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Abstract

Datasets are growing in size and complexity, especially with respect to the number
of features of the problems that we study, which now often number in the millions.
This has lead to a surge in interest for sparse regression models, which help make
sense of these datasets by modeling them e�ciently whilst still retaining a notion of
explainability. Because these datasets are so large, however, they have prompted a need
for e�ective methods with which to apply them—in this thesis, we present several
contributions to this area of research.

In papers i–iii, we focus on screening rules for the lasso and sorted �1 penalized
regression (SLOPE)—two sparse regression methods. Screening rules are algorithms
that discard a portion of the features in the model before solving it, which means that
we e�ectively get to tackle a smaller problem than the original ones, yet still recover the
same solutions. For the lasso, there has been a large body of work on screening rules
since they were �rst introduced in 2010. In the case of SLOPE, however, there did not
exist any screening rule until our work in paper i, in which we introduce the �rst such
rule: the strong screening rule for SLOPE.

In paper ii, we continue our work on screening rules by introducing look-ahead
screening rules for the lasso, which enable screening of features for a stretch of the lasso
path, rather than just for the following step. In essence, this allows us save computation
time by screening features only when it is necessary. In paper iii, we then tackle the
case of using screening rules with highly correlated features, which is a setting in which
previous screening rules have struggled. We propose the Hessian screening rule, which
uses second-order information about the problem in order to provide less conservative
screening along the lasso path. In empirical studies we show that our screening rule
leads to large improvements in performance.

In paper iv, we introduce benchopt: a framework for benchmarking optimization
methods in a transparent, reproducible, and collaborative manner. The current �eld of
research in optimization is over�owing with new algorithms, each time proclaimed by
its authors to improve upon its predecessors. It is easy to �nd benchmarks that directly
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vi Abstract

contradict one another, which often stems for varied use of parameters, di�erent
software implementations, and hardware setups. Benchopt makes it easy to construct
benchmarks that transparently and objectively compare these methods to one another.

One particularly e�ective optimization method for the lasso is coordinate descent.
Unfortunately, we cannot directly use coordinate descent for SLOPE since the problem
is not separable. In paper v, however, we present a hybrid method which circumvents
this issue by incorporating proximal gradient descent steps to tackle the separability
issue, whilst still enjoying the e�ectiveness of coordinate descent.

In the �nal paper, paper vi, we study the use of normalization for the lasso and
ridge regressionwhen the data is made up of binary features. Normalization is necessary
in regularized regression to put features on the same scale, but its e�ects are generally
not well-understood. In our paper we show that the solutions in the lasso and ridge
regression depend strongly on the class balance of the binary features and that this
e�ect depends on the type of normalization used.



Popular Science Summary

In this thesis we study the �eld of big data, where the sheer volume and complexity
of information can be overwhelming. We focus on sparse regression models, a type
of statistical model that helps make sense of large datasets by simplifying them in the
form of a sparse representation.

The �rst three papers of the thesis concentrate on screening rules for two types
of sparse regression methods: the lasso and sorted �1 penalized regression (SLOPE).
Screening rules are like �lters that remove some of the less important features of the
data before your computer is tasked with processing it. This makes the problem smaller
and easier to solve, yet still provides the same results. We introduce the �rst-ever screen-
ing rule for SLOPE and develop look-ahead screening rules for the lasso, which save
additional computation time when you want to solve several lasso models at once.
Finally, we also tackle the challenge of using screening rules when data features are
highly correlated, proposing a new rule that improves performance in this situation.

The fourth paper introduces benchopt, a tool for comparing di�erent optimization
methods. With so many new algorithms being developed, it is hard to know which one
is best. Benchopt provides a transparent and objective way to compare these methods.

The �fth paper presents a new optimization method for the lasso, a popular sparse
regression model. In the method, we combine two existing methods to overcome a
limitation of the lasso, making it more e�ective.

The �nal paper explores the impact of normalization—a process that attempts to
put varying features of the data on the same scale—on the lasso when dealing with
binary features. We �nd that the balance of the binary features (the ratio between ones
and zeros) and the type of normalization used can signi�cantly a�ect the results.
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Introduction

If we have data, let’s look at data. If all we have
are opinions, let’s go with mine.

—Jim Barksdale

1 Background

With modern advances in science and technology, statistical models and the data on
which they are �t are becoming increasingly complex. Datasets are expanding in size,
often both in terms of their numbers of variables (features) as well as observations. In
some �elds, this growth in complexity has been paralleled with more e�ective methods
with which to collect observations, as in crowd science and recommender systems. But
in other areas, collecting data still amounts to a costly endeavor. In bioinformatics,
for example, ethical concerns and rising requirements on the quality of data have only
served to raise the costs of data collection. As a result, data collected in these �elds is
becoming wider: the ratio between the number of variables (features) and the number
of observations is increasing (Table 1).

The growth in the number of observations (taller data) is mostly a luxury problem
since more observations typically mean more accurate models. But an expansion in
the number of features (wider data) is a more delicate issue. The problem is that if
all the features that we have collected are important then we are out of luck as far as
understanding our data goes. Instead, we have to more or less hope that there is a sparse
representation of our data that, with some acceptable loss of information, allows us to
make sense of the problem we are studying.

We can call this hope the sparsity assumption, which can be motivated through the
bet-on-sparsity principle: assume that the underlying signal is sparse (Figure 1) and use a
sparse method to model it. If the assumption is correct, then our method has a chance
of doing well. But if the assumption is incorrect, then our method will not work—but
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2 Introduction

Table 1: Tall and wide data. Each row is an observation, for instance the measurement
on aperson in a study, and each columna feature, which represents all themeasurements
on a variable for all the observations.

(a) Tall data

Feature 1 Feature 2 Feature 3

0 0.32 1
1 −1.2 −1
...

...
...

(b)Wide data

Feature 1 Feature 2 Feature 3 · · ·

0 0.32 1 · · ·

1 −1.2 −1 · · ·

no other method would (Hastie, Robert Tibshirani, and Friedman 2009). Thankfully,
many problems in the real world exhibit this type of sparsity.

The success of neural networks andother complexmodels thatmodel high-dimensional
data well yet do not enforce sparsity does raise questions as to the validity of this princi-
ple. But in our setting, which, loosely speaking, is explainablemethods for regression,
it still bears relevance.

Technically speaking, we are interested in datasets that are made up of a < × >
matrix of features ^ and a response vector of length <, y:

^ =



0 0.32 · · · F1, >
1 −1.2 · · · F2, >
...

...
. . .

...
F<,1 F<,2 · · · F<, >



, y =



0.2
−0.9
...
G<



,

where we have inserted some arbitrary values for the sake of illustration. The data

−0.2

−0.1

0.0

0.1

0.2

C
o
rr
e
la
ti
o
n

Figure 1: A relatively sparse signal. The plot shows correlations between the response
vector y and each feature in the madelon dataset (Guyon et al. 2004). Correlations
above 0.1 have been colored in black, the rest in gray.
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presented in Table 1 corresponds to ^ here (each row is an observation, each column a
feature).

In the simplest case, we assume that y is a linear combination of the features in ^
plus some noise (9), for instance measurement noise, which we write mathematically
as

y = ^ # + V0 + 9,

where # is a vector of coe�cients and V0 the intercept. In this representation of the data,
the coe�cients # are the parameters that we are interested in estimating and represent
the e�ect each feature has on the response vector y. From here on we will ignore the
intercept V0 to simplify our discussion since we are not interested in interpreting it.
Assuming that this is in fact the true relationship between #, ^ , and y, a natural choice
of model to �t this data with is linear regression.1

In the presence of noise, however, there generally exists no # that will �t the data
perfectly, and we must therefore accept that the linear regression model is only an
approximation. The natural follow-up question is then: what is a good approximation?
To answer this question, we need to de�ne some measure of error. The most common
measure, at least as far as linear regression models go, is the sum of squared errors
between the predicted response vector

ŷ = ^ #̂

and the true response vector y, that is,

∥y − ŷ∥22 =
<∑

7=1

(G7 − Ĝ7)
2.

The smaller this measure—the better the �t, which means that �nding a vector # that
minimizes this error can be posed as the following optimization problem:

minimize
1

2
∥y − ^ #∥22. (1)

We let #∗ to be the solution to this problem—the optimum, and will use #̂ to refer to
the estimate that we obtain from some algorithm. Generally, we will assume that the
algorithm has converged to the optimum, that is, #∗ = #̂, but in actuality we almost
always have some amount of suboptimality so that | #̂ − # | > 0. The factor 1/2 in
Problem (1) is included for convenience, for reasons that will become clear later on.

Solving Problem (1) is equivalent to �tting the ordinary least-squares (OLS) regres-
sion model, which, for a simple case of a single feature, we have illustrated in Figure 2.

1In general, we also need additional assumptions on the noise term 9.
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0 1 2

x

0

1

2

y

(a) The slope of the orange line is
V. The point where the line inter-
sects the y-axis is the intercept V0.

0 1 2

x

(b)Thedotted lines are the residuals
and the grey squares are the squared
errors. The orange line is thatwhich
minimizes the total surface of all of
these squares summed together.

Figure 2: Simple ordinary least-squares linear regression for a one-feature problem

Picking a di�erent measure of error would lead to a di�erent method (and often a
di�erent linear regression line), but in this thesis we will focus on the method of least
squares.

Ifwehavemanymore observations than features (< ≫ >), then our linear regression
model might stand a decent chance of recovering the true model (coe�cients). But if
the tables were turned and the features instead outnumbered the observations (> ≫ <),
the model would in fact break down.

The problem is that our linear regression model will be able to �t our particular
dataset perfectly but typically not generalize well to new data, even if it comes from the
same underlying data-generating mechanism. This is called overfitting and it happens
because we have more parameters (regression coe�cients) than observations. This
means that there are nowmany di�erent regression models that will �t the data equally
well and that the solution, therefore, is not unique. In Figure 3, we illustrate what
over�tting looks like for the linear regression model in one and two parameters.

In principle, the problem of over�tting in linear regression is the same as that in
polynomial regression: as we increase the number of parameters (degree of the poly-
nomial in this case), the model eventually becomes too �exible and over�ts (Figure 4).
Note that in this example over�tting occurs even when the number of parameters is
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0.0 0.5 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

y

(a)With one feature, the simple ordinary
least-squares regression line �ts the data
perfectly.

0.00
0.25

0.50
0.75

1.00x
1

0.00

0.25

0.50

0.75

1.00

x 2

−1

0

1

2

y

(b)With two features, an in�nite number of re-
gression planes �ts the data perfectly.

Figure 3: A linear regression problem with two observations. The example is of course
arti�cal, but demonstrating over�tting in more dimensions than this would require
more than the faculties of our limited human minds are capable of.

smaller than the number of observations. This is the case with linear regression too, for
which the problemmay occur in cases when < is larger than >.

One way to deal with over�tting is to decrease the complexity of the model by
restricting the parameters in some way, for instance by allowing only a subset of the
regression coe�cients to be non-zero—in other words, make the model sparse. This
procedure is called regularization.

2 Regularization

When we regularize a model, we introduce a budget on #, allowing only some of its
elements to be non-zero or restricting the values they can take. The simplest type of
regularization is called best-subset selection, in which we simply limit the number of
coe�cients we allow to be non-zero to a constant 9, which is equivalent to selecting at
most 9 features from ^ . We call the indices of the selected features the model’s support.
If features one and three are selected, for instance, then the support is {1, 3}. If all of
the features are in the model, then the support is {1, 2, . . . , >} (as in the case of OLS
regression). Finally, if no features are selected, then the support is the empty set (∅).

In best-subset selection, we examine all
( >
9

)
possible combinations of features and
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x

y
Degree 1

x

Degree 4

x

Degree 8

x

Degree 15

Figure 4: Polynomial regression for a one-feature problem. The data is generated
from the simple linear model = 2F7 + Y7 , where Y ∼ Normal(0, 0.52) identically and
independently. The line �ts the data increasingly well as the degree of the polynomial
increases, but when new data arrives (the blue points), we see that the model generalizes
poorly.

pick the combination that �ts our data best. Formally, the method can be posed as the
following optimization problem:

minimize
1

2
∥y − ^ #∥22,

subject to ∥#∥0 ≤ 9,

where ∥·∥0 is the �0 norm:2 the number of non-zero elements in vector.
In other words, if > = 3 and 9 = 2, for instance, the following models would satisfy

our constraints:

# =



0
0
0


, # =



1
2
0


, and # =



0
0
1


.

But the following model would not:

# =



1
2
3


.

The primary problem with this method is that it is computationally infeasible
when > is large since the number of possible models grows exponentially with >. With

2Technically speaking, the �0 norm is not actually a true norm.
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> = 100 and 9 = 9, for instance, there are

(
100

5

)
= 75 287 520

possible models to consider. In addition, we typically have to consider a range of values
for 9, which makes the problem even worse.

In an interesting turn of events, however, Bertsimas, A. King, andMazumder (2016)
has shown that the best subset selection problem can actually be written as a mixed-
integer optimization problem. This enables the use of modern optimization software,
which can thenhandle best subset problemsof dimensions that previouslywere thought
unattainable. But even though this result has o�ered considerable improvement in
run-time performance for the algorithm, it is still the case that it struggles in high
dimensions. Solving a problem with < = 500 and > = 100 for 9 ∈ {1, 2, . . . , 50},
for instance, still comes down to a hefty 76.8 hours of computation (Hastie, Robert
Tibshirani, andRyan Tibshirani 2020). In contrast, the time taken to �t themodel that
we will consider next, the lasso, amounts to 0.014 seconds for the equivalent problem.

2.1 The Lasso

One solution to the complexity problemof best-subset selection is to relax the constraint
to one that makes the problem easier to solve, yet still retains the sparsity-enforcing
property of the �0 norm. A natural candidate for this is the �1 norm, which leads to the
following problem:

minimize
1

2
∥y − ^ #∥22,

subject to ∥#∥1 ≤ B,
(2)

where all we did was replace the �0 norm with the �1 norm,

∥#∥1 =

>∑

8=1

|V8 |

As a consequence, we have replaced the integer-valued 9with a real-valued (but positive)
B . This problem is known as �1-regularized regression or, more commonly, as the lasso3.
The lasso was introduced to the statistics community by Robert Tibshirani (1996)
but actually stems from earlier research in the �eld of signal processing by Santosa
and Symes (1986). Donoho and Johnstone (1994, 1995) subsequently introduced the

3The lasso is sometimes written as the acronym LASSO for least absolute shrinkage and selection operator,
but we will stick with the lower-case version here, which the authors themselves use in their recent work.
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(a) A sparse solution, V1 = 0
and V2 = −1.
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(b) A dense solution, V1 =

V2 = 0.5.
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(c) A solution in which the
constraint is inactive (B is too
large to a�ect the solution),
V1 = 0.4 and V2 = 0.3.

Figure 5: The �1 norm ball inℝ
2 with some possible solutions indicated by #. The �0

ball (for best-subset selection) and 9 = 1would be lines of in�nite length along both
of the axes.

concept of the basis pursuit problem, which is closely related to the lasso, and developed
much of the theoretical framework for the lasso.

If you have encountered the lasso previously, it is likely that you have seen it formu-
lated as the following unconstrained optimization problem:

minimize
1

2
∥y − ^ #∥22 + _∥#∥1.

In this section, however, we will prefer the constrained formulation of the problem as
it is given in Problem (2), which we think is intuitive and easier to understand. The two
formulations are equivalent, however, and will lead to exactly the same solution for a
suitable choice of B and _. Later, in Section 3.2, we will expand on this connection.

We saw previously that the �0 constraint in best-subset selection puts a budget on
the number of features allowed in the model. The �1 norm, in contrast, instead puts a
budget on the size of the coe�cients. This enforces not only sparsity but also shrinkage
in the solution. In Figure 5, we have visualized how this constraint a�ects the solution
of the least-squares objective.

There is an extensive body of work on the lasso and it has spawned a number of
o�shoots, such as the fused lasso (Robert Tibshirani, M. Saunders, et al. 2005), group
lasso (Yuan and Lin 2005), adaptive lasso (Zou 2006), graphical lasso (Friedman,Hastie,
andRobertTibshirani 2008), and square-root lasso (Belloni, Chernozhukov, andWang
2011). In this thesis, however, we focus on the standard lasso.
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Note, also, that the lasso is not limited to just regularized linear regression but
can in fact be used for the entire family of generalized linear models, such as logistic,
Poisson, multinomial, and multivariate regression, as well as survival models such as
Cox regression. The use of the �1-norm penalty has also found its way into many
other areas of statistics as well as the �elds of signal processing and machine learning,
including matrix factorization, clustering, and deep learning.

An interesting property of the lasso is that it is possible (and computationally
feasible) to exactly solve the lasso problem for all possible values of B ∈ [0,∞). This
is called the lasso path (Figure 6). It begins at B = 0, for which the constraint region
is a point, forcing all of the coe�cients to be exactly zero. Then as B increases, the
constraint region grows, allowing the coe�cients to enter the model and grow. The
reason for why it is possible to solve for the full path is that the solution vector V, as a
function of B , is linear and continuous between the values of B for which features enter
or leave the model.

One problemwith the lasso, however, is that it does not deal with correlated features
as intuition (at least that of the author) would suggest. If two features are correlated
highly enough, for instance, the lasso will select one of them and drop the other (set
its coe�cient to zero).4 This is not necessarily a problem for the prediction ŷ, but
it means that the estimated coe�cients no longer provide trustworthy estimates of
variable (feature) importance. This e�ect is the result of the behavior of the �1 norm in
that it penalizes the magnitude of the coe�cients. If two features provide the same, or
nearly the same, information about the response, then the optimization problem can
attain a lower value by setting one of the coe�cients to zero.

This is a problem that the elastic net—the topic of the next section—is designed to
overcome.

2.2 The Elastic Net

The elastic net is a combination of the lasso and ridge regression,5 which can be written
as the following optimization problem:

minimize
1

2
∥y − ^ #∥22,

subject to U∥#∥1 + (1 − U)∥#∥22 ≤ B .
(3)

The di�erence compared to the lasso is that we have transformed our constraint into
a linear combination of the �1 and squared �2 norms. The parameter U controls the

4In the case where the features are perfectly correlated, it may in fact be the optimization algorithm that
decides which of them is picked.

5Ridge regression is also known as Tikhonov regression; and in deep learning, �1-regularization is typically
called weight decay.
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Figure 6: The lasso path for the diabetes dataset (Efron et al. 2004), which consists
of < = 442 observations and > = 10 features. The path shows the coe�cients as a
function of the parameter B , which controls the size of the constraint region. The path
is piecewise linear with kinks occurring only when features enter or exit the model.
At B = 0, the model is completely sparse and the support is ∅—the empty set. At
B/max B = 1, the model is the ordinary least-squares model and the support is the full
set of predictors, {1, 2, . . . , >}.
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balance between these constraints. By setting U = 1, we turn the problem into the
lasso (Figure 7a). And at U = 0, we instead have ridge regression (Figure 7b). Any value
U ∈ (0, 1) yields a combination of the two (Figure 7c).
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(a) When U = 1, the con-
straint is the lasso (�1-norm)
ball. And in this case the solu-
tion is sparse.
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(b) When U = 0, the con-
straint is the ridge (squared �2-
norm) ball. Here, the solution
is not sparse.
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(c) When U ∈ (0, 1), the
constraint region is a combi-
nation of the lasso and ridge
balls. In this case we have U =

1/2. Once again, the solution
is sparse.

Figure 7: The constraint regions for the elastic net for di�erent values of U

The elastic net was �rst proposed by Zou and Hastie (2005). In addition to dealing
with the problems encountered in using the lasso for highly correlated features, the
elastic net also yields improved predictive performance in many situations. The latter
fact is perhaps not so surprising given that it is a combination ofmethods that essentially
assume di�erent structure in the data. The lasso works well when the true signal is
sparse, while ridge regression handles the situation where there are weak signals better.
And since the elastic net contains both these models as special cases, in addition to any
combination thereof, it naturally extends to a wider range of problems.

2.3 SLOPE

Another way of dealing with the problem of correlated features is to use Sorted L-One
Penalized Estimation (SLOPE) (Bogdan, Berg, Sabatti, et al. 2015; Bogdan, Berg, Su,
et al. 2013; Zeng and Figueiredo 2014). SLOPE is a generalization of both the lasso and
the octagonal shrinkage and clustering algorithm for regression (OSCAR) (Bondell and
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Reich 2008). It is represented by the following optimization problem:

minimize
1

2
∥y − ^ #∥22,

subject to

>∑

8=1

_8 |V | (8 ) ≤ B,
(4)

where , is a non-increasing and non-negative sequence of penalization weights and
where we de�ne the subscript operator (8 ) such that

|V | (1) ≥ |V | (2) ≥ · · · ≥ |V | ( >) .

The left-hand side of the constraint in SLOPE is, perhaps somewhat surprisingly,
actually a norm: the sorted �1 norm.

One of themost salient features of SLOPE is that it clusters coe�cients (Figueiredo
and Nowak 2014; Schneider and P. Tardivel 2022). This is a consequence of the sorted
�1 norm and the choice of ,—larger di�erences between adjacent elements increase
the propensity for clustering. This property makes SLOPE well-adapted to the case
when features are highly correlated, which is a situation that the lasso struggles with.
In cases where the lasso might set one of the correlated features to zero, SLOPE will
often instead set them to exactly the same value. This is a property that is not shared by
the elastic net, which handles correlation (although not quite as delicately), but does
not cluster coe�cients.

But as we mentioned previously, SLOPE is actually a generalization of lasso and
thus contains it as a special case (Figure 8a), which is attained by setting all of the
elements of the penalization weight vector , to the same value. On the opposite end,
setting only the �rst element to a non-zero value and the remaining ones to zero yields
the in�nity norm (Figure 8d).

SLOPE also has other appealing properties, such as the ability to (under certain
assumptions on the design) control the false discovery rate6 (Bogdan, Berg, Sabatti, et al.
2015) and recover sparsity and ordering patterns in the solution (Bogdan, Dupuis, et al.
2022). Another key feature is that the problem is convex, which has implications thatwe
will come to appreciate in Section 3. This latter fact also puts SLOPE apart from other
competing penalization methods such as the minimax concave penalty (MCP) (Zhang
2010) and smoothly clipped absolute deviation (SCAD) (Fan and R. Li 2001).

The constraints in the lasso and elastic net are parameterized by one and two
parameters, respectively: B in the case of the lasso, and (B, U) in the case of the elastic

6By false discovery rate, we mean the fraction of coe�cients incorrectly identi�ed as non-zero (false
discoveries) as a proportion of the total number of non-zero coe�cients (discoveries).
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Figure 8: SLOPE balls (the sorted �1 norm) for various choices of the penalization
weight vector ,. It is the kinks at the boundaries, occurring when |V1 | = |V2 |, that
induce clustering. The larger the di�erence between adjacent values in ,, the stronger
the clustering e�ect becomes.

net. SLOPE, in contrast, is parameterized not only by B but also by the , vector, which
has > elements—one for each feature. Finding an optimal setting for all of those > + 1
parameters is a non-trivial task when > is large. As a result, we typically need to re-
parameterize the problem. The most common form for this parameterization is the
Benjamini–Hochberg sequence, which sets the penalization weights to

_7 = Φ
−1 (1 − ?7), ?7 =

?7

2>
,

whereΦ−1 is the quantile function of the standard normal distribution and ? ∈ [0, 1].
It is this choice that gives SLOPE its false discovery rate control property (Bogdan, Berg,
Sabatti, et al. 2015). Note that if we use a linearly decreasing sequence instead, then we
would recover OSCAR. And if we use a constant sequence, we recover the lasso.

This reparameterization reduces the number of parameters to just two: (B, ?)—the
same number as the elastic net. And it means that it is tractable to �nd optimal settings
for the parameters using the methods that we will introduce in the next section.

2.4 Hyperparameter Optimization

An issue that we have so far largely ignored is how to pick good values for B in the
case of the lasso, (B, U) in the case of the elastic net, and (B, ?) in the case of SLOPE.
We call these hyperparameters of the problems. Under strong assumptions on our
data, in particular the error term 9, it is possible to derive optimal settings of some of
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these hyperparameters. The problem, however, is that we typically do not know the
distribution of the error term. And in high dimensions, estimating it is not easy either.

The alternative, which is the dominating procedure in practice, is to resort to
hyperparameter optimization, in which we treat the problem of �nding good hyperpa-
rameters as an upper-level optimization problem (on top of the optimization problem
of �nding #). This procedure is often also calledmodel validation. This is most com-
monly done via a grid search in which we construct a grid across the hyperparameter
space. In the lasso case, for instance, it is common to construct a linearly spaced sequence
of B values.7

In the simplest case, typically called hold-out validation, we split the dataset into a
training set and a validation set. The lasso is �t for the full B sequence on the training
data; in other words, we �t a full lasso path. Afterwards, we measure the model’s error
on the validation data and pick the B value with the best score. Often, there is also a
separate test dataset that is held-out before hyperparameter optimization; at the end,
this test set is used to obtain a �nal unbiased goodness-of-�t measure for the model
selected via hyperparmeter optimization.

A more common, albeit slightly more involved, method is to use 9-fold cross-
validation (Figure 9). It is similar to hold-out validation, except the data is iteratively
split into 9 folds and the method is run for as many iterations. In the 9th iteration, the
9th fold is held out as a validation set on which an error is computed after the model
has been �t on the remaining 9 − 1 folds. After the last iteration, a cross-validation
error is computed by averaging the validation error over all of the validation folds.
Typical choices of 9 are 5 and 10. If 9 = <, then the method is called leave-one-out cross-
validation. In a sense, cross-validation can be seen as a variance-reduction technique for
hold-out validation. The downside, however, is that this comes at a price of increased
bias since the validation sets are also used during training. There is also repeated 9-fold
cross validation, which simply repeats the cross-validation procedure for some number
of times, each time with di�erent splits.

For the lasso, it is typical to construct a grid of 100 B values, which means that we
have to, for instance, �t 1009 lasso models if we use cross-validation. This can easily
become computationally expensive, especially if either or both of < and > are large. In
the case of the elastic net and SLOPE, the problem is complicated further since we then
have U or ? to optimize over as well. As a result, it is vital that there are e�cientmethods
for �tting these models, which is an issue that we will deal with in the following two
sections. In Section 3, we discuss the various optimization methods that we can use to
solve the lasso, the elastic net, and SLOPE. And in Section 4, we introduce the concept
of screening rules, which have been a game changer in the high-dimensional context.

7If we were to use the unconstrained version of the lasso in which the model is parameterized by _, the
sequence is typically geometrically spaced instead.
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Figure 9: An illustration of 9-fold cross-validation. The data is split into 9 folds
(subsets). In the 9th iteration, the model is �t on training data consisting of 9 − 1
folds and then applied to the held-out validation data in fold 9, on which an error is
computed. A �nal cross-validation error is then computed by averaging the error across
all of the iterations. This �gure is an edited version of an illustration by Gufosowa (via
Wikimedia Commons, licensed under CC BY-SA 4.0).

3 Optimization

In the previous section we introduced the statistical models that this thesis will revolve
around: the lasso, the elastic net, and SLOPE. They featuremany interesting theoretical
properties, which we have touched upon brie�y, but it is actually not these properties
that we will concern ourselves with in this thesis. Instead, we will be interested in the
numerical aspects of these problems. That is: how do we actually solve them? And,
moreover, how do we do this as e�ciently as possible?

As we have seen, �tting these models to data is equivalent to solving optimization
problems and we have so far assumed that this is possible and that we, as a result, can
recover their optima. This assumption is by no means wrong: methods for �tting the
lasso, elastic net, and SLOPE are readily and freely available in many programming
languages and across all major operating systems. Installing and running them amounts
to only a few lines of code. To �t the full lasso path to the diabetes data that we
encountered previously (Figure 6), for instance, we need only to call the following R (R
Core Team 2024) code, which loads the necessary R package lars, imports the dataset
diabetes, and �ts the lasso path to the data:

1 library(lars)

2 data(diabetes)

3 fit <- lars(diabetes$x, diabetes$y, type = "lasso")
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Behind the scenes, however, the method invoked through these commands actually
involve a complicated optimization algorithm into which considerable e�ort has been
put in order to ensure that what you get in fit is reliable—and that you get it fast.

Throughout the following sections, we will discuss various optimization methods
that can be used to solve the lasso, the elastic net, and SLOPE. For simplicity, we
will generally focus on the lasso and, in particular, the ordinary lasso (�1-regularized
least-squares regression). In general, however, the methods that we introduce here can
be used to solve all of these problems, including the case when the objective that is
regularized is part of the family of generalized linearmodels, which include, for instance,
logistic, multinomial, and Poisson regression.

3.1 Direct Methods

The �rst optimization problem that we encountered in this text was ordinary least-
squares (OLS) regression, which we formally de�ned in Problem (1). Naively speaking,
the solution to this problem is actually relatively straightforward. To start o�, we let

5 (#) =
1

2
∥y − ^ #∥22 (5)

be the objective function that we want to minimize. As in the previous section, we
omit the intercept term for simplicity but note that we can incorporate it in any of the
following methods. To minimize Equation (5), we simply set its gradient to zero:

∇5 (#) = ^ ⊺ (^ # − y) = 0 =⇒

^ ⊺^ # = ^ ⊺y.

This system is called the normal equations. Solving the system in V yields the ordinary
least squares estimate, which, for a one-dimensional problem is equivalent to locating
the “bottom” of the function 5 (V) in Figure 10a. It might be tempting to want to
simply invert ^ ⊺^ here and premultiply by both sides to yield an explicit solution of
the form

# = (^ ⊺^ )−1^ ⊺y

but this is typically a bad idea since the inverse need not be numerically stable or
even exist. A better option is to use a method such as QR factorization and solve the
resulting system through forward or backwards elimination, which is both more stable
and e�cient; all modern software use some variation on this approach.

Regardless, however, OLS regression can be solved directly and with accuracy at
machine precision. This property is shared by ridge regression in which we can attain a
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Figure 10: Three di�erent kinds of functions. We show the objective value 5 (V) and
the gradient ∇5 (V) for each. In each case, our objective is to �nd the minimum of the
function. Only the �rst and last are convex (the complete line segment between two
points on the function lies above the function) and have a global minimum.

solution simply by adding a diagonal matrix8 to ^ ⊺^ and solving as before. The key
reason for why this is the case is that OLS regression is a di�erentiable and quadratic
problem, which means that it is convex and hence has a global solution (Figure 10a),
unlike, for instance, the problem in Figure 10b, which is non-convex (actually a third-
degree polynomial) and hence has a local minimum.

All the problems that we have covered so far: ordinary least-squares regression, the
lasso, the elastic net, and SLOPE are all convex, which is the class of problems this thesis
focuses on. Being convex, however, does not necessarily mean that the problem is easy
to solve. The lasso, Problem (2), for instance, is a convex problem, but the involvement
of the inequality constraint means that a direct solution is not readily available.

Somewhat remarkably, however, it actually is possible to solve the lasso directly, as
long as we also solve the full lasso path up to the B that we want. The class of methods
that makes this possible are called homotopy algorithms since they can be used to solve
the problem for all values they are parameterized by (in this case B). The �rst homotopy
method for the lasso was introduced by Osborne, Presnell, and Turlach (2000a,b) but

8This procedure refers to the unconstrained form of ridge regression, which have not yet—but will
soon—introduce.
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it is the least angle regression (LARS) algorithm (Efron et al. 2004), that we saw in
action at the beginning of the section, which has popularized the method for the lasso.

In essence, homotopymethods for the lasso are based on the idea that themodel can
be solved directly if we know the support of the solution (the identity of the non-zero
coe�cients). Based on this idea, we start with the empty support at B = 0. From this
point, it is possible to say which features will become active �rst and at what B this
happens, which makes it possible to then solve the problem (directly) at this value of B .
The process is repeated until the entire path has been computed. We give a rough, but
slightly more formalized, description of the method in Algorithm 1.

Algorithm 1:A rough outline of the homotopy method for the lasso path.
The steps in lines 3 and 4 represent the critical aspect of the algorithm, but
are omitted here for brevity. They are not, however, particularly demanding
computationally. Instead, the primary costs come from the linear systems
that need to be solved at each step of the path.

