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Abstract 
We live in an era that suffers from climate change issues, not least disaster risks 
induced by climate change. While measures, such as proper evacuation plans, are 
required to reduce the negative impacts of disasters when they hit, actions should 
also be taken to reduce climate change effects by e.g. increasing the use of 
renewable energies or proper urban land-use allocation, where climate change 
factors are considered among other criteria. Planning and decision-making on these 
issues are usually complex and complicated, since several criteria, usually 
conflicting with each other, should be taken into consideration. 

Multi-objective optimization (MOO) has proven to be a proper technique for solving 
multi-criteria decision analysis problems, where criteria are conflicting. 
Metaheuristic algorithms, inspired from nature, has been developing and showing a 
proper performance for solving complex MOO problems. Meanwhile, these 
algorithms yet need to be modified and adjusted to perform well, for each specific 
case study project. This research aims to improve metaheuristic algorithms to make 
them suitable for solving some spatial problems related to disaster risk management. 

The research started by making a comparative study between well-known multi-
objective optimization algorithms in order to not only learn about MOO, but also 
get an insight about the performance of algorithms and how they could be enhanced 
(Paper 1). Then the study continued by proposing a modified multi-objective cuckoo 
search algorithm for evacuation planning (Paper 2). The third study was in the 
context of the impact of urban land-uses on climate change, and hence modified and 
applied the Non-dominant Sorting Genetic Algorithm – III (NSGA-III) for urban 
land-use planning in Mozambique (Paper 3). The last study was about modifying 
NGSA-II for solar farm site selection in Mozambique (Paper 4). 

The results of the above studies demonstrated the high potential of metaheuristic 
algorithms and multi-objective optimization to solve complex spatial problems that 
in turn can facilitate planning and decision-making to prevent or respond climate 
change induced disaster risks. The performances of the modified and original 
algorithms were compared. The evaluation showed improved performance for each 
of the selected case studies. 
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1 Introduction 

In recent years, the world has been facing an increase in climate change induced 
natural disasters, such as extreme heat waves, hurricanes, cyclones, floods, mega-
fires, disease outbreaks, and drought that are influencing the whole world, not least 
Mozambique. In this context, there is a need to minimize the impact of the disaster 
risks on the environment and societies, by proper disaster risk management 
measures. Disaster risk management is a function of different variables, which are 
usually conflicting. This makes planning for disaster risk management a multi-
criteria decision analysis (MCDA) problem. There are different techniques to solve 
MCDA problems, among them multi-objective optimization (MOO) that could be 
based on metaheuristic algorithms. 

A heuristic technique is a problem-solving strategy that uses a practical approach to 
find solutions quickly and efficiently, even if they are not guaranteed to be optimal 
or perfect. Heuristics are often used when faced with complex or uncertain situations 
where it may be very difficult or sometimes impossible to find an exact solution. A 
metaheuristic technique is a higher-level problem-solving strategy or algorithmic 
framework used to find approximate solutions to difficult optimization and search 
problems [1]. Metaheuristics are designed to work with a wide variety of problem 
types and are especially useful when traditional optimization techniques, such as 
exact algorithms, become impractical due to the complexity or size of the problem. 

Mozambique is a risk-prone country. It is ranked third among African countries 
exposed to risks from multiple weather-related hazards such as flooding, epidemics, 
cyclones and droughts [2]. Examples of such sever disasters can be listed as follows. 
Mozambique experienced flooding in many parts of the country in February and 
March 2000, causing the death of about 800 people, the loss of 20 000 cattle, and 
the inundation of 1400 km2 of arable land. There was another flood in December 
2006, when the water overflowed the Cahora Bassa Dam leading to the deaths of 29 
people and displacement of 121 000 more [3]. The tropical cyclone Eloise hit 
Mozambique on January 23, 2021, bringing devastating winds and extreme rainfall 
to Beira and neighboring districts. The cyclone caused severe flooding that claimed 
ten lives and caused massive damage. The norm of Emergency appeal has been 
revised to include the impact of the tropical storm Ana, which made landfall on 
January 24, 2022 and destroyed thousands of homes, as well as dozens of schools 
and hospitals. An estimated 125 000 people were affected, with many people already 
highly vulnerable from Eloise and other disasters in recent years [4]. There is a 
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consensus among experts that climate change has a meaningful contribution in 
increased frequency and severity of these natural disasters. 

Considering above, there is an urgent need to minimize the impact of natural disaster 
risks and make risk areas resilient to natural disaster risks. Examples of actions to 
be taken to achieve the aim are: 

- In order to cope with climate change, among other actions, the use of renewable 
energies should be increased. Site selection for construction of renewable energy 
sites, e.g. solar farms, is a spatial problem to be solved in this respect.  

- Vulnerability to natural disasters is associated with weak urban planning, which 
do not consider the effect of climate change. So, there is an immediate need to 
improve urban planning, in Mozambique, to reduce the effect of disaster risks and 
mitigate them in the long run.  

- While the risks associated to climate change and urban structure is in place, proper 
disaster plans, among them evacuation plans, should be at hand to be able to keep 
people safe, when disasters hit. 

These construct the three main case studies for this PhD thesis. 

A variety of factors should be considered for evacuation planning, urban planning, 
and renewable energy site selection. These factors are usually conflicting with each 
other that makes it challenging and complicated to achieve a proper solution where 
all factors are optimized to their best. This calls for using MCDA to solve the 
problems, where there is trade-off between influencing factors in the final possible 
solutions. This thesis focuses on using multi-objective optimization (MOO) 
techniques for problem solving. However, these techniques need to be improved 
and adapted to fit the specific problems at hand that constructs the research aim and 
objectives of the thesis. 

1.1 Research Aim and objectives 
This research aims to improve multi-objective optimization (MOO) techniques to 
make them suitable for solving spatial problems. Evacuation planning, land-use 
planning, and site selection for renewable energies are three case studies of the 
research to achieve the aim. 

The specific objectives of the research are: 

• To review well-known MOO algorithms and their performances for 
evacuation planning. 

• To improve and adopt a multi-objective cuckoo search algorithm for 
evacuation planning. The focus is on developing a multi-objective 
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optimization model designed to efficiently allocate victims to safe areas, 
and to guide them to emergency shelters through safe evacuation routes. 

• To enhance and adopt the NSGA-III algorithm for Land Use Allocation 
(LUA) in urban areas, as part of sustainability and resilience urban 
planning. 

• To improve and adopt the NSGA-II algorithm to solve solar farm site 
selection, as a contribution to the global shift towards sustainable energy 
practices. 

1.2 Research Questions 
The thesis helps us to get a better insight about the below questions: 

• How are the performances of different MOO algorithms for a spatial 
problem? 

• How can MOO algorithms be improved to perform better when solving 
spatial problems? 

• How can MOO be useful to solve complex spatial problems? 

1.3 Structure of the Thesis 
After this introductory chapter, where the scope aim, and objectives of the thesis 
have been described, Chapter 2 delves into reviewing theories and applications of 
multi-objective optimization. In this chapter different techniques, ranging from 
classical to metaheuristic approaches have been reviewed. Similar studies related to 
the applications of MOO in evacuation planning, land use allocation, and site 
selection for renewable energy have been reviewed. In Chapter 3, the methodology 
employed for the implementation of the case studies (the four papers) have been 
described. Chapter 4 unveils the findings derived from each case study, providing 
an in-depth analysis of the results obtained. The thesis concludes with Chapter 5, 
where the comprehensive conclusions are presented. These conclusions are 
categorized into practical contributions, methodological advancements, and 
conceptual contributions. Finally, the chapter concludes by outlining potential 
avenues for future research. 
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2 Theories and Applications of MOO 

Spatial analysis is a set of techniques used to analyze, interpret, and understand 
patterns and relationships in geographic data. It involves examining the spatial 
distribution of features, exploring spatial relationships, and deriving meaningful 
insights from geographic information. Spatial analysis is widely applied in various 
fields, including geography, environmental science, urban planning, epidemiology, 
and business intelligence. Spatial analysis plays a critical role in understanding 
complex spatial relationships, making informed decisions, and addressing spatial 
challenges in diverse fields. It continues to evolve with advancements in technology 
and data, contributing to improved spatial modeling, visualization, and problem-
solving. Geographic Information System (GIS) is a foundational technology for 
spatial analysis, providing tools to capture, store, manipulate, analyze, and visualize 
spatial data. GIS is used for mapping, spatial querying, overlay analysis, and 
modeling to solve spatial problems. 

2.1 Spatial Multi-criteria Decision Analysis (Spatial 
MCDA) 

Spatial MCDA is an integration of GIS and decision-making techniques, where 
different variables influence the decision. Traditionally, multi-attribute optimization 
has been widely used for Spatial MCDA. Multi-attribute optimization is an 
approach used to address problems with multiple attributes or criteria, where these 
criteria may not necessarily conflict with each other. In multi-attribute optimization, 
the goal is to find solutions that are optimal with respect to the various attributes or 
criteria considered. This could involve techniques such as weighted sum methods, 
goal programming, or other aggregation approaches to identify a single optimal 
solution that balances the different criteria. However, in real world problems, 
variables are usually conflicting, which turned the attention of researchers on using 
multi-objective optimization (MOO) for Spatial MCDA. MOO focuses on 
optimizing solutions when there are multiple conflicting objectives that need 
simultaneous consideration. The aim of MOO is to find a set of solutions that 
represent the trade-offs between these objectives, known as the Pareto-optimal 
front. MOO algorithms seek to identify the best compromise solutions that offer the 
most favorable trade-offs across the multiple objectives. 
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The integration of spatial analysis and multi-objective optimization can be seen in 
applications such as: 

• Urban Planning, optimizing land use while considering factors like 
environmental impact, accessibility, and social equity; 

• Environmental Management, identifying optimal locations for conservation 
areas considering ecological diversity and human impact; 

• Transportation Planning, finding optimal routes that minimize travel time, 
cost, and environmental impact. 

The integration involves considering spatial constraints and relationships within the 
optimization process, ensuring that the resulting solutions make sense in the spatial 
context. While spatial analysis focuses on understanding and interpreting spatial 
data, multi-objective optimization deals with finding optimal solutions when facing 
conflicting objectives. Their integration is crucial in addressing complex real-world 
problems that involve both spatial considerations and multiple conflicting goals. A 
research trend, in this line, is to modify and improve MOO algorithms to make them 
suitable for spatial problems in hand. 

The MOO techniques are classified into classical and heuristic methods. The 
classical techniques comprise linear programming, integer programming, Branch 
and Bound, Dynamic programming, and Network flow programming, while the 
heuristic techniques include Evolutionary algorithms, Swarm intelligence 
algorithms, and Neighborhood based algorithms (see Figure 1). 

 

Figure 1: Flowchart of different Multi-objective optimization algorithms 
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Figure 1 provides a categorical sample of multi-objective optimization algorithms. 
The first category comprises heuristic techniques and classical techniques. The 
classical methods include Linear programming (LP), Integer programming (IP), 
Branch and Bound (BB), Dynamic Programming (DP), and Network Flow 
Programming (NFP). Heuristic methods include Swarm algorithms, Genetic 
algorithms, and Neighborhood based algorithms. Swarm algorithms are nature-
inspired algorithms developed based on the interaction between living organisms 
such as flocks of birds, ants, and fish. This class of algorithms comprises Particle 
Swarm Optimization (PSO), and Artificial Bee Colony (ABC) algorithms, which 
are of the most popular algorithms in this category. Other recently proposed 
algorithms in this family are Cuckoo Search Algorithm (CS), Bat Algorithm (BA), 
Ant Colony Optimization (ACO), Elephant Optimization Algorithm (EOA), 
Artificial Immune Systems (AIS), and Grasshopper Optimization Algorithm 
(GOA). Genetic algorithms are search heuristics inspired by Charles Darwin’s 
theory of natural evolution. These algorithms reflect the process of natural selection 
where the fittest individuals are selected for reproduction in order to produce the 
offspring of the next generation. Genetics algorithms comprise Non-dominated 
sorting genetic algorithm I (NSGA-I), NSGA-II, and NSGA-III. The Neighborhood 
based technique is a heuristic method for solving a set of combinatorial optimization 
and global optimization problems. Neighborhood based technique includes Tabu 
Search (TS), Scatter Search (SS), and Simulated Annealing (SA). 

2.2 Classical Techniques 
This section deals with classical techniques, comprising linear programming, which 
is an optimization method with both objective function and constraints modelled as 
a series of linear expressions with non-negative decision variables, integer 
programming (IP) is a mathematical optimization technique used to solve problems 
where decision variables are required to take integer values. It is a type of 
mathematical programming where the objective is to optimize a linear or nonlinear 
function subject to a set of constraints, while also imposing the additional 
requirement that some or all of the decision variables must be integers. Another 
classical technique is branch and bound, which consists of searching an optimal 
solution over a finite set of alternatives. Dynamic programming method is another 
classical technique, which solves certain types of sequential optimization problems 
by breaking them down into simpler problems. The Network Flow Programming 
method deals with the solution of problems modeled in terms of the flow of a 
commodity through a network. 
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2.2.1 Linear Programming 
A linear programming (LP) problem is an optimization problem in which both the 
objective function and the constraints on the solution can be expressed as a series of 
linear expressions in the decision non-negative variables [5]. In an LP problem, the 
solution methods fall into two categories. One of the categories are the Simplex 
methods, which search the extreme points of the feasible region of the problem until 
the optimality conditions are satisfied. Any LP problem (primal) has its dual form 
[6]. The important point about an LP model is that the feasible region is a convex 
space and the objective function is a convex function. So, the optimal solution can 
be found at an extreme point of the feasible region. The Simplex procedures are 
good in finding the optimal solution, but they have poor worst-case time 
performance. 

2.2.2 Integer Programming 
An integer programming (IP) problem is a mathematical optimization or feasibility 
model in which some or all variables are restricted to be integers. The term IP refers 
to integer linear programming (ILP), in which the objective function and the 
constraints are linear [7]. Many important real-world problems can be formulated 
as integer programming problems such as production planning, scheduling, 
territorial partitioning, telecommunications networks, and cellular networks. The 
subject is so important that several monographs are devoted entirely to it [8]. 
Williams [9] concluded that IP models are generally much more difficult to solve 
than LP models. 

2.2.3 Branch and Bound 
The branch and bound (BB) method consists of finding an optimal solution over a 
finite set of alternatives. An obvious approach is to enumerate all the alternatives, 
based on a rooted tree, and then select the best [10]. The BB method uses the depth-
first search and breadth-first search strategies to search the optimal solution in the 
tree in an ordered fashion. The depth-first search moves straight down a sequence 
of branches until it reaches a terminal node before backtracking up to the nearest 
junction. In contrast, breadth-first search enumerates all the branches at one level 
before moving on to the next level. Depth-first search finds a feasible solution early 
and it does not have the vast storage requirements of breadth-first search. In many 
implementations of the BB algorithm, the optimal solution is quickly found and it 
then spend most of the search time in proving that this is in fact the optimal solution. 
Thus, if there is insufficient time to complete the search, the best solution to date 
can be taken as a heuristic solution to the problem [11]. 
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2.2.4 Dynamic Programming 
The dynamic programming (DP) is a procedure that solves certain types of 
sequential optimization problems by breaking them down into simpler problems 
[12]. It solves the problem in stages, dealing with all options at a particular stage 
before moving on to the next. In this sense it can often be represented as a breadth-
first search [13, 14]. Sniedovich [15] stated that the design of a DP algorithm for a 
particular problem involves three tasks; the definition of the stages and states, the 
derivation of a simple formula for the cost/value of the starting stage/state(s) and 
the derivation of a recursive relationship for all states at stage k in terms of previous 
stages and states. One of the main disadvantages of a DP approach is that the number 
of sub-problems that needs to be solved is dependent not only on the stages but also 
on the states. While the number of stages is usually related to the size of the problem 
in the traditional sense, the number of states is frequently related to the size of the 
constants in the problem. What is extremely important is the fact that these 
techniques in many cases do not require as much advanced mathematical training 
as the other classical methods such as IP or BB do [16]. 

2.2.5 Network Flow Programming 
Network flow programming (NFP) deals with the solution of problems that can be 
modeled in terms of the flow of a commodity through a network. The NFP solves a 
wide range of areas such as the flow of current in electrical networks, the flow of 
fluids in pipeline networks, information flow in communications networks, traffic 
flow in road or rail networks, and problems such as shortest path, spanning tree, 
matching and location problems, as well as, scheduling and allocation problems to 
the analysis of medical x-rays [17]. The NFP algorithms for the maximum flow and 
minimum cost flow problems are relatively simple. The out-of-kilter algorithm also 
has the advantage that it is easy to find an initial solution as the upper and lower 
bounds do not need to be satisfied. However, these are not necessarily the most 
efficient algorithms in each case. The Ford–Fulkerson algorithm [18]is only 
bounded by the capacity on the arcs. There are also inherent inefficiencies in the 
algorithms, e.g. that subsequent iterations may need to recalculate labels already 
calculated in previous iterations. The network simplex algorithm, featured in the 
comprehensive study on network analysis, stands out as a notably more efficient 
approach [19]. 
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2.3 Heuristic Algorithms 
Heuristic algorithms comprise population based, neighborhood based, and other 
algorithms. The population-based algorithms include evolutionary algorithms and 
swarm intelligence algorithms. Evolutionary Algorithms are efficient heuristic 
search methods based on Darwinian evolution with powerful characteristics of 
robustness and flexibility to capture global solutions of complex optimization 
problems. The Swarm Intelligence algorithms are inspired from simple behaviors 
and self-organizing interaction among agents, such as ant colonies foraging, bird 
flocking, animal herding, bacterial growth, honey bees, fish schooling, and so on. 
An evolutionary algorithm (EA) is a subset of evolutionary computation, a generic 
population-based metaheuristic optimization algorithm. An EA uses mechanisms 
inspired by biological evolution, such as reproduction, mutation, recombination, and 
selection. Candidate solutions to the optimization problem play the role of 
individuals in a population, and the fitness function determines the quality of the 
solutions (see also loss function). Evolution of the population then takes place after 
the repeated application of the above operators. Below, are described EAs, which 
include Genetic algorithms, Genetic programming, Evolutionary Programming, 
Differential Evolution, and Evolutionary Strategy. 

2.3.1 Evolutionary Algorithms 
Evolutionary algorithms (EAs) are computational techniques inspired by the 
principles of biological evolution, such as natural selection and genetic inheritance. 
These algorithms are used to solve optimization and search problems by mimicking 
the process of natural selection to evolve solutions over successive generations. 
Evolutionary algorithms are versatile and have been applied to a wide range of 
optimization problems in various fields, including engineering, economics, 
bioinformatics, and machine learning. Common variants of EAs include genetic 
algorithms (GA), evolutionary strategies (ES), and differential evolution (DE), each 
with its own characteristics and applications. 

2.3.1.1 Genetic Algorithms (GAs) 
Genetic Algorithms (GAs) were invented by John Holland who developed this idea 
in his book “Adaptation in natural and artificial systems” in the year of 1975. A 
Genetic algorithm (GA) is a metaheuristic technique inspired by the process of 
natural selection that belongs to the larger class of evolutionary algorithms [20]. A 
few applications of GA are as follows: Nonlinear dynamical systems–predicting, 
data analysis, robot trajectory planning, finding shape of protein molecules, TSP 
and sequence scheduling. In addition, functions for creating images, control–gas 
pipeline, pole balancing, missile evasion pursuit, design–semiconductor layout, 
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aircraft design, keyboard configuration, communication networks, scheduling–
manufacturing, facility scheduling, resource allocation, and machine learning–
designing neural networks.. The advantages of genetic algorithms include; solution 
space is wider, easy to discover global optimum, only uses function evaluations, 
easily modified for different problems, very robust to difficulties in the evaluation 
of the objective function, and they are resistant to becoming trapped in local optima. 
The limitations of genetic algorithms include the problem of identifying fitness 
function, the problem of choosing the various parameters like the size of the 
population, mutation rate, cross over rate, the selection method and its strength, no 
effective terminator, and having trouble finding the exact global optimum. 

Multi-objective genetic algorithms comprise non-dominated sorting genetic 
algorithm I, II, and III. The non-dominated sorting genetic algorithm (NSGA) 
proposed in [21] was one of the first such evolutionary algorithms. Over the years, 
the main criticisms of the NSGA approach have been as follows: high computational 
complexity of non-dominated sorting 𝑂𝑂((𝑀𝑀𝑀𝑀)3), lack of elitism, and need for 
specifying the sharing parameter [22]. Non-dominated Sorting Genetic Algorithm 
II alleviates all of the above three difficulties. Specifically, a fast non-dominated 
sorting approach with 𝑂𝑂((𝑀𝑀𝑀𝑀)2) computational complexity is present, and also, a 
selection operator is present that creates a mating pool by combining the parent and 
offspring populations and selecting the best N solutions (with respect to fitness and 
spread). NSGA-II is an evolutionary multi-objective optimization algorithm that has 
been applied to a wide variety of search and optimization problems since its 
publication in 2000 [23]. NSGA-III, developed by Deb and Jain [24], is similar to 
the original NSGA-II algorithm with significant changes in its selection operator. 
But, unlike in NSGA-II, the maintenance of diversity among population members 
in NSGA-III is aided by supplying and adaptively updating a number of well-spread 
reference points. NSGA-III uses a predefined set of reference points to ensure 
diversity in obtained solutions. A key aspect of NSGA-III is that it does not require 
any additional parameters. 

2.3.1.2 Differential evolution (DE) 
Differential evolution (DE), introduced by Storn and Price in the 1990s [25], is a 
method that optimizes a problem by iteratively trying to improve a candidate 
solution with regard to a given measure of quality [25]. Such methods are commonly 
known as metaheuristics as they make few or no assumptions about the problem 
being optimized and can search very large spaces of candidate solutions. DE 
optimizes a problem by maintaining a population of candidate solutions and creating 
new candidate solutions by combining existing ones according to its simple 
formulae, and then keeping whichever candidate solution that has the best score or 
fitness of the optimization problem at hand. In this way, the optimization problem 
is treated as a black box that merely provides a measure of quality given a candidate 
solution, and the gradient is therefore not needed. Strengths of DE are e.g.: (1) 
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Ability to handle non-differentiable, nonlinear and multimodal cost functions, (2) 
Parallelizability to cope with computation intensive cost functions, and (3) Ease of 
use, i.e. few control variables to steer the minimization. These variables should also 
be robust and easy to choose. A forth strength is (4) Good convergence properties, 
i.e. consistent convergence to the global minimum in consecutive independent trials. 

