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1 Abstract 

Recognizing individual differences is essential for creating inclusive and effective 
educational settings that support all children's learning and school success and that 
are considerate of their varying needs. The primary aim of this work was to help 
uncover some of the influencing factors and underlying dynamics that affect 
children’s individual educational attainment. Through brain imaging and behavioral 
data from the large-scale, multisite Adolescent Cognitive Brain Development 
(ABCD) study, this thesis explores links between brain structure, socioeconomic 
variables, cognitive abilities, and success in school. In Study I, we investigated 
associations between T1w/T2w ratio as an index of cortical myelin and cognitive 
abilities. Despite using a large sample, we did not find any robust correlations 
between the two, confirming reservations against using this metric to study 
interindividual differences in behavior. Similarly, using voxel-based morphometry 
to study variations in language performance, resulted in a complex picture in Study 
II. We demonstrated replicable associations between language performance and 
regional grey matter in medial cortical regions and subcortical structures, including 
the right occipital fusiform and lingual cortex, the right amygdala, anterior 
parahippocampal gyrus, medial orbitofrontal cortex, and the temporal pole. 
However, factoring in additional covariates indicated that grey matter volume is not 
a suitable metric to reliably differentiate between typically developing children with 
varying language abilities. In Study III, we explored academic resilience by 
investigating whether children’s cognitive abilities affect the association between 
socioeconomic status (SES) and attainment in school. While not providing evidence 
for a safeguarding influence of cognitive performance, the results indicate a small 
but robust effect of SES on school performance across time and levels of cognitive 
ability. In the age of big data and continuing enthusiasm for magnetic resonance 
imaging (MRI) as a research tool in cognitive neuroscience, this work illustrates 
limitations of the two when it comes to explaining complex and often subtle 
behavioral differences. 

 

Key words: Education, brain structure, grey matter, myelin, cognitive performance, 
socioeconomic status 
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3 Svensk sammanfattning 

Skolor behöver vara inkluderande och erbjuda alla barn de bästa möjliga 
förutsättningarna för att deras skolgång ska bli framgångsrik. Grunden för att kunna 
skapa sådana inlärningsmiljöer är att förstå vad som ligger bakom barns framgång i 
skolan. Varför lyckas vissa utan större problem att ta sig igenom sin utbildning, 
medan andra har det svårt? En bra utbildning har ofta stor påverkan även senare i 
livet, till exempel i form av vilka typer av jobb och inkomstnivåer som är nåbara, 
samhällsstatus, men också välbefinnande och psykosocial hälsa. En välutbildad 
befolkning är även en tillgång för samhället i stort då den främjar ekonomisk tillväxt 
såväl som jämställdhet och delaktighet. Men hur blir framgång i skolan till? Hur 
skiljer sig de som klarar sig bättre i sin utbildning från dem som måste kämpa sig 
igenom? Vad finns det för aspekter inom individen och i deras omgivning som avgör 
om de blir framgångsrika i sin utbildning? Dessa frågor utgör fundamentet för denna 
avhandling. 

Olika metoder för hjärnavbildning, som till exempel magnetresonanstomografi, 
MRT eller magnetkameror, har blivit vanliga som forskningsverktyg inom kognitiv 
neurovetenskap. Forskare använder till exempel MRT för att studera hjärnan i syfte 
att förklara olika psykiska och neurologiska sjukdomar och deras symtom. På 
liknande sätt har olika mått av hjärnans struktur använts även i friska populationer 
för att undersöka hur neurala faktorer hänger ihop med olika förmågor och 
beteenden, till exempel kognition eller inlärning. Parallellt har det dock publicerats 
studier som ifrågasätter pålitligheten av just den forskning som hittat kopplingar 
mellan beteende och hjärnstruktur. Stora mängder data, ”Big data”, föreslås ofta 
som en lösning till problemet. Det är därför viktigt att avgöra vad stora mängder 
hjärndata tillför i studier av lärande och utbildning, och om det är meningsfullt att 
studera hjärnans struktur för att förklara varför vissa klarar sig bättre i skolan än 
andra. Det finns bevis för att socioekonomisk status påverkar framgång i skolan och 
att de som är ekonomiskt välställda har bättre odds att få bra betyg än de som växer 
upp under mindre fördelaktiga förhållanden. Är detta samband oundvikligt eller 
finns det faktorer som kan bryta ett sådant samband och motverka negativa effekter 
av en ogynnsam uppväxt på akademisk framgång? 

Med hjälp av data från ABCD studien (Adolescent Brain Cognitive Development) 
försökte vi att komma till botten med dessa frågor. Vi använde två olika MRT-
tekniker för att undersöka om det finns samband mellan strukturen i den gråa 
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substansen hos barn och deras kognitiva förmågor. Inspirerad av djurstudier som 
pekade på korrelationer mellan myelin, ett essentiellt isolerande hölje runt 
nervbanor, och inlärning, tittade vi på huruvida T1w/T2w kontrasten, som sägs 
återspeglar myelin i hjärnbarken, kan kopplas till barns prestation på olika kognitiva 
test. Trots ett stort urval såg vi inga sådana korrelationer. På liknande sätt visade vi 
att gråsubstansvolym inte lämpar sig för att förklara skillnader i språklig förmåga 
hos barn. Vi studerade även om individuella kognitiva förmågor interagerar med 
föräldrarnas socioekonomiska status i deras effekt på barns prestationer i skolan. 
Medan kognitiv förmåga inte bekräftades som skyddsfaktor mot effekter av 
socioekonomisk status på betyg i skolan, så hittade vi små men robusta effekter på 
skolframgång av både kognitiv prestationsnivå och socioekonomisk bakgrund. 
Sammantaget bekräftar resultaten i denna avhandling befintliga reservationer mot 
att använda MRT för att förklara skillnader i beteende och prestationsnivå, 
åtminstone bland friska barn. Trots att mått på kognition och socioekonomisk status 
också har brister, har de visat sig vara mer kraftfulla för att förklara komplext 
beteende, samtidigt som de är billigare och mindre påfrestande än MRT. 
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4 Abbreviations 

ABCD Adolescent Brain Cognitive Development  

CNS central nervous system 

CSF cerebrospinal fluid 

DUC data use certification 

FDR false discovery rate  

FSL Functional magnetic resonance imaging of the brain Software 
Library 

FEW family-wise error 

HCP Human Connectome Project 

IRB institutional review board  

MRI magnetic resonance imaging  

MTR magnetization transfer ratio 

MWI myelin water imaging 

NDA National Institute of Mental Health Data Archive 

NIH National Institute of Health 

OL oligodendrocyte 

OPC oligodendrocyte precursor cell 

PALM permutation analysis of linear models 

ROI region of interest 

SES socioeconomic status 

VBM voxel-based morphometry 
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5 Introduction  

Why do some people succeed in school, reaching high levels of formal education, 
while others have a hard time? What are the influencing factors that determine how 
well people navigate the challenges of the formal education system? Questions like 
these have inspired the work on the present thesis. Being well-educated is linked 
with numerous advantages, not only on an individual level in the form of better 
opportunities for employment and income, higher societal status, and positive health 
outcomes, but also for society overall by promoting economic growth and fostering 
equality and empowerment among its citizens. According to a meta-analytic review, 
math, reading, and attention skills at the beginning of school, predict later school 
achievement across sexes and levels of socioeconomic status [1]. But what other 
factors determine if someone completes their education successfully? Is it useful to 
look at the brain to understand educational success? Are there external parameters 
that can sway one’s educational trajectory? 

Most people have an intuitive appreciation for the fact that cognition and 
intelligence play a significant role for someone’s educational achievements 
throughout their lives. Intelligent people have an easier time to navigate the tasks 
and challenges that schooling and formal education present them with. Perhaps this 
even works like a feed-forward loop where someone with good preconditions for 
doing well in school, gradually becomes more intelligent through their continuous 
successes in school. Turning towards the brain to help answer some of these 
questions and to explain interindividual differences in cognitive abilities and 
academic performance is an obvious choice. Thanks to the advent and widespread 
availability of modern neuroimaging technologies, they have become a mainstream 
research tool in cognitive neuroscience. For clinical questions, scientists frequently 
look at the brain to explain diverse pathologies and disorders, and the symptoms and 
divergent behaviors that go hand in hand with them. Similarly, empirical research 
has tied various measures of brain structure to cognitive performance, which, in 
turn, is a well-established predictor and outcome of education. Accordingly, it is 
conceivable that higher educational attainment would go hand in hand with 
corresponding neural manifestations. In this spirit, educational neuroscience has 
established itself as a research area that studies the brain in all its facets to better 
understand the neural factors that are associated with learning outcomes and 
education. At the same time, there has recently been a surge in studies questioning 
the reliability of links between behavior and brain structure. Large sample sizes are 
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often proposed as a solution for addressing this issue. It is crucial to determine 
whether this claim proves to be true in the context of learning and education and if 
studying brain structure is useful for explaining individual differences in terms of 
how well someone does in school. But what about other factors, like the 
environment someone is growing up in? There is evidence that socioeconomic status 
influences educational success and that those that are financially well-off are more 
likely to do well in school than their peers from a less advantageous background. Is 
this an inevitable association, or are there protective factors that can break the 
unfortunate relation between a disadvantaged upbringing and poorer educational 
outcomes? 

 

Investigating these questions and hypothesized relationships has been the objective 
of this thesis, summarized in Figure 1. We used two neuroimaging measures to 
explore how grey matter and cognitive abilities relate to one another. To account for 
environmental variables, we studied if individual cognitive abilities interact with 
parental socioeconomic status in their effect on children’s performance in school. 
In the following sections of the thesis, you will read about what we presently know 
about how factors inside and outside an individual can influence their educational 
success. First, a brief overview of how educational success is defined and measured 
is presented. This is followed by an introduction to the concepts of cognitive abilities 

Figure 1: Schematic overview of the core ideas underlying this thesis. The primary concept of interest is 
educational success, quantified by means of grades, which in part can be explained terms of individual cognitive 
abilities as well as socioeconomic background. Cognitive abilities in turn have been associated with both 
socioeconomic status and brain structure. In this work, socioeconomic status is operationalized by parental 
education and income as well as neighborhood status. Brain structure is measured by means of estimated grey 
matter volume (VBM) and cortical myelin content (T1w/T2w ratio). Cognitive abilities are assessed by 
seven tests contained in the NIH Toolbox Cognition Battery which tap into attention, executive function, 
language, memory, and processing speed. 
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and intelligence, as well as socioeconomic status. Features of brain structure 
relevant to cognition are then discussed together with a section on using magnetic 
resonance imaging (MRI) to image grey matter and myelin. 