Input: # (0) = 0, B = 0,A = ∅, 7 = 0
1 repeat
2 7 ← 7 + 1;
3 B ← next value for which the support changes;
4 A ← support at B ;

5 # (7 )
A
← argmin#∈ℝ |A| ,∥ #∥1≤B 5 (#) ;

6 # (7 )
A� ← 0;

7 until |A| = >;

At the time that these methods were introduced, they o�ered a remarkable boost in
e�ciency compared to the original algorithm used by Robert Tibshirani (1996), which
consisted of an iterative method based on an algorithm by Lawson and Hanson (1995),
which scales badly with > and is altogether inapplicable when > > <.

Since the elastic net can be recast as a lasso problem, it also means that the same
homotopy methods can be used also in this case. In addition, there now also exists ho-
motopymethods for SLOPE (Dupuis and P. J. C. Tardivel 2023; Nomura 2020), which
comes from the SLOPE path sharing the piecewise-linear property of the lasso path
(although the SLOPE path is typically more complicated and features more changes in
support).

Even if these homotopy methods provide a much-wanted upgrade compared to
the original method in the high-dimensional setting, it is nevertheless this domain that
they ultimately struggle to deal with. The root of this problem is that there are at least
min(<, >) kinks (changes in support) along the full lasso path—and in the worst case
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as many as (3> +1)/2 such changes (Mairal and Yu 2012). The algorithm has to solve an
equivalent number of OLS regression problems, albeit at a complexity much reduced
from that of solving the full problem,9 which, in the end, means that the method has
found itself outperformed by iterative optimization methods (Friedman, Hastie, and
Robert Tibshirani 2010), which we will introduce next.

3.2 Iterative Optimization

In iterative optimization we start with an initial guess of the solution (such as # = 0)
and then update it step-by-step until we get “close enough” to the optimum.10 This
puts them apart from the direct methods we covered in the previous section, which
typically involve solving a system of equations or a similar problem and yield a solution
directly and at machine precision.

Gradient Descent

It is probably fair to say that gradient descent is the quintessential iterative optimization
method. The basic idea is to update the optimization variable (#) by moving in the
direction of the negative gradient of the objective function (∇5 (#)). For a convex
objective, the negative gradient points in the direction of the global minimum, which
means that we eventually reach it given appropriate choices of our step sizes (how far
we move in the opposite direction of the gradient).

Technically, the idea in gradient descent is to form a second-order Taylor expansion
of the objective around the current iterate #′,

5 (#) ≈ 5 (#′) + ∇5 (#′)⊺ (# − #′) +
1

2
(# − #′)⊺∇2 5 (#′) (# − #′),

replace the Hessian matrix ∇2 5 (#′) with 1
g O in this approximation, yielding

5 ′ (#; #′) = 5 (#′) + ∇5 (#′)) (# − #′) +
1

2g
∥# − #′∥22,

and then, �nally, solve for #, which gives the gradient descent update

#+ = argmin
#∈ℝ >

5 ′ (#; #′) = #′ − g∇5 (#′).

The method, which is simply this step repeated in each iteration, is outlined in Algo-
rithm 2.

9LARS, for instance, incrementally updates a Cholesky factorization of the Hessian matrix ^ ⊺^ .
10As you might expect, de�ning “close enough” is not at all a trivial matter.
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Observe that the g we used when we replaced the Hessian with a diagonal matrix
is the step size in the gradient descent algorithm. This is the key parameter in the
algorithm, which controls how far we move in the direction of the negative gradient.
In Figure 11, we show how gradient descent works for simple problems in one and two
features.

Algorithm 2: Gradient descent with �xed step size. An intercept can be
added by either prepending a vector of ones to ^ or adding a separate update
step where # is held �xed.

Input: # = 0, g > 0
1 repeat
2 # ← # − g∇5 (#);
3 until convergence;
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Figure 11: Gradient descent in one and twodimensions. In each case the algorithm starts
at # (0) and then proceeds towards the optimum #∗ (✖). The quadratic approximation
of the �rst step is drawn in blue lines (and its optimummarked by a blue dot).
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Projected Gradient Descent

The problem for us, however, is that the lasso, the elastic net, and SLOPE—the prob-
lems we are mainly concerned with—have inequality constraints, which gradient de-
scent cannot handle directly. A natural alternative, however, exists in the form of
projected gradient descent. The method consist of simply taking a gradient descent step,
as in Algorithm 2, and then projecting the result onto the feasible region (if the update
after the gradient step is infeasible). The update is then

# ← proj�
(
# − g∇5 (#)

)

where
proj� (u) = argmin

D∈�

∥v − u∥2 (6)

is the projection operator that projects u onto the feasible region � . For the lasso, for
instance, � is the �1 norm ball (Figure 5), while for SLOPE it is the sorted �1 norm
ball (Figure 8). The method is outlined in Algorithm 3 and is identical to the gradi-
ent descent algorithm (Algorithm 2), except that we have now wrapped a projection
operator around the gradient descent update.

Algorithm 3: Projected gradient descent. The projection operator proj� (·)
is de�ned in Equation (6).

Input: # = 0, g > 0
1 repeat
2 # ← proj�

(
# − g∇5 (#)

)
;

3 until convergence;

Figure 12 shows the method in action for a two-dimensional lasso problem. Note
how the gradient step (dotted lines) takes the current estimate outside the feasible
region but that the projection step (solid lines) then moves the solution back to the
feasible region.

The e�ciency of projected gradient descent hinges on the e�ciency with which
the projection can be computed. Thankfully, there exists e�cient projections for both
the �1 (Duchi et al. 2008) and sorted �1 norms (Davis 2015; Q. Li and X. Li 2021; Perez
et al. 2022; Zeng and Figueiredo 2015), which means that the method is quite e�cient
for both the lasso and SLOPE.

The Subgradient Method

Projected gradient descent attacks our optimization problems by tackling the inequality
constraints directly; but the by far most popular approach for solving these problems
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Figure 12: Projected gradient descent for a two-dimensional lasso problem. The gray
curves are the level curves of the ordinary least-squares objective 5 (#) and the blue
diamond shape is the �1 norm constraint. The algorithm starts at #0 and then proceeds
towards the solution #∗. Each step consists of a gradient step (dashed lines) and a
projection step (solid lines).

actually takes a di�erent route by transforming the constrained problem into an un-
constrained one. The idea is that we can achieve an equivalent regularization e�ect by,
instead of constraining the solution directly, penalizing the coe�cients via the objective
function.

In other words, we turn the problem

minimize 6 (#),

subject to ℎ(#) ≤ B,

into

minimize 5 (#) = 6 (#) + ℎ(#).

In the case of SLOPE, for instance, the unconstrained version of Problem (4) then
becomes

minimize
1

2
∥y − ^ #∥ +

>∑

8=1

_8 |V(8 ) |.

You may wonder what good this did us, but the key is that the we have now gotten
rid of the constraint, which means that we can focus on minimizing the objective
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Figure 13: Constrained and unconstrained versions of the lasso. The equivalence
between the problems is obtained by setting B = ∥#∥1 after solving the unconstrained
problem to convergence for a given _.

directly. We can see how the two optimization problems compare for an equivalent set-
ting of _ (in the case of the unconstrained problem) and B (in the case of the constrained
problem) for the lasso in Figure 13.

The bad news is that the new objective is no longer di�erentiable, which means
that we cannot, for example, use gradient descent with the new formulation either.
The good news, however, is that there is a generalization of the derivative that can be
used in the non-di�erentiable case, namely the subdi�erential.

The subdi�erential of a function 5 at a point # is the set of all subgradients of 5 at
that point. This means that the subdi�erential is a set, rather than a single vector. A
subgradient at a point # is a vector g such that

5 (#′) ≥ 5 (#) + g⊺ (#′ − #).

In plain terms, this simply means that the linear approximation of the function at #
always underestimates the function. If the function is di�erentiable, then the subdif-
ferential is a singleton, containing only the gradient of the function. In Figure 14a, we
show some of the subgradients of a one-dimensional lasso problem.

The existence of subgradients presents us with an intuitive solution to the problem
of minimizing non-di�erentiable functions: use gradient descent, but replace the
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Figure 14: Subgradients of the lasso and the �1 norm

gradient with the subgradient, and take a step in its direction. We outline the algorithm
in Algorithm 4.

Algorithm 4: The subgradient method. Note that 6 can be any subgradient
of the subdi�erential m 5 (V).

Input: # = 0, g > 0
1 repeat
2 s ← s ∈ m 5 (#);
3 # ← # − g A;
4 until convergence;

The attractiveness of the subgradient method is that it is general and works for a
large class of problems, including the lasso, the elastic net, and SLOPE. The problem is
that it converges slowly and is therefore never used in practice for these problems.

Proximal Gradient Descent

Fortunately, we have structure in this problem that we have yet to exploit, namely that
although 5 = 6 + ℎ is not di�erentiable, 6 in fact is. Based on this, one idea is to simply
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leave ℎ alone and minimize the quadratic expansion of 6 plus ℎ (untouched).

argmin
#

(
6 (#′) + ∇ 6 (#′)⊺ (# − #′) +

1

2g
∥# − #′∥22 + ℎ(#)

)

= argmin
#

(
1

2g
∥# −

(
#′ − g∇ 6 (#′)
︸           ︷︷           ︸
Gradient update

)
∥22 + ℎ(#)

)
.

Let us call the function that solves this problem the proximal operator of ℎ, denoted
proxℎ,g , and de�ne it as

proxℎ,g (u) = argmin
v

(
1

2g
∥v − u∥22 + ℎ(v)

)
.

The proximal operator is a generalization of the projection operator that we introduced
earlier, and we can obtain the latter by using the indicator function of the feasible
region as the function ℎ. We outline the basic version of the proximal gradient descent
algorithm in Algorithm 5.

Algorithm 5: Proximal gradient descent. Note that the gradient is taken with
respect to 6 and not 5 (for which it does not exist).

Input: # = 0, g > 0
1 repeat
2 # ← proxℎ,g

(
# − g∇ 6 (#)

)
;

3 until convergence;

The reason for why all of this works is that the proximal operator has an explicit,
and often e�cient, form for all the problems we are interested in solving here. For the
lasso, for instance, the proximal operator has a particularly simple form:

proxℎ,g (u) = argmin
v

(
1

2g
∥v − u∥22 + _∥v∥1

)
= SB_ (u),

where
S_ (u)7 = sign(C7)max( |C7 | − _, 0),

is the soft-thresholding operator (Donoho and Johnstone 1995) and is illustrated in
Figure 15. Using proximal gradient descent for the lasso is also known as the iterative
shrinkage-thresholding algorithm (ISTA) (Beck and Teboulle 2009).
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Figure 15: The soft-thresholding operator: the proximal operator in the case of the
lasso. Here we show it for three di�erent values of _. For _ = 0, there is no thresholding
(penalization), and the operator becomes the identity function. For all other values,
the operator shrinks its input toward zero. For |C| ≤ _, the output is exactly zero.

Proximal gradient descent has a long history. Rockafellar (1970) was responsible for
much of the early work. Nesterov (1983) introduced the �rst accelerated version of prox-
imal gradient descent algorithms, which where later improved upon by, for instance,
Beck and Teboulle (2009) in the form om the fast iterative shrinking-thresholding
algorithm (FISTA). Other improvements include stochastic versions, line searches,
improved step size settings, and other types of accleration, such as the Anderson vari-
ant (Mai and Johansson 2020).

At this point you may wonder what we have gained compared to the projected
gradient method. For one thing, we have obtained an algorithm with more general
applicability. Indeed, as Bogdan, Berg, Sabatti, et al. (2015) showed, there is an e�cient
algorithm for computing the proximal operator even in the case of the sorted �1 norm.
Furthermore, we have also gained slightly in computational e�ciency. In the lasso
case, for instance, the soft-thresholding operator has O( >) complexity whereas the
projection onto the �1 ball has O( > log >) complexity. Please see Figure 16 for a small
example on what this can amount to in practice.

In conclusion, proximal gradient descent is a simple algorithm with strong conver-
gence guarantees that is easy to implement. As we shall see next, however, it is typically
outperformed by a more naive method: coordinate descent.

Proximal Coordinate Descent

Coordinate descent is a simple algorithm: update one coe�cient (coordinate) at a time
by taking a gradient step with respect to that coe�cient. In other words, we solve a
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Figure 16: Comparison between projected and proximal gradient descent for an equiv-
alent lasso problem. Per-iteration, the methods both perform almost on par with one
another. In terms of wall-clock time, however, the proximal method is more e�cient.

one-dimensional problem at each iteration of the algorithm. The algorithm extends
naturally to the case when we have a composite objective of the form 5 = ℎ + 6, as in
the case of proximal gradient descent, provided that 6 is di�erentiable and ℎ is convex
as well as separable in #. Formally, this algorithm is called proximal coordinate descent,
but we will allow ourselves the slightly more informal but simpler coordinate descent.
We give a basic outline of the method in Algorithm 6.

Algorithm 6: Proximal coordinate descent. Note that the implementation
given here is designed for illustration; many improvements can be made that
are critical to the practical performance of the algorithm.

Input: # = 0, 3 ∈ ℝ
>
+

1 repeat
2 Pick 8 ∈ {1, 2, . . . , >};

3 V8 ← proxℎ,g

(
V8 − g8∇ 6 (#)8

)
;

4 until convergence;

For the lasso, the coordinate descent update in Line 3 (Algorithm 6) is particularly
cheap and amounts only to soft-thresholding of the partial residual, which is part of
the reason for why it is so e�cient in this case. In Figure 17, we show a simple example
of how coordinate descent works for a two-dimensional lasso problem.

There are varies strategies for picking the coe�cient to optimize over in step three.
The simplest and most common alternative is to cycle through the coe�cients one by
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Figure 17: Cyclic coordinate descent for a lasso problem in two dimensions. At each
step, we minimize only in the direction of one of he coe�cients (along either the x
or the y axis). In this case, 6 is the least-squares criterion, which means that the step
always takes us to the minimum in that direction.

one, which is called cyclic coordinate descent. Another common alternative is to pick
the coe�cient at random, which makes for an algorithm that is easier to analyze than
cyclic coordinate descent and somewhatmore robust, but which also, in our experience,
is usually slightly slower.

At face-value it may seem somewhat surprising that this simple strategy should
outperform proximal gradient descent, which considers all features simultaneously,
particularly in light of the fact that proximal gradient descent sports better convergence
rates (Wright 2015). Yet, barring a few exceptions, this is precisely the case (Figure 18).

The counterintuitive nature of this result may explain why coordinate descent
algorithms were initially largely ignored in the literature on optimization. Daubechies,
Defrise, and De Mol (2004), Fu (1998), and Shevade and Keerthi (2003) all wrote
(relatively) early papers on coordinate-descent algorithms for the lasso, yet these initially
received scant attention. It was only several years later that a paper by Friedman, Hastie,
Hö�ing, et al. (2007) and corresponding software implementation in the R package
glmnet (Friedman, Hastie, and Robert Tibshirani 2010) caused the method to grow in
popularity.

The main reason for why coordinate descent works so well for the lasso, the elastic
net, and many related problems is related to the size of the steps that the algorithms
can take (while still guaranteeing convergence). In the least-squares case, proximal
gradient descent is limited by a step size of g = 1/∥^ ∥2, whereas coordinate descent
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Figure 18: Proximal coordinate descent versus accelerated proximal gradient de-
scent (FISTA) for two datasets: news20 (Lang 1995) and RCV1 (Lewis et al. 2004). The
dimensions of the data are < = 199 961, > = 355 191 for news20 and < = 20 242,
> = 47 236 for RCV1. The response in both cases is binary and we �t a standard lasso
model In both cases we normalize with maximum–absolute value scaling. The com-
parisons were made using the benchopt package (Moreau et al. 2022).

can take steps of size g8 = 1/∥x8 ∥22, which for much real data are decidedly larger for
many of the features and hence promote faster convergence. For news20 (Lang 1995),
for instance, we have ∥^ ∥2 = 161whereas the median of {∥x8 ∥22 : 8 = 1, 2, . . . , >} is
1.40 (and with a maximum of 34.4). The price we pay for this increase in step size is a
limit to one direction at a time. This can pose problems in the case when there is large
correlation between some features, since coordinate descent then may struggle to break
this dependency apart.11 Empirically, however, we have found coordinate descent to
largely dominate proximal gradient descent.

As in the case of proximal gradient descent, coordinate descent can also be acceler-
ated via the Nesterov scheme (Nesterov 1983) or Anderson acceleration (Bertrand et al.
2021). In practice, however, we have found that the bene�ts of acceleration are smaller
in the case of coordinate descent than they are for proximal gradient descent.

One problem with coordinate descent, however, is that it requires the objective
to be separable in the optimization variable #; this is not the case for SLOPE, which
makes the method inapplicable for this problem.

We have introduced many optimization methods in this section, yet have only

11Note that proximal gradient descent is also not particularly well-equipped to deal with this situation.
Instead, this is the setting where Hessian-based methods such as proximal Newton (Lee, Sun, and M. A.
Saunders 2014) dominate.
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scratched the surface in the �eld. Several methods have been omitted, such as the
alternating direction method of multipliers (ADMM) (Boyd et al. 2010), proximal
Newton (Lee, Sun, andM.A. Saunders 2014), interior-pointmethods (Kim et al. 2007),
and stochastic gradient descent (Bottou 2010; Robbins andMonro 1951) and its many
derivatives. We have also omitted many details regarding the implementation of the
algorithms, such as step size selection and convergence criteria. Yet, while these are
important and interesting aspects of the algorithms, we omit them here for brevity and
provide all the necessary details in the papers themselves.

Although optimization algorithms are fundamental in ensuring good performance
in �tting sparse regression models such as the lasso, the elastic net, and SLOPE, they
are not the only way to improve performance. In the next section, we will introduce
screening rules, which drastically reduces the computational cost of �tting these models,
particularly in the high-dimensional setting.

4 Screening Rules

Screening rules are a remarkably e�cient method for speeding up the optimization of
sparse regression methods. They are based on the following reasoning:

1. We know that the solution is going to be sparse, especially if > ≫ <.12

2. We also know something about the importance of the features, even before �tting
the model, since we for instance (as in Figure 1) can compute the correlation
between the features and the response. In addition to this, we are also typically
interested in solving for a range of regularization parameters, which means that
the problemwe are currently trying to solve is likely related to a problemwe have
already solved.

3. Therefore, we might be better of by only considering a subset of the features
when solving the problem. And if this subset is small and selecting it is cheap,
then we should be able to save a lot of time.

This intuition turns out to be correct, and screening rules have consequently brought a
pivotal discovery to the �eld of optimization for sparse methods, particularly in the
high-dimensional domain.

The �rst screening rule for the lasso, SAFE (SAfe Feature Elimination), was intro-
duced by El Ghaoui, Viallon, and Rabbani (2010). In essence, the authors showed that
it was possible to con�ne the solution for a given _ to a region of the feature space,

12Recall, for instance, that the lasso can only selectmin(<, >) features.
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and feature-by-feature ascertain whether it is possible for the feature be selected in the
solution.

In practice, this means that if you have a dataset of, say, one million features (>)
and one thousand observations (<) and want to �t the lasso for some value of _, then
there is a good chance that you may just have to �t a problem with a few hundred
features, while at the same time guaranteeing that you will reach the same solution as
the one-million-feature problem would. In addition, the cost of running the screening
rule is negligible next to solving the problem (even the reduced problem). The net result
is a remarkable gain in computational performance. It is not in our experience rare to
see speedups of several orders of magnitude, for instance reducing the time taking to �t
this size of model from hours to minutes (or even less).

The screening rule introduced by El Ghaoui, Viallon, and Rabbani (2010) is a safe
screening rule, meaning that all of the features discarded by the rule are guaranteed
to be absent at the optimum. As it turns out, however, this requirement on safety in
general leads to rules that are overly conservative. This was made clear in a paper by
Robert Tibshirani, Bien, et al. (2012), in which they introduced the strong screening
rule for the lasso. This rule uses an initial screening test that is heuristic (as opposed to
safe), which means that it may discard features that actually are part of the solution.
This necessitates a check of the optimality conditions after solving the reduced problem
and, in case any features were incorrectly discarded, a re�tting of the model with these
features icluded. As the authors showed, however, these violations of the screening rule
are so rare in practice that there is often no need to re�t. And if there is, the estimate
from the reduced problem is often so close to the optimum of the real problem that
only a few extra iterations of the optimization algorithm are needed.

It is important to highlight that the nomenclature for screening rules is quite
misleading.13 Even if the screening performed by the strong rule is not safe, the actual
screening rule method is, which stems directly from the fact that all of these methods
include checks of the optimality conditions in order to safeguard against discarding
features that are part of the solution.14 In other words, even though we call some rules
safe and some heuristic, they are in fact all safe as they are implemented in practice.

Robert Tibshirani, Bien, et al. (2012) also introduced the notion of sequential
screening rules, meaning that screening is performed along the regularization (lasso)
path with the solution at the current step on the path as the starting point for the
screening rule, which signi�cantly impoves the e�ectiveness of the rule. One problem
with both SAFE and the strong rule, however, is that their e�ectiveness decrease when
features in the design are heavily correlated—the problem is particularly severe in SAFE.

13We stress this point since we have (repeatedly) found this fact to stump reviewers of our papers.
14There are screening rules that actually are unsafe, but they are used for an altogether di�erent purpose

in which one is interested not just in screening, but also changing the model (for instance the lasso) itself.
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This leadRobertTibshirani, Bien, et al. (2012) to conclude,which they also demonstrate
empirically, that the most e�cient screening method (at least in the sequential case) is
to begin with the set of features that have so far ever been active along the path: E, and
solve the problem for this set �rst. After reaching a solution for this set, the optimality
checks are then performed on the features present in the strong rule set S, but not in
E (S \ E). If there are any violations, which is often the case since no screening was
performed, these features are entered into E. The problem is then solved, again, but
this time for the updated E. This procedure is then repeated until no violations are
found amongS \ E. Finally, when this happens, the optimality conditions are checked
for the entire set of features, and if no violations are found, then we are done. If there
are violations, however, the procedure repeats with these features added to E.

Since these two papers were published, there has been an explosion in research
around screening rules for the lasso as well as other sparse regression problems. Some
notable examples of this include the sphere tests (Zhen J. Xiang, Xu, and Peter J
Ramadge 2011), R-region test (Zhen James Xiang and Peter J. Ramadge 2012), and
Gap Safe (Fercoq, Gramfort, and Salmon 2015; Ndiaye et al. 2017).

We have so far discussed screening rules in relatively informal terms. In the next
section, we will provide a more formal treatment of the topic, which we hope will
provide a better understanding of how the methods work.

4.1 Screening Rules and the Correlation Vector

To better understand how screening rules work, we need to consider the optimality
conditions of our problems. For the unconstrained versions of our problems, they are

0 ∈ ∇ 6 (#) + sℎ(#),

where s is a subgradient of the penalty term ℎ. Letting c = −∇ 6 (#), we can rewrite
this as

c ∈ sℎ(#). (7)

We will call c the correlation vector, which is simply the negative gradient of 6 (#) with
respect to #.

For illustrative purposes, we will focus on the lasso here, for which the mℎ(#) is the
subdi�erential of the �1 normmultiplied with _, de�ned as

A8 ∈

{
{_ sign( V̂8 )} if V̂8 ≠ 0,

[−_, _] otherwise,

which we previously visualized in Figure 14b. One consequence of this is that, if

|∇ 6 (#)8 | < _,
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then it must also hold that V∗8 = 0. In other words, if the absolute value of the gradient
with respect to feature 8 is smaller than our level of regularization, then the feature
must be absent from the solution. Similarly, this also means that if V∗8 ≠ 0, then its
gradient will be ±_. We can observe this behavior in Figure 19, where we have plotted
the lasso path for the diabetes dataset that we have encountered before. Note that we
start at the left. At this point only a single feature is active. Then, as we lower _ (move
from left-to-right in the plot), the features become active one-by-one. And at exactly
the point where they do so, they also join either of the lines 2 = ±_; and as long as they
stay active, that is where they remain.
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Figure 19: The lasso path for the diabetes data. This time, we have also plotted the
correlation (negative gradients) along the path. In order for a feature to become active
from one step on the path (one value of _) to the next, its correlation 28 has to reach
either of the _ = ±2 (dotted) lines. Note that the x-axis is �ipped to illustrate the fact
that we typically proceed from a large _ towards a small one (left to right in the plot).

So, if we knew, before �tting, that |28 | < _, then we could safely discard feature 8
from the problem and still solve it as if it were always there. The problem, however, is
that we do not have access to the correlation vector before �tting the model.

What we can do instead, however, is to estimate the correlation vector and use that
in the place of the true value. Let us say that we are at step 9 on the path and have
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computed the solution at this step; then we also know c at this step (c (9) ). Next, we
want to predict what c (9+1) will be in order to screen features for this (upcoming) step.
One rather conservative approach for this is to assume that gradient of the correlation
vector is bounded by one, in other words, we introduce the approximation

2̂ (9+1)8 = 2 (9)8 + sign
(
2 (9)8

)
(_9 − _9+1) .

Using this approximation is in fact exactly the strong rule for the lasso. In Figure 20,
we illustrate what this approximation amounts to in practice for the diabetes dataset.
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Figure 20: The sequential strong rule for the lasso. The data is the diabetes dataset
that we have encountered several times already. We are at step 9 and want to screen
features for step 9 + 1. We show the screening rule for two features here. The �lled
circles show |28 | for each feature and the open circles show the strong rule estimate | 2̂8 |.
For feature 1, the approximation | 2̂1 | does not reach _ in time for the next step—so the
rule discards it. For the fourth feature, however, | 2̂4 | is larger than _, and so feature 4
cannot be discarded.

Aswementionedpreviously, this is a somewhat conservative estimate of the gradient
for the next step, which, in addition, uses no information at all about the shape of
the path of the correlation vector. And even though the rule has lead to remarkable
improvements in performance of optimization algorithms, this fact causes it to struggle
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in less well-conditioned datasets where, for instance, there is large correlation between
the features (Robert Tibshirani, Bien, et al. 2012).

Another consequence of Equation (7) is that it is possible to know at which _ the
�rst feature enters the model. In the case when 6 is the least-squares objective, for
instance, we have the following optimality condition:15

��^ ⊺
(
y − ^ #

) �� = |^ ⊺y | ≤ _

since we know that # = 0 at this point. This means that the largest value for this
equation to hold is

_max = max
8
|x⊺8 y |.

We have used this setting repeatedly throughout this text as a starting point for the lasso
path (in the unconstrained case).

This also, however, highlights a property of the lasso that is true of the elastic net
and SLOPE as well: it is sensitive to the scales of the features. The larger the values
of x8 , the larger the inner product x

⊺

8 y becomes, which means that if feature 8 for
instance is the length of a person, then it will enter the path earlier if our measurements
are in meters rather than centimeters. This is naturally not desireable in general. To
deal with this issue, we need to normalize the features, which is the topic of the next
section.

5 Normalization

One important aspect of regularized models is that they are generally sensitive to the
scale of the features in the problem. This is the case for the lasso, the elastic net, and
SLOPE, since they penalize the magnitude of the coe�cients. And it puts them apart
from ordinary least squares and best-subset selection, which we introduced earlier.

For a simple example of this behavior, assume thatwe have a dataset that is generated
from a normal distribution in the following manner:

^ ∼ Normal

( [
0
0

]
,

[
4 0
0 1

] )
, # =

[
1/2
1

]
, y = ^ # + 9,

with Y ∼ Normal(0, 1), identically and independently for each 7 = 1, 2, . . . , <.
In other words, we have generated our features from two normally distributed

variables, both with mean zero and standard deviation 4 and 1, respectively, and with
no correlation between them. We have constructed our problem such that the e�ects

15Note that this equation is for the no-intercept case.
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on the response for the two features are equivalent in the sense that a change of one
standard deviation in either feature will result in a change of one in the response.

Since the errors are generated according to the assumptions of the ordinary least
squares model, we will recover the true coe�cients in expectance. And when we
compute the standardized coe�cients from our estimates, according to

V̂std = A8 V̂8 ,

where A8 is the standard deviation of the feature x8 , the coe�cients are both 1 (for
ordinary least-squares regression).

If we �t the lasso to this data, however, we will �nd that the feature with the larger
standard deviation will be penalized less than the other (Table 2), which we see from
looking at the standardized coe�cients. A similar e�ect occurs in ridge regression. This
behavior is typically not desirable.

Table 2: The e�ect of regularization on the regression coe�cients and standardized
versions thereof.

Model #̂ #̂std

OLS
[
0.50 1.00

]
⊺

[
1.00 1.00

]
⊺

Lasso
[
0.38 0.50

]
⊺

[
0.75 0.50

]
⊺

Ridge
[
0.47 0.78

]
⊺

[
0.93 0.78

]
⊺

To tackle this, the standard approach is to normalize the design matrix ^ before
�tting the model by centering (subtracting a value, for instance its mean) and scaling
each feature (by dividing with a value, for instance its standard deviation).16 The goal is
to place the features on the same scale. For features that are normally distributed, this is
relatively straightforward to do. You simply need to scale with the standard deviation.
But when the distribution of the features is di�erent, for instance whenwhey are binary
F78 ∈ {0, 1}, the situation is more complicated. Unfortunately, there is little literature
to fall back on in this case; in fact, this holds in general for the case of normalization.
Typically, researchers and practioners instead rely on “standard practice”, but this
di�ers from �eld to �eld. Two common types of normalization is standardization,
which is shifting by the mean and scaling by the standard deviation17 of each feature,
andmax–abs scaling, which does no shifting but scales with the maximum absolute
value of each feature. The �rst type, standardization, is common in the statistical

16Afterwards, the coe�cients are typically returned to their original scale.
17The formula without Bessel’s correction is typically used.
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literature, whilst the second type, max–abs normalization, is common in machine
learning, particularly when dealing with sparse data. As we can observe in Figure 21,
however, the twomethods generate starkly di�erent results for the estimated coe�cients
in many datasets.
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Figure 21: Lasso paths for real datasets using two types of normalization: standard-
ization and maximum absolute value scaling (max–abs). We have �t the lasso path to
three di�erent datasets: leukemia (Golub et al. 1999), triazines (R. King 2024), and
w1a (Platt 1998). For each dataset, we have colored the coe�cients if they were among
the �rst �ve features to become active in under either of the two types of normalization
schemes. We see that the paths di�er with regards to the size as well as the signs of the
coe�cients, and that, in addition, the coe�cients to become active �rst di�er between
the normalization types.

This concludes our introduction to the topics of this thesis, including some of the
issues and challenges faced by methods and practices in these �elds. In the next section,
we will introduce the papers that this thesis is based on and brie�y summarize their
contributions in tackling these challenges.
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6 Summary of the Papers

6.1 Paper i

In Section 4, we demonstrated the considerable e�ect that screening rules have had on
sparse regression problems in the large-> setting. As a result, the papers by El Ghaoui,
Viallon, and Rabbani (2010) and Robert Tibshirani, Bien, et al. (2012) led to a surge
in interest for screening rules for the lasso and its derivatives, including the elastic net.
For SLOPE, however, there existed no screening rule until our work in this paper, in
which we introduced the strong screening rule for SLOPE (Larsson, Bogdan, andWallin
2020).

A key contribution in our paper is the development of a practical characterization of
the subdi�erential for the sorted �1 norm, from which we derive an e�ective algorithm
for implementing the screening rule in practice. As in the cas of the strong rule for the
lasso, we toodemonstrate remarkable boosts in performance for �tting SLOPE (Table 3).
The net result is a considerable extension in reach for SLOPE in the high-dimensional
setting.

Table 3: Benchmarks measuring wall-clock time for four datasets: dorothea (Guyon
et al. 2004), e2006-tfidf (Frandi 2015), news20 (Lang 1995), and physician (Deb and
Trivedi 1997), �t with di�erent models using either the strong screening rule or no rule

Time (s)

Dataset Model < > No screening Screening

dorothea Logistic 800 88 119 914 14
e2006-t�df Least squares 3308 150 358 43 353 4944
news20 Multinomial 1000 62 061 5485 517
physician Poisson 4406 25 34 34

6.2 Paper ii

Aswe saw in Section 4, screening rules are particularly e�ectivewhen they are sequential,
that is, operate along the regularizationpath. But another possibility that hadpreviously
not been explored is the idea of screening not only for the next step on the path, but
for all of the remaining steps as well. This is the idea behind look-ahead screening
rules, which we introduce in this short paper (Larsson 2021). We employ this idea for
the Gap-Safe screening rule (Ndiaye et al. 2017), which, as the name suggests, is a safe
screening rule. This means that if a feature is screened out, it is guaranteed to be zero in
the solution.
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Figure 22: Look-ahead screening for the lasso at the �rst step on the path for the
leukemia dataset. The plot shows a random sample of 20 features. Blue squares indicate
that the corresponding feature can be discarded for those steps on the lasso path.

