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Popular summary

Most of us have come into contact with laser light at some point in our lives. Perhaps you
have used a laser pointer during a presentation, seen laser weapons in a sci-fi movie, or
maybe you have had laser eye surgery. But you are probably less familiar with the type of
intense lasers and light-sources that are used at the forefront of research on light—matter
interaction, and the effects that can be studied with them.

In quantum mechanics, light can be seen both as consisting of a kind particle and as elec-
tromagnetic waves. What determines how light and matter interact is on the one hand its
intensity, and on the other hand its frequency. In the wave picture, intensity is related to the
size of the oscillations in the electromagnetic field, and the frequency determines how fast
the oscillations are. In the particle picture, the intensity roughly corresponds to how many
particles of light, phorons, are within certain volume, while the frequency determines how
much energy an individual photon has.

In the particle picture, atoms interact with light by absorbing or emitting photons, while
simultaneously transitioning between energy levels. If the light has a high intensity, then
there will be many photons in the vicinity of the atom, and the probability for the atom to
absorb a photon is increased. In some cases there are so many photons near the atom that
it can absorb more than one photon, it performs a multiphoton transition. The atom can
then be found in energy levels that are not accessible through the absorption of only one
photon.

Rabi oscillations with extreme UV light

When the photon energy of a laser matches the energy difference between two energy levels
in an atom, the atom can absorb one photon to reach the upper level. Since the absorption
happens randomly, there will be a certain probability of finding the atom in the upper level.
This probability increases as time goes on, until the atom is in the upper level with close to
100 % probability. When the atom is in the upper level, it can return a photon to the laser
light through a process called stimulated emission. This will cause the probability of finding
the atom in the excited state to decrease, until the atom is most likely to be found in the
ground state again. If the atom is still illuminated by the laser, this process can be repeated
many times. The oscillations in the probability of finding the atom in the lower or upper
level are known as Rabi oscillations.

If the light that is driving the Rabi oscillations is very intense, the frequency of the oscilla-
tions will increase. It also becomes more likely that the atom will absorb an extra photon.
For helium atoms, this would mean that one of its electrons gets enough energy to break
free from the nucleus, leaving an ion behind. If one measures the energy of the freed elec-
tron, one would typically expect to see a peak at one specific energy, that is determined by
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the photon energy and the ionization energy of the atom (how much energy is required to
remove the electron). However, if the atom is undergoing Rabi oscillations one sees rwo
peaks, one on either side of the expected position. This phenomenon is often referred to
as an Autler-Townes doublet, after the scientists that discovered this kind of doublet in a
related process.

Generating Rabi oscillations in a helium atom requires high intensity and high frequency.
The frequencies involved lie in the part of the electromagnetic spectrum that is referred to
as extreme ultraviolet (XUV), which means that the frequency is higher than typical UV
light. It is difficult to achieve both high intensity and high frequency in a lab, but it can
be done with a free-electron laser (FEL). In an FEL, electrons are accelerated by a particle
accelerator to close to the speed of light. They then pass through a magnetic field where
the direction of north and south is alternating, causing them to wiggle. The relativistic
wiggling motion leads to emission of high frequency light in the direction of propagation.

Electrons tunneling to freedom?

In an atom the electrons are bound to the nucleus through the Coulomb force, which
creates a potential well that traps the electrons. If the atom interacts with very intense laser
light that has a low frequency, the potential well becomes so distorted by the lights electric
field that the electrons can escape the well through quantum tunneling. 1f an electron has
tunneled, there are several possibilities for what can happen next.

Some electrons will return to the atom when the electric field starts to point in the opposite
direction. They can then "jump” back into the potential well, by emitting a photon. Since
the electrons can have a very high energy when they return, some of the emitted photons
will have a much higher frequency than that of the laser light that drives the process. This
process, which was discovered in 1987, is called high harmonic generation, and was one of
the discoveries that was behind the 2023 Nobel prize in physics.

Other electrons will simply continue to travel away from the atom, never to return. This
process is called runneling ionization, since the electrons have tunneled their way free from
the atom. In 2008, an experiment by Nubbemeyer et al. shed light on another possibility.
After the electron has tunneled it can end up in an orbit further away from the nucleus,
instead of leaving completely. The atom would then be in an excited state. This process is
sometimes referred to as frustrated tunneling ionization, since some electrons that tunnel
remain in the atom. The electrons that undergo this process are heavily influenced by both
the laser light and the Coulomb force, and it is therefore very difficult to describe their
motion using analytical calculations.

Within the scope of this thesis, I have modeled both present and possible future experi-
ments where Rabi oscillations and Autler-Townes doublets are present, and studied what
the doublet can say about the processes that occur in the atom. I have also studied a pro-
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posed model for frustrated tunneling ionization, and explored its validity.
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Populirvetenskaplig sammanfattning

De flesta av oss har kommit i kontakt med laserljus nigon géng i livet. Kanske har du anvint
en laserpekare under en presentation, sett laservapen i en sci-fi-film, eller sa har du kanske
fatt 6gonen opererade med hjilp av laserljus. Men antagligen si har du lite mindre koll pa
den typ av starka lasrar och ljuskillor som anvinds i framkanten av dagens forskning pa
hur ljus och materia samverkar, och vilka effekter som kan studeras med hjilp av dem.

Inom kvantmekaniken sa kan ljus ses bade som partiklar och som elektromagnetiska vagor.
Det som bestimmer hur ljus och materia vixelverkar 4r dels ljusets intensiter, men ocksa
dess frekvens. 1 vagbilden sd ir intensiteten relaterad till storleken pa svingningarna pa det
elektromagnetiska filtet, och frekvensen bestimmer hur snabbt filtet svinger. I partikel-
bilden s& bestimmer intensiteten hur ménga ljuspartiklar, fotoner, som kan finnas inom en
viss volym, medan frekvensen bestimmer hur mycket energi en enskild foton har.

I partikelbilden vixelverkar atomer med ljus genom att absorbera eller sinda ut fotoner,
samtidigt som atomen gor overgingar mellan energinivier. Om ljuset har hdg intensitet
betyder det att det finns vildigt manga fotoner i nirheten av atomen som den kan absorbera,
och sannolikheten for att den ska gora just det okar. I vissa fall finns det s& minga fotoner att
atomen kan absorbera fler 4n en foton, vilket brukar benimnas som en multifotonsverging.
Atomen kan d4 hittas i energitillstind som inte ir tillgingliga med absorption av endast en
foton.

Rabi-oscillationer med extremt UV-ljus

Nir energin hos fotonerna stimmer overens med skillnaden mellan tva energitillstand i en
atom, sa kan atomen absorbera en foton och gora en Gvergiang mellan energitillstinden.
Eftersom detta sker slumpmassigt, s kommer det finnas en viss sannolikhet for att hitta
atomen i det 6vre tillstindet. D4 atomen utsitts for laserljus kommer sannolikheten att
O0ka med tiden, fram tills det att atomen hittas i det 6vre tillstindet med nistan 100 %
sannolikhet. Nir atomen 4r i det dvre tillstdindet sd kan den ge tillbaka en foton till laser-
ljuset i en process som kallas stimulerad emission. Detta gor att sannolikheten att atomen
ska hittas i det ovre tillstdindet borjar minska, tills atomen med stor sannolikhet hittas i
det lagre tillstandet igen. Denna process kan upprepas manga ginger, och svingningarna i
sannolikheten kallas for Rabi-oscillationer.

Om ljuset som driver de hir Rabi-oscillationerna ir vildigt starkt sa kan atomen oscillera
fort, men atomen kan ocksa absorbera tvi fotoner, istillet fér endast en. For heliumatomer
innebir detta att en av dess elektroner far tillrickligt med energi for att bryta sig loss frin
kirnan, vilket innebir att atomen har joniserats. Det dr sedan mojligt att mita energin pa
den nu fria elektronen. Om atomen inte Rabi-oscillerar férvintar man sig att hitta elektro-
ner vid en specifik energi, som bestims av fotonenergin och elektronens bindningsenergi
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(hur mycket energi det krivs for att jonisera atomen). Men istillet ser man #vd toppar, en
pa varsin sida om den forvintade energin. Detta fenomen kallas ofta for en Autler-Townes
dubblet, efter de forskare som upptickte denna typ av dublett i ett lite annat, men relaterat,
sammanhang.

For att det ska uppstd Rabi-oscillationer i en heliumatom sé krivs det bade hog intensitet
och hég frekvens. De frekvenser som krivs ligger i det spann som kallas for extremt ultra-
violett ljus. Detta 4r inte ldte att dstadkomma i ett labb, men det kan goras med hjilp av
en frielektronlaser. 1 en frielektronlaser si accelereras elektroner i en partikelaccelerator till
nira ljusets hastighet. Dessa elektroner far sedan svinga frin sida till sida i ett magnetfilt,
vilket leder till att de sinder ut ljus med hég frekvens.

Elektroner tunnlar till frihet?

I en atom sa halls elektronerna bundna till atomkirnan pd grund av Coulombkraften, som
skapar en potentialbrunn som elektronerna sitter fast i. Om atomen vixelverkar med ljus
som har mycket hog intensitet men lag frekvens, si paverkas den hir potentialbrunnen
sa starke av ljusets elekeriska filt att den blir forvringd, och elektronerna kan licka ut ur
brunnen pa grund av szunneleffekten. Det finns flera mojligheter f6r vad som kan hinda med
de frisldppta elektronerna.

En del elektroner kommer tillbaka till atomen nir ljusets elekeriska filt borjar peka at mot-
satt hill i sin svingning. De kan d4 hoppa ner i potenialbrunnen igen, genom att sinda ut
en foton. Elektronen kan ha vildigt hég energi nir den kommer tillbaka, s en del av de
fotoner som sinds ut kommer ha mycket hogre energi 4n de ursprungliga fotonerna fran
lasern. Denna process, som uppticktes ar 1987, kallas {6r dvertonsgenerering, och var en av
upptickterna som lig bakom 2023 ars Nobelpris i fysik.

Andra elektroner kommer istillet att fortsdtta bort frin atomen utan att nigonsin kom-
ma tillbaka. Detta fall kallas f6r tunneljonisation, eftersom att elektronerna har tunnlat sig
fria frin atomen. Ar 2008 si uppmirksammade ett experiment frain Nubbemeyer et al. en
annan mojlighet. Efter att elektronen har tunnlat si kan den hamna i en bana en bit ivig
fran atomkirnan, istéllet for att forsvinna bort helt fran atomen eller hoppa hela vigen ner i
brunnen. Det hir innebir att atomen 4r i ett exciterat tillstind. Denna process brukar kallas
for frustrerad tunneljonisation, eftersom en del av de elektroner som tunnlat inte limnar
atomen helt. Dessa elektroner paverkas mycket starkt av bade laserljuset och Coulomb-
kraften frin kirnan, och det ir dirfor inte sa enkelt att beskriva hur deras banor ser ut med
analytiska berikningar.

Inom ramen for den hir avhandlingen sd har jag modellerat experiment som har utforts,
eller mojligtvis kan utforas, dir man kan se en Autler-Townes dubblett, och studerat vad
den kan siga om processerna som péagar i atomen. Jag har dven studerat en modell som lagts
fram for frustrerad tunneljonisation, och undersékt dess giltighet.
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Introduction

1 Introduction

This thesis concerns the dynamics of atoms interacting with light, and some processes that
can occur when this interaction is strong. Specifically the focus will be on processes where
the bound states of the atom play an important role, such as resonant photoionization and
core-resonant photoionization, and excited state population dynamics. The dynamics that
are studied take place on an ultrafast timescale, on the order of a few to tens of fs.

1.1 Free-electron lasers in the extreme ultraviolet and X-ray regimes

The works included in the thesis are partly motivated by the capabilities of extreme ultravi-
olet (XUV) and X-ray free-electron laser (FEL) technology, which have seen major break-
throughs in the last decades [1-5]. The combination of high intensity and high photon
energies that are made available by XUV and X-ray FELs open up previously unexplored
regions of parameter space to experiments. Examples include XUV-driven Rabi dynam-
ics in He atoms, which are explored in papers 1 and 1. Recently it has become possible
to produce attosecond pulse trains [6, 7] and isolated attosecond pulses [8, 9] with FELs,
enabling FEL experiments with intense attosecond pulses. At the FEL FERMI [2], control
of the spectral phase of the FEL pulses has also been demonstrated [10], which opens up
additional possibilities for quantum control with intense XUV pulses.

In the case of strongly driven resonant photoionization, much of the theoretical foundations
were laid already several decades ago [11-14], however the opportunity to study it in the
XUV regime has become possible only through the use of FELs, see paper 1 and Ref. [10],
which might explain why the topic has received renewed attention in recent years [15-18].
In Ref. [11], Beers and Armstrong suggested a mechanism for stabilization of dressed states
in resonant photoionization that was studied in paper 111, where a prediction was made that
the effect could be studied at a seeded FEL, such as FERM]I, in the realistic case of helium
atoms.



1.2 Strong low-frequency fields and attosecond physics

In addition to the intensity, another quantity that can be used to characterize the strength
of the light—matter interaction is the ponderomotive energy

eQES
Amew?’

\ M
where w is the frequency of light,Ey is the electric field amplitude, m. is the electron
mass, and e the elementary charge. U, represents the kinetic energy of a free electron
interacting with the light, averaged over one oscillation period of the field. Since w appears
in the denominator, it is easier to achieve large values of U, with infrared (IR) light sources,
rather than XUV or X-ray sources. In particular, in experiments with IR sources U, is often

comparable or larger than the photon energy of the IR field.

Strong IR fields were used in the discovery of high-order harmonic generation (HHG) [19],
which laid the foundation of the field of attosecond science that was awarded the 2023 No-
bel Prize in physics [20]. The location of the cutoff frequency in the high-harmonic spec-
trum depends on U, [21]. For this regime of light—matter interaction an often employed
approach is the strong-field approximation (SFA). It provides an intuitive picture for both
above-threshold ionization (ATI) [22-24] and HHG [25, 26], based on field induced tun-
neling followed by subsequent propagation in the electric field. Paper v studies a SFA based
model proposed by Popruzhenko [27] for frustrated tunneling ionization (FTT), which is
another phenomenon that occurs in experiments with intense low-frequency fields [28].