2.3.1.3 Evolutionary Strategy (ES) 
Evolutionary Strategy (ES) is a sub-class of nature-inspired direct search (and 
optimization) methods belonging to the class of Evolutionary Algorithms (EAs) 
which use mutation, recombination, and selection applied to a population of 
individuals containing candidate solutions in order to evolve iteratively better and 
better solutions [26, 27]. The Evolution Strategies (ES) algorithm boasts several 
strengths [28, 29] that contribute to its appeal and effectiveness in optimization 
tasks. Firstly, its implementation is remarkably straightforward and fast, as it does 
not require back-propagation. This simplicity facilitates quick deployment and 
execution. Secondly, ES does not rely on a differentiable policy, allowing for the 
use of various function approximations, including binary ones, without the need for 
complex gradient calculations. Thirdly, ES does not necessitate storing all episodes 
for future updates, eliminating the need for massive memory resources such as those 
required for experience replay. Fourthly, only one network for the policy needs to 
be defined, omitting the requirement for a value function. Fifthly, ES demonstrates 
superior exploration behavior compared to other policy search techniques, as it can 
generate more random behavior by directly tweaking the weights. Sixthly, its 
simplicity and minimal internal data exchange enable scalability, facilitating easy 
parallelization and execution across a large number of CPUs. Lastly, ES is invariant 
to the sampling time of observations, meaning it remains effective regardless of how 
often actions are performed or rewards calculated. These strengths collectively 
contribute to ES's versatility, efficiency, and suitability for a wide range of 
optimization tasks. 

2.3.2 Swarm Intelligence 
Swarm intelligence is a relatively new approach to problem solving that takes 
inspiration from the social behaviors of insects and other animals. Swarm 
intelligence comprises Ant Colony Optimization, Artificial Immune Systems 
Particle Swarm Optimization, Cuckoo Search, The Elephant Optimization, Bat 
Optimization, Grasshopper Optimization, and Honey Bee Optimization. 

2.3.2.1 Ant colony optimization (ACO) 
Ant colony optimization (ACO) is a population-based metaheuristic technique that 
can be used to find approximate solutions to difficult optimization problems [30, 
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31]. The ACO, inspired from the foraging behavior of ant species, is a swarm 
intelligence algorithm for solving hard combinatorial optimization problems. Marco 
Dorigo proposed ABO in 1992 in his PhD thesis [32], and it was initially used on 
the well-known Traveling Salesman Problem. The basic idea of the ACO is 
imitating the behavior of real ants searching for food. It was found that real ants are 
able to communicate information concerning food sources via an aromatic essence 
called pheromone. While they move along, real ants lay down pheromone in a 
quantity that depends on the quality of the food source discovered. Other ants, 
observing the pheromone trail, are attracted to follow it. Thus, the path will be 
enhanced and will therefore attract more ants. ACO algorithms have several 
strengths, such as parallel processing and adaptability, but they also face challenges 
related to convergence speed and parameter sensitivity. Opportunities lie in 
hybridization and exploring new application areas, while threats include 
competition from other metaheuristics and the complexity of implementation. 

2.3.2.2 Artificial immune systems 
Artificial immune systems (AIS) are adaptive systems, inspired by theoretical 
immunology and observed immune functions, principles and models, which are 
applied to problem solving [33]. AIS emerged in the mid-1980s with articles 
authored by Farmer [34]. The human immune system can be used as inspiration 
when developing algorithms to solve difficult computational problems. Artificial 
immune systems offer several advantages that enhance the reliability and 
effectiveness of the system for detecting and responding to threats. Firstly, the 
presence of a large number of detectors contributes to the permanency and reliability 
of the system by providing extensive coverage and detection capabilities. This 
ensures that malicious activities are more likely to be identified, enhancing overall 
security. Secondly, the absence of a single point of rejection strengthens the system's 
resilience against attacks, reducing the risk of system compromise. Thirdly, the 
distributed nature of the computing environment, with an increasing number of 
nodes, further bolsters security by distributing the workload and reducing 
vulnerability to targeted attacks. Additionally, storing all collisions of detectors with 
malicious objects in memory enables the training of detectors, facilitating 
continuous improvement and adaptation to evolving threats. However, AIS also 
present certain disadvantages that need to be addressed. Firstly, there is a risk of 
autoimmune reactions, where the system may mistakenly identify benign activities 
as malicious, potentially leading to unnecessary interventions or disruptions. 
Secondly, in a distributed computing environment with a small number of nodes, 
immunodeficiency becomes a concern, as the system may lack the necessary 
resources and redundancy to effectively detect and respond to threats. These 
drawbacks underscore the importance of carefully managing the system's behavior 
and resources to mitigate potential risks and optimize performance [35]. The 
biological immune system is a robust, complex, adaptive system that defends the 
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body from foreign pathogens. It is able to categorize all cells (or molecules) within 
the body as self or non-self-substances [36]. It does this with the help of a distributed 
task force that has the intelligence to take action from a local and also a global 
perspective using its network of chemical messengers for communication. Artificial 
Immune Systems exhibit strengths in adaptability, robustness, and parallel 
processing. However, challenges include complexity, limited theoretical 
understanding, and sensitivity to parameters. Opportunities lie in hybridization and 
biomedical applications, while threats include competition from other algorithms 
and limited adoption due to complexity and ethical concerns. 

2.3.2.3 Particle swarm optimization  
Particle swarm optimization (PSO) is a population-based stochastic evolutionary 
computation technique algorithm for optimization, which is based on social–
psychological principles, developed by Kennedy and Eberhart [1, 2] in 1995. PSO 
offers numerous advantages that make it a popular choice for optimization tasks. 
Firstly, its simple implementation and intuitive concept make it accessible to both 
beginners and experts. Secondly, as a gradient-free algorithm, PSO does not require 
gradient information, making it suitable for problems where gradients are 
challenging or expensive to compute. Thirdly, PSO possesses global search 
capability, allowing it to explore the solution space effectively by exchanging 
information among particles. Fourthly, its versatility enables application to various 
optimization problems, including continuous, discrete, and combinatorial domains. 
Additionally, PSO is inherently parallelizable, leading to faster convergence in 
certain cases, and it requires only a few parameters, simplifying parameter tuning. 

However, PSO also presents several disadvantages. Firstly, it may converge to local 
optima instead of the global optimum, particularly in complex and multimodal 
problems. Secondly, its performance can be sensitive to parameter choices, posing 
challenges for optimal parameter selection. Thirdly, PSO lacks memory of past 
solutions, limiting its adaptability to dynamic environments. Fourthly, the algorithm 
lacks a solid theoretical foundation, making it difficult to analyze convergence 
properties rigorously. Fifthly, handling constraints in PSO can be challenging and 
may require additional mechanisms. Lastly, for large-scale problems, the 
computational cost of evaluating fitness functions for each particle can become 
prohibitive, impacting algorithm efficiency. While PSO offers several advantages, 
it also has limitations that need to be considered when selecting it for optimization 
tasks. The choice of optimization algorithm should be based on the specific 
characteristics of the problem at hand, weighing the advantages and disadvantages 
of each algorithm accordingly. 
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2.3.2.4 The Bees algorithm 
The Bees algorithm, developed by Pham et al.[39] in 2005, is a population-based 
search algorithm which mimics the foraging strategy of honey bees to look for the 
best solution to an optimization problem. Each candidate solution is thought of as a 
food source (flower), and a population (colony) of n agents (bees) is used to search 
the solution space. Each time an artificial bee visits a flower (lands on a solution), 
it evaluates its profitability (fitness). 

The Bee Algorithm presents several advantages stemming from its nature-inspired 
approach and design. Firstly, it draws inspiration from the foraging behavior of 
honeybees, replicating their communication and decision-making processes to 
inform effective optimization strategies. Secondly, the algorithm is adept at global 
optimization, efficiently exploring solution spaces to uncover global optima. 
Thirdly, its adaptability allows it to tackle a wide range of optimization problems, 
spanning both continuous and discrete domains, and accommodating various types 
of constraints. Fourthly, similar to other swarm intelligence algorithms, the Bee 
Algorithm can be parallelized, enabling distributed computing and potentially 
accelerating convergence. Lastly, its gradient-free nature renders it suitable for 
optimization tasks where gradients are challenging to compute, akin to Particle 
Swarm Optimization (PSO). 

However, the Bee Algorithm also has its drawbacks. Firstly, it exhibits sensitivity 
to parameter choices, which can impact performance, necessitating careful 
parameter tuning. Secondly, its implementation and understanding can be complex 
due to the intricacies of honeybee communication and decision-making processes. 
Thirdly, like PSO, it may lack a solid theoretical foundation, hindering rigorous 
analysis of convergence properties and behavior. Fourthly, the algorithm may lack 
explicit memory mechanisms, affecting its adaptability to dynamic environments. 
Fifthly, its performance can be dependent on the initial population of solutions, with 
poor initialization potentially leading to suboptimal results. Lastly, scalability may 
pose a challenge for large-scale optimization problems due to computational costs. 
While the Bee Algorithm offers advantages such as global search capability and 
adaptability, its sensitivity to parameters and potential complexity in 
implementation are significant considerations. The suitability of the Bee Algorithm, 
like any optimization algorithm, depends on the specific characteristics of the 
problem being addressed. 

2.3.2.5 Elephant herding optimization 
Elephant herding optimization (EHO), proposed by Wang et al. in 2015, is a nature-
inspired metaheuristic optimization algorithm based on the herding behavior of 
elephants [40]. EHO uses a clan operator to update the distance of the elephants in 
each clan with respect to the position of a matriarch elephant. The design of the 
elephant search algorithm is inspired by the habitual features of elephant herds, 
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hence the name Elephant Search Algorithm, which separates the search agents into 
two gender groups representing the dual (local and global) search patterns. The 
Elephant Search Algorithm is distinguished by three key properties essential for an 
effective metaheuristic search algorithm. Firstly, it emphasizes the iterative 
refinement of solutions not only through regular update cycles but also through 
major reforms represented by the lifetimes of searching elephants. This dynamic 
approach allows for both incremental improvements and significant adjustments to 
the search process, enhancing the algorithm's adaptability and exploration 
capabilities. Secondly, the algorithm prioritizes intensive local searches guided by 
chief female elephants, recognizing that these efforts are more likely to yield 
optimal results due to their focused and informed direction. This targeted approach 
enables efficient exploitation of promising regions in the search space, maximizing 
the likelihood of finding high-quality solutions. Thirdly, male elephants serve as 
rangers, exploring distant areas of the search space to prevent the algorithm from 
getting trapped in local optima. By venturing into uncharted territory, these 
elephants facilitate exploration and diversification, guiding the entire elephant clan 
towards global optima. Together, these unique properties equip the Elephant Search 
Algorithm with the versatility, efficiency, and robustness necessary for effective 
optimization in diverse problem domains. 

2.3.2.6 The Bat algorithm 
The Bat algorithm, proposed and developed by Yang [41] in 2010, is a swarm-based 
metaheuristic algorithm for global optimization. It was inspired by the echolocation 
behavior of micro bats, with varying pulse rates of emission and loudness. All bats 
use echolocation to sense distance, and they also “know” the difference between 
food/prey and background barriers in some magical way. Bats fly randomly with 
certain velocity at given positions with a fixed frequency, varying wavelength and 
loudness to search for prey. They can automatically adjust the wavelength (or 
frequency) of their emitted pulses and adjust the rate of pulse emission r in the range 
of [0, 1], depending on the proximity of their target. Although the loudness can vary 
in many ways, we assume that the loudness varies from a large (positive) to a 
minimum constant value. The Bat algorithm is praised for its strengths, including 
its ability to amalgamate features from various existing methods, its simplicity in 
both concept and structure, its effective exploitation capabilities, its maintenance of 
solution diversity within the population, and its rapid convergence facilitated by 
automatically focusing on promising solution areas. Additionally, it employs 
parameter control for iterative updates and serves as both a global and local 
optimizer. However, the algorithm also exhibits weaknesses, such as limited 
exploration capabilities, reliance on parameter tuning for optimal performance, the 
necessity for a refined strategy to balance exploration and exploitation, and the need 
for enhanced techniques to accelerate convergence for improved performance. 
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2.3.2.7 The Grasshopper optimization algorithm 
The Grasshopper optimization algorithm (GOA), proposed by Saremi et al. [42] and 
developed by Mirjalili et al. [43], simulates locust swarm behavior in the wild. In 
GOA, the position of the locusts in the swarm represents a possible solution to a 
given optimization problem. Grasshoppers are insects well-known as a dangerous 
pest that affects and damages crop production and agriculture. Their life cycle 
includes two phases called nymph and adulthood. The nymph phase is characterized 
by small steps and slow movements, while the adulthood phase is characterized by 
long-range and abrupt movements. The movements of nymph and adulthood 
constitute the intensification and diversification phases of GOA. 

In terms of advantages, GOA boasts simplicity in its design and implementation, 
rendering it accessible to a broad spectrum of users. Its flexibility allows it to tackle 
various optimization problems, spanning from continuous to discrete and mixed-
integer domains. GOA has demonstrated efficiency in terms of convergence speed 
and solution quality for certain problem types. Additionally, the algorithm requires 
fewer parameters to be tuned, streamlining the optimization process. Moreover, its 
capability for global exploration of the search space enhances the likelihood of 
discovering optimal solutions. 

However, despite its merits, GOA has notable drawbacks. It may encounter 
challenges in scaling up to handle very large-scale optimization problems, 
especially those characterized by high-dimensional search spaces or intricate 
constraints. Unlike some other algorithms, GOA lacks a robust theoretical 
foundation, which may limit its predictability and generalizability. Sensitivity to 
parameter settings is another concern, requiring careful calibration to achieve 
optimal performance. Additionally, the balance between exploration and 
exploitation in GOA may not always be optimal, potentially leading to premature 
convergence or insufficient exploration of the search space. Lastly, its performance 
may lack robustness across different problem domains or instances, making it less 
dependable in diverse scenarios. 

2.3.2.8 Cuckoo search 
Cuckoo search is an optimization algorithm developed by Yang and Deb [44]. They 
were inspired by the obligate brood parasitism of some cuckoo species by laying 
their eggs in the nests of host birds of other species. Some host birds can engage 
direct conflict with the intruding cuckoos. For example, if a host bird discovers the 
eggs that are not their own, it will either throw these alien eggs away or simply 
abandon its nest and build a new nest elsewhere. Some cuckoo species, such as the 
New World brood-parasitic Tapera, have evolved in such a way that female parasitic 
cuckoos are often very specialized in the mimicry in colors and pattern of the eggs 
of a few chosen host species. Cuckoo search idealizes such breeding behavior, and 
thus can be applied for various optimization problems. 
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The cuckoo search algorithm (CSA) offers several advantages: it possesses global 
search capability, allowing it to explore the entire solution space effectively for 
global optimization; it maintains simplicity in its basic concept, making it accessible 
for implementation and application; it does not require gradient information, 
rendering it suitable for problems where gradients are difficult to compute; it 
naturally maintains population diversity, which aids in avoiding premature 
convergence and effectively exploring the search space; and it can be parallelized, 
facilitating distributed computing and potentially faster convergence, particularly 
for large-scale problems. 

However, CSA also exhibits some disadvantages: it can be sensitive to parameters, 
necessitating careful tuning for optimal performance; it may lack a strong theoretical 
foundation, making rigorous analysis of its convergence properties and behavior 
challenging; and it lacks an explicit memory mechanism to remember past solutions, 
potentially limiting its ability to leverage historical information during the 
optimization process. This could affect its capacity to adjust to evolving 
environments or dynamic optimization challenges. CSA relies on Levy flights for 
exploration, and the algorithm's efficacy hinges on the precise execution of these 
flights. Inadequate implementation of Levy flights can hamper the algorithm's 
performance. Levy flights are a type of random walk characterized by occasional 
long jumps interspersed with shorter steps. They are named after French 
mathematician Paul Lévy [45], who first introduced them in the context of 
probability theory. Moreover, grappling with constraints poses a difficulty; 
integrating constraints into CSA can prove challenging. Ensuring the algorithm 
conforms to and respects optimization problem constraints might necessitate 
supplementary mechanisms. Limited applicability, CSA may not be universally 
applicable and may not outperform other optimization algorithms in all problem 
scenarios. Its effectiveness can depend on the characteristics of the problem. Cuckoo 
Search Algorithm has advantages such as global search capability and simplicity, 
but it also has limitations, including sensitivity to parameters and a potential lack of 
theoretical understanding. The choice of CSA depends on the specific optimization 
problem and the trade-offs between its strengths and weaknesses. 

2.3.3 Neighborhood based Algorithm 
A neighborhood-based algorithm is a type of algorithm used in machine learning 
and data analysis that relies on the idea of similarity or proximity among data points. 
The concept is particularly prevalent in collaborative filtering, a technique 
commonly used in recommendation systems. One challenge with neighborhood-
based algorithms is the "cold start" problem, where it is difficult to make accurate 
recommendations for new users or items with limited interaction history. It's 
important to note that while neighborhood-based algorithms have been popular in 
recommendation systems, other approaches such as matrix factorization and deep 
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learning-based methods have gained prominence due to their ability to handle larger 
datasets and capture complex patterns. Tabu Search and Scatter Search are among 
the neighborhood-based algorithms. 

2.3.3.1 Tabu search 
Tabu search (TS) is a “higher level” heuristic procedure for solving optimization 
problems, first introduced by Fred W. Glover [46] in 1985. Then Willard formalized 
the implementation in 1989 [47], designed to guide other methods (or their 
component processes) to escape the trap of local optimality. Tabu Search is widely 
used in solving combinatorial optimization problems, scheduling problems, and 
other complex optimization tasks. Its effectiveness lies in its ability to balance 
exploration and exploitation through the use of the tabu list and aspiration criteria. 
However, successful implementation often requires careful parameter tuning and 
adaptation to the characteristics of the specific optimization problem. 

The TS algorithm presents numerous advantages that make it a versatile choice for 
optimization problems. First and foremost, its capability for global optimization 
ensures it can effectively locate global optima, making it applicable to a diverse 
array of optimization challenges. Moreover, its flexibility allows it to handle various 
problem types, spanning combinatorial, continuous, and discrete optimization 
domains. Unlike some other optimization methods, TS operates without the need 
for derivative information, making it well-suited for scenarios where obtaining such 
information is impractical or costly. The inclusion of a memory mechanism, 
particularly the tabu list, prevents the algorithm from revisiting previously explored 
solutions, thereby fostering solution diversity and preventing repetitive cycles. 
Additionally, its relatively simple implementation compared to other metaheuristic 
algorithms renders it accessible to practitioners with varying levels of expertise. TS 
also demonstrates proficiency in handling constraint-laden optimization problems, 
thanks to the tabu list's ability to steer clear of infeasible solutions. However, TS 
does come with its set of drawbacks. One significant challenge lies in the sensitivity 
of its parameters, where suboptimal choices can greatly impact its performance. 
Determining an appropriate tabu tenure, in particular, can be a complex and 
problem-specific endeavor. The size of the tabu list represents another critical 
parameter; setting it too small may lead to premature solution revisitations, while 
setting it too large may hinder exploration efforts. Moreover, the computational 
intensity required for maintaining and updating the tabu list can pose efficiency 
concerns, depending on the complexity of the problem. Like many optimization 
algorithms, TS is susceptible to getting trapped in local optima, particularly in 
intricate and multimodal optimization scenarios. Adapting TS for Multi-Objective 
Optimization (MOO) also presents challenges, as balancing conflicting objectives 
demands careful consideration. While TS offers compelling advantages such as 
global optimization capability and adaptability to various problem types, its 
effectiveness hinges on meticulous parameter tuning and careful consideration of 
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the specific characteristics of the problem. Nonetheless, with proper 
parameterization and problem understanding, TS remains a powerful tool for 
tackling optimization challenges across diverse domains. 

2.3.3.2 Scatter search 
Scatter search (SS), introduced by Glover [48] in 1977, is an evolutionary approach 
for optimization. It has been applied to problems with continuous and discrete 
variables and with one or multiple objectives [49]. SS consists of five methods: (1) 
Diversification generation, (2) Improvement, (3) Reference set update, (4) Subset 
generation, and (5) Solution combination [50]. The SS algorithm improves other 
algorithms further by maintaining a balance between intensification and 
diversification during search [51]. Scatter search has shown merit in applications 
where the optimization horizon (represented by a number of objective function 
evaluations) is severely limited. The Scatter Search (SS) algorithm offers several 
advantages that make it a versatile choice for optimization problems. Firstly, it is 
designed for global optimization, making it suitable for a wide range of optimization 
challenges. Secondly, the algorithm emphasizes diversity preservation, ensuring 
that a variety of solutions are generated and maintained to prevent premature 
convergence and thoroughly explore the solution space. Additionally, SS 
incorporates both intensification and diversification strategies, striking a balance 
between exploiting promising regions and exploring the entire solution space. Its 
adaptability allows customization for different types of optimization problems, 
including combinatorial, continuous, and mixed-variable problems. Furthermore, 
SS uses a memory mechanism to store promising solutions and historical 
information, aiding in decision-making during the search process. It can also be 
extended for multi-objective optimization problems, addressing trade-offs between 
conflicting objectives. 

However, SS also has its disadvantages. Firstly, it can be computationally intensive, 
especially for large solution spaces, as generating diverse solutions and combining 
them may require significant computational resources. Secondly, like many 
optimization algorithms, SS is sensitive to parameter settings, necessitating proper 
tuning for optimal performance. Its implementation can also be more complex 
compared to simpler optimization algorithms, requiring a deeper understanding of 
the algorithm. Moreover, its effectiveness may decrease for very large-scale 
optimization problems due to increased computational costs and the need for 
managing a large set of solutions. Additionally, SS may not be suitable for dynamic 
optimization problems where the problem characteristics change over time, as 
adapting to dynamic environments can be challenging. Lastly, incorporating 
constraints into SS can be difficult, requiring additional mechanisms to ensure 
adherence to constraints in the optimization problem. While Scatter Search offers 
advantages such as global optimization, diversity preservation, and adaptability, its 
computational intensity and sensitivity to parameters should be carefully 
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considered. The suitability of SS depends on the specific characteristics of the 
optimization problem and the trade-offs between its strengths and weaknesses. 