In Figure 22, we illustrate the e�ectiveness of look-ahead screening for the lasso
path at the �rst step for the leukemia dataset. What the plot indicates is that many
features can be safely exempt frommodel �tting for a range of steps on the path. They
only need to be re-screened at the �rst grey square for each given feature, for instance at
step 14 for the �rst feature.

In the paper, we show that this e�ect has sizeable consequences for the computation
time required for �tting the full path.

6.3 Paper iii

Even though the strong rule for the lasso is highly e�ective in general, there is one area
in which it struggles, namely, when features are highly correlated. Robert Tibshirani,
Bien, et al. (2012) in fact noted this themselves and forwarded it as the main motivation
for using the working-set strategy (where the model is initially �t using the ever-active
set, rather than the strong set).

The reason for this is that the strong rule, and every other screening rules we know
of, ignores information about the gradient of the correlation vector c, even though it
contains useful information about the structure of the path. Looking at Figure 20, for
instance, we see that the strong rule bound is indi�erent to the slopes of the correlation
vectors. This is the motivation for the Hessian screening rule that we introduce in
the third paper of the thesis (Larsson and Wallin 2022). The name stems from the
fact that we use second-order information about the optimization problem, which
involves the Hessian matrix ^ ⊺^ . The rule o�ers a better estimate of the correlation
vector (Figure 23), which in practice leads to better screening performance.

The screening method manages to be e�ective, particularly when 6 is the least-
squares objective, because of e�cient updates of the Hessian matrix and its inverse.
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Figure 23: An illustration of the strong andHessian screening rules for a lasso problem.
We are at _9 and are looking to screen features for _9+1. The black solid line shows the
path of the correlation vector for the 8 th feature, which is inactive (its coe�cient is
zero) until the point where it joins the dashed line. In blue and orange colors, we show
the predicted values for 28 between _9 and _9+1. For the strong rule, the predicted value
lies above the dashed line, so it is not discarded by the rule (even though it is inactive).
For the Hessian rule, however, the prediction 2̂8 does lie below the dashed line, and so
the feature is discarded.
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And as a bonus, the availability of these quantities also allow for adaptively tailoring
the _ sequence in order to better approximate the true lasso path.

6.4 Paper iv

The few optimizationmethods that we have introduced so far amount to nomore than
a drop in the ocean of the vast volume of research that is the �eld of optimization. And
although we have provided a few select benchmarks of our methods, we are still far
removed from any kind of comprehensive study of their comparative e�ectiveness. This
is not just an issue of our limited overview in this thesis, but in fact a general problem
for research in optimization.

The problem is that there are now so many optimization methods to examine and
somany di�erentmodels and datasets onwhich to compare themon, that it has become
di�cult to keep track of which methods it is that actually do best on a given problem.
You can easily �nd a paper A that studies optimization methods X and Y on datasets
I and II and conclude that X is better than Y but then �nd another paper B, which
studies methods X, Y, and Z on datasets I and III and conclude that, actually, Y is better
than X and, by the way, Z happens to be best of them all. Then, later, you �nd paper C,
which claims that Z actually is considerably worse than X, which in fact also performs
better for dataset IV. This confused state of a�airs is typically the result of authors
having benchmarked their methods using di�erent hardware, programming languages
for their implementations, hyperparameters for theirmethods, and convergence criteria,
to name a few of the many possible sources of variation.

In short, there is a dire need for a framework throughwhich this process canbemade
simple, reproducible, and transparent. This is the motivation behind the benchopt
package, which we present in the �fth of this thesis’ papers (Moreau et al. 2022).

The goal of benchopt is to make life easier for both researchers in optimization and
users of optimization software. For a researcher who has developed a new optimization
method for SLOPE, for instance, all you need to do is to write the code for your solver
(optimization method) and plug it into the existing benchopt benchmark for SLOPE
and run it. The package will then automatically compare your method with all the
other methods in the benchmark and output table and plots of the results (Figure 24).
If you instead are a user who is interested in using SLOPE for your applied work and
want to know which algorithm to use, you can either browse the extensive database of
results that other users have already uploaded or just download the benchmark and
run it yourself on the data that you are interested in using it for.
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Figure 24: A schematic over how a benchmark is set up and run using benchopt. The
benchmark consists of a set of �les that de�ne objectives, datasets, and solvers. When
the user runs benchopt run, the package combines all of the possible combinations of
objectives, datasets, and solvers and outputs a neatly formatted database of the results.
Using benchopt plot, the user can then easily compare the di�erent methods through
interative visualizations or produce publication-ready plots to insert directly into a
paper. Finally, to make the results available to the benchopt community, the user can
run benchopt publish, which opens up a pull-request against the public repository of
benchmark results.

6.5 Paper v

As we saw in Figure 18, proximal coordinate descent is an e�cient optimization algo-
rithm for �tting the lasso. But as we also noted, however, it cannot handle the case
when the penalty term ℎ is non-separable, which is the case in SLOPE. In practice, this
has reduced the applicability of SLOPE to large data, which is unfortunate given the
many appealing properties of the model.

In paper v (Larsson, Klopfenstein, et al. 2023), however, we present a way to cir-
cumvent this issue by using a hybrid of proximal coordinate and proximal gradient
descent (Figure 25). Our main discovery is that if we �x the clusters and optimize over
each cluster in turn, rather than each feature, the problem becomes separable, which
means that coordinate descent can be used. And if we combine this with proximal
gradient descent steps, which allow us to discover the clusters, then we can guarantee
convergence and at the same time bene�t from the e�ciency of coordinate descent.

6.6 Paper vi

In the �nal paper of this thesis, we tackle the issue of normalization of binary features,
which we touched upon in Section 5. As we saw in that section, normalization is
necessary in order to put the features on the “same scale”. What this means, however,
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Figure 25: An illustration of the hybrid coordinate descent solver we developed for
SLOPE, showing progress until convergence for the coordinate descent solver (CD)
that we use as part of the hybrid method, our hybrid method, and proximal gradient
descent (PGD). The orange crossmarks the optimum. Dashed lines indicate PGD steps
and solid lines CD steps. Each dot marks a complete epoch, which may correspond
to only a single coe�cient update for the CD and hybrid solvers if the coe�cients �ip
order. The CD algorithm converges quickly but is stuck after the third epoch. The
hybrid and PGD algorithms, meanwhile, reach convergence after 67 and 156 epochs
respectively.

is not clear, yet has been met mostly with neglect in the literature. We think that
this is both surprising and problematic given the almost universal use of normaliza-
tion in regularized methods and the apparent and large e�ects it has on the solution
paths (Figure 21).

In our paper, we begin to bridge this knowledge gap by studying normalization for
the lasso and ridge regression when they are used on binary features (features that only
contain values 0 or 1) or mix of binary and normally distributed features. What we �nd
is that there is a large e�ect of normalization with respect to the class balance of the
features: the proportion of ones to zeros (or vice versa). Both the lasso and the ridge
estimators turn out to be sensitive to this class balance and, depending on the type
of normalization used, have trouble recovering e�ects that are associated with binary
features as long as their class balance is severe enough (Figure 26).
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Abstract

Extracting relevant features from data sets where the number of observations (n)
is much smaller then the number of predictors (p) is a major challenge in modern
statistics. Sorted L-One Penalized Estimation (SLOPE)—a generalization of the
lasso—is a promising method within this setting. Current numerical procedures
for SLOPE, however, lack the efficiency that respective tools for the lasso enjoy,
particularly in the context of estimating a complete regularization path. A key
component in the efficiency of the lasso is predictor screening rules: rules that
allow predictors to be discarded before estimating the model. This is the first paper
to establish such a rule for SLOPE. We develop a screening rule for SLOPE by
examining its subdifferential and show that this rule is a generalization of the strong
rule for the lasso. Our rule is heuristic, which means that it may discard predictors
erroneously. In our paper, however, we show that such situations are rare and easily
safeguarded against by a simple check of the optimality conditions. Our numerical
experiments show that the rule performs well in practice, leading to improvements
by orders of magnitude for data in the p � n domain, as well as incurring no
additional computational overhead when n > p.

1 Introduction

Extracting relevant features from data sets where the number of observations (n) is much smaller
then the number of predictors (p) is one of the major challenges in modern statistics. The dom-
inating method for this problem, in a regression setting, is the lasso [1]. Recently, however, an
alternative known as Sorted L-One Penalized Estimation (SLOPE) has been proposed [2–4], which is
a generalization of the Octagonal Shrinkage and Supervised Clustering Algorithm for Regression
(OSCAR) [5].

SLOPE is a regularization method that uses the sorted `1 norm instead of the regular `1 norm, which is
used in the lasso. SLOPE features several interesting properties, such as control of the false discovery
rate [2, 6], asymptotic minimaxity [7], and clustering of regression coefficients in the presence of
strong dependence between predictors [8].

In more detail, SLOPE solves the convex optimization problem

minimizeβ∈Rp {f(β) + J(β;λ)} , (1)

where f(β) is smooth and convex and J(β;λ) =
∑p

j=1 λj |β|(j) is the convex but non-smooth sorted

`1 norm [2, 8], where |β|(1) ≥ |β|(2) ≥ · · · ≥ |β|(p) and λ1 ≥ · · · ≥ λp ≥ 0.
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It is easy to see that the lasso is a specific instance of SLOPE, obtained by setting all elements of
λ to the same value. But in contrast to SLOPE based on a decreasing sequence λ, the lasso suffers
from unpredictable behavior in the presence of highly correlated predictors, occasionally resulting
in solutions wherein only a subset among a group of correlated predictors is selected. SLOPE, in
contrast, turns out to be robust to correlated designs, which it accomplishes via clustering: setting
coefficients of predictors to the same value [8]. Kremer et al. [9] showed that this clustering is related
to similarity of the influence of respective variables on the likelihood function, which can occur
due to strong correlation [8, 10] but also due to similarity of true regression coefficients [11]. This
property in some cases allows SLOPE to select all p predictors if they are grouped into no more than
n clusters [9, 11], while the lasso can at most select n predictors [12].

The choice of λ sequence in (1) typically needs to be based on cross-validation or similar schemes.
Most algorithms for fitting sparse regression, such as as the one implemented for lasso in the glmnet
package for R [13], accomplish this by constructing a path of decreasing λ. For SLOPE, we begin

the path with λ(1) and finish at λ(l) with λ
(m)
j ≥ λ

(m+1)
j for j = 1, 2, . . . , p and m = 1, 2, . . . , l− 1.

(See Section 3.1 for details regarding the construction of the path.) For any point along this path, we

let β̂(λ(m)) be the respective SLOPE estimate, such that

β̂(λ(m)) = argmin
β∈Rp

{

f(β) + J(β;λ(m))
}

.

Fitting the path repeatedly by cross-validation introduces a heavy computational burden. For the
lasso, an important remedy for this issue arose with the advent of screening rules, which provide
criteria for discarding predictors before fitting the model.

Screening rules can be broken down into two categories: safe and heuristic (unsafe) screening rules.
The former of these guarantee that any predictors screened as inactive (determined to be zero by
the rule) are in fact zero at the solution. Heuristic rules, on the other hand, may lead to violations:
incorrectly discarding predictors, which means that heuristic rules must be supplemented with a
check of the Karush–Kuhn–Tucker (KKT) conditions. For any predictors failing the test, the model
must be refit with these predictors added back in order to ensure optimality.

Safe screening rules include the safe feature elimination rule (SAFE [14]), the dome test [15],
Enhanced Dual-Polytope Projection (EDPP [16]), and the Gap Safe rule [17, 18]. Heuristic rules
include Sure Independence Screening (SIS [19]), Blitz [20], and the strong rule [21]. There have also
been attempts to design dynamic approaches to screening [22] as well as hybrid rules, utilizing both
heuristic and safe rules in tandem [23].

The implications of screening rules have been remarkable, allowing lasso models in the p � n
domain to be solved in a fraction of the time required otherwise and with a much reduced memory
footprint [21]. Implementing screening rules for SLOPE has, however, proven to be considerably
more challenging. After the first version of this paper appeared on arXiv [24], a first safe rule for
SLOPE has been published [25]. Yet, because of the non-separability of the penalty in SLOPE, this
rule requires iterative screening during optimization, which means that predictors cannot be screened
prior to fitting the model. This highlights the difficulty in developing screening rules for SLOPE.

Our main contribution in this paper is the presentation of a first heuristic screening rule for SLOPE
based on the strong rule for the lasso. In doing so, we also introduce a novel formulation of the
subdifferential for the sorted `1 norm. We then proceed to show that this rule is effective, rarely leads
to violations, and offers performance gains comparable to the strong rule for the lasso.

1.1 Notation

We use uppercase letters for matrices and lowercase letters for vectors and scalars. 1 and 0 denote
vectors with all elements equal to 1 and 0 respectively, with dimension inferred from context. We use
≺ and � to denote element-wise relational operators. We also let cardA denote the cardinality of set
A and define signx to be the signum function with range {−1, 0, 1}. Furthermore, we define x↓ to
refer to a version of x sorted in decreasing order and the cumulative sum function for a vector x ∈ R

n

as cumsum(x) = [x1, x1 + x2, · · · ,
∑n

i=1 xi]
T . We also let |i| be the index operator of y ∈ R

p so
that |y|i|| = |y|(i) for all i = 1, . . . , p. Finally, we allow a vector to be indexed with an integer-valued
set by eliminating those elements of this vector whose indices do not belong to the indexing set—for
instance, if A = {3, 1} and v = [v1, v2, v3]

T , then vA = [v1, v3]
T .

2
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2 Theory

Proofs of the following theorem and propositions are provided in the supplementary material.

2.1 The Subdifferential for SLOPE

The basis of the strong rule for `1-regularized models is the subdifferential. By the same argument, we
now turn to the subdifferential of SLOPE. The subdifferential for SLOPE has been derived previously
as a characterization based on polytope mappings [26, 27]; here we present an alternative formulation
that can be used as the basis of an efficient algorithm. First, however, let Ai(β) ⊆ {1, . . . , p} denote
a set of indices for β ∈ R

p such that

Ai(β) = {j ∈ {1, . . . , p} | |βi| = |βj |} (2)

whereAi(β)∩Al(β) = ∅ if l 6∈ Ai(β). To keep notation concise, we letAi serve as a shorthand for
Ai(β). In addition, we define the operator O : Rp → N

p, which returns a permutation that rearranges
its argument in descending order by its absolute values and R : Rp → N

p, which returns the ranks of
the absolute values in its argument.

Example 1. If β = {−3, 5, 3, 6}, then A1 = {1, 3}, O(β) = {4, 2, 1, 3}, and R(β) = {3, 2, 4, 1}.

Theorem 1. The subdifferential ∂J(β;λ) ∈ R
p is the set of all g ∈ R

p such that

gAi
=











s ∈ R
cardAi

∣

∣











cumsum(|s|↓ − λR(s)Ai
) � 0 if βAi

= 0,

cumsum(|s|↓ − λR(s)Ai
) � 0

and
∑

j∈Ai

(

|sj | − λR(s)j

)

= 0 otherwise.











2.2 Screening Rule for SLOPE

2.2.1 Sparsity Pattern

Recall that we are attempting to solve the following problem: we know β̂(λ(m)) and want to predict

the support of β̂(λ(m+1)), where λ(m+1) � λ(m). The KKT stationarity criterion for SLOPE is

0 ∈ ∇f(β) + ∂J(β;λ), (3)

where ∂J(β;λ) is the subdifferential for SLOPE (Theorem 1). This means that if ∇f(β̂(λ(m+1)))
was available to us, we could identify the support exactly. In Algorithm 1, we present an algorithm to
accomplish this in practice.

Algorithm 1

Require: c ∈ R
p, λ ∈ R

p, where λ1 ≥ · · · ≥
λp ≥ 0.

1: S,B ← ∅

2: for i← 1, . . . , p do
3: B ← B ∪ {i}
4: if

∑

j∈B

(

cj − λj

)

≥ 0 then

5: S ← S ∪ B
6: B ← ∅

7: end if
8: end for
9: return S

Algorithm 2 Fast version of Algorithm 1.

Require: c ∈ R
p, λ ∈ R

p, where λ1 ≥ · · · ≥
λp ≥ 0

1: i← 1, k ← 0, s← 0
2: while i+ k ≤ p do
3: s← s+ ci+k − λi+k

4: if s ≥ 0 then
5: k ← k + i
6: i← 1
7: s← 0
8: else
9: i← i+ 1

10: end if
11: end while
12: return k

In Proposition 1, we show that the result of Algorithm 1 with c := |∇f(β̂(λ(m+1)))|↓ and λ :=

λ(m+1) as input is certified to contain the true support set of β̂(λ(m+1)).

Proposition 1. Taking c := |∇f(β̂(λ(m+1)))|↓ and λ := λ(m+1) as input to Algorithm 1 returns a

superset of the true support set of β̂(λ(m+1)).

3
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Remark 1. In Algorithm 1, we implicitly make use of the fact that the results are invariant to
permutation changes within each cluster Ai (as defined in (2))—a fact that follows directly from the
definition of the subdifferential (Theorem 1). In particular, this means that the indices for the set of

inactive predictors will be ordered last in both |β̂|↓ and |∇f(β̂)|↓; that is, for all i, j ∈ {1, 2, . . . , p}

such that β̂i = 0, β̂j 6= 0,

O(∇f(β̂))i > O(∇f(β̂))j =⇒ O(β̂)i > O(β̂)j ,

which allows us to determine the sparsity in β̂ via ∇f(β̂).

Proposition 1 implies that Algorithm 1 may lead to a conservative decision by potentially including
some of the support of inactive predictors in the result, i.e. indices for which the corresponding
coefficients are in fact zero. To see this, let U = {l, l + 1, . . . , p} be a set of inactive predictors and

take c := |∇f(β̂(λ(m+1)))|↓. For every k ∈ U , k ≥ l for which
∑k

i=l(ci−λi) = 0, {l, l+1, . . . , k}
will be in the result of Algorithm 1 in spite of being inactive. This situation, however, occurs only
when c is the true gradient at the solution and for this reason is of little practical importance.

Since the check in Algorithm 1 hinges only on the last element of the cumulative sum at any given
time, we need only to store and update a single scalar instead of the full cumulative sum vector. Using
this fact, we can derive a fast version of the rule (Algorithm 2), which returns k: the predicted number
of active predictors at the solution.1

Since we only have to take a single pass over the predictors, the cost of the algorithm is linear in
p. To use the algorithm in practice, however, we first need to compute the gradient at the previous
solution and sort it. Using least squares regression as an example, this results in a complexity of
O(np+ p log p). To put this into perspective, this is (slightly) lower than the cost of a single gradient
step if a first-order method is used to compute the SLOPE solution (since it also requires evaluation
of the proximal operator).

2.2.2 Gradient Approximation

The validity of Algorithm 1 requires ∇f(β̂(λ(m+1))) to be available, which of course is not the
case. Assume, however, that we are given a reasonably accurate surrogate of the gradient vector and

suppose that we substitute this estimate for ∇f(β̂(λ(m+1))) in Algorithm 1. Intuitively, this should
yield us an estimate of the active set—the better the approximation, the more closely this screened set
should resemble the active set. For the sequel, let S and T be the screened and active set respectively.

An obvious consequence of using our approximation is that we run the risk of picking S 6⊇ T , which
we then naturally must safeguard against. Fortunately, doing so requires only a KKT stationarity
check—whenever the check fails, we relax S and refit. If such failures are rare, it is not hard to
imagine that the benefits of tackling the reduced problem might outweigh the costs of these occasional
failures.

Based on this argument, we are now ready to state the strong rule for SLOPE, which is a natural
extension of the strong rule for the lasso [21]. Let S be the output from running Algorithm 1 with

c :=
(

|∇f(β̂(λ(m)))|+ λ(m) − λ(m+1)
)

↓
, λ := λ(m+1)

as input. The strong rule for SLOPE then discards all predictors corresponding to Sc.

Proposition 2. Let cj(λ) = (∇f(β̂(λ)))|j|. If |c′j(λ)| ≤ 1 for all j = 1, 2, . . . , p and

O(c(λ(m+1))) = O(c(λ(m))) (see Section 2.1 for the definition of O), the strong rule for SLOPE
returns a superset of the true support set.

Except for the assumption on fixed ordering permutation, the proof for Proposition 2 is comparable
to the proof of the strong rule for the lasso [21]. The bound appearing in the proposition, |c′j(λ)| ≤ 1,
is referred to as the unit slope bound, which results in the following rule for the lasso: discard the jth
predictor if

∣

∣∇f(β(λ(m)))j
∣

∣ ≤ 2λ
(m+1)
j − λ

(m)
j .

In Proposition 3, we formalize the connection between the strong rule for SLOPE and lasso.

1The active set is then retrieved by sub-setting the first k elements of the ordering permutation.
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Proposition 3. The strong rule for SLOPE is a generalization of the strong rule for the lasso; that is,
when λj = λi for all i, j ∈ {1, . . . , p}, the two rules always produce the same screened set.

Finally, note that a non-sequential (basic) version of this rule is obtained by simply using the gradient
for the null model as the basis for the approximation together with the penalty sequence corresponding
to the point at which the first predictor enters the model (see Section 3.1).

2.2.3 Violations of the Rule

Violations of the strong rule for SLOPE occur only when the unit slope bound fails, which may
happen for both inactive and active predictors—in the latter case, this can occur when the clustering
or the ordering permutation changes for these predictors. This means that the conditions under which
violations may arise for the strong rule for SLOPE differ from those corresponding to the strong rule
for the lasso [21].

To safeguard against violations, we check the KKT conditions after each fit and add violating
predictors to the screened set, refit, and repeat the checks until there are no violations. In Section 3.2.2,
we will study the prevalence of violations in simulated experiments.

2.2.4 Algorithms

Tibshirani et al. [21] considered two algorithms using the strong rule for the lasso. In this paper,
we consider two algorithms that are analogous except in one regard. First, however, let S(λ) be the
strong set, i.e. the set obtained by application of the strong rule for SLOPE, and T (λ) the active set.
Both algorithms begin with a set E of predictors, fit the model to this set, and then either expand this
set, refit and repeat, or stop.

In the strong set algorithm (see supplementary material for details) we initialize E with the union of
the strong set and the set of predictors active at the previous step on the regularization path. We then
fit the model and check for KKT violations in the full set of predictors, expanding E to include any
predictors for which violations occur and repeat until there are no violations.

In the previous set algorithm (see supplementary material for details) we initialize E with only the set
of previously active predictors, fit, and check the KKT conditions against the strong rule set. If there
are violations in the strong set, the corresponding predictors are added to E and the model is refit.
Only when there are no violations in the strong set do we check the KKT conditions in the full set.
This procedure is repeated until there are no violations in the full set.

These two algorithms differ from the strong and working set algorithms from Tibshirani et al. [21] in
that we use only the set of previously active predictors rather than the set of predictors that have been
active at any previous step on the path.

3 Experiments

In this section we present simulations that examine the effects of applying the screening rules. The
problems here reflect our focus on problems in the p� n domain, but we will also briefly consider
the reverse in order to examine the potential overhead of the rules when n > p.

3.1 Setup

Unless stated otherwise, we will use the strong set algorithm with the strong set computed using
Algorithm 2. Unless stated otherwise, we normalize the predictors such that x̄j = 0 and ‖xj‖2 = 1
for j = 1, . . . , p. In addition, we center the response vector such that ȳ = 0 when f(β) is the least
squares objective.

We use the Benjamini–Hochberg (BH) method [3] for computing the sequence, which sets
λBH
i = Φ−1

(

1 − qi/(2p)
)

for i = 1, 2, . . . , p, where Φ−1 is the probit function.2 To construct

the regularization path, we parameterize the sorted `1 penalty as J(β;λ, σ) = σ
∑p

j=1 |β|(j)λj , with

2Bogdan et al. [3] also presented a method called the Gaussian sequence that is a modification of the BH
method, but it is not appropriate for our problems since it reduces to the lasso in the p � n context.
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σ(1) > σ(2) > · · · > σ(l) > 0. We pick σ(1) corresponding to the point at which the first predictor
enters the model, which corresponds to maximizing σ ∈ R subject to cumsum(∇f(0)↓ − σλ) � 0,
which is given explicitly as

σ(1) = max(cumsum(∇f(0)↓)� cumsum(λ)),

where� is the Hadamard (element-wise) division operator. We choose σ(l) to be tσ(1) with t = 10−2

if n < p and 10−4 otherwise. Unless stated otherwise, we employ a regularization path of l = 100 λ
sequences but stop this path prematurely if 1) the number of unique coefficient magnitudes exceed
the number of observations, 2) the fractional change in deviance from one step to another is less than
10−5, or 3) if the fraction of deviance explained exceeds 0.995.

Throughout the paper we use version 0.2.1 of the R package SLOPE [28], which uses the accelerated
proximal gradient algorithm FISTA [29] to estimate all models; convergence is obtained when the
duality gap as a fraction of the primal and the relative level of infeasibility [30] are lower than
10−5 and 10−3 respectively. All simulations were run on a dedicated high-performance computing
cluster and the code for the simulations is available in the supplementary material and at https:
//github.com/jolars/slope-screening-code/.

3.2 Simulated Data

Let X ∈ R
n×p, β ∈ R

p×m, and y ∈ R
n. We take

yi = xT
i β + εi, i = 1, 2, . . . , n,

where εi are sampled from independently and identically distributed standard normal variables. X is
generated such that each row is sampled independently and identically from a multivariate normal
distribution N (0,Σ). From here on out, we also let k denote the cardinality of the non-zero support
set of the true coefficients, that is, k = card{i ∈ N

p | βi 6= 0}.

3.2.1 Efficiency

We begin by studying the efficiency of the strong rule for SLOPE on problems with varying levels
of correlation ρ. Here, we let n = 200, p = 5000, and Σij = 1 if i = j and ρ otherwise. We take
k = p/4 and generate βi for i = 1, . . . , k from N (0, 1). We then fit a least squares regression model
regularized with the sorted `1 norm to this data and screen the predictors with the strong rule for
SLOPE. Here we set q = 0.005 in the construction of the BH sequence.

The size of the screened set is clearly small next to the full set (Figure 1). Note, however, that the
presence of strong correlation among the predictors both means that there is less to be gained by
screening since many more predictors are active at the start of the path, as well as makes the rule
more conserative. No violations of the rule were observed in these simulations.
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Figure 1: Number of screened and active predictors for sorted `1-regularized least squares regression
using no screening or the strong rule for SLOPE.

3.2.2 Violations

To examine the number of violations of the rule, we generate a number of data sets with n = 100,
p ∈ {20, 50, 100, 500, 1000}, and ρ = 0.5. We then fit a full path of 100 λ sequences across 100
iterations, averaging the results. (Here we disable the rules for prematurely aborting the path described
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at the start of this section.) We sample the first fourth of the elements of β from {−2, 2} and set the
rest to zero.

Violations appear to be rare in this setting and occur only for the lower range of p values (Figure 2).
For p = 100, for instance, we would at an average need to estimate roughly 100 paths for this type of
design to encounter a single violation. Given that a complete path consists of 100 steps and that the
warm start after the violation is likely a good initialization, this can be considered a marginal cost.

σ max (σ)

fr
ac

tio
n 

of
 fi

ts
 w

ith
 v

io
la

tio
ns

0.000

0.005

0.010

0.015

0.020

1 0.5 0.2 0.1 0.02

 : p 20

1 0.5 0.2 0.1 0.02

 : p 50

1 0.5 0.2 0.1 0.02

 : p 100

1 0.5 0.2 0.1 0.02

 : p 500

1 0.5 0.2 0.1 0.02

 : p 1000

Figure 2: Fraction of model fits resulting in violations of the strong rule for sorted `1-regularized
least squares regression.

3.2.3 Performance

In this section, we study the performance of the screening rule for sorted `1-penalized least squares,
logistic, multinomial, and Poisson regression.

We now take p = 20, 000, n = 200, and k = 20. To construct X , we let X1, X2, . . . , Xp be random
variables distributed according to

X1 ∼ N (0, I), Xj ∼ N (ρXj−1, I) for j = 2, 3, . . . , p,

and sample the jth column in X from Xj for j = 1, 2, . . . , p.

For least squares and logistic regression data we sample the first k = 20 elements of β without
replacement from {1, 2, . . . , 20}. Then we let y = Xβ + ε for least squares regression and y =
sign (Xβ + ε) for logistic regression, in both cases taking ε ∼ N (0, 20I). For Poisson regression,
we generate β by taking random samples without replacement from { 1

40 ,
2
40 , . . . ,

20
40} for its first

20 elements. Then we sample yi from Poisson
(

exp((Xβ)i)
)

for i = 1, 2, . . . , n. For multinomial

regression, we start by taking β ∈ R
p×3, initializing all elements to zero. Then, for each row in β we

take a random sample from {1, 2, . . . , 20} without replacement and insert it at random into one of
the elements of that row. Then we sample yi randomly from Categorical(3, pi) for i = 1, 2, . . . , n,
where

pi,l =
exp

(

(Xβ)i,l
)

∑3
l=1 exp

(

(Xβ)i,l
) .

The benchmarks reveal a strong effect on account of the screening rule through the range of models
used (Figure 3), leading to a substantial reduction in run time. As an example, the run time for fitting
logistic regression when ρ = 0.5 decreases from roughly 70 to 5 seconds when the screening rule is
used.

We finish this section with an examination of two types of algorithms outlined in Section 2.2.4: the
strong set and previous set algorithm. In Figure 1 we observed that the strong rule is conservative
when correlation is high among predictors, which indicates that the previous set algorithm might
yield an improvement over the strong set algorithm.

In order to examine this, we conduct a simulation in which we vary the strength of correlation
between predictors as well as the parameter q in the construction of the BH regularization sequence.
Motivation for varying the latter comes from the relationship between coefficient clustering and the
intervals in the regularization sequence—higher values of q cause larger gaps in the sequence, which
in turn leads to more clustering among predictors. This clustering, in turn, is strongest at the start of
the path when regularization is strong.
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Figure 3: Time taken to fit SLOPE with or without the strong screening rule for randomly generated
data.

For large enough q and ρ, this behavior in fact occasionally causes almost all predictors to enter the
model at the second step on the path. As an example, using when ρ = 0.6 and fitting with q = 10−2

and 10−4 leads to 2215 and 8 nonzero coefficients respectively at the second step in one simulation.

Here, we let n = 200, p = 5000, k = 50, and ρ ∈ {0, 0.1, 0.2, . . . , 0.8}. The data generation process
corresponds to the setup at the start of this section for least squares regression data except for the
covariance structure of X , which is equal to that in Section 3.2.1. We sample the non-zero entries in
β independently from a random variable U ∼ N (0, 1).

The two algorithms perform similarly for ρ ≤ 0.6 (Figure 4). For larger ρ, the previous set strategy
evidently outperforms the strong set strategy. This result is not surprising: consider Figure 1, for
instance, which shows that the behavior of the regularization path under strong correlation makes the
previous set strategy particularly effective in this context.

3.3 Real Data

3.3.1 Efficiency and Violations

ρ
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25
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Figure 4: Time taken to fit a
regularization path of SLOPE
for least squares regression us-
ing either the strong or previ-
ous set algorithm.

We examine efficiency and violations for four real data sets: arcene,
dorothea, gisette, and golub, which are the same data sets that
were examined in Tibshirani et al. [21]. The first three originate
from Guyon et al. [31] and were originally collected from the
UCI (University of California Irvine) Machine Learning Reposi-
tory [32], whereas the last data set, golub, was originally published
in Golub et al. [33]. All of the data sets were collected from http:
//statweb.stanford.edu/~tibs/strong/realdata/ and fea-
ture a response y ∈ {0, 1}. We fit both least squares and logistic
regression models to the data sets and examine the effect of the
level of coarseness in the path by varying the length of the path
(l = 20, 50, 100).

