a new version is compared with the

2 IT Professional



existing one. Furthermore, experimentation infrastruc-
ture is needed to control version handling, randomized
distribution of users across experimental subjects, and
data collection mechanisms to monitor the experiment.

The experiment design involves choosing a de-
sign for the specific experiment, e.g. A/B test. The
design also involves calculation of the power of the
experiment—i.e. the likelihood of a hypothesis test de-
tecting a true effect, if there is one—given the amount
of data collected and the duration of the experiment.
Using proxies for the desired outcome metric may
be a design option, where more experimental data,
and thus power, is traded against less precision of
the experiment. For example, the time of user activity
or number of clicks in the web-shop may be used as
proxies for sales.

The experiment execution involves releasing the
features under experimentation for usage. The experi-
ment infrastructure then assigns users to each experi-
ment version and continuously monitors the outcomes.
The data can be continuously analyzed and the exper-
iment adapted after each iteration. Depending on the
final outcome, one of the versions is selected for all
users, or new experiments are defined and launched.

In case major changes are needed beyond the scope
of sequences of experiments, a pivot may be launched.
A pivot may involve changes to the product or service,
but could also entail changes to, e.g. revenue model or
sales channels. Pivots have a larger scope and are to
lesser extent based on evidence compared to a change
involved in an experiment.

The roles involved in experimentation range across
software engineering, data science, and business an-
alysts. This is a consequence of CE bridging the
engineering and the business sides of a company.

Frameworks for CE
There are several frameworks describing different

aspects of continuous experimentation (CE), including
the RIGHT process model [6], the continuous software
engineering activities model [7], and our FACE the-
ory [1]. Together, they provide condensed summaries
of current knowledge of CE.

The RIGHT Process Model
Fagerholm et al.’s RIGHT process model for CE

provides a reference model for activities and techni-
cal infrastructure needed in CE [6]. It is based on
the Build–Measure–Learn cycle of the Lean Startup
methodology, which in turn is rooted in the Shewart

and Deming cycles on quality improvement from the
1930’s and 1950’s, respectively. The Build activities
identify and prioritize the hypotheses to be tested in
an experiment. A new version of the system is then
implemented for the hypothesis selected for evalua-
tion. The Measure activity executes an experiment to
evaluate the hypothesis. In the Learn activity, collected
user data is analysed. The analysis underpins decision
making on the outcome of the experiment.

In the RIGHT model, Fagerholm et al. propose a
technical infrastructure comprising a back-end system
to drive the experiments, analytics tools, and features
to handle multiple versions and assignment of users
accordingly.

Continuous Software Engineering Activites
Fitzgerald and Stol [7] defined an activity frame-

work, named Continuous * (star), consisting of 16
activities, among those continuous integration and de-
ployment (CI/CD). They clustered the activities around
three major processes in a company, namely Business
strategy, Development and Operations processes. Dev-
Ops refers to the continuous interplay between soft-
ware development and the operations. Further, they add
the concept of BizDev to denote a similar continuity
between business strategy and development. Thereby,
their framework clarifies the role of CE, providing
feedback from operations to development and business
strategy.

FACE Theory on Success Factors
Our FACE theory [1] complements the frameworks

above and presents empirically observed factors that
contribute to an organization’s ability to gain value
through CE. Figure 2 shows an overview of the theory
constructs (C1–C6), i.e. key concepts in CE, and
propositions (P1–P6), i.e. claims about relations be-
tween constructs. The theory is a condensed summary
of our findings from empirical observations.