2.3.3.3 Simulated annealing 
Simulated annealing (SA), introduced by Kirkpatrick et al. in 1983 inspired by the 
annealing procedure of metal working [52], is a meta-heuristic technique for 
optimization that consists of a probabilistic local search technique, and is based on 
an analogy with thermodynamics. SA provides a clear and simple approach of 
finding near optimal solutions of difficult combinatorial optimizations where there 
are many local minima. Although not fast in absolute terms it is still comparatively 
fast in relation to other approaches to combinatorial optimization, and this speed can 
be improved though careful parallelization [53]. Simulated Annealing (SA) offers 
several advantages that make it an attractive option for optimization problems. 
Firstly, it is renowned for its ease of implementation and utilization, making it 
accessible even to those without extensive optimization expertise. Additionally, SA 
has been proven effective in providing optimal solutions to a diverse array of 
problems, showcasing its versatility and reliability. 

However, SA does come with its set of disadvantages. One notable drawback is its 
potential for lengthy execution times, particularly if the annealing schedule is set to 
run for an extended duration. This can result in prolonged optimization processes, 
which may not be feasible for time-sensitive applications or large-scale problems. 
Furthermore, SA involves several tunable parameters, including the annealing 
schedule itself, which can require meticulous parameter tuning for optimal 
performance. Managing these parameters effectively can be challenging and may 
require a significant investment of time and computational resources [54]. While 
Simulated Annealing offers advantages such as ease of implementation and the 
ability to provide optimal solutions across various problem domains, its potential 
for long runtimes and the presence of numerous tunable parameters are important 
considerations when utilizing this algorithm. These factors should be carefully 
weighed against the specific requirements and constraints of the optimization 
problem at hand. 

2.4 Multi-objective optimization 
Multi-objective optimization (MOO) is a mathematical and computational approach 
used to solve problems with multiple conflicting objectives. In many real-world 
scenarios, decision-makers face situations where they need to optimize more than 
one criterion simultaneously, and these objectives may be conflicting or mutually 
exclusive. MOO addresses the challenge of finding a set of solutions that represents 
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a trade-off among these objectives, known as the Pareto front or Pareto set. Equation 
(1) defines the general form of an MOO problem [55, 56]: 

 min/ max   𝑓𝑓𝑘𝑘(𝐱𝐱), 
                      s. t.  𝑔𝑔𝑗𝑗(𝐱𝐱) ≥ 0,
                              ℎ𝑝𝑝(𝐱𝐱) = 0,

                                          𝑥𝑥𝑖𝑖
(𝐿𝐿) ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖

(𝑈𝑈),

𝑘𝑘 = 1, 2,3, … ,𝐾𝐾;
𝑗𝑗 = 1,2,3, … , 𝐽𝐽;
𝑝𝑝 = 1,2,3, … ,𝐻𝐻;
𝑖𝑖 = 1,2,3, … , 𝑛𝑛. ⎭

⎪
⎬

⎪
⎫

 (1) 

where a solution 𝐱𝐱 is a vector of 𝑛𝑛 decision variables: 𝐱𝐱 = (𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛)𝑇𝑇 . 𝐾𝐾 is 
the number of objective functions; 𝐽𝐽 and 𝐻𝐻 represent the number of inequalities and 
equalities constraints, respectively.  𝑥𝑥𝑖𝑖

(𝐿𝐿) and 𝑥𝑥𝑖𝑖
(𝑈𝑈) are the lower bound and upper 

bound of the decision variable 𝑥𝑥𝑖𝑖. The set of lower and upper bounds defines the 
decision variables space and for MOO the objective space is a multi-dimensional 
space as shown in Figure 2 [3]. 

 

Figure 2: Tree-dimensional decision variable space and two-dimensional objective space 

The key concepts in MOO comprise Objective functions, which involves optimizing 
two or more objective functions that capture different aspects of the problem. These 
objectives may have conflicting requirements, and optimizing one may compromise 
the others. Pareto front, the solutions that represent the best trade-offs among 
conflicting objectives are found on the objective space. A solution is Pareto optimal 
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if there is no other solution that improves one objective without degrading another. 
Decision variables are the parameters or variables that decision-makers can adjust 
to find optimal solutions. The values of these variables determine the performance 
with respect to the objective functions. MOO problems often involve constraints or 
limitations that solutions must satisfy. Feasible solutions are those that meet these 
constraints. The primary goal of MOO is to provide decision-makers with a set of 
solutions that represent trade-offs among conflicting objectives. The decision-maker 
can then choose a solution based on their preferences and priorities. Various 
optimization algorithms are employed for solving multi-objective problems. 
Evolutionary algorithms, such as the Non-dominated Sorting Genetic Algorithm II 
(NSGA-II), are popular choices due to their ability to explore the Pareto front 
efficiently. Hypervolume Indicator is a metric used to evaluate the quality of a set 
of Pareto optimal solutions. It measures the volume of the objective space covered 
by the solutions, providing insights into the diversity and distribution of the Pareto 
front. 

MOO is crucial for addressing the complexities of real-world problems by providing 
decision-makers with efficient, balanced, and comprehensive solutions. Its 
application spans across various domains, contributing to improved decision-
making processes, resource allocation, risk management, and sustainability. 

The resolution of a Multi-Objective Optimization (MOO) problem can be 
categorized into two main approaches: the Pareto method and scalarization [57]. 
These methods differ in their approach to handling desired solutions and 
performance indicators. The Pareto method is employed when distinct solutions and 
performance indicators exist, leading to a compromise solution (tradeoff) that can 
be visualized through a Pareto optimal front (POF). In contrast, the scalarization 
method involves incorporating performance indicators as components in a scalar 
function, which is then integrated into the fitness function. 

The Pareto method, specifically in the context of solving Multi-Objective 
Optimization (MOO) problems, is based on the principles of Pareto dominance. 
Named after Vilfredo Pareto, this approach is used to identify and characterize the 
set of Pareto-optimal solutions in a multi-objective optimization problem. Pareto 
optimality represents a state where no solution in the set can be improved in one 
objective without compromising another [58, 59]. The Pareto method is particularly 
powerful for problems where there is no clear single optimal solution, and a set of 
trade-off solutions is preferred. It allows decision-makers to explore the trade-off 
space and make informed decisions based on their preferences and priorities for 
each objective. 

The Scalarization Method is an approach used in Multi-Objective Optimization 
(MOO) to convert multiple conflicting objectives into a single scalar function. This 
scalar function, often referred to as an aggregated or weighted sum, allows the 
optimization algorithm to treat the multi-objective problem as a single-objective 
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optimization problem. The Scalarization Method is particularly useful when the 
decision-maker has a clear preference for the importance of each objective. 
However, it may oversimplify the trade-off relationships between objectives and 
may not capture the full Pareto front in the solution space. The choice of weights 
can significantly influence the results, and sensitivity analysis is often conducted to 
assess the robustness of the solution concerning different weight configurations. 

2.5 Applications of MOO 
Multi-objective optimization (MOO) finds applications in various fields where 
decision-makers need to consider and balance multiple conflicting objectives. Some 
notable applications of multi-objective optimization include Urban planning, 
Evacuation planning and Renewable energies. In Urban planning, MOO aids in 
optimizing land use allocation, transportation networks, and infrastructure planning 
in urban areas, considering objectives such as economic development, 
environmental sustainability, and social equity. In Evacuation planning, MOO plays 
a crucial role in enhancing the effectiveness and efficiency of evacuation planning, 
especially in scenarios where conflicting objectives need to be considered. In 
Renewable energies, MOO is widely applied in determining optimal locations for 
renewable energy projects, balancing various objectives to achieve sustainable and 
efficient solutions. MOO is widely used in engineering for designing systems and 
products that need to satisfy multiple performance criteria, such as maximizing 
efficiency while minimizing cost and environmental impact. In financial portfolio 
optimization, investors often have conflicting goals like maximizing returns while 
minimizing risks [60, 61]. MOO helps in finding portfolios that strike a balance 
between these objectives. Balancing conflicting objectives like minimizing costs, 
maximizing efficiency, and reducing environmental impact is crucial in optimizing 
supply chain operations, and MOO can assist in achieving these goals [62]. In 
designing and operating energy systems, MOO can help optimize the trade-offs 
between cost, environmental impact, and energy efficiency [63, 64]. MOO is 
employed to find solutions that optimize resource allocation and conservation 
strategies while minimizing ecological impact in environmental management [65, 
66]. In aircraft design, objectives such as fuel efficiency, speed, and safety can be 
conflicting [67, 68]. MOO helps in finding optimal designs that balance these 
objectives. In managing water resources, MOO can be used to optimize dam 
operations, water distribution, and irrigation strategies while considering conflicting 
objectives like maximizing water availability and minimizing environmental impact 
[65, 66]. MOO is applied in drug formulation, treatment planning, and medical 
device design, considering multiple conflicting objectives like efficacy, safety, and 
cost [69, 70]. Optimizing manufacturing processes involves balancing objectives 
like production speed, quality, and cost, and MOO aids in finding optimal solutions 
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[71, 72]. In network design and optimization, MOO helps in achieving trade-offs 
between factors such as data transfer speed, network reliability, and cost [73, 74]. 
MOO is utilized in robotics for motion planning, trajectory optimization, and robot 
design, considering conflicting objectives such as energy efficiency and task 
completion time [75, 76]. 

2.5.1 Evacuation Planning 
Evacuation is an important disaster management tool. According to Bish [77], the 
process of evacuation planning consists of three phases: 1) determination of the safe 
areas, 2) selecting the optimum path between risk zones and safe areas, and 3) 
joining risk zones associated with each safe area. The current study focuses on the 
second and third phase of evacuation planning. Several researchers have worked on 
evacuation planning issues and proposed various multi-objective optimization 
approaches to handle the problem. For instance, research by Baou [78] triggered a 
study about evacuation planning in earthquake disasters considering two conflicting 
objective functions, using Remote Sensing and Geographical Information System 
(GIS). Their study used a multi-objective technique to solve the problem and search 
for the optimal distribution of people from risk zones to safe areas. Saadatseresht 
[79] carried out similar researches, in Iran, using multi-objective evolutionary 
algorithms, with two objective functions, in conjunction with GIS to minimize 
evacuation costs from risk zones to safe areas. 

On the other hand, Stepanov and Smith [80] solved the transportation networks for 
evacuation routing of production goods using multi-objective functions based on 
integer programming for the best route assignment. The model consists of the 
minimization of the total travel distance and the excess clearance time. The authors 
also evaluated the performance measures of the evacuation plan such as clearance 
time, the total distance, and blocking probabilities. 

Coutinho-Rodrigues [81] introduced, in Portugal Coimbra, a multi-objective 
approach to identify evacuation paths and the location of shelters for urban 
evacuation planning. To address the evacuation-planning problem, six conflicting 
objective functions, in a mixed-integer linear programming model, were considered. 
These objective functions comprised the minimization of total travel distance for 
people to reach their shelter, the minimization of the total risk of the evacuation 
paths, the minimization of total travel distance associated with backup paths, the 
minimization of total risk at the shelters (i.e., risks associated with the shelter site), 
the minimization of the total time required to transfer people from their evacuation 
shelter to an external hospital when necessary, and the minimization of the total 
number of shelters. 

In Chaoyang District, Beijing, China, Zhao et al. [82] carried out a scenario-based 
model using a multi-objective optimum allocation for earthquake emergency 
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shelters based on a modified Particle Swarm Optimization algorithm. This model 
minimized the total weighted evacuation time from residential areas to a specified 
shelter, and also reduced the total area of all the shelters. The model was 
demonstrated to be convenient for the optimization of shelter allocation. 

Ikeda [83] developed an evacuation route planning for a safety route guidance 
system after a natural disaster using a multi-objective genetic algorithm. The 
proposed system has three objective functions, which are: evacuation distance, 
evacuation time, and safety of evacuation route. Gai [84] built up a model for 
assessing the risks associated with the evacuation process in response to potential 
chemical accidents, where a multi-objective evacuation routing model for toxic 
cloud releases is proposed, taking into account that the travel speed in each path will 
be affected by disaster extension. The developed model minimizes travel time and 
individual evacuation risk along a path. 

Ghasemi [85] carried out an uncertain multi-objective multi-commodity multi-
period multi-vehicle location-allocation mixed-integer mathematical programing 
model and proposed it for the response phase of earthquakes. The proposed model 
includes five echelons, namely affected areas, distribution centers, hospitals, 
temporary accommodation centers, and temporary care centers. Two objective 
functions minimizing the total cost of the location-allocation of facilities and 
minimizing the amount of the shortage of relief supplies are considered. The 
uncertainty is modeled using a scenario-based probability approach. Niyomubyeyi 
[86] developed a model for evacuation planning assessed in Kigali, Rwanda. The 
model determined the minimum optimal distribution of evacuees to shelters using 
the multi-objective Artificial Bee Colony algorithm. 

Although several studies have been carried out on evacuation planning using multi-
objective optimization, assessed with different population-based metaheuristics, so 
far, none of them has solved the evacuation problem using the multi-objective 
cuckoo search algorithm. Furthermore, the challenges of evacuation management 
increase substantially with the size of the risk area and population. Thus, the 
development of more practical approaches is still strongly needed to address the 
emergency evacuation concerns. In practice, shelter location-allocation planning 
and the risk management on evacuation route are always entangled with one 
another. Therefore, this study proposes a multi-objective optimization approach that 
selects the optimum path from risk zone to safe area and determines appropriate 
allocation of shelters to the population in danger. 

2.5.2 Urban Planning 
Urban planning is a technical and political process that focuses on the development 
and design of land use and the built environment, such as transportation, 
infrastructures, green spaces, and accessibility. The lack of urban planning affects 
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the transportation system, infrastructure, layout, prescribed density of residences, 
commerce, and industrial areas [87]. Multi-objective optimization has been 
commonly used in urban planning. For instance, Deb et. al. [87] developed a 
Geographical Information System (GIS) based on MOEA and applied it to the 
Mediterranean landscape of Southern Portugal for land-use management, with three 
objective functions: maximization of economic return, maximization of carbon 
sequestration, and minimization of soil erosion. In Baboldasht, a district of Isfahan 
in Iran, Sahebgharani [88] developed a novel meta-heuristic algorithm named 
parallel particle swarm to allocate seven land types (residential, commercial, 
cultural, educational, medical, sportive, and green space) in order to maximize 
compactness, compatibility, and suitability objective functions. Compared with the 
results performed by GA in other studies, it was found that both the quality and 
convergence time of the parallel particle swarm optimization are better than GA. 
Liu and Xi [89] investigated multi-objective optimization of the spatial structure 
and layout of a protected area using the NSGA-II algorithm and four objective 
functions maximizing the value of ecosystem services: provisioning, supporting, 
regulating, and cultural. García et al. [90] proposed a multi-objective optimization 
model for sustainable land use allocation in the Plains of San Juan, Puebla, Mexico, 
and searched for the optimal solution using NSGA-II. Zhao et al. [91] developed a 
gray multi-objective dynamic programming (GMDP) model and the ant colony 
optimization (ACO) algorithm for land-use optimization in Lancang County, China. 
The maximization of social, economic, and ecological benefits is used as the 
optimization objective in the model. Caparros and Dawson [92] developed a spatial 
optimization framework to optimize the location of future residential development 
against several sustainability objectives, and conducted a case study of 
Middlesbrough in the northeast United Kingdom. Shifa et al. [93] carried out a study 
to optimize the allocation of land resources, including the optimization of quantity 
and space, to bring forward the land-use space optimization model based on the 
particle swarm evolutionary algorithm. The results showed that the model could 
analyze the data of multi-dimensional discrete decision space with good space 
search features and high accuracy in parallel. 

Overall, various multi-objective optimization methods are applied in urban 
planning, such as GA, particle swarm optimization, simulated annealing, ant colony 
optimization, etc. Each of these optimization methods presents a set of reasons [94] 
behind its use. On the one hand, such reasons aggregate robustness and efficiency, 
intelligent ranking of the Pareto solutions, and less computational time. On the other 
hand, they guarantee an optimal solution, better performance in spatial data, and low 
computational cost. 
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2.5.3 Optimal location for renewable energy 
Transitioning to renewable energy is inevitable in order to meet the world’s growing 
energy demands sustainably, mitigate climate change, and address environmental 
and health concerns. Many studies and technologies are developed to address the 
sustainability of renewable energies, from different perspectives, and among them 
studies which have been based on MOO. Holloway et al. [95] underscored the 
detrimental impacts of coal and gas energy production on the environment, 
highlighting the pressing need for Australia to transit towards renewable energy 
sources to combat climate change. Their study focuses on identifying optimal 
locations for deploying a distributed hybrid renewable energy generation system in 
rural regions of Western Australia. The researchers employed a data mining 
approach, utilizing K-Means and K-Medoids clustering algorithms to partition the 
dataset into clusters. From an initial dataset of 69 locations, they proceeded with a 
filtering process to refine the selection. Visual representations of the cluster data 
were then mapped onto Western Australia to aid in decision-making. Evaluation of 
the clustering algorithms was conducted using the Dunn index, revealing that K-
Means outperformed K-Medoids given the nature of the dataset. Subsequently, the 
researchers utilized HOMER software to assess the potential wind and solar energy 
output for each cluster centroid. Interestingly, while K-Medoids identified locations 
with higher average solar and wind energy potential, its reduced internal validation 
and inability to cluster data points effectively raised concerns about its overall 
utility. Aisaba et al. [96] addressed the challenge posed by the intermittent and 
uncertain nature of wind turbines and solar photovoltaic (PV) systems in the context 
of grid planning operations. Their study introduced a novel multi-objective 
distributional robust optimization model aimed at determining optimal locations for 
these renewable energy sources. The objective is twofold: to minimize the variance 
of renewable energy sources while maximizing power production. They evaluated 
the performance of different forecasting models—Autoregressive Moving Average 
(ARMA), Deep Learning Gated Recurrent unit (GRU), and Deep Learning Long 
Short-Term Memory (LSTM)—for predicting wind speed and solar irradiation. 
They compare the root mean square errors (RMSE) of these models to gauge their 
accuracy. Using the forecasting error information, uncertain variables are 
characterized within an ambiguity set, which incorporates bounds, means, and 
covariance values. Additionally, the authors propose a modified multi-objective 
non-dominated sorting genetic algorithm (NSGA-II) to obtain a tractable Pareto 
front solution. To validate the effectiveness of their model, actual candidate sites for 
wind turbines and solar PV systems in Saudi Arabia are utilized. The results 
indicated that the proposed model offers an attractive and less conservative solution 
compared to a multi-objective robust optimization model when accounting for 
forecasting uncertainties. 

Durmaz et al. [97] addressed a practical problem in the field of biomass supply chain 
management and demonstrated the development of a systematic approach to 
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optimize the design and planning of such networks, with a specific focus on the 
poultry industry in Turkey. They used integration of GIS, Analytic Hierarchy 
Processes, and multi-objective mixed integer linear programming optimization to 
achieve the aim, which is to determine the optimal number, locations, and sizes of 
biogas facilities, as well as the network flow and electricity generation potential. 
The model considers two primary objectives: maximizing profit and minimizing the 
total distance between poultry farms and biogas facilities. To assess the impact of 
various parameters on the outcomes of the model, they performed a sensitivity 
analysis and this analysis revealed that both maximum distance parameters and 
purchasing prices significantly influence decision-making and financial 
performance. 

Hai et al. [98] proposed a hybrid electricity-generation system that combined solid 
oxide fuel cells (SOFC), biomass gasification, and wind energy to enhance power 
generation efficiency and reduce environmental impact compared to traditional 
biomass-driven SOFC systems [99]. The integration of renewable energy sources 
and the production of pure hydrogen played a key role in achieving these objectives. 
In addition, it demonstrated the potential of such system to contribute to cleaner and 
more sustainable electricity generation. Delgarm et al. [100] presented a 
methodology that combines simulation-based optimization with building energy 
performance analysis to achieve better energy-efficient building designs using of a 
mono- and multi-objective particle swarm optimization (MOPSO) algorithm. The 
building design offered valuable insights for architects and engineers working on 
building projects in various climatic regions, helping them make informed decisions 
to reduce energy consumption and improve overall performance [101, 102]. This 
included minimizing annual cooling, heating, and lighting electricity consumption, 
as well as the total annual building electricity demand. 

Deveci and Guler [103] presented a comprehensive approach to renewable energy 
planning in Turkey, considering multiple objective functions that consisted of 
minimization of the levelized cost of electricity generation and maximization of 
short-term electricity generation from renewable energy resources and factors. It 
offers recommendations for optimizing renewable energy investments, which can 
be instrumental in guiding energy policy decisions and enhancing the country's 
transition to a more sustainable and cost-effective energy mix. A Competitive Multi-
Objective Particle Swarm Optimizer (CMOPSO), which is a state-of-the-art 
metaheuristic optimization algorithm, was used for the study. 

In another study [104] GIS and AHP were used to identify optimal locations for a 
solar photovoltaic (PV) power plant in the Malatya Province, Turkey. Various 
factors, such as solar energy potential, infrastructure, topography, and 
environmental considerations, were considered for optimum site selection. The 
study presented a map highlighting the most suitable sites for solar energy plants, 
providing decision-makers with an empirical basis for optimal site selection in 
comparison to existing solar PV power plants. 
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Another study for solar power farm site selection was carry out by Uyan [101, 102] 
in Turkey and he took in consideration factors like terrain quality, local weather 
conditions, proximity to transmission lines, agricultural facilities, and 
environmental conservation. The study employed integrated GIS and AHP to 
determine a final index model categorized into four classes ("low suitable," 
"moderate," "suitable," and "best suitable"), using an equal interval classification 
method. Mapping the indexes decision-makers could visualize the suitability map 
for creating solar farms. 

The input data used in these studies range from environmental and topographic 
variables as well as resource availability (solar irradiance, wind speed) to equipment 
costs, maintenance requirements, and policy-related variables. Objective functions 
in optimization models often include minimizing the overall cost, maximizing 
energy output, or achieving a balance between economic and environmental 
considerations. Some studies incorporate multi-objective optimization to address 
conflicting objectives. 

The present thesis will utilize distinct datasets comprising geographical information 
about the study area, data on renewable resources such as solar and wind patterns, 
economic parameters encompassing cost data and investment incentives, as well as 
environmental data including emission factors. 
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3 Methodology 

This chapter summarizes software libraries, techniques, algorithms, case studies, 
and evaluation mechanisms used for the implementation of this PhD thesis. 

