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ECG-based estimation of
respiration-induced autonomic
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conduction during atrial
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Sciences, Cardiovascular Research–Epidemiology, Malmö, Sweden, 3Department of Cardiology,
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Introduction: Information about autonomic nervous system (ANS) activity may
offer insights about atrial fibrillation (AF) progression and support personalized
AF treatment but is not easily accessible from the ECG. In this study, we
propose a new approach for ECG-based assessment of respiratory modulation
in atrioventricular (AV) nodal refractory period and conduction delay.

Methods: A 1-dimensional convolutional neural network (1D-CNN) was trained
to estimate respiratory modulation of AV nodal conduction properties from 1-
minute segments of RR series, respiration signals, and atrial fibrillatory rates (AFR)
using synthetic data that replicates clinical ECG-derived data. The synthetic
data were generated using a network model of the AV node and 4 million
uniquemodel parameter sets. The 1D-CNNwas then used to analyze respiratory
modulation in clinical deep breathing test data of 28 patients in AF, where an
ECG-derived respiration signal was extracted using a novel approach based on
periodic component analysis.

Results: We demonstrated using synthetic data that the 1D-CNN can estimate
the respiratory modulation from RR series alone with a Pearson sample
correlation of r = 0.805 and that the addition of either respiration signal
(r = 0.830), AFR (r = 0.837), or both (r = 0.855) improves the estimation.

Discussion: Initial results from analysis of ECG data suggest that our proposed
estimate of respiration-induced autonomic modulation, aresp, is reproducible
and sufficiently sensitive to monitor changes and detect individual differences.
However, further studies are needed to verify the reproducibility, sensitivity, and
clinical significance of aresp.

KEYWORDS

atrial fibrillation, atrioventricular node, autonomic nervous system dysfunction,
respiration-induced autonomic modulation, convolutional neural network, deep
breathing test, network model, ECG
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1 Introduction

Atrial fibrillation (AF) is the most common supraventricular
tachyarrhythmia (Hindricks et al., 2020). Characteristic of AF
is an uncoordinated atrial electrical activation that results in
increased and irregular ventricular activity. Atrial fibrillation
poses a significant burden to patients, physicians, and healthcare
systems globally, and is associated with substantial morbidity
and mortality. The recently updated guideline for the diagnosis
and management of AF emphasizes that AF is a progressive
disease that requires a variety of strategies at different stages,
from prevention, lifestyle and risk factor modification, screening
and therapy (Joglar et al., 2023). In this context, monitoring
of pathophysiological changes associated with AF progression
in individual patients can be valuable for the management of
persistent AF.

There is a bidirectional relationship between AF and
autonomic nervous system (ANS) dysfunction (Linz et al., 2019;
Malik et al., 2022). The ANS contributes to the maintenance of
AF (Shen and Zipes, 2014; Joglar et al., 2023) and the presence
of AF promotes atrial neural remodeling and deficiencies in
autonomic afferent reflexes (Wasmund et al., 2003; Yu et al., 2014;
Malik et al., 2022). For example, AF patients have shown impaired
sensitivity in the arterial baroreceptor reflex, a mechanism that
buffers acute changes in arterial blood pressure by modulating
both the parasympathetic and sympathetic nervous systems
(van den Berg et al., 2001; Miyoshi et al., 2020; Ferreira et al., 2023).
Conversely, the restoration of sinus rhythm has been shown
to improve the baroreceptor sensitivity (Field et al., 2016), and
baroreceptor activation therapy has restored sinus rhythm in a recent
case study (Wang et al., 2023).

In normal sinus rhythm (NSR), autonomic dysfunction can be
assessed by measuring the heart rate variability (Sassi et al., 2015;
Shaffer and Ginsberg, 2017), quantifying autonomic modulation
of the sinoatrial (SA) node. However, during AF, the heart
rate is instead determined by the rate of fibrillation and the
subsequent atrioventricular (AV) nodal modulation, raising the
need for alternative approaches to assess autonomic dysfunction.
Since the AV node, much like the SA node, is densely innervated
by the ANS (George et al., 2017; Hanna et al., 2021), it is an
attractive substitute for the assessment of autonomic function
under AF. However, the relation between cardiac ANS modulation
and AV nodal function under AF is far more complex than
that between ANS modulation and SA node function during
NSR. This calls for more sophisticated, model-based methods
of analysis.

The AV node is characterized by its dual-pathway physiology
allowing for parallel conduction of impulses where the two pathways
have different electrophysiological properties (George et al., 2017).
The fast pathway (FP) exhibits a shorter conduction delay and longer
refractory period compared to the slow pathway (SP) (George et al.,
2017). The AV nodal refractory period and conduction delay are
influenced by the previous activity of conducted and blocked
impulses (George et al., 2017; Billette and Tadros, 2019). There have
been several AV node models proposed that describe different
characteristics of the AV nodal structure and electrophysiology
(Cohen et al., 1983; Mangin et al., 2005; Rashidi and Khodarahmi,
2005; Lian et al., 2006; Climent et al., 2011b; Masè et al., 2015;

Henriksson et al., 2016; Inada et al., 2017; Wallman and Sandberg,
2018; Karlsson et al., 2021), but our previously proposed model
(Plappert et al., 2022) is the first to address autonomic modulation
of the AV nodal refractory period and conduction delay. We showed
that ANS-induced changes during tilt could be better replicated
when scaling the refractory period and conduction delay with a
constant factor. Because respiration is a powerful modulator of the
reflex control systems, to a large extent via effects on the baroreflex
(Piepoli et al., 1997), abnormal respiration-induced autonomic
modulation is often an early sign of autonomic dysfunction
(Bernardi et al., 2001). For the monitoring of cardiac autonomic
modulation in AF patients, the assessment of respiration-induced
autonomic modulation seems well-suited because respiration is
always present and can be extracted from ECG signals (Varon et al.,
2020). Building on the previous AV node model extension, the
respiration-induced autonomic modulation could be incorporated
by time-varying changes in the modulation of AV nodal refractory
period and conduction delay.

Machine learning is vibrant in the field of cardiac
electrophysiology with a rapidly growing number of applications
(Trayanova et al., 2021). However, one main challenge is the
acquirement of large amounts of data for proper training and
validation. In recent years, a few studies have been performed
in which synthetic data has been generated for the training of
neural networks which are then used on clinical data. For example,
synthetic images were generated to train neural networks to track
cardiac motion and calculate cardiac strain (Loecher et al., 2021),
estimate tensors from free-breathing cardiac diffusion tensor
imaging (Weine et al., 2022), and predict end-diastole volume,
end-systole volume, and ejection fraction (Gheorghita et al.,
2022). Furthermore, synthetic photoplethysmography (PPG)
signals were generated to detect bradycardia and tachycardia
(Sološenko et al., 2022), and synthetic electrocardiogram (ECG)
signals were generated to detect r-waves during different physical
activities and atrial fibrillation (Kaisti et al., 2023), and to predict
the ventricular origin in outflow tract ventricular arrhythmias
(Doste et al., 2022).

This study aims to develop and evaluate a method to
extract respiration-induced autonomic modulation in the AV node
conduction properties from ECG data in AF. We present a novel
approach to extract respiration signals from several ECG leads
based on the periodic component analysis (Sameni et al., 2008).
In addition, we present a novel extension to our previously
proposed AV node network model accounting for respiration-
induced autonomic modulation of AV nodal refractory period
and conduction delay. Furthermore, we estimate the magnitude of
respiration-induced autonomic modulation using a 1-dimensional
convolutional neural network that was trained on synthetic 1-
min segments of RR series, respiration signals, and average atrial
fibrillatory rate which replicate clinical data. The trained network
was used to analyze data from 28 AF patients performing a
deep breathing task including slow metronome breathing at a
respiration rate of 6 breaths/min. During NSR, slower breathing
causes an increased respiration-induced autonomic modulation
with a maximum HRV response typically observed at a respiration
rate of 6 breaths/min (Russo et al., 2017). Hence, we hypothesize
that the respiration-induced autonomic modulation in the AV
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node conduction properties is strengthened during the deep
breathing task.