5.1 What is educational success? 
Before we attempt to answer who is successful in their education and why, it is 
worth contemplating what educational success means. What comes to mind are 
acquisition of knowledge and skills, as well as passing exams and graduating from 
courses or programs. Some researchers go a step further and consider factors that 
are much more difficult to quantify, like academic self-efficacy, engagement, or 
satisfaction [2]. Unsurprisingly, a broad concept like educational success does not 
come with a simple definition. This is also reflected in the literature, where a variety 
of different indicators of educational success are used, as well as inconsistent 
terminology. Besides educational, or academic, success, the terms attainment and 
achievement feature frequently, two terms which are not easily distinguished. Some 
argue that the former is concerned with formal qualifications and learning 
objectives, like obtaining degrees or diplomas, while the latter should be seen as a 
reflection of performance ability [2]. Other research defines educational achievement 
by means of clear criteria, such as the highest level of completed education [3] or 
grades [4]. This substantial overlap between the two terms is reflected by the fact that 
they are often used interchangeably [5]. Nevertheless, the most widely used measure 
of educational success are, as you might expect, grades either from specific courses 
or in the form of a grade point average [2], thus gearing the field towards objective 
accomplishment criteria.  

5.2 Cognitive abilities and intelligence 
Cognitive abilities and intelligence impact many life outcomes, not least individual 
educational trajectory [6–8]. The two concepts are interrelated, reflected in the fact 
that they are occasionally used interchangeably [9]. Different approaches to defining 
them have been proposed. While cognitive abilities refer to various mental 
processes necessary to store and process information, such as attention and working 
memory, intelligence is typically viewed more broadly. British psychologist Charles 
Spearman famously conceptualized it as a combination of several task-specific 
factors and one general factor – accounting for the fact that an individual’s 
performance on different cognitive tests typically correlates [10].  The two can be 
divided into crystallized and fluid abilities, where the former refers to someone’s 
ability to think logically and to deal with novel stimuli, while the latter concerns 
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acquired knowledge. Even though other variables, such as personality factors, also 
have an impact, empirical evidence implies intelligence as the strongest predictor of 
academic success and suggests it should be defined comprehensively and 
operationalized with both verbal and non-verbal measures to maximize its 
predictive value for school performance [8, 11, 12]. Effect sizes tend to be medium, 
with the exact numbers varying from study to study, for example as a function of 
school subject, behavioral measure, or analytical approach. Several reviews and 
meta-analyses have found robust links between executive functioning and school 
achievement, especially in math, across a broad age range of elementary school 
students [13–15]. At the same time, transfer effects between executive function training 
paradigms and academic performance have not been observed, possibly because 
interventions should be focused more on encouraging the engagement of executive 
functions rather than improving them [16].  

Math and language performance are typically used as indicators of academic 
achievement, even though the two abilities do not appear to be independent of one 
another [17]. In a recent meta-analytic review inadequate reading skills have been 
shown to go hand in hand with deficits in many non-verbal cognitive domains, such 
as attention, memory, and inhibition, possibly because cognitive deficits hamper the 
development of language skills which in turn could adversely affect cognitive 
development [18]. In line with this, a recent review concluded that the relationship 
between cognitive ability and school achievement is bidirectional, meaning both 
interact during development – contrary to the traditional view that cognitive abilities 
precede academic success  [7]. The data is less conclusive when it comes to how the 
effect of cognitive ability on school performance changes over time [8, 11]. There is 
some evidence that the correlation between intelligence and some cognitive abilities 
(working memory and reasoning) and academic achievement increases with age, 
while the picture is less clear for executive functioning [7, 8]. 

In conclusion, the link between cognition and intelligence on the one hand and 
academic achievement on the other is well established in the literature, with some 
level of uncertainty with respect to the magnitude of the effect. Correlations appear 
to be reciprocal and have been shown across a wide range of ages, various aspects 
of cognitive abilities and measures of academic achievement.   

5.3 Socioeconomic variables 

5.3.1 Measures of socioeconomic status (SES) 
In educational research, there is no way around considering to what extent a child’s 
academic trajectory is affected by their socioeconomic standing, that is, their 
parents’ level of education, the type of job they have, and how much money they 
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make. Much like cognition and intelligence, socioeconomic status is not a 
unidimensional entity. And even though it is commonly used in educational research 
and beyond, there is considerable variety when it comes to how to define it. 
Typically, it is operationalized by level of education, income, or occupation – and 
studies use one, a combination, or all of these as they see fit. Increasingly, factors 
beyond an individual’s home environment, for example information on school 
quality, neighborhood status or eligibility for free or reduced lunch (although this 
has been criticized [19]), are also being considered [20, 21].  

5.3.2 Links between SES and educational attainment 
Much like with cognition and intelligence, links between socioeconomic 
background and school performance are consistently reported in the literature, 
starting during early school years, and persisting, albeit attenuated, all the way to 
university [21, 22]. While links between SES and academic achievement have been 
observed reliably for decades, their reported strength varies quite significantly and 
some meta-analytic evidence point towards rather moderate effect sizes [21, 23, 24]. An 
evident reason underlying this disparity is the large variety in how both SES and 
academic achievement are conceptualized and operationalized. It has also been 
shown that the way SES is measured influences the estimated size of its correlation 
with academic achievement, with continuous SES variables producing higher effect 
sizes than discrete categories [21]. It even makes a difference where the SES data 
comes from, with information coming from parents producing larger effects 
compared to when it comes from children or other sources [21]. Other contributing 
factors are the grade the student is in, the geographical location of their school, 
whether they belong to a minority group, and whether individual students or schools 
are used as unit of analysis (with the latter producing larger effect estimates) [21].  

Evidence suggests that the reciprocal relationship between cognitive abilities and 
school performance is less pronounced in children that are socioeconomically 
disadvantaged [7]. At the same time, lower socioeconomic status often co-occurs 
with poorer performance on various cognitive measures. Mechanisms suggested to 
explain these findings are better access to high-quality teaching material, 
psychosocial resources, and intellectual stimulation available to children that are 
socioeconomically well off. Beyond that, parent’s social capital has also been 
suggested to come into play [21].  

There is ample evidence that parents play a crucial role in their children’s education. 
SES has been found to correlate with parent’s involvement in their children’s 
education, which in turn has been found to be linked to their performance in school, 
though not as strongly as one may be inclined to believe [25, 26]. A cross-national 
analysis of data from the 2012 PISA (OECD’s Programe for International Student 
Assessment) study revealed that access to cultural and, to a lesser extent, educational 
resources, correlates with children’s performance in math, reading (or some other 
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indicator of verbal/language skills), and science. This association is at the basis of 
both the direct and indirect effects that parental occupation status has on children’s 
performance in school [27].  Parents’ level of education is also linked with children’s 
academic achievement, though primarily through its connection with occupational 
status [27]. While these resource-related factors likely explain the bigger part of the 
performance difference between low and high SES children, additional forces do 
seem to be at play, for instance psychological variables, like self-concept or how 
flexible, respectively fixed students’ beliefs about their academic abilities are [28, 29].  

Furthermore, it has been shown that factors outside the individual, such as a positive 
school and classroom climate, school, and curriculum type, as well as the 
socioeconomic status of a school contribute to offset the negative effects of low SES 
on academic performance [30–32]. To sum up, even though true effect sizes are still 
uncertain, after decades of research, there is little doubt that a child’s socioeconomic 
background affects their odds to succeed in school. 

5.4 Brain structure – the macro and the micro level 
The brain, our body’s most complex organ, underpins every aspect of our lives. It 
plays a vital role in processes ranging from those typically beyond our awareness or 
deliberate control, like respiration or cardiovascular function, to more conscious 
acts like learning to walk, writing music or remembering our spouse and family.  
During childhood and adolescence, the brain undergoes extensive development, 
reorganization, and rewiring, correlating with profound changes observable at the 
level of biology, physical appearance, behavior, cognition, and numerous other 
abilities [33–36]. The timelines vary between different structural indices and areas of 
the brain, and their corresponding overt changes. Sensorimotor skills develop 
earliest and fastest, mirrored by corresponding changes on the neural level. 
Associative and limbic areas are characterized by slower, and more prolonged 
development, in line with relatively later refinement of higher cognitive and 
emotional functions [37]. Generally, somatosensory, motor, and phylogenetically 
older regions mature earlier than higher-order association cortices [38, 39] in parallel 
with the typical sequence of behavioral, cognitive, and psychosocial development 
[39, 40]. 

5.4.1 Grey matter 

5.4.1.1 Grey matter development during childhood  
The mammalian brain is made up of three main components: grey matter, white 
matter, and cerebrospinal fluid (CSF). The outermost layer of the brain, the cerebral 
cortex, is 1-4.5 mm thick and has long been regarded the site of higher cognitive 
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function [41, 42]. It is primarily made up of grey matter, which in turn, consists of 
neurons, glia cells, blood vessels, dendrites, and myelinated and unmyelinated 
axons [43]. Structural changes in the brain during development are visible across a 
range of different grey matter indices, including cortical volume, cortical thickness, 
gyrification, and surface area [44–46]. Each of these metrics follows a characteristic 
pattern over time, though there is substantial variability between individual people 
when it comes to these trajectories, both in terms of their size and direction, 
especially at the transition between developmental phases [47]. There is also evidence 
that points towards greater variability in brain structure among males compared to 
females [48]. Small but consistent sex differences have been observed reliably across 
the life span with respect to overall brain volume [49, 50], whereas the picture is more 
complex in terms of individual indices of grey matter morphology and their 
developmental trajectories for boys and girls [51–56]. 

Unlike white matter, which typically increases linearly in volume throughout 
childhood and adolescence before leveling off in adulthood, grey matter metrics 
follow a non-linear trajectory, with decreases in cortical thickness and volume 
during childhood, adolescence, and young adulthood after an initial increase in 
cortical thickness during the first two years of life [45, 57, 58]. After some years of more 
gradual gains, cortical thickness, volume, and surface area reach a peak around early 
puberty, after which a gradual decrease sets in, with flatter slopes for surface area 
compared to the other two [45, 47, 59]. Compared with white matter, grey matter 
development is characterized by considerably more regional, temporal and 
interindividual variability [47, 60] and varying slopes [61]. The temporal cortex stands 
out, because while following a similar overall trajectory as the frontal and parietal 
cortices it reaches its peak grey matter volume markedly later than the other two [62]. 
Grey matter in posterior cortical regions follows a more linear growth over the 
course of development at least until age 20 without evident leveling or decline [62]. 
Frontal and parietal regions have been shown to reach their peak earlier in females 
than males, possibly caused by an earlier onset of puberty differences in hormones 
[62].  