3.1 Software libraries 
Distributed Evolutionary Algorithms in Python (DEAP) [106] framework and a 
Python library for multi-objective optimization (PYMOO) [107] were the major 
libraries used for the implementation of the algorithms in different subprojects of 
the thesis. DEAP is a popular and flexible open-source library for building and 
experimenting with evolutionary algorithms. DEAP provides tools for 
implementing various types of evolutionary algorithms, including genetic 
algorithms, genetic programming, and other evolutionary strategies. Multi-objective 
optimization involves optimizing multiple conflicting objectives simultaneously. 
PYMOO provides a set of tools and algorithms specifically designed for solving 
problems with multiple objectives. 

To evaluate the quality of the optimal Pareto front the Hypervolume indicator is 
usually used [108]. The Hypervolume is a metric commonly used in multi-objective 
optimization to assess the quality of a set of solutions. It provides a measure of how 
well a set of solutions covers the objective space. Specifically, it quantifies the 
volume of the objective space that is dominated by a given set of solutions. We used 
an R software package called Hypervolume [109] and a Python package 
denominated Pygmo [110]  to compute the Hypervolume measure. Pygmo (Python 
Global Multi-objective Optimizer) is an open-source Python library designed for 
solving optimization problems, particularly those involving multiple objectives. 
Pygmo is built on top of the Pagmo (Parallel Global Multi-objective Optimizer) C++ 
library. It provides a convenient interface for defining and solving optimization 
problems with multiple objectives, constraints, and decision variables. The R 
Hypervolume package assesses the configuration and size of datasets in high-
dimensional spaces, enabling various set operations such as intersection, union, 
identification of unique components, inclusion testing, and hole detection. It 
employs a stochastic geometry methodology for high-dimensional kernel density 
estimation, delineation through support vector machines, and generation of convex 
hulls. This approach finds applications in modeling Hypervolumes for traits and 
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niches, as well as in species distribution modeling. The Running metric was 
employed to assess the convergence of the algorithm [111].  Repeatability analysis 
[112] was used assessing the consistency and reliability of optimal Pareto front set 
and the goal was to determine how much variability exists in the outcomes and 
whether the observed results are consistent across different runs or trials. To 
understand the stability and consistency of the optimal results Variability analysis 
[113] was used, which involved examining the degree of variation or dispersion in 
a set of optimal Pareto fronts. 

For finding the shortest paths between risk zones and shelters Dijkstra's algorithm 
from the ArcGIS Network Analyst extension was used,  that is, a popular algorithm 
in computer science and graph theory [114]. 

In this thesis, spatial analysis is widely used across in the case studies, related to 
urban planning, evacuation planning, and solar power farm site selection. The 
design objectives, study area, data set, frameworks, and methods used for each case 
study (paper) are detailed in Table 1. 
Table 1: Overview of research, data, and methodology for the four papers 
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3.2 Cases studies 
In this subsection, we provide three case studies applied to urban evacuation 
planning, urban land-use allocation, and site selection for renewable energies. Urban 
evacuation planning is a crucial aspect of emergency management aimed at 
efficiently and safely moving people from areas at risk to safer locations during 
various types of emergencies or disasters. This planning process involves the 
coordination of resources, infrastructure, and communication strategies to ensure 
the orderly and effective evacuation of residents from urban areas. Urban land use 
allocation is a critical aspect of urban planning that involves the systematic 
allocation of different types of land uses within an urban area to achieve specific 
planning objectives. This process aims to optimize the use of available land while 
addressing the social, economic, and environmental needs of the community. Site 
selection for renewable energy projects is a crucial step in optimizing energy 
production, minimizing environmental impact, and ensuring the overall success of 
the project. Different types of renewable energy sources have distinct requirements 
and considerations for site selection. Below, we describe the used data set, 
methodology, and the aims for each research. 

3.2.1 Urban Evacuation Planning (Paper 1 and Paper 2) 
The studies focus on urban evacuation planning in Kigali, Rwanda, and Maputo, 
Mozambique, two sub-Saharan African capitals facing increasing challenges from 
extreme weather events and rapid urbanization. To address the pressing need for 
effective urban evacuation planning, the study leverages spatial data, population 
information, and advanced algorithms to develop comprehensive evacuation plans. 

The methodology begins by utilizing spatial data provided by city authorities, 
including road networks, administrative boundaries, and bridge locations. 
Population data sourced from national statistics agencies informs the selection of 
suitable shelters adhering to global standards outlined in The Sphere Project [115]. 
Additionally, a digital elevation model (DEM) aids in slope analysis for optimal 
shelter placement, considering topography and infrastructure. 

Evacuation routes are determined using Dijkstra's algorithm on road networks 
extracted from Open Street Map[116]. This algorithm calculates the shortest path 
and generates a distance matrix, crucial for computing total travel distance. A Risk 
function assesses overall risk, utilizing datasets on roads, bridges, shelters, and 
residential areas to estimate risk along evacuation paths. 

The studies propose a multi-objective optimization model for developing efficient 
evacuation plans, aiming to minimize total travel distance, reduce risk on evacuation 
routes, and prevent shelter overload. Evaluation of the approach compares the 
performance of Improved Multi-Objective Cuckoo Search (IMOCS) against 
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standard Multi-Objective Cuckoo Search (MOCS), with IMOCS generally 
outperforming MOCS in execution time. Evaluation metrics such as the 
Hypervolume indicator and convergence assessment are employed to assess the 
quality of the Pareto front and algorithm performance [117]. 

Moreover, four classical metaheuristic algorithms (AMOSA, MOABC, NSGA-II, 
and MSPSO) are evaluated for their performance in solving urban evacuation 
problems in Rwanda, with results indicating AMOSA and MOABC achieving good 
quality solutions. NSGA-II exhibits faster execution time and convergence speed, 
while AMOSA, MOABC, and MSPSO demonstrate higher repeatability compared 
to NSGA-II. The study suggests that further modifications to MOABC could 
enhance its effectiveness for evacuation planning [118]. 

Overall, the methodology provides a comprehensive approach to address the 
challenges of urban evacuation planning through multi-objective optimization and 
the evaluation of various metaheuristic algorithms. It underscores the importance of 
leveraging spatial data, population information, and advanced algorithms to develop 
effective urban evacuation plans, aiming to enhance the safety and resilience of 
cities in the face of extreme weather events and rapid urbanization. 

Below, we describe each objective function used in papers 1 and 2 to model the 
problem of evacuations planning. 

3.2.1.1 Total travelling distance 
In the realm of evacuation planning, minimizing total traveling distance is of 
paramount importance due to several critical reasons. Evacuation scenarios 
typically involve the rapid movement of large numbers of people away from a 
danger zone, such as during natural disasters like hurricanes, floods, or earthquakes, 
or in response to human-made crises like terrorist attacks or industrial accidents. 
Minimizing total traveling distance in evacuation planning is essential for 
optimizing the efficiency, safety, and effectiveness of evacuation operations. By 
reducing travel time, alleviating congestion, minimizing exposure to hazards, 
optimizing resource allocation, and enhancing accessibility, planners can help to 
ensure that evacuees reach safety swiftly and securely, saving lives and mitigating 
the impact of disasters on affected communities. 

In Equation (2) [117, 118], higher population building blocks are given precedence 
for allocation to the closest safe area, ensuring that more individuals can reach safety 
in the shortest timeframe possible. Here, 𝑑𝑑𝑖𝑖𝑖𝑖 represents the distance along the 
optimal path between the ith building block and the 𝑗𝑗th safe area. 𝑃𝑃𝑖𝑖𝑖𝑖 represents the 
population of the ith building block that is designated to be evacuated to the 𝑗𝑗th safe 
area. 𝑚𝑚 denotes the count of building blocks slated for evacuation to the safe area, 
while 𝑛𝑛 signifies the number of shelters designated to accommodate the evacuees. 
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3.2.1.2 Total shelter overload 
In the realm of evacuation planning, minimizing total shelter overload plays a 
crucial role in ensuring the safety and well-being of evacuees during emergencies. 
Minimizing total shelter overload in evacuation planning is essential for promoting 
the safety, health, well-being, and resilience of evacuees during emergencies. By 
optimizing resource allocation, maintaining hygienic conditions, supporting 
psychological well-being, enhancing accessibility and comfort, and fostering 
resilience and sustainability, planners can help ensure that shelters remain effective 
and supportive environments for individuals seeking refuge during times of crisis. 

Equation (3) [117, 118] represents the total population allocated to each safe area, 
ensuring it does not exceed its capacity. The absolute sign for 𝑓𝑓2 determines if the 
total population of evacuees surpasses the safe areas' combined capacity. In such 
cases, the excess should be distributed among the safe areas while minimizing the 
overload capacity for each. 𝐶𝐶𝑗𝑗 denotes the capacity of the 𝑗𝑗th safe area and is greater 
than zero. 

 
𝑓𝑓2 = ��

∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖

𝐶𝐶𝑗𝑗
− 1�

𝑛𝑛

𝑗𝑗

 (3) 

3.2.1.3 Total risk in the evacuation routes 
In the domain of evacuation planning, minimizing total risk along evacuation paths 
is a critical aspect that directly impacts the safety and success of evacuation 
operations. Minimizing total risk along evacuation paths is essential for ensuring 
the safety, efficiency, and effectiveness of evacuation planning and operations. By 
prioritizing the safety of evacuees, optimizing evacuation routes, mitigating 
secondary hazards, enhancing community resilience, and fostering public 
confidence and trust, planners can help to minimize the impact of disasters and 
protect the lives and livelihoods of those at risk. 

Equation (4) [4] is designed to model risks inherent in evacuation planning. 
Subsequently, we choose the most appropriate risk model for our specific scenario. 
In this study, we examine evacuation routes, which may encompass numerous 
bridges or flooded areas. 
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Let 𝑟𝑟𝑘𝑘 represent the probability of a bridge 𝑘𝑘 collapsing or a flooded area 𝑘𝑘 being 
impassable. Conversely, the probability of successfully crossing a bridge is given 
by 1 −  𝑟𝑟𝑘𝑘, where 𝑟𝑟𝑘𝑘 denotes the collapse probability of bridge 𝑘𝑘. Consequently, the 
probability of successfully traversing all bridges is ∏ (1 −  𝑟𝑟𝑘𝑘)𝑁𝑁

𝑘𝑘 , and the cumulative 
risk of traversing the entire route (denoted as 𝑅𝑅𝑖𝑖𝑖𝑖) is calculated as: 

 
𝑅𝑅𝑖𝑖𝑖𝑖 = 1 −�(1 − 𝑟𝑟𝑘𝑘)

𝑁𝑁

𝑘𝑘=1

 (5) 

 

Figure 3: Risk Modelling in an evacuation path 

Each bridge is assigned a risk factor representing the likelihood of crossing without 
incident, while flooded areas are assigned a risk factor indicating the probability of 
crossing without damaging the means of transportation. Figure 3 illustrates an 
evacuation route featuring multiple bridges. 

3.2.2 Urban Land Use Allocation (Paper 3) 
The study addresses the numerous challenges and complexities associated with 
urban land use allocation, highlighting the need for a comprehensive and 
collaborative approach involving various stakeholders. These challenges include 
limited space and high demand, inadequate infrastructure, affordability and housing 
shortages, environmental degradation, zoning and regulatory issues, gentrification 
and displacement, lack of public participation, climate change considerations, 
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brownfield redevelopment, and data management and technology integration 
challenges. 

To address these challenges, the study emphasizes the importance of rational land 
use in achieving sustainability and resilience, particularly in urban areas like 
Maputo, Mozambique, experiencing rapid urbanization and economic development. 
It introduces land use allocation as a multi-objective optimization problem, 
recognizing conflicting objectives such as environmental protection, economic 
development, and resource utilization. 

The study proposes the Non-dominated Sorting Genetic Algorithm III (NSGA-III) 
as a suitable approach for addressing the complexities of land use allocation. NSGA-
III is highlighted for its ability to find multiple Pareto-optimal solutions, addressing 
convergence and diversity issues inherent in multi-objective optimization problems. 

Applied to the Kamavota district in Maputo City, Mozambique, the methodology 
demonstrates the effectiveness of NSGA-III in generating optimal land use 
allocation plans. Results indicate that the improved NSGA-III outperforms the 
standard NSGA-III, producing solutions that effectively balance conflicting 
objectives. 

The optimal land use allocation plans generated by the proposed approach offer 
valuable insights for policymakers and city planners, providing alternative strategies 
for enhancing urban sustainability and resilience. By considering multiple 
objectives and constraints simultaneously, the methodology contributes to more 
informed decision-making in urban planning processes, aligning with the broader 
goals of sustainable development. 

Overall, the study underscores the importance of addressing the complex challenges 
of urban land use allocation through innovative methodologies like multi-objective 
optimization, aiming to build sustainable and resilient cities for the future.  

Table 2 provides detailed information about different land use classes in the study 
area. The table consists of eight attributes: (1) the land use types, (2) the area of one 
unit in square meters for each land use type, (3) the weight of the land use that 
represents the fraction of each land use type, (4) the recommended minimum travel 
distance between residential and other land use types by Minister of Environment, 
Science and Technology [119] and United Nations Human Settlements Programme 
[120], (5) the weight (w_j) of the land use distance that represents the fraction of 
the distance between the residential and other land use types, (6) the average value 
for each land use type, (7) the maximum capacity representing the maximum 
number of persons that can be allocated to each land use type, and (8) the average 
carbon emission that represents the amount of carbon emitted in each land use type 
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Table 2: Information about different land use types in Maputo 

 

The objective functions for paper three are presented below. 

3.2.2.1 Maximization of the economic objective 
In the realm of land use allocation, maximizing the economic objective holds 
significant importance due to its wide-ranging impacts on various aspects of society, 
development, and sustainability. Maximizing the economic objective in land use 
allocation is essential for promoting sustainable economic development, job 
creation, revenue generation, infrastructure development, and long-term prosperity. 
By prioritizing land uses that maximize economic returns while considering social 
and environmental factors, planners can support vibrant, resilient, and inclusive 
communities that thrive economically while safeguarding natural resources and 
enhancing quality of life for present and future generations. 

The economic objective seeks to maximize the overall land use value, which 
encompasses the total worth of the land excluding any structures erected upon it. 
This valuation includes the intrinsic value of the raw land as well as additional 
values such as enhanced accessibility. When demand surpasses supply, the land's 
value typically rises. Similarly, land may possess inherent worth, such as containing 
oil reserves, which can elevate its value. It's important to note that the assessed value 
of the land and any structures may not necessarily align with the current market 
price, as the selling price is contingent upon prevailing market conditions. 

In the Kamavota district, the land use composition consists of 5% fourth-floor 
buildings, 10% third-floor buildings, 15% second-floor buildings, 40% first-floor 
buildings, and 30% open space. Each floor of the buildings holds its own economic 
value. The economic value of each building is calculated by summing the economic 
value of each floor, multiplied by the proportion of the respective land use type. To 
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derive the total economic land use value for the entire study area, the economic 
value for each cell is aggregated according to Equation 6. 

 
𝑓𝑓1(𝒙𝒙) = max����𝐸𝐸𝑖𝑖𝑖𝑖

(𝑘𝑘) ∙ 𝜇𝜇𝑖𝑖𝑖𝑖

𝐾𝐾

𝑘𝑘=0
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𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1
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In Equation (6), 𝐸𝐸𝑖𝑖𝑖𝑖
(𝑘𝑘) represents the annual land value of the property located in cell 

(𝑖𝑖, 𝑗𝑗), while 𝜇𝜇𝑖𝑖𝑖𝑖 denotes the weight assigned to the land use type (as detailed in Table 
2). Here, 𝑖𝑖 signifies the 𝑖𝑖th row within the grid cell of the study area, with 𝑁𝑁 
indicating the total number of rows, and 𝑗𝑗 representing the jth column within the 
grid, and 𝑀𝑀 being the total number of columns. The variable 𝑘𝑘 pertains to the 
number of floors present in the building situated on the land, while 𝐾𝐾 signifies the 
maximum number of floors (or maximum height) permitted to be constructed, 
which, in this study, is set at five. Given that various land use configurations yield 
varying economic benefits, optimizing the design and arrangement of diverse land 
uses becomes imperative to maximize economic returns. 

3.2.2.2 Minimization of the carbon emission objective 
Minimizing the carbon emission objective in land use allocation is increasingly 
recognized as essential due to its profound implications for addressing climate 
change, promoting environmental sustainability, and ensuring the well-being of 
present and future generations. Minimizing the carbon emission objective in land 
use allocation is critical for addressing climate change, protecting ecosystems, 
improving public health, enhancing resilience, and promoting sustainable 
development. By prioritizing low-carbon land uses and reducing emissions 
associated with land use activities, planners can contribute to global efforts to 
mitigate climate change and build a more sustainable and resilient future for all. 

The extent of human activity now wields a profound influence on the climate 
system. Human-induced alterations in greenhouse gas emissions disrupt the energy 
balance within the climate system, exerting a significant forcing effect. A critical 
aspect in estimating future emissions from infrastructures in developing nations and 
formulating effective mitigation strategies involves comprehending the emissions 
embedded within existing infrastructure stocks. This understanding is crucial for 
reconciling human development with climate change mitigation efforts, 
necessitating a clear grasp of how infrastructures contribute to both well-being and 
greenhouse gas emissions. While indirect emissions stemming from infrastructure 
usage are well-documented, information regarding indirect emissions originating 
from their construction remains fragmented. 
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To estimate the carbon emissions of each building, the carbon emission of each floor 
can be calculated as the sum of the carbon emitted by each floor multiplied by the 
proportion of the respective land use type. To determine the total carbon emissions 
within the study area, the carbon emissions for each cell are aggregated according 
to equation 7. 

 
𝑓𝑓2(𝒙𝒙) = min����𝐶𝐶𝑖𝑖𝑖𝑖
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In this context, 𝑁𝑁 denotes the total number of rows, where 𝑖𝑖 signifies the ith row, 𝑀𝑀 
represents the total number of columns, and 𝑗𝑗 represents the 𝑗𝑗th column. The 
variable 𝑘𝑘 pertains to the floor level within a building, while 𝐾𝐾 denotes the total 
number of floors. 𝐶𝐶𝑖𝑖𝑖𝑖

(𝑘𝑘) represents the carbon emissions attributed to the building 
located in cell (𝑖𝑖, 𝑗𝑗) on the kth floor, and 𝜇𝜇𝑖𝑖𝑖𝑖  signifies the weight assigned to the land 
use type. 

3.2.2.3 Maximization of the accessibility objective 
Maximizing the Accessibility objective in land use allocation is crucial for 
promoting equitable access to essential services, opportunities, and amenities for all 
members of society. Maximizing the Accessibility objective in land use allocation 
is essential for promoting social equity, enhancing mobility and connectivity, 
driving economic development, improving health and well-being, and fostering 
environmental sustainability. By prioritizing accessible and inclusive land use 
planning strategies, policymakers can create vibrant, resilient, and livable 
communities that offer opportunities and amenities for all residents, now and in the 
future. 

Ensuring accessibility within the built environment is essential for its intended and 
desired use. This objective function prioritizes the seamless access of residential 
areas to various non-residential public spaces, including parks, schools, and 
hospitals[5]. Accessibility, a commonly used metric for gauging ease of access to a 
location, fosters diverse use of public spaces, a key advantage in contemporary 
urban planning practices. In this study, we evaluate the accessibility of each 
residential cell to other land-use cells. 

For every residential cell 𝑖𝑖 and all other land uses cells 𝑗𝑗, we compute the weighted 
distances between them by multiplying the Euclidean distances between the cells by 
the weight of the respective land use 𝑗𝑗. Consequently, the total distance between 
each residential cell and cells of other land use types is calculated as the cumulative 
sum of distances from each residential cell 𝑖𝑖 to other land use cells. Therefore, this 
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objective function seeks to maximize accessibility by minimizing the total distance 
between residential cells and other land-use cells, as depicted in equation 8. 

 
𝑓𝑓3(𝒙𝒙) = min���𝑑𝑑𝑖𝑖𝑖𝑖 ∙ 𝑤𝑤𝑗𝑗
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In this context, the variable 𝑖𝑖 denotes residential cells, where 𝑁𝑁 stands for the total 
number of residential cells. The variable 𝑗𝑗 represents cells of other land uses, with 
𝑀𝑀 indicating the total number of cells pertaining to other land uses. The term 𝑑𝑑𝑖𝑖𝑖𝑖 
signifies the minimum distance between residential cell 𝑖𝑖 and land use cell 𝑗𝑗. 
Additionally, 𝑤𝑤𝑗𝑗 represents the weight assigned to the distance to the facility for the 
respective land use (see Table 2). 

3.2.2.4 Maximization of the space syntax integration objective 
By prioritizing well-connected and accessible urban spaces, planners can create 
vibrant, livable communities that offer opportunities and amenities for all residents 
while ensuring long-term resilience and adaptability to future challenges. 

Space syntax is an evidence-based approach centered on understanding the 
relationships between various spaces and the interactions between space and 
society. In space syntax analysis, axial lines are frequently utilized to represent 
urban structures, portraying the longest lines of sight within two-dimensional urban 
spaces. Global and local integration are two key morphological parameters often 
employed in axial line-based representations to analyze urban structure. Figure 4 
illustrates global and local integration in the study area. Integration quantifies the 
number of transitions required from one street segment to reach all other street 
segments in the network via the shortest paths. Ensuring the proximity of public 
facilities to streets is crucial in urban land use planning. 
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Figure 4: Space Syntaxe integration Measurement. Global integration represents the average 
integration value across all spaces in the configuration. It provides a holistic measure of the overall 
connectivity of the spatial network. Local integration quantifies the average segment depth of a 
particular space across its immediate neighbors or adjacent spaces. It provides a localized measure of 
connectivity within the spatial network. 

This objective function is designed to enhance the proximity between cells 
representing non-residential public facilities (such as markets and shops) and streets 
exhibiting high local integration values. To achieve this objective, we calculate the 
Euclidean distance between streets with high integration values and the nearest non-
residential land use types for each axial line segment 𝑖𝑖 with high integration and 
each cell 𝑗𝑗 representing a public facility. The distance between 𝑖𝑖 and 𝑗𝑗 corresponds 
to the Euclidean distance between the high-integration line segment and the public 
facility. Thus, the total distance between each high-integration line segment and 
each public facility cell is determined by summing the distances from each high-
integration line segment 𝑖𝑖 to all public facility cells. This process is outlined in 
equation 9. 