2 Materials and methods

First, the clinical deep breathing test data from patients in
atrial fibrillation is described in Section 2.1. In Section 2.2, the
extraction of RR series and atrial fibrillatory rate (AFR) from ECG
are described. Moreover, Section 2.2 covers the extraction of ECG-
derived respiration (EDR) signals using a novel approach based
on periodic component analysis. A description of the extended
AV network model accounting for respiration-induced autonomic
modulation is given in Section 2.3, as well as a description of how
the simulated datasets are generated. In Section 2.4, the architecture
of a 1-dimensional convolutional neural network (1D-CNN) that
is used to estimate the magnitude of respiratory modulation from
ECG recordings is described together with the training and testing
of the neural network. Finally, the CNN is used to estimate the
respiration-induced autonomic modulation from the clinical ECG-
derived features and the estimates are analyzed.

2.1 ECG data

The dataset of the clinical deep breathing test consisted of 12-
leadECGrecordingswith a sampling rate of 500 Hz from individuals
with AF participating in the SCAPIS study (Bergström et al., 2015).
The participants in the SCAPIS study were from the Swedish general
population aged 50–64 years. A subset of the SCAPIS cohort (5136
participants) performed a deep breathing test (Engström et al.,
2022). Of this subset, 28 participants with complete data were in
AF at the time of recording (Abdollahpur et al., 2022). The clinical
characteristics of that subset are listed in Table 1.The deep breathing
test started with the participants resting in a supine position while
breathing normally for 5 minutes. Following this, the participants
performed slow metronome breathing at a respiration rate of 0.1 Hz
for 1 minute. During the slow metronome breathing, a nurse guided
the participants to inhale for 5 seconds and exhale for 5 seconds, for
a total of six breathing cycles.

2.2 ECG data processing

2.2.1 Extraction of RR series
ECGpreprocessing andQRS complex detectionwere performed

using the CardioLund ECG parser (www.cardiolund.com). The
CardioLund ECG parser classified QRS complexes based on their
QRS morphology. Only QRS complexes with dominant QRS
morphology were considered in the computation of the RR series.

The RR series were computed from intervals between R-
peaks taken from consecutive QRS complexes with dominant
QRS morphology, and the time of each RR interval was set
to the time of the first R-peak in each interval. The resulting
non-uniformly sampled RR series were interpolated to a
uniform sampling rate of 4 Hz using piecewise cubic Hermite
polynomials as implemented in MATLAB (‘pchip’, version R2023a,
RRID:SCR_001622).

TABLE 1 Clinical characteristics of study population.

Number

Age 60.1 ± 4.0 [50.1-64.9]

Men 23 (82%)

BMI 31.8 ± 7.2 [18.8-50.8]

Systolic BP 124 ± 23 [90-188]

Diastolic BP 79.9 ± 11 [61-104]

Hypertension∗ 17 (61%)

Diabetes 2 (7%)

Never smokers 9 (32%)

Heart failure 2 (7%)

Previous AMI or angina 2 (7%)

Beta blocker 15 (54%)

Ca-antagonist 6 (21%)

Antiarrhythmic drug 4 (14%)

∗ ≥140/90 mmHg or treatment for hypertension. Values are given in the following formats:
number, mean ± SD, [range]; BP, blood pressure.

2.2.2 Estimation of atrial fibrillatory rate
The AFR was used to obtain information about the atrial

arrival process. Briefly, the estimation of the AFR involved the
extraction of an f-wave signal by means of spatiotemporal QRST-
cancellation (Stridh and Sörnmo, 2001) and estimation of an f-wave
frequency trend by fitting two complex exponential functions to
the extracted f-wave signal from ECG lead V1 as proposed in
(Henriksson et al., 2018). The two exponential functions were
characterized by a fundamental frequency f and its second
harmonic, respectively; f was fitted within the range fWelch

max ± 1.5Hz,
where fWelch

max denotes the maximum of the Welch periodogram of
ECG leadV1 in the range 4–12 Hz.The results for the deep breathing
data have been previously presented in (Abdollahpur et al.,
2022). The estimated AFR signal has a sampling rate
of 50 Hz.

2.2.3 Extraction of lead-specific EDR signals
All steps of the extraction algorithm that are described in the

following were applied to 1-min segments of the lead-specific EDR
signals taken from a 1-min running window. The lead-specific EDR
signals were computed with the slope range method (Kontaxis et al.,
2020) for the eight ECG leads V1-V6, I, and II. Only eight out of 12
ECG leads were used, because the information in the leads III, aVF,
aVL, and aVR can also be derived from lead I and II.The slope range
method uses the peak-to-peak difference in the first derivative of
the QRS complex to quantify the variations in the QRS morphology
that are assumed to reflect the respiratory activity and are caused,
for example, by periodic changes in electrode positions relative
to the heart.
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Only QRS complexes with dominant QRS morphology (cf.
Section 2.2.1) were considered when applying the slope-range
method. Further, a QRS complex was excluded as an outlier from
analysis if the slope range value of any of the leads was outside
the mean ± 3 std of the slope range values of that lead. The lead-
specific non-uniformly sampled EDR signals were interpolated
to a uniform sampling rate of 4 Hz using the modified Akima
algorithm as implemented in MATLAB (‘makima’, version R2023a,
RRID:SCR_001622). A matrix containing the resampled lead-
specific EDR signals X′ = [x′1,…,x

′
8]

T of dimension 8×N was
constructed, where N = 240 corresponds to the length of the 1-
min segment. To remove baseline-wander in X′, a Butterworth
highpass filter of order 4 with a cut-off frequency of 0.08 Hz
was applied separately for each lead x′. The filtered X′ was
normalized to zero-mean and signals shorter than 1 min were zero-
padded to create X containing 1-min segments. A set Sseg was
created containing all Xi, where i = 1,…, I denotes all I possible
choices of 1-min segments of the lead-specific EDR signals from
one recording.

2.2.4 Extraction of joint-lead EDR signals
The joint-lead EDR signal was extracted from X using a

modified version of the periodic component analysis (πCA)
(Sameni et al., 2008), summarized in Algorithm 1. The matrix X
was whitened for its elements to be uncorrelated and to have
unit variance. The whitened lead-specific EDR signals Z were
computed as

Z =D−1/2ETX, (1)

for all Xi in Sseg do

 Xi is whitened according to Eq. 1 to obtain Zi

 for all τj ∈[10, 40] do

  obtain wj by solving the generalized eigenvalue

problem of matrix pair (Cz(τj),Cz(0))

  compute ϵ(wj,τj,Zi) according to Eq. 2

 end for

end for

compute τ∗ = minτj (∑Sseg
ϵ(wj,τj,Zi))

for all Zi in Sseg do

 Sτ = ∅
 for all τj ∈[10, 40] do

  if ϵ(wj,τj,Zi) ≤ ϵ(wj,τj−1,Zi) ∨τj == 10 then

   if ϵ(wj,τj,Zi) ≤ ϵ(wj,τj+1,Zi) ∨τj == 40 then

    add τj to Sτ

   end if

  end if

 end for

 set τresp as value in Sτ closest to τ∗

 obtain wresp by solving the generalized eigenvalue

problem of matrix pair (Cz(τresp),Cz(0))

 s∗
i
= wTrespZi ⋅sign(∑wresp)

 fresp,i = fs/τresp
 end for

Algorithm 1. Extraction of joint-lead EDR signals.

where D is the diagonal matrix of eigenvalues of the covariance
matrix CX = E{XXT}, and the columns of the matrix E are the
unit-norm eigenvectors of CX.