Cortical grey matter volume is the product of cortical thickness and surface area. 
Thanks to its characteristic folding pattern the cortical surface area can grow without 
an increase in overall brain volume. These structural metrics follow distinct 
developmental trajectories and are thought to reflect different underlying 
neurobiological maturational processes [56]. Both cortical thickness and surface area 
grow substantially during the first two years of life as the brain develops rapidly. 
[63]. After that, cortical thickness has been shown to change differently depending 
on brain region, with fronto-parietal and cingulate areas exhibiting a more consistent 
decrease in thickness, compared to sensorimotor, limbic and association cortices 
which initially increase in thickness before experiencing a more moderate thinning 
[64].  Some data also suggests that posterior brain regions are characterized by initial 
cortical thinning and followed by thickening between age 1 and 5 [55]. Surface area 
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on the other hand increases steadily in the anterior part of the cortex until about age 
13 when it starts levelling off, more posterior regions of the cortex on the other hand 
roughly remain steady throughout that same period [64]. When it comes to the cellular 
changes giving rise to the macroscopic shifts, which we can detect by means of 
neuroimaging, synaptogenesis, myelination, and selective pruning, are 
developmental key processes that can lead to cortical thinning [65–67]. Dendritic 
branching and axonal sprouting also occur, although these mainly take place during 
prenatal and early postnatal development [67].   

In contrast to grey matter in the cortex, grey matter deeper within the brain is, simply 
put, involved in more fundamental functions, such as regulating emotion, relaying 
sensory input to relevant parts of the brain, and basic physiological functions [68–70]. 
However, cortical, and subcortical grey matter are heavily interconnected and 
functionally integrated [71]. Even subcortical grey matter structures have been shown 
to follow an inverted-U-curve during development with extensive expansion in 
volume during the first year after birth [33, 72], though some findings point towards 
linear relationships [73]. There is evidence that the developmental trajectories of 
subcortical structures are not a function of age to the same extent as those of cortical 
grey matter, though the strength of the relationships differs between different 
structures of the basal ganglia [73].  

5.4.1.2 Links between grey matter and cognitive abilities during childhood 
A landmark study from the early 2000s found that the relationship between 
intelligence and cortical morphology changes over the course of childhood and 
adolescence, with a negative correlation between cortical thickness and intelligence 
during earlier childhood gradually transforming into a positive one [74]. More 
intelligent children were also characterized by a higher degree of cortical plasticity, 
especially in prefrontal regions [74]. Cortical thinning during childhood has robustly 
been linked to improved cognitive abilities across a range of functional domains. 
For instance, cortical thinning in left lateral dorsal frontal and parietal regions has 
been shown to correlate with improved vocabulary performance [75]. Similarly, 
cortical thinning in right anterior cingulate and inferior frontal gyrus, respectively 
superior parietal cortex, was found to correlate with improved cognitive control and 
working memory in 5-to-10-year-old children [76]. Evidence linking cognitive 
abilities to grey matter volume is less conclusive, with both positive and negative 
correlations occurring. One study found improved reading proficiency to be tied to 
grey matter volume in left superior temporal cortex [77].  At the same time, decreases 
in grey matter volume in left inferior parietal lobule as well as pre-and postcentral 
gyri were associated with better reading performance [77]. 
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5.4.2 Myelin 

5.4.2.1 What is myelin and why do we need it? 
Myelin, which can be found in both white matter and grey matter, is a fatty 
substance insulating the axons of the central and peripheral nervous system. It is 
essential for efficient signal transmission between disjoint parts of the brain because 
it helps optimize the speed at which action potentials can travel along axons. It has 
also been hypothesized that myelin helps maintain and stabilize the brain’s circuitry 
by inhibiting synaptic plasticity [78]. Myelin is thus a major determinant behind 
healthy brain function and has more recently also been implied as a critical 
component for learning and memory [79]. Studying myelination to understand both 
healthy and pathological brain function has a long history. German neuroanatomist 
Paul Flechsig with his mapping of the chronology of early myelination at the turn 
of the 20th century was a pioneer in investigating myelin as an influencing factor 
behind neural transmission [80–82]. Traditional histological techniques have been 
complemented by immuno-chemistry and electron microscopy methods in more 
recent times [83]. These techniques provide important insights into myelin function 
and plasticity, since they can visualize myelin directly, but they come with one 
obvious drawback: they cannot be used in vivo. Consequently, cognitive 
neuroscientists have resorted to neuroimaging as an alternative approach. You will 
soon learn more about this. 

At birth, the human brain contains very limited quantities of myelin [84]. The process 
of myelination starts during the third trimester of pregnancy and progresses in a 
predetermined spatiotemporal order [84–86]. During development, myelin gradually 
wraps around the axons in the CNS, forming an insulating layer around them. This 
supports a swift and, likely even more importantly, well-synchronized propagation 
of electrical signals across the neuronal pathways, which in turn facilitates 
communication between spatially distributed brain regions [87, 88]. The bulk of 
myelination takes place during early childhood [84, 89–91]. However, it has been shown 
to continue for several decades, albeit to a lesser extent [87]. Moreover, 
oligodendrocyte precursor cells (OPCs) are present in the adult brain, and continue 
to proliferate and differentiate into oligodendrocytes, a cell type responsible for 
generating myelin [92, 93].  There is also mounting evidence that neural activity can 
modulate OPC activity and foster the formation of new myelin [94–96].  

5.4.2.2 Dynamic myelin changes in response to behavioral stimulation  
For a long time, researchers have assumed that the myelin sheaths around the brain’s 
interconnecting nerve pathways are more or less stable in adults [97]. The validity of 
this long-held view though, is increasingly being called into question. Animal 
studies show that neural activity can affect myelin formation in the brain, and that 
this has impact on behavior. For example, the development of remote, but not recent, 
fear memories is hampered in transgenic mice that are unable to produce new myelin 
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[93]. This finding suggests that proliferation and differentiation of OPCs into mature 
oligodendrocytes and subsequent formation of new myelin is necessary for 
preservation of fear. Interestingly, immediate recall of fear memories was 
unaffected, suggesting that myelination is a fundamental prerequisite for their 
consolidation. Whether or not the same is true for other types of memories, remains 
to be investigated.  

In order to learn a skill, the formation of new myelin is required and performing a 
recently acquired skill prompts new myelin forming cells (i.e., oligodendrocytes) to 
develop, which in turn leads to structural changes in white matter [98]. After several 
hours of training, motor learning was impaired in transgenic mice in which OPCs 
were unable to proliferate and differentiate into oligodendrocytes [98, 99]. Another 
rodent study demonstrated a connection between a motor learning paradigm and 
white matter structural indices, as captured by ex vivo MRI, in pathways implicated 
in the task [100]. Subsequent myelin staining techniques revealed higher myelin 
staining density in the white matter of those parts of the motor cortex that were 
associated with the execution of the task in the trained group as compared to a 
control group. Presumably there are different cellular or molecular processes 
underlying different stages of learning and memory formation, each of which 
follows its own time course – proliferation and differentiation of OPCs into 
oligodendrocytes in a matter of hours with subsequent myelination by mature 
oligodendrocytes over the course of a few weeks [93].  

Animal research has provided valuable insights into the microstructural processes 
that underlie experience-dependent structural plasticity and its behavioral correlates 
– but its potential is naturally limited when it comes to answering questions about 
uniquely human abilities and behaviors, such as language, mathematical abilities, or 
the acquisition of musical expertise. It is uncertain to what extent the adult human 
brain can form new myelin in response to neural activity [101]. It is plausible that 
some of the structural changes captured by neuroimaging methods are indicators of 
remodeling of pre-existent myelin (for example through changes to thickness or 
internode length of the myelin sheaths) rather than the development of new myelin 
[101]. 

5.5 Imaging the brain with MRI 
Continuous advancements in neuroimaging, especially magnetic resonance imaging 
(MRI), have enabled scientists to study many aspects of brain structure and function 
in-vivo and have significantly improved our understanding of how the brain’s 
developmental trajectory looks throughout life, both in health and disease [102–104]. 
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MRI uses strong magnetic fields to detect signals from water-bound protons, which 
are abundant in the human body [43]. The signal differs depending on the 
environment these water-bound protons are in, which gives MRI its unique soft 
tissue contrast and ultimately enables clear visualization of brain anatomy, see 
example in Figure 2. A big advantage of MRI compared to other imaging methods 
(such as positron emission tomography, PET), is that it does not rely on ionizing 
radiation or the use of external contrast agents. This makes it possible to study 
vulnerable populations, like small children or patient groups. 

Broadly speaking, MRI techniques can be categorized as either functional or 
structural. Functional MRI involves acquiring a series of low-resolution images over 
time to study the brain in action, such as monitoring blood flow, to infer information 
about neural activity. Structural MRI on the other hand, looks at gross anatomical 
features and is used to measure the volume or shape of a certain organ or region. 
Finally, there is a subset of structural MRI techniques which goes beyond 
anatomical structures and instead aim to provide information about the tissue 
microstructure on a voxel level, such as myelin, axonal diameter, or water content. 
These methods include quantitative MRI techniques, such as relaxometry, as well 
as diffusion MRI, among many others. The following two sections will provide an 
overview of how MRI can be used to capture brain structure at varying levels of 
detail, both by means of traditional morphometric measures and more novel 
microstructure indices that attempt to come closer to the anatomical phenomena that 
underlie gross structural features. 

5.5.1 Grey matter MRI 
MRI can be used to visualize and quantify cortical and subcortical grey matter. T1-
weighted images, such as MPRAGE [105] or MP2RAGE [106], are used for this 
purpose as they provide strong contrast between white and grey matter. Since the 
cortex is only a few millimeters thin, high-resolution images are required, typically 

Figure 2: Example of T1-weighted MRI image. 
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at least 1x1x1 mm3, see example in Figure 2. Based on these images, advanced 
image processing methods are used to compute different measures of the size and 
shape of grey matter, such as cortical thickness, surface area, gyrification, and grey 
matter volume [43]. These analyses can be based on either a volume- or surface-based 
approach. Volume measures can be computed both for the entire brain, types of 
tissue or specific subregions [43]. Common surface-based measures are cortical 
thickness, surface area and gyrification, all of which can be calculated in slightly 
different ways [43]. 

5.5.2 Myelin MRI 
The contrast between white and grey matter in MRI is mainly produced by the 
different myelin content in the tissues. However, the image intensity in a single T1-
weighted image does not give a quantitative estimate of focal myelin content. This 
issue has spawned a growing interest in a different type of MRI measures. These 
methods aim to complement traditional morphometric measures of grey matter by 
enabling inferences about underlying cellular processes or anatomical structures 
through biophysical models of the MRI signal obtained from multiple images with 
different contrasts. Myelin imaging is one such application. The reason myelin can 
be imaged using MRI is that it has a strong effect on the MR signal, in particular the 
relaxation times, the main determinant behind the image contrast [83]. There are 
numerous methods proposed for imaging myelin including relaxometry [107], 
magnetization transfer ratio (MTR) [108], cortical myelin mapping [109, 110] (namely 
T1w/T2w ratio which you will soon read more about), and diffusion MRI.  Neither 
diffusion MRI nor MTR are specific to myelin and can reflect other tissue properties 
[111, 112]. Myelin water imaging (MWI), a type of relaxometry, and quantitative 
magnetization transfer methods have been shown to have high sensitivity to myelin 
at the same time as producing reliable results across different scan sites which makes 
them especially promising as biomarkers for myelin-dependent pathologies, such as 
multiple sclerosis and schizophrenia [83, 113, 114]. Myelin water imaging holds a lot of 
promise as a quantitative myelin measure. Its applicability used to be limited by 
long scan times, however, recent work using advanced reconstruction methods [115], 
has significantly reduced acquisition times, making the use of MWI viable even in 
vulnerable individuals, like children and clinical populations. However, just like 
other MRI metrics, myelin measures from MWI can be affected by other factors 
than purely the myelin content of the tissue which complicates the interpretation of 
the findings [116]. 