One of the methods that was used to show the existence of attosecond pulses (specifically
attosecond pulse trains) is the reconstruction of attosecond beating by interference of two-
photon transitions (RABBIT) technique [29-31]. In addition to being used as tool to
measure attosecond pulse trains, RABBIT can also be used to study dynamical aspects of
the photoionization process [32]. This was explored in paper 1v, where the protocol was
employed to study a Rabi-cycling atom.

1.3 Structure of this work

The outline of this thesis is as follows. In the next part, Background, a review of the topics
that were considered in the thesis is provided. Section 2 provides a brief overview of the
description of light—matter interactions. This is followed by a description of the specific
techniques that were used in the publications. Section 3 shows how resonant ionization of
atoms can be treated with perturbation theory on top of Rabi oscillations, which is relevant
for papers 1, 11 and 1v. The effective Hamiltonian method, which is utilized in paper 11, is
introduced in Sec. 4. The last section of this part introduces the SFA, and a model for FT1
that is based on it, in Sec. 5. This SFA-FTT model was studied in paper v.



The following part, Summary of results and applications, provides a summary of the results
that were obtained in the publications included in the thesis, as well as indicating some
further results that were not covered in the publications, and some possible future directions
of inquiry. Section 6.1 presents the results of papers 1 and 11, that both deal with resonant
photoionization experiments performed at the FERMI FEL. The next section, Sec. 6.2,
presents a prediction of stabilization of dressed states in resonant photoionization, based
on the effective Hamiltonian model introduced in paper 111. The framework of perturbation
theory on top of Rabi oscillations is applied to a RABBIT scheme in paper 1v, and this is
discussed in Sec. 7. The results of paper v, that studies a model for FTI, are summarized in
Sec. 8. This is followed by a summary of the thesis together with some future perspectives
in Summary and outlook. Papers 1-v are then reprinted in their entirety, preceded by a
summary of the author’s contributions, in the final part of the thesis, Scientific publications.






Background

2 Describing light—matter interaction

This section will cover the basics of light—matter interaction that will be required in the
later sections. Atomic units

h=m.=4meg =e =1, (2)

will be used in the remainder of the thesis, unless otherwise noted, where % is the reduced
Planck constant, m. is the electron mass, €q is the vacuum permittivity, and e the elemen-
tary charge.

2.1 'TDSE in the dipole approximation

The time-dependent Schrodinger equation (TDSE), is used to describe the time-evolution
of a quantum state |1)(t))

d
igy [0(@) = H{@) (1)), (3)

where H () is the Hamiltonian operator that generates the dynamics of the system. It can
also be formulated in terms of the time-evolution operator

d
where U(t, () is the operator that propagates the state forward in time
U(t,to) [¥(to)) = (1)), ©)

and t > tg.

The minimal coupling Hamiltonian for an atomic electron interacting with an external
electromagnetic field is given by [33]

[P+ A(r,t))?

H(t) = 5

+V(r), (©)



where p is the momentum operator, A(r, t) is the vector potential in the Coulomb gauge
V - A(r,t) = 0, and V(r) represents the interaction with the atomic nucleus (possibly
screened by other electrons).

Dipole approximation and gauge transformations

For a plane-wave electromagnetic field the vector potential can be written as

A(r,t) = Apsin(wt —k-r+ ) = % gilwi—krte) _ e_i(w':_k'r"“‘p)] . D

If the field is slowly varying on the length-scales we are interested in (r < A = 27/|k]),

then we can make the dipole approximation [33]
kT =1+ik-r+...~1, ®)

neglecting the spatial dependence of the vector potential. This amounts to neglecting the
magnetic component of the EM field, and any spatial variations of the electric component.
In the dipole approximation, the relation between the vector potential and the electric field
is

dA(t)
Codt

The resulting Hamiltonian then has the following form,

[p+A))?
2

E(t) = )

H(t) = V), (10)
which is called the velocity gauge form of the Hamiltonian. The A (#)? term in the above
Hamiltonian can be removed by a gauge transformation

T — ¢ I dt’A(t’)Q’ (11)

which gives the reduced velocity gauge Hamiltonian,

2
H(t) = % FpA®) V(). (12)

The length gauge form of the interaction Hamiltonian can be arrived at by applying the
gauge transformation

T = A0, (13)
to the Hamiltonian in Eq. (10). The resulting Hamiltonian is

2
H(t) = % L V() +E®) T (14)



The velocity and length forms are the ones typically used in calculations. In principle phys-
ical quantities should be gauge invariant, but in practice gauge invariance is often broken
when employing certain approximation schemes, for instance truncating the Hilbert space
[34-36]. State populations and the expectation value of the Hamiltonian are quantities
that are not invariant when the fields are non-zero, but the result at the end of a pulse
should agree between gauges (assuming convergence in the size of the considered Hilbert
space etc).

Field envelopes

Interaction with pulsed lasers can be simulated by introducing an envelope f(t) to the
amplitude of the vector potential

A(t) = Apf(t) sin(wt + p). (15)

The electric field is then given by

df sin(wt + ). (16)

E(t) = —wAqof(t) cos(wt + ¢) — Ap g

In the slowly varying envelope approximation the second term is neglected, which is valid
when envelope is changing slowly between laser cycles (w > %) Then one also has the
following relation between the amplitude of the vector potential and the amplitude Ey of
the electric field

Ey
-

A very useful relation, is the conversion between electric field strength in atomic units and
intensity in W/cm?. Atomic units is convenient for calculations, while intensity is often
reported in W/cm?. The conversion is given by

I [W/em?] = 3.51 x 10'® x E2 [a.u] . (18)

Polarization and the Wigner-Eckart theorem

In this thesis two kinds of polarization of light will be considered, linear and circular. In
order to simplify calculations of matrix elements, calculations with linear polarization will
be performed with the polarization along the z-axis, while for calculations with circular
polarization, the plane of polarization will be taken to be the z-y-plane. This means that
in the length gauge, with a monochromatic electric field, the interaction term will be

Eoz

E(t) - r = Eycos(wt)z = 5

(eiwt + e—iwt) , (19)



for linearly polarized light. In the case of circular polarization we will instead have

£ le; cos(wt) + ey sin(wt)] - r = £o [z cos(wt) + ysin(wt)], (20)

V2 V2

which can be rewritten as

Eo (T —1y —iwt T+ ZZ/>
—le +e . 21
2 ( V2 V2 .

This form of the interaction is useful when making the rotating wave approximation (RWA),
as the first (second) term corresponds to emission (absorption) of a photon.

Th rators z, *5¥, and — LY
e operators z, ﬁ,ad 7

of rank k = 1, which means that the Wigner-Eckart theorem can be used to relate their

form the components of a spherical tensor operator T*

matrix elements in a basis of angular momentum eigenstates [33, 37]. The Wigner-Eckart
theorem states that for the g-component of a rank k spherical tensor operator, the matrix
element between two angular-momentum eigenstates is given by

L kv
-m q m

<£ k E’,> 23)
-m q m

is a Wigner 3-j symbol [37], and (7, £||T*||,¢') is the reduced matrix element for the
spherical tensor operator. Here ¢,¢' > 0, —¢ < m < /{ are the angular momentum

(v, o] TH |/ ) = (—1) ( ) AT ), @)

where

quantum numbers, and 7y, 7/ represents any additional quantum numbers needed to char-
acterize the state. The Wigner 3-j symbol is only nonzero if , k, and ¢’ satisfy the triangle
relation

C=\0 k|0 —kl+1,....0 +k, (24)

and if
m=q+m. (25)
The dipole-selection rules for linearly and circularly polarized light are an immediate con-

sequence of applying the theorem for k = 1, and ¢ = 0 (linear polarization) or ¢ = 1
(circular polarization). For linear polarization the selection rules are

Al = =1,
(26)
Am =0,
while for circular polarization they are
Al = #£1, 27)
Am = +1,

where for Am the +-sign applies for absorption and the —-sign for emission.



2.2 Configuration interaction singles

In papers 1 and 111 the configuration interaction singles (CIS) method was used to compute
the model parameters for He. For this reason, a brief overview of the method is provided.
The starting point for applying CIS to closed-shell atoms is the restricted Hartree-Fock
(HF) method, where the mean-field potential is assumed to be spherically symmetric. The
spatial part of the one-particle orbitals can then be separated into a radial part times a
spherical harmonic
Pi(r
oitr) = POy 0.0) 2
The radial orbital satisfies the restricted Hartree-Fock equations [37]
1d*  Liti+1) Z
|:_2d’l”2 + W R +unr | Pi(r) = ¢ P(r), (29)

where upr is the non-local Hartree-Fock potential, whose matrix elements are given by

occ

(ilunr |7) =Y _({ia|ryy |ja) — (ai] i3 | ja)). (30)

a

The first term in the sum represents the direct interaction between electrons, and the second
represents the exchange interaction. The HF groundstate wavefunction in second quanti-
zation can be written [38, 39]

occ

@) = [ el 10) (31)

where cli (Cqa) creates (annihilates) a particle in the spin-orbital a+, and |0) is the vacuum
state of the Fock-space, ¢+ |0) = 0.

CIS allows for linear combinations of Slater determinants where one occupied orbital, a,
of the ground state has been replaced by an unoccipied one, p. In the language of second
quantization, and in the spin singlet approximation we have [38, 39]

1
|82) = —=(c], car + ¢ _cq_) |@o) . (32)

V2

Within CIS the total state of the system is then approximated by

B) = ag [@o) + Yl |B7), (33)

a7p



where the a (p) index runs over occupied (unoccupied) orbitals. An approximate energy
spectrum for the atom can be found by diagonalizing the full many-body Hamiltonian

2
:Zg_fi+27}—EHF, (34)
1<)

i v

within the singles subspace. Due to Brillioun’s theorem, CIS does not provide any cor-
rections to the ground state [37], but it does give rise to a spectrum of excited states. For
convenience the HF energy of the ground state has been subtracted from H, so that |®¢)
is at zero energy.

A time dependent version of the theory, time-dependent configuration interaction singles
(TDCIS), can be introduced by inserting the CIS ansatz into the TDSE [38-41]. The
motivation for using CIS to compute atomic parameters was partly due to being able to
compare model calculations with TDCIS calculations, as was done in paper 1. In the length
gauge the TDCIS equations of motion for the state coefficients are

dO[o _ Zap
dag _
inq = (- Zab 2 (aq| iy’ [pb) = (ag|ris! [bp))  (35)

+E(t) - | V2a0(t) (a|r[p) — Zab (b a) +Zaq {glr|p)|-

The factor v/2 in front of the matrix elements involving the ground state is due to many
electron (singlet) dynamics.

Due to the truncation of the full N-electron Hilbert space to the singles subspace, TDCIS
calculations are not gauge invariant [36, 38]. Problems involving large ponderomotive
energies are best described in the length gauge as recently showed by a comparison with

velocity gauge [36].

2.3 Dressed states and quasienergies
Floquet theory

If the Hamiltonian governing the dynamics of a system is periodic H(t) = H(t+T), one
can apply the Floquet theorem to write the solution of the TDSE on the form

= e (1) (36)

10



where | x5, (t)) are T-periodic functions, the dressed states, and \,, are the corresponding
quasienergies [42, 43]. Since the states |xn (%)) are periodic, they can be thought of as
vectors in an extended Hilbert space H ® L2(]0,T]) [43]. The basis for the periodic part
can be taken as the Fourier components €@t and we can label the basis for the extended
Hilbert space by |¢y,, m), where |¢,,) form a basis for the atomic part H, while m € N are
the discrete Fourier indices. For a monochromatic field, the light—matter interaction term
in the dipole approximation can be written on the form

(Gal V(1) |00) = Vape™" + Vape™™". (37)

The corresponding eigenstates for the monochromatic case are called semiclassical dressed
states and satisfy the equation

d
(#1615 ) ben) = a0 39
This is equivalent to a time independent eigenvalue problem [43]

Hp |Xn> = )\n |Xn> (39)

where H is the infinite Floquet matrix, with matrix elements

<¢a7 n‘ HF ‘(bbv m> = (<¢a’ HO ‘be) + mw{sab)énm + 5nm+lva*b + 5nm—1Vab- (40)

~iFt represents a propagator on the extended Hilbert space [42, 43]. With

The operator e
outgoing boundary conditions, to be discussed further in Sec. 4.3, the quasienergies will

have an imaginary part which can be interpreted as the ionization rate of the atom

Im A, = 7

5’ (41)

if the atom is initially prepared in the corresponding dressed state, |xy,).

Quantum optics

We will also consider the interaction between matter and a quantized single mode field.
The basis states of the combined atom-photon system can be taken with the photon part
in the Fock-basis |, IV), with the associated creation and annihilation operators acting

according to [44, 45]

a|¢a, N) = VN |¢a, N — 1),

42
a'|¢a, N) = VN +1[¢a, N +1). @

11



In the Coulomb gauge and within the dipole approximation we can write the interaction

HI:r.a,/z%"(aMT), (43)

where o denotes the polarization vector and V' the quantization volume [45]. The eigen-

part of the Hamiltonian

states of the full Hamiltonian including the interaction are called dressed states [45]. In
the limit of large photon numbers (high intensity) we can approximate /N + 1 =~ /N,

and the matrix element of the interaction becomes [42, 44]
/ Ey
(¢i, N|H |pj, N") = 5 (¢l v -0 [9j) (ONt1N + ON—1N7), (44)

where By = 24/ M We thus see that in this limit the Floquet and quantum optics
approaches are equivalent [42, 44]. In this thesis, we are concerned with intense fields,
where the semiclassical approximation is valid. Thus, we expect the Floquet picture to be
adequate. However, the quantum optics perspective brings much clarity to the physics, as
shown in paper 111.

3 Photoionization from a Rabi oscillating atom

Following the general background that was introduced in the previous section, the focus
will now shift to describing the specific systems and physical processes that are the subject
of the thesis. Alongside this will also follow a description of the techniques employed to
construct the models for these systems. The first process that will be considered is resonant
ionization of atoms with XUV fields, illustrated in Fig. 1. Specifically, the focus will be
on what happens when the laser is intense enough to drive Rabi oscillations between the
resonant states, which is the case for FELs such as FERMI, see Refs. [2, 10] and papers 1
and 11.