There were no violations in any of the fits. The screening rule offers
substantial reductions in problem size (Figure 5), particularly for the path length of 100, for which
the size of the screened set of predictors ranges from roughly 1.5–4 times the size of the active set.

3.3.2 Performance

In this section, we introduce three new data sets: e2006-tfidf [34], physician [35], and news20 [36].
e2006-tfidf was collected from Frandi [34], news20 from https://www.csie.ntu.edu.tw/
~cjlin/libsvmtools/datasets [37], and physician from https://www.jstatsoft.org/
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Figure 5: Proportion of predictors included in the model by the strong screening rule as a proportion
of the total number of active predictors in the model for a path of λ sequences. Three types of paths
have are examined, using path lengths of 20, 50, and 100.

Table 1: Benchmarks measuring wall-clock time for four data sets fit with different models using
either the strong screening rule or no rule.

time (s)

dataset model n p no screening screening

dorothea logistic 800 88119 914 14
e2006-tfidf least squares 3308 150358 43353 4944
news20 multinomial 1000 62061 5485 517
physician poisson 4406 25 34 34

article/view/v027i08 [38]. We use the test set for e2006-tfidf and a subset of 1000 observations
from the training set for news20.

In Table 1, we summarize the results from fitting sorted `1-regularized least squares, logistic, Poisson,
and multinomial regression to the four data sets. Once again, we see that the screening rule improves
performance in the high-dimensional regime and presents no noticeable drawback even when n > p.

4 Conclusions

In this paper, we have developed a heuristic predictor screening rule for SLOPE and shown that it
is a generalization of the strong rule for the lasso. We have demonstrated that it offers dramatic
improvements in the p� n regime, often reducing the time required to fit the full regularization path
for SLOPE by orders of magnitude, as well as imposing little-to-no cost when p < n. At the time
of this publication, an efficient implementation of the screening rule is available in the R package
SLOPE [28].

The performance of the rule is demonstrably weaker when predictors in the design matrix are
heavily correlated. This issue may be mitigated by the use of the previous set strategy that we have
investigated here; part of the problem, however, is related to the clustering behavior that SLOPE
exhibits: large portions of the total number of predictors often enter the model in a few clusters
when regularization is strong. A possible avenue for future research might therefore be to investigate
if screening rules for this clustering behavior might be developed and utilized to further enhance
performance in estimating SLOPE.
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Broader Impact

The predictor screening rules introduced in this article allow for a substantial improvement of the
speed of SLOPE. This facilitates application of SLOPE to the identification of important predictors in
huge data bases, such as collections of whole genome genotypes in Genome Wide Association Studies.
It also paves the way for the implementation of cross-validation techniques and improved efficiency
of the Adaptive Bayesian version SLOPE (ABSLOPE [39]), which requires multiple iterations of the
SLOPE algorithm. Adaptive SLOPE bridges Bayesian and the frequentist methodology and enables
good predictive models with FDR control in the presence of many hyper-parameters or missing data.
Thus it addresses the problem of false discoveries and lack of replicability in a variety of important
problems, including medical and genetic studies.

In general, the improved efficiency resulting from the predictor screening rules will make the SLOPE
family of models (SLOPE [3], grpSLOPE [6], and ABSLOPE) accessible to a broader audience,
enabling researchers and other parties to fit SLOPE models with improved efficiency. The time
required to apply these models will be reduced and, in some cases, data sets that were otherwise too
large to be analyzed without access to dedicated high-performance computing clusters can be tackled
even with modest computational means.

We can think of no way by which these screening rules may put anyone at disadvantage. The methods
we outline here do not in any way affect the model itself (other than boosting its performance) and
can therefore only be of benefit. For the same reason, we do not believe that the strong rules for
SLOPE introduces any ethical issues, biases, or negative societal consequences. In contrast, it is in
fact possible that the reverse is true given that SLOPE serves as an alternative to, for instance, the
lasso, and has superior model selection properties [10, 39] and lower bias [39].
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This file contains an erratum for Larsson et al. [1]. In Theorem 1 in the paper we left out a condition
for the subdifferential of the SLOPE penalty, namely that signβAi

= sign s. The updated and
corrected theorem is given in Theorem 1. Note that the condition was in fact included in the proof of
the theorem, which therefore requires no changes.

Theorem 1. The subdifferential ∂J(β;λ) ∈ R
p is the set of all g ∈ R

p such that

gAi
=



















s ∈ R
cardAi

∣

∣



















cumsum(|s|↓ − λR(s)Ai
) ⪯ 0 if βAi

= 0,

cumsum(|s|↓ − λR(s)Ai
) ⪯ 0

∧
∑

j∈Ai

(

|sj | − λR(s)j

)

= 0

∧ signβAi
= sign s otherwise.
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1 Proofs

1.1 Proof of Theorem 1

By definition, the subdifferential ∂J(β; λ) is the set of all g ∈ R
p such that

J(y; λ) ≥ J(β; λ) + gT (y − β) =

p
∑

j=1

|β|(j)λj + gT (y − β), (1)

for all y ∈ R
p.

Assume that we have K clusters A1,A2, . . . ,AK (as defined per Equation 2
(main article)) and that β = |β|↓, which means we can rewrite (1) as

0 ≥ J(β; λ)− J(y; λ) + gT (y − β)

=
∑

i∈A1

(λi|β|(i) − giβi − λi|y|(i) + giyi) + . . .

+
∑

i∈AK

(λi|β|(i) − giβi − λi|y|(i) + giyi).

Notice that we must have
∑

i∈Aj
(λi|β|(i) − giβi − λi|y|(i) + giyi) ≤ 0 for all

j ∈ {1, 2, . . . , K} since otherwise the inequality breaks by selecting yi = βi for
i ∈ Ac

j . This means that it is sufficient to restrict attention to a single set as
well as take this to be the set Ai = {1, . . . , p}.

Case 1 (β = 0). In this case (1) reduces to J(y; λ) ≥ gT y. Now take a c ∈ Z
where

Z =
{

s ∈ R
p

∣

∣ cumsum(|s|↓ − λ) � 0
}

(2)

and assume that |c1| ≥ · · · ≥ |cp| without loss of generality.
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Clearly, J(y; λ) ≥ cT y holds if and only if J(y∗; λ)− cT y∗ ≥ 0 where

y∗ = arg min
y

{

J(y; λ)− cT y
}

.

Now, since J(y; λ) is invariant to changes in signs and permutation of y, it follows
from the rearrangement inequality [HLP52, Theorem 368] that |y|∗1 ≥ · · · ≥ |y|

∗
p.

This permits us to formulate the following equivalent problem:

minimize yT (sign(y)� λ− c)

subject to sign(y) = sign(c),

|y1| ≥ · · · ≥ |yp|.

To minimize the objective yT (sign(y)�λ− |c|) = |y|T (λ− |c|), recognize first
that we must have y∗

1 = y∗
2 since c ∈ Z, which implies λ1 − |c1| ≥ 0. Likewise,

y∗
2(λ1 − |c1|) + y∗

2(λ2 − |c2|) ≥ 0 since λ1 + λ2 − (|c1|+ |c2|) ≥ 0, which leads us
to conclude that y∗

2 = y∗
3 . Then, proceeding inductively, it is easy to see that

y∗
p

∑p

i=1(λi − |ci|) ≥ 0, which implies y∗
1 = · · · = y∗

p = 0. At this point, we have
shown that c ∈ Z =⇒ c ∈ ∂J(β; λ).

For the next part note that g ∈ Z is equivalent to requiring |g|(1) ≤ λ1 and

|g|(i) ≤

i
∑

j=1

λj −

i
∑

j=2

|g|(j), i = 1, . . . , p. (3)

Now assume that there is a c such that c ∈ ∂J(β; λ) and c /∈ Z. Then there
exists an ε > 0 and i ∈ {1, 2, . . . , p} such that

|c|(i) ≤

i
∑

j=1

λj −

i
∑

j=2

|c|(j) + ε, i = 1, . . . , p.

Yet if c = [λ1, . . . , λi−1, λi + ε, λi+1, . . . , λp]T then (1) breaks for y = 1, which
implies that c /∈ Z =⇒ c /∈ ∂J(β; λ).

Case 2 (β 6= 0). Now let |βi| := α for all i = 1, . . . , p, since by construction all β
are equal in absolute value. Now (1) reduces to

J(y; λ) ≥ J(β; λ)− gT β + gT y

=

p
∑

i=1

λiα−

p
∑

i=1

gi sign(βi)α + gT y

= α

p
∑

i=1

(λi − gi sign(βi)) + gT y.

(4)

The first term on the right-hand side of the last equality must be zero since
otherwise the inequality breaks for y = 0. In addition, it must also hold that
sign(βi) = sign(gi) for all i such that |βi| > 0. To show this, suppose the opposite
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is true, that is, there exists at least one j such that sign(gj) 6= sign(βj). But then
if we take yj = α sign(gj) and yi = −α sign(gi), (4) is violated, which proves the
statement by contradiction.

Taken together, this means that we have g ∈ H where

H =







s ∈ R
p |

p
∑

j=1

(|sj | − λj) = 0.







We are now left with J(y; λ) ≥ gT y, but this is exactly the setting from case one.
Direct application of the reasoning from that part shows that we must have g ∈ Z.
Connecting the dots, we finally conclude that c ∈ Z ∩H =⇒ c ∈ ∂J(β; λ).

1.2 Proof of Proposition 1

Suppose that we have B 6= ∅ after running Algorithm 1 (main article). In this
case we have

cumsum(cB − λB) = cumsum

(

(

∣

∣∇f(β̂(λ(m+1)))
∣

∣

↓

)

B
− λ

(m+1)
B

)

≺ 0,

which implies via Theorem 1 (main article) and Equation 3 (main article) that
all predictors in B must be inactive and that S contains the true support set.

1.3 Proof of Proposition 2

We need to show that the strong rule approximation does not violate the
inequality on the fourth line in Algorithm 1 (main article). Since cumsum(y) �
cumsum(x) for all x, y ∈ R

p if and only iff y � x, it suffices to show that

|cj(λ(m))|+ λ
(m)
j − λ

(m+1)
j ≥ |cj(λ(m+1))|

for all j = 1, 2, . . . , p, which in turn means that Algorithm 1 (main article) with

|cj(λ(m))|+ λ
(m)
j − λ

(m+1)
j as input cannot result in any violations.

From our assumptions we have

|cj(λ(m+1))− cj(λ(m))| ≤ |λ
(m+1)
j − λ

(m)
j |.

Using this fact, observe that

|cj(λ(m+1))| ≤ |cj(λ(m+1))− cj(λ(m))|+ |cj(λ(m))|

≤ λ
(m)
j − λ

(m+1)
j + |cj(λ(m))|.

1.4 Proof of Proposition 3

Let c = (∇f(β̂(λ))) and λ1 = λ2 and assume without loss of generality that
p = 2 and c1 ≥ c2 ≥ 0. Recall that the strong rule for lasso discards the jth
predictor whenever cj < λ1. There are three cases to consider.
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Case 3 (c2 ≤ c1 < λ1). cumsum(c − λ) ≺ 0, which means both predictors are
discarded.

Case 4 (c1 ≥ λ1 > c2). The first predictor is retained since cumsum(c− λ)1 > 0;
the second is discarded because c2 ≤ λ.

Case 5 (c1 ≥ c2 ≥ λ1). Both predictors are retained since cumsum(c− λ) � 0.

The two results are equivalent for the lasso and thus the strong rule for
SLOPE is a generalization of the strong rule for the lasso.

2 Algorithms

Algorithm 1 Strong set algorithm

V ← ∅

E ← S(λ(m+1)) ∪ T (λ(m))
do

compute β̂E(λ(m+1))
V ← KKT violations in full set
E ← E ∪ V

while V 6= ∅

return β̂E(λ(m+1))

Algorithm 2 Previous set algorithm

V ← ∅

E ← T (λ(m))
do

compute β̂E(λ(m+1))
V ← KKT violations in S(λ(m+1))
if V = ∅ then

V ← KKT violations in full set
end if

E ← E ∪ V
while V 6= ∅

return β̂E(λ(m+1))
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Abstract: The lasso is a popular method to induce shrinkage and sparsity in
the solution vector (coefficients) of regression problems, particularly when there
are many predictors relative to the number of observations. Solving the lasso in
this high-dimensional setting can, however, be computationally demanding. Fortu-
nately, this demand can be alleviated via the use of screening rules that discard
predictors prior to fitting the model, leading to a reduced problem to be solved. In
this paper, we present a new screening strategy: look-ahead screening. Our method
uses safe screening rules to find a range of penalty values for which a given predic-
tor cannot enter the model, thereby screening predictors along the remainder of the
path. In experiments we show that these look-ahead screening rules outperform the
active warm-start version of the Gap Safe rules.

Keywords: lasso, sparse regression, screening rules, safe screening rules

AMS subject classification: 62J07

1 Introduction

The lasso [6] is a staple among regression models for high-dimensional data. It in-
duces shrinkage and sparsity in the solution vector (regression coefficients) through
penalization by the `1-norm. The optimal level of penalization is, however, usu-
ally unknown, which means we typically need to estimate it through model tuning
across a grid of candidate values: the regularization path. This leads to a heavy
computational load.

Thankfully, the advent of so-called screening rules have lead to remarkable ad-
vances in tackling this problem. Screening rules discard a subset of the predictors
before fitting the model, leading to, often considerable, reductions in problem size.
There are two types of screening rules: heuristic and safe rules. The latter kind
provides a certificate that discarded predictors cannot be active at the optimum—
that is, have a non-zero corresponding coefficients—whereas heuristic rules do not.
In this paper, we will focus entirely on safe rules.

A prominent type of safe rules are the Gap Safe rules [5, 1], which use the
duality gap in a problem to provide effective screening rules. There currently exists
sequential versions of the Gap Safe rules, that discard predictors for the next step

∗Corresponding author: johan.larsson@stat.lu.se
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on the regularization path, as well as dynamic rules, which discard predictors during
optimization at the current penalization value.

The objective of this paper is to introduce a new screening strategy based on
Gap Safe screening: look-ahead screening, which screens predictors for a range of
penalization parameters. We show that this method can be used to screen predictors
for the entire stretch of the regularization path, leading to substantial improvements
in the time to fit the entire lasso path.

2 Look-Ahead Screening

Let X ∈ R
n×p be the design matrix with n observations and p predictors and y ∈ R

n

the response vector. The lasso is represented by the following convex optimization
problem:

minimize
β∈Rp

{

P (β;λ) =
1

2
‖y −Xβ‖2

2
+ λ‖β‖1

}

(1)

where P (β;λ) is the primal objective. We let β̂λ be the solution to (1) for a given
λ. Moreover, the dual problem of (1) is

maximize
θ∈Rn

{

D(θ;λ) =
1

2
yT y − λ2

2

∥

∥

∥
θ − y

λ

∥

∥

∥

2

2

}

(2)

where D(θ;λ) is the dual objective. The relationship between the primal and dual

problems is given by y = Xβ̂λ + λθ̂λ.
Next, we let G be the so-called duality gap, defined as

G(β, θ;λ) = P (β;λ)−D(θ;λ) =
1

2
‖y −Xβ‖2

2
+ λ‖β‖1 − λθT y +

λ2

2
θT θ. (3)

In the case of the lasso, strong duality holds, which means that G(β̂λ, θ̂λ;λ) = 0 for
any choice of λ.

Suppose, now, that we have solved the lasso for λ; then for any given λ∗ ≤ λ,
the Gap Safe rule [5] discards the jth predictor if

|XT θλ|j + ‖xj‖2
√

1

λ2
∗

G(βλ, θλ;λ∗) < 1 (4)

where

θλ =
y −Xβλ

max
(

|XT (y −Xβλ)|, λ
)

is a dual-feasible point [5] obtained through dual scaling.
Observe that (4) is a quadratic inequality with respect to λ∗, which means that

it is trivial to discover the boundary points via the quadratic formula:

λ∗ =
−b±

√
b2 − 4ac

2a
where

a =
(

1− |xT
j θλ|

)2 − 1

2
θTλ θλ‖xj‖22,

b =
(

θTλ y − ‖βλ‖1
)

‖xj‖22,

c = −1

2
‖y −Xβλ‖22‖xj‖22.
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By restricting ourselves to an index j corresponding to a predictor that is inactive
at λ and recalling that we have λ∗ ≤ λ by construction, we can inspect the signs of
a, b, and c and find a range λ values for which predictor j must be inactive. Using
this idea for the lasso path—a grid of λ values starting from the null (intercept-only)
model, which corresponds to λmax = maxi |xT

i y|, and finishing at fraction of this
(see section 3 for specifics)—we can screen predictor j for all upcoming λs, possibly
discarding it for multiple steps on the path rather than just the next step. We call
this idea look-ahead screening.

To illustrate the effectiveness of this screening method, we consider an instance
of employing look-ahead screening for fitting a full lasso path to the leukemia data
set [3]. At the first step of the path, the screening method discards 99.6% of the
predictors for the steps up to and including step 5. The respective figures for steps
10 and 15 are 99.3% and 57%. At step 20, however, the rule does not discard a single
predictor. In Figure 1, we have visualized the screening performance of look-ahead
screening for a random sample of 25 predictors from this data set.

1

5

10

15

20

1 10 20 30 40 50 60 70 80 90

Step

P
re
d
ic
to
r

Figure 1: This figure shows the predictors screened at the first step of the lasso path
via look-ahead screening for a random sample of 20 predictors from the leukemia
data set. A blue square indicates that the corresponding predictor can be discarded
at the respective step.

As is typical for all screening methods, the effectiveness of look-ahead screening
is greatest at the start of the path and diminishes as the strength of penalization
decreases later on in the path. Note, however, that all of the quantities involved in
the rule are available as a by-product of solving the problem at the previous step,
which means that the costs of look-ahead screening are diminutive.

3 Simulations

In this section, we study the effectiveness of the look-ahead screening rules by
comparing them against the active warm start version of the Gap Safe rules [1, 5].
We follow the recommendations in [5] and run the screening procedure every tenth
pass of the solver. Throughout the experiments, we center the response vector by
its mean, as well as center and scale the predictors by their means and uncorrected
sample standard deviations respectively.

To construct the regularization path, we employ the standard settings from
glmnet, using a log-spaced path of 100 λ values from λmax to ελmax, where ε = 10−2
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if p > n and 10−4 otherwise. We also use the default path stopping criteria from
glmnet, that is, stop the path whenever the deviance ratio, 1−dev/devnull, is greater
than or equal to 0.999, the fractional increase in deviance explained is lower than
10−5, or, if p ≥ n, when the number of active predictors exceeds or is equal to n.

To fit the lasso, we use cyclical coordinate descent [2]. We consider the solver to
have converged whenever the duality gap as a fraction of the primal value for the
null model is less than or equal to 10−6 and the amount of infeasibility, which we
define as maxj

(

|xT
j (y −Xβλ)| − λ

)

, as a fraction of λmax is lower than or equal to

10−5.
Source code for the experiments, including a container to facilitate reproducibil-

ity, can be found at https://github.com/jolars/LookAheadScreening/. An
HPC cluster node with two Intel Xeon E5-2650 v3 processors (Haswell, 20 com-
pute cores per node) and 64 GB of RAM was used to run the experiments.

We run experiments on a design with n = 100 and p = 50 000, drawing the rows
of X i.i.d. from N (0,Σ) and y from N (Xβ, σ2I) with σ2 = βTΣβ/SNR, where
SNR is the signal-to-noise ratio. We set 5 coefficients, equally spaced throughout
the coefficient vector, to 1 and the rest to zero. Taking inspiration from (author?)
[4], we consider SNR values of 0.1, 1, and 6.

Judging by the results (Figure 2), the addition of look-ahead screening results
in sizable reductions in the solving time of the lasso path, particularly in the high
signal-to-noise context.
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Figure 2: Standard box plots of timings to fit a full lasso path to a simulated data
set with n = 100, p = 50 000, and five true signals.

4 Discussion

In this paper, we have presented look-ahead screening, which is a novel method to
screen predictors for a range of penalization values along the lasso regularization
path using Gap Safe screening. Our results show that this type of screening can
yield considerable improvements in performance for the standard lasso. For other
loss functions, (4) may no longer reduce to a quadratic inequality and will hence
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require more computation. Nevertheless, we believe that applying these rules in
these cases is feasible and likely to result in comparable results.

Moreover, the idea is general and can therefore be extended to any type of safe
screening rule and also used in tandem with heuristic screening rules in order to
avoid expensive KKT computations. Finally, although we only cover one type of
cyclical coordinate descent in our experiments, note that our screening method is
agnostic to the solver used and that we expect the results hold for any solver that
benefits from predictor screening.

Acknowledgements: I would like to thank my supervisor, Jonas Wallin, for
valuable feedback on this work. The computations were enabled by resources pro-
vided by the Swedish National Infrastructure for Computing (SNIC) at LUNARC
partially funded by the Swedish Research Council through grant agreement no.
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Abstract

Predictor screening rules, which discard predictors before fitting a model, have had
considerable impact on the speed with which sparse regression problems, such as
the lasso, can be solved. In this paper we present a new screening rule for solving
the lasso path: the Hessian Screening Rule. The rule uses second-order information
from the model to provide both effective screening, particularly in the case of high
correlation, as well as accurate warm starts. The proposed rule outperforms all
alternatives we study on simulated data sets with both low and high correlation for
`1-regularized least-squares (the lasso) and logistic regression. It also performs
best in general on the real data sets that we examine.

1 Introduction

High-dimensional data, where the number of features (p) exceeds the number of observations
(n), poses a challenge for many classical statistical models. A common remedy for this issue is to
regularize the model by penalizing the regression coefficients such that the solution becomes sparse. A
popular choice of such a penalization is the `1-norm, which, when the objective is least-squares, leads
to the well-known lasso [1]. More specifically, we will focus on the following convex optimization
problem:

minimize
β∈Rp

{

f(β;X) + λ‖β‖1
}

, (1)

where f(β;X) is smooth and convex. We let β̂ be the solution vector for this problem and, abusing
notation, equivalently let β̂ : R 7→ R

p be a function that returns this vector for a given λ. Our focus
lies in solving (1) along a regularization path λ1, λ2 . . . , λm with λ1 ≥ λ2 ≥ · · · ≥ λm. We start
the path at λmax, which corresponds to the null (all-sparse) model1, and finish at some fraction of
λmax for which the model is either almost saturated (in the p ≥ n setting), or for which the solution
approaches the ordinary least-squares estimate. The motivation for this focus is that the optimal λ
is typically unknown and must be estimated through model tuning, such as cross-validation. This
involves repeated refitting of the model to new batches of data, which is computationally demanding.

Fortunately, the introduction of so-called screening rules has improved this situation remarkably.
Screening rules use tests that screen and possibly discard predictors from the model before it is fit,
which effectively reduces the dimensions of the problem and leads to improvements in performance
and memory usage. There are, generally speaking, two types of screening rules: safe and heuristic
rules. Safe rules guarantee that discarded predictors are inactive at the optimum—heuristic rules do
not and may therefore cause violations: discarding active predictors. The possibility of violations
mean that heuristic methods need to validate the solution through checks of the Karush–Kuhn–Tucker
(KKT) optimality conditions after optimization has concluded and, whenever there are violations, re-
run optimization, which can be costly particularly because the KKT checks themselves are expensive.
This means that the distinction between safe and heuristic rules only matters in regards to algorithmic

1λmax is in fact available in closed form—for the lasso it is maxj |x
T
j y|.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).
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details—all heuristic methods that we study here use KKT checks to catch these violations, which
means that these methods are in fact also safe.

Screening rules can moreover also be classified as basic, sequential, or dynamic. Basic rules screen
predictors based only on information available from the null model. Sequential rules use information
from the previous step(s) on the regularization path to screen predictors for the next step. Finally,
dynamic rules screen predictors during optimization, reducing the set of screened predictors repeatedly
throughout optimization.

Notable examples of safe rules include the basic SAFE rule [2], the sphere tests [3], the R-region
test [4], Slores [5], Gap Safe [6, 7], and Dynamic Sasvi [8]. There is also a group of dual polytope
projection rules, most prominently Enhanced Dual Polytope Projection (EDPP) [9]. As noted
by Fercoq, Gramfort, and Salmon [6], however, the sequential version of EDPP relies on exact
knowledge of the optimal solution at the previous step along the path to be safe in practice, which
is only available for λmax. Among the heuristic rules, we have the Strong Rule [10], SIS [11], and
ExSIS [12]. But the latter two of these are not sequential rules and solve a potentially reduced form
of the problem in (1)—we will not discuss them further here. In addition to these two types of
rules, there has also recently been attempts to combine safe and heuristic rules into so-called hybrid
rules [13].

There are various methods for employing these rules in practice. Of particular interest are so-called
working set strategies, which use a subset of the screened set during optimization, iteratively updating
the set based on some criterion. Tibshirani et al. [10] introduced the first working set strategy, which
we in this paper will refer to simply as the working set strategy. It uses the set of predictors that have
ever been active as an initial working set. After convergence on this set, it checks the KKT optimality
conditions on the set of predictors selected by the strong rule, and then adds predictors that violate the
conditions to the working set. This procedure is then repeated until there are no violations, at which
point the optimality conditions are checked for the entire set, possibly triggering additional iterations
of the procedure. Blitz [14] and Celer [15] are two other methods that use both Gap Safe screening
and working sets. Instead of choosing previously active predictors as a working set, however, both
Blitz and Celer assign priorities to each feature based on how close each feature is of violating the
Gap Safe check and construct the working set based on this prioritization. In addition to this, Celer
uses dual point acceleration to improve Gap Safe screening and speed up convergence. Both Blitz
and Celer are heuristic methods.

One problem with current screening rules is that they often become conservative—including large
numbers of predictors into the screened set—when dealing with predictors that are strongly correlated.
Tibshirani et al. [10], for instance, demonstrated this to be the case with the strong rule, which was the
motivation behind the working set strategy. (See Appendix F.4 for additional experiments verifying
this). Yet because the computational complexity of the KKT checks in the working set strategy
still depends on the strong rule, the effectiveness of the rule may nevertheless be hampered in this
situation. A possible and—as we will soon show—powerful solution to this problem is to make use of
the second-order information available from (1), and in this paper we present a novel screening rule
based on this idea. Methods using second-order information (the Hessian) are often computationally
infeasible for high-dimensional problems. We utilize two properties of the problem to remedy this
issue: first, we need only to compute the Hessian for the active set, which is often much smaller than
the full set of predictors. Second, we avoid constructing the Hessian (and it’s inverse) from scratch
for each λ along the path, instead updating it sequentially by means of the Schur complement. The
availability of the Hessian also enables us to improve the warm starts (the initial coefficient estimate
at the start of each optimization run) used when fitting the regularization path, which plays a key role
in our method.

We present our main results in Section 3, beginning with a reformulation of the strong rule and
working set strategy before we arrive at the screening rule that represents the main result of this
paper. In Section 4, we present numerical experiments on simulated and real data to showcase the
effectiveness of the screening rule, demonstrating that the rule is effective both when p � n and
n � p, out-performing the other alternatives that we study. Finally, in Section 5 we wrap up with a
discussion on these results, indicating possible ways in which they may be extended.

2
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2 Preliminaries

We use lower-case letters to denote scalars and vectors and upper-case letters for matrices. We use 0

and 1 to denote vectors with elements all equal to 0 or 1 respectively, with dimensions inferred from
context. Furthermore, we let sign be the standard signum function with domain {−1, 0, 1}, allowing
it to be overloaded for vectors.

Let c(λ) := −∇βf
(

β̂(λ);X
)

be the negative gradient, or so-called correlation, and denote Aλ =
{i : |c(λ)i| > λ} as the active set at λ: the support set of the non-zero regression coefficients
corresponding to β̂(λ). In the interest of brevity, we will let A := Aλ. We will consider β a solution
to (1) if it satisfies the stationary criterion

0 ∈ ∇βf(β;X) + λ∂. (2)

Here ∂ is the subdifferential of ‖β‖1, defined as

∂j ∈

{

{sign(β̂j)} if β̂j 6= 0,

[−1, 1] otherwise.

This means that there must be a ∂̃ ∈ ∂ for a given λ such that

∇βf(β;X) + λ∂̃ = 0. (3)

3 Main Results

In this section we derive the main result of this paper: the Hessian screening rule. First, however,
we now introduce a non-standard perspective on screening rules. In this approach, we note that (2)
suggests a simple and general formulation for a screening rule, namely: we substitute the gradient
vector in the optimality condition of a `1-regularized problem with an estimate. More precisely, we
discard the jth predictor for the problem at a given λ if the magnitude of the jth component of the
gradient vector estimate is smaller than this λ, that is

|c̃(λ)j | < λ. (4)

In the following sections, we review the strong rule and working set method for this problem from
this perspective, that is, by viewing both methods as gradient approximations. We start with the case
of the standard lasso (`1-regularized least-squares), where we have f(β;X) = 1

2‖Xβ − y‖22.

3.1 The Strong Rule

The sequential strong rule for `1-penalized least-squares regression [10] discards the jth predictor at
λ = λk+1 if

∣

∣xT
j (Xβ̂(λk)− y)

∣

∣ = |c(λk)j | < 2λk+1 − λk.

This is equivalent to checking that

c̃S(λk+1) = c(λk) + (λk − λk+1) sign(c(λk)) (5)

satisfies (4). The strong rule gradient approximation (5) is also known as the unit bound, since it
assumes the gradient of the correlation vector to be bounded by one.

3.2 The Working Set Method

A simple but remarkably effective alternative to direct use of the strong rule is the working set
heuristic [10]. It begins by estimating β at the (k + 1)th step using only the coefficients that have
been previously active at any point along the path, i.e. A1:k = ∪k

i=1Ai. The working set method can
be viewed as a gradient estimate in the sense that

c̃W (λk+1) = XT
(

y −XA1:k
β̃(λk+1,A1:k)

)

= −∇f
(

β̃(λk+1,A1:k);X
)

,

where β̃(λ,A) = argminβ
1
2 ||y −XAβ||

2 + λ|β|.
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3.3 The Hessian Screening Rule

We have shown that both the strong screening rule and the working set strategy can be expressed as
estimates of the correlation (negative gradient) for the next step of the regularization path. As we
have discussed previously, however, basing this estimate on the strong rule can lead to conservative
approximations. Fortunately, it turns out that we can produce a better estimate by utilizing second-
order information.

We start by noting that (3), in the case of the standard lasso, can be formulated as
[

XT
AXA XT

AXAc

XT
AcXA XT

AcXAc

] [

β̂A

0

]

+ λ

[

sign(β̂(λ)A)
∂Ac

]

=

[

XT
Ay

XT
Acy

]

,

and consequently that
β̂(λ)A = (XT

AXA)
−1
(

XT
Ay − λ sign (β̂A)

)

.

Note that, for an interval [λl, λu] in which the active set is unchanged, that is, Aλ = A for all
λ ∈ [λu, λk], then β̂(λ) is a continuous linear function in λ (Theorem 3.1)2.

Theorem 3.1. Let β̂(λ) be the solution of (1) where f(β;X) = 1
2‖Xβ − y‖22. Define

β̂λ∗

(λ)Aλ∗
= β̂(λ∗)Aλ∗

− (λ∗ − λ)
(

XT
Aλ∗

XAλ∗

)−1
sign

(

β̂(λ∗)Aλ∗

)

and β̂λ∗

(λ)Ac
λ∗

= 0. If it for λ ∈ [λ0, λ
∗] holds that (i) sign

(

β̂λ∗

(λ)
)

= sign
(

β̂(λ∗)
)

and (ii)

max |∇f(β̂λ∗

(λ))Aλ∗
| < λ, then β̂(λ) = β̂λ∗

(λ) for λ ∈ [λ0, λ
∗].

See Appendix A for a full proof. Using Theorem 3.1, we have the following second-order approxima-
tion of c(λk+1):

ĉH(λk+1) = −∇f
(

β̂λk(λk+1)Aλk

)

= c(λk)+(λk+1−λk)X
TXAk

(XT
Ak

XAk
)−1 sign

(

β̂(λk)Ak

)

.
(6)

Remark 3.2. If no changes in the active set occur in [λk+1, λk], (6) is in fact an exact expression for
the correlation at the next step, that is, ĉH(λk+1) = c(λk+1).