The outputs of the πCA are a joint-lead EDR signal s of
dimension 1×N and its corresponding lag τ. The assumption of the
πCA is that s = wTZ is a linear mixture of the whitened lead-specific
EDR signals. The aim is to find a solution for s with a maximal
periodic structure. The periodic structure of s is characterized by
ϵ(w,τ,Z), which quantifies non-periodicity (Sameni et al., 2008) and
is defined as

ϵ (w,τ,Z) =
∑

n
|s (n+ τ) − s (n) |2

∑
n
|s (n) |2

= 2[1−
wTCz (τ)w

wTCz (0)w
], (2)

where s(n) is the n:th element of s. We solved the generalized
eigenvalue problem (GEP) of the lag-dependent matrix pair
(Cz(τ),Cz(0)) to obtain a full matrix V whose columns correspond
to the right eigenvectors and a diagonal matrix U of generalized
eigenvalues so that Cz(τ)V = Cz(0)VU (Sameni et al., 2008). Here,
Cz(τ) = [Cz(τ) + (Cz(τ))T +Cz(−τ) + (Cz(−τ))T]/4 for some lag τ is
a modified lagged covariance matrix, which is always symmetric,
unlike the time lagged covariance matrix Cz(τ) = En{z(n)z(n− τ)T},
where z(n) is the n:th column ofZ and En{⋅} indicates averaging over
n. The weight vector w = [w1,…,w8]T that minimizes ϵ(w,τ,Z) is
obtained as the first column ofV (Sameni et al., 2008). In the present
study, ϵ(w,τ,Z) is also used to quantify signal quality, where a lower
value of ϵ(w,τ,Z) corresponds to a more periodic signal assumed to
have a higher SNR.

As τ is unknown, ϵ(w,τ,Z) was minimized for all integer values
of τ between 10 and 40, corresponding to respiration rates between
0.1 and 0.4 Hz. To improve the robustness of the πCA for signals
with low quality, a τ∗ was determined in an intermediate step
that corresponds to a global minimum of ϵ(w,τ,Z) over all 1-
min segments in Sseg. It was assumed that there were no significant
transient changes in respiration frequency in the clinical data and
we determined two different τ∗ for each subject; one for normal
breathing and one for deep breathing.Then, for each 1-min segment
separately, a τresp was estimated as the local minimum of ϵ(w,τ,Z)
closest to τ∗ . The respiration frequency estimate f̂resp = fs/τ̂resp
results from the estimate τ̂resp and the sampling rate fs = 4 Hz and
is in the range f̂resp ∈ [0.1,0.4]Hz corresponding to the limits set by
τ. Finally, the weight vectorwresp for the respiration signal extraction
was obtained by solving the GEP of thematrix pair (Cz(τresp),Cz(0)).
The extracted s = wT

respZ was normalized to unit variance. An
ambiguity of πCA is that the sign of s is undetermined. The sign of
the joint-lead EDR signal was selected as s∗ = s ⋅ sign(∑wresp),
where ∑wresp denotes the sumof the elements in the vectorwresp.This
was done under the assumption that all lead-specific EDR signals
are in phase.

2.2.5 Estimates from clinical data
The joint-lead EDR signal extraction from Section 2.2.4 was

applied to all 1-min segments X in Sseg for each patient and
recording. Segments X were excluded from further analysis if they
do not satisfy the following three criteria, for which a valid QRS
complex has a dominant QRS morphology and is not classified as
outlier based on its slope range values: i) the maximum distance
between valid QRS complexes is 2 s; ii) the minimum number of
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valid QRS complexes in a 1-min segment is 48; iii) the minimum
number of valid QRS complexes in a 1-min segment is 80% of the
normal-to-normal average heart rate of the 1-min segment. After
exclusion, several sets of non-overlapping 1-min segments could
be created from the remaining X. Out of these, the set S ∗seg that
resulted in the smallest sum of ϵ(wresp,τresp,Z) was chosen, and
used to produce joint-lead EDR signals X Clin

Resp of dimension 1×N as
described in Section 2.2.4. In addition, the corresponding 1-min RR
series X Clin

RR of dimension 1×N was extracted from the RR series
obtained in Section 2.2.1.We estimated themean arrival rate of atrial
impulses to the AV node μ̂ as 1000/AFR, where AFR is the average
AFR-trend within each of the selected 1-min windows as described
in Section 2.2.2. To match the dimensions of X Clin

RR and X Clin
Resp , μ̂ was

then repeated N times to produce X Clin
AFR of dimension 1×N. From

the clinical data, a maximum of five non-overlapping 1-min long
segments in normal breathing and one segment in deep breathing
was obtained for X Clin

RR , X Clin
Resp and X Clin

AFR .

2.3 Simulated data

2.3.1 Network model of the human
atrioventricular node

The atrioventricular node is modeled by a network of 21
nodes (cf. Figure 1). The presented AV node model was initially
proposed in (Wallman and Sandberg, 2018), updated with minor
modifications in (Karlsson et al., 2021), and extended using constant
scaling factors AR and AD for the refractory period and conduction
delay to account for the effect of changes in autonomic modulation
in (Plappert et al., 2022). The slow pathway (SP) and fast pathway
(FP) are described by two chains of 10 nodes each, which are
only connected at their last nodes. Impulses enter the AV node
model simultaneously at the first node of each pathway. Within the
pathways and between their last nodes, the impulses are conducted
bidirectionally to allow for retrograde conduction. The last nodes
of the two pathways are connected to an additional coupling node
(CN), through which the impulses leave the model.

Each node represents a section of the AV node and is
characterized by an individual refractory period RP(Δtk,AP(t),θPR)
and conduction delay DP(Δtk,A

P(t),θPD) defined as

RP(Δtk,AP (t) ,θPR) = A
P (t)(RP

min +ΔR
P (1− e−Δtk/τ

P
R)) (3)

DP(Δtk,AP (t) ,θPD) = A
P (t)(DP

min +ΔD
Pe−Δtk/τ

P
D) (4)

Where P ∈ {SP,FP,CN} denotes the pathway. The refractory period
and conduction delay are defined by fixed model parameters for
the refractory period θPR and conduction delay θPD as well as model
states for the diastolic interval Δtk and respiratorymodulationAP(t).
Each pathway has a separate set of fixed model parameters for the
refractory period θPR = [RP

min, ΔR
P, τPR] and conduction delay θPD =

[DP
min, ΔDP, τPD], where RP

min is the minimum refractory period,
ΔRP is the maximum prolongation of the refractory period, τPR is a
time constant, DP

min is the minimum conduction delay, ΔDP is the
maximum prolongation of the conduction delay and τPD is a time
constant. For clarity, the notation of RP(⋅,AP(t), ⋅) and DP(⋅,AP(t), ⋅)
are specifiedwith dots when the replaced parameters ormodel states
are currently not discussed.

The scaling factor AP(t) accounts for the effect of changes in
autonomic modulation on the refractory period RP(⋅,AP(t), ⋅) and
the conduction delay DP(⋅,AP(t), ⋅). The time-varying scaling factor
AP(t) is common between the SP and FP, defined in Eq. 5 as

ASP (t) = AFP (t) = 1+
aresp
2

sin(2πt fresp) , (5)

with a constant respiratory frequency fresp and peak-to-peak
amplitude aresp. The scaling factor of the refractory period and
conduction delay of the CN is described by ACN = 1 and not
modulated by respiration.

The electrical excitation propagation through the AV node is
modeled as a series of impulses that can either be conducted or
blocked by a node. An impulse is conducted to all adjacent nodes,
if the interval Δtk between the k:th impulse arrival time tk and the
end of the (k–1):th refractory period, computed as

Δtk = tk − tk−1 −RP(Δtk−1, ⋅, ⋅) (6)

is positive. Then, the time delay between the arrival of an impulse
at a node and its transmission to all adjacent nodes is given by
the conduction delay DP(Δtk, ⋅, ⋅). If Δtk is negative, the impulse is
blocked due to the ongoing refractory period RP(Δtk−1, ⋅, ⋅). After an
impulse is conducted,RP(Δtk, ⋅, ⋅) andDP(Δtk, ⋅, ⋅) of the current node
are updated according to Eqs 3, 4, 6. Details about how the impulses
are processed chronologically and node by node, using a priority
queue of nodes and sorted by impulse arrival time, can be found in
(Wallman and Sandberg, 2018).

The input to the AV node mode is a series of atrial impulses
during AF, with inter-arrival times modeled according to a Pearson
Type IV distribution (Climent et al., 2011a). The AA series is
generated with a point process with independent inter-arrival
times and is completely characterized by the four parameters of
the Pearson Type IV distribution, namely, the mean μ, standard
deviation σ, skewness γ and kurtosis κ.