Nonlinear, resonant photoionization of atoms and molecules have been studied by many
authors. Some examples include Beers and Armstrong, Knight and Holt, Raymer and Rein-
hardt [11-13], who employed the resolvent operator and effective Hamiltonians, which will
be explored further in Sec. 4. LaGattuta and Girju et al. studied the process by numerically
solving the TDSE for hydrogen atoms [46, 47], and Sun and Lu, and also Palacios, Bachau
and Martin have performed time dependent simulations for molecules [48, 49]. Some
insight has also come through the study of the quasienergies of the time-independent Flo-
quet Hamiltonian [13, 42, 47] and in the rotating frame of a circularly polarized field [50],
which give information about ac Stark shifts and ionization rates.

12
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Figure 1: Schematic energy diagram of resonant two-photon ionization. The photon energy of the driving field is nearly resonant
with the transition from |¢, ) to |¢ ), as indicated by the purple arrows. Absorption of two photons from |, ) reaches
the continuum state | ).

This section will outline how time-dependent perturbation theory can be used to describe
photoionization from an atom undergoing Rabi oscillations. The theory was used in the
analytic model of paper 1, and related models were employed in papers 11 and 1v.

3.1 Resonantly driven two-level systems and Rabi oscillations

Consider a system, as in Fig. 2 (a), consisting of two states |¢,) and |¢y), with energies €,
and €, and energy difference wy, = €, — €4. They are coupled via an interaction with a
laser with frequency w ~ wpg, such that the detuning Aw = w — wy, is small. Coupling to
other states is assumed to be negligible. In the length gauge with the laser linearly polarized
along the z-axis, the interaction between the two states is

O .
Via(t) = Epzp, cos(wt) = 5 (e e, (45)

where {2 = Ejyzyp, is the Rabi frequency and 2, is the dipole matrix element connecting
|pa) and |¢yp,). For simplicity, the field has been assumed to be monochromatic.

The time dependent state of the two-level system can be written as
[0(t) = a(t)e™"" [¢a) + b(t)e ™" |¢p) , (46)

where a(t) and b(t) are the interaction picture amplitudes of |¢,) and |¢p). In the RWA,

13
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Figure 2: (a) Resonant driving of the two-level system consisting of |¢4) and |¢). (b) The populations P, (t) (blue, solid) and
Py (t) (orange, dashed), when Aw = 0. (c) same as (b), but with a detuning of Aw = 0.5Q.

together with the initial condition a(0) = 1, a(t) and b(t) are given by [51-53]

a(t) = [cos(Wt/2) — i(Aw/W)sin(Wt/2)] em‘“t/z, (47a)
b(t) = —i% sin(Wt/2)e "Aw/2, (47b)

Here the generalized Rabi frequency W = v/Q? + Aw? has been introduced. The popu-
lations, P, (t) and Py(t), have the form

2 Aw? | 2

P,(t) = cos*(Wt/2) + 2 Sin (Wt/2) (48a)
2

Py(t) = % sin2(Wt/2), (48b)

and they oscillate at the generalized Rabi frequency W. In the special case Aw = 0, the
population can be completely transferred from |¢q) to |¢p), and then back to |¢g), see
Fig. 2 (b). The duration of one such cycle, is given by the Rabi period T = 27/€.
When Aw # 0, the amplitude of the oscillations are reduced, such that |¢g) is never
completely depopulated, see Fig. 2 (c). For the FEL experiments that we are interested in
describing, the field is in the weak field strength and resonant regimes as classified by Autler
and Townes, ) < wp, and w & wy, respectively, where the RWA is expected to be a good
approximation [52].

If the detuning is zero, then the amplitudes and populations can also be found when an
envelope f(t) is introduced to the electric field. In this case the populations follow the area

theorem [54]

P,(t) = cos*(6(t)/2), (49a)
Py(t) = sin?(0(t)/2), (49b)
where 6(t) is the pulse area
t
0(t) = / dt'Qf (). (50)
to
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Here t represents the start of the pulse, and the population is assumed to initially be in
the ground state, a(tg) = 1.

The idea behind the model used in paper 1, is to assume that Eq. (46) serves as a good ze-
roth order approximation for the full state of the system, and then employ time-dependent
perturbation theory with Eq. (40) as the starting point. For this to be a good idea, the cou-
pling to states outside of the two-level system can not be too strong, i.e. other bound states
should have negligible population during the interaction, and the probability of ionization

should be small at the end of the pulse.

3.2 Hilbert space partitioning: P + () =1

We are interested in describing the dynamics in two subspaces, which we will call P and
Q. In general P can be spanned by any number of states, but for the purposes of this
thesis, we will focus on the case where it is spanned by two eigenstates of the interaction-
free Hamiltonian Hy that are resonantly coupled. The subspace Q is then taken as the
orthogonal complement of P, i.e. Q = PL. We will also require the orthogonal projection
operators P and () that project onto the respective subspaces. In terms of the field-free
eigenstates the projection operators can be written

P = |¢a)(Bal + [60) (5] (51a)
Q=1=P=">" |¢n)(¢nl- (51b)
n#a,b

They satisfy the usual properties of orthogonal projection operators

P+Q=1, (52a)
PP=PQ*=Q (52b)
PQ=QP=0 (52¢)
Pt=PQt=Q. (52d)

Additionally, since they are diagonal in the eigenbasis of Hy, both of the projection opera-
tors commute with Hy,

[Ho, P] = [Ho, Q] = 0. (53)

The partitioning described above is illustrated in Fig. 3, with the two subspaces P and Q in-
dicated. In this chapter the projection operators will be used to construct a time-dependent
perturbation theory where Rabi oscillations are the zeroth order solution. Projection tech-
niques will also be used in Chap. 4 to separate out a resonant subspace, and to construct
an effective Hamiltonian for P.
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Figure 3: The partitioning of the atomic levels into a resonant subspace P (consisting of |¢,) and |¢s), and its complement
Q, where the final state in two-photon ionization |¢. ) resides.

3.3 Perturbative transitions to states outside the two-level system

In the following we will use perturbation theory to compute transitions to states outside
the Rabi oscillating two-level system P. The interaction term V'(¢) is split into one part
that generates the Rabi dynamics, and a remainder, that will serve as the perturbation. The
amplitudes will be derived in a slightly different way than what was done in the SI of paper
1, where an iteration of the Dyson equation was used. For this problem the two approaches
give equivalent results. The Dyson equation was also used to construct the models of papers
11, 1v and v, and will be discussed further in Sec. 5.1.

Interaction picture with respect to the Rabi Hamiltonian

Consider the time-dependent Hamiltonian
H(t) = Ho(t) + V(t) (54)

with time-dependent zeroth order Hamiltonian Hy (t) = Ho+ VRabi(t) and perturbation
V(t) = V(t) — VRabi(t), where VRapi(t) is the interaction between |¢,) and |¢yp) in the
RWA. The interaction V' (t) allows for transitions between P and Q, and within Q, but not
within P if the RWA is made. Counter-rotating terms can be included in the perturbative

expansion, as was done for some processes considered in paper 1v.
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The time-evolution operator U (¢, to) for H (t) satisfies the Schrodinger equation

dU (t,t
ZEJ.I;O) - H(t)U(ta tO)a (55)
with initial condition U (g, tg) = 1. Similarly, for the zeroth order time-evolution opera-
tor we have,
AU, (¢, t -~
iod(to) = Hy(t)Uy(t,10), (56a)
AUl (t,t0) =~ .
—io(gt’ 0) = Ug(t, to)Ho(t). (56b)
The zeroth order time-evolution operator acts in the following way
Uo(t,0) |¢a) = a(t)e ™! |¢q) + b(t)e " ) , (57a)
Uo(t,0) [¢c) = e~ gc) , ) € Q. (57b)
We can now define an interaction picture time-evolution operator
Up(t,to) = UJ(t,0)U (t, t0) U (to, 0), (58)
in analogy with the usual definition of U; (%, tg) when Hy is not time-dependent
Ur(t, to) = eOtU (¢, ty)e~Hoto, (59)
Using Eqs. (55) and (56b), it is possible to find an evolution equation for U (t, to)
AU (t, 1) ~
zfd(tO) = Vi()Us(t, to), (60)
where the interaction picture operator
Vi(t) = T (£, 0)V () Uo 1, 0), (6

has been introduced.

Equation (60) has a formal solution in terms of a time-ordered exponential,

t ~
wwszwﬂﬁ/dwwﬂ7 2
to
or equivalently in terms of a Dyson series,
t t v
Ur(t,to) =1—14 [ d'Vi(t') + (—2')2/ dt’ [ dt"VitVit"y+...  (63)
to to to

In the following we will have tg = 0, so that the relationship between the time-evolution
operators in the two pictures s,

Ur(t,0) = Ul (t,0)U(t,0). (64)
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First and second order transition amplitudes

To compute the transition probability of starting in |¢,) and ending up in |@.), we can
compute the amplitude [33]

ae(t) = (@cler(t)) = (G| Ur(¢,0) la) = (6| TJ (£, 0)U (1, 0) [¢a) . (65)

Since Uy (t,0) corresponds to the field-free time-evolution for the states in Q, the interac-
tion picture amplitude a(¢) will differ from the transition amplitude in the Schrédinger
picture (¢¢|U(t,0) |¢po) by a time-dependent phase factor €%, and the two expressions
will therefore correspond to the same transition probability [33].

Inserting the Dyson series Eq. (63) into Eq. (65), and keeping terms up to second order
yields

a(t) ~ —i /0 dt’ (pe| Vi(t') |pa) + (—i)? /0 dt' [ dt" (¢ VI(E)Vi(t") |Ba) -

0

(66)

We can now split cve(t) into a first and second order amplitude

t ~
al(t) = —i / At (ge| Vi(t') | ba) - (672)
0

t ¢ o

a0 = (-ip @t [ @@l BT e). @b
0 0

These expressions can in principle be used when the interaction strength is controlled by
an envelope, however the analytical calculations simplify greatly when a flat-top envelope is
used, since then the amplitudes a(t) and b(t) are known analytically, see Sec. 3.1. It should
be noted that there exists some envelopes where an analytical solution can be found [14].

Using the definition of ‘7[(75) in Eq. (61), the first order amplitude can be written as

t
a0 (t) = —i / At (6| TH(#, O () To(t',0) ) 68)
0

For the application to resonant two-photon ionization by an FEL pulse, |¢¢) can not be
reached energetically from |¢,) by absorbing a single photon (one V' interaction). There-
fore, Up(t',0) |¢a) can be reduced to b(t')e """ |¢). This means that

-y Ry
ezwt +e wt

t
Oé(l) (t) — —Z/ dtlei(E—eb)t/b(t/)zebEO 5 ’
0

€

(69)

where the dipole matrix element 2., between |¢p) and |¢.) has been introduced. The term
. . . / . . . . . .
containing ™" does not lead to energy conservation in the long-time limit, and is therefore
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neglected (RWA). Since we have the form of b(t) from Eq. (47b), the integral in Eq. (69)
can be performed analytically

. tAe_ . tAey
. ZEbEOQ itAe_ S111 2 itAey S111 2
(3 e 2

D () = )7 N/ 70
ac’(t) 2W Ae_ ¢’ Aey ’ 70)

where A -
Aei:e—ea—Qw—l-quI?. (71)

This amplitude corresponds to a photoelectron spectrum with two main peaks spaced sym-
metrically around Ey;, = 2w—I,,, with the spacing given by the generalized Rabi frequency
W. Such a splitting in the spectrum is typically called an Autler-Townes (AT) doublet [52],
although in the context of resonant photoionization a Knight doublet would also be a suit-
able name [12]. Why the doublet arises can be deduced from the amplitude b(¢). The Rabi

oscillations introduce two frequency components
b(t) o eth/Q . efl'VVt/Q7 (72)

that are split by the generalized Rabi frequency, which are then imprinted on the amplitude
of the ionized electrons.

For the second order amplitude, only |¢,) generates energetically allowed terms if we con-
sider By, ~ 2w — I,,, and we can therefore write

t t . .
() = (-)? Y / dt / dt" (6] V() 16) (] V(") | ba)
ceQ 0 0 (73)
% ei(efec)t'ei(ecfea)t”a(t//)'

As before we neglect counter-rotating terms in the interaction, which yields

04(2)(t> _ (—i)2 Z M /t & /t’ dt" exp [—i(e o e)t/]
‘ o 8 Jo o (74)
x exp [—i(eq + w — Aw/2 — €.)t"] a(t").

Since we again have a rather simple expression for the Rabi amplitude a(t") from Eq. (47a),
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the double integrals can be performed analytically, resulting in

a£2) (t) = _icezg zeczzaEg { (1—Aw/W) e?:_g?{) sin (m%)
(14 Aw/W)exp (%) sin (m%>

(IJEFAG_A,_ (75)
(1-Aw/W)oF + (14 Aw/W)w,

. t
— ex WE — € — W)
Qe O (6 — €, — W) p[( ‘ )2]

« sin [(e e, —w);] }

Here a one-photon detuning, &F = €, +w — €. — Aw/2 + W/2, relative to the states in
Q has been introduced.

+

The first two terms in Eq. (75) are analogous to the ones that appear in Eq. (70), i.e. they
will give rise to two peaks in the photoelectron spectrum, that are separated by W. Note
however that due to the form of a(t),

a(t) o< (1= Aw/W)eWt2 4+ (1 + Aw/W)e W2, (76)

the two frequency components no longer have the same strength if Aw # 0, and they
also have a different phase relation compared to what was found in atV (t). The last term
in Eq. (75) will give rise to peaks at energies one-photon above each state in Q, which

means that it can be neglected if we are only interested in the spectrum in the vicinity of
Elin = 2w — I,,. Such peaks can be seen in Fig. 6 of Ref. [47].

The difference between the processes that are represented by agl)(t) and a!? (t) is illus-
trated in Fig. 4. The Rabi oscillations allow alV (t) to be of first order in Ej, since once
the electron has reached the excited state it only requires one extra photon to ionize. Since
ocg)(t) represents perturbative two-photon ionization from |¢,) via the states in Q, it has

the E3 scaling that is expected in non-resonant two-photon ionization.

3.4 Perturbed wavefunctions

(2)

When evaluating the second order amplitude ae™ (%), it is necessary to sum up the con-
tributions from all the states in Q. This can be done by constructing the perturbed wave-

o) = Zea €] 77)

Aw w ’
CEQEQ—FW—T:*:?—EC

functions
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Figure 4: lllustration of the processes involved in the first (1) and second (i) order ionization amplitudes, (") (¢) and {2 (),
and their scaling with the electric field strength Eq.

where the label # b indicates that the state |¢5) should not be included in the sum, as the
coupling between |¢,) and | @) is already included in the zeroth order wavefunction. The
second order ionization amplitude can now be written in terms of the perturbed wavefunc-

tions as
@ B2 (1 — Aw/W)exp (im;*> sin (m;*> -
o (t) = I Ae_ (Pl Z‘p;éb)
: (78)
(14 Aw/W)exp (”A;*) sin (%) .
+ Ae,t (9] Z’P¢b> .