FACE theory states that the value of CE for a
company is gained through effectively conducting ex-
periments that enable improving the problem–solution
fit (P2) and/or the product–market fit (P3). Problem–
solution fit is a measure of how well the solution solves
users’ needs and product–market fit is how well the
product fits the market. Product–market fit is more
challenging to address and measure in experiments,
e.g., due to the need to position the product towards
competitors or making sure the product is visible
for customers. In practice, actual sales figures is a

xxx/xxx 2024 3



Industry Practice

C1 CE Processes
and infrastructure

C2 Experimentation
effectiveness

C3 Problem-
solution fit

C4 Product-
market fit

P1 efficient CE processes
and infrastructure increases
experimentation throughput

P2 experiments
enables increased

problem-solution fit

P3 quantitative experiments
enables increased
product-market fit

P4 high problem complexity
limits experimentation impact

P5 pivots can lead to
simplified target problem

P6 product-market fit
improving experiments

need incentive structures

C5 User problem
C6 Incentive

structures

Figure 2. An overview of the Factors Affecting Continuous Experimentation (FACE) theory, reprinted from Ros
et al. [1]. The boxes represent the constructs (C1–C6) and the arrows the propositions (P1–P6) of our theory.
The top boxes in dark grey correspond to the root causes derived from the theory (C1, C5, and C6).

good indicator of product–market fit, while problem–
solution fit can be more easily observed through users’
interactions with the product.

In essence, the theory states that the effectiveness
of experiments can be increased through:

• efficient processes and tools for CE (P1),
• addressing a user problem that is sufficiently simple

to be measurable (P4),
• pivoting the business model to simplifying said

problem complexity (P5), and by,
• selecting a business model that provides incentives

to conduct experimentation (P6).

The theory points out three main CE factors that
are intrinsic root causes of an organization’s ability to
perform experimentation. These are marked with dark
grey in Figure 2 and correspond to the constructs C1
CE processes and infrastructure, C5 user problem, and
C6 incentive structures. Thus, these factors represent
hurdles that companies need to overcome to reach
efficient experiment-driven development.

CE Implementation in Case Companies
The companies in our study are of widely varying

sizes, types of business models (B2B, B2C), and busi-
ness domains, and have widely varying expertise and
extent of CE implementation, see Table 1. We observe

differences in CE implementation between companies
with advanced CE processes and infrastructure, and
those without. Our empirical research provides a com-
plementary view of CE compared to those provided
by the industry leading companies [3], [4], [5] and
academic reference models [6], [7].

Two of the case companies in our study have
achieved the highest degree of CE implementation,
namely Cases D and G. They conduct experiments
frequently and on all parts of their software, includ-
ing most software changes, and use business relevant
metrics. CE is an important and integrated part of the
software development processes of these companies. In
addition, these companies have shifted from a mindset
of shipping features as-is, to an experiment-driven
approach where only functionality proven to solve user
or business needs is released. These companies are able
to affect both problem–solution fit and product–market
fit with their CE practices.

The fact that the remaining companies in our multi-
case study do not experiment to the same degree can be
explained by the FACE factors. There are companies
with business models that do not provide incentive
structures (C6) for direct product–market fit improve-
ments (Cases A, B, C, F, J, and L), and thereby are
not inductive to making CE a priority. Some companies
have under-developed CE processes and infrastructure

4 IT Professional



Table 1. Overview of our 12 case companies, containing business model, size, and state of CE, reprinted from Ros et al. [1].

Small companies have less than 50 employees, medium have less than 250, large companies have less than 1000 employees,

and huge more than 1000 employees. CE expertise and extent is estimated based on our interviews using the ordinal scale:

low, medium, and high. More details about the companies can be found in our earlier work [1].

Business Model CE Implementation

Case Summary Type Size Expertise Extent

A E-commerce algorithms Product with direct sales B2B Small High Medium
B Local search Service selling placement to B2B customers and

serving ads to B2C
B2X Small Medium Low

C E-commerce consultants Consulting on a per project basis B2B Medium Low Low
D Video streaming Freemium service with premium features B2C Medium High High
E Web shop Web shop for subscription to physical goods B2C Huge Medium Medium
F Customer relations Product and service with direct sales B2B Small Low Low
G Engineering tools Freemium service with premium for larger teams B2B Huge High High
H Web shop Retailer with small web shop B2B Large Low Low
I Web shop Web shop and retail B2C Huge High Medium
J Product information Service selling customer information and leads to

B2B and free for B2C
B2X Medium Medium Low

K Business intelligence Product with direct sales B2B Large Medium Low
L Employee management Service with direct sales B2B Small Low Medium

(C1) (Cases E, H, and I), such that experimentation is
a daunting task. Finally, some companies address a
complex user problem (C5) (Cases K and L) which
makes it hard to quantify the user behavior in an
experiment.