5.5.2.1 Myelin throughout the life span according to MRI evidence 
MRI-based myelin measures have been applied frequently within clinical research 
on pathologies related to myelin, most prominently multiple sclerosis, an 
autoimmune disease characterized by focal areas of myelin damage, i.e., lesions [117–
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120]. Studies of brain development during childhood – the most crucial phase of life 
when it comes to the formation of new myelin [121] – have also begun to exploit the 
potential of myelin imaging. Myelin has been shown to increase steadily until about 
the third decade of life, around which it starts plateauing before gradually decreasing 
during older age [122]. Similarly, myelin imaging has been used to investigate the 
role of myelin on a wide range of cognitive functions and behaviors – in adults as 
well as in children, in health as well as in disease - indicating a clear association 
between myelin and performance in several different cognitive domains [87, 123–127]. 
At the same time, aberrant myelin has proven promising as biomarker for various 
neuropsychiatric and neurological disorders [125, 128–132]. Currently, evidence for an 
association between myelination and learning in humans is still scarce. Studying 
white matter variations in schizophrenia patients, researchers coincidentally 
observed that myelin water fraction in the control group positively correlated with 
age and years of education [133]. 

5.5.3 Methodological issues in neuroimaging research  

5.5.3.1 Analytical issues in brain-behaviour association studies  
Since MRI became widely available as a research tool at the onset of the new 
millennium, cognitive neuroscientists have been enthusiastic about its potential to 
help them get to the bottom of the causes of interindividual differences in human 
behavior, personality, and performance. Inspired by early studies tying brain lesions 
to behavioral deficits [134, 135], countless studies have been published attempting to 
relate various types of behavioral performance indices to underlying differences in 
healthy brain structure and function. A lot of times, the findings of such studies have 
proven to be difficult to replicate[136], leaving the community collectively scratching 
their heads. Methodological approaches and minimum standards have been an 
avidly discussed topic in the cognitive neuroscience community ever since the onset 
of the replication crisis. This has curbed the initial enthusiasm whilst increasingly 
calling the conventional approaches of one-on-one mapping of behavior to brain 
structure into question. A 2022 hallmark study [137] pooled data from three publicly 
available neuroimaging datasets and used the resulting sample of roughly 50.000 
participants to quantify effect sizes in brain-behavior association studies and to 
examine how sample sizes affect their replicability. The results suggest that brain-
behavior correlations in healthy individuals tend to be weak, reinforcing the findings 
of an earlier study [138]. At the same time, the likelihood of discovering significant 
brain-behavior associations using an exploratory approach is low [138]. Significant 
findings from underpowered studies inflating effect size estimates along with 
variability of included populations are likely contributors to the persistent 
replication struggle. Sample sizes to reliably detect such small brain-behavior 
associations in healthy populations will have to be significantly larger than what has 
typically been the case in behavioral neuroimaging studies [137]. 
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5.5.3.2 Limitations of MRI as a research tool 
Thanks to MRI, we now know a great deal about how different parts of the brain 
expand, respectively shrink throughout the lifespan [45, 59, 139].  However, despite this 
significant progress, numerous questions remain unanswered. Researchers around 
the world are trying to understand the cellular and physiological mechanisms that 
underpin gross structural changes and different types of observable behavior [140, 141]. 
While a spatial resolution of 1 mm3 (typical in structural MRI) may seem detailed, 
one such unit of analysis, a voxel, can contain tens of thousands of cells of varying 
types [43]. Thus, any attempt to resolve information on a cellular level is limited by 
averaging over a relatively coarse resolution. Furthermore, MRI is non-quantitative 
and inherently unspecific, reflecting the combined effect of a variety of possible 
underlying biological and anatomical phenomena. For instance, a challenge in 
imaging myelin content is differentiating it from naturally co-occurring substances, 
most prominently iron, especially in the cortex [142, 143]. 

For clinical practice, where diagnostic decisions are based on qualitative assessment 
on a case-by-case basis, these confounders are often not important. But for research 
purposes, where quantitative metrics are obtained from each image, methodological 
choices at various levels matter. Everyone’s brain is different, which makes reliable 
comparisons of brain structure metrics between individuals a nontrivial challenge. 
Different approaches have been developed to make this possible, most of which 
feature some form of registration of individual brain images to a common template, 
prior to subsequent analyses. Once images from multiple individuals are aligned in 
the same space (known as registration, or spatial normalization) and statistical maps 
have been computed, further difficulties arise due to the sheer amount of data one 
is faced with. Like pixels in a digital photograph, MRI images consists of hundreds 
of thousands of small constituting elements (voxels or vertices, depending on 
whether one is conducting their analyses in volume- or surface space). Comparing 
brain features across individuals or over time is often done at a voxel level and 
essentially results in having to conduct the same statistical hypothesis test many 
times. Dealing with such large quantities of data necessitates specific correction 
procedures and statistical thresholds to limit the risk of false positives (Type I Error). 
These decisions are far from straight straightforward and to a great extent up to a 
researcher’s personal preference. This considerable analytical freedom can heavily 
influence an individual study’s results and makes comparisons across different 
studies a challenge [144–146].  

Another complicating factor is that scanner vendor and pulse sequence can affect 
images and quantitative results [147], and similarly choice of post-processing 
software has been shown to have an impact [148–151]. Efforts to harmonize data 
acquisition and to standardize analytical procedures in MRI research, for instance 
through the BIDS (Brain Imaging Data Structure) initiative [152] or HCP-style data 
[153] – which you will read more about in a moment – will be essential to foster 
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consensus within the community, which will help to keep analytical challenges at 
bay and to take full advantage of the data that is available. 

5.5.4 Large-scale datasets 
A growing trend in the recent past that promised to remedy a lot of the above issues 
concerning reproducibility in neuroimaging, are large-scale data initiatives. 
Prominent examples are the UK Biobank [154] , the Human Connectome Project 
(HCP) [155], and the Adolescent Brain Cognitive Development (ABCD) study [156]. 
The UK Biobank aims to improve our understanding of the underlying causes of 
various diseases and health conditions during middle and later adulthood by 
gathering a wealth of data, including but not limited to genetic and biological 
samples, cognitive assessments, and lifestyle factors [157]. About 20% of the overall 
500,000 participants also undergo a comprehensive neuroimaging protocol[158]. The 
Human Connectome Project (HCP) is a consortium effort aimed to map out the 
brain’s functional and structural connectivity by collecting and analyzing 
multimodal neuroimaging data from over 1000 healthy young adults. Since its 
inception, the project has been refunded multiple times and has been supplemented 
with several connectome-related sub-studies focusing on ageing and specific 
pathological populations. The ABCD study [156], which the work in this thesis is 
based on, is another well-known instance of a large-scale, multi-site neuroimaging 
project intended to collect multifaceted data from thousands of individuals. The 
project’s overarching aim is to identify protective and risk factors that affect 
children’s physical and mental well-being during adolescence. The size of the 
ABCD dataset does not only provide an opportunity to uncover structural brain-
behavior associations in healthy, typically developing children, despite expected 
small effect sizes, but also the chance to put the reliability of the results to the test 
at the same time. Some previous research has focused on empirically testing the 
replicability of structural brain behavior associations  [136, 159], though sample sizes 
in neuroimaging studies typically do not leave room for including a replication 
element to confirm initial results within the same investigation. 

Thanks to multi-site projects like these, the neuroimaging community not only gets 
access to large, rich datasets, providing increased statistical power and enabling 
replicability studies, initiatives like the HCP or the ABCD are also pioneering with 
respect to introducing standardized procedures for data collection across sites and 
timepoints. The HCP consortium for instance has established a standard for data 
acquisition and image processing which they actively encourage others to follow 
[153]. Central preprocessing of the images provides interested researchers the 
possibility to work with quality-controlled data at the same time as it limits some of 
the analytical degrees of freedom.  
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6 Aims  

What is it that sets apart people who excel in their educational journeys from those 
who do not? And how do we as a community investigate these factors in a reliable 
way? These are the central questions that brought about the present work. Given the 
broad nature of these questions, it is, of course, impossible to clarify them 
conclusively within a single thesis. Instead, we aim to provide additional evidence 
on the way towards increasing our understanding about this complex topic. In the 
search for answers, we first turned towards MRI as a forever promising research 
tool, hoping that we can find some answers by looking at the brain. Other obvious 
candidates influencing educational attainment were cognitive abilities and 
socioeconomic circumstances. Using a large, well-known dataset, we set out to test 
different methods to narrow down underlying factors of educational success. This 
did not only allow us to exclude the possibility that null findings were the result of 
too little data, but also provided us with the opportunity to directly put the robustness 
of our findings to the test – in the spirit of the much-discussed replication crisis 
within cognitive neuroscience. 

The individual papers included in this thesis were written in pursuit of the above 
aims by targeting the specific objectives listed below: 

• Test the suitability of T1w/T2w ratio for investigating links between 
children’s cortical myelination and their cognitive abilities in a large sample 
of similar age (Paper I) 

• Investigate associations between grey matter volume and language ability 
(Paper II) 

• Scrutinize the robustness of whole-brain voxel-based morphometry 
analyses (Paper II) 

• Test whether the effect of socioeconomic variables on school performance 
of typically developing children differs based on their cognitive 
performance (Paper III) 

• Explore whether the effect of children’s socioeconomic background on their 
grades varies as a function of time (Paper III) 
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7 Ethical considerations 

Since the work in this thesis is based on the publicly available ABCD dataset, one 
could assume that researchers do not have to deliberate ethical issues that are usually 
considered when conducting a study. Questions one reflects over when applying for 
local ethical approval in conjunction with doing research involving humans do not 
arise in the same way because they have already been addressed by those that are 
overall responsible for the study and data collection in question. The scientists in 
charge of a large-scale study need to weigh benefits against potential risks of 
psychological or physical harm, something that carries weight particularly when 
under-age participants are involved. In neuroimaging studies, for instance, odds are 
that incidental findings will be brought to light, blurring the lines between scientific 
research and clinical routine [160]. It is vital that routines are in place for when 
unexpected findings come up. For the ABCD study, ethical review and approval 
was managed primarily by the central Institutional Review Board (IRB) at the 
University of California San Diego, where the study’s overarching coordinating 
center is located, and in some cases by local IRBs directly at the sites. Children 
participating in the ABCD study provided informed assent in addition to their 
guardians signing informed consent forms.  