If the states in Q lie sufficiently far away from |¢), then we can neglect the variation of
’P§b> with w and W, and use a single perturbed wavefunction

IPHEDD _ Feal) (79)

cc0 €q + Wpe — €c
Then a? (t) can be further simplified

- sy (45 o )
Ae_

E2
a£2) (t) — —4 0'16/37517

(80)

+

(14 Aw/W)exp (itA2€+> sin (%)
Ae ]7
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Figure 5: Helium CIS orbitals of excited states |¢;) (orange) and the corresponding perturbed wavefunctions |p) (blue) for
(@) 1s2p, (b) 1s3p, (c) 1s4p and (d) 1s5p. In each case the excited state orbital has been multiplied by 10 to be of
the same scale as the perturbed orbital.

where the dipole matrix element 2y, = (@¢| z|p£p) has been introduced.

Figure 5 compares the excited state CIS orbitals to that of the corresponding |p-p) for
the first few states in the 1snp series of He. The figures show that the perturbed orbital
has a very similar character to that of the following excited orbital, as they have the same
number of nodes for instance. This is reasonable, since that is the state with the smallest
energy denominator in Eq. (77), and hence it should give a relatively large contribution.

In order to compare the strength of process 1 and 11, one can consider the following quantity

Eozeptp

81
. (81)

|

(1,2)

which is the ratio of the prefactors appearing in e " (¢) (R < 1 implies that process 1 is
stronger). This is given for a few excited states of He in Tab. 1, together with the dipole
matrix elements required for its calculation. Both s and d partial waves are considered
for the final state. An electric field strength of Ey = 0.02388 a.u., corresponding to
I =2 x 1013 W/cm?2, was used for the calculations of R.
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Table 1: Energies (CIS) and ionization dipole matrix elements for a few excited states helium. The supersprict indicates the partial
wave of the final state. Ey = 0.02388 was used to compute R.

®» €b 2% 2, Zeptb 281 R R
1s2p | 0.797208 0.02330524 0.04426126 0.22070142 —1.80455228 0.113  0.487
1s3p | 0.863682  0.0143939  0.02074873 0.12234853 —1.41010052 0.101 0.811
1s4p | 0.887248 0.00931097 0.01298371 0.10563507 —1.30034468 0.135 1.20
1sbp | 0.898233 0.00671581 0.00884202 0.10291827 —1.21846422 0.183 1.65
1s6p | 0.904228 0.00514567 0.00666799 0.10313639 —1.19142248 0.239 2.13
1s7p | 0.907853 0.00404325 0.00535528 0.10237491 —1.19054604 0.302 2.65
1s8p | 0.910211 0.00336541 0.00429486  0.10480058 —1.16349997 0.372  3.23

From Tab. 1 we can see that the first order process is stronger for s-waves for all the states
considered, while for d-waves the second order process is stronger for 1s4p and above. For
process 1, the two partial waves have quite similar dipole moments, while for process 11 there
is a difference of about one order of magnitude at the considered field strength.

3.5 Ionization rate for the two-level system

(1) (2)

With our expressions for ce ’ (t) and cre”’ (t), we can now look at |c(t)]?

.. 92 2

o _ sin“[Ae_t/2]

’af(t)‘ ~ AGQ_

sin?[Aeyt/2]
A€

ZEbEOQ
2w
ZGbE()Q
2w

2ep#b B
1

—(1—Aw/W)

) (52)

Zep b 50
4

+ (14 Aw/W)

9

where a cross term between the Aey components has been dropped. In the limit of large
t we have sin?[Aet /2] /n? — 76(A€)t/2 [33], and integrating over € gives an ionization

rate of
- ™ ZebE()Q 1 Aw Zep;ébEg 2 i ZebE()Q 1+ Aw Z€p7ngg 2
2 2W W 4 2W W 4
(83)
In the case when the detuning is zero, v simplifies to
. ZEbE(% zep#bEg ) + Ya
/7 =T < 22 + 24 - 2 9 (84)

where the ionization rates for the one-photon process from |¢), and the two-photon pro-

23



cess from |, ) have been introduced

2z E?
Vo = 27 6;2 0, (85a)
E4
Ya = 2m L2020, (85b)

Equation (84) reflects the fact that when Aw = 0, the atom spends on average 50% of
the time in both the ground and excited states, and therefore the rates of the two ioniza-
tion processes are reduced by one half compared to the rate from Fermi’s Golden rule. v
represents a kind of Rabi-period averaged rate, and the instantaneous rate will depend on
the relative strength of the different processes, and also on the instantaneous populations.
In general, it is not possible to define an ionization rate that holds for all time scales, and
accounting for depletion of the two-level system can lead to quite different rates on short
and long time scales [11, 13].

3.6 Dynamical spectral features

That an AT doublet should appear in the photoelectron spectrum for resonant photoion-
ization was first suggested by Knight [12]. When the first order ionization amplitude is
dominant, the ionization process is similar to probing a resonantly driven two-level system
by a weak transition to a third level |¢.), cf. Fig. 6 (a) and (b), which is the kind of process
considered by Autler and Townes [52]. Fig. 6 (d) shows the population in |¢.) as a func-
tion of the detuning Awgy, of the probe field. Due to the dressing of the two-level system
by the driving field, the expected peak at zero detuning is split into two peaks separated by
2 in the resonant case, or W if there is a detuning of the strongly driven transition.

Figure 6 (e) shows an AT doublet in the photoelectron spectrum for resonant ionization via

1s4p in He, calculated using al! (t), and a pulse duration of 1.5Tr. The simple doublet

structure is modified when agl)(t) and ag)(t) are considered together, since it is now
possible to have interference effects between the two ionization processes, which will affect
the symmetry of the doublet. This was explored in papers 1 and 111. The AT doublet is also
present when the dynamics is probed by an attosecond pulse train in a RABBIT-like setup
[55], which was explored in paper 1v. The AT doublet in resonant photoionization has also

been extensively studied in time-dependent numerical simulations [46-49].

A related doublet structure was suggested by Grobe and Eberly to be present when a laser
field that can drive one-photon ionization is resonant with a transition in the ion core [56],
see Fig. 6 (c). The resulting spectrum, calculated with the analytical model of paper 11, is
illustrated in Fig. 6 (f), which displays the photoelectron spectrum as a function of Ej, rel-
ative to the expected photoelectron peak at w — I;,. The solid line represents the total signal,
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Figure 6: lllustration of different situation where a doublet appears. (a) Resonant driving of two-level system, with a weak
probe field coupling to a third level |¢. ). (b) Resonant two-photon ionization. (c) One-photon ionization, where the
photon energy is resonant with a transition in the ion. (d) Population in the |¢.) as a function of the detuning Awp.
(e)Photoelectron signal from the lowest order amplitude, aﬁl) (t). (f) Photoelectron signal as a function of the kinetic
energy relative to the expected one-photon peak, AEy, = Ey, — (w — Ip). The green, solid line, corresponds to
the total signal, and the dashed (|, )) and dotted (|5 )) lines show the spectrum resolved on the two ionic states.

and the dashed and dotted lines are the contributions from the two ionic channels |¢,) and
|p), respectively. The dressing of the ion splits the photoelectron peak into a doublet, that
again is separated by 2. The Grobe-Eberly (GE) doublet has been experimentally observed
at optical [57] and at XUV wavelengths in paper 11. Its relation to entanglement between
the ion and the photoelectron was studied in paper 11.

The doublet is only present for pulses that are sufficiently long, see paper 1 and Ref. [58],

i.e. it can not be spectrally resolved by short pulses (compared to the Rabi period). A

complementary view is that the photoelectrons emitted during different Rabi periods can

interfere, since the Rabi amplitudes a(t) and b(t) change sign once per Rabi period. This
(2)

can explain why a doublet forms already after one period for o™’ (t), while a spectrum
calculated using only al! (t) would still show a single peak at this stage, as discussed in
paper 1. Because a(t) and b(t) oscillate out of phase, a(t) has changed sign once during

the first Rabi period, while b() has the same sign during the same interval.

This effect is illustrated in Fig. 7 (a) and (b), which shows the contribution from process 1
and 11, respectively, when the pulse duration is equal to T in the case of the 15 — 152p
resonant transition in He. Since W increases with the detuning, the effective Rabi period
becomes shorter, which explains why the doublet is visible for large detunings in Fig. 7 (a).
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Figure 7: Contribution from ail) (t) (@) and a£2> (t) (b) to ionizataion via 1s2p in He, when the pulse duration is T'’z. The total
photoelectron spectrum is shown in (c).

Figure 7 (c) shows the effect of the interference of the two ionization pathways, with a
suppression of the upper component of the doublet near the resonance frequency. The
intensity used in Fig. 7 is 1.1 x 10 W/cm?2, which is where the ionization rates for the
two processes are nearly equal.

Wollenhaupt et al. showed how the doublet can be modified by using a pump-probe scheme
where the atom first interacts with a pulse that has an area of 7/2 + N, and then with
a second pulse that has a variable time delay relative to the first [59]. Depending on the
delay, the upper, lower, or both components of the AT doublet will display interference
fringes, as illustrated in Fig. 8 for the case of two pulses, each with an area of 7.57.

4 Hilbert space partitioning, resolvent operators and effective Hamil-
tonians for resonant photoionization

This section explains how the partitioning of the Hilbert space together with the use of
resolvent operators leads to a description of the dynamics in a subspace in terms of an
effective-Hamiltonian for uncoupled atom-field states. The idea behind the approach is to
accurately describe a strongly interacting subspace of the full system, while the coupling to
the remaining part of the system is assumed to be sufficiently weak, so that it can be treated
perturbatively. The methods described here were applied in paper 111, where it was used to
study a stabilization mechanism in resonant two-photon ionization that was first suggested
by Beers and Armstrong [11]. Cohen-Tannoudji, Dupont-Roc and Grynberg present a
general introduction to the resolvent method in Ref. [60], and it’s application to resonant
photoionization has been studied by e.g. Beers and Armstrong [11] and Holt, Raymer
and Reinhardt [13]. Here we are interested in applying this framework to experiments
performed at modern (seeded) FEL facilities that operate at high intensities with XUV
radiation [2]. Recently, control of ionization using chirped pulses has been proposed by
Saalmann et al. [15], which can be related to the work of Beers and Armstrong in the
adiabatic limit.
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Figure 8: Photoelectron spectrum as a function of the delay between two 7.57 pulses, computed using the first order amplitude
a{P(t). The photoelectron spectrum has been normalized for each delay.

Examples of other contexts where effective Hamiltonians are used includes the description
of auto-ionizing resonances [61, 62] and Rayleigh-Schrédinger perturbation theory for
(nearly) degenerate states [37]. However, in this thesis we will focus on resonant photoion-
ization and use the resolvent operator method to systematically explore interference effects
that originate from coupling out from the subspace, due to different physical processes.

4.1 P+ () = 1: part two

Like in Sec. 3, we want to separate out the strongly interacting or resonant states of the
system, and treat the rest perturbatively. In the application to resonant two-photon ioniza-
tion, a natural partitioning is to include the two resonant bound states |a) = |¢4, N) and
|b) = |¢p, N — 1) in P. Beers and Armstrong also includes in P the set of continuum
states |¢e, N — 2) that can be reached from the ground state by absorbing two photons
[11]. However, since they also make the pole approximation (to be discussed in the next
section) when computing the amplitudes of the bound states, the result is equivalent to
what one gets from including only the two resonant bound states in P, see App. 1.

4.2 FEffective Hamiltonians

In order to describe the time evolution of a system with a time independent Hamiltonian,
we will make use of the resolvent operator G(z). The resolvent of H = Hj + V satisfies
the equation

(z— H)G(2) =1, (86)

whenever 2 is in the resolvent set of H, i.e. 2 is not in the spectrum of H. The resolvent
is related to the Fourier and Laplace transforms of the time evolution operator [60, 63].
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For t > 0, the matrix elements of the resolvent can be used to compute time-dependent
transition amplitudes via the formula [60]

1 o o
Up(t) = lim ——— [ dEe " EXiG (B + 8
silt) = lim, 2772‘/_00 e ri(E +in), (87)

where Uy;(t) is the probability amplitude to transition from state |i) to state | f).

By acting on both sides of Eq. (86) with P from the right and with P and () from the left,
and additionally inserting P 4+ ) = 1 we get

P(
Q(

Using the fact that P and () commute with Hy, and that PHyQ = QHoP = 0, this can

be rewritten as

H)PG(z)P + P(z — H)QG(z2)P =P (88a)
H)PG(z)P + Q(z — H)QG(2)P = 0. (88b)

z —
z —

P(z— H)PG(z)P — PVQG(z)P = P (89a)
—QVPG(2)P+Q(z— H)QG(z)P = 0. (89b)

Formally we can use the second equation to eliminate QG(z) P from the first, to get.

1
Q(z - H)Q
1

QG(2)P = mQVPG(z)P. (90b)

The first equation can now be written in terms of Hy and V,

P(z — H)PG(z)P — PVQ QVPG(z)P =P (90a)

1
P(z — Hy)PG(z)P — P <V + VQQ(Z “H V)QQV> PG(z)P =P, (91)
and we can introduce the level-shift operator
1
= . 2
R(2) V+VQQ(Z—H0—V)QQV (92)

We can now write the equation for PG(z) P in terms of the level-shift operator
(z — Hy)PG(z)P — PR(2)PPG(z)P = P. (93)
We see now that this can be written

(z — Het(2))PG(2)P = P, (94)
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where the effective Hamiltonian
H¢(z) = PHoP + PR(z)P, 95)
has been introduced.

In order to get expressions that are more manageable, two approximations to the level-shift
operator will be made. The first one is to expand PR(z)P in powers of the interaction V'
and truncating the resulting power series at a finite order. This limits the kinds of processes
that are included in our description of the dynamics, but those that are included are in a
sense included to infinite order.