The output of the AV node model is a series of ventricular
impulses, where tVq denotes the time of the q:th ventricular
impulse. As the refractory period RP(Δtk, ⋅, ⋅) and conduction
delay DP(Δtk, ⋅, ⋅) are history-dependent, the first 1,000 ventricular
impulses leaving the AV node model are excluded from analysis to
avoid transient effects.

2.3.2 Simulation of AV nodal conduction
For the training and validation, a dataset with 2 million unique

parameter sets was generated. This dataset was divided into 20
datasets with 100,000 parameter sets each, where a dataset was
either used for training or validation of one of ten realizations
of the convolutional neural network (CNN) that is described in
Section 2.4.2. Simulations were performed with each parameter set
using the AV node model described in Section 2.3.1. For each
simulation, a series of 11,000 AA intervals was generated using the
Pearson Type IV distribution, defined by the four parameters μ, σ, γ,
and κ. The parameter μ was randomly drawn from U[100,250]ms
and σ was randomly drawn from U[15,30]ms. The parameters γ
and κ were kept fixed at 1 and 6, respectively, since they cannot
be estimated from the f-waves of the ECG (Plappert et al., 2022).
Negative AA intervals were excluded from the impulse series. The
model parameters for the refractory period θPR and conduction
delay θPD of the SP and FP were drawn from bounded uniform
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FIGURE 1
A schematic representation of the AV node model. Retrograde conduction was possible within the AV node model. For simplicity, only a subset of the
ten nodes in each pathway is shown. Note that the atrioventricular node used different θPR and θPD for the three different pathways, the same
time-varying AP(t) for SP and FP and a constant ACN = for CN.

TABLE 2 AV Node model parameters used for simulated data.

Parameters P ≡SP (ms) P ≡FP (ms) P ≡CN (ms)

θPR RP
min U[250,600] U[250,600] 250

ΔRP U[0,600] U[0,600] 0

τPR U[50,300] U[50,300] 1

θPD DP
min U[0,30] U[0,30] 0

ΔDP U[0,75] U[0,75] 0

τPD U[50,300] U[50,300] 1

distributions and the model parameters of the CN were kept
fixed according to Table 2. The given ranges were in line with
our previous work (Plappert et al., 2022). The model parameters
for the respiration-induced autonomic modulation and simulated
respiration signal that are used in Section 2.3.3 were also drawn
from bounded uniform distributions, with aresp randomly drawn
from U[−0.1,0.5], fresp randomly drawn from U[0.1,0.4]Hz and
η randomly drawn from U[0.2,4]. For testing, another dataset
with 2 million unique parameter sets was generated using the
same ranges listed above, except for aresp, which was randomly
drawn from U[0,0.4].

When sampling, initially a value for aresp was drawn from a
uniform distribution. To exclude non-physiological parameter
sets from the dataset, we resampled the rest of the parameters
until the following five selection criteria were met: 1) the slow
pathway in every parameter set must have a higher conduction
delay DSP(Δtk, ⋅, ⋅) > D

FP(Δtk, ⋅, ⋅) and lower refractory period
RSP(Δtk, ⋅, ⋅) < R

FP(Δtk, ⋅, ⋅) than the fast pathway for all Δtk; 2)
the resulting average RR interval has to fall within the range of

300 ms–1,000 ms, which corresponds to heart rates between 60
bpm and 200 bpm; 3) the resulting root mean square of successive
RR interval differences (RR RMSSD) has to be above 100 ms; 4) the
resulting sample entropy of the RR series has to be above 1; 5) the
relative contribution of the respiration frequency in the frequency
spectrum of the RR series with zero-mean FRR( fresp)/∑f FRR( f) has
to be below 7% to exclude RR series with visible periodicity. Note
that the frequency spectrum is computed from the RR series with
240 samples and the sampling rate of 4 Hz.

Similar to the clinical data described in Section 2.2.1, RR series
were computed from intervals between the simulated ventricular
impulses, and the time of each RR interval sample was set to the
time of the first ventricular impulse. The resulting non-uniformly
sampled RR series were interpolated to a uniform sampling rate
of 4 Hz using piecewise cubic hermite interpolating polynomials
as implemented in MATLAB (‘pchip’, version R2023a, RRID:SCR_
001622). The simulated RR series were cut into 1-min segments of
length N = 240, resulting in RR series X Sim

RR of dimension 1×N. For
each RR series, μ was repeated N times to form a vector X Sim

AFR of
dimension 1×N, corresponding to the mean atrial arrival rate.

2.3.3 Modelling respiratory signals
For the modeling of the respiratory signals resembling joint-

lead EDR signals (cf. Section 2.2.4), we start with the underlying
assumption that respiration can be described according to
m(t) = sin(2πtfresp), i.e., by a sine wave oscillating at the respiratory
frequency fresp. Eight identical lead-specific EDR signals m′p(t) with
p = 1,…,8 were created, composed of non-uniform samples of m(t)
at the times of the ventricular impulses tVq generated by the AV node
model. To emulate lead-specific EDR signals, Gaussian noise with
standard deviation ηwas added to all samples ofm′p(t), making them
non-identical.

Next,m′p(t)were processed in five steps to mimic the processing
steps for the clinical ECG-derived features (cf. Sections 2.2.3 and
2.2.4): 1) using the same criteria as for the outlier exclusion in the
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clinical data, all samples in m′p(t) for the same ventricular impulse
were excluded as outliers, if the value in one of the eight leads
was outside the mean ± 3 std, computed for each lead within a 1-
min runningwindow; 2) as for the clinical lead-specific EDR signals,
the simulated signalsm′p(t)were interpolated to a uniform sampling
rate of 4 Hz using the modified Akima algorithm as implemented in
MATLAB (‘makima’, version R2023a, RRID:SCR_001622), resulting
in m′p(n); 3) m′p(n) were cut into 1-min segments of length N = 240
and had the dimension 8×N; 4) the resampled and cut signals are
filtered with a Butterworth highpass filter of order 4 with the cut-off
frequency 0.08 Hz to remove baseline-wander; 5) a joint-lead EDR
signal X Sim

Resp with dimension 1×N was extracted from m′p(n) using
the periodic component analysis described in Section 2.2.4.

2.4 Estimation of respiratory modulation

2.4.1 Training and estimation using a linear
regression model

A linear regression model is used here to estimate the peak-
to-peak amplitude of respiration-induced autonomic modulation
aresp. The linear regression model LRR,Resp,AFR was trained using a
training dataset X Sim,Train with the format X = [X Sim

RR ;X
Sim
Resp;X

Sim
AFR]

containing 100,000 parameter sets, as described in Section 2.3.2.
The performance of LRR,Resp,AFR on simulated data was assessed
using the testing dataset X Sim,Test containing 2 million parameter
sets, as described in Section 2.3.2. The performance onX Sim,Test was
assessed using the RMSE, Pearson correlation, and coefficient of
determination R2 between the true aresp and estimated âresp.

2.4.2 Architecture of 1-dimensional
convolutional neural network

To estimate the peak-to-peak amplitude of the respiration-
induced autonomic modulation, aresp, a 1D-CNN architecture was
used as illustrated in Figure 2. The CNN architecture consists of
five convolution layers, where each layer l was composed of 100
1D-CNN filters with kernel size kC = 3, stride sC = 1 and dilation
factor dC = 2

l−1, followed by a rectified linear unit (RELU) and a
batch normalization layer. After the five convolution layers, the data
passed through a global average pooling layer and dense layer, the
output of which is an estimation âresp. To assess the performance
of the CNN with or without the RR series, respiration signal, and
mean μ of the AA series, seven versions of the CNN were trained.
The respective CNNs and their input data are given as follows: the
CNN CRR was trained on the input data with the format X = X Sim

RR ;
CResp was trained on X = X Sim

Resp; CAFR was trained on X = X Sim
AFR;

CRR,Resp was trained on X = [X Sim
RR ;X

Sim
Resp]; CRR,AFR was trained on

X = [X Sim
RR ;X

Sim
AFR]; CResp,AFR was trained on X = [X Sim

Resp;X
Sim
AFR]; and

CRR,Resp,AFR was trained on X = [X Sim
RR ;X

Sim
Resp;X

Sim
AFR].