The ABCD study collects a lot of sensitive information from participants, including 
biomedical data like MRI images and genetic information, but also questions 
regarding, among others, mental health history or substance use. Collecting this type 
of data from children and adolescents can lead to ethical challenges. For instance, if 
a child reveals information about potential risk factors, such as suicidal ideation, 
researchers must balance protecting participant confidentiality against possibly 
needing to disclose information to parents to not jeopardize children’s health and 
well-being [161]. The ABCD consortium follows established biomedical ethical 
principles and has developed specific procedures and guidelines for local 
investigators to follow when ethical dilemmas arise [161]. Big, open neuroimaging 
datasets pose additional challenges, not only from an ethical but also a legal angle, 
with the objective of ensuring participants’ privacy and controlling motives for 
secondary data use. Individual participants must be protected as much as the 
communities they belong to, especially when marginalized groups are concerned 
[160].  

Like many other large-scale studies, the ABCD dataset is shared via a repository 
that is managed by the National Institute of Mental Health Data Archive (NDA; 
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https://nda.nih.gov, last accessed on 21 April 2023) and access to it requires an 
agreement between the researcher’s home university, providing institutional 
sponsorship, and the NIH. This is done via a Data Use Certification (DUC) which 
specifies the targeted research questions as well as who will have access to the data. 
The DUC is updated on a yearly basis, including a progress report. It also stipulates 
adherence to best practices when it comes to secure data storage in agreement with 
local as well as national and international regulations. Ensuring that the terms and 
conditions of the agreement are followed, is one of the most important 
responsibilities of a researcher when working with a public dataset. 

https://nda.nih.gov/
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8 Materials and methods 

8.1 The ABCD dataset 
The Adolescent Brain Cognitive Development (ABCD) study is an NIH-funded 
longitudinal, multi-site research project that follows nearly 12,000 participants, 
aged 9-to-10 years at the onset of the study, to identify biological and environmental 
variables that affect an individual’s developmental trajectory, health, and well-being 
[156]. At present, it is the largest, most comprehensive study investigating brain health 
in children and adolescents. Starting in 2017, data is collected over the course of ten 
years at regular intervals, the timing of which depends on the type of data, at 21 sites 
(22 at the beginning) across the United States. When it comes to race and ethnicity, 
the children included in the sample come from diverse backgrounds, aimed to reflect 
the proportions found in the general population in the US [162]. Cognitive 
performance data is collected yearly, MRI data every second year. In addition, 
various other types of data, such as biospecimens, mental and physical health, 
substance use and physical activity as well as information on the participants’ 
familial, cultural, and socioeconomic background, are also available. Some of these 
are complemented by questionnaire data obtained from the children’s parents. 
Furthermore, data from external sources is also available, supplying additional 
information about the participants’ place of residence, for instance with respect to 
education, employment, and housing quality. The Covid-19 pandemic prompted 
efforts to adapt the existent procedures and to conduct testing and assessments 
remotely whenever possible. The study protocol has also been supplemented with a 
questionnaire targeting behaviors and experiences in response to the pandemic.  

The infrastructure to store and share all the data that the ABCD study generates is 
provided and managed by the NDA. Data is made available to researchers with an 
up-to-date DUC through annual releases. Following in-house quality control 
procedures, these annual releases contain curated and tabulated behavioral and 
questionnaire data as well as pre-processed imaging data. In addition, these releases 
also include raw imaging data. The data that was used for the present dissertation 
stems from the third (Paper I and II) and fourth (Paper III) annual release. Besides 
the annual releases, raw imaging data is also shared on an ongoing basis, in the form 
of so-called “Fast track releases”. 

The papers included in this thesis are based on subsets rather than the entire ABCD 
cohort. Due to computational constraints, Study I and II are based on a random 



33 

sample of one, respectively two thousand participants. These subsamples were 
reduced to account for specific inclusion criteria, which are described in more detail 
in the respective papers. Since no imaging data was used in Study III, computing 
power was not an issue, and the sample was thus derived from the complete ABCD 
cohort.  

8.2 Education measure 
The ABCD study provides data on children’s academic performance by means of 
self-reports. Both the children themselves and their caregivers are asked to rate their 
overall performance in school during the last year on a scale from 1 (corresponding 
to an A+) to 12 (corresponding to an F). For our analyses, we recoded these number 
grades to the common American 5-point letter scale from A to F to aid 
interpretability. While this is a possibly less accurate measure than information 
directly from the schools, evidence suggests overall good correspondence between 
self-reported and actual grades despite a tendency to overestimate one’s 
performance [163]. Other findings suggest some caution when it comes to using self-
reported grades as an indicator of true performance due to systematic variations 
based on age, ability, and performance level [164, 165]. In the case of the ABCD study, 
children and parents provide information regarding school performance overall, 
rather than on different subjects individually, which has previously been shown to 
have higher validity as a reflection of actual attainment [165]. For this thesis, school 
performance data from two timepoints, two and three years after the baseline 
assessment, were used. 

8.3 Cognitive measures 
Cognitive ability in the context of the ABCD study is assessed yearly through the 
NIH Toolbox Cognition Battery, a collection of several measures evaluating both 
fluid and crystallized aspects of cognition [166, 167]. The individual tests included in 
the battery measure attention (Flanker Inhibitory Control and Attention Test), 
executive function (Dimensional Change Card Sort Test, Flanker Inhibitory Control 
and Attention Test), expressive and receptive language (Oral Reading Recognition 
Test, Picture Vocabulary Test), memory (List Sorting Working Memory test, 
Picture Sequence Memory Test), and processing speed (Pattern Comparison 
Processing Speed Test). In addition to individual test scores for each of the 
measures, each assessment also yields three composite scores: fluid, crystallized and 
total. These summarize an individual’s performance across either all fluid test 
domains (attention, executive function, memory, processing speed), all crystalized 
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(expressive and receptive language), or the entire test battery. For the ABCD study, 
all tests are performed on an iPad with English as instructional and test language. 

8.4 Socioeconomic variables 
Accounting for the multi-faceted nature of socioeconomic status, the ABCD study 
contains several measures characterizing a participant’s background. At an 
individual level, data on parental education and employment status as well as 
household income is available. For Paper III, data on parental education as well as 
household income were used. Total income per household for the previous 12 
months was divided by the 2017 federal guideline for poverty for the respective 
number of people living in a household to account for the number of people 
supported by a given income. The resulting figure represents an income-to-needs 
ratio (ITN) where a ratio <1 indicates that a household is living below poverty level, 
while values >1 indicate an income above poverty level. 

In addition to data from individual households, the Area Deprivation Index (ADI) 
provides information about the level of socioeconomic disadvantage in the 
neighborhood a participant’s residence is located in. The ADI data is not collected 
by ABCD researchers but is instead derived from the American Community Survey 
(www.census.gov/programs-surveys/acs, last accessed on 5 January 2024). It 
aggregates data about the amount of deprivation present in an area, by assessing 
factors like housing quality, education, employment, and income. The ADI ranks 
neighborhoods across the United States and assigns national percentiles to each 
area. Accordingly, affluent neighborhoods receive low ADI scores, disadvantaged 
neighborhoods are given high ADI values.  

8.5 MRI-based measures of brain structure  
This thesis takes a multimodal approach to characterizing grey matter structure 
using two techniques which describe grey matter at different levels of detail. The 
first is Voxel Based Morphometry (VBM) which looks at brain structure on a 
macroscopic level to study how the size of brain regions differs between individuals 
or groups. The second is the T1w/T2w ratio which attempts to provide information 
about grey matter on a microscopic level, as a proxy for myelin. In the following, 
you will learn about both methods separately in more detail. 

 

https://www.census.gov/programs-surveys/acs
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8.5.1 Voxel-based morphometry  
Voxel-based morphometry (VBM) was first proposed as an objective way of 
quantifying brain structure in the early 2000s [168, 169] to enable comparisons between 
groups or individuals. It is typically used to characterize grey matter and it is one of 
the most widely used techniques of neuroimaging researchers to study brain 
structure, with well over 6000 studies published between 1993 and late 2020 using 
the method [146]. VBM is an automated technique that takes a mass-univariate 
approach, computing grey matter probability across the entire brain independently 
in every voxel. Various software packages are available for running VBM with 
different processing options, but the basic steps look as follows, also summarized in 
Figure 3.  

1. Segmentation: The image is segmented into white matter, grey matter, and 
cerebrospinal fluid based on intensity values as well as priors [170]. 

2. Non-linear spatial normalization: The T1-weighted image is normalized to 
a common template, also called template space. 

3. Modulation: This step applies a correction to compensate for enlarging or 
compressing native brain regions to fit them to the template by multiplying 
a voxel’s intensity value by the Jacobian of the deformation field in each 
voxel, the result of which is that each voxel’s concentration is scaled 
relative to the amount of deformation that was applied to it. 

4. Smoothing: A Gaussian kernel is used to smooth the image, thereby 
assigning each voxel the weighted average intensity of its surrounding 
voxels, which helps to make up for inaccuracies induced by the 
normalization. 

This workflow results in individual probability maps that quantify the likelihood 
that a given voxel is grey matter. Based on these maps, voxel-wise statistical 
analyses can be performed to make inferences about local tissue differences between 
individuals or groups as well as relationships to other variables, like clinical scores 
or phenotypical manifestations. Since statistical tests are typically performed 
separately at each voxel, correction procedures to account for multiple comparisons, 
by controlling either the Family-wise error rate (FWER) or False Discovery Rate 
(FDR), are needed [171]. Following VBM, local grey matter can be characterized as 
either concentration or volume, depending on whether modulation is included in the 
processing [170, 172, 173]. 
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Figure 3: General overview of the main steps included in the VBM workflow. Note that 
minor variations exist between common software packages. Reprinted from Brain 
Mapping, Vol 1, F. Kurth, E. Luders, C. Gaser, Voxel-Based Morphometry, 345-
349, Copyright (2015), 
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Since it was first described, VBM has become widely used and accepted in the 
neuroimaging community as a tool to characterize brain morphometry. The 
technique is attractive because it is automated, objective[170, 173], and well-suited for 
exploratory studies. At the same time, it has drawn criticism for producing false 
positives due to normalization and segmentation errors (especially in areas with low 
contrast), risk of partial volume effects where different types of tissue exist in a 
single voxel, and for having little power to detect differences in areas of high 
interindividual variability. Compared to surface-based approaches, VBM has also 
been criticized for lacking specificity, since grey matter is represented by a measure 
that subsumes information on thickness, surface area and folding of the cortex [174]. 
It also respects anatomical boundaries less well than surface-based analyses [140]. 
Results are typically difficult to compare across studies due to researchers’ freedom 
in terms of customizing individual pipelines by adjusting parameters for acquisition, 
preprocessing and statistical analysis which has been shown to produce divergent 
results, thus causing problems with reproducibility [146, 151, 175, 176]. 