One problem with using the gradient estimate in (6) is that it is expensive to compute due to the
inner products involving the full design matrix. To deal with this, we use the following modification,
in which we restrict the computation of these inner products to the set indexed by the strong rule,
assuming that predictors outside this set remain inactive:

c̃H(λk+1)j :=











λk+1 sign β̂(λk)j if j ∈ Aλk
,

0 if |c̃S(λk+1)j | < λk+1 and j /∈ Aλk
,

ĉH(λk+1)j else.

For high-dimensional problems, this modification leads to large computational gains and seldom
proves inaccurate, given that the strong rule only rarely causes violations [10]. Lastly, we make one
more adjustment to the rule, which is to add a proportion of the unit bound (used in the strong rule)
to the gradient estimate:

čH(λk+1)j := c̃H(λk+1)j + γ(λk+1 − λk) sign(c(λk)j),

where γ ∈ R+. Without this adjustment there would be no upwards bias on the estimate, which
would cause more violations than would be desirable. In our experiments, we have used γ = 0.01,
which has worked well for most problems we have encountered. This finally leads us to the Hessian
screening rule: discard the jth predictor at λk+1 if |čH(λk+1)j | < λk+1.

We make one more modification in our implementation of the Hessian Screening Rule, which is to
use the union of the ever-active predictors and those screened by the screening rule as our final set of
screened predictors. We note that this is a marginal improvement to the rule, since violations of the
rule are already quite infrequent. But it is included nonetheless, given that it comes at no cost and
occasionally prevents violations.

2This result is not a new discovery [16], but is included here for convenience because the following results
depend on it.
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As an example of how the Hessian Screening Rule performs, we examine the screening performance
of several different strategies. We fit a full regularization path to a design with n = 200, p = 20 000,
and pairwise correlation between predictors of ρ. (See Section 4 and Appendix F.4 for more
information on the setup.) We compute the average number of screened predictors across iterations
of the coordinate descent solver. The results are displayed in Figure 1 and demonstrate that our
method gracefully handles high correlation among predictors, offering a screened set that is many
times smaller than those produced by the other screening strategies. In Appendix F.4 we extend these
results to `1-regularized logistic regression as well and report the frequency of violations.
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0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

1

10

100

1000

10000

Step

P
re

d
ic

to
rs

Hessian

Celer

Blitz

Strong

EDPP

Gap Safe

Sasvi

Figure 1: The number of predictors screened (included) for when fitting a regularization path of
`1-regularized least-squares to a design with varying correlation (ρ), n = 200, and p = 20000. The
values are averaged over 20 repetitions. The minimum number of active predictors at each step across
iterations is given as a dashed line. Note that the y-axis is on a log10 scale.

Recall that the Strong rule bounds its gradient of the correlation vector estimate at one. For the
Hessian rule, there is no such bound. This means that it is theoretically possible for the Hessian rule
to include more predictors than the Strong rule3. In fact, it is even possible to design special cases
where the Hessian rule could be more conservative than the Strong rule. In practice, however, we
have not encountered any situation in which this is the case.

3.3.1 Updating the Hessian

A potential drawback to using the Hessian screening rule is the computational costs of computing the
Hessian and its inverse. Let Ak be the active set at step k on the lasso path. In order to use the Hessian

screening rule we need H−1
k = (XT

Ak
XAk

)
−1

. Computing (XT
Ak

XAk
)
−1

directly, however, has

numerical complexity O(|Ak|
3 + |Ak|

2n). But if we have stored (H−1
k−1, Hk−1) previously, we can

utilize it to compute (H−1
k , Hk) more efficiently via the so-called sweep operator [17]. We outline

this technique in Algorithm 1 (Appendix B). The algorithm has a reduction step and an augmentation
step; in the reduction step, we reduce the Hessian and its inverse to remove the presence of any
predictors that are no longer active. In the augmentation step, we update the Hessian and its inverse
to account for predictors that have just become active.

The complexity of the steps depends on the size of the sets C = Ak−1 \ Ak,D = Ak \ Ak−1,
and E = Ak ∩ Ak−1 The complexity of the reduction step is O(|C|3 + |C|2|E| + |C||E|2) and the
complexity of the augmentation step is O(|D|2n+n|D||E|+|D|2|E|+|D|3) since n ≥ max(|E|, |D|).
An iteration of Algorithm 1 therefore has complexity O(|D|2n+ n|D||E|+ |C|3 + |C||E|2).

In most applications, the computationally dominant term will be n|D||E| (since, typically, n > |E| >
D > C) which could be compared to evaluating the gradient for βAk

, which is n (|D|+ |E|) when
βAc

k
= 0. Note that we have so far assumed that the inverse of the Hessian exists, but this need not

be the case. To deal with this issue we precondition the Hessian. See Appendix C for details.

3.3.2 Warm Starts

The availability of the Hessian and its inverse offers a coefficient warm start that is more accurate
than the standard, naive, approach of using the estimate from the previous step. With the Hessian
screening rule, we use the following warm start.

β̂(λk+1)Ak
:= β̂(λk)Ak

+ (λk − λk+1)H
−1
Ak

sign
(

β̂(λk)Ak

)

, (7)

3The chance of this happening is tied to the setting of γ.

5

iii 89



where H−1
Ak

is the Hessian matrix for the differentiable part of the objective. Our warm start is
equivalent to the one used in Park and Hastie [18], but is here made much more efficient due due to
the efficient updates of the Hessian and its inverse that we use.
Remark 3.3. The warm start given by (7) is the exact solution at λk if the active set remains constant
in [λk+1, λk].

As a first demonstration of the value of this warm start, we look at two data sets: YearPredicitionMSD
and colon-cancer. We fit a full regularization path using the setup as outlined in Section 4, with or
without Hessian warm starts. For YearPredictionMSD we use the standard lasso, and for colon-cancer
`1-regularized logistic regression.

The Hessian warm starts offer sizable reductions in the number of passes of the solver (Figure 2), for
many steps requiring only a single pass to reach convergence. On inspection, this is not a surprising
find. There are no changes in the active set for many of these steps, which means that the warm start
is almost exact—“almost” due to the use of a preconditioner for the Hessian (see Appendix C).
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Figure 2: Number of passes of coordinate descent along a full regularization path for the colon-cancer
(n = 62, p = 2000) and YearPredictionMSD (n = 463 715, p = 90) data sets, using either Hessian
warm starts (7) or standard warm starts (the solution from the previous step).

3.3.3 General Loss Functions

We now venture beyond the standard lasso and consider loss functions of the form

f(β;X) =

n
∑

i=1

fi(x
T
i β) (8)

where fi is convex and twice differentiable. This, for instance, includes logistic, multinomial, and
Poisson loss functions. For the strong rule and working set strategy, this extension does not make
much of a difference. With the Hessian screening rule, however, the situation is different.

To see this, we start by noting that our method involving the Hessian is really a quadratic Taylor
approximation of (1) around a specific point β0. For loss functions of the type (8), this approximation
is equal to

Q(β, β0) = f(β0;X) +
n
∑

i=1

(

xT
i f

′
i(x

T
i β0)(β − β0) +

1

2
(β − β0)

TxT
i f

′′
i (x

T
i β0)xi(β − β0)

)

=
1

2

(

ỹ(xT
i β0)−Xβ

)T
D (w(β0))

(

ỹ(xT
i β0)−Xβ

)

+ C(β0),

where D(w(β0)) is a diagonal matrix with diagonal entries w(β0) where w(β0)i = f ′′(xT
i β0) and

ỹ(z)i = f ′
i(z)

/

f ′′
i (z)− xT

i β0, whilst C(β0) is a constant with respect to β.

Suppose that we are on the lasso path at λk and want to approximate c(λk+1). In this case, we simply
replace f(β;X) in (1) with Q(β, β̂(λk)), which leads to the following gradient approximation:

cH(λk+1) = c(λk) + (λk+1 − λk)X
TD(w)XAk

(XT
Ak

D(w)XAk
)−1 sign

(

β̂(λk)Ak

)

,

where w = w
(

β̂(λk)
)

. Unfortunately, we cannot use Algorithm 1 to update XT
Ak

D(w)XAk
. This

means that we are forced to either update the Hessian directly at each step, which can be compu-
tationally demanding when |Ak| is large and inefficient when X is very sparse, or to approximate

6
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D(w) with an upper bound. In logistic regression, for instance, we can use 1/4 as such a bound, which
also means that we once again can use Algorithm 1.

In our experiments, we have employed the following heuristic to decide whether to use an up-
per bound or compute the full Hessian in these cases: we use full updates at each step if
sparsity(X)n/max{n, p} < 10−3 and the upper bound otherwise.

3.3.4 Reducing the Impact of KKT Checks

The Hessian Screening Rule is heuristic, which means there may be violations. This necessitates that
we verify the KKT conditions after having reached convergence for the screened set of predictors, and
add predictors back into the working set for which these checks fail. When the screened set is small
relative to p, the cost of optimization is often in large part consumed by these checks. Running these
checks for the full set of predictors always needs to be done once, but if there are violations during
this step, then we need repeat this check, which is best avoided. Here we describe two methods to
tackle this issue.

We employ a procedure equivalent to the one used in Tibshirani et al. [10] for the working set strategy:
we first check the KKT conditions for the set of predictors singled out by the strong rule and then,
if there are no violations in that set, check the full set of predictors for violations. This works well
because the strong rule is conservative—violations are rare—which means that we seldom need to
run the KKT checks for the entire set more than once.

If we, in spite of the augmentation of the rule, run into violations when checking the full set of
predictors, that is, when the strong rule fails to capture the active set, then we can still avoid repeating
the full KKT check by relying on Gap Safe screening: after having run the KKT checks and have
failed to converge, we screen the set of predictors using the Gap Safe rule. Because this is a safe rule,
we can be sure that the predictors we discard will be inactive, which means that we will not need to
include them in our upcoming KKT checks. Because Gap Safe screening and the KKT checks rely
on exactly the same quantity—the correlation vector–we can do so at marginal extra cost. To see how
this works, we now briefly introduce Gap Safe screening. For details, please see Fercoq, Gramfort,
and Salmon [6].

For the ordinary lasso (`1-regularized least squares), the primal (1) is P (β) = 1
2‖y−Xβ‖22 + λ‖β‖1

and the corresponding dual is

D(θ) =
1

2
‖y‖22 −

λ2

2

∥

∥

∥
θ −

y

λ

∥

∥

∥

2

2
(9)

subject to ‖XT θ‖∞ ≤ 1. The duality gap is then G(β, θ) = P (β)−D(θ) and the relation between
the primal and dual problems is given by y = λθ̂+Xβ̂, where θ̂ is the maximizer to the dual problem
(9). In order to use Gap Safe screening, we need a feasible dual point, which can be obtained via dual
point scaling, taking θ = (y−Xβ)

/

max
(

λ, ‖XT (y−Xβ)‖∞
)

. The Gap Safe screening rule then

discards the jth feature if |xT
j θ| < 1−‖xj‖2

√

2G(β, θ)/λ2. Since we have computed XT (y−Xβ)
as part of the KKT checks, we can perform Gap Safe screening at an additional (and marginal) cost
amounting to O(n) +O(p).

Since this augmentation benefits the working set strategy too, we adopt it in our implementation of
this method as well. To avoid ambiguity, we call this version working+. Note that this makes the
working set strategy quite similar to Blitz. In Appendix F.8 we show the benefit of adding this type of
screening.

3.3.5 Final Algorithm

The Hessian screening method is presented in full in Algorithm 2 (Appendix B).

Lemma 3.4. Let β ∈ R
p×m be the output of Algorithm 2 for a path of length m and convergence

threshold ε > 0. For each step k along the path and corresponding solution β(k) ∈ R
p, there is a

dual-feasible point θ(k) such that G(β(k), θ(k)) < ζε.

Proof. First note that Gap safe screening [7, Theorem 6] ensures that G ⊇ Ak. Next, note that the
algorithm guarantees that the working set, W , grows with each iteration until |xT

j r| < λk for all

7
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j ∈ G \W , at which point

max
(

λk, ‖X
T
W(y −XWβ

(k)
W )‖∞

)

= max
(

λk, ‖X
T
G (y −XGβ

(k)
G )‖∞

)

.

At this iteration, convergence at line 2, for the subproblem (XW , y), guarantees convergence for the
full problem, (X, y), since

θ(k) =
y −XWβ

(k)
W

max
(

λk, ‖XT
W(y −XWβ

(k)
W )‖∞

)

is dual-feasible for the full problem.

3.3.6 Extensions

Approximate Homotopy In addition to improved screening and warm starts, the Hessian also
allows us to construct the regularization path adaptively via approximate homotopy [19]. In brief, the
Hessian screening rule allows us to choose the next λ along the path adaptively, in effect distributing
the grid of λs to better approach the exact (homotopy) solution for the lasso, avoiding the otherwise
heuristic choice, which can be inappropriate for some data sets.

Elastic Net Our method can be extended to the elastic net [20], which corresponds to adding a
quadratic penalty φ‖β‖22/2 to (1). The Hessian now takes the form XT

AXA + φI . Loosely speaking,
the addition of this term makes the problem “more“ quadratic, which in turn improves both the
accuracy and stability of the screening and warm starts we use in our method. As far as we know,
however, there is unfortunately no way to update the inverse of the Hessian efficiently in the case of
the elastic net. More research in this area would be welcome.

4 Experiments

Throughout the following experiments, we scale and center predictors with the mean and uncorrected
sample standard deviation respectively. For the lasso, we also center the response vector, y, with the
mean.

To construct the regularization path, we adopt the default settings from glmnet: we use a log-spaced
path of 100 λ values from λmax to ξλmax, where ξ = 10−2 if p > n and 10−4 otherwise. We stop
the path whenever the deviance ratio, 1 − dev/devnull, reaches 0.999 or the fractional decrease in
deviance is less than 10−5. Finally, we also stop the path whenever the number of coefficients ever to
be active predictors exceeds p.

We compare our method against working+ (the modified version of the working set strategy from
Tibshirani et al. [10]), Celer [15], and Blitz [14]. We initially also ran our comparisons against
EDPP [9], the Gap Safe rule [6], and Dynamic Sasvi [8] too, yet these methods performed so poorly
that we omit the results in the main part of this work. The interested reader may nevertheless consult
Appendix F.6 where results from simulated data has been included for these methods too.

We use cyclical coordinate descent with shuffling and consider the model to converge when the
duality gap G(β, θ) ≤ εζ, where we take ζ to be ‖y‖22 when fitting the ordinary lasso, and n log 2
when fitting `1-regularized logistic regression. Unless specified, we let ε = 10−4. These settings are
standard settings and, for instance, resemble the defaults used in Celer. For all of the experiments, we
employ the line search algorithm used in Blitz4.

The code used in these experiments was, for every method, programmed in C++ using the Armadillo
library [21, 22] and organized as an R package via Rcpp [23]. We used the renv package [24]
to maintain dependencies. The source code, including a Singularity [25] container and its recipe
for reproducing the results, are available at https://github.com/jolars/HessianScreening.
Additional details of the computational setup are provided in Appendix D.

4Without the line search, all of the tested methods ran into convergence issues, particularly for the high-
correlation setting and logistic regression.
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4.1 Simulated Data

Let X ∈ R
n×p, β ∈ R

p, and y ∈ R
n be the predictor matrix, coefficient vector, and response vector

respectively. We draw the rows of the predictor matrix independently and identically distributed from
N (0,Σ) and generate the response from N (Xβ, σ2I) with σ2 = βTΣβ/SNR, where SNR is the
signal-to-noise ratio. We set s coefficients, equally spaced throughout the coefficient vector, to 1 and
the rest to zero.

In our simulations, we consider two scenarios: a low-dimensional scenario and a high-dimensional
scenario. In the former, we set n = 10 000, p = 100, s = 5, and the SNR to 1. In the high-
dimensional scenario, we take n = 400, p = 40 000, s = 20, and set the SNR to 2. These SNR
values are inspired by the discussion in Hastie, Tibshirani, and Tibshirani [26] and intend to cover the
middle-ground in terms of signal strength. We run our simulations for 20 iterations.

From Figure 3, it is clear that the Hessian screening rule performs best, taking the least time in every
setting examined. The difference is largest for the high-correlation context in the low-dimensional
setting and otherwise roughly the same across levels of correlation.

The differences between the other methods are on average small, with the working+ strategy perform-
ing slightly better in the p > n scenario. Celer and Blitz perform largely on par with one another,
although Celer sees an improvement in a few of the experiments, for instance in logistic regression
when p > n.

Least-Squares

= = 10000, ? = 100

Least-Squares

= = 400, ? = 40000
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= = 400, ? = 40000
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Figure 3: Time to fit a full regularization path for `1-regularized least-squares and logistic regression
to a design with n observations, p predictors, and pairwise correlation between predictors of ρ. Time
is relative to the minimal mean time in each group. The error bars represent ordinary 95% confidence
intervals around the mean.

4.2 Real Data

In this section, we conduct experiments on real data sets. We run 20 iterations for the smaller data
sets studied and three for the larger ones. For information on the sources of these data sets, please see
Appendix E. For more detailed results of these experiments, please see Appendix F.5.

Starting with the case of `1-regularized least-squares regression, we observe that the Hessian screening
rule performs best for all five data sets tested here (Table 1), in all but one instance taking less than
half the time compared to the runner-up, which in each case is the working+ strategy. The difference
is particularly large for the YearPredictionMSD and e2006-tfidf data sets.

In the case of `1-regularized logistic regression, the Hessian method again performs best for most
of the examined data sets, for instance completing the regularization path for the madelon data set
around five times faster than the working+ strategy. The exception is the arcene data set, for which
the working+ strategy performs best out of the four methods.

We have provided additional results related to the effectiveness of our method in Appendix F.
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Table 1: Average time to fit a full regularization path of `1-regularized least-squares and logistic
regression to real data sets. Density represents the fraction of non-zero entries in X . Density and
time values are rounded to two and three significant figures respectively.

Time (s)

Data Set n p Density Loss Hessian Working Blitz Celer

bcTCGA 536 17 322 1 Least-Squares 3.00 7.67 11.7 10.6

e2006-log1p 16 087 4 272 227 1.4 × 10−3 Least-Squares 205 438 756 835

e2006-tfidf 16 087 150 360 8.3 × 10−3 Least-Squares 14.3 143 277 335
scheetz 120 18 975 1 Least-Squares 0.369 0.643 0.706 0.801
YearPredictionMSD 463 715 90 1 Least-Squares 78.8 541 706 712

arcene 100 10 000 5.4 × 10−1 Logistic 4.35 3.27 4.42 3.99
colon-cancer 62 2000 1 Logistic 0.0542 0.134 0.177 0.169
duke-breast-cancer 44 7129 1 Logistic 0.111 0.210 0.251 0.262
ijcnn1 35 000 22 1 Logistic 0.939 5.53 4.68 3.50
madelon 2000 500 1 Logistic 48.2 232 240 247

news20 19 996 1 355 191 3.4 × 10−4 Logistic 1290 1620 2230 2170

rcv1 20 242 47 236 1.6 × 10−3 Logistic 132 266 384 378

5 Discussion

We have presented the Hessian Screening Rule: a new heuristic predictor screening rule for `1-
regularized generalized linear models. We have shown that our screening rule offers large performance
improvements over competing methods, both in simulated experiments but also in the majority of the
real data sets that we study here. The improved performance of the rule appears to come not only
from improved effectiveness in screening, particularly in the high-correlation setting, but also from
the much-improved warm starts, which enables our method to dominate in the n � p setting. Note
that although we have focused on `1-regularized least-squares and logistic regression here, our rule is
applicable to any composite objective for which the differentiable part is twice-differentiable.

One limitation of our method is that it consumes more memory than its competitors owing to the
storage of the Hessian and its inverse. This cost may become prohibitive for cases when min{n, p} is
large. In these situations the next-best choice may instead be the working set strategy. Note also that
we, in this paper, focus entirely on the lasso path. The Hessian Screening Rule is a sequential rule
and may therefore not prove optimal when solving for a single λ, in which case a dynamic strategy
such as Celer and Blitz likely performs better.

With respect to the relative performance of the working set strategy, Celer, and Blitz, we note that our
results deviate somewhat from previous comparisons [15, 14]. We speculate that these differences
might arise from the fact that we have used equivalent implementations for all of the methods and
from the modification that we have used for the working set strategy.

Many avenues remain to be explored in the context of Hessian-based screening rules and algorithms,
such as developing more efficient methods for updating of the Hessian matrix for non-least-squares
objectives, such as logistic regression and using second-order information to further improve the
optimization method used. Other interesting directions also include adapting the rules to more
complicated regularization problems, such as the fused lasso [27], SLOPE [28], SCAD [29], and
MCP [30]. Although the latter two of these are non-convex problems, they are locally convex for
intervals of the regularization path [31], which enables the use of our method. Adapting the method
for use in batch stochastic gradient descent would also be an interesting topic for further study, for
instance by using methods such as the ones outlined in Asar et al. [32] to ensure that the Hessian
remains positive definite.

Finally, we do not expect there to be any negative societal consequences of our work given that it is
aimed solely at improving the performance of an optimization method.

Acknowledgments and Disclosure of Funding

We would like to thank Małgorzata Bogdan for valuable comments. This work was funded by the
Swedish Research Council through grant agreement no. 2020-05081 and no. 2018-01726. The
computations were enabled by resources provided by LUNARC. The results shown here are in part
based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga.

10

94 Papers



References

[1] Robert Tibshirani. “Regression Shrinkage and Selection via the Lasso”. In: Journal of the Royal
Statistical Society: Series B (Methodological) 58.1 (1996), pp. 267–288. ISSN: 0035-9246.
JSTOR: 2346178.

[2] Laurent El Ghaoui, Vivian Viallon, and Tarek Rabbani. Safe Feature Elimination in Sparse
Supervised Learning. UCB/EECS-2010-126. Berkeley: EECS Department, University of
California, Sept. 21, 2010.

[3] Zhen J. Xiang, Hao Xu, and Peter J Ramadge. “Learning Sparse Representations of High Di-
mensional Data on Large Scale Dictionaries”. In: Advances in Neural Information Processing
Systems 24. Neural Information Processing Systems 2011. Ed. by J. Shawe-Taylor et al. Curran
Associates, Inc., Dec. 12–17, 2011, pp. 900–908.

[4] Zhen James Xiang and Peter J. Ramadge. “Fast Lasso Screening Tests Based on Correlations”.
In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Mar. 2012, pp. 2137–2140. DOI: 10.1109/ICASSP.2012.6288334.

[5] Jie Wang et al. “A Safe Screening Rule for Sparse Logistic Regression”. In: Proceedings of the
27th International Conference on Neural Information Processing Systems - Volume 1. NIPS’14.
Cambridge, MA, USA: MIT Press, Dec. 8, 2014, pp. 1053–1061.

[6] Olivier Fercoq, Alexandre Gramfort, and Joseph Salmon. “Mind the Duality Gap: Safer Rules
for the Lasso”. In: Proceedings of the 37th International Conference on Machine Learning.
ICML 2015. Ed. by Francis Bach and David Blei. Vol. 37. Proceedings of Machine Learning
Research. Lille, France: PMLR, July 6–11, 2015, pp. 333–342.

[7] Eugene Ndiaye et al. “Gap Safe Screening Rules for Sparsity Enforcing Penalties”. In: Journal
of Machine Learning Research 18.128 (2017), pp. 1–33.

[8] Hiroaki Yamada and Makoto Yamada. “Dynamic Sasvi: Strong Safe Screening for Norm-
Regularized Least Squares”. In: Advances in Neural Information Processing Systems. NeurIPS
2021. Ed. by M. Ranzato et al. Vol. 34. New Orleans, USA: Curran Associates, Inc., 2021,
pp. 14645–14655.

[9] Jie Wang, Peter Wonka, and Jieping Ye. “Lasso Screening Rules via Dual Polytope Projection”.
In: Journal of Machine Learning Research 16.1 (May 15, 2015), pp. 1063–1101. ISSN: 1532-
4435.

[10] Robert Tibshirani et al. “Strong Rules for Discarding Predictors in Lasso-Type Problems”. In:
Journal of the Royal Statistical Society. Series B: Statistical Methodology 74.2 (Mar. 2012),
pp. 245–266. ISSN: 1369-7412. DOI: 10/c4bb85.

[11] Jianqing Fan and Jinchi Lv. “Sure Independence Screening for Ultrahigh Dimensional Feature
Space”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70.5
(2008), pp. 849–911. ISSN: 1467-9868. DOI: 10.1111/j.1467-9868.2008.00674.x.

[12] Talal Ahmed and Waheed U. Bajwa. “ExSIS: Extended Sure Independence Screening for
Ultrahigh-Dimensional Linear Models”. In: Signal Processing 159 (June 1, 2019), pp. 33–48.
ISSN: 0165-1684. DOI: 10.1016/j.sigpro.2019.01.018.

[13] Yaohui Zeng, Tianbao Yang, and Patrick Breheny. “Hybrid Safe–Strong Rules for Efficient
Optimization in Lasso-Type Problems”. In: Computational Statistics & Data Analysis 153
(Jan. 1, 2021), p. 107063. ISSN: 0167-9473. DOI: 10.1016/j.csda.2020.107063.

[14] Tyler B Johnson and Carlos Guestrin. “Blitz: A Principled Meta-Algorithm for Scaling Sparse
Optimization”. In: Proceedings of the 32nd International Conference on Machine Learning.
International Conference on Machine Learning. Vol. 37. Lille, France: JMLR: W&CP, 2015,
p. 9.

[15] Mathurin Massias, Alexandre Gramfort, and Joseph Salmon. “Celer: A Fast Solver for the
Lasso with Dual Extrapolation”. In: Proceedings of the 35th International Conference on
Machine Learning. ICML 2018. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings
of Machine Learning Research. Stockholm, Sweden: PMLR, July 10–15, 2018, pp. 3315–3324.

[16] Bradley Efron et al. “Least Angle Regression”. In: Annals of Statistics 32.2 (Apr. 2004),
pp. 407–499. ISSN: 0090-5364. DOI: 10.1214/009053604000000067.

[17] James H. Goodnight. “A Tutorial on the SWEEP Operator”. In: The American Statistician
33.3 (1979), pp. 149–158. ISSN: 0003-1305. DOI: 10.2307/2683825. JSTOR: 2683825.

11

iii 95



[18] Mee Young Park and Trevor Hastie. “L1-Regularization Path Algorithm for Generalized Linear
Models”. In: Journal of the Royal Statistical Society. Series B (Statistical Methodology) 69.4
(2007), pp. 659–677. ISSN: 1369-7412. DOI: 10.1111/j.1467-9868.2007.00607.x.

[19] Julien Mairal and Bin Yu. “Complexity Analysis of the Lasso Regularization Path”. In: Pro-
ceedings of the 29th International Conference on Machine Learning. International Conference
on Machine Learning 2012. Edinburgh, United Kingdom, June 2012, pp. 1835–1842.

[20] Hui Zou and Trevor Hastie. “Regularization and Variable Selection via the Elastic Net”.
In: Journal of the Royal Statistical Society. Series B (Statistical Methodology) 67.2 (2005),
pp. 301–320. ISSN: 1369-7412.

[21] Dirk Eddelbuettel and Conrad Sanderson. “RcppArmadillo: Accelerating R with High-
Performance C++ Linear Algebra”. In: Computational Statistics and Data Analysis 71 (Mar.
2014), pp. 1054–1063.

[22] Conrad Sanderson and Ryan Curtin. “Armadillo: A Template-Based C++ Library for Linear
Algebra”. In: The Journal of Open Source Software 1.2 (2016), p. 26. DOI: 10.21105/joss.
00026.

[23] Dirk Eddelbuettel and Romain François. “Rcpp: Seamless R and C++ Integration”. In: Journal
of Statistical Software 40.8 (2011), pp. 1–18. DOI: 10/gc3hqm.

[24] Kevin Ushey. Renv: Project Environments. Version 0.13.2. R Studio, 2021.
[25] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. “Singularity: Scientific Containers

for Mobility of Compute”. In: PLOS ONE 12.5 (May 11, 2017), e0177459. ISSN: 1932-6203.
DOI: 10.1371/journal.pone.0177459.

[26] Trevor Hastie, Robert Tibshirani, and Ryan Tibshirani. “Best Subset, Forward Stepwise or
Lasso? Analysis and Recommendations Based on Extensive Comparisons”. In: Statistical
Science 35.4 (Nov. 2020), pp. 579–592. ISSN: 0883-4237. DOI: 10.1214/19-STS733.

[27] Robert Tibshirani et al. “Sparsity and Smoothness via the Fused Lasso”. In: Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 67.1 (2005), pp. 91–108. ISSN:
1467-9868. DOI: 10.1111/j.1467-9868.2005.00490.x.

[28] Małgorzata Bogdan et al. “SLOPE – Adaptive Variable Selection via Convex Optimization”.
In: The annals of applied statistics 9.3 (Sept. 2015), pp. 1103–1140. ISSN: 1932-6157. DOI:
10.1214/15-AOAS842. pmid: 26709357.

[29] Jianqing Fan and Runze Li. “Variable Selection via Nonconcave Penalized Likelihood and Its
Oracle Properties”. In: Journal of the American Statistical Association 96.456 (Dec. 1, 2001),
pp. 1348–1360. ISSN: 0162-1459. DOI: 10/fd7bfs.

[30] Cun-Hui Zhang. “Nearly Unbiased Variable Selection under Minimax Concave Penalty”. In:
The Annals of Statistics 38.2 (Apr. 2010), pp. 894–942. ISSN: 0090-5364, 2168-8966. DOI:
10/bp22zz.

[31] Patrick Breheny and Jian Huang. “Coordinate Descent Algorithms for Nonconvex Penalized
Regression, with Applications to Biological Feature Selection”. In: The Annals of Applied
Statistics 5.1 (Mar. 2011), pp. 232–253. ISSN: 1932-6157, 1941-7330. DOI: 10.1214/10-
AOAS388.

[32] Özgür Asar et al. “Linear Mixed Effects Models for Non-Gaussian Continuous Repeated
Measurement Data”. In: Journal of the Royal Statistical Society: Series C (Applied Statistics)
69.5 (Sept. 9, 2020), pp. 1015–1065. ISSN: 1467-9876. DOI: 10.1111/rssc.12405.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 5
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

12

96 Papers



(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See the supplementary

material.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Section 4.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] See Section 4 as well as the supplementary details and the references to
existing data sets for discussions on test and training splits.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See the supplement
and Section 4.

(b) Did you mention the license of the assets? [Yes] A LICENSE.md file has been included
along with the code.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
See Section 4.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] All data we used has been made available in the public domain.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] To the best of our knowledge, it does not.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] Not applicable to our work.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] Not applicable to our work.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] Not applicable to our work.

13

iii 97



Supplement to The Hessian Screening Rule

Johan Larsson
Department of Statistics

Lund University
johan.larsson@stat.lu.se

Jonas Wallin
Department of Statistics

Lund University
jonas.wallin@stat.lu.se

A Proofs

A.1 Proof of Theorem 1

It suffices to verify that the KKT conditions hold for β̂λ∗

(λ), i.e. that 0 is in the subdifferential. By
(ii) it follows that the indices Ac

λ∗ in the subdifferential contain zero. That leaves us only to show

that ∇f
(

β̂λ∗

(λ);X
)

Aλ∗

= λ sign
(

β̂λ∗

(λ)
)

Aλ∗

.

∇f
(

β̂λ∗

(λ);X
)

Aλ∗

= XT
Aλ∗

(

y −XAλ∗
β̂λ∗

(λ)Aλ∗

)

= XT
Aλ∗

(

y −XAλ∗
β(λ∗)Aλ∗

−
(

λ∗ − λ
)

XAλ∗

(

XT
Aλ∗

XAλ∗

)−1
signβ(λ∗)Aλ∗

)

= ∇f
(

β̂λ∗

(λ∗)
)

Aλ∗

− (λ∗ − λ) sign β̂(λ∗)Aλ∗

= λ sign β̂(λ∗)Aλ∗
,

which by (i) equals λ sign(β̂λ∗

(λ))Aλ∗
.