2.4.3 Training the convolutional neural network
For each CNN version, i.e., CRR, CResp, CAFR, CRR,Resp, CRR,AFR,

CResp,AFR and CRR,Resp,AFR, described in Section 2.4.2, ten realizations
were trained with unique training and validation datasets,X Sim,Train

and X Sim,Val, respectively, containing 100,000 parameter sets each,
as described in Section 2.3.2. The CNNs were trained to estimate
the aresp and the weights of the CNN were updated during
backpropagation based on the root-mean-square error (RMSE) of

the residuals. Every epoch, X Sim,Train was randomly divided into
20 mini-batches, each containing input data for 5,000 different
parameter sets. A cyclical learning rate was set for the training,
where the learning rate started at 5 ⋅ 10–3 and was increased and
decreased in a ‘zig-zag’ between [2 ⋅ 10–3, 3 ⋅ 10–3, 5 ⋅ 10–3, 8 ⋅ 10–3,
10 ⋅ 10–3] every time the RMSE of X Sim,Val did not improve for 50
epochs (Smith, 2017). The initial learning rate and the minimum
and maximum boundary values of the cyclical learning rates were
determined using the ‘learning rate range test’, described in (Smith,
2017). The network was validated after every epoch. The CNN was
trained until the RMSE of X Sim,Val did not improve for 50 epochs
for each of the five learning rates, and the network weights giving
the lowest validation RMSE was chosen. The estimate âresp was
computed as the average of the individual estimates of each of the
ten CNN realizations.

2.4.4 Estimation of respiratory modulation in
simulated data

The performance of the CNN on simulated data was assessed
for CRR, CResp, CAFR, CRR,Resp, CRR,AFR, CResp,AFR and CRR,Resp,AFR, using
the testing dataset X Sim,Test described in Section 2.3.2. The total
performance on X Sim,Test was assessed using the RMSE, Pearson
sample correlation, and coefficient of determination R2 between the
true aresp and estimated âresp.

In addition, the performance was assessed over a range of
respiration frequencies fresp and characteristics of non-periodicity
in the respiration signal ϵ(w,τ,Z), here denoted ϵ. To produce
local RMSE estimates σ( f′resp, ϵ

′) for specific values f′resp and ϵ′,
the following three steps were applied: 1) a squared difference
(aresp − âresp)

2 was computed for each of the 2 million parameter
sets in X Sim,Test; 2) a weighted average of the 2 million squared
differences was computed using a Gaussian kernel centered at f′resp
and ϵ′ with the standard deviation of 0.015Hz and 0.075 for the
fresp and ϵ, respectively; 3) the square root of the weighted average
resulted in σ( f′resp, ϵ

′).
In the present study, all versions of the CNN were trained

and tested using 1-min segments, with one exception: An
additional CNN C2.5min

RR,Resp,AFR was trained and tested using X ∗ =
[X Sim,2.5

RR ;X
Sim,2.5
Resp ;X

Sim,2.5
AFR ] containing 2.5-minute-long segments

to investigate the impact of segment length on the RMSE.
For C2.5min

RR,Resp,AFR, ten realizations were trained with additional
unique training and validation datasets, X ∗Sim,Train and X Sim,Val,
respectively, containing 100,000 parameter sets each. Apart from the
different segment lengths, the additional datasets were generated as
described in Section 2.3.2.

2.4.5 Estimation of respiratory modulation in
clinical data

The CNN CRR,Resp,AFR was used for estimating aresp in the
clinical deep breathing test data, described in Section 2.1. The
clinical estimates were used to investigate differences in âresp
between deep breathing and normal breathing using Monte Carlo
sampling. Using these samples, the probabilities of the following
three scenarios were computed for each patient: 1) the highest
âresp was achieved for deep breathing, 2) the lowest âresp was
achieved for deep breathing and 3) the highest and lowest âresp
did not correspond to deep breathing. To draw the samples for
each 1-min segment in X Clin,Test, the estimate âresp was determined
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FIGURE 2
The CNN was composed of five 1D convolution layers with 100 filters each. The convolution layers had a kernel size kC, stride sC and dilation factor dC.
Training datasets X Sim,Train, validation datasets X Sim,Val, and testing datasets X Sim,Test were constructed from the simulated data X Sim

RR , X Sim
Resp and X Sim

AFR . A

testing dataset XClin,Test was constructed from the clinical ECG-derived features XClin
RR , XClin

Resp and XClin
AFR .

using the CNN CRR,Resp,AFR, while the f′resp and ϵ′ were estimated
by the f̂resp and ϵ(w,τ,Z) described in Section 2.2.4. Next, values
of âresp were resampled 100,000 times for each 1-min segment
in S ∗seg. The samples were drawn from Gaussian distributions
with âresp as mean and σ( f′resp, ϵ

′) described in Section 2.4.4 as
standard deviation.

3 Results

3.1 Analysis of clinical data

The length of the interpolated RR series varied between patients
depending on the duration of the recordings; during normal
breathing, the length of the RR series was in the range between
288 s and 328 s; during deep breathing, the length of the RR series
was in the range between 57 s and 72 s. Statistics quantifying
the clinical dataset are shown in Table 3. In accordance with the
exclusion criteria defined in Section 2.2.5, 98 out of 120 non-
overlapping 1-min segments remained in the normal breathing
data and 22 out of 28 1-min segments remained in the deep
breathing data. Typical examples of a clinical ECG-derived RR
series X Clin

RR and joint-lead respiration signal X Clin
Resp during normal

breathing and deep breathing, respectively, are shown in Figure 3.
The characteristics of these signals, listed in Table 4 are within 1
standard deviation of the populationmean (cf. Table 3). Fluctuations
in the clinical RR series matching the respiration frequencies were
not clearly visible and FRR( fresp)/∑f FRR( f) was always below 7%.
The respiration signals estimated from clinical data had ϵ(w,τ,Z)
ranging between 0.198 and 1.485. The clinical value pairs of
ϵ(w,τ,Z) and respiration frequency f̂resp are shown in Figure 4.There
was a statistically significant weak negative correlation between

f̂resp and ϵ(w,τ,Z) in the clinical data during normal breathing
(r = −.217,p = 0.032), but no significant correlation during
deep breathing.

3.2 Simulated RR series and respiration
signals

The statistics quantifying X Sim,Train, X Sim,Val and X Sim,Test are
shown in Table 3 together with X Clin,Test. The simulated datasets
were created according to the description in Section 2.3 and
compared to the clinical data using the unpaired t-test. It should
be noted that although there are significant differences between the
characteristics of the clinical and simulated data, the distributions
of the simulated data cover the distribution of the clinical data.
The heart rate was on average slightly faster and more regular
in X Sim than in X Clin, as indicated by the differences in RR
mean, RR RMSSD, and RR sample entropy. Further, the RR series
in X Sim showed on average more visible fluctuations matching
the respiration frequency compared to the RR series in X Clin,
as indicated by the difference in FRR( fresp)/∑f FRR( f). The AFR
was on average slightly lower in X Sim than in X Clin, whereas
fresp was slightly higher. In normal breathing, ϵ in X Clin was
comparable toX Sim; however, in deep breathing, ϵwas lower inX Clin

than in X Sim.
Examples of a simulated RR series X Sim

RR and joint-lead
respiration signal X Sim

Resp resembling clinical signals during normal
breathing and deep breathing, respectively, are shown in Figure 3.
The signals were chosen based on similarities to the clinical ECG-
derived signals in the RR series characteristics and respiration
signal morphology. The characteristics of these signals are listed
in Table 4. Note, that while the peak-to-peak amplitude of
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TABLE 3 Characteristics of clinical and simulated data.