 
𝑓𝑓4(𝒙𝒙) = min���𝑑𝑑𝑖𝑖𝑖𝑖
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In this context, the variable 𝑖𝑖 denotes the axial line segment with high integration, 
where 𝑆𝑆 represents the total number of segments with high integration. The variable 
𝑗𝑗 represents a cell targeted for land use, specifically comprising public facilities, 
with 𝑁𝑁 representing the total number of cells for this land use target. The term 𝑑𝑑𝑖𝑖𝑖𝑖 
signifies the minimum distance from segment 𝑖𝑖 to the nearest cell 𝑗𝑗. 



56 

3.2.2.5 Maximization of the compactness objective 
Maximizing the Compactness objective in land use allocation is crucial for 
promoting efficient land utilization, sustainable development, and vibrant urban 
environments. Maximizing the Compactness objective in land use allocation is 
essential for promoting efficient land use, sustainable development, and vibrant 
urban environments. By prioritizing compact development patterns, planners can 
optimize land use efficiency, reduce infrastructure costs, promote sustainable 
transportation options, create vibrant urban centers, and preserve natural resources 
and ecosystems, fostering resilient and livable communities for current and future 
generations. 

The global trend of urbanization has led to environmental degradation, prompting 
the emergence of the compact city concept as a potential solution. Compact cities 
have been shown to offer significant advantages in terms of suitable urban form and 
sustainability. A fundamental principle of urban sustainability is that more compact 
urban forms are more efficient in their overall use of space and energy. This often 
translates into the construction of high-rise buildings with a focus on energy 
management in their outer envelopes. Compact cities also provide residents with all 
necessary amenities within one community, including work opportunities. Citizens 
employed in compact cities can walk or bike short distances to work instead of 
driving, thereby reducing fossil fuel consumption, emissions, pollutants, and traffic 
density. In essence, compactness suggests efficient land planning, high density of 
the built environment, and intensification of activities. 

The objective of this study is to maximize compactness for the sustainability of the 
city. We employ the basic eight-neighbor method to measure compactness. For each 
cell in the land use grid, we compute its ratio 𝛿𝛿𝑖𝑖𝑖𝑖, which represents the quotient 
between the number of neighboring cells with the same type and the total number 
of neighboring cells. Figure 5 illustrates examples of compactness calculation for 
different cells. The objective compactness is expressed as equation (10): 
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In this context, 𝛿𝛿𝑖𝑖𝑖𝑖 represents the ratio of cells allocated for the same land-use type 
in each cell's eight neighboring cells. Here, 𝑗𝑗 denotes the jth row, where 𝑁𝑁 is the 
total number of rows. Similarly, 𝑖𝑖 signifies the ith column, where 𝑀𝑀 represents the 
total number of columns. Additionally, 𝑇𝑇 denotes the total number of cells in the 
study area. 
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Figure 5: Example of Compactness Calculation 

3.2.3 Site Selection for Solar Power Farms (Paper 4) 
Renewable energies hold significant importance in addressing a variety of global 
challenges and contributing to the transition to a more sustainable and resilient 
energy system. The relevance of renewable energies extends across environmental, 
economic, social, and geopolitical dimensions, making these energies a crucial 
component of the global energy landscape as the world seeks sustainable and clean 
energy solutions.  

In this study, the focus lies on the critical role of renewable energies in addressing 
global challenges such as climate change, environmental pollution, energy security, 
and sustainable economic development. With society's increasing shift away from 
fossil fuels towards cleaner and more sustainable energy sources, renewable 
energies, e.g. solar power, continue to gain momentum. 

The study proposes a multi-objective optimization (MOO) model for the site 
selection of solar farms, aiming to maximize solar irradiation absorption while 
minimizing various factors such as distance to the electric grid, road networks, urban 
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areas, slope, and hill shadow aspect values. By optimizing these objectives, the goal 
is to identify optimal locations for solar farms. 

To achieve this, the study adapts the NSGA-II algorithm to fit the MOO model and 
optimize its performance. The improved algorithm is then utilized to generate 
optimal location maps for solar farms, providing decision-makers with a range of 
choices based on specific objective functions. 

The results demonstrate the efficiency and effectiveness of the improved algorithm, 
as evidenced by the high-quality Pareto front-set solutions obtained. The 
Hypervolume indicator is used to assess the quality of the solutions, indicating that 
the algorithm performs well in finding optimal solutions that balance multiple 
objectives. 

Overall, the methodology presented in the study offers a systematic approach to 
address the complex task of solar farm site selection through multi-objective 
optimization, providing valuable insights for decision-making in the renewable 
energy sector. 

Below we present the summary of objective functions for paper 4. 

3.2.3.1 Maximization of the Solar Radiation Objective 
Maximizing solar radiation in solar power farms is critical for optimizing energy 
production efficiency, economic viability, and environmental benefits. Solar 
radiation directly impacts the amount of energy solar panels can generate, making 
it essential to ensure optimal sunlight exposure. By maximizing solar radiation, solar 
power farms can increase energy output, leading to higher revenues and improved 
economic feasibility. Additionally, harnessing maximum solar radiation reduces 
reliance on fossil fuels, contributing to environmental sustainability by reducing 
greenhouse gas emissions and air pollution. Moreover, maximizing solar radiation 
enhances grid stability and reliability by diversifying the energy mix and promoting 
energy security by utilizing locally available renewable resources. Overall, 
prioritizing the maximization of solar radiation in solar power farms is vital for 
achieving sustainable energy production and mitigating the impacts of climate 
change. 

Solar radiation plays a crucial role in determining the efficiency and output of a 
solar farm, as it represents the sunlight that reaches the Earth's surface and can be 
converted into electricity through solar panels. Let 𝑅𝑅 denote a set of non-negative 
real numbers, while 𝑛𝑛 and 𝑚𝑚 represent sets of positive integer numbers. Define 
𝑅𝑅𝑛𝑛×𝑚𝑚 as the set of grid cells receiving solar irradiation over Maputo, and let 𝐸𝐸 ⊆
𝑅𝑅𝑛𝑛×𝑚𝑚 be a subset of cells irradiating over a photovoltaic power plant. The objective 
function, denoted by 𝑓𝑓1:𝐸𝐸 → 𝑅𝑅, defines the total amount of direct solar irradiation 
utilized in the photovoltaic power plant. Consider 𝑥𝑥 ∈ 𝐸𝐸, where 𝑥𝑥 = (𝑥𝑥𝑖𝑖𝑖𝑖  )𝑛𝑛×𝑚𝑚, and 
𝑥𝑥𝑖𝑖𝑖𝑖 represents the amount of direct solar irradiation over the 𝑖𝑖th and 𝑗𝑗th cell within 
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the photovoltaic power plant. If the cell (𝑖𝑖, 𝑗𝑗) does not contain a photovoltaic power 
plant, then the value of 𝑥𝑥𝑖𝑖𝑖𝑖 is zero. The total amount of direct solar irradiation can 
be expressed as equation (11): 

 
𝑓𝑓1(𝑥𝑥) = max���𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

�. (11) 

3.2.3.2 Minimization of the Distance to Electric Grid Objective 
Minimizing the distance from solar power farms to the electric grid holds significant 
importance for several reasons. Firstly, reducing this distance decreases 
transmission losses, as electricity traveling over long distances experiences greater 
energy loss. By minimizing the distance to the electric grid, solar power farms can 
maximize the efficiency of electricity transmission, ensuring that more of the energy 
generated reaches consumers. Secondly, minimizing the distance to the electric grid 
enhances grid stability and reliability. Solar power farms located closer to the grid 
can respond more quickly to fluctuations in electricity demand or supply, helping to 
balance the grid and prevent power outages. Thirdly, reducing the distance to the 
electric grid reduces the need for extensive infrastructure development, such as 
building new transmission lines or substations. This can lower the overall cost of 
solar power projects and accelerate their deployment, making renewable energy 
more accessible and affordable. Additionally, minimizing the distance to the electric 
grid can facilitate the integration of solar power into existing energy systems. Solar 
farms located nearby can more easily connect to the grid, allowing for smoother 
integration of renewable energy sources into the overall energy mix. Overall, 
minimizing the distance from solar power farms to the electric grid is essential for 
optimizing the efficiency, reliability, and cost-effectiveness of solar energy 
generation, ultimately advancing the transition to a more sustainable and resilient 
energy infrastructure. 

Consider 𝐸𝐸1 ⊆ 𝑅𝑅𝑛𝑛×𝑚𝑚, representing a set comprising all suitable locations for solar 
energy sites, where 𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼 ∈ 𝐸𝐸1 denotes the suitable location for solar energy site 𝛼𝛼. 
Let 𝐸𝐸2 ⊆ 𝑅𝑅𝑛𝑛×𝑚𝑚 be a set representing electric grids in Maputo, with 𝑥𝑥𝑖𝑖𝑖𝑖

𝛽𝛽 ∈ 𝐸𝐸2 
denoting electric line 𝛽𝛽. Here, 𝐸𝐸1 ∩ 𝐸𝐸2 = 𝜙𝜙 and 𝐸𝐸 = 𝐸𝐸1 ∪ 𝐸𝐸2. Define 𝑓𝑓2:𝐸𝐸 → 𝑅𝑅 as 
the objective function, which determines the total distance between suitable 
locations for solar energy and electric grid lines, where 𝑑𝑑1 represents the minimum 
distance between the electric grid and the solar power plant. Thus, the total distance 
function to the electric grid is expressed as Equation (12): 



60 

 𝑓𝑓2(𝑥𝑥) = min�����𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼 − 𝑥𝑥𝑘𝑘𝑘𝑘
𝛽𝛽 �

𝑙𝑙𝑘𝑘𝑗𝑗𝑖𝑖

, (12) 

where  �𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼 − 𝑥𝑥𝑘𝑘𝑘𝑘
𝛽𝛽 � is the Euclidian distance between 𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼  and 𝑥𝑥𝑘𝑘𝑘𝑘

𝛽𝛽 , and min �𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼 −

𝑥𝑥𝑘𝑘𝑘𝑘
𝛽𝛽 � ≥ 𝑑𝑑1, for all 𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼 ∈ 𝐸𝐸1and all 𝑥𝑥𝑘𝑘𝑘𝑘

𝛽𝛽 ∈ 𝐸𝐸2 . 𝑑𝑑1 is the minimal distance allowed 
between the power solar farms and the electric grid. 

3.2.3.3 Minimization of the Distance to Road Objective 
Minimizing the distance from solar power farms to road networks is crucial for 
several reasons. Firstly, reducing this distance streamlines transportation logistics 
during the construction phase of solar power projects. Shorter distances to road 
networks minimize transportation costs and facilitate the delivery of equipment, 
materials, and manpower to the construction site, thus expediting project completion 
and reducing overall construction expenses. Secondly, minimizing the distance to 
road networks enhances operational efficiency and maintenance activities. Closer 
proximity to roads allows for easier access to solar arrays for routine inspections, 
repairs, and equipment replacement. This accessibility reduces downtime and 
ensures uninterrupted energy production, maximizing the reliability and 
performance of solar power farms. Thirdly, shorter distances to road networks 
facilitate grid connection and electricity transmission. Solar power farms located 
near roads can more efficiently connect to the electrical grid, reducing the need for 
extensive infrastructure development and associated costs. Additionally, closer 
proximity to roads simplifies the installation of power lines and substations, 
streamlining the process of delivering solar-generated electricity to consumers. 
Moreover, minimizing the distance from solar power farms to road networks 
enhances emergency response capabilities. In the event of unforeseen incidents such 
as equipment failures or natural disasters, quick access to road networks enables 
rapid deployment of emergency personnel and equipment to the site, minimizing 
downtime and mitigating potential disruptions to energy production. Overall, 
minimizing the distance from solar power farms to road networks is essential for 
optimizing construction efficiency, operational effectiveness, grid integration, and 
emergency response readiness. By strategically locating solar facilities close to road 
infrastructure, stakeholders can enhance the overall performance and resilience of 
solar energy projects, advancing the transition to a more sustainable and reliable 
energy future. 

Consider 𝐸𝐸1 ⊆ 𝑅𝑅𝑛𝑛×𝑚𝑚 representing a set comprising all suitable locations for solar 
energy sites, where 𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼 ∈ 𝐸𝐸1 denotes the suitable location for solar energy site 𝛼𝛼. 
Let 𝐸𝐸2 ⊆ 𝑅𝑅𝑛𝑛×𝑚𝑚 be a set representing road networks in Maputo, with 𝑥𝑥𝑖𝑖𝑖𝑖

𝛽𝛽 ∈ 𝐸𝐸2 
denoting road line 𝛽𝛽. Here, 𝐸𝐸1 ∩ 𝐸𝐸2 = 𝜙𝜙 and 𝐸𝐸 = 𝐸𝐸1 ∪ 𝐸𝐸2. Define 𝑓𝑓3:𝐸𝐸 → 𝑅𝑅 as the 
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objective function, which determines the total distance between suitable locations 
for solar power farms and roads. Thus, the total distance function is expressed as 
equation (13): 

 𝑓𝑓3(𝑥𝑥) = min�����𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼 − 𝑥𝑥𝑘𝑘𝑘𝑘
𝛽𝛽 �

𝑙𝑙𝑘𝑘𝑗𝑗𝑖𝑖

, (13) 

where �𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼 − 𝑥𝑥𝑘𝑘𝑘𝑘
𝛽𝛽 � is the Euclidian distance between 𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼  and 𝑥𝑥𝑘𝑘𝑘𝑘

𝛽𝛽 , and min �𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼 −

𝑥𝑥𝑘𝑘𝑘𝑘
𝛽𝛽 � ≥ 𝑑𝑑2, for all 𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼 ∈ 𝐸𝐸1and all 𝑥𝑥𝑘𝑘𝑘𝑘

𝛽𝛽 ∈ 𝐸𝐸2  . 𝑑𝑑2 is the minimum distance allowed 
between the power solar farms and the closest road. 

3.2.3.4 Minimization of the Distance to Urban area 
Minimizing the distance between solar power farms and residential areas carries 
significant importance for several reasons. Firstly, reducing this distance helps 
mitigate potential concerns related to land use conflicts and aesthetic impacts. By 
locating solar farms closer to residential areas, stakeholders can minimize the visual 
and environmental impacts associated with large-scale solar installations, 
preserving the aesthetic appeal of the surrounding landscape and minimizing 
community opposition to renewable energy projects. Secondly, minimizing the 
distance to residential areas enhances the economic feasibility and attractiveness of 
solar energy adoption. Proximity to residential communities reduces transmission 
losses and infrastructure costs associated with delivering electricity from solar farms 
to consumers, making solar energy more cost-effective and accessible to local 
residents. Additionally, closer proximity to residential areas encourages community 
engagement and participation in renewable energy initiatives, fostering a sense of 
ownership and support for sustainable energy development. Thirdly, reducing the 
distance to residential areas promotes distributed generation and energy self-
sufficiency. Locating solar power farms near residential communities enables 
residents to directly benefit from clean energy generation, potentially reducing their 
dependence on centralized power grids and fossil fuel-based electricity sources. 
This decentralization of energy production enhances energy resilience, reduces 
vulnerability to grid outages, and empowers communities to take control of their 
energy future. Moreover, minimizing the distance from solar power farms to 
residential areas can stimulate local economic development and job creation. Solar 
energy projects located near residential communities provide opportunities for local 
employment, subcontracting, and procurement, stimulating economic activity and 
generating revenue for local businesses and municipalities. Overall, minimizing the 
distance from solar power farms to residential areas is essential for enhancing 
community acceptance, economic viability, energy resilience, and environmental 
sustainability. By strategically locating solar installations closer to residential 
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communities, stakeholders can maximize the benefits of solar energy while 
minimizing potential drawbacks, accelerating the transition to a cleaner, more 
sustainable, energy future. 

Solar power plants can generate noise, such as that from inverters, and may have 
visual impacts. To mitigate these effects on nearby residences, minimum distances 
can be established. Consider 𝐸𝐸1 ⊆ 𝑅𝑅𝑛𝑛×𝑚𝑚 as a set encompassing all suitable locations 
for solar energy sites, where 𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼 ∈ 𝐸𝐸1 denotes the suitable location for solar energy 
site 𝛼𝛼. Let 𝐸𝐸2 ⊆ 𝑅𝑅𝑛𝑛×𝑚𝑚 represent all urban areas in Maputo, with 𝑥𝑥𝑖𝑖𝑖𝑖

𝛽𝛽 ∈ 𝐸𝐸2 being the 
suitable location for solar energy site β. Here, 𝐸𝐸1 ∩ 𝐸𝐸2 = 𝜙𝜙 and 𝐸𝐸 = 𝐸𝐸1 ∪ 𝐸𝐸2. We 
define 𝑓𝑓4:𝐸𝐸 → 𝑅𝑅 as the objective function, which determines the total distance 
between suitable locations for solar energy and urban areas, where 𝑑𝑑3 represents the 
minimum distance between the residential area and the solar power plant. Thus, the 
total distance function is expressed as equation (14): 

 𝑓𝑓4(𝑥𝑥) = min�����𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼 − 𝑥𝑥𝑘𝑘𝑘𝑘
𝛽𝛽 �

𝑙𝑙𝑘𝑘𝑗𝑗𝑖𝑖

 (14) 

where  �𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼 − 𝑥𝑥𝑘𝑘𝑘𝑘
𝛽𝛽 � is the Euclidian distance between 𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼  and 𝑥𝑥𝑘𝑘𝑘𝑘

𝛽𝛽 , and min �𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼 −

𝑥𝑥𝑘𝑘𝑘𝑘
𝛽𝛽 � ≥ 𝑑𝑑3, for all 𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼 ∈ 𝐸𝐸1and all 𝑥𝑥𝑘𝑘𝑘𝑘

𝛽𝛽 ∈ 𝐸𝐸2. 𝑑𝑑3 is the minimal distance allowed 
between the power solar farm to the urban area (habitational infrastructures). 

3.2.3.5 Minimization of the Slope Objective 
Minimizing slope in a location for solar power farms is crucial for optimizing energy 
production efficiency and reducing operational challenges. Firstly, a flat terrain 
allows for optimal orientation and positioning of solar panels, maximizing their 
exposure to sunlight throughout the day. By minimizing slope, solar panels can 
capture sunlight more effectively, resulting in higher energy yields and increased 
electricity generation. Secondly, flat terrain simplifies the installation and 
maintenance of solar arrays. Solar panels are typically mounted on fixed structures 
or tracking systems that require level ground for proper installation and operation. 
Minimizing slope reduces the need for costly site preparation and grading, 
streamlining the construction process and minimizing project expenses. Thirdly, flat 
terrain facilitates the deployment of equipment and machinery required for 
construction and maintenance activities. Access roads, construction vehicles, and 
heavy machinery can navigate flat terrain more easily, reducing transportation costs 
and minimizing logistical challenges associated with rugged or uneven terrain. 
Moreover, minimizing slope enhances the stability and durability of solar 
installations. Flat terrain provides a stable foundation for mounting structures, 
reducing the risk of structural failure or damage due to uneven ground conditions, 
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erosion, or landslides. This enhances the reliability and longevity of solar power 
farms, ensuring consistent energy production over the lifetime of the project. 
Overall, minimizing slope in a location for solar power farms is essential for 
optimizing energy production, reducing construction and maintenance costs, 
facilitating project logistics, and enhancing the reliability and durability of solar 
installations. By selecting sites with minimal slope, stakeholders can maximize the 
efficiency and effectiveness of solar energy projects, contributing to the transition 
to a cleaner, more sustainable, energy future. 

A solar farm's location should prioritize minimal shading and optimal sunlight 
exposure for efficient energy capture. In this context, the Digital Elevation Model 
(DEM) slope becomes relevant. Slope indicates the terrain's steepness or incline at 
a specific site, typically measured in degrees or as a percentage (rise over run). For 
solar power plant placement, areas with relatively flat or low slopes are preferred, 
as they facilitate easier installation of solar panels and maximize sun exposure. 
Conversely, high slopes can pose challenges during panel installation, potentially 
necessitating additional structural support. Moreover, steeper slopes may impede 
solar panel efficiency by obstructing direct sunlight for prolonged periods.  Consider 
𝑅𝑅 as a set of non-negative real numbers, and 𝑛𝑛 and 𝑚𝑚 as sets of positive integers. 
Let 𝑅𝑅𝑛𝑛×𝑚𝑚 represent the set of grid cells covering Maputo's slope, and 𝐸𝐸 ⊆ 𝑅𝑅𝑛𝑛×𝑚𝑚 
denote a set of cells containing suitable land for a solar site. Define 𝑓𝑓5:𝐸𝐸 → 𝑅𝑅 as the 
objective function determining the total amount of slope utilized in a photovoltaic 
power plant. Here, 𝑥𝑥 ∈ 𝐸𝐸 and 𝑥𝑥 = (𝑥𝑥𝑖𝑖𝑖𝑖 )𝑛𝑛×𝑚𝑚, where 𝑥𝑥𝑖𝑖𝑖𝑖 represents the slope over 
the cell  (𝑖𝑖, 𝑗𝑗) within the photovoltaic power plant. If the 𝑖𝑖th and 𝑗𝑗th cells do not 
contain suitable land for a solar site, 𝑥𝑥𝑖𝑖𝑖𝑖 is set to zero. The total slope utilized across 
all photovoltaic power plants is expressed as equation (15): 

 
𝑓𝑓5(𝑥𝑥) = min���𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

�. (15) 

3.2.3.6 Maximization of the Aspect Objective 
Maximizing aspect in a location for solar power farms is vital for optimizing energy 
production and maximizing the efficiency of solar panels. Aspect refers to the 
direction that a slope faces, which directly influences the amount of sunlight 
received by solar panels throughout the day. Selecting sites with favorable 
orientations, ensures that solar panels receive maximum sunlight exposure, leading 
to higher energy yields and increased electricity generation. By maximizing aspect, 
solar power farms can capitalize on the sun's movement across the sky, maximizing 
the amount of sunlight captured by solar panels at different times of the day. This 
results in more consistent and reliable energy production, reducing variability and 
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enhancing the predictability of solar energy generation. Furthermore, selecting sites 
with favorable aspect can improve the performance of solar panels and optimize 
their efficiency. Solar panels operate most efficiently when they are directly facing 
the sun, known as being "south-facing" in the northern hemisphere and "north-
facing" in the southern hemisphere. Maximizing aspect ensures that solar panels are 
oriented towards the sun for a greater portion of the day, maximizing their energy 
output and overall performance. Additionally, maximizing aspect can help mitigate 
shading effects caused by nearby obstructions such as trees, buildings, or terrain 
features. By selecting sites with favorable aspect, solar power farms can minimize 
shading and ensure uniform sunlight exposure across the entire solar array, 
maximizing energy production and reducing the risk of efficiency losses. Overall, 
maximizing aspect in a location for solar power farms is essential for optimizing 
energy production, maximizing efficiency, and enhancing the reliability and 
performance of solar installations. By selecting sites with favorable orientations and 
maximizing aspect, stakeholders can maximize the benefits of solar energy and 
contribute to the transition to a cleaner, more sustainable, energy future. 