B Algorithms

In this section we present the algorithms for efficiently updating the Hessian and its inverse (Algo-
rithm 1) and the full algorithm for the Hessian screening method (Algorithm 2).

C Singular or Ill-Conditioned Hessians

In this section, we discuss situations in which the Hessian is singular or ill-conditioned and propose
remedies for these situations.

Inversion of the Hessian demands that the null space corresponding to the active predictors Aλ

contains only the zero vector, which typically holds when the columns of X are in general position,
such as in the case of data simulated from continuous distributions. It is not, however, generally the
case with discrete-valued data, particularly not in when p � n. In Lemma C.1, we formalize this
point.

Lemma C.1. Suppose that we have e ∈ R
p such that Xe = 0. Let β̂(λ) be the solution to the

primal problem (1) and E = {i : ei 6= 0}; then |β̂(λ)E | > 0 only if there exists a z ∈ R
p where

zE ∈ {−1, 1}
|E| such that zT e = 0.
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Algorithm 1 This algorithm provides computationally efficient updates for the inverse of the Hessian.
Note the slight abuse of notation here in that E is used both for X and Q. It is implicitly understood
that QEE is the sub-matrix of Q that corresponds to the columns E of X .

Input: X,H = XT
AXA, Q := H−1,A,B

C := A \ B
D := B \ A
if C 6= ∅ then
E := A ∩ B
Q := QEE −QEEcQ−1

EcEcQT
EEc

A := E
end if
if D 6= ∅ then
S := XT

DXD −XT
DXAQXT

AXD

Q :=

[

Q+QXT
AXDS

−1XT
DXAQ −QXT

AXDS
−1

−S−1XT
DXAQ S−1

]

end if
Return H∗

Algorithm 2 The Hessian screening method for the ordinary least-squares lasso

Input: X ∈ R
n×p, y ∈ R

n, λ ∈ {Rm
+ : λ1 = λmax, λ1 > λ2 > · · · > λm}, ε > 0

Initalize: k ← 1, β(0) ← 0, ζ ← ‖y‖22,W ← ∅, A ← ∅, S ← ∅, G ← {1, 2, . . . , p}
1: while k ≤ m do

2: β
(k)
W ←

{

β ∈ R
|W| : G

(

β, (y −XWβ)/max(λk, ‖X
T
W(y −XWβ)‖∞)

)

< ζε
}

3: β
(k)

WC ← 0
4: A ← {j : βj 6= 0}

5: r ← y −XWβ
(k)
W

6: V ← {j ∈ S \W : |xT
j r| ≥ λk} . Check for violations in Strong set

7: if V = ∅ then
8: θ ← r/max

(

λk, ‖X
T
G r‖∞

)

. Compute dual-feasible point

9: if G(β(k), θ) < εζ then
10: Update H and H−1 via Algorithm 1
11: W ← {j : |c̃H(λk+1)| < λk+1} ∪ A . Hessian rule screening
12: S ← {j : |c̃S(λk+1)| < λk+1} . Strong rule screening

13: Initialize β
(k+1)
A using (7) . Hessian warm start

14: G ← {1, 2, . . . , p} . Reset Gap-Safe set
15: k ← k + 1 . Move to next step on path
16: else

17: G ←
{

j ∈ G : |xT
j θ| ≥ 1− ‖xj‖2

√

2G(β(k), θ)/λ2
k

}

. Gap-Safe screening

18: V ← {j ∈ G \
(

S ∪W
)

: |xT
j r| ≥ λk} . Check for violations in Gap-Safe set

19: W ←W ∩ G
20: S ← S ∩ G
21: end if
22: end if
23: W ←W ∪ V . Augment working set with violating predictors
24: end while
25: return β
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Proof.
∑

j∈E xjej = 0 by assumption. Then, since β̂(λ) is the solution to the primal problem, it

follows that xT
j ∇f(Xβ) = sign(βj)λ for all j ∈ E . Hence

∑

j∈E

xT
j ∇f(Xβ)ej =

∑

j∈E

sign(βj)λej = λ
∑

j∈E

sign(βj)ej = 0

and zEC = 0, zE = sign(βE).

In our opinion, the most salient feature of this result is that if all predictors in E except i are known
to be active, then predictor i is active iff ei =

∑

j∈E\i±ej . If the columns of X are independent

and normally distributed, this cannot occur and hence one will never see a null space in XA. Yet if
Xij ∈ {0, 1}, one should expect the null space to be non-empty frequently. A simple instance of this
occurs when the columns of X are duplicates, in which case |e| = 2.

Duplicated predictors are fortunately easy to handle since they enter the model simultaneously. And
we have, in our program, implemented measures that deal efficiently with this issue by dropping them

from the solution after fitting and adjust β̂ accordingly.

Dealing with the presence of rank-deficiencies due to the existence of linear combinations among the
predictors is more challenging. In the work for this paper, we developed a strategy to deal with this
issue directly by identifying such linear combinations through spectral decompositions. During our
experiments, however, we discovered that this method often runs into numerical issues that require
other modifications that invalidate its potential. We have therefore opted for a different strategy.

To deal with singularities and ill-conditioned Hessian matrices, we instead use preconditioning. At
step k, we form the spectral decomposition

HAk
= QΛQT .

Then, if mini
(

diag(Λ)
)

< α, we add a factor α to the diagonal of HAk
. Then we substitute

Ĥ−1
Ak

= QT (Iα+ Λ)−1Q

for the true Hessian inverse. An analogous approach is taken when updating the Hessian incrementally
as in Algorithm 1. In our experiments, we have set α := n10−4.

D Computational Setup Details

The computer used to run the experiments had the following specifications:

CPU Intel i7-10510U @ 1.80Ghz (4 cores)

Memory 64 GB (3.2 GB/core)

OS Fedora 36

Compiler GNU GCC compiler v9.3.0, C++17

BLAS/LAPACK OpenBLAS v0.3.8

R version 4.1.3

E Real Data Sets

All of the data sets except arcene, scheetz, and bc_tcga werew retrieved from https://www.csie.
ntu.edu.tw/~cjlin/libsvmtools/datasets/ [1, 2]. arcene was retrieved from https://
archive.ics.uci.edu/ml/datasets/Arcene [3, 4] and scheetz and bc_tcga from https://
myweb.uiowa.edu/pbreheny [5]. Their original sources have been listed in Table 1. In each case
where it is available we use the training partition of the data set and otherwise the full data set.

F Additional Results

In this section, we present additional results related to the performance of the Hessian Screening
Rule.

3
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Table 1: Source for the real data sets used in our experiments.

Dataset Sources

arcene Guyon et al. [3] and Dua and Graff [4]
bcTCGA National Cancer Institute [6]
colon-cancer Alon et al. [7]
duke-breast-cancer West et al. [8]
e2006-log1p Kogan et al. [9]
e2006-tfidf Kogan et al. [9]
ijcnn1 Prokhorov [10]
madelon Guyon et al. [3]
news20 Keerthi and DeCoste [11]
rcv1 Lewis et al. [12]
scheetz Scheetz et al. [13]
YearPredictionMSD Bertin-Mahieux et al. [14] and Dua and Graff [4]

Least-Squares

= = 10000, ? = 100

Least-Squares

= = 200, ? = 20000

Logistic
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Figure 1: The time in seconds required to fit a full regularization path with length given on the x axis.

F.1 Path Length

Using the same setup as in Section 4 but with n = 200, p = 20 000 for the high-dimensional setting,
we again benchmark the time required to fit a full regularization path using the different methods
studied in this paper. The results (Figure 1) show that the Hessian Screening Method out-performs the
studied alternatives except for the low-dimensional situation and a path length of 10 λs. The results
demonstrate that our method pays a much smaller price for increased path resolution compared to the
other methods but that the increased marginal costs of updating the Hessian may make the method
less appealing in this case.

F.2 Convergence Tolerance

To better understand if and how the stopping threshold used in the solver affects the performance
of the various methods we test, we conduct simulations where we vary the tolerance, keeping the
remaining parameters constant. We use the same situation as in the high-dimensional scenario (see
Section 4) but use n = 200, p = 20 000. We run the experiment for tolerances 10−3, 10−4, 10−5, and
10−6. The results (Figure 2) indicate that the choice of stopping threshold has some importance for
convergence time but that the gap between our method and the alternatives tested never disappears.

F.3 The Benefit of Augmenting Heuristic Methods with Gap Safe Screening

To study the effectiveness of augmenting the Hessian Screening and working methods with a gap-safe
check, we conduct experiments using the high-dimensional setup in Section 4 but with n = 200 and
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Figure 2: Time required to fit a full regularization path for the high-dimensional scenario setup in
Section 4 for both `1-regularized least-squares and logistic regression, with n = 200 and p = 20 000.
Both the x and y axis are on a log10 scale.

p = 20 000, either enabling this augmentation or disabling it. We also vary the level of correlation, ρ.
Each combination is benchmarked across 20 iterations.

The results indicate that the addition of gap safe screening makes a definite, albeit modest, contribution
to the performance of the methods, particularly in the case of the working strategy, which is to be
expected given that the working strategy typically runs more KKT checks that the Hessian method
does since it causes many more violations.
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Figure 3: Average time in seconds required to fit a full regularization path for the high-dimensional
scenario setup in Section 4 for `1-regularized least-squares regression, with n = 200 and p = 20 000,
using the Hessian and working set methods with or without the addition of Gap Safe screening. The
bars represent ordinary 95% confidence intervals.

F.4 Effectiveness and Violations

To study the effectiveness of the screening rule, we conduct as experiment using the setup in Section 4
but with n = 200 and p = 20 000. We run 20 iterations and average the number of screened
predictors as well as violations across the entire path.

Looking at the effectiveness of the screening rules, we see that the Hessian screening rule performs as
desired for both `1-regularized least-squares and logistic regression (Figure 4), leading to a screened
set that lies very close to the true size. In particular, the rule works much better than all alternatives in
the case of high correlation,
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Figure 4: The number of predictors screened (included) for each given screening rule, as well as the
minimum number of active predictors at each step as a dashed line. The values are averaged over 20
repetitions in each condition. Note that the y-axis is on a log10 scale.

In Table 2, we show the average numbers of screened (included) predictors and violations for the
heuristic screening rules across the path. We note, first, that EDPP never lead to any violations and
that the Strong rule only did so once throughout the experiments. The Hessian rule, on the other hand,
leads to more violations, particularly when there is high correlation. On the other hand, the Hessian
screening rule successfully discards many more predictors than the other two rules do. And because
the Hessian method always checks for violations in the strong rule set first, which is demonstrably
conservative, these violations are of little importance in practice.

F.5 Detailed Results on Real Data

In Table 3 we show Table 1 with additional detail, including confidence intervals and higher figure
resolutions. Please see Section 4 for commentary on these results, where they have been covered in
full.

F.6 Additional Results on Simulated Data

In Figure 5, we show results for the ordinary least-squares lasso for the Sasvi, Gap Safe, and EDPP
methods, which were not included in the main paper.

F.7 Gamma

In this section we present the results of experiments targeting γ, the parameter for the Hessian rule
that controls how much of the unit bound (used in the Strong Rule) that is included in the correlation
vector estimate from the Hessian rule.
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Table 2: Numbers of screened predictors and violations averaged over the entire path and 20 iterations
for simulated data with n = 20 000 p = 200 and correlation level equal to ρ.

Model ρ Method Screened Violations

Least-Squares 0 Hessian 112 0.081

Least-Squares 0 Strong 203 0

Least-Squares 0 EDPP 11 928 0

Least-Squares 0.4 Hessian 103 0.099

Least-Squares 0.4 Strong 238 0

Least-Squares 0.4 EDPP 10 561 0

Least-Squares 0.8 Hessian 66 0.37

Least-Squares 0.8 Strong 897 0.0010

Least-Squares 0.8 EDPP 10 652 0

Logistic 0 Hessian 102 0.020

Logistic 0 Strong 201 0

Logistic 0.4 Hessian 77 0.033

Logistic 0.4 Strong 173 0

Logistic 0.8 Hessian 49 0.051

Logistic 0.8 Strong 297 0
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Figure 5: Additional results on simulated data for methods not included in the main article. The
results correspond to the ordinary (least-squares) lasso with n = 400, p = 40 000 and varying levels
of pairwise correlation between predictors, ρ.

We run 50 iterations of the high-dimensional setup from Section 4 and measure the number of
predictors screened (included) by the Hessian screening rule, the number of violations, and the time
taken to fit the full path. We vary γ from 0.001 to 0.3.

The results are presented in Figure 6. From the figure it is clear that the number of violations in fact
has a slightly negative impact on the speed at which the path is fit. We also see that the number of
violations is small considering the dimension of the data set (p = 40 000) and approach zero at γ
values around 0.1 for the lowest level of correlation, but have yet to reach exactly zero at 0.3 for the
highest level of correlation. The size of the screened set increase only marginally as γ increases fro
0.001 to 0.01, but eventually increase rapidly at γ approaches 0.3. Note, however, that the screened
set is still very small relative to the full set of predictors.

F.8 Ablation Analysis

In this section we report an experiment wherein we study the effects of the various features of the
Hessian screening method by incrementally adding them and timing the result.

We add features incrementally in the following order, such that each step includes all of the previous
features.

1. Hessian screening
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Table 3: Time to fit a full regularization path of `1-regularized least-squares and logistic regression
to real data sets. Density and time values are rounded to two and four significant figures respectively.
The estimates are based on 20 repetitions for arcene, colon-cancer, duke-breast-cancer, and ijcnn1
and three repetitions otherwise. Standard 95% confidence levels are included.

95% CI

Dataset n p Density Loss Method Time (s) Lower Upper

arcene 100 10 000 5.4 × 10−1 Logistic Blitz 4.42 4.39 4.45

arcene 100 10 000 5.4 × 10−1 Logistic Celer 3.99 3.98 3.99

arcene 100 10 000 5.4 × 10−1 Logistic Hessian 4.35 4.32 4.38

arcene 100 10 000 5.4 × 10−1 Logistic Working 3.27 3.25 3.28
bcTCGA 536 17 322 1 Least-Squares Blitz 11.7 11.5 11.8
bcTCGA 536 17 322 1 Least-Squares Celer 10.6 10.5 10.7
bcTCGA 536 17 322 1 Least-Squares Hessian 3.00 2.85 3.14
bcTCGA 536 17 322 1 Least-Squares Working 7.67 7.57 7.77
colon-cancer 62 2000 1 Logistic Blitz 0.177 0.176 0.178
colon-cancer 62 2000 1 Logistic Celer 0.169 0.168 0.170
colon-cancer 62 2000 1 Logistic Hessian 0.0542 0.0534 0.0550
colon-cancer 62 2000 1 Logistic Working 0.134 0.132 0.136
duke-breast-cancer 44 7129 1 Logistic Blitz 0.251 0.248 0.253
duke-breast-cancer 44 7129 1 Logistic Celer 0.262 0.260 0.264
duke-breast-cancer 44 7129 1 Logistic Hessian 0.111 0.110 0.112
duke-breast-cancer 44 7129 1 Logistic Working 0.210 0.209 0.212

e2006-log1p 16 087 4 272 227 1.4 × 10−3 Least-Squares Blitz 756 749 764

e2006-log1p 16 087 4 272 227 1.4 × 10−3 Least-Squares Celer 835 831 839

e2006-log1p 16 087 4 272 227 1.4 × 10−3 Least-Squares Hessian 205 203 207

e2006-log1p 16 087 4 272 227 1.4 × 10−3 Least-Squares Working 438 434 441

e2006-tfidf 16 087 150 360 8.3 × 10−3 Least-Squares Blitz 277 275 280

e2006-tfidf 16 087 150 360 8.3 × 10−3 Least-Squares Celer 335 334 337

e2006-tfidf 16 087 150 360 8.3 × 10−3 Least-Squares Hessian 14.3 14.3 14.4

e2006-tfidf 16 087 150 360 8.3 × 10−3 Least-Squares Working 143 139 146
ijcnn1 35 000 22 1 Logistic Blitz 4.68 3.82 5.53
ijcnn1 35 000 22 1 Logistic Celer 3.50 3.42 3.58
ijcnn1 35 000 22 1 Logistic Hessian 0.939 0.869 1.01
ijcnn1 35 000 22 1 Logistic Working 5.53 4.57 6.48
madelon 2000 500 1 Logistic Blitz 240 223 258
madelon 2000 500 1 Logistic Celer 247 243 251
madelon 2000 500 1 Logistic Hessian 48.2 43.2 53.1
madelon 2000 500 1 Logistic Working 232 227 238

news20 19 996 1 355 191 3.4 × 10−4 Logistic Blitz 2230 2230 2240

news20 19 996 1 355 191 3.4 × 10−4 Logistic Celer 2170 2160 2180

news20 19 996 1 355 191 3.4 × 10−4 Logistic Hessian 1290 1290 1290

news20 19 996 1 355 191 3.4 × 10−4 Logistic Working 1620 1610 1630

rcv1 20 242 47 236 1.6 × 10−3 Logistic Blitz 384 380 387

rcv1 20 242 47 236 1.6 × 10−3 Logistic Celer 378 373 384

rcv1 20 242 47 236 1.6 × 10−3 Logistic Hessian 132 127 137

rcv1 20 242 47 236 1.6 × 10−3 Logistic Working 266 258 275
scheetz 120 18 975 1 Least-Squares Blitz 0.706 0.689 0.722
scheetz 120 18 975 1 Least-Squares Celer 0.801 0.777 0.826
scheetz 120 18 975 1 Least-Squares Hessian 0.369 0.354 0.383
scheetz 120 18 975 1 Least-Squares Working 0.643 0.639 0.647
YearPredictionMSD 463 715 90 1 Least-Squares Blitz 706 704 707
YearPredictionMSD 463 715 90 1 Least-Squares Celer 712 711 714
YearPredictionMSD 463 715 90 1 Least-Squares Hessian 78.8 78.1 79.5
YearPredictionMSD 463 715 90 1 Least-Squares Working 541 516 565
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Figure 6: The number of predictors screened (included), the number of violations, and the time taken
to fit the full path. All measures in the plots represent means across combinations of ρ and γ over 50
iterations. The time recorded here is the time relative to the mean time for each level of ρ. The choice
of γ in this work, 0.01, is indicated by a dotted line in the plots. Note that x is on a log10 scale.

2. Hessian warm starts

3. Effective updates of the Hessian matrix and its inverse using the sweep operator

4. Gap safe screening

We then run an experiment on a design with n = 200 and p = 20 000 and two levels of pairwise
correlation between the predictors. The results (Figure 7) show that both screening and warm starts
make considerable contributions in this example.

Note that these results are conditional on the order with which they are added and also on the specific
design. The Hessian updates, for instance, make a larger contribution when min{n, p} is larger and
n and p are more similar. And when n� p, the contribution of the warm starts dominate whereas
screening no longer plays as much of a role.
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Figure 7: Incremental contribution to the decrease in running time from Hessian screening, Hessian
warm starts, our effective updates of the Hessian and its inverse, and gap safe screening. In other
words, Gap Safe, for instance, includes all of the other features, whilst Hessian Warm Starts includes
only Hessian Screening. Vanilla does not include any screening and only uses standard warm starts
(from the solution at the previous step along the path). The example shows an example of ordinary
(least-squares) lasso fit to a design with n = 200 and p = 20 000 with pairwise correlation between
predictors given by ρ. (See Section 4 for more details on the setup). The error bars indicate standard
95% confidence intervals. The results are based on 10 iterations for each condition.
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F.9 `1-Regularized Poisson Regression

In this experiment, we provide preliminary results for `1-regularized Poisson regression. The setup is
the same as Section 4 except for the following remarks:

• The response, y, is randomly sampled such that yi ∼ Poisson
(

exp(xT
i β)

)

.

• We set ζ in the convergence criterion to n+
∑n

i=1 log(yi!).

• We do not use the line search procedure from Blitz.

• Due to convergence issues for higher values of ρ, we use values 0.0, 0.15, and 0.3 here.
Tackling higher values of ρ would likely need considerable modifications to the coordinate
descent solver we use.

• The gradient of the negative Poisson log-likelihood is not Lipschitz continuous, which
means that Gap safe screening [15] no longer works. As a result, we have excluded the
Blitz and Celer algorithms, which rely on Gap safe screening, from these benchmarks, and
deactivated the additional Gap safe screening from our algorithm.

The results from the comparison are shown in Figure 8, showing that our algorithm is noticeably
faster than the working algorithm also in this case.
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Figure 8: Time to fit a full regularization path for `1-regularized Poisson regression to a design with
observations, p predictors, and pairwise correlation between predictors of ρ. Time is relative to the
minimal mean time in each group. The error bars represent ordinary 95% confidence intervals around
the mean.

F.10 Runtime Breakdown Along Path

In this section we take a closer look at the running time of fitting the full regularization path and study
the impact the Hessian screening rule and its warm starts have on the time spent on optimization of
the problem using coordinate descent (CD).

To illustrate these cases we take a look at three data sets here: e2006-tfidf, madelon, and rcv1. The
first of these, e2006-tfidf, is a sparse data set of dimensions 16 087×150 360 with a numeric response,
to which we fit the ordinary lasso. The second two are both data sets with a binary response, for
which we use `1-regularized logistic regression. The dimensions of madelon are 2000× 500 and the
dimensions of rcv1 are 20 242× 47 236.

We study the contribution to the total running time per step, comparing the Hessian screening rule
with the working+ strategy. For the working+ strategy, all time is spent inside the CD optimizer and
in checks of the KKT conditions. For the Hessian screening rule, time is also spent updating the
Hessian and computing the correlation estimate c̃H .

Beginning with Figure 9 we see that the Hessian strategy dominates the Working+ strategy, which
spends most of its running time on coordinate descent iterations, which the Hessian strategy ensures
are completed in much less time.
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Figure 9: Relative contribution to the full running time when fitting a complete regularization path to
the e2006-tfidf data set.

In Figure 10, we see an example of `1-regularized logistic regression. In this case updating the
Hessian exactly (and directly) dominates the other approaches. The size of the problem makes the
cost of updating the Hessian negligible and offers improved screening and warm starts, which in turn
greatly reduces the time spent on coordinate descent iterations and consequently the full time spent
fitting the path.

Finally, in Figure 11 we consider the rcv1 data set. In contrast to the case for madelon, the cost of
directly forming the Hessian (and inverse) proves more time-consuming here (although the benefits
still show in the time spent on coordinate descent iterations).

As a final remark, note that the pattern by which predictors enter the model (bottom panels) differ
considerably between these three cases (Figures 9 to 11). Consider, for instance, madelon viz-a-viz
e2006-tfidf. In Approximate Homotopy (Section 3.3.6), we discuss a remedy for this solution that is
readily available through our method.
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Abstract

Numerical validation is at the core of machine learning research as it allows to
assess the actual impact of new methods, and to confirm the agreement between
theory and practice. Yet, the rapid development of the field poses several challenges:
researchers are confronted with a profusion of methods to compare, limited trans-
parency and consensus on best practices, as well as tedious re-implementation work.
As a result, validation is often very partial, which can lead to wrong conclusions that
slow down the progress of research. We propose Benchopt, a collaborative frame-
work to automate, reproduce and publish optimization benchmarks in machine
learning across programming languages and hardware architectures. Benchopt

simplifies benchmarking for the community by providing an off-the-shelf tool for
running, sharing and extending experiments. To demonstrate its broad usability, we
showcase benchmarks on three standard learning tasks: ℓ2-regularized logistic re-
gression, Lasso, and ResNet18 training for image classification. These benchmarks
highlight key practical findings that give a more nuanced view of the state-of-the-art
for these problems, showing that for practical evaluation, the devil is in the details.
We hope that Benchopt will foster collaborative work in the community hence
improving the reproducibility of research findings.

1 Introduction

Numerical experiments have become an essential part of statistics and machine learning (ML). It
is now commonly accepted that every new method needs to be validated through comparisons with
existing approaches on standard problems. Such validation provides insight into the method’s benefits
and limitations and thus adds depth to the results. While research aims at advancing knowledge
and not just improving the state of the art, experiments ensure that results are reliable and support
theoretical claims (Sculley et al., 2018). Practical validation also helps the ever-increasing number
of ML users in applied sciences to choose the right method for their task. Performing rigorous and
extensive experiments is, however, time-consuming (Raff, 2019), particularly because comparisons
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Figure 1: A visual summary of Benchopt. Each Solver is run (in parallel) on each Dataset and
each variant of the Objective. Results are exported as a CSV file that is easily shared and can be
automatically plotted as interactive HTML visualizations or PDF figures.

against existing methods in new settings often requires reimplementing baseline methods from the
literature. In addition, ingredients necessary for a proper reimplementation may be missing, such as
important algorithmic details, hyperparameter choices, and preprocessing steps (Pineau et al., 2019).

In the past years, the ML community has actively sought to overcome this “reproducibility crisis”
(Hutson, 2018) through collaborative initiatives such as open datasets (OpenML, Vanschoren et al.
2013), standardized code sharing (Forde et al., 2018), benchmarks (MLPerf, Mattson et al. 2020),
the NeurIPS and ICLR reproducibility challenges (Pineau et al., 2019; Pineau et al., 2021) and new
journals (e.g., Rougier and Hinsen 2018). As useful as these endeavors may be, they do not, however,
fully address the problems in optimization for ML since, in this area, there are no clear community
guidelines on how to perform, share, and publish benchmarks.

Optimization algorithms pervade almost every area of ML, from empirical risk minimization, varia-
tional inference to reinforcement learning (Sra et al., 2012). It is thus crucial to know which methods
to use depending on the task and setting (Bartz-Beielstein et al., 2020). While some papers in
optimization for ML provide extensive validations (Lueckmann et al., 2021), many others fall short
in this regard due to lack of time and resources, and in turn feature results that are hard to reproduce
by other researchers. In addition, both performance and hardware evolve over time, which eventually
makes static benchmarks obsolete. An illustration of this is the recent work by Schmidt et al. (2021),
which extensively evaluates the performances of 15 optimizers across 8 deep-learning tasks. While
their benchmark gives an overall assessment of the considered solvers, this assessment is bound
to become out-of-date if it is not updated with new solvers and new architectures. Moreover, the
benchmark does not reproduce state-of-the-art results on the different datasets, potentially indicating
that the considered architectures and optimizers could be improved.

We firmly believe that this critical task of maintaining an up-to-date benchmark in a field
cannot be solved without a collective effort. We want to empower the community to take up
this challenge and build a living, reproducible and standardized state of the art that can
serve as a foundation for future research.

Benchopt provides the tools to structure the optimization for machine learning (Opt-ML) community
around standardized benchmarks, and to aggregate individual efforts for reproducibility and results
sharing. Benchopt can handle algorithms written in Python, R, Julia or C/C++ via binaries. It offers
built-in functionalities to ease the execution of benchmarks: parallel runs, caching, and automatic
results archiving. Benchmarks are meant to evolve over time, which is why Benchopt offers a
modular structure through which a benchmark can be easily extended with new objective functions,
datasets, and solvers by the addition of a single file of code.

The paper is organized as follows. We first detail the design and usage of Benchopt, before presenting
results on three canonical problems:

• ℓ2-regularized logistic regression: a convex and smooth problem which is central to the evaluation
of many algorithms in the Opt-ML community, and remains of high relevance for practitioners;

• the Lasso: the prototypical example of non-smooth convex problem in ML;

• training of ResNet18 architecture for image classification: a large scale non-convex deep learning
problem central in the field of computer vision.
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The reported benchmarks, involving dozens of implementations and datasets, shed light on the
current state-of-the-art solvers for each problem, across various settings, highlighting that the best
algorithm largely depends on the dataset properties (e.g., size, sparsity), the hyperparameters, as well
as hardware. A variety of other benchmarks (e.g., MCP, TV1D, etc.) are also presented in Appendix,
with the goal to facilitate contributions from the community.

By the open source and collaborative design of Benchopt (BSD 3-clause license), we aim to open
the way towards community-endorsed and peer-reviewed benchmarks that will improve the tracking
of progress in optimization for ML.

2 The Benchopt library

The Benchopt library aims to provide a standard toolset and structure to implement benchmarks for
optimization in ML, where the problems depend on some input dataset D. The considered problems
are of the form

θ∗ ∈ argmin
θ∈Θ

f(θ;D,Λ) , (1)

where f is the objective function, Λ are its hyperparameters, and Θ is the feasible set for θ. The
scope of the library is to evaluate optimization methods in their wide sense by considering the
sequence {θt}t produced to approximate θ∗. We emphasize than Benchopt does not provide a fixed
set of benchmarks, but a framework to create, extend and share benchmarks on any problem of
the form (1). To provide a flexible and extendable coding standard, benchmarks are defined as the
association of three types of object classes:

benchmark/

objective.py

datasets/

dataset1.py

dataset2.py

solvers/

solver1.py

solver2.py

Figure 2: Standard
benchmark structure

Objective: It defines the function f to be minimized as well as the hy-
perparameters Λ or the set Θ, and the metrics to track along the iterations
(e.g., objective value, gradient norm for smooth problems, or validation
loss). Multiple metrics can be registered for each θt.

Datasets: The Dataset objects provide the data D to be passed to the
Objective class. They control how data is loaded and preprocessed.
Datasets are separated from the Objective, making it easy to add new
ones, provided they are coherent with the Objective.

Solvers: The Solver objects define how to run the algorithm. They are
provided with the Objective and Dataset objects and output a sequence
{θt}t. This sequence can be obtained using a single run of the method,
or with multiple runs in case the method only returns its final iterate.

Each of these objects can have parameters that change their behavior, e.g., the regularization
parameters for the Objective, the choice of preprocessing for the Datasets, or the step size for
the Solvers. By exposing these parameters in the different objects, Benchopt can evaluate their
influence on the benchmark results. The Benchopt library defines an application programming
interface (API) for each of these concepts and provides a command line interface (CLI) to make
them work together. A benchmark is defined as a folder that contains an Objective as well as
subfolders containing the Solvers and Datasets. Appendix B presents a concrete example on
Ridge regression of how to construct a Benchopt benchmark while additional design design choices
of Benchopt are discussed in Appendix C.

For each Dataset and Solver, and for each set of parameters, Benchopt retrieves a sequence {θt}t
and evaluates the metrics defined in the Objective for each θt. To ensure fair evaluation, the
computation of these metrics is done off-line. The metrics are gathered in a CSV file that can be used
to display the benchmark results, either locally or as HTML files published on a website that reference
the benchmarks run with Benchopt. This workflow is described in Figure 1.

This modular and standardized organization for benchmarks empowers the optimization community
by making numerical experiments easily reproducible, shareable, flexible and extendable. The
benchmark can be shared as a git repository or a folder containing the different definitions for the
Objective, Datasets and Solvers and it can be run with the Benchopt CLI, hence becoming a
convenient reference for future comparisons. This ensures fair evaluation of baselines in follow-up
experiments, as implementations validated by the community are available. Moreover, benchmarks
can be extended easily as one can add a Dataset or a Solver to the comparison by adding a single
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file. Finally, by supporting multiple metrics – e.g., training and testing losses, error on parameter
estimates, sparsity of the estimate – the Objective class offers the flexibility to define the concurrent
evaluation, which can be extended to track extra metrics on a per benchmark basis, depending on the
problem at hand.

As one of the goal of Benchopt is to make benchmarks as simple as possible, it also provides a set
of features to make them easy to develop and run. Benchopt is written in Python, but Solvers run
with implementations in different languages (e.g., R and Julia, as in Section 4) and frameworks
(e.g., PyTorch and TensorFlow, as in Section 5). Moreover, benchmarks can be run in parallel with
checkpointing of the results, enabling large scale evaluations on many CPU or GPU nodes. Benchopt

also makes it possible to run solvers with many different hyperparameters’ values , allowing to assess
their sensitivity on the method performance. Benchmark results are also automatically exported as
interactive visualizations, helping with the exploration of the many different settings.

Benchmarks All presented benchmarks are run on 10 cores of an Intel Xeon Gold 6248 CPUs @
2.50GHz and NVIDIA V100 GPUs (16GB). The results’ interactive plots and data are available at
https://benchopt.github.io/results/preprint_results.html.