Clinical data XClin,Test Simulated data

Normal breathing Deep breathing
Training Data Testing Data

[X Sim,Train;X Sim,Val] X Sim,Test

Number of X 98 22 10 ⋅ 2 ⋅ 100,000 2,000,000

RR mean (ms) 763± 173 747± 162 676± 164† 676± 164†

RR RMSSD (ms) 262± 100 230± 60 188± 60†,‡ 185± 58†,‡

RR sample entropy 2.08± 0.49 2.18± 0.63 1.53± 0.39†,‡ 1.52± 0.38†,‡

FRR( fresp)/∑f FRR( f)(%) 2.5± 1.3 1.1± 0.8 3.4± 1.8†,‡ 3.3± 1.7†,‡

AFR(Hz) 6.99± 0.7 6.95± 0.71 5.97± 1.57†,‡ 5.96± 1.57†,‡

fresp(Hz) 0.220± 0.067 0.107± 0.015 0.263± 0.085†,‡ 0.261± 0.085†,‡

ϵ 0.66± 0.25 0.44± 0.15 0.64± 0.27‡ 0.64± 0.27‡

aresp 0.282± 0.101 0.285± 0.131 0.200± 0.173†,‡ 0.200± 0.115†,‡

†p < 0.05 vs. normal breathing. ‡p < 0.05 vs. deep breathing. The training data is divided into 20 datasets with equal size to train the 10 realizations of the CNN with unique X Sim,Train and
X Sim,Val. The variables AFR, fresp, and aresp characterize estimates in the clinical data and model parameters in the simulated data.

FIGURE 3
Two examples of clinical RR series (A + E), simulated RR series (B + F), clinical respiration signals (C + G), and simulated respiration signals (D + H)
during normal breathing (A–D) and deep breathing (E–H).
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TABLE 4 Characteristics of the clinical and simulated examples shown in Figure 3.

Signals RR mean (ms) RR RMSSD (ms) RR sample entropy aresp fresp (Hz) η ϵ(w,τ,Z)

A/C 661 250 1.85 - 0.286 - 0.47

B/D 651 204 1.91 0.36 0.288 2.48 0.76

E/G 818 251 2.28 - 0.118 - 0.44

F/H 792 138 1.97 0.05 0.116 1.46 0.45

FIGURE 4
Scatter plot showing ϵ(w,τ,Z) over f̂resp for each 1-min segment during
normal breathing (NB) and deep breathing (DB).

respiration-induced autonomic modulation aresp is high during
normal breathing and low during deep breathing in this example,
a general conclusion about the aresp values of the clinical signals
can not be drawn from this comparison and is not intended.
When emulating lead-specific EDR signals and adding Gaussian
noise with standard deviation η, the simulated data showed
a strong correlation between η and ϵ (r = 0.89, p < 10–5). The
examples in Figure 3 are representative of this correlation with
the η and ϵ listed in Table 4, where X Sim

Resp in Figure 3D was
generated with a higher η and showed a higher ϵ compared to X Sim

Resp
in Figure 3H.

3.3 Accuracy of convolutional neural
network

All CNNs CRR, CResp, CAFR, CRR,Resp, CRR,AFR, CResp,AFR and
CRR,Resp,AFR, described in Section 2.4.2 and trained according to
Section 2.4.3, were tested using X Sim,Test described in Section 2.3.2.
The resulting distribution of estimated âresp over true aresp for
CRR,Resp,AFR is shown in Figure 5. Also displayed in Figure 5
for comparison is the corresponding distribution for estimation
using linear regression LRR,Resp,AFR based on the same data
X = [X Sim

RR ;X
Sim
Resp;X

Sim
AFR]. The RMSE, Pearson sample correlation

and R2 are listed for the seven CNN versions and LRR,Resp,AFR

in Table 5. The CRR,Resp,AFR resulted in the lowest RMSE and
highest correlation and R2. The CNNs CAFR, CResp and CResp,AFR
without RR series in the input data performed poorly. The CRR
estimated âresp with an RMSE of 0.074, where the addition of
X Sim

Resp or X Sim
AFR to the input improved the accuracy of the âresp

estimation slightly.
For CRR, CRR,AFR, CRR,Resp and CRR,Resp,AFR, the local RMSE of âresp

for specific f′resp and ϵ′were computed according to Section 2.4.4 and
illustrated in Figure 6. It can be seen in all four contour plots that
the RMSE is dependent on f′resp and ϵ′. The CNNs produce more
accurate estimations for datawith a high f′resp and low ϵ′, however, the
RMSE is more sensitive to changes in f′resp. AddingX Sim

AFR to the input
improves the RMSE for all values of fresp and ϵ. While the addition of
X Sim

Resp to the input improves the RMSE formost f′resp and ϵ′, it worsens
the RMSE for high ϵ′ and low f′resp as indicated in Figure 6. Within
the indicated region, the accuracy of âresp is higher without X Sim

Resp in
the input data.

The accuracy of the CNN improves with longer input data,
indicated by the fact that the RMSE of C2.5min

RR,Resp,AFR was 0.050.
The RMSE, Pearson sample correlation and R2 is listed for
C2.5min
RR,Resp,AFR in Table 5. The RMSE improved for all values of ϵ′ and
f′resp, whereas the local RMSE improved especially at lower f′resp
(data not shown).

3.4 Estimation of respiration-induced
autonomic modulation in clinical data

The CNN CRR,Resp,AFR was used to obtain âresp from the clinical
ECG-derived features inX = [X Clin

RR ;X
Clin
Resp ;X

Clin
AFR].The resulting âresp

for 1-min segments during normal breathing and deep breathing
are shown in Figure 7. There was high interpatient variability in âresp
in the study population and no clear relation was found between
âresp during normal breathing and deep breathing. No significant
correlation was found between a change in respiration frequency
f̂DBresp − f̂

NB
resp and a change in respiration-induced autonomic

modulation âDBresp − â
NB
resp.

The vertical lines around âresp in Figure 7A correspond to
±σ( fresp, ϵ), described in Section 2.4.4 and is used for the Monte
Carlo sampling described in Section 2.4.5. For 20 subjects, âresp
was available for at least one segment during normal breathing
and one segment during deep breathing (cf. exclusion criteria in
Section 2.2.5). For those 20 subjects, Monte Carlo sampling was
used to investigate whether âresp is larger during deep breathing than
during normal breathing as described in Section 2.4.5. As illustrated
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FIGURE 5
Binned scatter plot of estimated âresp versus true aresp for the CNN
CRR,Resp,AFR and linear regression LRR,Resp,AFR, where both were based
on the same input data X = [X Sim

RR ;X
Sim
Resp;X

Sim
AFR ]. The black dotted line

shows where âresp is equal to aresp. The white dotted line shows the
sample mean of the âresp estimation.

TABLE 5 RMSE, Pearson sample correlation and R2 of the seven CNN
versions and linear regression LRR,Resp,AFR using 1-min segments, and
C2.5min
RR,Resp,AFR using 2.5-min segments.

RMSE Pearson correlation r R2

C2.5min
RR,Resp,AFR 0.050 0.923 0.816

CRR,Resp,AFR 0.066 0.855 0.674

CRR,Resp 0.070 0.830 0.636

CRR,AFR 0.070 0.837 0.630

CRR 0.074 0.805 0.585

CResp,AFR 0.098 0.583 0.284

CResp 0.101 0.513 0.231

CAFR 0.115 0.073 0.001

LRR,Resp,AFR 0.119 0.037 −0.068

in Figure 7B: it wasmost likely for 5 patients that the highest aresp was
achieved for deep breathing; it was most likely for 5 patients that the
lowest aresp was achieved for deep breathing; and it was most likely
for 10 patients that neither the highest nor lowest aresp corresponded
to deep breathing.

4 Discussion

To address the need for assessing autonomic dysfunction
in patients with persistent AF, we developed a method to

extract respiration-induced autonomic modulation in the AV node
conduction properties from ECG data in AF. We focused on
respiration-induced autonomic modulation because respiration is
always present, respiration can be extracted from ECG signals,
and abnormal respiration-induced autonomic modulation is often
an early sign of autonomic dysfunction (Bernardi et al., 2001). To
achieve this we extended our AV node model (Plappert et al.,
2022) to account for respiration-induced autonomic modulation by
including a time-varying scaling factor in the formulations of the
AV nodal refractory period and conduction delay. We trained a 1D-
CNN on simulated 1-min segments of RR series, respiration signals,
and mean arrival rate of atrial impulses which replicate clinical
data to estimate the peak-to-peak amplitude of respiration-induced
autonomicmodulation aresp.We evaluated the network on simulated
data and the results indicated that aresp can be estimated with an
RMSE of 0.066, corresponding to a sixth of the expected range for
aresp between 0 and 0.4. Previous studies indicate thatAFprogression
is linked to impaired baroreflex sensitivity (van den Berg et al.,
2001; Field et al., 2016; Miyoshi et al., 2020; Ferreira et al., 2023;
Wang et al., 2023). Additionally, in healthy subjects, the baroreflex is
a major contributor to respiration-induced autonomic modulation
(Piepoli et al., 1997). Together, this suggests that our proposed
estimate for respiration-induced autonomic modulation, aresp, holds
potential as a marker for AF progression. However, further studies
are needed to confirm this relationship.