The expansion looks like

1
PR(z)P = PVP + PVQ =T govP
1
= PVP+ PVQWQVP (96)
+ PVQ ! QVQ ! QVP + ...

Q(z — Ho)Q Q(z — Ho)Q

and should be carried out to the order that will generate the kinds of processes that you
want to include in the effective description of the system. For the case of resonant pho-
toionization that was studied in paper 111, an expansion up to fourth order in V' is required
to include the effect of the non-resonant ionization pathway on the time-dependent am-

plitudes of the states in P [13].

The second approximation we will make is the so-called pole-approximation (or Wigner-
Weisskopf approximation), where the z dependence of R(z) is neglected and its matrix
elements are evaluated at z = Eyes + 47, with ) — 07, Fle is taken as the average energy
of the two states in P [64]. This approximation amounts to neglecting the contribution of
singularities of G(z) that comes from states in Q, i.e. other bound state or resonance poles
and the branch-cut related to the continuum. Including the contribution of the branch-cut
typically leads to corrections to exponential decay at short and long times [60, 65], while
contributions from other poles would lead to more oscillating terms in the amplitudes and
corrections to the locations of the already included poles [64]. For this approximation to be
valid, the matrix elements of R(z) should be slowly varying functions of z near E\es, which
holds true sufficiently close to the resonance and for sufficiently small coupling strengths.

With these approximations the effective Hamiltonian takes the form

haa hab:| 7 (97)

He =
ff [hba P
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where the matrix elements are in general complex. The off-diagonal elements satisfy hqp =
hpa, so that Heg is complex symmetric Hg;f = Heg [13]. As was done by Holt et al. [13],
it is useful to write the diagonal elements in terms of bare energies E;, Stark shifts d; and
ionization rates 7y;, and the off-diagonal in terms of a Rabi frequency €2 with a contribution
from an imaginary part 8. Heg will then be

Eq+ 06, —i% 21ip
Heg=| " ol 2 2 : 98

Examples of leading order processes that contribute to the different parameters for |a)
is given in Fig. 9. ~y, appears from a fourth order process, since two photons have to
be absorbed from |a) to ionize. 7, would get a contribution from a process similar to
that of 04, since only one photon has to be absorbed to reach the continuum from |b).
The third order diagram, which gives a contribution to 3, represents a process where the
electron reaches the continuum by absorption of two photons from |a), and then emits one
photon to reach |b) [13] (or equivalently absorbing one photon from |b) and then emitting
two to reach |a)). This represents the interference between the resonant and non-resonant
ionization processes that were introduced in Sec. 3.3, and it plays an important role for the
stabilization of dressed atoms explored in paper 111.

Intensity scaling factors

Since the different orders of the perturbative expansion of Heg, depend on a different power
of the electric field strength, it is useful to separate out the field dependence from the factor
that comes from the atomic structure. In particular, we can write the matrix elements of R

in the following form
< pn .
Ry = 2272[,5]?, (99)
n=1

(n)
ij
were calculated up to order n = 4 in paper 111 for hydrogen and helium (CIS), and are

where the scaling factors p;;” depend on only on the atomic structure. These quantities

given in Tab. 2.

4.3 Matrix elements involving the continuum

In the computation of the matrix elements of Heg it is necessary to evaluate matrix elements
involving continuum states, when the matrix elements involve poles at energies that lie
above the ionization threshold. This requires the enforcement of the correct boundary
conditions on the intermediate perturbed wavefunctions, which can be done with methods
such as complex scaling, complex absorbing potentials, and extrapolation, described below.
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Figure 9: Perturbative processes that are part of the leading order contributions to €2, 8., 8, va. Absorption/emission of a
photon is indicated by a wavy line on the lefyright side of the diagrams. |c), |c") and |¢’") represents a sum over
intermediate states, and stages where the other resonant state |b) has to be excluded are indicated by # |b). The
figure is adapted from Fig. 1 (b) of paper m under a CC BY 4.0 license.

Table 2: The level-shift scaling factors for hydrogen: 1s — 2p, and helium: 152 — 1s2p, with linear polarization (L) and circular
polarization (C). The number in parentheses indicate the power of ten, and atomic units are used for all quantities.

p” | Aom/Pol.  n=1 n=2 n=3 n=4

aa H/L 0 —4.299 0 1452 — 23314
ab H/L 0.7449 0 54.26 + 9.322i 0

ba H/L 0.7449 0 54.26 + 9.322i 0

bb H/L 0 11.70 — 0.5223; 0 2888 — 95.57i
aa H/C 0 —4.299 0 1180 — 337 4
ab H/C —0.7449 0 —26.93 — 15.12i 0

ba H/C —0.7449 0 —26.93 — 15.12i 0

bb H/C 0 12.42 — 0.6776i 0 2378 — 47.25i
aa He/L 0 —2.853 0 155.6 — 10.32i
ab He/L 0.4040 0 8.533 + 0.2326i 0

ba He/L 0.4040 0 8.533 + 0.2326i 0

bb He/L 0 2.010 — 7.871i(—3) 0 120.0 — 0.2154i
aa He/C 0 —2.853 0 126.6 — 15.25i
ab He/C  —0.4040 0 —5.149 — 0.3737i 0

ba He/C  —0.4040 0 —5.149 — 0.3737i 0

bb He/C 0 1.971 — 9.159i(—3) 0 85.35 — 1.831i(—3)
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Complex scaling

Complex scaling of the radial coordinate was originally developed to study resonances [66,
671, since it can transform a resonance wavefunction that diverges in the radial coordinate
into a square integrable function [67]. It can also be used in the computation of ionization
rates using Floquet theory [42, 68]. In time-dependent simulations complex scaling can
be used to absorb outgoing particles [69, 70], but the method can not be applied in time-
dependent problems if the length gauge form of the interaction Hamiltonian is used [69,
70].

Complex scaling was originally introduced by scaling the radial coordinate over the whole
space, i.e. the transformation has the following form

R(r) = re®. (100)

The radial derivative now takes the form

0 _ —ind

The complex scaled radial Hamiltonian
1 g d? 0
H,(0) = e 2% — 4+ V(e'r), (102)

2 dr?

will no longer be Hermitian, but is instead complex symmetric. The non-Hermitian nature
of H,(0) means that its eigenfunctions are no longer orthogonal in the standard inner
product

(Paldv) 7 Oap, (103)

but one instead has the relation [67]

<¢Z’¢b> = (¢a‘¢b) = dab- (104)

An alternative to scaling the radial coordinate over the whole space is exterior complex
scaling (ECS), where only the part outside of some radius Ry is transformed:

0<r<R
R(ry=1{" L o= (105)
R0+(7’—R0)€Z r > Ry.

This is useful in cases where the Hamiltonian is not everywhere well-behaved under the

scaling transformation [66], or one wishes to use it to absorb outgoing particles but not
affect the wavefunction inside a certain region [70].
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Figure 10: (@) Complex scaled radial coordinate for uniform (solid blue line) and exterior scaling (dashed orange line). The
exterior region starts at r = 125 a.u., and the scaling angle is § = 20°. (b) Energies of hydrogen atom using the
complex scalings from (a). The solid vertical line at Re E = 0.5 a.u. indicates the ionization threshold.

With these methods the eigenvalues of the bound part of the spectrum is unaffected,
while continuum states have their energies rotated into the complex plane by the an-
gle —20, except for resonances which above certain threshold angles have the energies
E(0) = Eyes — iI'/2, where I is the decay rate of the resonance. An example of uni-
form and exterior scaling of the radial coordinate is shown in Fig. 10 (a), with the exterior
region starting at Ry = 125 a.u. and § = 20°. The energies of a hydrogen atom evaluated
on a B-spline grid with the corresponding scaling is presented in Fig. 10 (b). In the case of
uniform scaling, the continuum states are all rotated into the complex plane by —26. For
the case of exterior scaling most of the states are not rotated by the full —26 and there is a
bifurcation, as is typical for numerical implementations of ECS [71].

Complex absorbing potentials

A closely related technique to ECS are complex absorbing potentials (CAPs), which are
often used in time dependent simulations to reduce reflections of photoelectrons due to a
finite simulation box [72], but can also be used in time independent calculations to enforce
outgoing boundary conditions [73—75]. As the name suggests, a complex valued potential
is introduced at large distances to absorb outgoing particles before they hit the bound-
ary of the simulation box. Similar to complex scaling, the Hamiltonian will be complex
symmetric rather than Hermitian if a CAP is used.

An example of a CAP is the following [73]
Vear(r) = —iéf(r — Ro)(r — Ro)?, (106)

where £ is a parameter that controls the strength of the CAD, and 6(x) is the Heaviside
function, which ensures that the CAP only has an effect outside the radius Ry.
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Extrapolation method for continuum transitions

The extrapolation method of Cormier and Lambropoulos can be used to calculate matrix
elements involving continuum transitions [76]. The the two-photon dipole-matrix element
involved in the calculation of the above-threshold ionization amplitude to reach the final
state | f) starting from some initial state |¢), with an intermediate energy that lies in the
continuum is formally

My = lim Zi 2 n)(nl z[) (107)
n—0+ Ei+w+in—E,

When E; 4 w lies above the ionization threshold of the atom, then the Sokhotski—Plemelj
theorem can be used to write the matrix element as

My =poe YO D i 5™ iz, aos

n 14

where p. v. denotes the Cauchy-principal value and |¢) are all the continuum states with
the resonant energy E; + w.

When using a discrete representation of the problem, the sum-integral is approximated
with a sum over the bound-states and the pseudo-continuum states

_ (flz[n){n| 2 i)
Mfi(n)_zn:Ei—kw—i-in—En' (109)

For different discretizations, M ;(n) will typically not converge to the same value in the
limit 7 — 07, and it will start to diverge as the energy spacing in the pseudo-continuum
becomes smaller since the distance between F; +w and the nearest pseudo-continuum state
shrinks. However, it was shown by Cormier and Lambropoulos in Ref. [76] that M; can
be calculated by extrapolation. They suggest that M;(n) is calculated for a few values of n
chosen such that they are all larger than approximately 3-4 times the spacing  of pseudo-
continuum states near the pole. A rational interpolating function ¢(7) is then fitted to the
values of My;(n). The extrapolation step is performed by evaluating ¢(n) atn = 0, i.e.
My; is approximated by ¢(0).

The reason for choosing a rational interpolating function is that they can perform better
than polynomial interpolants when used for extrapolation. This is especially true when the
function that is to be approximated has singularities in the complex plane, since a rational
function will in general have poles that can be used to approximate the location of the
singularities of the function under consideration [77]. The theory of rational interpolation
is closely related to Padé approximants [78], and an extrapolation using Padé approximants
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can be used together with CAPs to compute the location of resonances [74], which is similar
in spirit to the Cormier and Lambropoulus method.

A comparison between radial dipole matrix elements computed with the extrapolation
method using quadratic and rational interpolating functions is made in Tab. 3 and Fig. 11
for the ATT transition in Path 1 of paper 1v. In this case the rational interpolation was
performed using Thiele interpolation [78]. As can be seen in Tab. 3, the values extracted
from the rational interpolating function are less sensitive to the size of the radial grid 7,y
than those computed with quadratic interpolation.

Table 3: Comparison of radial dipole matrix elements computed with the extrapolation method using quadratic and rational
interpolation for different radial grids.The transition is shown in Fig. 11 (a)

Interpolation  7ma [a.u.]  Real part [a.u]  Imaginary part [a.u.]

Quadratic 300 —71.053 —262.44
Rational 300 —112.36 —145.76
Quadratic 600 —134.56 —169.46
Rational 600 —112.34 —145.45
Quadratic 900 —123.13 —149.31
Rational 900 —112.32 —145.44

R-matrix

Another approach to enforcing boundary conditions, which has not been used in this the-
sis, is the use of the R-matrix procedure. Here the configuration space is divided up into
an inner and outer region, and a Bloch operator is introduced to enforce consistency be-
tween the two regions. The outer region is typically chosen such that asymptotic forms
of the wavefunctions are valid, which are then matched to solutions in the inner region.
This approach has for example been employed to compute matrix elements for ATT tran-
sitions in many-electron atomic and molecular systems for the process of single electron
ionization [79].

Computing projected resolvents

In the intermediate steps of computing the matrix elements of Heg it is necessary to com-
pute perturbed wavefunctions that have the following form

|pmt1) = I M, (110)

w — Fy,
n#a,b
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Figure 11: (a)The ATI path that is considered in Tab. 3 and in (b). (b) Comparison between extrapolation with rational and
quadratic functions in the extrapolation method, rn.x = 300 a.u. The crosses mark the datapoints used to construct
the interpolating functions. Points with /8§ < 4 were not included in the interpolation procedure.

where w = E,p, + Mw, M € N. Instead of computing this by direct summation, it is
possible to reformulate it as the solution of a linear system, i.e.

Q(w — Ho)Q |pm+1) = Q2 |pm) , (111)

or equivalently

(w — Ho) |pm+1) = Qz [pm) , (112)
since |pm+1) € Q.

The resulting system matrix is in principle singular, but a minimum norm solution can
be found using a preconditioned version of the generalized minimal residuals method
(GMRES)[80], since the system is consistent [81] (the right-hand side is in the range of
Q(w — Hp)Q). Using an iterative method such as GMRES means that it is not necessary
to explicitly form the projected forms of the matrices, since only the effect of matrix vector
products by the system matrix is needed. This also avoids the need to compute a minimum
norm solution by explicitly forming a pseudoinverse [82].
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4.4 Dressed states of H g

The eigenstates of the effective Hamiltonian are the dressed states |+) and |—). They have
associated eigenvalues A+ that will be complex, since Heg is not Hermitian. The non-
Hermitian nature of Heg also means that the dressed states are not orthogonal in the stan-
dard inner product, i.e. (+|—) # 0 [13]. Since they are eigenstates of Heg, the dressed
states form a useful basis to describe the dynamics of the effective two-level system.

The eigenvalues A4 take the form

haa + hbb

1
A= T TR, §\/(haa — hu)2 + 4h2,, (113)

or expressed in terms of the Holt parameters [13]

Ea a E a 1 ~ a 2
Ay = Patlat Byt o +%i\/<Awﬂ 2%) Q4+ B,

2 4 2
(114)

where Aw = E, + §, — Ep — 6y is the detuning when including the Stark-shifts d, and
0p. The eigenvalues are split by a complex Rabi frequency,

2
W =/ (haa — hip)? + 452, = \/(Aa—ﬂ“;%> +(Q+ip)? (115

which in the limit where the effective parameters of Heg go to zero corresponds to the

usual generalized Rabi frequency W. The imaginary part of A+ gives the ionization rates
of the dressed states, 7+ = —2Im A1. Since in general Im 1% = 0, one of the dressed
states will have an enhanced ionization rate, while the ionization rate of the other one will
be suppressed. Which of the dressed states that ionizes faster or slower will depend on the
sign of Im W, for details see Appendix B of paper m1. The real part of W will give the
AT-splitting and the frequency of the damped Rabi oscillations.