3 First example: ℓ2-regularized logistic regression

Logistic regression is a very popular method for binary classification. From a design matrix
X ∈ R

n×p with rows Xi and a vector of labels y ∈ {−1, 1}n with corresponding element yi,
ℓ2-regularized logistic regression provides a generalized linear model indexed by θ∗ ∈ R

p to discrim-
inate the classes by solving

θ∗ = argmin
θ∈Rp

n
∑

i=1

log
(

1 + exp(−yiX
⊤
i θ)

)

+
λ

2
∥θ∥22 , (2)

where λ > 0 is the regularization hyperparameter. Thanks to the regularization part, Problem (2) is
strongly convex with a Lipschitz gradient, and thus its solution can be estimated efficiently using
many iterative optimization schemes.

The most classical methods to solve this problem take inspiration from Newton’s method (Wright
and Nocedal, 1999). On the one hand, quasi-Newton methods aim at approximating the Hessian
of the cost function with cheap to compute operators. Among these methods, L-BFGS (Liu and
Nocedal, 1989) stands out for its small memory footprint, its robustness and fast convergence in a
variety of settings. On the other hand, truncated Newton methods (Dembo et al., 1982) try to directly
approximate Newton’s direction by using e.g., the conjugate gradient method (Fletcher and Reeves,
1964) and Hessian-vector products to solve the associated linear system. Yet, these methods suffer
when n is large: each iteration requires a pass on the whole dataset.

In this context, methods based on stochastic estimates of the gradient have become standard (Bottou,
2010), with Stochastic Gradient Descent (SGD) as a main instance. The core idea is to use cheap and
noisy estimates of the gradient (Robbins and Monro, 1951; Kiefer and Wolfowitz, 1952). While SGD
generally converges either slowly due to decreasing step sizes, or to a neighborhood of the solution
for constant step sizes, variance-reduced adaptations such as SAG (Schmidt et al., 2017), SAGA
(Defazio et al., 2014) and SVRG (Johnson and Zhang, 2013) make it possible to solve the problem
more efficiently and are often considered to be state-of-the-art for large scale problems.

Finally, methods based on coordinate descent (Bertsekas, 1999) have also been proposed to solve
Problem (2). While these methods are usually less popular, they can be efficient in the context of
sparse datasets, where only few samples have non-zero values for a given feature, or when accelerated
on distributed systems or GPU (Dünner et al., 2018).

The code for the benchmark is available at https://github.com/benchopt/benchmark_logreg_
l2/. To reflect the diversity of solvers available, we showcase a Benchopt benchmark with 3 datasets,
10 optimization strategies implemented in 5 packages, leveraging GPU hardware when possible.
We also consider different scenarios for the objective function: (i) scaling (or not) the features, a
recommended data preprocessing step, crucial in practice to have comparable regularization strength
on all variables; (ii) fitting (or not) an unregularized intercept term, important in practice and making
optimization harder when omitted from the regularization term (Koh et al., 2007); (iii) working (or
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Figure 3: Benchmark for the ℓ2-regularized logistic regression, on 13 solvers, 4 datasets (rows),
and 3 variants of the Objective (columns) with λ = 1. The curves display the suboptimality of the
iterates, f(θt)− f(θ∗), as a function of time. The first column corresponds to the objective function
detailed in Problem (2). In the second column, datasets were preprocessed by normalizing each
feature to unit standard deviation. The third column is for an objective function which includes an
unregularized intercept.

not) with sparse features, which prevent explicit centering during preprocessing to keep memory
usage limited. Details on packages, datasets and additional scenarios are available in Appendix D.

Results Figure D.1 presents the results of the benchmarks, in terms of suboptimality of the iterates,
f(θt) − f(θ∗), for three datasets and three scenarios. Here, because the problem is convex, θ∗ is
approximated by the best iterate across all runs (see Section C.1). Overall, the benchmark shows the
benefit of using GPU solvers (cuML and snapML), even for small scale tasks such as ijcnn1. Note that
these two accelerated solvers converge to a higher suboptimality level compared to other solvers, due
to operating with 32-bit float precision. Another observation is that data scaling can drastically change
the picture. In the case of madelon, most solvers have a hard time converging for the scaled data. For
the solvers that converge, we note that the convergence time is one order of magnitude smaller with
the scaled dataset compared to the raw one. This stems from the fact that in this case, the scaling
improves the conditioning of the dataset.1 For news20.binary, the stochastic solvers such as SAG
and SAGA have degraded performances on scaled data. Here, the scaling makes the problem harder.2

1The condition number of the dataset is divided by 5.9 after scaling.
2The condition number is multiplied by 407 after scaling.
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On CPU, quasi-Newton solvers are often the most efficient ones, and provide a reasonable choice in
most situations. For large scale news20.binary, stochastic solvers such as SAG, SAGA or SVRG –that
are often considered as state of the art for such problem– have worst performances for the presented
datasets. While this dataset is often used as a test bed for benchmarking new stochastic solvers, we
fail to see an improvement over non-stochastic ones for this experimental setup. In contrast, the last
row in Figure D.1 displays an experiment with the larger scale criteo dataset, which demonstrates a
regime where variance-reduced stochastic gradient methods outperform quasi-Newton methods. For
future benchmarking of stochastic solvers, we therefore recommend using such a large dataset.

Finally, the third column in Figure D.1 illustrates a classical problem when benchmarking different
solvers: their specific (and incompatible) definition and resolution of the corresponding optimization
problem. Here, the objective function is modified to account for an intercept (bias) in the linear
model. In most situations, this intercept is not regularized when it is fitted. However, snapML and
liblinear solvers do regularize it, leading to incomparable losses.

4 Second example: The Lasso

The Lasso, (Tibshirani, 1996; Chen et al., 1998), is an archetype of non-smooth ML problems,
whose impact on ML, statistics and signal processing in the last three decades has been considerable
(Bühlmann and van de Geer, 2011; Hastie et al., 2015). It consists of solving

θ∗ ∈ argmin
θ∈Rp

1
2 ∥y −Xθ∥2 + λ ∥θ∥1 , (3)

where X ∈ R
n×p is a design matrix containing p features as columns, y ∈ R

n is the target vector,
and λ > 0 is a regularization hyperparameter. The Lasso estimator was popularized for variable
selection: when λ is high enough, many entries in θ∗ are exactly equal to 0. This leads to more
interpretable models and reduces overfitting compared to the least-squares estimator.

Solvers for Problem (3) have evolved since its introduction by Tibshirani (1996). After generic
quadratic program solvers, new dedicated solvers were proposed based on iterative reweighted least-
squares (IRLS) (Grandvalet, 1998), followed by LARS (Efron et al., 2004), a homotopy method
computing the full Lasso path3. The LARS solver helped popularize the Lasso, yet the algorithm
suffers from stability issues and can be very slow for worst case situations (Mairal and Yu, 2012).
General purpose solvers became popular for Lasso-type problems with the introduction of the iterative
soft thresholding algorithm (ISTA, Daubechies et al. 2004), an instance of forward-backward splitting
(Combettes and Wajs, 2005). These algorithms became standard in signal and image processing,
especially when accelerated (FISTA, Beck and Teboulle 2009).

In parallel, proximal coordinate descent has proven particularly relevant for the Lasso in statistics.
Early theoretical results were proved by Tseng (1993) and Sardy et al. (2000), before it became the
standard solver of the widely distributed packages glmnet in R and scikit-learn in Python. For
further improvements, some solvers exploit the sparsity of θ∗, trying to identify its support to reduce
the problem size. Best performing variants of this scheme are screening rules (e.g., El Ghaoui et al.,
2012; Bonnefoy et al., 2015; Ndiaye et al., 2017) and working/active sets (e.g., Johnson and Guestrin
2015; Massias et al. 2018), including strong rules (Tibshirani et al., 2012).

While reviews of Lasso solvers have already been performed (Bach et al., 2012, Sec. 8.1), they are
limited to certain implementation and design choices, but also naturally lack comparisons with more
recent solvers and modern hardware, hence drawing biased conclusions.

The code for the benchmark is available at https://github.com/benchopt/benchmark_lasso/.
Results obtained on 4 datasets, with 9 standard packages and some custom reimplementations, possi-
bly leveraging GPU hardware, and 17 different solvers written in Python/numba/Cython, R, Julia or
C++ (Table E.1) are presented in Figure 4. All solvers use efficient numerical implementations, pos-
sibly leveraging calls to BLAS, precompiled code in Cython or just-in-time compilation with numba.

The different parameters influencing the setup are

• the regularization strength λ, controlling the sparsity of the solution, parameterized as a fraction
of λmax =

∥

∥X⊤y
∥

∥

∞
(the minimal hyperparameter such that θ∗ = 0),

3The Lasso path is the set of solutions of Problem (3) as λ varies in (0,∞).
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• the dataset dimensions: MEG has small n and medium p; rcv1.binary has medium n and p;
news20.binary has medium n and very large p while MillionSong has very large n and small p
(Table E.2).
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Figure 4: Benchmark for the Lasso, on 17 solvers, 4 datasets (rows), and 3 variants of the Objective
(columns) with decreasing regularization λ. The curves display the suboptimality of the objective
function, f(θt)− f(θ∗), as a function of time.

Results Figure 4 presents the result of the benchmark on the Lasso, in terms of objective subopti-
mality f(θt)− f(θ∗) as a function of time.

Similarly to Section 3, the GPU solvers obtain good performances in most settings, but their advantage
is less clear. A consistent finding across all settings is that coordinate descent-based methods
outperform full gradient ones (ISTA and FISTA, even restarted), and are improved by the use of
working set strategies (blitz, celer, skglm, glmnet). This observation is even more pronounced
when the regularization parameter is large, as the solution is sparser.

When observing the influence of the dataset dimensions, we observe 3 regimes. When n is small
(MEG), the support of the solution is small and coordinate descent, LARS and noncvx-pro perform
the best. When n is much larger than p (MillionSong), noncvx-pro clearly outperforms other solvers,
and working set methods prove useless. Finally, when n and p are large (rcv1.binary, news20.binary),
CD and working sets vastly outperforms the rest while noncvx-pro fails, as it requires solving a
linear system of size min(n, p). We note that this setting was not tested in the original experiment of
Poon and Peyré (2021), which highlights the need for extensive, standard experimental setups.
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When the support of the solution is small (either small λ, either small n since the Lasso solution has
at most n nonzero coefficients), LARS is a competitive algorithm. We expect this to degrade when
n increases, but as the LARS solver in scikit-learn does not support sparse design matrices we
could not include it for news20.binary and rcv1.binary.

This benchmark is the first to evaluate solvers across languages, showing the competitive behavior
of lasso.jl and glmnet compared to Python solvers. Both solvers have a large initialization time,
and then converge very fast. To ensure that the benchmark is fair, even though the Benchopt library
is implemented in Python, we made sure to ignore conversion overhead, as well as just-in-time
compilation cost. We also checked the timing’s consistency with native calls to the libraries.

Since the Lasso is massively used for it feature selection properties, the speed at which the solvers
identify the support of the solution is also an important performance measure. Monitoring this with
Benchopt is straightforward, and a figure reporting this benchmark is in Appendix E.

5 Third example: How standard is a benchmark on ResNet18?

As early successes of deep learning have been focused on computer vision tasks (Krizhevsky et al.,
2012), image classification has become a de facto standard to validate novel methods in the field.
Among the different network architectures, ResNets (He et al., 2016) are extensively used in the
community as they provide strong and versatile baselines (Xie et al., 2017; Tan and Le, 2019;
Dosovitskiy et al., 2021; Brock et al., 2021; Liu et al., 2022). While many papers present results
with such model on classical datasets, with sometimes extensive ablation studies (He et al., 2019;
Wightman et al., 2021; Bello et al., 2021; Schmidt et al., 2021), the lack of standardized codebase
and missing implementation details makes it hard to replicate their results.

The code for the benchmark is available at https://github.com/benchopt/benchmark_resnet_
classif/. We provide a cross-dataset –SVHN, Netzer et al. (2011); MNIST, LeCun et al. (2010) and
CIFAR-10, Krizhevsky (2009)– and cross-framework –TensorFlow/Keras, Abadi et al. (2015) and
Chollet et al. (2015); PyTorch, Paszke et al. (2019)– evaluation of the training strategies for image
classification with ResNet18 (see Appendix F for details on architecture and datasets). We train the
network by minimizing the cross entropy loss relatively to the weights θ of the model. Contrary to
logistic regression and the Lasso, this problem is non-convex due to the non-linearity of the model fθ.
Another notable difference is that we report the evolution of the test error rather than the training loss.

Because we chose to monitor the test loss, the Solvers are defined as the combination of an
optimization algorithm, its hyperparameters, the learning rate (LR) and weight decay schedules, and
the data augmentation strategy. This is in contrast to a case where we would monitor the train loss,
and therefore make the LR and weight decay schedules, as well as the data augmentation policy, part
of the objective. We focus on 2 standard methods: stochastic gradient descent (SGD) with momentum
and Adam (Kingma and Ba, 2015), as well as a more recently published one: Lookahead (Zhang et al.,
2019). The LR schedules are chosen among fixed LR, step LR4, and cosine annealing (Loshchilov
and Hutter, 2017). We also consider decoupled weight decay for Adam (Loshchilov and Hutter,
2019), and coupled weight decay (i.e., `2-regularization) for SGD. Regarding data augmentation, we
use random cropping for all datasets and add horizontal flipping only for CIFAR-10, as the digits
datasets do not exhibit a mirror symmetry. We detail the remaining hyperparameters in Table F.2, and
discuss their selection as well as their sensitivity in Appendix F.

Aligning cross-framework implementations Due to some design choices, components with the
same name in the different frameworks do not have the same behavior. For instance, when it comes
to applying weight decay, PyTorch’s SGD uses coupled weight decay, while in TensorFlow/Keras
weight decay always refers to decoupled weight decay. These two methods lead to significantly
different performance and it is not straightforward to apply coupled weight decay in a post-hoc
manner in TensorFlow/Keras (see further details in Section F.3). We conducted an extensive effort to
align the networks implementation in different frameworks using unit testing to make the conclusions
of our benchmarks independent of the chosen framework. We found additional significant differences
(reported in Table F.3) in the initialization, the batch normalization, the convolutional layers and the
weight decay scaling.

4decreasing the learning rate by a factor 10 at mid-training, and again at 3/4 of the training
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Figure 5: ResNet18 image classification benchmark with PyTorch Solvers. The best SGD
configuration features data augmentation, momentum, cosine learning rate schedule and weight decay.
In dashed black is the state of the art for the corresponding datasets with a ResNet18 measured by
Zhang et al. (2019) for CIFAR-10, by Zheng et al. (2021) for SVHN with a PreAct ResNet18, by
PapersWithCode for MNIST with all networks considered. Off-the-shelf ResNet implementations in
TensorFlow/Keras do not support images smaller than 32× 32 and is hence not shown for MNIST.
Curves are exponentially smoothed.

Results The results of the benchmark are reported in Figure 5. Each graph reports the test error
relative to time, with an ablation study on the solvers’ parameters. Note that we only report selected
settings for clarity but that we run every possible combination.5

Firstly, reaching the state of the art for a vanilla ResNet18 is not straightforward. On the popular
website Papers with code it has been so far underestimated. It can achieve 4.45% and 2.65% test error
rates on CIFAR-10 and SVHN respectively (compared to 4.73% and 2.95% – for a PreAct ResNet18 –
before that). Our ablation study shows that a variety of techniques is required to reach it. The most
significant one is an appropriate data augmentation strategy, which lowers the error rate on CIFAR-10
from about 18% to about 8%. The second most important one is weight decay, but it has to be used in
combination with a proper LR schedule, as well as momentum. While these techniques are not novel,
they are regularly overlooked in baselines, resulting in underestimation of their performance level.

This reproducible benchmark not only allows a researcher to get a clear understanding of how to
achieve the best performances for this model and datasets, but also provides a way to reproduce and
extend these performances. In particular, we also include in this benchmark the original implementa-
tion of Lookahead (Zhang et al., 2019). We confirm that it slightly accelerates the convergence of the
Best SGD, even with a cosine LR schedule – a setting that had not been studied in the original paper.

Our benchmark also evaluates the relative computational performances of the different frameworks.
We observe that PyTorch-Lightning is significantly slower than the other frameworks we tested,
in large part due to their callbacks API. We also notice that our TensorFlow/Keras implementation
is significantly slower (≈ 28%) than the PyTorch ones, despite following the best practices and our
profiling efforts. Note that we do not imply that TensorFlow is intrinsically slower than PyTorch,
but a community effort is needed to ensure that the benchmark performances are framework-agnostic.

A recurrent criticism of such benchmarks is that only the best test error is reported. In Figure 6, we
measure the effect of using a train-validation-test split, by keeping a fraction of the training set as
a validation set. The splits we use are detailed in Table F.1. Our finding is that the results of the
ablation study do not change significantly when using such procedure, even though their validity is
reinforced by the use of multiple trainings. Yet, a possible limitation of our findings is that some of
the hyperparameters we used for our study, coming from the PyTorch-CIFAR GitHub repository,
may have been tuned while looking at the test set.

5The results are available online as a user-friendly interactive HTML file.
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Figure 6: ResNet18 image classification benchmark with a validation split. In dashed black is the
state of the art (see caption of Figure 5 for more details). In addition, we show in colored horizontal
dashed lines, the test results for early stopping on the validation and on the test set for the different
solvers, the square mark indicating the moment this stopping would happen. The curves for the
train-val splits show the exponentially smoothed median results for five different random seeds.

6 Conclusion and future work

We have introduced Benchopt, a library that makes it easy to collaboratively develop fair and extensive
benchmarks of optimization algorithms, which can then be seamlessly published, reproduced, and
extended. In the future, we plan on supporting the creation of new benchmarks, that could become
the standards the community builds on. This work is part of a wider effort to improve reproducibility
of machine learning results. It aims to contribute to raising the standard of numerical validation for
optimization, which is pervasive in the statistics and ML community as well as for the experimental
sciences that rely more and more on these tools for research.
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B A complete Benchmark example: Objective, Dataset and Solver classes

for Ridge regression

Here, we provide code examples for a simple benchmark on Ridge regression. The Ridge regression
– also called `2-regularized least-squares or Tikhonov regression – is a popular method to solve
least-square problems in the presence of noisy observations or correlated features. The problem
reads:

min
θ

1

2
∥y −Xθ∥22 +

λ

2
∥θ∥22 , (4)

where X ∈ R
n×p is a design matrix, y ∈ R

n is the target vector and λ is the regularization parameter.
This problem is strongly convex and many methods can be used to solve it. Direct computation of the
close form solution θ∗ = (X⊤X + λId)−1X⊤y can be obtained using matrix factorization methods
such as Cholesky decomposition or the SVD (Press et al., 2007) or iterative linear solver such as
Conjugate-Gradient (Liu and Nocedal, 1989). One can also resort on first order methods such as
gradient descent, coordinate descent (known as the Gauss-Seidel method in this context), or their
stochastic variant.

The code for the benchmark is available at https://github.com/benchopt/benchmark_ridge/.
The following code snippets are provided in the documentation as a template for new benchmarks.

B.1 Objective class

The Objective class is the central part of the benchmark, defining the objective function. This class
allows us to monitor the quantities of interest along the iterations of the solvers, amongst which the
objective function value. An Objective class should define 3 methods:

• set_data(**data): it allows specifying the nature of the data used in the benchmark. The data
is passed as a dictionary of Python variables, so no constraint is enforced to what can be passed
here.

• compute(theta): it allows evaluating the objective function for a given value of the iterate, here
called θ. This method should take only one parameter, the output returned by the Solver. All
other parameters should be stored in the class with the set_data method. The compute function
should return a float (understood as the objective value) or a dictionary. If a dictionary is returned
it should contain a key called value (the objective value) and all other keys should correspond to
float values allowing tracking more than one quantity of interest (e.g. train and test errors).

• get_objective(): a method that returns a dictionary to be passed to the set_objective()

method of a Solver.

An Objective class needs to inherit from a base class, benchopt.BaseObjective. Below is the
implementation of the Ridge regression Objective class.

from benchopt import BaseObjective

class Objective(BaseObjective):

name = "Ridge regression"

parameters = {"reg": [0.1, 1, 10]}

def __init__(self , reg=1):

self.reg = reg

def set_data(self , X, y):

self.X, self.y = X, y

def compute(self , theta):

res = self.y - self.X @ theta

return .5 * res @ res + 0.5 * self.reg * theta @ theta

def get_objective(self):

return dict(X=self.X, y=self.y, reg=self.reg)
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B.2 Dataset class

A Dataset class defines data to be passed to the Objective. More specifically, a Dataset class
should implement one method:

• get_data(): A method outputting a dictionary that can be passed as keyword arguments **data
to the set_data method of the Objective.

A Dataset class also needs to inherit from a base class, benchopt.BaseDataset.

If a Dataset requires some packages to function, Benchopt allows listing some requirements. The
necessary packages should be available via conda or pip.

Below is an example of a Dataset definition using the libsvmdata library, which exposes datasets
from libsvm, such as leukemia, bodyfat and gisette – described in Table B.1.

from benchopt import BaseDataset

from benchopt import safe_import_context

# This context allow to manipulate the Dataset object even if

# libsvmdata is not installed. It is used in ‘benchopt install ‘.

with safe_import_context () as import_ctx:

from libsvmdata import fetch_libsvm

class Dataset(BaseDataset):

name = "libsvm"

install_cmd = "conda"

requirements = ["libsvmdata"]

parameters = {"dataset": ["bodyfat", "leukemia", "gisette"]}

def __init__(self , dataset="bodyfat"):

self.dataset = dataset

def get_data(self):

X, y = fetch_libsvm(self.dataset)

return dict(X=self.X, y=self.y)

B.3 Solver class

A Solver class must define three methods:

• set_objective(**objective_dict): This method will be called with the dictionary
objective_dict returned by the method get_objective from the Objective. The goal of
this method is to provide all necessary information to the Solver so it can optimize the objective
function.

• run(stop_value): This method takes only one parameter that controls the stopping condition of
the Solver. Typically this is either a number of iterations n_iter or a tolerance parameter tol.
Alternatively, a callback function that will be called at each iteration can be passed. The callback
should return False once the computation should stop. The parameter stop_value is controlled
by the stopping_strategy, see below for details.

• get_result(): This method returns a variable that can be passed to the compute method from
the Objective. This is the output of the Solver.

If a Python Solver requires some packages such as scikit-learn, Benchopt allows listing some
requirements. The necessary packages must be available via conda or pip.

Below is a simple Solver example using scikit-learn implementation of Ridge regression with
different optimization algorithms.
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from benchopt import BaseSolver

from benchopt import safe_import_context

# This context allow to manipulate the Solver object even if

# scikit -learn is not installed. It is used in ‘benchopt install ‘.

with safe_import_context () as import_ctx:

from sklearn.linear_model import Ridge

class Solver(BaseSolver):

name = "scikit -learn"

install_cmd = "conda"

requirements = ["scikit -learn"]

parameters = {

"alg": ["svd", "cholesky", "lsqr", "sparse_cg", "saga"],

}

def __init__(self , alg="svd"):

self.alg = alg

def set_objective(self , X, y, reg=1):

self.X, self.y = X, y

self.clf = Ridge(

fit_intercept=False , alpha=reg , solver=self.alg ,

tol=1e-10

)

def run(self , n_iter):

self.clf.max_iter = n_iter + 1

self.clf.fit(self.X, self.y)

def get_result(self):

return self.clf.coef_

B.4 Results from the benchmark

Descriptions of datasets Table B.1 describes the datasets used in this benchmarks.

Table B.1: List of the datasets used in Ridge regression in Appendix B

Datasets References Samples (n) Features (p)

leukemia Golub et al. (1999) 38 7129
bodyfat Guyon et al. (2004) 252 8
gisette Guyon et al. (2004) 6000 5000

We also run the solvers on the simulated data described bellow.

Generation process for simulated dataset We generate a linear regression scenario with decaying
correlation for the design matrix, i.e., the ground-truth covariance matrix is a Toeplitz matrix, with
each element Σij = ρ|i−j|. As a consequence, the generated features have 0 mean, a variance of 1,
and the correlation structure as:

E[Xi] = 0 , E[X2
i ] = 1 and E[XiXj ] = ρ|i−j| . (5)

Our simulation scheme also includes the parameter density = 0.2 that controls the proportion of
non-zero elements in θ∗. The target vector is generated according to linear relationship with Gaussian
noise:

y = Xθ∗ + ε ,

such that the signal-to-noise ratio is snr = ∥Xθ∗∥2

∥ε∥2

.
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We use a signal-to-noise ratio snr = 3, a correlation ρ of 0 or 0.6 with n = 500 samples and
p = 1000 features.

Description of the solvers Table B.2 describes the different solvers compared in this benchmark.

Table B.2: List of solvers used in the Ridge benchmark in Appendix B

Solver References Description Language

GD Boyd and Vandenberghe (2004) Gradient Descent Python

Accelerated GD Nesterov (1983) Gradient Descent + ac-
celeration

Python

scikit-learn[svd] Pedregosa et al. (2011) SVD (Singular Value
Decomposition)

Python (Cython)

scikit-learn[cholesky] Pedregosa et al. (2011) Cholesky decomposi-
tion

Python (Cython)

scikit-learn[lsqr] Pedregosa et al. (2011) regularized least-
squares

Python (Cython)

scikit-learn[saga] Pedregosa et al. (2011) SAGA (Varianced
reduced stochastic
method)

Python (Cython)

scikit-learn[cg] Pedregosa et al. (2011) Conjugate Gradient Python (Cython)
CD Bertsekas (1999) Cyclic Coordinate De-

scent
Python (Numba)

lightning[cd] Blondel and Pedregosa (2016) Cyclic Coordinate De-
scent

Python (Cython)

snapML[cpu] Dünner et al. (2018) CD Python, C++
snapML[gpu] Dünner et al. (2018) CD + GPU Python, C++

Results Figure B.1 presents the performance of the different methods for different values of the
regularization parameter in the benchmark. The algorithms based on the direct computation of
the closed-form solution outperform iterative ones in a majority of presented datasets. Among
closed-form algorithms, the Cholesky solver converges faster.
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Figure B.1: Benchmark for the Ridge regression, on 10 solvers, 5 datasets (rows), and 3 variants of
the Objective (columns) each with a different regularization value λ ∈ {0.01, 0.1, 1}. The curves
display the suboptimality of the iterates, f(θt)− f(θ∗), as a function of time.
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C Design choices

Benchopt has made some design choices, while trying as much as possible to leave users free of
customizing the behavior on each benchmark. We detail the most important ones in this section.

C.1 Estimating θ∗ for convex problems

When the problem is convex, many solvers are guaranteed to converge to a global minimizer θ∗ of the
objective function f . To estimate θ∗ and f(θ∗), Benchopt approximates θ∗ by the iterate achieving
the lowest objective_value among all solvers for a given Dataset and Objective. This means
that the sub-optimality plot proposed by Benchopt are only valid if at least one solver has converged
to the optimal solution. Else, the curves are a lower bound estimate of the sub-optimality. In practice,
for most considered convex problems, running the Solver for long enough ensures that f(θ∗) is
correctly estimated.

C.2 Stopping solvers

Benchopt offers many ways to stop running a solver. The most common is to stop the solver when
the objective value does not decrease significantly between iterations. For some convex problems,
we also propose to track the duality gap (which upper bounds the suboptimality), as is done for the
Lasso. For non convex problems, criteria such as gradient norm or violation of first order conditions
can be used, as users do in practice. These criteria can easily be customized.

C.3 Wall-clock time versus number of iterations

Measuring time or iteration are two alternatives that make sense in their respective contexts. Practi-
tioners mostly care about the time it takes to solve their problem, while researchers in mathematical
optimization may want to abstract away the implementation and hardware details and only consider
iteration. The benchmarks we have presented showcase efficient implementations and are also inter-
ested in hardware and implementation differences (e.g. CPU vs GPU solvers for Section 3, Section 4,
torch versus tensorflow for Section F.4), hence our focus on time. However, Benchopt does not
impose a choice between the two measures: it is perfectly possible to create plots as a function of the
number of iterations as evidenced for example in Section E.3.
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D ℓ2-regularized logistic regression

D.1 List of solvers and datasets used in the benchmark in Section 3

Table D.1 and Table D.2 respectively present the Solvers and Datasets used in this benchmark.

Table D.1: List of solvers used in the `2-regularized logistic regression benchmark in Section 3

Solver References Description Language

lightning[sag] Blondel and Pedregosa (2016) SAG Python (Cython)
lightning[saga] Blondel and Pedregosa (2016) SAGA Python (Cython)
lightning[cd] Blondel and Pedregosa (2016) Cyclic Coordi-

nate Descent
Python (Cython)

Tick[svrg] Bacry et al. (2017) Stochastic Vari-
ance Reduced
Gradient

Python, C++

scikit-learn[sgd] Pedregosa et al. (2011) Stochastic Gra-
dient Descent

Python (Cython)

scikit-learn[sag] Pedregosa et al. (2011) SAG Python (Cython)
scikit-learn[saga] Pedregosa et al. (2011) SAGA Python (Cython)
scikit-learn[liblinear] Pedregosa et al. (2011), Fan et al.

(2008)
Truncated New-
ton Conjugate-
Gradient

Python (Cython)

scikit-learn[lbfgs] Pedregosa et al. (2011), Virtanen
et al. (2020)

L-BFGS
(Quasi-Newton
Method)

Python (Cython)

scikit-learn[newton-cg] Pedregosa et al. (2011), Virtanen
et al. (2020)

Truncated New-
ton Conjugate-
Gradient

Python (Cython)

snapml[cpu] Dünner et al. (2018) CD Python, C++
snapml[gpu] Dünner et al. (2018) CD + GPU Python, C++
cuML[gpu] Raschka et al. (2020) L-BFGS + GPU Python, C++

Table D.2: List of the datasets used in `2-regularized logistic regression in Section 3

Datasets References Samples (n) Features (p) Density

ijcnn1 Prokhorov (2001) 49 990 22 4.5× 10−2

madelon Guyon et al. (2004) 2000 500 2.0× 10−3

news20.binary Keerthi et al. (2005) 19 996 1 355 191 3.4× 10−4

criteo Criteo-Labs (2015) 45 840 617 1 000 000 3.9× 10−5

D.2 Results

Figure D.1 presents the performance results for the different solvers on the different datasets using
various regularization parameter values, on unscaled raw data. We observe that when the regulariza-
tion parameter λ increases, the problem tends to become easier and faster to solve for most methods.
Also, the relative order of the method does not change significantly for the considered range of
regularization.
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Figure D.1: Additional benchmark for the ℓ2-regularized logistic regression on variants of the
Objective (columns) with fit_intercept=False. The curves display the suboptimality of the
iterates, f(θt)− f(θ∗), as a function of time. The columns correspond to the objective detailed in
Problem (2) with different value of λ: (first) λ = 0.1, (second) λ = 1 and (third) λ = 10.
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E Lasso

E.1 List of solvers and datasets used in the Lasso benchmark in Section 4

Table E.1 and Table E.2 respectively present the Solvers and Datasets used in this benchmark.

Table E.1: List of solvers used in the Lasso benchmark in Section 4

Solver References Description Language

blitz Johnson and Guestrin (2015) CD + working set Python, C++

coordinate descent Friedman et al. (2010) (Cyclic) Minimization
along coordinates

Python (Numba)

celer Massias et al. (2018) CD + working set + dual
extrapolation

Python (Cython)

cuML[cd] Raschka et al. (2020) (Cyclic) Minimization
along coordinates

Python, C++

cuML[qn] Raschka et al. (2020) Orthant-Wise Limited
Memory Quasi-Newton
(OWL-QN)

Python, C++

FISTA Beck and Teboulle (2009) ISTA + acceleration Python

glmnet Friedman et al. (2010) CD + working set +
strong rules

R, C++

ISTA Daubechies et al. (2004) ISTA (Proximal GD) Python

LARS Efron et al. (2004) Least-Angle Regression
algorithm (LARS)

Python (Cython)

FISTA[adaptive-1] Liang et al. (2022, Algo 4), Far-
rens et al. (2020)

FISTA + adaptive restart Python

FISTA[greedy] Liang et al. (2022, Algo 5), Far-
rens et al. (2020)

FISTA + greedy restart Python

noncvx-pro Poon and Peyré (2021) Bilevel optim + L-
BFGS

Python (Cython)

skglm Bertrand et al. (2022) CD + working set + pri-
mal extrapolation

Python (Numba)

scikit-learn Pedregosa et al. (2011) CD Python (Cython)

snapML[gpu] Dünner et al. (2018) CD + GPU Python, C++

snapML[cpu] Dünner et al. (2018) CD Python, C++

lasso.jl Kornblith (2021) CD Julia

Table E.2: List of datasets used in the Lasso benchmark in Section 4

Dataset References Samples (n) Features (p) Density

MEG Gramfort et al. (2014) 305 7498 1.0
news20 Keerthi et al. (2005) 19 996 1 355 191 3.4× 10−4

rcv1 Lewis et al. (2004) 20 242 47 236 3.6× 10−3

MillionSong Bertin-Mahieux et al. (2011) 463 715 90 1

E.2 Support identification speed benchmark

Since the Lasso is massively used for its feature selection properties, the speed at which the solvers
identify the support of the solution is also an important performance measure. To evaluate the
behavior of solvers in this task, it is sufficient to add a single new variable in the Objective, namely
the ℓ0 pseudonorm of the iterate, allowing to produce Figure E.1 in addition to Figure 4.