8.5.2 T1w/T2w ratio 
Myelin is one of the most important tissue components which drives image contrast 
in MRI of the brain, as previously discussed. Both T1- and T2-weighted images are 
affected by myelin, in opposite direction. Image intensity increases in T1-weighted 
images, while it decreases in T2-weighted images with increasing myelin content. 
Dividing the intensities of a T1-weighted and a T2-weighted image, i.e., computing 
a T1w/T2w ratio, to map cortical areas based on their myelin content was first 
proposed a little over a decade ago [110]. There are several reasons behind why the 
ratio image is said to reflect cortical myelin content: lipids contained in myelin have 
been identified as the main driver behind the T1w and T2w image contrast between 
grey and white matter, T1 signal intensities can be used to delineate cortical myelin 
content, while the T2 signal is inversely proportional to myelin [177]. The images are 
first linearly co-registered, and then divided by one another voxel-by-voxel. The 
resulting ratio image is characterized by increased contrast to noise ratio for myelin 
at the same time as some MR-related intensity bias is attenuated [110]. More 
specifically, since both input images are assumed to be equally affected by receive 
field (B1

-) bias, its influence is removed in the ratio image [110].  

Neuroimaging software can be used to compute 3D models of the brain from MR 
images, namely segmentation of tissue types and parcellation of individual brain 
regions. A critical step for computing accurate T1w/T2w ratio maps is the 
reconstruction of the inner and outer cortical surface. Issues can arise due to 
susceptibility artifacts in the input images and poor surface reconstruction [110]. 
Erroneously low T1w/T2w ratio values and cortical thickness estimates can arise in 
regions where the cortex is very thin and heavily myelinated, since the intensities of 
heavily myelinated grey matter and white matter are not vastly different which can 
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make it difficult for the analysis software to place the surfaces correctly [110]. Areas 
where the cortex is both thick and lightly myelinated can receive inflated T1w/T2w 
ratio values, because the intensity of the more exterior layers of grey matter 
resemble those of CSF more than deeper layers of grey matter, thereby risking that 
the pial surface is placed incorrectly [110]. With some exceptions, T1w/T2w ratio is 
negatively associated with curvature-corrected cortical thickness, partially because 
heavily myelinated parts of the cortex are often comparably thin, but also since 
deeper, more heavily myelinated cortical layers can be mistaken for white matter 
during segmentation [110].  

It is easy to recognize why T1w/T2w ratio as an index of myelin content is 
attractive: the two structural images are standard elements in most MRI 
examinations, their acquisition is comparably fast, even at high resolution which 
makes clinical applications feasible [178]. On top of that, computing the ratio is 
relatively simple using well-established pipelines [179], compared to many of the 
more specific, quantitative myelin measures that often require long acquisition times 
and complex modeling [114][163]. For cognitive neuroscientists, the most significant 
limitation of the technique is that it is calculated based on raw, unitless intensity 
values and affected by numerous non-biological factors [110, 177], thus impeding 
comparisons across individuals, scanners, sequences or timepoints [177]. Like all 
other MRI metrics, the T1w/T2w ratio is not a direct measure of myelin, and its 
sensitivity has been contested, suggesting it may reflect axonal diameter and 
dendrite density rather than myelin content [174]. Nevertheless, numerous studies 
have been published in the recent past, using T1w/T2w ratio as a semi-quantitative 
proxy for cortical myelin, exploring its relationship to development, ageing, as well 
as its associations with behavior and performance [58, 120, 177–182], personality traits 
[183], pathologies involving suspected or confirmed myelin dysfunction [184–189] and 
other living circumstances and experiences [190]. T1w/T2w ratio has also been used 
to study subcortical and white matter myelination [180–183], even though doubts as to 
whether the measure can accurately reflect myelin in white matter have been raised 
[178, 181]. Concurrently, various approaches have been designed and tested to mitigate 
some of the drawbacks of the technique through different bias correction, intensity 
calibration, and standardization procedures [177, 184, 185] to alleviate non-systematic 
variations and to facilitate comparisons between individuals, studies, and sites [186].  
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8.6 Analytical approach 

8.6.1 Study I 
Following previously shown associations between learning and myelin, the 
objective of Study I was to explore whether better cognitive abilities could be tied 
to local T1w/T2w ratio, as a proxy for cortical myelin. The work is based on 
cognitive performance and MRI baseline data from 960 ABCD participants (511 
boys). T1 and T2 weighted structural images were used to compute individual 
T1w/T2w ratio maps. Using permutation based general linear modelling in FSL 
PALM [187], we tested for positive and negative associations between T1w/T2w ratio 
across the brain and each of the seven cognitive tests from the NIH toolbox. To 
account for possible scanner effects, scanner site was included in the models as 
confounder. In a supplementary analysis, we also included age, sex, and SES as 
covariates of no interest in addition to scanner site. 

8.6.2 Study II  
To further probe relationships between grey matter and cognition, we used VBM to 
assess grey matter volume in the same sample of children that was studied in Study 
I (N = 939). Using permutation based general linear modelling in FSL randomise 
[188], we correlated voxel-wise grey matter with children’s performance in the two 
crystalized cognition domains (vocabulary and reading skills). As in Study I, we 
included scanner site as covariate of no interest in the model. We then ran the same 
analysis with fluid cognitive abilities and total grey mater volume included in the 
model as additional covariates of no interest, to evaluate if associations between 
language abilities and grey matter volume are robust even when other variables are 
factored in. Following this, we supplemented the whole-brain VBM analysis by 
attempting to replicate the significant clusters we found initially in a second, 
equivalent subset of ABCD data (N = 926) when using a ROI-based approach. We 
extracted median grey matter volume from all relevant areas and tested if they 
covary with language performance scores, with and without fluid cognition and total 
grey matter volume taken into account. 

8.6.3 Study III 
Effects of SES on school performance are well-established in the educational 
science literature. The aim of Study III was to test whether these links vary as a 
function of children’s cognitive ability. For this purpose, we used cognitive 
performance, SES, and school performance data from 5001 children participating in 
the ABCD study. Children’s cognitive abilities were represented by their individual 
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total composite scores, a value summarizing their performance across all seven NIH 
toolbox measures. SES was assessed in terms of parental level of education, income-
to-needs ratio, and neighborhood deprivation. School performance was 
operationalized as average grades reported by the children. Cognitive and SES data 
stems from the baseline assessment, while grade estimates were derived from the 2- 
and 3-year follow-up data collection. We created ordinal logistic regression models 
where letter grades served as dependent variable and cognition scores and the three 
SES variables were used as predictors. In separate models, we tested main effects 
of SES on grades, possible interactions with cognitive ability as well as the 
relationship between SES and grades over time. 
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9 Results 

9.1 Study I 
Testing correlations between T1w/T2w ratio cortical maps and children’s 
performance on the seven NIH cognition measures did not yield any statistically 
significant associations at an a-threshold of 0.05, irrespective of whether 
demographic variables (age, sex, and SES) were included in the models as 
confounders or not. Similarly, neither sex, age, nor SES were associated with 
T1w/T2w ratio [189]. 

Based on the absence of any statistically significant relationships despite using a 
large sample, we conclude that T1w/T2w ratio is not a suitable metric for associating 
variations in children’s cortical myelin with interindividual differences in cognitive 
abilities. Given that the individual T1w/T2w ratio maps conformed well to the 
spatial patterns expected based on the existent literature on cortical myelin (see 
Figure 4), with primary sensory and motor cortices being the most heavily 
myelinated regions, there were no major issues on the level of the image post-
processing. Nonetheless, Study I suggests that cortical T1w/T2w ratio is not 
appropriate for establishing statistical associations between cortical myelin and 

Figure 4: Average cortical myelin map from the sample used in Study I. From Langensee et al. [186], 
distributed under a CC-BY 4.0 DEED license. 
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behavioral scores. As it currently stands, it is not possible to determine if this is the 
result of methodological issues, whether variations in cortical myelin are too small 
in this age-homogenous sample to tie them to behavioral differences, or if perhaps 
correlations between cognitive abilities and cortical myelin truly are absent in this 
age range.  

9.2 Study II 
After correcting for multiple comparisons and thresholding the t-statistical maps at 
a = 0.05, we saw a negative correlation between receptive vocabulary and a large 
predominantly right-hemispheric cluster including parts of the amygdala, the 
anterior parahippocampal gyrus, the temporal pole, and the medial orbitofrontal 
cortex. We also found a positive relationship between children’s reading 
performance with regional grey matter volume in a cluster in the middle of the right 
occipital fusiform as well as lingual gyrus. Including total grey matter volume and 
fluid cognitive abilities in the analysis as confounders, produced three significant 
positive associations between regional grey matter volume and receptive 
vocabulary. The first cluster was located around the occipital fusiform gyrus and the 
temporal occipital fusiform cortex of the right hemisphere, stretching into the 
cerebellum. The second and third cluster were both located in the left cerebellum. 
Similarly, reading performance correlated positively with grey matter volume in two 
clusters, the first one in the right hemisphere occipital fusiform gyrus and lingual 
gyrus, the second one in the right cerebellum. 

The replication analysis in the second subset of data yielded a mixed picture. The 
two clusters derived from the analysis not factoring in total grey matter volume and 
fluid cognition were both successfully replicated. In contrast, only one of the five 
clusters that emerged from the extended models (including not only scanner site but 
fluid cognition and total grey matter volume as covariates of no interest) was 
replicated in the second sample. Multiple regression analysis identified total grey 
matter volume and fluid cognitive abilities as the most robust predictors of both 
vocabulary and reading performance, though with negligible effect sizes for total 
grey matter volume. In addition, grey matter volume in a cluster in the left 
cerebellum was associated with vocabulary scores, and grey matter volume in the 
right occipital fusiform and lingual gyrus was predictive of reading abilities in boys 
[190]. 
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9.3 Study III  
Ensuing from literature implying cognitive abilities and socioeconomic background 
as critical determinants for an individual’s educational success, the goal of Study III 
was to determine whether cognitive performance interacted with parental 
socioeconomic status in their effect on educational achievement. Using ordinal 
logistic regression analysis, we looked at whether the effect of three indices of 
socioeconomic status (parental education, income-to-needs ratio, and neighborhood 
deprivation) on grades varied as a function of overall cognitive ability. All three 
SES measures were significantly associated with children’s grades at two 
timepoints, though interactions between SES and time were not confirmed. After 
including cognitive abilities in the models, parental education and income-to-needs 
ratio still proved to be significant predictors of grades at both timepoints, while 
neighborhood deprivation did not. Cognitive performance scores were the strongest 
independent predictor of grades at both timepoints, though we also saw some 
evidence for an interaction between cognitive abilities and parental education. 
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10 Discussion 

In the wake of MRI scanners becoming more and more widely available, the 
technique has been applied enthusiastically and celebrated by many cognitive 
neuroscientists as a kind of magic bullet. The fact that we suddenly could get a, 
somewhat, direct look at the living brain certainly deserved some excitement. 
Understandably, attempting to explain all kinds of behavioral, cognitive, or 
emotional traits and functions, ranging from typical to pathological, by relating them 
to their “neural substrates” has become immensely popular among neuroimaging 
researchers in the last two decades. More recently however, the tides have started to 
turn. Inadequate sample sizes, suboptimal statistical testing procedures and 
publication bias have led to a much-discussed replication crisis. One vital remedy 
for this crisis were meant to be increasing sample sizes, either from large-scale, 
multi-center studies or from collaborative efforts to combine and share datasets 
across sites. This dissertation makes it clear that even when a much bigger than 
average participant pool is available, neither macro- nor microstructural brain 
metrics are guaranteed to generate robust explanations of behavioral differences – 
in line with recent work that reached a similar conclusion based on investigating 
cortical thickness data [137]. 