In terms of the dressed states, the projection of the time-dependent wavefunction onto P
is given by

P |o(1)) = ca(t) |a) + cp(t) [b) = cre™™ |4) +coe ™1 =), (116)

where ¢ and c_ are the expansion coefficients of |a) in the dressed state basis. The time-
dependent population is given by
P(t) = lea(®)* + leo(t)* = s [Pe™ + Je e
o o (117)
+2e7 7 'Refeyct e RV (|4,
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Figure 12: Comparison of eigenvalues of Heg (A4, marked by crosses) with Floquet quasi energies (E, marked by + signs)
for different w around the field free resonance wy,, at a field strength of Eq = 0.024 a.u. (a) contains the real part
of the energies, and (b) the corresponding ioinzation rates.

In Figs. 12 and 13, a comparison is made between quasienergies calculated from Floquet
theory and the fourth order Heg for He interacting with linearly polarized light. The
chosen Floquet energies E, are those whose corresponding states that have large overlap
with the |¢q, 0) and |¢p, —1) states in the extended Hilbert space. As is clear from the
real part of the energies, the eigenvalues separate into two branches, with the upper one
(corresponding to A) plotted in red and the lower one (corresponding to A_) in black.
The agreement between E'1 and A= is slightly better in Fig. 13. The reason for this is that
the scaling factors in Fig. 12 were computed at the resonance frequency, and therefore the
slight variation of the dipole matrix elements with frequency is not fully reflected in the
energies from Heg. We find that this mainly affects the ionization rates. The difference in
ionization rates between the dressed states that was mentioned above is visible in Fig. 13 for
both the Floquet energies and the energies from Heg. This point will be further discussed
in Sec. 6.2, and it is crucial to the prediction of stabilization of paper 1.

4.5 Transitions to Q

So far we have concerned ourselves with the effective dynamics in subspace P, for which
H g was used. However, in paper 111 the observable of interest was the photoelectron spec-
trum, which necessitates a computation of the probability amplitudes of the photoelectron
continuum states. However, these states lie in Q, where it is not possible to use only Heg
to describe the dynamics. Instead, we will make use of Eq. (90b) together with the fact that
we have already calculated an approximation for PG(z) P by using Heg. Since Eq. (90b)
still contains the full H we will make a perturbative expansion of the projected resolvent
m in powers of V. This is consistent with our perturbative treatment of V' in the
construction of Hg.
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The perturbative expansion for QG(z)P in powers of V' has the following form

1

QG(2)P =
1

Q(z—Ho—-V)Q

1

QVPPG(2)P

_l’_

Q(z — Ho)Q

Q(z — Ho)Q

" Q(z - Ho)Q
QVPPG(z)P

1

QVPPG(2)P

(118)

For paper 11 we kept terms up to second order in V. This can then be used to com-
pute the matrix element G,(2) between the initial state |4, N) and a continuum state
|pe, N — 2), which through Eq. (87) can be used to calculate the ionization amplitude.

In terms of the energies of the dressed states, the first and second order contributions to
the photoionization amplitudes are given by

(1) hab sin[%(E6 — A1)
Ueai( ) :FZEOZGb W exp[ (E + )‘:I:)] (Ee — )\:I:) ’ (1193)
(2) 5 Mi—mw t sin[£(Ee — Ay)]
E; —_— —i—(E, , 11

where + indicates from which dressed state the contribution is coming from. The total
first and second order amplitudes are then given by

UL () = U () + Ui (1) (1203
UE (@) = Uk () + UL (1) (120b)
where the following notation for the atomic dipole contributions has been introduced
Zeb = (Ye| 2 |9p) , (121a)
S SR o

C

c#b
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The amplitudes give rise to a spectrum that has two main peaks that are separated by Re W,
i.e. the AT-Knight doublet [12]. As discussed in paper 111, there will also be smaller peaks
between the main peaks of the AT doublet that are related to the number of Rabi-cycles
that the atom performs [18], and peaks outside the doublet that are related to the square
nature of the pulse that has been assumed in the derivation of these results. Since A4 has a
nonzero imaginary part, the photoelectron spectrum will in the long time limit (i.e. when
the atom is close to fully depleted) look like two Lorentzian peaks with a slight difference
in width due to Im A4 being different for the two-dressed states in general. This difference
in width of the two components of the AT doublet has been seen in TDSE calculations in
hydrogen for intense fields and linear polarization [46, 47].

The values for z¢, and 2z, for helium (CIS) used in paper 111 for linear and circular po-
larization are given in Tab. 4. When comparing the relative strength of the two matrix
elements, z¢j, should be multiplied by an extra power of Ey /2 since it stems from a higher
order process than zq,. The difference in relative strength between 2, and zcp, for s- and
d-waves is responsible for the fact that the relative stabilization of one of the dressed states
is not as pronounced in the case of linear polarization as for circular polarization. This
is because the interference between resonant and non-resonant ionization is not maximal
for both partial waves simultaneously. The situation is different for circular polarization
since, when starting in the ground state of helium, only ionization to d-waves is allowed
in two-photon ionization. In other words, there are two continua accessible in the linearly
polarized case, but only one continuum for circular polarization.

Table 4: Dipole matrix elements needed to compute ionization amplitudes for resonant ionization in He (1s2-1s2p).

Polarization Matrix element Ss-wave d-wave
Linear Zeb 0.0233 0.04426
Linear Zetb 0.2207 —1.805

Circular 272(x + iy)e 0 —0.05421
Circular  27Y2(z 4 iy)ess 0 —2.210

5 Frustrated tunneling ionization

Here we will make a departure from the world of few-photon resonant ionization with pho-
ton energies in the XUV range, and instead shift our focus to what happens when an atom
interacts with a strong IR-field, where few photon ionization is no longer possible. This is
the regime of HHG [19, 26], ATT [22, 23] and FTT [28]. The latter will be the focus of
this section of the thesis. The physical processes that are important in this regime are tun-
neling ionization, and laser driven quasiclassical continuum dynamics, such as recollision
and rescattering [83].
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At the high intensities and long wavelengths that will be considered here the electric field of
the laser can no longer be considered as a weak perturbation on top of the atomic potential,
and it is in certain cases useful to treat the laser-atom interaction exactly, while neglecting or
using some kind of perturbation theory for the atomic potential. Another important point
is that typically the RWA breaks down for these kinds of laser-fields, and the instantaneous
electric-field amplitude will be important, leading to quasiclassical dynamics that happen
on timescale shorter than a laser cycle (sub-cycle dynamics).

5.1 Tunneling ionization and the strong-field approximation

Here follows a brief overview of the SFA and its application to tunneling ionization, which
was adapted in Ref. [27] to study FTI. One of the useful aspects of the SFA comes from the
possibility of performing the saddle point approximation on the resulting integral for the
ionization amplitude. This naturally leads to the tunneling picture, when one is required
to move into the complex time plane to solve the saddle point equations with quasiclassical
physical interpretation.

The starting point for the SFA is the Dyson equation for the time-evolution operator cor-
responding to the full Hamiltonian H (t) = Ho + V/(t), where Hy is the field free atomic
Hamiltonian, and V() is the time-dependent laser-atom coupling. The time-domain
Dyson equation is then given by

t
U(t,to) = Ug(t, to) z/ AU (t, YV () Uy (t, to), (122)

to
where Uy is the time-evolution operator corresponding to Hy. It is worth to note that
Eq. (122) is valid also for time-dependent zeroth-order Hamiltonians Ho(%). In the SFA
the full time-evolution operator inside the integral is typically approximated by the Volkov
propagator, which is the solution to the Schrédinger equation where the electric field is
fully accounted for, but the atomic potential is neglected. In the length gauge, with

»’ »’

Hy = +E(t) v = &+ Vi (1), (123)

the propagator takes the form
Uy (ta, t1) = /d3k k+ A(ta)) (k+ A(ty)| e vk, (124)
where |p) represents a normalized plane-wave state, k is the conserved canonical momen-

tum, and
1 [ 5
Sy (ta, 11, k) 2/ dr (k+ A(r) (125)
t1
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is the Volkov-phase that corresponds to the classical action for an electron in an oscillating
field. If we take the initial state to be the ground state of the atom |¢), with ionization
potential I}, and the final state of to be a plane-wave of momentum |p), then within the
SFA the ionization amplitude is given by

t
M(p,t) = —i / dt’ (p — A(t) + A(t') | VL(¥') | o) e~ v (P AD (o),

t
’ (126)
If the amplitude is evaluated at the end of the laser pulse, when A(T") = 0, then it becomes

T
M(p) = M(p’ T) = —Z/ d <p + A ‘ VL |¢0> —iSy (Tt ,p)+ilp (¢ —to)
K (127)

For intense, low-frequency pulses the Volkov-phase will be large due to a large value of
the ponderomotive energy U, = A3/4 = E2/(4w?). This will cause the phase factor in
the ionization amplitude to oscillate rapidly, which means that the integral over ¢’ can be
approximated with the saddle-point method [84]. The saddle point equation will in this
case be

oSy 1
_5F+%:§@+AWW+Q:& (128)
For real ¢’ both terms of the equation are positive, so the solutions must be complex. This
means that after choosing the appropriate saddle points, the amplitude will be exponentially

suppressed, which is indicative of tunneling.

5.2 Previous works on frustrated tunneling ionization

Frustrated tunneling ionization was discovered experimentally in 2008 by Nubbemeyer et
al. [28], who observed creation of neutral excited atoms for laser parameters in the tunnel-
ing regime. They performed simulations with a model based on tunneling with classical
propagation of trajectories that and TDSE simulations that produced similar excited state
distributions. Although the original experiment did not measure the excited state distri-
bution, a later experiment confirmed the predictions of the FT model by measuring the
excited state distribution using a technique based on field ionization [85]. The quasiclassi-
cal trajectory picture proposed in Ref. [28] is presented in Fig. 14.

Classical simulations

Simulation of classical trajectories after tunneling has served as a useful tool for understand-

ing different aspects of strong field physics [83], and also FTT has been studied with this
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Figure 14: The picture of frustrated tunneling in the spirit of the three-step model for HHG. (1) The atom starts in the ground
state, before the arrival of the laser pulse. (2) When the laser pulse has arrived, its electric field distorts the atomic
potential, allowing the electron to tunnel. (3) The tunneled electron propagates in the combined potential of the
Laser and the atomic core. (4) For certain tunneling conditions, the electron will be found in an excited state when
the atom no longer interacts with the laser.

approach [28, 86—89]. Which trajectories that are bound at the end of the laser pulse in
tunneling + classical simulations depend on the moment of birth (tunneling instant) and
on the transverse momentum p | at the moment of birth. Whether a trajectory is bound or
not also depends on the pulse duration. Longer pulse duration restricts the parameter space
that leads to a bound orbit at the end of the laser pulse, see for instance Fig. 1 of Ref. [88],
Fig. 1.1 of Ref. [89] and Fig. 3 of Ref. [87]. The parameter space that leads to a bound
orbit is mostly located before a local maximum in the electric field. Such trajectories have
the property that they don't return to the ionic core, and are therefore less likely to scatter
strongly off the nucleus. However, certain initial conditions with tunneling after the peak
of the electric field will still lead to a bound orbit through more complex dynamics driven
by laser and Coulomb potential.

When the laser is turned on, there are classes of trajectories that follow Kepler like orbits,
with oscillations due to the laser field superimposed [86, 88, 89]. Such trajectories can be
studied with a guiding center model [90-92], and are essential for laser pulses that have a
duration comparable to the Kepler orbit period.
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5.3 Modeling frustrated tunneling ionization

Due to the success of SFA in providing useful insight into both HHG and ATI, one might
ask if it can also be used to study FTI. In Ref. [27], Popruzhenko proposed an SFA-like
model for FTT. It starts from regular SFA and the saddle-point expression for ionization,
but adds conditions on the final energy and angular momentum that connects trajectories
to specific excited states.

An obvious drawback of lowest-order SFA theory is that the resulting trajectories do not
feel the Coulomb potential after tunneling. This could potentially be a problem, but it was
not known if the model could provide new insights into possible interference effects. It is
known from classical simulations that a delicate balance between the laser and the Coulomb
potential on the trajectories is required for FTT [89]. The model was compared with TDSE
calculations in paper v, showing that while multiple quasiclassical trajectories are predicted
more work is required to fully understand the FTT process using SFA theory.

We now turn to the details of the SFA-FTT theory. The tunneling equation still reads
[P+ A(ty))* = —21I,, (129)
and the extra constraints read
L2(ty) = [rs(p, ty) x pI* = pPLAG(ty,15)* = £({ + 1) (130)

for angular momentum matching at the end of the pulse t = ¢y, and

- = (131)

V rs(pvtf)Q 20

for energy matching to the principal quantum number, n, also at the end of the pulse. The

p2 VA 72
2

amplitude for Rydberg state excitation is calculated by projecting the approximate solution
onto the corresponding Rydberg state at the end of the laser pulse,

Anem (tf) = Z(nlm]p5> M (ps), (132)

Ps

where ps are the solutions to the above equations. One immediate question is how to

define the end of the pulse for general envelopes of the field. In paper v we used a cos?

envelope with,
7t

f(t) = cos? <) , (133)

T

which has a finite duration 7.
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TDSE calculations and other model approaches

I will end this section about FTT by a short overview of some TDSE calculations that
have been performed by others, and also briefly mention some other quantum mechanical
models that have been proposed for FTT.

In Ref. [93] Piraux et al. performed TDSE calculations of Rydberg state excitation for
hydrogen with 800 nm and 1800 nm light. A comparison of the ionization probabilities
with adiabatic limit was performed and gave good agreement for the simulations at 1800
nm. The excited state distributions were studied in n and ¢, showing that longer pulses
predominantly favors a specific parity. At 800 nm they observed out-of-phase oscillations
between the ionization probability and excitation probability when the intensity is varied,
with the later becoming enhanced after the closing of a multi-photon channel, which occurs
due to the increase in the effective ionization potential I, + U,.