Aspect refers to the compass direction that a slope faces, typically measured in 
degrees from north (e.g., 0° for north, 90° for east, 180° for south, and 270° for 
west) [37]. It significantly influences the amount of sunlight received by a location 
throughout the day. Solar panels are most efficient when facing south (in the 
Northern Hemisphere) or north (in the Southern Hemisphere) to capture the 
maximum direct sunlight. Optimizing a solar power plant's aspect involves aligning 
solar panels to maximize exposure to the sun. Consider 𝑅𝑅 as a set of non-negative 
real numbers, and 𝑛𝑛 and 𝑚𝑚 as sets of positive integers, let 𝑅𝑅𝑛𝑛×𝑚𝑚 represent the set of 
grid cells covering Maputo's aspect, and 𝐸𝐸 ⊆ 𝑅𝑅𝑛𝑛×𝑚𝑚 denote a set of cells irradiating 
over a photovoltaic power plant. Define 𝑓𝑓6:𝐸𝐸 → 𝑅𝑅 as the objective function 
determining the total amount of direct solar irradiation utilized in a photovoltaic 
power plant. Here, 𝑥𝑥 ∈ 𝐸𝐸 and 𝑥𝑥 = (𝑥𝑥𝑖𝑖𝑖𝑖 )𝑛𝑛×𝑚𝑚, where 𝑥𝑥𝑖𝑖𝑖𝑖 represents the amount of 
direct solar irradiation over the cell (𝑖𝑖, 𝑗𝑗) for a solar energy site. If the cell (𝑖𝑖, 𝑗𝑗) is 
not suitable for solar energy sites, 𝑥𝑥𝑖𝑖𝑖𝑖is set to zero. The total aspect is expressed as 
Equation (16): 

 
𝑓𝑓6(𝑥𝑥) = max���𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

�. (16) 
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3.3 Metaheuristic Methods on MOO 
In this subsection, we give detailed descriptions of the methods used in this thesis, 
from MOO techniques to the tools for analyzing the quality of solutions in spatial 
problems. Integrating multi-objective optimization with spatial analysis in 
Geographic Information Systems (GIS) involves combining the capabilities of 
optimization algorithms with spatial data to find optimal solutions considering 
multiple conflicting objectives in a spatial context. When integrating multi-
objective optimization with spatial analysis in GIS, it is essential to carefully define 
the objectives, constraints, and spatial relationships to ensure the relevance and 
feasibility of the solutions obtained. The choice of method depends on the specific 
problem domain and the nature of the spatial data involved. 

The integration of the Multi-Objective Cuckoo Search Algorithm (MOCSA), 
Archive Multi-Objective Simulated Annealing (AMOSA), Multi-Objective 
Artificial Bee Colony (MOABC), Multi-Objective Particle Swarm Optimization 
(MOPSO), Non-Dominated Sorting Genetic Algorithm-II (NSGA-II), and Non-
Dominated Sorting Genetic Algorithm-III (NSGA-III) with spatial analysis in GIS 
results in synergizing the optimization capabilities of each algorithm with spatial 
data and analyses. These integrated approaches enable a comprehensive analysis, 
taking into account both the multi-objective optimization goals and the spatial 
context. This integration facilitates more informed decision-making across various 
domains where spatial considerations play a pivotal role. 

Figure 6 provides a general architecture for solving Spatial MOO problems using 
metaheuristic algorithms involves considerations specific to spatial domains. The 
architecture consists of three domains, the intelligence domain, the design domain 
and post-processing domain. The intelligence domain consists of three steps. The 
first step comprises the Spatial Problem formulation, which defines the spatial MOO 
problem, incorporating location-based decision variables and spatial constraints. In 
addition, it specifies spatial objectives that capture the spatial distribution or 
arrangement of solutions. The second step comprehends the algorithm selection for 
spatial problem that choose a metaheuristic algorithm suitable for spatial 
optimization. Algorithms like Spatial Genetic Algorithms (SGA), Spatial Particle 
Swarm Optimization (SPSO), or Spatial Differential Evolution (SDE) may be 
appropriate. The third step of the intelligence domain comprises the spatial 
encoding, which develops an encoding scheme that considers the spatial nature of 
the decision variables. Spatial coordinates, distances, or neighborhood relationships 
might be encoded based on the problem requirements. 
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Figure 6: A General Architecture for Spatial MOO problems using metaheuristics algorithms, adapted 
from [122] 

The design domain consists of eight steps. The first step comprises the spatial 
initialization, which generates an initial population of spatial solutions. It considers 
the spatial relationships and constraints during the initialization process. The second 
step comprehends the spatial objective function evaluation that evaluates spatial 
objective functions considering spatial characteristics. This may involve analyzing 
patterns, distributions, or connectivity in addition to traditional optimization 
metrics. The third step is the spatial dominance ranking, this applies Pareto 
dominance criteria with consideration of spatial relationships. It identifies spatially 
non-dominated solutions that form the Pareto front. The spatial selection step selects 
solutions for reproduction based on dominance ranking and spatial considerations. 
It gives preference to solutions that exhibit favorable spatial characteristics. The 
spatial crossover and mutation steps implement spatially-aware genetic operators to 
generate new solutions. These operators should respect spatial constraints and 
relationships. The spatial objective-function evaluation step evaluates the spatial 
objective functions for the newly generated offspring, considering spatial patterns 
and distributions. The spatial survivor selection step combines parent and offspring 
populations, and selects solutions for the next generation considering spatial 
dominance and spatial diversity. The spatial termination criteria step defines 
stopping criteria, such as a maximum number of generations or reaching a specific 
spatial convergence level. 

The post-processing domain consists of four steps. The first step comprises the 
spatial results analysis, which analyzes the spatial characteristics of the obtained 
Pareto front. It evaluates the spatial trade-offs between conflicting objectives and 
identifies spatially efficient solutions. The second step is the spatial visualization, 
which visualizes the Pareto front and spatial characteristics to facilitate decision-
making. Spatial plots, maps, or graphs may be used for effective visualization. The 
spatial validation and sensitivity analysis step validates results considering spatial 
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aspects and performs sensitivity analysis to assess robustness concerning variations 
in spatial parameters and the spatial parameter tuning step, and fine-tunes algorithm 
parameters, especially those related to spatial considerations, to improve 
performance on specific spatial MOO instances. 

The described architecture highlights the spatial aspects that should be integrated 
into each stage of solving spatial MOO problems using metaheuristic algorithms. 
The specific details may vary based on the chosen algorithm and the characteristics 
of the spatial optimization problem. 

3.3.1 Multi-objective Cuckoo Search Algorithm 
The Multi-Objective Cuckoo Search Algorithm (MOCSA) was developed as an 
extension of the original Cuckoo Search Algorithm. MOCSA is tailored to tackle 
optimization problems with multiple conflicting objectives simultaneously. It offers 
a robust solution approach, generating a diverse set of solutions that capture trade-
offs among different criteria. At its core, MOCSA operates by iteratively updating 
cuckoo solutions' positions using Levy flights, a stochastic movement pattern akin 
to the foraging behavior of cuckoo birds. This enables exploration and exploitation 
of the solution space while maintaining diversity. Solutions undergo dynamic 
selection, replacement, and adaptation processes, mirroring cuckoos' nesting 
behavior. A crucial aspect of MOCSA is its fitness evaluation, where solutions are 
assessed based on multiple conflicting objectives. The algorithm aims to identify 
Pareto-optimal solutions that represent the best trade-offs among these criteria. 
Through iterative exploration, MOCSA dynamically adjusts the solution 
population, favoring solutions contributing to the Pareto front—a set of non-
dominated solutions where no solution is superior in all objectives. MOCSA strikes 
a balance between exploration and exploitation, offering decision-makers a 
comprehensive view of trade-offs in multi-objective optimization problems. Its 
versatility and effectiveness in navigating complex landscapes make it valuable 
across various domains, where balancing multiple objectives is paramount for 
informed decision-making. 

The standard MOCS algorithm was formulated for tackling continuous optimization 
problems characterized by multi-objective functions [6]. In order to address discrete 
multi-objective optimization problems, certain adjustments were introduced to the 
original MOCS framework. Previous research endeavors have applied MOCS with 
the specific aim of identifying optimal Pareto solutions [7, 8]. Additionally, some 
studies have explored the hybridization of MOCS with other optimization 
algorithms, aiming to enhance the overall performance of MOCS [9–11]. The 
MOCS optimization algorithms incorporate three essential parameters: Probability 
to abandon the worst nest(𝑝𝑝𝑎𝑎), this parameter determines the likelihood of 
abandoning the least promising solution; Non-negative step size (𝛼𝛼), represents a 
non-negative step size that needs to be tailored to the scale of the problem. In most 
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cases, it exceeds one. For evacuation planning problems, the step size is specifically 
related to the current solution 𝑥𝑥𝑡𝑡; Random step length (𝜆𝜆),  is a crucial parameter in 
the optimization process [12]. During the generation of new solutions 𝑥𝑥𝑖𝑖

(𝑡𝑡+1) for a 
given cuckoo, a Lévy flight is employed. A Lévy flight characterizes a random walk, 
where the steps are defined in terms of a step length. This length is distributed 
according to a heavy probability distribution, and the direction of the steps is both 
isotropic and random. The procedure is executed as presented in Equation 17: 

 𝑥𝑥𝑖𝑖
(𝑡𝑡+1) = �𝑥𝑥𝑖𝑖

(𝑡𝑡) + 𝛼𝛼⨁𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝜆𝜆)�%(1 + 5), (17) 

where ⨁ means entry wise multiplication, and % is the modulus arithmetic operator, 
and this returns the remainder of the division of each vector component by (1 + 5) 
to guarantee that every entry wise is between zero and five. Moreover, there is a 
probability 𝑝𝑝𝑎𝑎 that the worst nests may be abandoned, allowing for the construction 
of new nests at different locations through a process of random walks and mixing. 
This can be achieved by randomly permuting the solutions based on their similarity 
or difference to the host egg. 

3.3.2 Archive Multi-Objective Simulated Annealing Algorithm 
AMOSA finds applications in diverse domains like engineering, finance and 
environmental management, where decision-makers must navigate trade-offs 
among conflicting objectives. At its core, AMOSA begins by generating an initial 
solution within the search space and evaluating it using multiple objective functions. 
An archive is then initialized to store non-dominated solutions, representing those 
not surpassed by any other solutions across all objectives. Through simulated 
annealing iterations, AMOSA explores neighboring solutions, evaluating their 
fitness based on the multi-objective criteria and accepting or rejecting them using 
the Metropolis criterion. The algorithm dynamically adjusts its exploration-
exploitation balance by gradually reducing the temperature parameter, controlling 
the likelihood of accepting worse solutions. This temperature reduction encourages 
exploration of the solution space early on and focuses on promising regions as the 
algorithm progresses. AMOSA maintains an archive of non-dominated solutions 
throughout the process, ensuring a diverse representation of the Pareto front. The 
algorithm iterates until a termination criterion is met, such as reaching a maximum 
number of iterations or a predefined temperature threshold. By orchestrating a 
dynamic interplay between exploration and exploitation, AMOSA effectively 
navigates complex optimization landscapes, offering decision-makers a 
comprehensive view of trade-offs among conflicting objectives. 

In Paper 1, the AMOSA algorithm underwent an extension from the principles of 
simulated annealing to address problems with multiple objectives. This extension 
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primarily revolves around the methodology for calculating the probability of 
accepting an individual 𝑥𝑥0 when 𝑓𝑓(𝑥𝑥0) is dominated concerning 𝑓𝑓(𝑥𝑥). The 
acceptance of novel solutions hinges on the probability derived from assessing the 
degree of dominance between two solutions, denoted as 𝑎𝑎 and 𝑏𝑏, in the following 
manner, expressed in Equation (18): 

 
∆𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎,𝑏𝑏 = � (|𝑓𝑓𝑖𝑖(𝑎𝑎) − 𝑓𝑓𝑖𝑖(𝑏𝑏)|/𝑅𝑅𝑖𝑖)

𝑀𝑀

𝑖𝑖=1,𝑓𝑓𝑖𝑖(𝑎𝑎)≠𝑓𝑓𝑖𝑖(𝑏𝑏)

 (18) 

where 𝑀𝑀 = number of objectives and 𝑅𝑅𝑖𝑖 is the range of the 𝑖𝑖th objective. A new 
solution is selected based on the probability computed with the following equation 
(19): 

 𝑝𝑝𝑞𝑞𝑞𝑞 =
1

1 + 𝑒𝑒−
𝐸𝐸(𝑞𝑞,𝑇𝑇)−𝐸𝐸(𝑠𝑠,𝑇𝑇)

𝑇𝑇

, (19) 

where 𝑞𝑞 is the current state and 𝐸𝐸(𝑠𝑠,𝑇𝑇) and 𝐸𝐸(𝑞𝑞,𝑇𝑇) are the corresponding energy 
values of 𝑠𝑠 and 𝑞𝑞, respectively [13]. Equations (18) and (19) were employed for the 
selection and sorting of non-dominated solutions within the archive. The algorithm 
concludes when the cooling process reaches the pre-defined low temperature and 
the maximum number of iterations is achieved. 

3.3.3 Multi-Objective Artificial Bee Colony Algorithm 
The Multi-Objective Artificial Bee Colony Algorithm (MOABC) is a bio-inspired 
optimization technique modeled after the foraging behavior of honeybee colonies. 
Developed to tackle problems with multiple conflicting objectives, MOABC 
orchestrates a collaborative and dynamic search for Pareto-optimal solutions. At its 
core, MOABC initializes a population of artificial bees, each representing a 
potential solution within the problem's search space. These bees embody candidate 
trade-offs among the multiple objectives under consideration. The algorithm 
employs three types of artificial bees: employed bees, onlooker bees, and scout bees. 
Employed bees explore the search space by exploiting their current solutions and 
iteratively improving them through local search mechanisms. Onlooker bees 
evaluate solutions communicated by employed bees, favoring those that contribute 
to the Pareto front. Scout bees ensure diversity in the search space by discovering 
new solutions in uncharted regions, preventing premature convergence to 
suboptimal solutions. Fitness evaluation is pivotal in MOABC, involving assessing 
each solution's performance based on multiple conflicting objectives. The algorithm 
aims to discover a set of solutions collectively forming the Pareto front, where no 
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solution is superior in all aspects. Through iterative cycles, the artificial bees 
dynamically explore, share information, and adapt their solutions. MOABC strikes 
a balance between exploration and exploitation, enabling it to navigate complex 
landscapes with diverse trade-offs. The algorithm continues this dynamic 
exploration until meeting a termination criterion, such as reaching a maximum 
number of iterations or achieving a satisfactory Pareto front. MOABC emerges as a 
robust optimization tool, leveraging the collective intelligence observed in nature to 
address challenges posed by multi-objective optimization problems. Its 
collaborative and adaptive approach suits domains where decision-makers must 
navigate trade-offs among conflicting objectives, such as engineering design, 
finance, and resource allocation. 

In MOABC, the representation of the bee population is analogous to the depiction 
in Figure 7. In the initial phase of the algorithm, a set of scout bees is initialized, 
where each bee represents a food source in the form of an array. 

 

Figure 7: An example of coding of a solution. The indices of the list represent the number of 10 building 
blocks while elements from 1 to 3 represent shelters. In this example, a population of 4 solutions is 
randomly generated. 

The array size corresponds to the number of building blocks and consists of 10 
repeated indices, each representing one of the 10 shelters. Following the 
initialization and fitness evaluation, the superior solutions are stored in an external 
archive (a new list). Since this archive houses the best solutions identified thus far, 
each employed bee 𝑥𝑥𝑖𝑖𝑖𝑖 selects a solution randomly from the archive to update itself, 
becoming 𝑣𝑣𝑖𝑖𝑖𝑖. . The update of the solution is carried out through the following 
equations (20 and 21): 

 𝑣𝑣𝑖𝑖𝑖𝑖  =  𝑥𝑥𝑖𝑖𝑖𝑖  +  𝑤𝑤 ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[0, 1](𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑘𝑘𝑘𝑘), (20) 

 
𝑝𝑝𝑖𝑖 =

𝑓𝑓(𝑋𝑋𝑖𝑖)
∑ 𝑓𝑓�𝑋𝑋𝑗𝑗�𝑛𝑛
𝑗𝑗=1

 (21) 

where 𝑖𝑖 represents the food source which is going to be updated, 𝑘𝑘 ∈ {1, 2, … , 𝑏𝑏𝑏𝑏𝑏𝑏}, 
and 𝑑𝑑 ∈ {1, 2, … ,𝐷𝐷} are randomly chosen indexes. The coefficient 𝑤𝑤 is used to 
control the influence of the food source 𝑘𝑘 in the production of the new food source. 

Following the assessment of the fitness of employee bees and the update of the 
archive with the best solutions, a roulette wheel selection method is employed to 



71 

choose onlooker bees for the subsequent generation. The roulette wheel method 
selects an individual based on the probability 𝑝𝑝𝑖𝑖, determined by calculating the ratio 
of individual fitness 𝑓𝑓(𝑥𝑥𝑖𝑖) to the total fitness of the population 𝑛𝑛, as outlined in 
Equation (20). Both employed bees and onlooker bees execute a neighborhood 
search using the expression in Equation (19) [14]. 

3.3.4 Multi-Objective Particle Swarm Optimization Algorithm 
The Multi-Objective Particle Swarm Optimization (MOPSO) algorithm is a 
captivating narrative inspired by the collective behavior observed in nature, 
particularly in the swarming patterns of birds and fish. It extends the traditional 
Particle Swarm Optimization (PSO) to address problems with multiple conflicting 
objectives, belonging to the class of population-based optimization algorithms. 
Envision a bustling swarm of particles navigating a vast multidimensional search 
space, driven by the collective quest for optimal solutions that balance conflicting 
objectives. The algorithm begins with the genesis of a vibrant particle swarm, with 
each member representing a potential solution within the landscape. As the 
algorithm unfolds, each particle's fitness is evaluated against multiple conflicting 
objectives. In this dynamic swarm, particles celebrate personal achievements 
through personal best solutions (pbest) while collectively striving for excellence 
represented by the global best solution (gbest). The heart of the MOPSO algorithm 
lies in the fluid and adaptive movement of particles, informed by past directions, 
personal insights, and global achievements. Pareto dominance adds complexity to 
the evaluation process, where solutions are judged not only on individual merits but 
also in relation to each other. The algorithm maintains exploration vitality, 
preventing premature convergence and fostering a broad representation of potential 
solutions. Iteratively, the swarm dances through the solution space until a 
predetermined termination criterion signals the conclusion. The journey's end 
reveals an ensemble of non-dominated solutions forming the Pareto front, providing 
decision-makers with a nuanced palette of alternatives to consider. MOPSO 
transcends computational processes, embodying collaboration, exploration, and 
discovery. Through its bio-inspired design, it navigates decision-making scenarios, 
offering harmonious solutions where conflicting objectives find resolution in the 
intricate dance of the swarm. 

In the MOPSO algorithm applied in this research, the search space comprises every 
conceivable arrangement of all building blocks assigned to any potential shelter, 
with each arrangement considered as a potential particle. The MOPSO algorithm 
seeks a particle location that satisfies the two defined objective functions related to 
evacuation planning. Here, a particle is synonymous with a solution and is initially 
set randomly (see Figure 8). It is worth noting that the SPSO algorithm was 
originally devised for continuous spaces and real numbers, whereas our problem 
space is discrete. To address this, a rounded value method was implemented to map 
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between the discrete problem space and the continuous space. Specifically, the 10 
shelters are randomly associated with integer values ranging from 1 to 10. The real 
values generated from updating the positions of particles (particle movements) are 
rounded to obtain integer values within the range of 1 to 10. Figure 6 illustrates an 
example of an initial particle in continuous space transformed into discrete space 
after a particle position update.  

 

Figure 8: An example of MSPSO particle mapped in continuous space and remapped in discrete 
space. 

3.3.5 Non-Dominated Sorting Genetic Algorithm-II 
The Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) is a powerful and 
widely used optimization algorithm designed to address multi-objective 
optimization problems. It belongs to the family of evolutionary algorithms and is an 
extension of the original NSGA algorithm. NSGA-II was introduced by Deb et al. 
[15] in 2002. NSGA-II has proven to be effective in solving complex optimization 
problems with multiple conflicting objectives and is widely applied in various 
fields, including engineering, finance, and operations research. 

In manuscript 4, we elucidate the adaptation of our model for implementation in 
NSGA-II. This evolutionary algorithm is specifically designed for addressing multi-
objective optimization problems, wherein the task involves optimizing multiple 
conflicting objectives simultaneously. NSGA-II is a Python-based framework, 
taking advantage of the object-oriented programming paradigm [16]. In object-
oriented programming, a class serves as an extensible program-code-template for 
creating objects. It provides initial values for state (member variables) and 
implementations of behavior (member functions or methods) [17]. To tailor our 
model for integration with NSGA-II, we define a class called "Model," inheriting 
the properties and methods [18] of the NSGA-II class named "ElementWise." The 
"Model" class encapsulates the logical definition of all objective functions and 
constraints [19]. To generate a sample of random individuals, we introduce a class 
named "RandomIntegerSample," inheriting from the NSGA-II class 
"PermutationRandomSampling." We override the method in 
"PermutationRandomSampling" with our own logic to generate individuals that are 
in proximity to the solution. The process of generating the initial population holds 
significant importance as it accelerates the performance of the algorithm and ensures 
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the creation of individuals that are not entirely random but rather close to the 
solution. In our approach, two crossover operators are employed: the one-point 
crossover and the two-point crossover operators. These operators play a crucial role 
in combining genetic information during the evolution of the population. 

Following are the key steps for the implementation: 

Step 1. Initialization: Generate a population of 50 individuals, and potential 
solutions using the class "RandomIntegerSample." 

Step 2. Evaluation: Assess the fitness of each individual concerning multiple 
objectives. In multi-objective optimization, the goal is to identify a set of solutions 
representing a trade-off between conflicting objectives. 