10.1  Summary of findings 
The present work employed two different structural MRI indices, namely VBM and 
T1w/T2w ratio, to investigate associations between brain structure and cognitive 
performance in children. Yet, it did not reveal any robust correlations between these 
indices in specific areas of the brain and cognitive abilities. Rather than clarifying 
how children’s brain structure relates to their behavior, this thesis illustrates the 
problems that are associated with using exploratory studies to study correlations 
between a behavioral phenotype and brain structural indices. Our findings are a 
testament to the methodological difficulties associated with brain-wide association 
studies [137] and the evolving idea within the cognitive neuroscience community of 
what constitutes a large sample size [191]. The early days of neuroimaging research 
were characterized by samples that nowadays can seem suitable for a pilot study at 
best and typical sample sizes have continuously been growing since [192]. However, 
the first two papers included in the present work clearly show that even sample sizes 
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that are far beyond average still do not necessarily provide sufficient of a foundation 
to allow inferences about relationships between brain structure and behavior – at the 
very least when employing a mass-univariate approach in healthy, similarly aged 
children. Ultimately, we cannot be certain where the null results originate from. 
There is a good chance that the brains of children that are cognitively stronger differ 
in some way from those that are weaker. However, what we can state, based on the 
present work, is that neither T1w/T2w ratio nor VBM appear to be adequate tools 
to make these differences visible. While the two brain structure metrics that were 
used in this work did not contribute to a better understanding of children’s cognitive 
abilities, both socioeconomic status and cognitive performance helped explain some 
variance in how well the children did in school. In other words, socioeconomic 
status and cognitive ability have proven more useful and cost-efficient for 
explaining interindividual differences in educational attainment than MRI data. 

The fact that we did not find robust links between brain structure and behavior does 
not imply that all MRI research involving small sample sizes is automatically 
unreliable. But for results from a limited number of participants to be robust, 
targeted questions and carefully designed experiments are essential [137, 193]. Broad, 
exploratory questions cannot be answered based on limited sample sizes and, as this 
thesis demonstrates, even a dataset that is much larger than what is typically 
available does not guarantee robust results. While the human neuroscience 
community as a collective is currently pushing for larger and larger datasets and 
population-based research, some have made a stand against this trend and instead 
advocate for deep imaging, that is, gathering a substantial amount of data from only 
a few individuals [194–197]. Instead of aiming to collect MRI data from as many 
participants as possible, the goal is to follow only a few people and to scan them as 
many times as possible. This approach promises to illustrate details and nuances on 
the level of individual brains, rather than averaging across a larger number of brains 
at the expense of interindividual variability. If participants are followed during a 
longer period, this type of study design has the potential to reveal novel insights 
about how the brain changes over time at a level of detail that is not attainable 
through more conventional neuroimaging study designs that usually gather data for 
a very limited number of timepoints. 

10.2  Large datasets 
Large, multimodal imaging datasets have fueled much research and enabled many 
new perspectives and insights into the brain’s inner workings [139, 198–200]. While 
multisite studies like the ABCD are great in many ways, the price one pays for 
working with a large, longitudinal sample is that the data that is collected is meant 
to cater to a broad range of research aims. Rather than being designed specifically 
for the questions that this work has attempted to answer (or for that matter any study 
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in particular), the MRI sequences and behavioral measures available through the 
ABCD study represent a lowest common denominator, intended to be applicable in 
as many different contexts as possible. At the start, any researcher intending to make 
use of the ABCD sample should ask themselves whether the available data really is 
appropriate to answer the questions they are interested in. Although T1w/T2w ratio 
has become a popular tool to study potential relationships between myelin and a 
range of traits, behaviors, and psychological and clinical variables, the metric has 
received criticism and its ability to represent myelin content has been contested.  

ABCD and other large cohorts measured with neuroimaging are valuable for the 
scientific community and provide many unique opportunities to generate new 
knowledge, but they also carry a high risk that many new insights will be extracted 
from the same pool of participants. Even though the ABCD has taken measures to 
ensure the included children reflect the diversity of the population of the US, some 
selection bias will be unavoidable. For instance, although the acquisition sites are 
spread across the contiguous US (excluding Hawaii and Alaska), they inevitably 
must be located at a university with access to MRI equipment and expertise. 
Accordingly, children living in urban and metropolitan areas will be 
overrepresented compared to those from rural areas, far away from the draw area of 
a sizeable research university. Similarly, the ABCD sample is skewed towards high 
socioeconomic status. Large-scale neuroimaging projects will have to become more 
diverse, representing heterogeneous populations and living conditions, to generate 
truly generalizable knowledge. Nonetheless, at present the community still suffers 
from a persistent bias towards weird societies (western, educated, industrialized, 
rich, democratic) [201], representing only a small fraction of the diversity of human 
behavior and ability – contradictory to the goal of many neuroscientists trying to 
find the neural correlates of interindividual differences. The effect of socioeconomic 
background on educational attainment for example has been shown to vary vastly 
depending on which region of the world is being considered [202]  – the present 
findings need to be viewed with this in mind. Some similar large neuroimaging 
initiatives have gotten under way in other parts of the world, though presently still 
not quite of the same magnitude as the likes of ABCD and HCP [203]. Large-scale 
neuroimaging studies give way to a vast number of publications based on the same 
data – from a statistical point of view, conducting many statistical tests is bound to 
lead to some positive findings. Which of these ultimately will be revealed to be false 
positives, and which will be corroborated as a reflection of true phenomena remains 
to be seen. 

A central downside of working with a large, public dataset is the lack of control over 
many key variables. Consider, for instance, the age of the sample, especially with 
respect to Study II and its focus on language performance. Aged between 9 and 11 
when first entering the study, ABCD participants can be assumed to already have 
achieved the most important milestones of speech and language development. The 
first few years of life, including prenatal development [204],  are the most critical 
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when it comes to language acquisition and the corresponding modifications going 
on at a neurobiological level. Language lateralization, for instance, has been shown 
to be established at around age 5, with limited changes after that [205]. At around 10 
years of age, a lot of neural and behavioral changes have already taken place and in 
many ways these children already start to resemble adults in their brain structure 
and performance patterns [206, 207]. A younger cohort may have been more insightful, 
when it comes to how language abilities are reflected in the brain specifically during 
key developmental periods, but scanning younger children comes with its own 
difficulties and limitations. 

10.3  Analytical approach 

10.3.1 Strengths 
All three papers included in this dissertation are based on large samples. While 
researchers typically do not undertake new projects, hoping for null results, if 
nothing else, the sample sizes of the three studies in this dissertation, make it 
difficult to blame the lack of significant relationships on insufficient data quantities. 
Alternatively, if 1000 children in fact are not enough data to illustrate links between 
their brain structure and their cognitive abilities, because effect sizes are so small, 
then one is left to wonder whether it is useful to look at the brain to explain 
differences in cognition in healthy children in the first place, at the very least with 
the measures that were used in this work. 

As outlined earlier, there is uncertainty when it comes to the robustness of the 
cognitive neuroscience literature, with many published findings not withstanding 
replication attempts. Based on this, we saw a need to directly investigate the 
reliability of the results we obtain using standard methods. Living up to previously 
raised demands [138], Study II includes an independent confirmatory analysis to 
verify the robustness of the initial findings and to put their generalizability to the 
test. In the wake of the recent machine learning boom, cross-validation methods like 
k-fold or leave-one-out have become popular to evaluate the performance of one’s 
model on unseen data. Owing to the amount of data available, rather than dividing 
our sample in a test and a training set, we drew two random samples and treated 
them as entirely separate – using one group of participants to locate regions of 
interest and a second batch to assess the generalizability of the initial results. The 
results from our replicational analysis clearly suggest that analytical choices 
influence the outcome of an analysis and thus corroborate existing doubts about the 
reliability of the cognitive neuroscience literature. 

The brain-behavior analyses in this work were based on two different approaches to 
quantify brain structure in the same sample of children. Using both VBM and 
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T1w/T2w ratio as structural metrics combines a well-established with a more novel 
technique that quantify grey matter in different ways. While VBM can quantify 
regional differences in grey matter volume at a macroscopic level, T1w/T2w ratio 
aims to provide information about underlying microstructure, promising to bring 
cognitive neuroscientists closer to the cellular events underlying behavioral 
phenotypes. Even more so than T1w/T2w ratio, VBM is a standard tool for 
exploratory analyses of neuroimaging data [140]. Some of the advantages of the 
technique are that it can be used to study the entire brain, even though it is typically 
used to look at grey matter. Like T1w/T2w, VBM is semi-quantitative. It enables 
researchers to conduct exploratory, unbiased analyses in an automated way without 
requiring prior assumptions. Nonetheless, both point towards the same general 
conclusion, namely that these brain structural indices are not suitable measures to 
explain individual behavioral differences among children on the spectrum of typical 
development at a population level. 

Even though T1w/T2w ratio was not confirmed as a valid indicator of cortical 
myelin for interindividual comparisons, the null results are still an important finding 
during a time in which this metric has been applied widely to study the underlying 
neural variables of phenotypical or behavioral differences in various populations [58, 

124, 208–210]. The community actively encourages publication of null findings to 
produce a more realistic literature about structural brain-behavior relationships [138]. 
In this spirit, Study I can hopefully contribute to creating much-needed balance in 
the available literature on T1w/T2w ratio and its (lack of) suitability for explaining 
variations in human behavior. 

10.3.2 Limitations 
Quite often there is no direct correspondence between behavior on the one hand and 
brain structure and function on the other [211]. Various structural correlates can 
generate the same type of behavior, a concept known ‘multiple realizability’ [211]. In 
other words, a specific cognitive or mental function can be expressed by different 
underlying patterns of neural activity and brain structural substrates. With this in 
mind, it makes sense that trying to explain variations in something as complex as 
cognitive abilities by mapping them one-to-one to a corresponding brain region is a 
too simplistic approach – a notion that has been gaining increasing traction among 
cognitive neuroscientists [135, 138]. The practice of trying to match a specific cognitive 
skill to localized brain structure subserving it – sometimes referred to as blobology 
– is quickly becoming obsolete. Both imaging studies in this thesis are based on 
mass-univariate analyses, an approach that has been popular in human neuroscience 
for some time, but that has attracted criticism in recent years [135, 137, 193]. Thanks to 
the increasing availability of larger datasets, multivariate pattern analysis and 
machine learning approaches, such as deep learning models [212],  have become a 
viable alternative to more traditional approaches [135]. At the same time, systems or 
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network neuroscience has started to get established as a more realistic and insight 
promising approach [213]. Rather than looking at selected areas in isolation, network 
neuroscience views the brain as complex network characterized by numerous 
connections (edges) between different regions (nodes). Not least thanks to 
continuously increasing computing power, dynamic simulations of neural circuit 
activities based on mathematical modelling have been gaining popularity among 
researchers.  