In Ref. [94] Zimmerman et al. performed TDSE calculations and experiments looking at
channel closings as a function of intensity. Like in Ref. [93], they see that the closing of the
m-photon channel due to an increase in the effective ionization potential is accompanied
by an increase in the excitation yield. They propose an interpretation of the process in the
frequency domain, where the closing of a multiphoton thresholds leads to resonance with
the excited states just below the threshold.

An alternative model in the spirit of SFA was proposed by Hu et al. in Ref. [95]. It relies
on the fact that in the expansion of the propagator, what is considered as a perturbation
is allowed to change. Specifically they use one form of the exact propagator where the
atom-field interaction is treated as a perturbation, and one where the binding potential is
treated as a perturbation. Physically their model (at second order) consists of tunneling
and subsequent Volkov propagation until the electron is captured by the binding potential
and the subsequent propagation is approximated by a field-dressed Coulomb-Volkov state.
There is also a first order SFA-like contribution that is neglected on physical grounds, based
on the argument that in the long-time limit the SFA wave-packet will not contribute to
bound state amplitudes due to quantum diffusion.

In Ref. [96], Piraux et al. used an approach that iterates in both the Coulomb and Laser
interaction, where the lowest order corresponds to SFA, and the next order corresponds to
Hu et al.’s model. For high-intensity IR fields the series did not converge to the TDSE
results and there are large cancellations between different orders, and specifically between
the first and second order. This shows that, at least for short pulses, the SFA contribution
does not vanish. However, it should be noted that the calculations of Piruax and Hu were
not performed in the same gauge, and SFA-like theories are known to not be gauge invariant
in general [97].
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Bengs et al. introduced a Kramers-Henneberger approach to strong field excitation in
Ref. [98]. In the Kramers-Henneberger approach, a time-dependent unitary transforma-
tion is made, corresponding to a translation by the classical laser trajectory. This removes
the time-dependent laser-atom interaction term from the Hamiltonian, at the cost of in-
troducing a time-dependence in the atomic potential from the laser-driven trajectory. In
the appropriate (high-frequency) limit the time dependent potential can be replaced by
its cycle average [99], leading to a time-independent Hamiltonian with associated eigen-
states known as Kramers-Henneberger states [100]. Setting the final state in the Dyson
expression for the excitation amplitude as a Kramers-Henneberger state, and approximat-
ing the full propagator with the corresponding Kramers-Henneberger propagator leads to
an expression that is similar to the ionization amplitude in SFA theory [100]. Applying
the saddle point approximation leads to an equation for a tunneling time, which is again
reminiscent to that of SFA theory [100]. The model is able to predict the period of Stiick-
elberg oscillations in the populations of excited states [98]. The classical version of the
Kramers-Henneberger approach is closely related to the guiding center models [91].
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Summary of results and applications

In this chapter the results of the papers included in the thesis are summarized, along with
some additional applications and illustrations that were not covered in the papers.

6 Photoelectron signatures of non-perturbative XUV driven dy-
namics

Papers 1-111 all deal with dynamics driven by intense XUV fields. Papers 1 and 11 contain re-
sults from experiments performed at FERMI, together with our theoretical interpretations.
Paper 111 concerns a prediction of stabilization of dressed states in resonant photoioniza-
tion, which could potentially be studied at FEMRI, or another intense and coherent XUV
source that supports circular polarization.

6.1 Rabi-dynamics in resonant FEL experiments

In paper 1, we reported on an experimental observation of an Autler-Townes-like splitting
in the photoelectron spectrum in a resonant photoionization experiment performed on
helium atoms using the seeded FEL source FERMI. The photon energy was close to the
152 — 1s4p transition for helium, and the pulse duration and intensity estimates allow for
the atom to complete at least one period of Rabi cycling during the pulse, see Fig. 15. The
experimental data showed asymmetry in the AT doublet when the FEL pulse was detuned
from the resonance, see Fig. 16 (a). We could not explain this feature by considering ioniza-
tion only from the excited state as done by Knight. Thus, we wanted to better understand
this phenomenon.

In order to reproduce the experimental results TDCIS simulations were performed. Pho-
toelectron spectra were computed using the t-SURFF and i-SURF methods [101, 102].
The simulations show that the symmetry of the AT-dobulet depends on the detuning, with
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Figure 15: Populations of the ground state (1s2) and excited state (1s4p) computed within velocity gauge TDCIS, with the laser
parameters used in paper 1. The interaction corresponds to a pulse area close to 37 (1.5 Rabi periods).

the most symmetric doublet being found at a slight blue detuning from the field-free reso-
nance, which is also the case for the experiment, see Figs. 16 (a) and (b). The observed blue
shift was larger than the estimated ac Stark shift, which implies that some other mechanism
was at play.

To better understand the experimental photoelectron spectra and the TDCIS results, a
model based on the theory described in Sec. 3 was constructed. With a flat-top envelope
for the interaction it was found that the non-resonant pathway was needed to explain the
asymmetry in the experimental spectrum, see Figs. 16 (c) and (d). The blue shift of the
symmetric AT doublet was found to be larger with a flat-top envelope than for the TDCIS
simulations with a Gaussian envelope, but simulations performed with a smooth flat-top
produced blue shifts of similar size. At the intensity suggested by the splitting of the AT
doublet in the experimental PES, it was found that the two ionization pathways are of
similar strength, and so both are needed to interpret the results in terms of a quantum
interference effect.

Interference between resonant and non-resonant ionization

Since there is a substantial difference in the relative strength between the two ionization
pathways for the s- and d-waves, see Tab. 1, one of them can be dominant in one channel,
while the other is stronger in the other one. Figure 17 shows this effect when the duration
is close to one Rabi period. In (a), only the contribution from s states are included, and we
see a single peak in the photoelectron spectrum when the detuning is small. In contrast, for
(b) only the contribution from the d partial wave was included, and we see an AT doublet
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Model calculations for flat-top envelope, contribution from excited state Eq. (70) (c) and ground state Eq. (80) (d).
The figure is reproduced, without modificaions, from Fig. 2 of paper 1, under a CC BY 4.0 license.

in the spectrum. This also affects the angular distribution, see e.g. Fig. 31 of Ref. [103].

Photoionization domains

With the ionization rates derived in Sec. 3.5, we can study which dynamics the simple
model suggests should be relevant in different pulse intensity and duration regimes. This
is done in Fig. 18 for the first few excited states in the 1snp Rydberg series of He, with
the photon energy set to the field-free resonance energy for simplicity. The shaded area
indicates regions where the model suggests that Rabi oscillations should be taking place.
The lower limit is set by the Rabi period, and the upper limit by the radiative lifetime
of the excited state and the lifetime associated with the two ionization processes included
by the model. Figure 18 suggests that, for all the states included, there is quite a large
parameter space where Rabi oscillations are possible. Specifically, at the estimated intensity

and pulse duration for the 154p experiment of paper 1, there is a difference of several orders

of magnitude between the Rabi period and the time scale on which the atom is depleted
due to ionization. This point is also illustrated in Fig. 15, where the total population in the
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Figure 17: Photolectron spectrum for resonant ionization of near the 1s4p transition, as a function of the detuning. The
spectrum is plotted relative to the expected kinetic energy at the resonance. (a) Only s photoelectrons, (b) only d
photoelectrons, (c) combined signal. The pulse duration is 56 fs, at an intensity of 2 x 103 W/cm?.

two-level system is very close to 1 at the end of the pulse (dashed line).

As the intensity is increased, a point is reached where the rate for the non-resonant second
order process overtakes the rate of the process that corresponds to one-photon ionization
from the excited state. This is indicated in the figure by the crossing of the lifetime a and
lifetime b lines, and the shaded area switching from salmon color (1) to blue (11). Here the
combined rate transitions from linear to quadratic intensity scaling.

From Fig. 18 we can see that the transition between the two domains happens at lower
intensities for the higher lying excited states, which was also seen in Tab. 1 in Sec. 3.4.
This can be understood from the definition of [p-p), Eq. (77). As we go up in the Rydberg
series, the distance in energy to the closest state in Q decreases, meaning that the numerator
in Eq. (77) becomes smaller, which implies larger contributions from the ground state via
the non-resonant states. Therefore, the 15> — 152p transition in helium is the one that
mostly ionizes from the excited state at low intensities. Our work shows, however, that

even in this case the contribution from the groundstate becomes important beyond 104
W/cm?, see Fig. 18 (a).

Entanglement in core resonant photoionization

In the experiment of paper 11, photon energies in the range around 40.8 eV were used.
This is above the first ionization threshold of He, but also close the 1s — 2p transition in
He™ (40.814 eV). A sufficiently intense field should therefore be able to drive transitions
between these two states in the ion. This means that we are in the situation described in
Fig. 6 (c), and one might expect to see a GE doublet in the photoelectron spectrum [56].
The experiment was performed in a regime where the pulse duration was longer than the
estimated Rabi period, and a doublet structure is indeed visible in the spectrum, when the
FEL frequency was detuned slightly from the resonance.
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Figure 18: Photoionization domains for resonant two-photon ionization in the He Rydberg series, computed with the matrix
elements of Tab. 1.

A model based on the Dyson equation was constructed, which includes the following states

lg, N), Ground state of He and N photons,
|#a, Eins N — 1), He™ ground state, photoelectron and N — 1 photons, ~ (134)
|66, Eiin, N — 2), He™ excited state, photoelectron and N — 2 photons.
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According to our model, the final state of the system asymptotically approaches a quantum
superposition on the form

10) == (160, N — 1) +i |y, N — 2)) ® | E;,)

N |

(135)
+ (|¢CHN - 1> —1 |¢baN - 2>) ® ‘Elin> )

which is an entangled state. This is because the ion-field superpositions associated to the
higher, E}\ , and lower, E , photoelectron energies of the GE doublet are the orthogonal
dressed states % (|pas N — 1) Fi|¢p, N — 2)). Thus the state cannot be factorized into
the form |Ion, Photon) ® |Photoelectron), and it corresponds to a fully entangled state.

6.2 Dressed-state stabilization in resonant ionization

Following the prediction by Beers and Armstrong [11] of stabilization of one of the dressed
states due to interference between resonant and non-resonant ionization processes, we in-
vestigated the conditions for stabilization to occur in realistic systems. Since one of the con-
ditions is roughly equal atomic ionization rates (7y; and 7y,), which we believe was achieved
in paper 1, we wanted to further investigate their prediction and assumptions. The critical
assumption made in Ref. [11] that leads to complete stabilization, is that they only con-
sider the case where the electron is coupled to a single ionization continuum. For complete
stabilization, the conditions needs to be satisfied for every open ionization channel.

Holt et al. state that 8 = /7,75 [13], however this does not hold in general when there
is more than one ionization channel, as shown in Appendix B of paper m1. It is rather

of the form 8 = >, 0%\ /vt~} where ¢ denotes the open ionization channels, and o
generates the appropriate sign of each term. For linear polarization from an initial S-
state there are two ionization channels, corresponding to s and d photoelectrons. For
circular polarization, the dipole selection rules require Am = =£1. This means that only d
photoelectrons are allowed in two-photon ionization. Clearly this condition can be met for
the helium atom in its ground state. We thus predict that helium could be stabilized to a
greater extent using circular polarization than what is possible with linear polarization. This
is illustrated in Figs. 19 (a) and (b) which show the ionization rates of the dressed states for
linear (a) and circular polarization (b) as a function of intensity, for resonant ionization via
1s2p in He.

As was mentioned in Sec. 4.4, while one of the dressed states has a suppressed ionization
rate, the other rate is enhanced. This is enough to compensate for the stabilized state at
short times, so that it is not possible to see the effect of stabilization in the total ionization
probability. Stabilization can only be seen in the ionization probability once the state with
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Figure 19: Dressed state ionization rates for (a) linear and (b) circular polarization, for the field free 1s2p resonance in helium
predicted by CIS (21.69 eV). (c) Comparison of the asymmetry of AT doublet as a funciton of photon energy for linear
and circular polarization. The intensity is 1.1 x 10'* W/cm?, and the pulse duration is 10 Rabi cycles. (a) and (b)
are adapted from Fig. 5, and (c) from Fig. 6, of paper 11 under a CC BY 4.0 license.

enhanced jonization rate has been significantly depleted. In helium for the laser parameters
where stabilization takes place, the lifetime of the bound states due to ionization is signifi-
cantly longer than the Rabi period, see Fig. 18, so the total amount of ionization is rather
low for realistic pulse durations. Thus, it may appear hopeless to detect the stabilization
mechanism.

However, since the two main peaks of the AT doublet are populated by ionization from
one of the dressed states |[+) and |—), any difference in the ionization rates of the two
states will affect the symmetry of the doublet. If one of the dressed states is stabilized, the
corresponding component of the AT doublet should vanish, since no ionization takes place
to the corresponding energy. Therefore, we suggest that stabilization could be inferred from
the photoelectron spectrum by studying the asymmetry of the spectrum as a function of the
laser parameters and looking for parameters where the spectrum is completely asymmetric.
The asymmetry of the spectrum can be studied quantitatively, as was done by Zhang et al.
in Ref. [16]. Figure 19 (c) shows the asymmetry parameter
1S+ — 5|

A= S, 15 (1306)
where S (S_) is the signal in the upper (lower) AT-component, as a function of the photon
energy. Near the resonance the asymmetry for circular polarization has a maximum, A ~ 1,
which is absent for linear polarization. The connection between stabilization, or population
trapping, and the photoelectron spectrum has been noted also in previous works, see e.g.

Ref. [104].

Envelope effects
The effect on the AT doublet of including an envelope is illustrated in Fig. 20, where four

different envelopes are compared using a version of the theory of Sec. 4 in which the pa-
rameters of Heg follow the intensity envelope. The super-Gaussian envelope sequence that
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Figure 20: Photolectron spectra computed for four different envelopes with intensity FWHM 19.305 fs. The light is circularly
polarized and the intensity is in the stabilization regime. The envelopes are (a) Gaussian, (b) super-Gaussian, (c) fourth
order super-Gaussian, and (d) flat-top.

was used is defined as

2n
f(t) = exp —lnf) <2:> ; (137)

where 7 is the full-width at half maximum (FWHM) of the intensity profile. This sequence
interpolates between Gaussian (n = 1) and flat-top (n — 00) envelopes. Figure 20 (a),
(b) and (c) corresponds ton = 1, n = 2 and n = 4, respectively, while a flat-top envelope
was used in (d).