Evidence-Based Guidelines for CE
We present the following guidelines on how to

make CE provide the most value to a company and
its customers. The guidelines have been identified and
derived from our empirical evidence and are grounded
in our FACE theory. The guidelines are categorised
into engineering, organizational, and business aspects.
Our guidelines provide recommendations for practice
beyond the basic principles and activities provided by
the RIGHT and Continuous * frameworks [6], [10],
summarized above. While the guidelines are based on
a broad set of case companies, we advise practitioners
to consider and adapt these guidelines to their specific
context.

Engineering Aspects
• Feasibility analysis of experiments should be done

before experiments are conducted. Companies with
High experimentation expertise (Cases A, D, I, and
G) conduct this step. This analysis could be as sim-
ple as checking how many users use a feature or a
power analysis to control false discovery rates [11].

• Conduct rigorous analysis after experiments are
completed. Only the cases with High expertise
in CE, monitor statistical significance on multiple
metrics of different types: sales metrics, user experi-
ence metrics, and computation performance metrics.
The calculations are simple [11], so there is no
reason to ignore statistical significance (or effect
sizes, or Bayesian alternatives). The cases with Low
expertise (C, H, and L) skip this step. Rigorous
qualitative analysis is performed at Case K only,
with a transcription and coding process.

• Gather multi-faceted evidence with mixed-
methods experiments. Mixed-methods experiments,
as demonstrated at Cases D and G, harness the
strengths of both quantitative and qualitative data to
provide complementary insights. Other companies
use one or the other. Prototyping pre-deployment
experiments can be evaluated qualitatively, to pre-
validate ideas and to find hypotheses on what to
experiment on. Following up with post-deployment
experiments give definitive evidence. Though,
it does require additional roles in the form of
both user experience (UX) researchers and data
scientists to conduct analysis of the results.

• Use methods that fit the development process to
experiment in contexts with high user problem (C5)
complexity. Qualitative experiments are much easier
to implement since they do not require high num-
bers of users and hence lower processes and infras-

xxx/xxx 2024 5



Industry Practice

tructure requirements (C1), nor require specifying
a quantitative metric. Cases K and L are able to
conduct CE by validating software changes using
qualitative experiments. At Case K, they include
standardized qualitative experiments as part of their
release cycle so that they can compare to previous
releases.

Organisational Aspects
• Encourage knowledge sharing, for example, in

workshops, mails, or internal wikis. One of the
strengths of an experiment-driven development
method is the opportunity to create domain knowl-
edge through rigorous research. That effort risks
being wasted if the knowledge obtained from ex-
periments is not curated. Companies with Medium
or High CE expertise have these practices in place
and it seems to be especially important when the
experimenters are in a stand-alone team.

• Prioritize developing infrastructure (C1) to increase
experimentation throughput (C2). The companies
with High CE expertise have: 1) data infrastructure
to support telemetry on all parts of the software
stored in a way that can be used for experiments,
2) a central experimentation platform that enables
advanced functions such as, parallel experiments,
making inquiries into results for different user seg-
ments or metrics, and segmentation of users in
order to obtain high throughput of experiments, and
3) finally, the competences to cover the necessary
roles of experimentation and all software engineers
need to be trained in experimentation so that they
can partake in CE. Data infrastructure is especially
challenging (observed at Cases B, H, and I) due to
the overarching scope of the required data aggrega-
tion.