Initial results from analysis of clinical ECG data from patients
in AF (cf. Figure 7A) indicate that during normal breathing, âresp
is often consistent between consecutive 1-min segments from the
same patient, and displays a systematic difference between patients,
suggesting that âresp is reproducible and sensitive. During controlled
breathing at 0.1Hz, âresp displayed a large interpatient variability
(cf. Figure 7A) and represented the most extreme value in 10
of 20 patients (cf. Figure 7B), further supporting an adequate
sensitivity. However, further studies with a larger study population
and repeated tests with multiple fixed respiration rates are needed
to verify reproducibility and sensitivity. The respiration rate of
0.1 Hz is associated with a maximized HRV response and baroreflex
sensitivity in NSR (Russo et al., 2017), and hence we expected an
increase in âresp during deep breathing. However, results from the
Monte Carlo sampling showed that âresp increased in response
to deep breathing in 5 patients, decreased in 5 patients, and
remained the same in 10 patients. There are several possible reasons
for this, e.g., the differences in respiration rate during normal
breathing (cf. Figure 4), individual variation in the cardiorespiratory
system resonance frequency (Russo et al., 2017), and differences
in autonomic remodeling. It should be noted that the individual
differences cannot be entirely attributed to the differences in
respiration rates, since there was no correlation between changes
in respiration rate and changes in aresp. Due to the small patient
group and lack of ground truth data in this study, future work with
access to ground truth data is required to investigate if there is a
correlation between aresp and baroreflex sensitivity, andwhether aresp
is a diagnostic marker for autonomic dysfunction. A re-evaluation
of 50% of the SCAPIS population is currently underway within
the SCAPIS2 study, and the data could allow for the investigation
of whether the aresp estimates decrease over time in the same
AF patients, which would indicate a progression in autonomic
remodeling. Furthermore, the collected data could be used for
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FIGURE 6
Contour plot of local RMSE estimates over a range of f′resp and ϵ

′
for CRR (A), CRR,AFR (B), CRR,Resp (C) and CRR,Resp,AFR (D). Except for the grey region, the

CNNs in (C, D) have a higher accuracy than the CNNs in (A,B) respectively.

phenotyping the relation between respiration-induced autonomic
modulation, autonomic dysfunction, and AF progression.

In our previous model formulation, we accounted for the
autonomic modulation by introducing constant scaling factors for
the refractory period and conduction delay (Plappert et al., 2022).
With the scaling of AV nodal conduction properties, it was shown
that the incorporation of ANS-induced changes in the model
allowed better replication of several statistical properties of clinical
RR series obtained from tilt tests. In the present study, this approach
was further developed by using a time-varying scaling factor
AP(t) to account for respiration-induced autonomic modulation
in AV nodal conduction properties based on the assumption
that some degree of respiration-induced autonomic modulation
generally influences RR series characteristics during AF. We model
respiration-induced autonomicmodulation as a joint increase in AV
nodal refractoriness and conduction delay in response to exhalation
and a joint decrease inAVnodal refractoriness and conduction delay
in response to inhalation. It is known that respiration modulates
the parasympathetic activity, where inspiration decreases vagal
activity and expiration increases vagal activity (Katona et al., 1970;
Russo et al., 2017). Many electrophysiological (EP) studies have
demonstrated that an increase in parasympathetic activity causes
an increase in AV nodal conduction delay; studies in dogs reported
an increased conduction delay with vagal stimulation (Irisawa et al.,
1971; Spear and Moore, 1973; Martin, 1975; Nayebpour et al., 1990;

Pirola and Potter, 1990; Goldberger et al., 1999) and acetylcholine
administration (Priola et al., 1983). Furthermore, an increase in
parasympathetic activity with vagal stimulation in dogs has been
demonstrated to increase the AV nodal refractory period (Spear
and Moore, 1973; Nayebpour et al., 1990; Goldberger et al., 1999).
For a decrease in parasympathetic activity with atropine, EP studies
demonstrate that the AV nodal conduction delay decreases in dogs
(Irisawa et al., 1971) and humans (Lister et al., 1965; Akhtar et al.,
1974), and the AV nodal refractory period also decreases in humans
(Akhtar et al., 1974).

The assumption that some degree of respiration-induced
autonomic modulation generally influences the RR series
characteristics during AF is also indicated by the fact that some
AF patients display clear fluctuations in their RR series matching
their respiration frequency (Rawles et al., 1989; Chandler and
Trewby, 1994; Nagayoshi et al., 1997). Such fluctuations could
also be seen in simulated RR series for some AV node model
parameter sets. During model development, we noticed that an
increase in aresp leads to an increase in the relative contribution
of the respiration frequency in the frequency spectrum of the RR
series with zero-mean FRR( fresp)/∑f FRR( f) and an increase in the
sample entropy of the RR series. We also noticed that an increase
in fresp leads to a decrease in FRR( fresp)/∑f FRR( f) and an increase in
the sample entropy of the RR series. When averaging over several
realizations of RR series (data not shown), FRR( fresp)/∑f FRR( f) could
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FIGURE 7
(A) Black dots correspond to the estimated âresp of 1-min segments during normal breathing (NB) and red squares correspond to âresp of
1-min segments during deep breathing (DB). The vertical lines correspond to ±σ( fresp, ϵ), where the local RMSE σ( fresp, ϵ) is taken from Figure 6D. (B)
Probabilities of aresp being higher in DB than in NB (yellow, arrow-up), similar in DB and NB (red, tilde), and lower in DB than in NB (blue, arrow-down).

be clearly seen for most of the parameter sets but is usually masked
in individual RR series segments by the irregularity of the RR
series. Using cross-spectral analysis, no simple linear relationship
has been found between respiration signal and RR series in AF
patients, but a linear relationship was shown in NSR (Pitzalis et al.,
1999). A possible reason for this is that the relationship between
the RR series and respiration-induced autonomic modulation in
AV nodal conduction properties during AF is complex and non-
linear, emphasizing the need for a model-based approach. Besides
some indications of fluctuations in the RR series, for most of the
patients reported in (Rawles et al., 1989; Chandler andTrewby, 1994;
Nagayoshi et al., 1997; Pitzalis et al., 1999; Pacchia et al., 2011) and
also for the clinical data used in this study, no fluctuations in the RR
series matching their respiration frequency were found. To match
FRR( fresp)/∑f FRR( f) in the clinical data which was always below 7%,
parameter sets with a higher relative peak spectral energy were
excluded from the simulated data (criterion 5 in Section 2.3.2). The
RR series characteristics of the simulated data differed significantly
from both the normal breathing and deep breathing data (cf.
Table 3). Simulated data with RR series characteristics more similar
to the clinical data could be generated by imposing stricter exclusion
criteria, e.g., increasing the lower bounds for irregularity and
variability set by criteria 3 and 4 in Section 2.3.2. However, the
simulated data still included signals resembling the clinical data, and
the wider range of characteristics likely improved the CNN training
by facilitating generalization across a broader range of RR-series.
Nevertheless, it is assumed that by the sheer size of the simulated
datasets and the conservative model parameter ranges, there will be
simulated RR series in the dataset that resemble the clinical data.