Step 3. Non-dominated sorting: Categorize individuals into different fronts based 
on their dominance relationship. An individual dominates another if it is equal or 
superior in all objectives and strictly superior in at least one objective. Higher fronts 
consist of individuals that are non-dominated by those in lower fronts. 

Step 4. Crowding distance assignment: Assign a crowding distance to individuals 
within each front. The crowding distance measures how crowded an individual is 
within its front, aiding in maintaining diversity in the population. 

Step 5. Sorting and selection: Sort individuals based on their front and crowding 
distance. Individuals in less crowded regions of higher fronts are given preference 
for the next generation. 

Step 6. Crossover and mutation: Apply genetic operators such as crossover and 
mutation to create offspring from the selected individuals. Utilize the one-point 
crossover and two-point crossover operators. 

Step 7. Replacement: Combine the offspring with the parent population, creating a 
new population. Maintain the population size by selecting individuals based on non-
dominated sorting and crowding distance. 

Step 8. Termination criteria: Iterate through these steps until a termination criterion 
is met. The predefined criterion is a specified number of generations, set at 50 in 
this case. 

3.3.6 Non-Dominated Sorting Genetic Algorithm-III 
The Non-Dominated Sorting Genetic Algorithm-III (NSGA-III) is an extension of 
the NSGA-II and is designed to address many-objective optimization problems, 
where the number of objectives is significantly larger than 2. Developed by 
Kalyanmoy Deb and Himanshu Jain [24], NSGA-III maintains the principles of 
non-dominated sorting, diversity preservation, and Pareto dominance while 
introducing enhancements to handle a larger number of objectives more efficiently. 
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NSGA-III includes innovation and adaptation, where solutions evolve through 
environmental selection, guided by reference points, to unveil a Pareto front that 
captures the intricate nuances of many-objective optimization problems. Its 
contribution to the optimization narrative lies in its ability to effectively handle 
scenarios with a multitude of conflicting objectives, providing decision-makers with 
valuable insights into trade-offs and compromises. 

NSGA-III stands as a robust algorithm designed for addressing Multi-Objective 
Optimization (MOO) problems with efficiency, navigating and approximating the 
Pareto front through non-dominated sorting and reference points. This algorithm 
yields a diverse set of high-quality solutions, empowering decision-makers to make 
well-informed choices aligned with their preferences across various objectives. In 
paper 3, the procedural steps of NSGA-III, depicted in Figure 9, commence with 
population initialization based on the specified problem range and constraints. 

 
Figure 9: The procedure of NSGA III 
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Subsequently, a sorting process based on non-domination criteria is applied to the 
initialized population. Upon completion of the sorting, crowding distance values are 
assigned front-wise. The selection of individuals from the population is then 
executed based on their rank and crowding distance, employing a binary tournament 
selection mechanism with a crowded-comparison operator. The real-coded genetic 
algorithm integrates simulated binary crossover and polynomial mutation as genetic 
operators [136]. 

NSGA-III amalgamates the offspring population with the existing generation 
population, determining the individuals of the subsequent generation through a 
selection process. This cycle continues until the population size surpasses the 
current population size. In the context of this study, enhancements are made to 
NSGA-III, specifically focusing on mutation and crossover operations while 
adhering to constraints associated with the sizes of distinct land use types. The land 
use types, outlined in Table 1, exhibit varying sizes—ranging from one cell for 
residential areas to four cells for fire services and twenty cells for urban areas. 
Notably, the space syntax analysis guides the recommendation to establish public 
facilities in cells with high integration. 

Despite public facilities having ten cells each, this study emphasizes that there is no 
mandatory requirement to group these cells based on the distribution of cells with 
high integration. A significant challenge in the optimization of land use allocation 
lies in ensuring the completeness of land use types comprising more than one cell 
throughout the optimization process. 

3.3.6.1 Constraint-preserved mutation operation 
Mutation involves altering the structure of a gene, resulting in a variant form that 
may be passed down to offspring. This alteration can be attributed to changes in the 
gene sequence, or the deletion, insertion, or rearrangement of larger sections of 
genes or chromosomes [20]. The purpose of mutations is to introduce diversity into 
solutions by modifying genes within the chromosome. Mutation operators play a 
crucial role in generating offspring with favorable characteristics. In the realm of 
spatial mutations, various operators, such as the two-step spatial mutation, are 
employed to foster solution diversification and prevent entrapment in local optima, 
ultimately promoting the compactness of land use. In consideration of the specified 
constraints, a constraint-preserved mutation operation approach has been devised. 
Given the existence of eight land use types in this study, each land use type is 
assigned a probability of 0.125 for selection. Notably, since the residential land use 
type comprises a single cell per unit, all mutation operations are exclusively 
conducted between the residential land use type and the remaining seven types. 
When a land use type other than residential is selected, it is reallocated to the nearest 
available space containing residential cells. This meticulous approach ensures that 
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each mutation operation strictly adheres to the predefined constraints regarding the 
sizes of various land use types. 

3.3.6.2 Constraint-preserved crossover operation 
Crossover, a key process in genetic algorithms, involves exchanging segments 
between paired homologous chromosomes [21]. During the execution of a genetic 
algorithm, a crossover operation generates a novel combination of genes by 
swapping genes between different chromosomes, guided by a specific or adaptive 
probability. Given that land use types, excluding residential, consist of more than 
one cell, the conventional practice of swapping genes poses a risk of disrupting the 
completeness of certain land use types. In paper 3, we enhance the traditional 
crossover operator to safeguard against this constraint. Specifically, our improved 
crossover operator adopts a strategy to maintain the integrity of land use types. In 
each crossover operation, units of land use types are randomly selected from both 
parent chromosomes. If the selected units share the same land use type, the new 
offspring is generated through the crossover. However, if the units represent 
different land use types, the neighboring cells of the chosen land use unit from 
parent 1 are considered until the completion of the crossover operation. This 
meticulous approach ensures that the crossover process respects the predefined 
constraint related to the completeness of land use types. 

3.4 Hypervolume 
Hypervolume is a performance metric commonly used in multi-objective 
optimization to assess the quality of a set of solutions. It provides a quantitative 
measure of the volume of the objective space that is dominated by a particular set 
of solutions, often referred to as a Pareto front. The concept of Hypervolume is 
particularly useful for comparing different Pareto fronts and evaluating the 
effectiveness of various algorithms in generating diverse and well-distributed 
solutions. Hypervolume serves as a valuable tool in multi-objective optimization, 
offering a quantitative measure of the quality and diversity of solutions on the Pareto 
front. It provides decision-makers with insights into the trade-offs among 
conflicting objectives and aids in algorithm selection and performance comparison. 
The strengths of Hypervolume lie in its quantitative measure, global assessment 
capabilities, and objective comparison. However, challenges include sensitivity to 
reference points and a potential lack of intuitiveness. Opportunities include 
integration with other metrics and algorithm benchmarking, while threats involve 
algorithm-specific performance variations and the complexity of interpretation. 

The methodology presented by Zitzler et al. [129] focuses on designing quality 
measures for approximations of the Pareto-optimal set, crucial for assessing 



77 

performance and developing multi-objective optimizers. They highlight the 
Hypervolume measure for its desirability, noting its tendency to favor convex, inner 
portions of the objective space. To address this, they introduce a methodology for 
designing quality measures based on the Hypervolume measure, effectively 
accommodating various decision-maker preferences. Guerreiro et al. [104] delve 
into the significance of the Hypervolume indicator as a widely used metric for 
assessing stochastic multi-objective optimizers and guiding evolutionary 
algorithms. They emphasize its strong theoretical properties, particularly its strict 
monotonicity concerning set dominance. The study extensively explores the 
computation of Hypervolume-related problems, providing insights into their 
interrelations and evaluating primary algorithms based on computational efficiency. 
Blonder et al. [130] highlight the pivotal role of the Hutchinsonian Hypervolume 
[22] across ecological and evolutionary studies but note challenges with existing 
methods in handling high-dimensional or holey datasets. They introduce a novel 
multivariate kernel density estimation method to overcome these hurdles, 
demonstrating its performance through comparative analysis. This practical solution 
enables the quantification of high-dimensional ecological Hypervolumes, 
complementing theoretical discussions with a concrete computational approach. 
Collectively, these methodologies contribute to advancing our understanding and 
utilization of Hypervolume-based metrics in multi-objective optimization and 
ecological studies. They cover conceptual, computational, and practical aspects, 
offering a comprehensive approach to address. 

3.5 Repeatability analysis 
Repeatability analysis, often referred to as test-retest reliability, is a statistical 
method used to assess the consistency or stability of measurements or experimental 
results over repeated trials. This type of analysis is crucial in various fields, 
including psychology, medicine, engineering, and social sciences, to ensure that 
measurements or observations are reliable and can be trusted for making inferences 
or decisions. Repeatability analysis is a valuable tool for assessing the consistency 
of measurements or experimental results, providing insights into the reliability of 
data and the robustness of measurement instruments or experimental procedures. It 
is valuable for benchmarking, identifying trends, and optimizing processes. 
However, limitations include potential sensitivity to initial conditions and the need 
for careful interpretation of variability. Opportunities lie in process optimization and 
quality assurance, while threats involve the risk of misinterpreting variability and 
resource-intensive implementation [23]. 
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3.6 Sensitivity Analysis 
Sensitivity analysis is a systematic study conducted to evaluate how the variation or 
uncertainty in the input parameters of a system or model influences the output or 
outcomes. It is a crucial tool in decision-making processes, risk assessment, and the 
optimization of models across various domains, including finance, engineering, 
environmental science, and healthcare. The primary goal is to identify which input 
parameters have the most significant impact on the model's results and to understand 
the robustness of the model and reliability. Sensitivity analysis is a versatile and 
powerful tool that provides valuable insights into the behavior of models and 
systems under different scenarios. It is widely used to enhance decision-making 
processes, improve model reliability, and manage uncertainties in complex systems. 
Sensitivity analysis is a powerful tool for identifying critical factors, assessing risk, 
and guiding optimization efforts. It provides opportunities for scenario planning and 
model improvement. However, its dependency on assumptions and limitations in 
accounting for unknown factors pose weaknesses. The threats involve the risk of 
overlooking interactions and uncertainties in input data. 

In their respective studies, both Seo et al. [24] and Yang et al. [25] address 
optimization challenges in electromagnetic analysis and design methodologies. Seo 
et al. [24]focus on design sensitivity in the context of the multi-objective benchmark 
testing electromagnetic analysis methods (TEAMs) problem. They employ the 
material derivative concept of shape sensitivity analysis and a gradient-based 
algorithm, replacing original objective functions with definite integral forms to 
handle minimax problems. Their approach is validated through comparison with 
finite-difference numerical sensitivities and single-objective optimization results, 
demonstrating the validity of modified objectives for the benchmark problem. 

On the other hand, Yang et al. [25] propose a novel implementation of sensitivity 
analysis alongside an enhanced Tabu search algorithm for optimal design in 
electromagnetic devices using the finite-element method (FEM). They introduce a 
direct sensitivity formulation, facilitating calculation of sensitivity versus design 
variables from FEM results, which is expected to be well-received by industrial 
users due to its efficiency. Additionally, sensitivity analysis guides search 
performance during optimization, with further enhancements such as a transition 
criterion for different current states and the use of a Tabu list with a binary space 
partitioning tree to accelerate the discovery of the global optimum. They provide 
optimal design examples to illustrate the effectiveness and advantages of their 
algorithm in practical engineering applications. 
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3.7 The Kruskal-Wallis test 
The Kruskal-Wallis test is a non-parametric statistical test used to determine 
whether there are statistically significant differences between the medians of two or 
more independent groups. It is an extension of the Mann-Whitney U test, which is 
used for comparing two independent groups. The Kruskal-Wallis test is applicable 
when the data do not meet the assumptions required for parametric tests, such as 
normality or homogeneity of variances. Instead of analyzing the raw data values, 
the Kruskal-Wallis test ranks the data from all groups combined and compares the 
distributions of these ranks across the different groups. 

To conduct the Kruskal-Wallis test, we follow a series of steps to analyze the data 
and determine if there are significant differences between the central tendencies of 
multiple groups. 

First, we start by ranking the data. This involves combining the data from all groups 
and arranging the values from lowest to highest. In cases where there are ties (i.e., 
two or more data points with the same value), we assign them the average rank. This 
ranking process ensures that each data point is represented fairly within the 
combined dataset. Next, we proceed to calculate the rank sums for each group. By 
summing the ranks of the data points within each group, we obtain a measure of the 
central tendency for that particular group. This step provides insight into the overall 
distribution of values within each group and helps us understand their relative 
positions compared to one another. With the rank sums calculated, we move on to 
the calculation of the test statistic (H). This statistic, known as H, is computed based 
on the rank sums and the sample sizes of the groups. Essentially, H measures the 
degree of difference between the groups' rank sums. Larger values of H indicate 
greater disparities in the central tendencies among the groups. Once we have 
calculated H, we proceed to determine the critical value or p-value. This involves 
comparing the calculated test statistic (H) to a critical value from the Kruskal-Wallis 
distribution or converting it into a p-value. If the calculated test statistic exceeds the 
critical value or if the p-value is less than the chosen significance level (typically α 
= 0.05), then there is evidence to reject the null hypothesis. This suggests that at 
least one group differs significantly from the others in terms of their central 
tendencies. Finally, we arrive at the interpretation stage. If the null hypothesis is 
rejected, it signifies that there are significant differences between the central 
tendencies of the groups. However, the Kruskal-Wallis test does not specify which 
specific groups exhibit these differences. To identify such pairwise distinctions, 
additional post-hoc tests may be necessary. 

The Kruskal-Wallis test provides a rigorous framework for assessing differences in 
central tendencies across multiple groups. By following these steps, researchers can 
gain valuable insights into the variability within their data and make informed 
decisions about group comparisons. The Kruskal-Wallis test is a non-parametric 
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alternative to the analysis of variance (ANOVA) for comparing the central 
tendencies of multiple groups. It is robust against violations of normality and 
homogeneity assumptions and is widely used in situations where these assumptions 
cannot be met. 
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4 Findings and Discussion 

The findings and discussion chapter in "Multi-objective Optimization and GIS to 
Improve Climate Change Induced Disaster Risk Management in Africa" presents a 
comprehensive analysis of the research outcomes and their implications for 
enhancing disaster risk management in the face of climate change challenges across 
the African continent. Through the integration of multi-objective optimization 
techniques and Geographic Information Systems (GIS), this study aims to address 
the complex and dynamic nature of climate change-induced disasters, providing 
valuable insights for policymakers, practitioners, and stakeholders involved in 
disaster risk reduction efforts. In this chapter, we delve into the key findings derived 
from the application of multi-objective optimization algorithms within the GIS 
framework, highlighting the effectiveness of these approaches in identifying 
optimal strategies for mitigating disaster risks. Furthermore, we discuss the 
implications of these findings in the context of African countries, considering the 
unique socio-economic, environmental, and institutional contexts prevalent in the 
region. Through a critical examination of the results, we explore potential pathways 
for integrating these innovative approaches into existing disaster risk management 
practices, fostering resilience and sustainability in the face of escalating climate-
related challenges. This chapter serves as a platform for dialogue and knowledge 
exchange, facilitating the development of evidence-based policies and strategies to 
safeguard communities and ecosystems vulnerable to climate change-induced 
disasters across Africa. 

This thesis cover evacuation planning, urban land use allocation, and site selection 
for renewable energies. The first two papers deal with evacuation planning; the third 
paper encompasses urban land use allocation, and the fourth paper cover the site 
selection for renewable energies.  

Multi-Objective Optimization (MOO) stands as a linchpin in urban planning, 
fostering sustainable development and bolstering urban resilience across various 
domains. In urban evacuation planning, MOO solutions are instrumental in Optimal 
Route Planning, where they discern evacuation routes that minimize time, maximize 
evacuee numbers, and mitigate shelter congestion. Similarly, in Urban land use 
allocation, MOO facilitates the Balancing of Land Use Objectives, optimizing space 
allocation amidst conflicting aims like maximizing residential area while 
minimizing environmental impact. Moreover, in urban site selection for renewable 
energies, MOO guides Optimizing Resource Utilization, aiding in selecting sites 
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that maximize energy output while minimizing environmental impact. Across these 
domains, MOO offers a comprehensive decision-making approach, adeptly 
considering multiple conflicting objectives concurrently. This enables urban 
planners to make informed choices, striking a balance between various factors and 
fostering the creation of resilient, sustainable, and livable urban environments. 

4.1 Comparison of metaheuristic algorithms (AMOSA, 
MOABC, NSGA-II, and MSPSO) 

It is often recommended to conduct experiments and comparisons using benchmark 
problems or a representative subset of actual problem to observe how each algorithm 
performs under specific conditions [142, 143]. Selecting the best metaheuristic 
among AMOSA, MOABC, MSPSO, and NSGA-II depends on the specific 
characteristics of optimization problem, as well as the goals and requirements we 
have for the optimization process. Each metaheuristic has its strengths and 
weaknesses, and their performance can vary based on the nature of the problem at 
hand. In Paper I, we applied the metaheuristic algorithms in an emergency 
evacuation-planning problem, whose aim was to minimize both the total traveled 
evacuation distance and the total shelters overload. The efficiency of the four 
algorithms was evaluated in terms of convergence speed and execution time using 
the Kruskal–Wallis test. Convergence speed, measured by fitness variation, 
illustrates how the algorithm approaches the optimum solution over iterations, while 
execution time indicates the algorithm's running speed. The p-values obtained from 
the Kruskal–Wallis test indicated a highly significant difference in convergence 
speed (fitness variation rate) among the algorithms for both objective functions 
[118]. 

In Figure 10, a boxplot illustrates the average execution time across the four 
algorithms. A careful examination of the box plots reveals that NSGA-II emerges 
as the fastest algorithm in terms of execution time when compared to the remaining 
three. Zavala et al. [144], in a comparative study of metaheuristic algorithm 
evaluation, employed the multi-box plot chart to assess the quality of the Optimal 
Pareto front set. They utilized the multi-box plot chart of the Hypervolume indicator, 
which simultaneously evaluates both convergence and maximum spread. 
Additionally, they found that NSGA-II outperformed other algorithms in certain test 
problems. 

This observation highlights a crucial insight: while AMOSA excels in terms of 
convergence speed, as evidenced by its superior fitness variation, it does not 
necessarily translate to the shortest execution time. The boxplot underscores that the 
algorithm with a high convergence speed may not always be the one with the 
swiftest execution time. Notably, the execution time is primarily influenced by 
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factors such as the size of the population and the number of iterations. The research 
conducted by Ceja-Cruz et al. [145] demonstrates that AMOSA surpasses NSGA-II 
in both efficiency and the quality of the Pareto front. This highlights the dependence 
of the performance of an algorithm on the specific characteristics of the problem 
being addressed. 

 

Figure 10: Variation mean of the execution time of 30 runs. The outlier symbols (°, *) represent extreme 
values in data set of each method. 

These findings emphasize the importance of considering multiple performance 
metrics when evaluating the efficiency of optimization algorithms. The trade-off 
between convergence speed and execution time is a critical aspect in algorithm 
selection, and the specific requirements of the optimization problem should guide 
the choice of the most suitable algorithm for a given scenario. In addition, these 
findings indicate that the algorithms significantly differ in their convergence speeds, 
particularly when optimizing the capacity function. The observed distinctions 
underscore the importance of selecting an algorithm that aligns with the specific 
characteristics and requirements of the optimization problem at hand. The 
convergence speed and execution time analyses provide valuable insights into the 
relative performance of the algorithms, aiding in informed decision-making during 
the optimization process. 

Studies showed that AMOSA is effective for multi-objective optimization 
problems, especially in continuous spaces. It can handle complex and non-linear 
objective functions [146, 147]. MOABC is inspired by the foraging behavior of bees 
and is efficient for multi-objective optimization with good exploration capabilities 
[148, 149]. Both AMOSA and MOABC are sensitive to parameter settings, and the 
performance may depend on the problem characteristics [150, 151]. MSPSO is 
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efficient for continuous and discrete optimization problems and provides a good 
balance between exploration and exploitation. NSGA-II is widely used and well-
established algorithm for multi-objective optimization [152]. 

4.2 IMOCS for Emergency Evacuation Planning 
The Multi-Objective Cuckoo Search (MOCS) algorithm, like any optimization 
algorithm, comes with its own set of advantages in addressing multi-objective 
optimization problems and is inspired by efficient natural processes, it is important 
to be mindful of its sensitivity to parameters and potential challenges with certain 
problem types. Studies performed by Ab Wahab et al. and Weise et al. [153, 154] 
recommended to conduct thorough experimentation and benchmarking to assess its 
suitability for specific optimization tasks. In Paper II, we adapted the MOCS, 
originally tailored for continuous problems, to tackle integer problems, specifically 
discrete problems. To address these discrete problems, we employed an improved 
version of the MOCS, wherein necessary modifications were introduced to tailor it 
to the emergency evacuation-planning problem. 

In this research, the implementation of the Multi-Objective Cuckoo Search (MOCS) 
utilized the Distributed Evolutionary Algorithm in Python (DEAP) framework. The 
primary objective was to determine the optimal number of shelters to be established. 
The mathematical model underlying this approach aims to minimize the number of 
shelters, and additional objectives pertain to path lengths as well as the risks 
associated with paths and shelter locations. In the context of a multi-objective 
problem, the absence of a single best solution is acknowledged, and the focus shifts 
to optimal solutions, specifically non-dominated (efficient, or Pareto-optimal) 
solutions. This paradigm allows for a comprehensive exploration of trade-offs 
among multiple conflicting objectives. 

Figure 11 illustrates a comparison between the standard Multi-Objective Cuckoo 
Search (MOCS) depicted in dark red and the improved MOCS represented in steel 
blue. Both algorithms underwent 500 generations, revealing that the computation 
time (measured in minutes) for the improved MOCS is shorter than that of the 
standard MOCS. This efficiency gain in computation time can be attributed to the 
improved MOCS's approach of applying crossover and mutation operators to 
enhance the selected best solution, resulting in the generation of new individuals for 
the subsequent generation. Additionally, the utilization of Levi's flights for 
generating individuals contributes to the improved computation time. While, Meng 
et al.[155] introduced the Improved Multi-Objective Cuckoo Search (IMOCS) 
algorithm to address the limitations of the existing MOCS algorithm. They 
incorporated novel strategies such as constraint-based population initialization 
using the Individual Constraints and Group Constraints technique (ICGC) and 
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dynamic adaptive probability (DAP) to enhance search efficiency and solution 
quality. Additionally, a Flock Search Strategy (FSS) was introduced to expedite 
convergence and improve the quality of non-dominated solutions. The study 
compared IMOCS with MOCS and NSGA-II. The results in Meng et al. [155] 
revealed that IMOCS outperformed other algorithms in terms of convergence speed, 
convergence property, and solution diversity. These findings highlight the efficacy 
of IMOCS in overcoming the limitations of existing algorithms and its suitability 
for solving complex optimization problems. 