• Build processes and infrastructure gradually (C1).
While some companies are able to get started and
ramp up experimentation due to prior investments
in data infrastructure (such as Cases A and to some
degree B), we recommend starting with experimen-
tation practice instead of infrastructure processes.
Starting with experimentation is easy, which is
illustrated by Case D, where they implemented their
first version of their experimentation platform in
an off-hours Hackathon. However, scaling to both
high frequency and high extent of experimentation
is very challenging. The knowledge obtained from
continuous experimentation will also be useful for
continuously scaling up the necessary infrastructure.

• Be mindful of ethics when providing strong in-
centives to individuals (C6). Team goals should
be set with collaboration between the teams and
management in mind, to ensure the goal is good
for both business and users. For example, one of
the experiments mentioned in Case E was to hide
the pause subscription button in a menu, which
drastically improved the churn rate and revenue gen-
eration. This also highlights the need for knowledge
sharing since other developers from the company
were able to point out the ethically questionable
experiment.

Business Aspects
• Prioritization should be based on business rele-

vant user data. Companies use scoring methods to
quantitatively prioritize expected impact on business
and difficulty of implementation. Both Cases D and
G use the Impact, Confidence, Ease (ICE) scoring
model [12] and use user data to base the numbers
on, when possible.

• Seize opportunities to pivot that simplify the prob-
lem the software solves for users. User prob-
lem (C5) complexity severely limits the ability for
experiment-driven development. Case D was able
to pivot successfully and was able to change to
an experiment-driven process as a consequence of
their pivot from having business users to having
consumer users and a subscription based revenue
model. However, pivoting is likely a challenging en-
deavor. Failed examples of pivoting might go unno-
ticed in the software engineering literature, because
a likely outcome of a failed pivot is bankruptcy or
a cancelled product.

• Find relevant goals to experiment on that makes
sense for both business and users. Metrics are hard
to specify since they should resist unintentional and
intentional attempts to game it, i.e., an improve-
ment in the metric should always result in positive
business and user value. For example, clicks are
easy to increase by adding additional steps users
must complete, but that could result in a worse user
experience. Many case companies are only able to
use user experience metrics (such as clicks) that
can improve problem–solution fit (C3). However,
by targeting product–market fit (C4) both users’
and business’ value can be optimized for simulta-
neously. Companies should put effort into finding a
relevant goal, for example, by carefully using proxy
metrics, using qualitative methods, or by providing

6 IT Professional



team goals. This is one aspect of having incentive
structures (C6) suitable for experimentation; aligned
between users and business value.

• Provide incentives structures (C6) with team goal
metrics to encourage all software engineers to start
with experimentation and give them responsibility
for the experimentation process (C1). This is easy
to implement when working with quantitative ex-
periments since the developers have the necessary
tools. Cases A, D, I, and G all use team goals.
Companies that lack the right incentive structures
can compromise with process-oriented goals, for
example, to increase the percentage of new features
that can be evaluated with experiments.

Conclusion
Continuous experimentation is a wide-spread

practice—initially more among large companies, but
gradually being adopted also by other kinds of busi-
nesses. While there is academic knowledge, based on
observations of practice and experience reports, there
is less on practitioner guidelines for making strategic
decisions regarding CE practices. For this reason, we
derived and provide these guidelines.

We advise companies to consider the guidelines in
their strategic decisions related to business strategies,
development processes, and operations, all of which
affect the value which can be obtained from continuous
experimentation. To achieve problem–solution fit and
product–market fit, the interplay within DevOps and
BizDev respectively must be achieved, as well as, an
alignment between the two [7]. Problem-solution fit
aims to satisfy users while product-market fit enable
business goals, together creating long-term value for
users and companies.

Acknowledgments
We thank all the participating anonymous compa-

nies and interviewees for their contribution to these
guidelines. This work was supported by a grant from
the Wallenberg Artificial Intelligence, Autonomous
Systems and Software Program (WASP) funded by
Knut and Alice Wallenberg Foundation.

REFERENCES
1. R. Ros, E. Bjarnason, and P. Runeson, “A theory of

factors affecting continuous experimentation (FACE),”

Empirical Software Engineering, vol. 29, no. 21, 2024.