In addition to the total spectrum, also the individual spectra from the resonant and non-
resonant processes are shown in Fig. 20. We note that the smooth envelopes introduce an
asymmetry in the contribution of the excited state process. However, this asymmetry is
both weaker and opposite to that stemming from the ground state amplitude, which shows
that the asymmetry in paper 1 can not be attributed to envelope effects. Furthermore, the
spectra show that even when envelopes are included, it is still possible for the interference
between the two ionization processes to have a large influence on the final spectrum.
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Figure 21: (a) Photoelectron spectrum as a function of delay between the two pulses. The intensity is in the stabilization regime
for 1s2p resonant ionization of He. A fourth order super-Gaussian envelope was used, with the pulse area slightly
below 6.57. (b) Population remaining in the two-level system as a function of the delay. The population after the
first pulse is 0.9852, and it places the atom in a superposition of ground and excited state.

Control of ionization by preparation of dressed states

The pump-probe scheme of Wollenhaupt et al., Ref. [59], consists of a set of two time
delayed pulses that both lead to resonant photoionization. Here, we predict that this kind
of experiment would be strongly modified in the stabilization regime. Compared with
Fig. 8, the spectrum of Fig. 21 (a) shows a strong suppression of the upper component of
the AT doublet. The lower component still shows the same kind of interference fringes
that were predicted in Ref. [59]. Figure 21 (b) shows the population left in the two-level
system at the end of the second pulse. The oscillations in the two-level population follows
the changes in the fringe structure of the lower AT component in (a). There is a minimum
for the delay where the fringes are the strongest, and maxima where the fringes are not
present. This is easily understood in the dressed-state picture. The first pulse leaves the
two-level system in a nearly equal superposition of |a) and |b). The delay of the second
pulse introduces a phase that controls the phase of the superposition. Depending on the
relative phase, the atom can be in either of the two dressed states, or in a non-stationary
state. 'This means that for certain delays, the superposition prepared by the first pulse
will correspond to one of the dressed states [59], and ionization will only take place from
this state. When only the |—) state is populated there is strong interference in the lower
component, and the second pulse leads to more ionization. When instead the |+) state is
populated, there are no fringes in the lower component and the second pulse leads to very
little further ionization, consistent with the fact that |+) is stabilized.

A related mechanism for controlling the amount of ionization by selectively populating one
of the dressed states was proposed by Saalmann, Giri and Rost in Ref. [15]. By introducing
a chirp to the XUV pulses, the adiabatic picture suggests that most of the population will
remain in either the |[+) or the |—) state during the pulse, depending on the sign of the
chirp. Their simulations for linear polarization show a reduction in total amount of ioniza-
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tion when adiabatically following the |+) state (negative chirp), and that the asymmetry
of the AT doublet can be controlled by the chirp. An experiment was recently performed
at FERMI using this scheme, but with circularly polarized pulses, where a reduction in
the ionization rate was observed for negative values of the chirp [10]. The results of pa-
per 111 suggests that this effect should be more pronounced with circular than with linear
polarization for experiments performed in the stabilization regime.

Exceptional points in resonant photoionization

The exceptional points of Heg are points in parameter space where the complex eigenvalues
A+ coalesce, and the dimension of the eigenspace is reduced to one [62, 105-107]. For
the Heg studied in paper 111 and in this thesis, this requires the conditions

2
AZ —|—QZ _ (’Ya 471)) +527 (13821)

A% — O, (138b)

where A = E, + 8, — E} — 6. This can be reduced to the following conditions

Q= i%, (139a)

A =+£0, (139b)

which means that the Rabi frequency should be comparable to the difference in atomic
ionization rates. However, for the case considered here, and where the model is valid, we
can not expect to find any exceptional points since typically 2 > 74, vp. There is one
trivial solution A = 7,5 = 1 = B = 0 (non-interacting case), but there one can still
find two orthogonal eigenvectors. Instead, the exceptional points are expected to occur for
complex values of the field strength Ey [108].

This is indeed the case as is illustrated in Figs. 22 and 23. Figure 22 shows the difference
between the eigenvalues of Heg as function of field strength and detuning, over a range
where the model is expected to valid. One can see the trivial solution at Ey = A = 0,
but there appears to be no other solutions. Figure 23 on the other hand, shows Ay — A_
as a function of complex field strength, in the spirit of Ref. [108]. The left column (a, ¢)
shows [A\; — A_|, and the right one (b,d) shows the phase of A\; — A_. In the top row (a,
b) the field free detuning is 0, while a 3 % detuning is introduced in the bottom row (c,
d). (a) and (c) show that in this region of the complex plane there are four solutions to the
above equations (the one at £y = 0 in (a) is a double root). From (b) and (d) one can see
that the points where two eigenvalues are identical are associated with branch cuts, as they
should be [105, 108].
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Figure 22: Absolute value of the difference A+ — A_ as function of field strength and detuning. The He¢¢ used is the one for
He interacting with circularly polarized light, studied in paper .

In Refs. [62, 107], there is greater possibility to control the eigenvalues of Heg since there
are more parameters to vary. In Ref. [62], the autoionization lifetime does not depend
on the field strength, and can thus be seen as an independent parameter. The multicolor
approach of Ref. [107], where different fields control ionization and Rabi oscillations, also
has more parameters that can be tuned, and therefore the conditions for exceptional points
can be satisfied.

7 Rabi oscillations in RABBIT

In the original RABBIT scheme the IR field is assumed to not be resonant with any bound
states, so that the transitions that are induced by the IR-field take place once the electron is
already in the continuum [29-31, 109], see Fig. 24 (a). If the IR is resonant with a bound
state, this opens up additional pathways for interference in the sideband signal, since the
atom can first absorb one IR photon to reach an excited state before it absorbs an XUV-
photon from the APT and ejects an electron into the continuum [110], see Fig. 24 (b). If
the IR can induce Rabi oscillations in the atom, both the main harmonic peaks and the

sidebands split into AT doublets [55].

7.1 Circularly polarized RABBIT applied to a Rabi-cycling atom

In paper 1v, the RABBIT scheme was used to study the dynamics of a Rabi cycling Li atom,
where the IR is resonant with the 2s to 2p transition. Specifically the different contribu-
tions to the sideband phases are studied in great detail through numerical simulations and
perturbative calculations in the spirit of paper 1. A single active electron potential for Li
was used [111].

Paper 1v extends the work of Ref. [55] by including more pathways in the perturbative
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Figure 23: Exceptional points of Hgs in the complex E plane for resonant ionization of He interacting with circularly polarized
light. Panels (a) and (c) show [A — A_|, while (b) and (d) show the associated phase. For (a) and (b) the detuning
is 0, while for (c) and (d) it is 3 %.

calculations, and by considering the case of circular polarization instead of linear polar-
ization. Circular polarization is used in order to minimize the transitions to bound states
outside the two-level system, since the dipole selection rules for circularly polarized light
excludes the 3s level, which would otherwise be the level closest to having a two-photon
resonance with the ground state. It is found that in the case of co-rotating IR and XUV
fields, some processes involving two IR transitions in the continuum are required to explain
the behavior of the sideband phase, due to their interference with lower order processes.
The pathways needed to explain the numerical results are illustrated in Fig. 25.

Table 5 contains the radial components of the ionization dipole matrix elements for the
paths shown in Fig. 25. Paths (b) and (e) can also reach other partial waves than the one
included in the table. A comparison is made between the complex rotation method of Gao
and Starace, Ref. [112], and the extrapolation method of Cormier and Lambropoulos,
Ref. [76], for dealing with ATT transitions. The extrapolation method was introduced in
Sec. 4.3.
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Figure 24: (a) The standard RABBIT scheme with sideband interference due to IR transitions in the continuum. (b) When the IR
is resonant with a bound state there are additional paths that can cause interference in the sideband signal, which
here is indicated by the path where the IR photon is absorbed before the XUV photon.

Table 5: Comparison of radial matrix elements, computed with complex rotation and the extrapolation method for a few selected
paths that were used in paper 1v. The different paths are illustrated in Fig. 25

Path  Angular momenta  Complex rotation Extrapolation
a (0,1,2) 112.18 + 145.30¢ 112.30 + 145.37:
b (0,1,0) 40.385 + 134.145  40.544 4 134.461¢
c (1,2) 0.33566 0.33589
d (1,2,3,4) 16840 + 125764 17264 + 137254
e (1,2,1,0) —10202 — 4446.6¢ —10194 — 4624.1:

8 Frustrated tunneling in ultrashort laser pulses

We compared the model of Ref. [27] with TDSE calculations for ultra-short pulses (cos?
envelope) in Hydrogen at 800 nm and intensities on the order of 104 W/cm?2. We specif-
ically studied the CEP dependence of the excited state distributions and compared with
TDSE results. The conclusion was that the agreement is at most qualitative. In addition,
the selection of physically relevant solutions (i.e. exponentially damped) is a non-trivial
task.

8.1 Understanding the SFA-FTT model

The solutions to the modified saddle point equations fall into four classes of trajectories,
which we labeled o, 3, 7y, and 0. As a function of the angular momentum of the final state
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Figure 25: Dominant contributions to the sideband signal in the Rabi-RABBIT scheme for Li atoms interacting with circularly
polarized light.

¢ for a fixed principal quantum number n, the different classes trace out complex curves in
the solution space, see Fig. 26 (a) for an example for n = 8. The o and 3 trajectories differ
mostly in the real part of the excitation time ¢s up until some cut-off £ where the solutions
perform a kind of avoided collision with similar real part of s and the imaginary part of
ts going in different directions for the two trajectories, analogous to the cutoff behavior
for saddle-point solutions that can be seen for HHG, see e.g. Ref. [113]. The 7 and ¢
trajectories have similar real part of ¢ but differ in the imaginary part. For low angular
momenta the 3 trajectories have a real part of ¢ that comes slightly before the peak of the
electric field, while the o trajectories come slightly before, see Fig. 26.

Classical trajectory simulations have shown that electrons that tunnel before and after the
peak of the field can be captured into Kepler orbits at the end of the pulse [87-89], but that
only those with some initial transverse momentum can tunnel after peak of the field and
still be bound at the end of the pulse [87-89]. As pulses get longer and more intense, the
parameter space that lead to a bound orbit at the end of the pulse shrinks, and tunneling
before the peak of the field becomes more favored, see Fig. 1.1. of Ref. [89].

After the avoided collisions in ¢, the imaginary part of the action associated to the 3 solu-
tions grows dramatically. We considered this as unphysical, and therefore a filter in time
and momentum was introduced to remove such solutions.

Classical simulations clearly indicate that the Coulomb potential has a large influence on
the trajectories, see e.g. Fig. 2 of Ref. [88], especially on time scales that are comparable to
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Figure 26: How the solutions of the modified tunneling equations change as a function of £ for n = 8. Blue crosses indicate
the physical values of £. The z-axis indicates the real part of ¢ and the y-axis gives (a): imaginary part of ¢, (b): real
part of p,, and (c): real part of p, . Rets = 0 indicates the peak of the electric field. The solutions were generated
with a pulse duration of two cycles for laser with frequency w = 0.057 a.u., at an intensity of 1.5 x 104 W/cm?.

the periods of Kepler orbits. This suggests that the model that was considered in paper v
should only be applicable for short laser pulses, such that the influence of the Coulomb
potential on the trajectory is sufficiently small.

The result of not including the Coulomb interaction after the tunneling step is illustrated
in Fig. 27. Like similar figures in Refs. [87-89, 114], it shows which trajectories lead to a
bound orbit at the end of the laser pulse, when they tunnel close to the peak of the electric
field. In the upper row, the Coulomb potential is included during the propagation of the
classical trajectories, while for the bottom row it has been excluded. The non-Coulomb
case shares some similarities with the o and f3 trajectories in Fig. 26 (c), in that both tun-
neling times before and after the peak of the field leads to bound orbits. In contrast to
this, including the Coulomb potential heavily favors tunneling before the peak of the field,
which corresponds to 3 trajectories of paper v.

The two cases show quite different behaviors as the pulse duration is increased (left to
right). In the non-Coulomb case the maximum allowed p; decreases as the pulse duration
is increased, while including the Coulomb potential instead leads to a slight increase. The
Coulomb case also shows the formation of rather intricate structures, as previously shown
in e.g. Ref. [88], that are absent when the Coulomb potential is excluded.

We thus expect the « trajectories to play a minor role in more accurate calculations, while
the f3 trajectories could potentially serve as a starting point for improved versions of the
SFA-FTT model and the study of inter-cycle interference effects.
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Figure 27: Map of tunneling time and initial transverse momentum that lead to bound orbits at the end of a cos? laser pulse. The
tunneling times are chosen close to the central peak of an electric field with cosine like CEP. The Coulomb potential
is included during propagation in panels (a)-(c), and exlcuded in panels (d)-(f). The color indicates the energy of the
trajectory at the end of the pulse, with energies below —0.5 a.u., mapped to —0.5 a.u. The pulse duration for the
different panels are 2 cycles for (a) and (d), 4 cycles for (b) and (e), and 10 cycles for (c) and (f). The intenisty and
fregeuncy of the laser was the same as in Fig. 26.

8.2 TDSE results

In accordance with earlier TDSE calculations [93], the excited state distributions are sensi-
tive to the pulse duration, with longer pulses favoring a specific parity. The model was not
able to reproduce the population of a specific parity for longer pulses, see Fig. 6 of paper
v. Population of rather high angular momentum states is consistent with previous studies
[93, 114], but the model was not able to reproduce this feature. A possible reason for this
is that the model neglects the Coulomb interaction, and thus the allowed values of p | are
reduced with increasing pulse duration. Classical simulations show a strong correlation
between p and the final angular momentum [114].

To study the influence of continuum states on the final excited state population, an imag-
inary component of —0.5 a.u. was added to continuum energies for some TDSE calcu-
lations, and it was found that indeed the population of excited states is influenced by the
continuum states, see Fig. 28. The imaginary part leads to a decay of the population in the
continuum.

In conclusion, we found that the model was not fit to understand FTT at a quantitative level,
but it did bring forward a semiclassical picture that could be linked to classical trajectory
models.

62



=
Q
w

=
Q
IN

Population

=
Q
v

—— Standard propagation
Complex continuum energy

2 a 6 8
n

Figure 28: Principal quantum number distribution with and without complex continuum energies. The figure is adapted from
Fig. 7 of paper v, under a C