Our convergence analysis suggests that the IMOCS achieves better solutions more 
efficiently, further supporting its effectiveness in optimizing the underlying multi-
objective problem. Similar results, about efficiency and effectiveness of the 
IMOCS,  were found by Othman et al. [156]. 

 

Figure 11: Comparison of computation time between the standard MOCS and the improved MOCS. 

In this study, the Hypervolume indicator was used to evaluate the performance of 
the IMOCS against the standard Multi-Objective Cuckoo Search (MOCS) in terms 
of Pareto front quality [157]. As mentioned in the previous chapter, the 
Hypervolume indicator is a widely used measure that assesses the quality of an 
approximated Pareto front, by calculating the size of the space enclosed by all 
solutions on the Pareto front concerning a user-defined reference point. Liang et al. 
[158] devised an indicator-based MOCS algorithm by incorporating enhanced 
diversity enhancement (IDE) and adaptive scaling factor (ASF) techniques tailored 
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for MOPs and carried out a similar use of the Hypervolume indicator. Their 
algorithm utilized Hypervolume as the indicator to enhance convergence and 
population dispersion. IDE strategically selects areas with significant Hypervolume 
to reconstruct the parent population, mitigating issues related to population 
diversity[158]. Comparative evaluations against state-of-the-art multi-objective 
evolutionary algorithms confirmed the efficacy and efficiency of the proposed 
approach. 

For the Hypervolume indicator, only a reference point needs to be provided, and it 
measures the volume dominated by the given set of solutions concerning this 
reference point [159]. Unlike other performance indicators that require a target set, 
Hypervolume only needs a reference point. The comparison of Hypervolume 
values, as presented in Figure 12, indicates that the Improved MOCS algorithm 
achieves a higher Hypervolume than the standard MOCS algorithm. This result 
suggests that IMOCS exhibits superior performance compared to MOCS, 
particularly in terms of Pareto front quality. 

 

Figure 12: Hypervolume convergence analysis, (left) for different number of generations, (right) for 
different population size. The blue plot depicts the Hypervolume of the IMOCS, while the red plot 
illustrates the Hypervolume of the Standard MOCS. Both plots demonstrate an increase corresponding 
to the growth in both the number of generations and the population size. 
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4.3 Improved NSGA-III for Urban Land Use Allocation 
Utilizing an improved Non-dominated Sorting Genetic Algorithm III (NSGA-III) 
for Land Use Allocation (LUA) in a Multi-Objective Optimization (MOO) 
framework can provide a robust and informed approach to urban planning, taking 
into account the diverse and often conflicting objectives associated with land use in 
urban areas. A MOO approach employing an improved version of NSGA-III for 
LUA involves optimizing multiple conflicting objectives to make informed 
decisions about the allocation of land for different uses in an urban area. 

In this thesis, we employed the Python Multi-Objective Optimization (PYMOO) 
framework to implement NSGA-III. PYMOO, a dedicated Python library for multi-
objective optimization, offers comprehensive tools for visualizing the Pareto front 
and assessing trade-offs between objectives using matplotlib [160] and other 
plotting libraries. The outcome of our analysis involves determining the optimal 
allocation of the eight land use types in the study area by considering five objective 
functions: minimizing carbon emissions, maximizing population capacity, 
maximizing total income, ensuring high accessibility, and achieving high 
compactness. It is important to note that in multi-objective optimization problems, 
there is not a singular "best" solution; instead, we obtain a set of optimal solutions. 
An optimal solution is characterized as non-dominated (efficient or Pareto-optimal), 
where no other solution is superior in all objectives. Each run in the multi-objective 
optimization process yields a non-dominated set of solutions, facilitating 
comparisons between different sets. 

For the analysis of convergence, we utilized the widely recognized performance 
indicator known as Hypervolume [108]. So, to conduct the analysis, we employed 
the Hypervolume package from R software. This package constructs the 
Hypervolume using various methods, including box-kernel density estimation, 
Gaussian kernel density estimation, or one-class support vector machine, after 
performing error-checking on input data [161]. Additionally, the dominated portion 
of the objective space can be utilized to gauge the quality of non-dominated 
solutions [162].  

Figure 13 presents a comparison between the standard and improved NSGA-III in 
terms of the Hypervolume indicator. The Hypervolume values are normalized for 
both the standard and improved NSGA-III to ensure a range between 0 and 1 for a 
more effective comparison. The observation from the figure reveals that the Pareto 
front generated by the improved NSGA-III exhibits a higher Hypervolume, 
indicating superior trade-offs among conflicting objectives. Moreover, the quality 
of solutions consistently improves with the progression of generation numbers, and 
the improved NSGA-III maintains its superiority in terms of solution quality in the 
land-use allocation problem studied here. 
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Figure 13: Comparison of the Hypervolume indicators of the improved NSGA-III (Blue) and standard 
NSGA-III (Orange) in a land-use allocation problem. 

In this study we also performed a performance comparison between the standard 
NSGA-III (represented by the orange line) and the improved NSGA-III (depicted 
by the blue line) concerning computation time, as illustrated in Figure 14. Both 
algorithms were executed for 500 generations. It is evident from the graph that the 
computation time (measured in hours) for the improved NSGA-III is consistently 
lower than that of the standard NSGA-III across different generations. Furthermore, 
as the number of generations increases, the growth rate of computation time for the 
improved NSGA-III is notably slower compared to the standard NSGA-III. 

 

Figure 14: Comparison between the improved (blue) and standard (orange) NSGAIII in terms of 
computation time in a land-use allocation problem. 
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The land use allocation study of the Kamavota district utilizes an optimization 
approach to generate planning support scenarios [163]. This approach allows for 
quantitative trade-off analysis and accommodates diverse user preferences, resulting 
in various optimized solutions. The optimal solution reflects a balanced 
consideration of multiple objectives, contributing to an inclusive and multi-modal 
accessible district with transformed transportation options. Figure 15 shows the 
optimal land use allocation according to the objective function preference. 

 
Figure 15: Optimal maps in a land-use allocation problem preferring one of the objective functions.. (a) 
preferred economic income, (b) preferred carbon emission, (c) preferred accessibility, (d) preferred 
space syntax integration, and (e) preferred compactness. 

4.4 NSGA-II solar farms site selection 
In optimization problems of site selection for power solar farms using multiple 
objectives, the Pareto front comprises solutions that are not dominated by any other 
solution in all objectives. Dominance occurs when a solution is equal to or better 
than another solution in all objectives and strictly better in at least one objective. In 
site selection for power solar farms, the objective is to find solutions that strike a 
balance between conflicting objectives, as enhancing one may lead to a decline in 
another [59]. Before, the analysis of the optimal pareto front set, it is important to 
note that pymoo framework by default, only deals with minimization problems. So, 
the maximization problems to be solved using pymoo need to be transformed to 
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minimization problem. In this context, e.g. Figure 16(S16) provides the lowest 
values of the total direct solar radiation and the total aspect. This apparent 
contradiction is due to the fact of solving the site selection solar power farms 
problem as minimization problem while some objective functions are to be 
maximized. 

For example, if decision-makers prioritize maximizing total solar radiation, they 
may opt for the solution depicted in Figure 16(S3), which offers the highest value 
for total solar radiation while maintaining an optimal total aspect value. Conversely, 
if minimizing total distance and total slope are the main concerns, the solution 
illustrated in Figure 16(S4) might be favored, as it prioritizes these objectives. 

Solutions that exhibit similar preference levels across all objective functions can 
also be identified, such as those shown in Figure 16(S41), Figure 16(S43), and 
Figure 16(S49). These solutions allocate nearly equal importance to each objective 
function and may be suitable when decision-makers have balanced priorities across 
all objectives. Figure 16 displays the optimal Pareto front using Petal diagrams, also 
known as radial plots or flower diagrams. These diagrams visualize values in a 
circular manner, featuring "petals" or "arms" radiating from a central point. Each 
petal corresponds to a different category or variable, with its length or area 
proportionate to the value of that category. Petal diagrams are effective for 
presenting multivariate data, allowing easy comparison of variable magnitudes 
across different categories. The circular layout provides a comprehensive view of 
the data, enabling the observation of patterns by examining petal lengths or areas. 
Widely used in diverse fields, such as biology and market research, Petal diagrams 
offer a visually engaging means to convey complex information and relationships 
[164]. 
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Figure 16: Optimal Pareto front set for site selection for solar power farms problem, where 𝑓𝑓1 – total 
solar radiation, 𝑓𝑓2 – Total distance to grid, 𝑓𝑓3 – total distance to street, 𝑓𝑓4 – total distance to city, 𝑓𝑓5 – 
total slope, and 𝑓𝑓6 – total aspect. 𝑆𝑆𝑆𝑆, 𝑖𝑖 = 1,2,3, … ,50 represents each optimal solution into optimal 
Pareto front set. Each colour represents the normalized value of the corresponding objective function. 

Similar studies represented the optimal Pareto front using Radar plots and Parallel 
Coordinate plots. El-Shorbagy et al. [165] utilized radar plots, also known as spider 
charts or web charts, to visualize multi-objective optimization problems and the 
Pareto front. These plots represent optimal solutions, with each axis corresponding 
to an objective, and points closer to the outer edge indicating better performance. Bi 
and Wang [166] employed Parallel Coordinate Plots to represent the Optimal Pareto 
front, offering another effective visualization method. These plots analyze the 
distribution of solutions across different objective ranges, providing insights into 
solution density and trade-offs. 

Optimal solution map offers the most effective spatial arrangement for locating solar 
power farms. However, in multi-objective optimization, the optimal solution, 
known as Pareto Optimal, entails conflicting objectives. This implies that 
prioritizing certain objective functions comes at the expense of others. In Figure 17, 
the map illustrates the spatial distribution of optimal locations for solar power farms. 
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In this scenario, we assume that decision-makers prioritize maximizing total solar 
radiation while optimizing the overall aspect, as depicted in optimal Pareto solution 
A. This prioritization entails less emphasis on total distance to the grid, street, 
residential infrastructures, and slope. The map not only highlights the optimal 
locations for constructing solar power farms but also incorporates other land use 
resources such as protected areas. These protected areas designate land not 
designated for solar farms. 

 

Figure 17: Optimal map and its corresponding preferred objective. The red color in the map represents 
the optimal location for solar power farms preferring the maximum total solar irradiation. The Petal 
diagram represents the optimal solution giving importance to the total solar radiation and the total 
Aspect. 

Figure 18 showcases a map delineating the optimal placement of sites for solar 
power farms. Each red area denotes a location identified as optimal for such farms. 
These selections are made according to optimization criteria that prioritize 
minimizing the total distance to the grid, street, residential areas, and slope. The red 
pixels representing optimal Pareto solution B indicate a reduced emphasis on 
maximizing total solar radiation and aspect compared to other considerations. This 
suggests that while solar radiation and aspect are taken into account, they are not 
given primary importance in the decision-making process. In summary, the map 
visually presents the most suitable locations for solar power farms, factoring in 
various elements such as proximity to infrastructure and topographical 
characteristics, as delineated in optimal Pareto solution B. 
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Figure 18: Optimal map and its corresponding preferred objective. The red color in the map represents 
the optimal location for solar power farms preferring the minimum total distance to electric grid. The 
Petal diagram represents the optimal solution giving high importance to the total distance to the electric 
grid and to the total slope. 
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5 Conclusions 

In this chapter, we summarize and provide the conclusions of the thesis and they are 
divided into three sections. The first section covers conclusions regarding practical 
contribution to society or humanity. The second section encompasses contributions 
to the science in the field of evacuation planning and urban planning with 
methodological developments and conceptual contributions, and the last section, of 
the conclusions, covers the future direction of the research. 

In Paper I, the first research objective has been satisfied by assessing the efficacy of 
four standard metaheuristic algorithms to solve an optimization problem with two 
objective functions, for evacuation planning. This research was further developed 
in Paper II by incorporating three objective functions, and solving the problem using 
an enhanced MOCS algorithm.  So paper 2 has contribution in responding both 
objectives 1 and 2. Paper III proposes an approach for determining a sustainable and 
resilient land use allocation, using an improved NSGA-III algorithm that is in line 
with objective 3. Paper 4 proposes an improved NSGA-II for optimum solar farms 
site selection that satisfies objective 4. 

5.1 Practical Contributions 
The metaheuristic methods, including the presented ones, are designed to discover 
not a 'single perfect solution' but a set of 'good enough' solutions where all satisfy a 
trade-off between the desired objectives. It is important for decision-makers to 
recognize this characteristic when assessing the benefits and limitations of these 
techniques. The improved Multi-Objective Cuckoo Search (IMOCS) algorithm 
emerged as a more promising solution compared to the standard Multi-Objective 
Cuckoo Search (MOCS) for problem instances of varying sizes of the initial 
population or number of generations. Notably, IMOCS demonstrated a favorable 
balance between solution quality and computational time. 

The research findings offer valuable insights into optimizing emergency evacuation 
routes and shelter utilization while minimizing the total traveling risk for evacuees. 
The proposed mathematical model and heuristic algorithms can serve as practical 
tools for the National Institute for Disaster Management, enhancing the efficiency 
of emergency evacuation routes and shelters, mitigating risks during evacuations, 
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and reducing travel distances. These decision support tools are anticipated to 
enhance the overall effectiveness of emergency evacuation processes, ensuring the 
safety of evacuees, including vulnerable population groups. 

The focus of Paper III is to develop a Multi-Objective Optimization (MOO) model 
aimed at obtaining optimized solutions for land use allocation, particularly in 
response to climate change and natural disasters. The study considers eight 
simplified land use types: residential, nursery, primary school, secondary school, 
urban health center, public facility, fire service, and waste burning center. The MOO 
approach involves defining fitness functions based on five key objectives: 
Maximization of economic objective, Minimization of carbon emission, 
Maximization of the accessibility objective, Maximization of space syntax 
integration, and Maximization of compactness objective. 

While the proposed approach has been applied to Maputo as a case study, it holds 
potential for application in other developing cities in Africa and beyond, provided 
the necessary data are available. This research highlights the significance of 
optimizing land resource layouts for achieving sustainability and resilience in the 
face of climate change and natural disasters. 

5.2 Methodological development and conceptual 
contributions 

This subsection provides a detailed methodological development and succinct 
contribution of the thesis from the provided four studies. 

5.2.1 Methodological Development 
The Paper I aimed to compare the performance of four multi-objective optimization 
algorithms (AMOSA, MOABC, MSPSO, NSGA-II) in the context of evacuation 
planning, focusing on minimizing the accumulated distance from high-risk zones to 
shelters and the total capacity overload cost of shelters. The optimization criteria 
were to achieve higher minimum fitness values for both capacity and distance, 
indicating better alternatives for assigning people to shelters. The evaluation of 
algorithm performance revealed consistent optimization results, with no evidence 
of local minimum entrapment. 

In terms of convergence speed, the fitness variation analysis showed that AMOSA 
and NSGA-II, followed by MOABC, exhibited faster and smoother convergence 
towards optimal solutions. This observation emphasizes the competence of NSGA-
II, a widely used algorithm in the literature, and highlights the effectiveness of 
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AMOSA and MOABC in solving multi-objective optimization problems, including 
evacuation planning. 

The Improved Multi-Objective Cuckoo Search (IMOCS) algorithm emerged as a 
more promising solution for problem instances of any size when compared to the 
standard MOCS. Additionally, the IMOCS algorithm demonstrated an effective 
tradeoff between solution quality and computational time. The research findings 
offer valuable insights into emergency evacuation routes, shelter utilization, and the 
overall traveling risk for evacuees along these routes. The proposed mathematical 
model and heuristic algorithms are positioned as practical tools for the National 
Institute for Disaster Management to enhance the utilization of emergency 
evacuation routes and shelters. These tools aim to mitigate risks on roadways during 
emergencies, reduce travel distance, and ultimately improve the safety of evacuees, 
including vulnerable population groups. 

The Paper III focuses on the critical task of optimizing land resource allocation for 
enhanced sustainability and resilience, particularly in response to climate change 
and natural disasters within land use planning. A Multi-Objective Optimization 
(MOO) model is developed to derive optimized solutions, considering eight 
simplified land use types: residential, nursery, primary school, secondary school, 
urban health center, public facility, fire service, and waste burning center. The 
fitness functions are specified through a multi-objective approach, addressing five 
key objectives aligned with the principles of sustainability and resilience: 
Maximization of economic objectives, Minimization of carbon emissions, 
Maximization of accessibility, Maximization of space syntax integration, and 
Maximization of compactness. The study further contributes to the improvement of 
the standard Non-dominated Sorting Genetic Algorithm III (NSGA-III) and utilizes 
the enhanced NSGA-III to solve land-use allocation problems specifically in the 
Kamavota district, Maputo city, Mozambique. The evaluation involves convergence 
analysis and performance comparison, revealing that the improved NSGA-III 
outperforms the standard NSGA-III in terms of effectiveness. Although the 
proposed approach is demonstrated through a case study in Maputo, its applicability 
extends to land-use planning in other cities across Africa and beyond, particularly 
those in developmental phases, provided the necessary data are available. 

The Paper IV addresses the critical decision of site selection for a solar power farm, 
emphasizing its profound impact on project performance, efficiency, and overall 
success. The methodological approach involves a comprehensive assessment of 
various factors, including energy production, environmental responsibility, 
regulatory compliance, and economic viability. Multi-objective optimization 
(MOO) is employed as a suitable framework, focusing on simultaneously 
optimizing multiple conflicting objectives. Unlike traditional optimization problems 
with a single objective, MOO aims to find a set of solutions that represent a trade-
off among diverse criteria. The application of MOO is justified by the need to 
balance multiple objectives related to site strengths and weaknesses, such as 
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improving solar radiation and enhancing consumer satisfaction. Quantitative 
measures are assigned to each objective, facilitating optimization through metrics 
like minimum total distance to road, minimum total distance to infrastructures, or 
minimum total slope. Multi-objective optimization techniques are utilized to find 
solutions that simultaneously enhance strengths and mitigate weaknesses, even 
involving trade-offs. The study presents a multi-objective mathematical model for 
optimal solar power farm location selection, employing the non-dominated sorting 
genetic algorithm (NSGA-II) to determine optimal solutions. The Hypervolume 
indicator is employed to evaluate solution quality, highlighting the impact of 
different crossover operators on performance and solution quality trade-offs. The 
proposed model is deemed suitable for small-scale applications and can be extended 
to various districts or counties. 

5.2.2 Conceptual Contributions 
The conceptual contribution lies in demonstrating the competence of multiple multi-
objective optimization algorithms, namely AMOSA, MOABC, MSPSO, and 
NSGA-II, in addressing evacuation planning problems. The study showcases their 
ability to consistently generate optimal solutions without getting trapped in local 
minima. This provides insights into the versatility of these algorithms and their 
applicability to complex spatial problems, contributing to the broader understanding 
of their performance across various optimization scenarios. 

The conceptual contribution is centered around the effectiveness of the IMOCS 
algorithm in addressing emergency evacuation planning, showcasing its superior 
performance in terms of solution quality and computational time. The study 
provides practical implications for disaster management authorities by offering 
decision support tools that can significantly enhance the emergency evacuation 
process. The emphasis on safety, risk reduction, and efficiency contributes to the 
overall effectiveness of emergency response strategies. Additionally, the research 
suggests potential future directions, such as a comparative study of IMOCS with 
other metaheuristic algorithms, to further expand the understanding of its 
capabilities and limitations. 

The conceptual contribution lies in the development of a robust MOO model tailored 
for optimizing land use allocation, with a specific focus on sustainability and 
resilience in the face of climate change and natural disasters. The articulation of key 
fitness objectives reflects a comprehensive consideration of economic, 
environmental, and accessibility factors. The improvement of the NSGA-III 
algorithm enhances its performance in solving complex land-use allocation 
challenges. The applicability of the study to Maputo serves as a demonstration, 
opening avenues for its potential application to other cities undergoing development 
when relevant data become accessible. Overall, the study provides a conceptual 
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framework and a methodological approach that can guide efficient and sustainable 
land-use planning in diverse urban contexts. 

The conceptual contribution lies in the development of a robust multi-objective 
optimization framework for solar power farm site selection, considering a holistic 
set of criteria. The study highlights the importance of simultaneously addressing 
conflicting objectives to achieve a balanced and optimal solution. The integration 
of quantitative measures and multi-objective optimization techniques provides a 
systematic approach to decision-making in solar power farm planning. The findings 
contribute to understanding the impact of different crossover operators on solution 
quality and performance trade-offs within the NSGA-II framework. Overall, the 
study provides a valuable model applicable to small-scale scenarios and adaptable 
to diverse geographic locations. 

5.3 Future research 
Addressing the challenges posed by the increase in natural disasters due to extreme 
weather events and mitigating the impacts of climate change are crucial tasks that 
require multidisciplinary efforts, including advancements in science, technology, 
and policy. Efficient algorithms play a significant role in providing timely and 
accurate information for decision-makers to take proactive measures. Collaboration 
between scientists, engineers, data scientists, policymakers, and other stakeholders 
is essential for addressing the challenges posed by climate change and extreme 
weather events. The development and application of advanced algorithms can 
significantly contribute to improving our understanding of climate dynamics and 
enhancing our ability to respond effectively to climate-related challenges in real-
time. 

The hybridization of metaheuristic algorithms is a significant and evolving area in 
optimization and decision support systems. This approach involves combining two 
or more metaheuristic algorithms or integrating metaheuristics with other 
optimization techniques to enhance their performance and robustness. This 
hybridization is particularly relevant in addressing complex problems related to land 
use planning, emergency evacuation planning, and various other knowledge 
domains. Examples of hybrid metaheuristic approaches include combining genetic 
algorithms with simulated annealing, particle swarm optimization with ant colony 
optimization, or differential evolution with tabu search. These combinations 
leverage the strengths of individual algorithms to create powerful hybrid 
frameworks suitable for addressing the challenges posed by complex optimization 
problems in diverse domains. 
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