2. R. Kohavi, R. M. Henne, and D. Sommerfield,

“Practical guide to controlled experiments on the web:

Listen to your customers not to the HiPPO,” in

Proceedings of the 13th International Conference on

Knowledge Discovery and Data Mining, ser. KDD,

2007, pp. 959–967.

3. S. Gupta, L. Ulanova, S. Bhardwaj, P. Dmitriev, P. Raff,

and A. Fabijan, “The anatomy of a large-scale

experimentation platform,” in Proceedings of the 15th

International Conference on Software Architecture, ser.

ICSA, 2018, pp. 1–109.

4. D. Tang, A. Agarwal, D. O’Brien, and M. Meyer,

“Overlapping experiment infrastructure: More, better,

faster experimentation,” in Proceedings of the 16th

International Conference on Knowledge Discovery and

Data Mining, ser. KDD, 2010, pp. 17–26.

5. D. G. Feitelson, E. Frachtenberg, and K. L. Beck,

“Development and deployment at Facebook,” IEEE

Internet Computing, vol. 17, no. 4, pp. 8–17, 2013.

6. F. Fagerholm, A. S. Guinea, H. Mäenpää, and

J. Münch, “The RIGHT model for continuous

experimentation,” Journal of Systems and Software,

vol. 123, pp. 292–305, 2017.

7. B. Fitzgerald and K.-J. Stol, “Continuous software

engineering: A roadmap and agenda,” Journal of

Systems and Software, vol. 123, pp. 176–189, 2017.

8. G. Schermann, J. Cito, and P. Leitner, “Continuous

experimentation: Challenges, implementation

techniques, and current research,” IEEE Software,

vol. 35, no. 2, pp. 26–31, 2018.

9. F. Auer, R. Ros, L. Kaltenbrunner, P. Runeson, and

M. Felderer, “Controlled experimentation in continuous

experimentation: Knowledge and challenges,”

Information and Software Technology, vol. 134, p.

106551, 2021.

10. K.-J. Stol and B. Fitzgerald, “Theory-oriented software

engineering,” Science of Computer Programming, vol.

101, pp. 79–98, 2015.

11. R. Kohavi, R. Longbotham, D. Sommerfield, and R. M.

Henne, “Controlled experiments on the web: Survey

and practical guide,” Data Mining and Knowledge

Discovery, vol. 18, no. 1, pp. 140–181, 2009.

12. S. Ellis and P. M. Brown, Hacking growth: how today’s

fastest-growing companies drive breakout success.

New York: Crown Business, 2017.

xxx/xxx 2024 7



Industry Practice

Rasmus Ros received his doctorate on software
engineering at Lund University, Sweden. His cur-
rent employment is with Theca Systems AB, as
a senior Data Scientist. His research interests are
data-driven optimization of software using machine
learning and experimentation. Contact him at ras-
mus.ros@theca.com.

Per Runeson is a professor of software engineering
at Lund University, Sweden. His research interests
include empirical research and collaboration with in-
dustry on software development and management
methods. He is particularly interested in studies on
testing, continuous experimentation, and the role of
open source and open data in software engineering.
Contact him at per.runeson@cs.lth.se.

Elizabeth Bjarnason is an associate professor
(docent) of software engineering at Lund Univer-
sity, Sweden. She performs empirical research and
collaboration with industry on software practice,
and in particular on requirements communication
and modern RE practices such as prototyping and
continuous experimentation. Contact her at eliza-
beth.bjarnason@cs.lth.se.

8 IT Professional


	CE in a Nutshell
	Research approach
	Frameworks for CE
	The RIGHT Process Model
	Continuous Software Engineering Activites
	FACE Theory on Success Factors

	CE Implementation in Case Companies
	Evidence-Based Guidelines for CE
	Engineering Aspects
	Organisational Aspects
	Business Aspects

	Conclusion
	Acknowledgments
	REFERENCES
	Biographies
	Rasmus Ros
	Per Runeson
	Elizabeth Bjarnason