The phenomena that were studied in this dissertation are complex and multifaceted. 
Neither brain structure, nor cognitive abilities, socioeconomic status or educational 
success are concepts that can be easily summarized, described, or measured – which 
makes studying them systematically a considerable challenge. This is complicated 
further by the countless interdependencies between each of these variables. It is 
therefore not surprising that complex questions cannot be answered 
comprehensively by reducing the problem to only looking at a few selected factors 
and testing handpicked relationships between them. For instance, different aspects 
jointly make up an individual’s socioeconomic status. Thus, even under tighter 
experimental control, unraveling the specific contributions of each of these and 
establishing causality is challenging. Equivalently, it is difficult to determine the 
individual effects of different SES variables on education since they typically co-
vary [214]. In this thesis we used income-to-needs ratio, parent education and 
neighborhood deprivation to account for children’s SES. While this is supposed to 
provide an insight into socioeconomic conditions from varied angles, all three 
variables correlate substantially, which is why it is tricky to make definite 
statements about the explanatory power of each of them when trying to explain 
grades. Similarly, cognition and school grades are not neatly discernible phenomena 
[7]. Brain maturation, cognitive development, and education unfold in parallel and 
with numerous interactions. All three continuously interact, ideally by reinforcing 
one another, or, in less fortunate cases, aggravating each other.  

This thesis reports primarily cross-sectional observations on brain-behavior 
relationships; it did not test effects of any intervention or experimental (or naturally 
occurring) manipulation. Correlational approaches, by nature, suffer from a lack of 
experimental control, which hampers the exclusion of possible alternative 
explanations for the observed outcome [134]. In fact, lack of tight experimental 
control is a major additional parameter distinguishing typical smaller-scale studies 
from their large, multi-site counterparts [215] – other than the obvious difference in 
amount of data that is generated. It is also possible that approaching the questions 
this thesis was aimed at from a more dynamic perspective would have made a 
difference in the extent to which brain structure can be used to explain differences 
in behavioral performance. Rather than comparing static snapshots of a specific 
moment in time during a child’s development, it may have been more informative 
to instead look at how scores changed over time, to see whether a statistical 
association emerges between structural reorganization in the brain and development 
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of performance during a given time frame. Previous research that adopted this type 
of approach found that decreasing cortical volume was correlated with vocabulary 
and math performance in school-aged children, while reading and writing skills 
were not [216]. This research also found associations between vocabulary 
performance and grey matter volume collected at the same timepoint – unlike what 
we saw in Study II – possibly because their sample was somewhat less 
homogeneous in age than ours (9-16 years old as opposed to 9-11).  

The main criticisms of MRI as a research tool are its lack of tissue specificity and 
lack of quantitative reference point for the image intensity, it is therefore difficult to 
say anything conclusive regarding the cellular features and mechanisms that 
underlie the image features we see [217]. Even though many standard structural 
indices based on MRI images appear quantitative on the face of it, some lack a 
measurement unit that would make them comparable across studies and sites. 
Neither VBM nor T1w/T2w ratio provide a pure reflection of any cellular or 
anatomical constituent. Rather, they are conglomerate measures whose values are 
influenced by various factors, from multiple different underlying neurobiological 
components to practical aspects such as experimental set-up, hardware or a 
participant’s head size. In deep grey matter for example, signal intensities can be 
confounded by colocalized iron which affects T2w more than T1w signals [218], and 
while T1w intensities are driven by myelin content, it is not the only factor that 
affects the image intensity [218]. VBM is also not specific with respect to the 
underlying tissue properties the values reflect[140]. Different cellular processes, like 
cell density or myelination, affect relaxation times and will thus affect a voxel’s 
intensity and consequently VBM results [140].  

Various novel MR sequences have been put forward in the last couple of years 
aimed to make MRI data more conclusive when it comes to the underlying tissue 
properties it visualizes. Among these, T1w/T2w ratio has been proposed as a semi-
quantitative metric for myelin [110]. The initial purpose was to use the contrast to 
parcellate the cortex. However, it has now eagerly been applied by many scientists 
who used the technique to study various behavioral phenomena and their relation to 
myelin, even though it was not originally designed for this purpose [58, 124, 209, 219]. 
T1w/T2w maps may be a useful tool for researchers that can provide novel 
information, which could contain biological information, but caution is warranted. 
It is uncertain to what extent T1w/T2w ratio can reflect myelin content across 
individuals, and its interpretation across different studies is complicated and fraught 
with methodological challenges. While the simplicity of computing the T1w/T2w 
ratio is alluring, its main inherent problem is that image intensities are session-
specific and standardizing them reliably is not trivial [37, 218]. While the uncorrected 
T1w/T2w ratio might not live up to these high hopes, it clearly signals an ambition 
to transition from traditional neuroimaging methods towards more biologically 
specific variants. At the same time, there are active attempts to tweak and modify 
the measure to extend its initial realm of application [185].  
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Measuring myelin in-vivo is an area of active research and it remains to be seen 
which or if only one metric is established as the go-to method. As previously 
mentioned, there are a range of potential candidates for quantitative myelin imaging, 
but the major limitation is time [114]. The T1w/T2w ratio does not introduce 
additional scan time since the sequences are already acquired as part of the standard 
protocol. Other myelin specific technique would typically involve at least 10 min 
extra scan time, which is a problem especially in young cohorts who may experience 
a scan session as psychologically more demanding than adults. Furthermore, longer 
scan sessions, and long sequences increases the risk of motion artefacts, which 
already is a concern in pediatric imaging. In conclusion, while T1w/T2w ratio might 
not be the best method for myelin imaging, it remains a viable solution among the 
methods currently available, especially for cortical myelin imaging which requires 
high resolution. It may well be though that trading a portion of the sample size in 
Study I for a myelin technique with higher specificity could have been a worthwhile 
deal. 

Much like the MRI measures mentioned above, psychological measures are indirect 
and imperfect reflections of the underlying systems and functions they are aimed at 
revealing, so any explanatory story based on them will become blurred by noise [138]. 
Inconclusive cognitive neuroscience literature is presumably at least in part the 
result of both its target phenomena and the way we attempt to study them [138]. It is 
widely accepted within the cognitive neuroscience community that to counteract 
this, large datasets are essential to reveal reliable associations between brain 
structural indices and behavior in healthy individuals [138]. This dissertation 
highlights that even a sample of nearly 1000 children is not sufficient to reveal 
robust associations between brain structure and cognition when looking across large 
areas of the brain. Two different structural MRI indices, one morphological and one 
microstructural, failed to provide distinguishing information between levels of 
cognitive ability. Noise is a factor that hampers the reliability of both neuroimaging 
and neuropsychological measurement instruments, thus making it difficult to 
establish clear links between the two. 
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11 Conclusion 

While this thesis might raise more questions than it answers, it highlights important 
methodological issues within behavioral neuroscience, and challenges MRI’s status 
as a panacea, readily available to answer any kind of question about human behavior 
and function one may have. In relation to the aims set out in this thesis we found 
that T1w/T2w ratio is not a suitable metric to link children’s cortical myelin to 
interindividual differences in cognitive abilities. VBM does not robustly explain 
unique variability in children’s language abilities. Rather, associations between grey 
matter volume and language performance vary as a function of statistical choices. 
Large samples do not guarantee robust links between brain structure, as measured 
by VBM and T1w/T2w, and behavior. Only weak evidence was found for cognition 
affecting the relationship between SES and grades. Both SES and cognitive abilities 
uniquely affect grades. This effect was present across timepoints but did not change 
as a function of time. 

11.1  Outlook 
Going forward, ultra-high field MRI promises exciting opportunities for cognitive 
and educational neuroscientists. Thanks to improved signal-to-noise it allows 
imaging myelin at a much more detailed level, for example laminar organization of 
the cortex or myelin patterns along superficial and deep white matter, ideally by 
creating detailed phenotypes of a limited sample to enable sketching short- and long-
term myelination trajectories [83]. The continuous development of more advanced 
sequences, such as quantitative MRI, also holds a lot of promise for better in-vivo 
imaging of myelin in the brain. Combining different imaging techniques, including 
non-MRI-based methods, into a multimodal approach within the same protocol will 
also be essential for understanding the cellular processes that underlie gross 
structural changes and developmental behavioral shifts. A lot of efforts are invested 
into trying to overcome MRI’s lack of specificity. Novel quantitative sequences [220] 
and data-driven, multivariate analytical approaches [211] are promising developments 
for maneuvering the neuroimaging community out of its replication crisis. 

A vital benefit of the ABCD dataset is the fact it not only includes a large sample, 
but that data is collected several times over the course of ten years. Longitudinal 
research is rare in cognitive neuroscience, especially studies that collect data at more 
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than two timepoints. Once data collection is completed in the study, and MRI data 
from 10 years is available, this will offer rare opportunities to model longitudinal 
development in a large cohort across five timepoints. Following up the questions in 
the present work from a longitudinal perspective, looking at the development of 
brain structural indices and behavioral performance over time rather than looking at 
one specific moment in time, could provide new insight, and maybe reveal a larger 
explanatory power of VBM and T1w/T2w than was observed in this thesis. 
Following animal research that uncovered associations between myelin and 
learning, studying children as they grow up and continue to refine their cognitive 
abilities while their school education proceeds, will be a vital puzzle piece to 
corroborate that links between myelin and performance also occur in humans and 
can help confirm our hypothesized positive relationship between myelin and 
educational attainment. At the same time as myelin measures can inform us about 
the micro level processes behind healthy learning, they can also yield important 
information about developmental learning disorders, such as dyslexia or 
dyscalculia. 

A more targeted study looking at myelin, cognition, and educational success in 
conjunction could help answer a lot of outstanding questions. Including a more 
precise estimate of myelin content will be essential to confirm that the lack of 
associations between T1w/T2w ratio and cognitive performance in Study I points 
towards T1w/T2w ratio’s limited ability to represent myelin content rather than to 
a correlation that is indeed absent. Ideally, such a study would include more than 
one metric targeting myelin to not only reveal links between the concurrent 
development of myelin and cognitive abilities during mid-childhood, but 
simultaneously offer an important empirical foundation to better understand how 
different indices that claim to estimate myelin relate to each other. This could be 
combined with finer grained and objective measures of educational success, such as 
data directly from schools divided by subject areas, as well as data on a national 
level from placement exams. 

The quest remains to understand how complex processes like learning and education 
are reflected in the brain. We have taken important steps toward this goal by 
showing that experimental approaches that have been prevalent in the community 
for a while are unlikely to provide useful, novel insights – not even when a large 
pool of participants is available. 
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