The lead-specific respiration signals were computed using the
slope range method which was designed for ECG data during AF

(Kontaxis et al., 2020) and found to be one of the best performing
and simplest methods for lead-specific respiration signal extraction
(Varon et al., 2020). The result of the lead-specific respiration signal
extraction can be improved when combining respiration signals
from multiple ECG leads with a joint-lead respiration signal.
Previously, the principal component analysis (PCA) has been used
to extract joint-lead respiration signals from the clinical data used
in this study (Abdollahpur et al., 2022). However, the principal
components were sensitive to high variance noise as the PCA is
based on second-order statistics. To address this issue, we developed
a novel approach for robust fusion of lead-specific respiration signals
based on the πCA (Sameni et al., 2008). Under the assumption
that the respiration signal has a periodic structure where the
respiration frequency and volume between breaths are constant, the
πCA is more suitable for the extraction of joint-lead respiration
signals compared to other blind-source separation methods, such
as the PCA and basic independent component analysis (ICA).
This is because the πCA finds the linear mixture of lead-specific
respiration signals with maximal periodic structure, whereas the
PCA and basic ICA are based on second-order and fourth-order
statistics, respectively. We assume that the respiration frequency
and volume between breaths do not vary much in 1-min segments,
making the πCA a suitable approach for the extraction of short
joint-lead respiration signals. However, considering that the CNN
C2.5min
RR,Resp,AFR performs better when using 2.5-min segments instead of

1-min segments, anothermethodmay be required for the extraction
of longer joint-lead respiration signals.

The comparison between the CNN CRR,Resp,AFR and the linear
regression LRR,Resp,AFR shown in Figure 5 demonstrates that
the relation between the ECG-derived features, i.e., RR series,
respiration signal and mean atrial arrival rate to aresp is complex
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and nonlinear. TheLRR,Resp,AFR was unable to estimate aresp (Pearson
sample correlation r = 0.037) and performed clearly worse in
estimating aresp than the investigated CNN CRR,Resp,AFR (r = 0.855).
It should be noted that the purpose of this comparison is to
exclude the possibility that there is a simple and linear relationship
between the ECG-derived features and aresp. We also investigated
the performance of a Gaussian kernel support vector machine
for estimating aresp, representing a classical non-linear algorithm.
Results were slightly better than for the linear model (r = 0.254,
details in Supplementary Section 1), but still clearly worse than
for the CNN. The advantage of the CNN over the less flexible
models might be partially due to its ability to implicitly extract
more complex features from the respiration signal and RR series in
the early layers. While no such set of features is currently known for
this problem, this leads us to speculate that some type of additional,
pre-defined feature extraction step might improve the performance
of also the simpler models. However, this task is far from trivial and
lies outside the scope of the present study, but may nevertheless offer
an interesting avenue for future work, e.g., by investigating statistical
properties of the RR series based on RMS of successive RR interval
differences or entropy measures.

In this study, we only investigate the performance of one basic
CNN architecture. While some variations on this were tested during
the neural network development, no extensive investigation has
been performed and there is always the possibility that alternative
architectures or algorithms may further increase the performance
for the present task. For instance, a recent study suggests that
combining the regression loss with a classification loss during
training might improve regression results on imbalanced data
(Pintea et al., 2023). The CNN described in this study requires the
RR series for the estimation of aresp and the mean atrial arrival
rate always improved the estimation. In this evaluation, however,
μ was set to the correct value; we did not account for estimation
errors that are most likely present in real data since AFR provides a
crude estimate of the atrial arrival rate. Moreover, the addition of the
respiration signal only improves the estimation when of sufficient
quality as quantified by ϵ. The linear dependence between η and
ϵ supports our assumption of ϵ as a marker of respiration signal
quality (cf. Section 3.2). Whereas the addition of the respiration
signal andmean atrial arrival rate can improve the estimation of âresp,
a method based on RR series only is less sensitive to noise in the
recordings. Potentially, the RR series could be extracted from pulse
watch data, allowing for continuous monitoring of aresp in a wide
range of applications.

The performance of the CNN is dependent on fresp and ϵ
(cf. Figure 6), where fresp appears to have a larger impact on the
performance than ϵ. The marker of respiration signal quality ϵ was
not used as an exclusion criterion for 1-min segments, because the
addition ofX Sim

Resp to the input only slightly improved the accuracy of
the âresp estimation and the influence of ϵ on the RMSE compared to
fresp was small. Instead, ϵ was used to choose the best combination
of non-overlapping 1-min segments. Interestingly, the performance
of the CNNs CRR, CAFR, CRR,AFR still show a slight dependence on
ϵ although this parameter quantifies the non-periodicity and signal
quality ofX Sim

Resp (cf. Figure 6).This suggests that ϵ carries information
about the RR interval series, andmay indicate that the distribution of
AV node model parameters varies over different ϵ and that different
subsets of model parameters result in different local RMSEs. One

possible explanation why the impact of fresp on the performance
is prominent may be that there are fewer respiratory cycles in
the 1-min segment at lower fresp. When using 2.5-min segments in
the input data, the performance of the CNN C2.5min

RR,Resp,AFR improved
overall, especially at lower fresp. The segment length was set to
1 min in this study due to the recording length of 1 min during
deep breathing.

There are several limitations of the present study. We assume for
simplicity that the variations in AV nodal refractoriness are similar
to the variations in AV nodal conduction delay. We also assume
that the variations in AV nodal refractoriness and conduction
delay are similar between SP and FP. Moreover, the model does
not include phase shifts between the RR series and respiration
signal for different respiration frequencies (Angelone and Coulter,
1964), or effects of respiration volume (Grossman and Taylor,
2007). Hence, a different scaling for the refractory period and
conduction delay, a different scaling for the SP and FP, a phase
shift between the RR series and respiration signal, and an inclusion
of respiration volume might form interesting directions for future
model improvements. We did not account for respiration-induced
modulation in theAA series, because themodulation is small during
AF (Celotto et al., 2020; Abdollahpur et al., 2022). When choosing
the bounded uniformdistribution of aresp for the training and testing
dataset, we made a tradeoff between bias and variance. The reason
why aresp was randomly drawn from U[−0.1,0.5] in the training
data and randomly drawn from U[0,0.4] in the testing data of the
CNN is to reduce the bias in the âresp estimation (cf. Figure 5).
Without extending the range of aresp in the training data, the sample
mean of the âresp diverged more from aresp at values close to 0 and
0.4. However, the accuracy of the CNNs decreased by extending
the range of aresp in the training data. While plenty of simulated
data with aresp ground truth can be generated using the AV node
model, there was no aresp ground truth available for the clinical
dataset and its size was limited. A viable approach to obtain aresp
ground truth may be through measurements of vagal nerve activity,
which were previously collected in a large number of experimental
studies, e.g., to assess the relationship to HRV during sinus
rhythm in rat models (Marmerstein et al., 2021) and to assess the
relationship to paroxysmal AF episodes in caninemodels (Tan et al.,
2008). Furthermore, ultrasound-guided microneurography was
proposed to obtain in vivo recordings from the human vagus nerve
(Ottaviani et al., 2020) and results from analysis of intraneural
recordings from cervical nerve in awake humans suggest that
cardiac and respiration-induced autonomic modulation during
normal sinus rhythm can be identified (Patros et al., 2022). Another
possibility would be indirect quantification of respiration-induced
autonomic modulation via acetylcholine concentration (Świt et al.,
2023), but we are not aware of any procedure or method that would
produce the required time resolution.

5 Conclusion

We presented an extended AV node model that accounts for
respiration-induced autonomicmodulation in conduction delay and
refractory period.We trained a 1D-CNN to estimate the respiration-
induced autonomic modulation in the AV node with simulated
RR series, respiration signal, and mean atrial arrival rate which
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replicates clinical ECG-derived data. Using simulated data, we
demonstrated that the respiration-induced autonomic modulation
can be estimated using the 1D-CNN from RR series alone and that
the estimation is improved when adding a respiration signal and
AFR. Initial results from analysis of ECG data from 20 patients
performing a deep breathing task suggest that our proposed estimate
of respiration-induced autonomic modulation aresp, is reproducible
and sufficiently sensitive tomonitor changes and to detect individual
differences. A reduced estimate of aresp may possibly indicate
some degree of autonomic dysfunction. However, further studies
are needed to verify the reproducibility, sensitivity, and clinical
significance of aresp.
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