E.3 Convergence in terms of iteration

While practitioners are mainly concerned with the time it takes to solve their optimization problem,
one may also be interested in the convergence as a function of the number of iterations. This is
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Figure E.1: Additional benchmark for the Lasso on variants of the Objective (columns). The curves
display the fraction of non-zero coefficients in iterates θt (∥θt∥0/p), as a function of time.

particularly relevant to compare theoretical convergence rates with experiments. Benchopt natively
supports such functionality. Yet, this makes sense only if one iteration of each algorithm costs the
same. Figure E.2 presents such a case on the leukemia dataset, using algorithms for which one
iteration costs n × p. One can observe that cyclic coordinate descent as implemented in Cython

in scikit-learn or in Numba lead to identical results, while they outperform proximal gradient
methods.
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Figure E.2: Convergence speed with respect to the number of iterations for some solvers of the Lasso
benchmark on the leukemia dataset.
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F ResNet18

F.1 Description of the benchmark

Setting up the benchmark The three currently supported frameworks are
TensorFlow/Keras (Abadi et al., 2015; Chollet et al., 2015), PyTorch (Paszke et al., 2019)
and PyTorch Lightning (Falcon et al., 2020). We report here results for TensorFlow/Keras
and PyTorch. To guarantee that the model behaves consistently across the different considered
frameworks, we implemented several consistency unit tests. We followed the best practice of each
framework to make sure to achieve the optimal computational efficiency. In particular, we tried
as much as possible to use official code from the frameworks, and not third-party code. We also
optimized and profiled the data pipelines to make sure that our training was not IO-bound. Our
benchmarks were run using TensorFlow version 2.8 and PyTorch version 1.10.

Descriptions of the datasets

Table F.1: Description of the datasets used in the ResNet18 image classification benchmark

Dataset Content References Classes Train Size Val. Size Test Size Image Size RGB

CIFAR-10 natural images Krizhevsky (2009) 10 40k 10k 10k 32 ✓

SVHN digits in natural images Netzer et al. (2011) 10 58.6k 14.6k 26k 32 ✓

MNIST handwritten digits LeCun et al. (2010) 10 50k 10k 10k 28 ✗

In Table F.1, we present some characteristics of the different datasets used for the ResNet18 bench-
mark. In particular, we specify the size of each splits when using the train-validation-test split strategy.
The test split is always fixed, and is the official one.

While the datasets are downloaded and preprocessed using the official implementations of the
frameworks, we made sure to test that they matched using a unit test.

ResNet The ResNet18 is the smallest variant of the architecture introduced by He et al. (2016). It
consists in 3 stages:

1. A feature extension convolution that goes from 3 channels (RGB, or a repeated grayscale channel
in the MNIST case) to 64, followed by a batch normalization and a ReLU.

2. A series of residual blocks. Residual blocks are grouped by scale, and each individual group starts
with a strided convolution to reduce the image scale (except the first one). As the scale increases,
so does the number of features (64, 128, 256, 512). In the ResNet18 case, each scale group has
two individual residual blocks and there are four scales. A residual block is comprised of three
convolution operations, all followed by a batch normalization layer, and the first two also followed
by a ReLU. The input is then added to the output of the third batch normalization layer before
being fed to a ReLU.

3. A classification head that performs global average pooling, before applying a fully connected (i.e.
dense) layer to obtain logits.

Training’s hyperparameters

Table F.2: Hyperparameters used for each solver. If a hyperparameter’s value is not specified in the
table, it was set as the default of the implementation (checked to be consistent across frameworks).

Hyperparameter SGD Adam

Learning Rate 0.1 0.001

Momentum 0.9 N/A

Weight Decay 5× 10−4 0.02

Batch Size 128 128
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Figure F.1: ResNet18 image classification benchmark on CIFAR-10 for different values of
learning rate and weight decay for SGD and Adam. The default values are that reported in
Table F.2. In dashed black is the state of the art for CIFAR-10 with a ResNet18 measured by Zhang
et al. (2019). Curves are exponentially smoothed.

In Table F.2, we specify the hyperparameters we used for the benchmark. For the SGD, the values
were taken from the pytorch-cifar GitHub repository, while for Adam we took the most relevant ones
from the work of Wightman et al. (2021).

F.2 Hyperparameter sensitivity

In the benchmark presented in Section 5, we consider fixed hyperparameters chosen from common
practices to train ResNet18 models for an image classification task. However, in practice, these
hyperparameters must be carefully set, either via a grid search, or via more adapted algorithms such as
random search (bergstra2012random) or bayesian optimization (Paszke et al., 2019). It is therefore
important to evaluate how sensitive an optimizer is to choosing the right parameters, as more sensitive
methods will require more exhaustive hyperparameters search. In Figure F.1, we study this issue
using Benchopt for image classification on CIFAR-10. Despite achieving the best results in terms of
accuracy, SGD is way more sensitive to the choice of hyperparameters than Adam.6

Another way to look at hyperparameter sensitivity is to evaluate how a given selection of hyperpa-
rameters performs for different tasks. Figure 5 shows that while SGD is sensitive to the choice of
learning rate and weight decay, the selected values work very well across 3 different datasets.

F.3 Aligning TensorFlow and PyTorch ResNet18 training

We summarized in Table F.3 the different elements that have to be considered to align the training of
a ResNet18 in PyTorch and TensorFlow. Let us detail here some lines of this table:

• Bias in convolutions: It can be seen in TensorFlow/Keras official implementation, that con-
volutions operations use a bias. This is in contrast to PyTorch’s official implementation in
torchvision which does not. Since the convolutions are followed by batch normalization layers,
with a mean removal, the convolutions’ bias is a spurious parameter, as was noted by Ioffe and
Szegedy (2015). We therefore chose to use unbiased convolutions.

• Decoupled weight decay scaling: this led us to scale manually the weight decay used in
TensorFlow by the learning rate when setting it. Moreover, because the weight decay is completely
decoupled from the learning rate, it is important to update it accordingly when using a learning
rate schedule, as noted in the TensorFlow documentation.

• Batch normalization momentum: an important note here is that the convention used to imple-
ment the batch normalization momentum is not the same in the 2 frameworks. Indeed we have the
relationship momentumTF = 1− momentumPT.

6We ran the same experiment on two other datasets obtaining similar figures.
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Table F.3: Differences in off-the-shelf implementations of various components when training
ResNet18 for image classification in PyTorch and TensorFlow. The selected versions are put in bold
font for components that we were able to reconcile. This highlights the numerous details to consider
when comparing experimental results.

Component PyTorch TensorFlow/Keras

Bias in convolutions ✗ ✓

Decoupled weight decay scaling Multiplied by learning rate Completely decoupled

Batch normalization momentum 0.9 0.99

Conv2D weights init. Fan out, normal Fan average, uniform

Classification head init. (weights) Fan in, uniform Fan average, uniform

Classification head init. (bias) Fan in, uniform Zeros

Striding in convolutions Starts one off Ends one off

Variance estimation in batch norm unbiased (eval)/biased (training) biased

• Conv2D weights intialization: TensorFlow/Keras uses the default intialization which is a Glorot
uniform intialization (Glorot and Bengio, 2010). PyTorch uses a He normal initialization (He
et al., 2015). We used TensorFlow’s Variance Scaling framework to differentiate the 2.

• Striding in convolutions: when using a stride of 2 in convolutions on an even-size image, one
needs to specify where to start the convolution in order to know which lines (one in every two) in
the image will be removed. The decision is different between TensorFlow and PyTorch. This is
not expected to have an effect on the final performance, but it makes it more difficult to compare
the architectures when unit testing. We therefore decided to align the models on this aspect as
well.

• Variance estimation in batch normalization: in order to estimate the batch variance during
training for batch normalization layers, it is possible to chose between the unbiased and the biased
variance estimator. The unbiased variance estimator applies a Bessel correction to the biased
variance estimator, namely a multiplication by a factor m

m−1 , where m is the number of samples

used to estimate. It is to be noted that PyTorch does uses the biased estimator in training, but
stores the unbiased estimator for use during inference. TensorFlow does not allow for such a
behaviour, and the 2 are therefore not reconcilable7. Arguably this inconsistency should not play
a big role with large batch sizes, but can be significant for smaller batches, especially in deeper
layers where the feature map size (and therefore the number of samples used to compute the
estimates) is reduced.

Adapting official ResNet implementations to small images In addition to these elements, it
is important to adapt the reference implementations of both frameworks to the small image case.
Indeed, for the case of ImageNet, the ResNet applies two downsampling operations (a stride-2
convolution and a max pooling) at the very beginning of the network to make the feature maps size
more manageable. In the case of smaller images, it is necessary to do without these downsampling
operations (i.e. perform the convolution with stride 1 and get rid of the max pooling).

Coupled weight decay in TensorFlow In TensorFlow, the SGD implementation does not allow the
setting of coupled weight decay. Rather, one has to rely on the equivalence (up to a scale factor of 2)
between coupled weight decay and L2 regularization. However, in TensorFlow/Keras, adding L2
regularization on an already built model (which is the case for the official ResNet implementation), is
not straightforward and we relied on the workaround of Silva (2019).

F.4 VGG benchmark on CIFAR-10

In order to show how flexible Benchopt is, we also ran a smaller version of the ResNet benchmark
using a VGG16 (Simonyan and Zisserman, 2015) network instead of a ResNet18. In the Benchopt

framework, this amounts to specifying a different model in the objective, while all the other pieces of
code in the benchmark remain unchanged. Note that the VGG official implementations also need to

7It is possible to use the unbiased estimator in TensorFlow for the batch normalization, even if not documented,
but its application is consistent between training and inference unlike PyTorch.
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Figure F.2: VGG16 image classification benchmark with PyTorch solvers. The best SGD configu-
ration features data augmentation, momentum, step learning rate schedule and weight decay.

be adapted to the CIFAR-10 case by changing the classification head. This was not specified in the
original paper, where no experiment was conducted on small-scale datasets, and we relied on available
open source implementations (cifar10-vgg16 and cifar-vgg) to make this decision. Importantly, these
implementations use batch normalization to make the training of VGG more robust to initialization,
which is not the case in the official framework implementations.

In Figure F.2, we see that for the case of VGG, the application of weight decay is so important that
without it, in cases with momentum, the model does not converge.
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G ℓ1-regularized logistic regression

This additional benchmark is dedicated to ℓ1-regularized logistic regression, in the same setting as
Problem (2) but this time with an ℓ1-regularization for the parameters of the model:

θ∗ = argmin
θ∈Rp

n
∑

i=1

log
(

1 + exp(−yiX
⊤
i θ)

)

+ λ∥θ∥1 . (6)

G.1 List of solvers and datasets used in the ℓ1-regularized logistic regression benchmark

The code for the benchmark is available at https://github.com/benchopt/benchmark_logreg_
l1/. Table G.1 and Table G.2 present the solvers and datasets used in this benchmark.

Table G.1: List of solvers used in the ℓ1-regularized logistic regression benchmark

Solver References Description Language

blitz Johnson and Guestrin
(2015)

CD + working set Python, C++

coordinate descent Friedman et al. (2010) (Cyclic) Minimization
along coordinates

Python (Numba)

coordinate descent

(Newton)

Friedman et al. (2010) CD + Newton Python (Numba)

celer Massias et al. (2018) CD + working set + dual
extrapolation

Python (Cython)

copt[FISTA line

search]

Pedregosa et al. (2020),
Beck and Teboulle (2009)

FISTA (ISTA + acceler-
ation) + line search

Python (Cython)

copt[PGD] Pedregosa et al. (2020),
Combettes and Wajs
(2005)

Proximal Gradient De-
scent

Python (Cython)

copt[PGD linesearch] Pedregosa et al. (2020),
Combettes and Wajs
(2005)

Proximal Gradient De-
scent + linesearch

Python (Cython)

copt[saga] Pedregosa et al. (2020) SAGA (Variance
reduced stochastic
method)

Python (Cython)

copt[svrg] Pedregosa et al. (2020) SVRG (Variance
reduced stochastic
method)

Python (Cython)

cuML[gpu] Raschka et al. (2020) L-BFGS + GPU Python, C++

cuML[qn] Raschka et al. (2020) Orthant-Wise Limited
Memory Quasi-Newton
(OWL-QN)

Python, C++

cyanure Mairal (2019) Proximal Minimiza-
tion by Incremental
Surrogate Optimization
(MISO)

Python, C++

lightning Blondel and Pedregosa
(2016)

(Cyclic) Coordinate De-
scent

Python (Cython)

scikit-learn[liblinear]Pedregosa et al. (2011),
Fan et al. (2008)

Truncated Newton
Conjugate-Gradient

Python (Cython)

scikit-learn[lbfgs] Pedregosa et al. (2011),
Virtanen et al. (2020)

L-BFGS (Quasi-
Newton Method)

Python (Cython)

scikit-learn[newton-cg]Pedregosa et al. (2011),
Virtanen et al. (2020)

Truncated Newton
Conjugate-Gradient

Python (Cython)

snapml[gpu=True] Dünner et al. (2018) CD + GPU Python, C++

snapml[gpu=False] Dünner et al. (2018) CD Python, C++
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Table G.2: List of the datasets used in the ℓ1-regularized logistic regression benchmark

Datasets References Samples (n) Features (p) Density

gisette Guyon et al. (2004) 6000 5000 9.9× 10−1

colon-cancer Guyon et al., 2004 62 2000 1.0
news20.binary Keerthi et al. (2005) 19 996 1 355 191 3.4× 10−4

rcv1.binary Guyon et al., 2004 20 242 19 959 3.6× 10−3
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Figure G.1: Benchmark for the ℓ1-regularized logistic regression on variants of the Objective

(columns). The curves display the suboptimality of the iterates, f(θt)− f(θ∗), as a function of time.

The first column corresponds to the objective detailed in Problem (6) with λ = 0.1∥X⊤y∥∞/2, the

second one with λ = 0.01∥X⊤y∥∞/2 and the third column with λ = 0.001∥X⊤y∥∞/2.

G.2 Results

The results of the ℓ1-regularized logistic regression benchmark are in Figure G.1.
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H Unidimensional total variation

The use of 1D Total Variation regularization takes its root in the taut-string algorithm (Barlow and
Brunk, 1972) and can be seen as a special case of either the Rudin-Osher-Fatemi model (Rudin et al.,
1992) or the Generalized Lasso (Tibshirani and Taylor, 2011) for a quadratic data fit term. It reads

θ∗ ∈ argmin
θ∈Rp

F (y,Xθ) + λ ∥Dθ∥1 , (7)

where F is a data fidelity term, X ∈ R
n×p is a design matrix with n samples and p features, y ∈ R

n

is the target vector, λ > 0 is a regularization hyperparameter, and D ∈ R
(p−1)×p is a finite difference

operator defined by (Dθ)k = θk+1 − θk for all 1 ≤ k ≤ p − 1 (it is also possible to use cyclic
differences).

Most often, the data fidelity term is the ℓ2-loss F (y, z) = 1
2 ∥y − z∥22, following an additive Gaussian

noise hypothesis. But the data fit term can also account for other types of noises, such as noises with
heavy tails using the Huber loss F (y, z) = |y − z|µ where | · |µ is defined coordinate-wise by

|t|µ =

{

1
2 t

2 if |t| ≤ µ

µ|t| − µ2

2 otherwise.

Problem (7) promotes piecewise-constant solutions – alternatively said, solutions such that their
gradients is sparse – and was proved to be useful in several applications, in particular for change
point detection (Bleakley and Vert, 2011; Tibshirani, 2014), for BOLD signal deconvolution in
functional MRI (Karahanoğlu et al., 2013; Cherkaoui et al., 2019) or for detrending in oculomotor
recordings (Lalanne et al., 2020).

The penalty θ 7→ ∥Dθ∥1 is convex but non-smooth, and its proximity operator has no closed form.
Yet as demonstrated by Condat (2013a), the taut-string algorithm allows to compute this proximity
operator in O(p2) operations in the worst case, but it enjoys a O(p) complexity in most cases. Other
methods do not rely on this proximity operator and directly solve Problem (7), using either primal-dual
approaches (Chambolle and Pock, 2011; Condat, 2013b), or solving the dual problem (Komodakis
and Pesquet, 2015). Finally, for 1-dimensional TV regularization, one can also use the synthesis
formulation (Elad et al., 2006) to solve the problem. By setting z = Dθ and θ = Lz + ρ where
L ∈ R

p×p−1 is a lower trianglar matrix representing an integral operator (cumulative sum), the
problem is equivalent to a Lasso problem, and ρ∗ has a closed-form expression (see e.g., Bleakley
and Vert 2011 for a proof). As a consequence, any lasso solver can be used to obtain the solution of
the Lasso problem z∗ and the solution of the original Problem (7) u∗ is retrieved as u∗ = Lz∗ + ρ∗.

The code for the benchmark is available at https://github.com/benchopt/benchmark_tv_1d/
and Table H.1 details the different algorithms used in this benchmark.

Table H.1: List of solvers used in the 1D Total Variation benchmarks

Solver References Formulation Description

ADMM Boyd et al. (2011) Analysis Primal-Dual Augmented La-
grangian

ChambollePock Chambolle and Pock (2011) Analysis Primal-Dual Hybrid Gradient

CondatVu Condat (2013b) Analysis Primal-Dual Hybrid Gradient

DPGD Komodakis and Pesquet (2015) Analysis Dual proximal GD (+ acceleration)

PGD Condat (2013a) Analysis Proximal GD + taut–string

Barbero and Sra (2018) ProxTV (+ acceleration)

celer Massias et al. (2018) Synthesis CD + working set (lasso)

only for ℓ2 data-fit

FP Combettes and Glaudin (2021) Synthesis Fixed point with block updates

ISTA Daubechies et al. (2004) Synthesis Proximal GD (+ acceleration)

skglm Bertrand et al. (2022) Synthesis CD + working set
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Figure H.1: Benchmark for the TV -regularized regression regression, on 13 solvers, 4 variants
of the Objective (rows), and 3 configurations for a simulated dataset (columns). The curves
display the suboptimality of the iterates, f(θt) − f(θ∗), as a function of time. The solvers in this
benchmark showcase the three resolution approaches with the Analysis (A), Dual (D) and Synthesis
(S) formulations.

Simulated dataset We use here simulated data, as applications based on fMRI and EOG signals
require access to open and preprocessed data that we will make available on OpenML Vanschoren
et al., 2013 in the future. The data are generated as follows: a block signal θ̄ ∈ R

p is generated by
sampling first a sparse random vector z ∈ R

p with K non-zero coefficients positioned randomly, and
taking random values following a N (0, 1) distribution. Finally, θ̄ is obtained by discrete integration

as θ̄i =
∑i

k=1 zk for 1 ≤ i ≤ p. The design matrix X ∈ R
n×p is a Gaussian random design with

Xij ∼ N (0, 1). The observations y are obtained as y = Xθ̄ + ϵ, with ϵ ∼ N (0, 0.01) a Gaussian
white noise. For all experiments, we used p = 500 and vary the number of non-zero coefficient K,
and the number of rows n of the matrix X .

Results Figure H.1 shows that the solvers using the synthesis formulation and coordinate descent-
based solvers for the Lasso (ℓ2 data fit term) work best on this type of problem. For the Huber data fit
term, the solver using the analysis formulation and the taut-string algorithm for the proximal operator
are faster. An interesting observation from this benchmark is the behavior of the solvers based on
primal-dual splitting or dual formulation. We observe that for all these solvers, the objective starts by
increasing. This is probably due to a sub-optimal initialization of the dual variable compared to the
primal one. While this initialization is seldom described in the literature, it seems to have a large
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impact on the speed of these algorithms. This shows how Benchopt allows to reveal such behavior,
and could lead to practical guidelines on how to select this dual initialization.

Extensions We plan to extend this benchmark in the future to consider higher dimensional problems
– e.g., 2D TV problems for images – or higher order TV regularization, such as Total Generalized
Variation Bredies et al., 2010 or inf-convolution of TV functionals Chambolle and Lions, 1997 – used
of instance for change point detection (Tibshirani, 2014). Yet, for 2D or higher dimensional problems,
we can no longer use the synthesis formulation. It is however possible to apply the taut-string method
of Condat (2013a) and graph-cut methods of Boykov et al. (2001) and Kolmogorov and Zabin (2004)
for anisotropic TV, and dual or primal-dual methods for isotropic, such as Primal-Dual Hybrid
Gradient algorithm (Chambolle and Pock, 2011).

39

iv 151



I Linear regression with minimax concave penalty (MCP)

The Lasso problem (Tibshirani, 1996) is a least-squares regression problem with a convex non-smooth
penalty that induces sparsity in its solution. However, despite its success and large adoption by the
machine learning and signal processing communities, it is plagued with some statistical drawbacks,
such as bias for large coefficients. To overcome these issues, the standard approach is to consider
non-convex sparsity-inducing penalties. Several penalties have been proposed: Smoothly Clipped
Absolute Deviation (SCAD, Fan and Li 2001), the Log Sum penalty (Candès et al., 2008), the
capped-ℓ1 penalty (Zhang, 2010b) or the Minimax Concave Penalty (MCP, Zhang 2010a).

This benchmark is devoted to least-squares regression with the latter, namely the problem:

θ∗ ∈ argmin
θ∈Rp

1
2n ∥y −Xθ∥2 +

p
∑

j=1

ρλ,γ(θj) , (8)

where X ∈ R
n×p is a design matrix containing p features as columns, y ∈ R

n is the target vector,
and ρλ,γ the penalty function that reads as:

ρλ,γ(t) =

{

λ|t| − t2

2γ , if |t| ≤ γλ ,
λ2γ
2 , if |t| > γλ .

Similarly to the Lasso, Problem (8) promotes sparse solutions but the optimization problem raises
some difficulties due to the non-convexity and non-smoothness of the penalty. Nonetheless, several
efficient algorithms have been derived for solving it. The ones we use in the benchmark are listed in
Table I.1.

Table I.1: List of solvers used in the MCP benchmark

Solver References Short Description

CD Breheny and Huang (2011), Mazumder
et al. (2011)

Proximal coordinate descent

PGD Bolte et al. (2014) Proximal gradient descent

GIST Gong et al. (2013) Proximal gradient + Barzilai-Borwein rule

WorkSet CD Boisbunon et al. (2014) Coordinate descent + working set

skglm Bertrand et al. (2022) Accelerated coordinate descent + Working set

The code for the benchmark is available at https://github.com/benchopt/benchmark_mcp/. For
this benchmark, we run the solvers on the colon-cancer dataset and on the simulated dataset described
in Table B.4. We use a signal-to-noise ratio snr = 3, a correlation ρ = 0.6 with n = 500 observations
and p = 2000 features.

I.1 Results

The result of the benchmark is presented in Figure I.1 The problem is non-convex and solvers are
only guaranteed to converge to local minima; hence in Figure I.1 we monitor the distance of the
negative gradient to the Fréchet subdifferential of the MCP, representing the violation of the first
order optimality condition. Other metrics, such as objective of iterates sparsity, are monitored in the
full benchmark, allowing to compare the different limit points obtained by the solvers.
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Figure I.1: Benchmark for the MCP regression on variants of the Objective (columns). The curves
display the violation of optimality conditions, dist(−X⊤(Xθt − y)/n, ∂ρλ,γ(θt)), as a function of

time. γ is set to 3, and λ is parameterized as a fraction of the Lasso’s λmax,
∥

∥X⊤y
∥

∥

∞
/n.
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J Zero-order optimization on standard functions

Zero-order optimization refers to scenarios where only calls to the function to minimize are possible.
This is in contrast with first-order optimization where gradient information is available. Grid search,
random search, evolution strategies (ES) or Bayesian optimization (BO) are popular methods to
tackle such a problem and are most commonly employed for hyperparameter optimization. This
setting is also known as black-box optimization.

This benchmark demonstrates the usability of Benchopt for zero-order optimization considering
functions classically used in the literature (Hansen et al., 2021). The functions are available in the
PyBenchFCN package https://github.com/Y1fanHE/PyBenchFCN/. In particular, among the 61
functions of interest we present here (see Figure J.1) a benchmark for three functions, defined for any
x = (x1, . . . , xN ) ∈ R

N :

f(x) =
N−1
∑

i=1

[100(xi+1 − x2
i )

2 + (1− xi)
2] (Rosenbrock)

f(x) = 10 ·N +
N
∑

i=1

[(x2
i − 10 · cos(2πxi)] (Rastrigin)

f(x) = −20 · exp



−0.2

√

√

√

√

1

d

N
∑

i=1

x2
i



− exp

[

1

d

N
∑

i=1

cos(2πxi)

]

+ e+ 20 (Ackley) .

For each function, the domain is restricted to a box: ∥x∥∞ ≤ 32 for Ackley, ∥x∥∞ ≤ 30 for
Rosenbrock and ∥x∥∞ ≤ 5.12 for Rastrigin. The algorithms considered in the benchmark are
listed in Table J.1. As BFGS requires first-order information, gradients are approximated with finite-
differences.

Table J.1: List of solvers used in the zero-order benchmark

Solver References Description

Basin-hopping Wales and Doye (1997) and
Virtanen et al. (2020)

Two-phase method: global step + local min.

Nevergrad-RandomSearch Rapin and Teytaud (2018)
and Bergstra and Bengio
(2012)

Sampler by random search

Nevergrad-CMA Rapin and Teytaud (2018)
and Hansen and Ostermeier
(2001)

CMA evolutionary strategy

Nevergrad-TwoPointsDE Rapin and Teytaud (2018) Evolutionary strategy

Nevergrad-NGOpt Rapin and Teytaud (2018) Adaptive evolutionary algorithm

Nelder-Mead Gao and Han (2012) and Vir-
tanen et al. (2020)

Direct search (downhill simplex)

BFGS Virtanen et al. (2020) BFGS with finite differences

Powell Powell (1964) and Virtanen
et al. (2020)

Conjugate direction method

optuna-TPE Akiba et al. (2019) and
Bergstra et al. (2013)

Sampler by Tree Parzen Estimation (TPE)

optuna-CMA Akiba et al. (2019) and
Hansen and Ostermeier
(2001)

CMA evolutionary strategy

The code for the benchmark is available at https://github.com/benchopt/benchmark_zero_
order/.

J.1 Results

The results of the benchmark are presented in Figure J.1. The functions are non-convex and solvers
are only guaranteed to converge to local minima; hence in Figure J.1 we monitor the value of the
function. The functions are designed such that the global minimum of the function is always 0. One
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Figure J.1: Benchmark for the zero-order optimization on the Ackley, Rosenbrock and Rastrigin
functions in dimension N = 20.

can observe that the CMA and TwoPointsDE implementations from nevergrad consistently reaches
the global minimum. In addition, the CMA implementation from optuna is a bit slower than the
one from nevergrad. Also one can notice that random search offers reasonable results. The TPE
method seems to suffer from the curse of dimensionality, as most kernel methods in non-parametric
estimation. Finally regarding the scipy solvers, Powell can be competitive, while Nelder-Mead and
BFGS suffer a lot from local minima.
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Abstract

The lasso is the most famous sparse regression
and feature selection method. One reason for
its popularity is the speed at which the un-
derlying optimization problem can be solved.
Sorted L-One Penalized Estimation (SLOPE)
is a generalization of the lasso with appeal-
ing statistical properties. In spite of this,
the method has not yet reached widespread
interest. A major reason for this is that cur-
rent software packages that fit SLOPE rely
on algorithms that perform poorly in high
dimensions. To tackle this issue, we propose
a new fast algorithm to solve the SLOPE op-
timization problem, which combines proximal
gradient descent and proximal coordinate de-
scent steps. We provide new results on the
directional derivative of the SLOPE penalty
and its related SLOPE thresholding operator,
as well as provide convergence guarantees for
our proposed solver. In extensive benchmarks
on simulated and real data, we demonstrate
our method’s performance against a long list
of competing algorithms.

1 INTRODUCTION

In this paper we present a novel numerical algorithm for
Sorted L-One Penalized Estimation (SLOPE, Bogdan

Proceedings of the 26th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2023, Valencia,
Spain. PMLR: Volume 206. Copyright 2023 by the au-
thor(s).

et al., 2013; Bogdan et al., 2015; Zeng and Figueiredo,
2014), which, for a design matrix X ∈ R

n×p and re-
sponse vector y ∈ R

n, is defined as

β∗ ∈ arg min
β∈Rp

P (β) =
1

2
‖y −Xβ‖2 + J(β) (1)

where

J(β) =

p
∑

j=1

λj |β(j)| (2)

is the sorted `1 norm, defined through

|β(1)| ≥ |β(2)| ≥ · · · ≥ |β(p)| , (3)

with λ being a fixed non-increasing and non-negative
sequence.

The sorted `1 norm is a sparsity-enforcing penalty that
has become increasingly popular due to several ap-
pealing properties, such as its ability to control false
discovery rate (Bogdan et al., 2015; Kos and Bogdan,
2020), cluster coefficients (Figueiredo and Nowak, 2016;
Schneider and Tardivel, 2020), and recover sparsity and
ordering patterns in the solution (Bogdan et al., 2022).
Contrary to other coefficient clustering approaches such
as the fused Lasso (Tibshirani et al., 2005), it is indepen-
dent of feature order, and in addition does not require
prior knowledge of the number of clusters. Finally,
unlike other competing sparse regularization methods
such as MCP (Zhang, 2010) and SCAD (Fan and Li,
2001), SLOPE has the advantage of being a convex
problem (Bogdan et al., 2015).

In spite of the availability of predictor screening
rules (Larsson, Bogdan, and Wallin, 2020; Elvira and
Herzet, 2021), which help speed up SLOPE in the high-
dimensional regime, current state-of-the-art algorithms
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for SLOPE perform poorly in comparison to those of
more established penalization methods such as the lasso
(`1 norm regularization) and ridge regression (`2 norm
regularization). As a small illustration of this issue,
we compared the speed at which the SLOPE (Larsson
et al., 2022) and glmnet (Friedman et al., 2022) pack-
ages solve a SLOPE and lasso problem, respectively,
for the bcTCGA data set. SLOPE takes 43 seconds to
reach convergence, whilst glmnet requires only 0.14
seconds1. This lackluster performance has hampered
the applicability of SLOPE to many real-world appli-
cations. In this paper, we present a remedy for this
issue: an algorithm that reaches convergence in only
2.9 seconds on the same problem2.

A major reason for why algorithms for solving `1-,
MCP-, or SCAD-regularized problems enjoy better per-
formance is that they use coordinate descent (Tseng,
2001; Friedman, Hastie, and Tibshirani, 2010; Breheny
and Huang, 2011). Current SLOPE solvers, on the
other hand, rely on proximal gradient descent algo-
rithms such as FISTA (Beck and Teboulle, 2009) and
the alternating direction method of multipliers method
(ADMM, Boyd et al., 2010), which have proven to be
less efficient than coordinate descent in empirical bench-
marks on related problems, such as the lasso (Moreau
et al., 2022). In addition to FISTA and ADMM, there
has also been research into Newton-based augmented
Lagrangian methods to solve SLOPE (Luo et al., 2019).
But this method is adapted only to the p� n regime
and, as we show in our paper, is outperformed by our
method even in this scenario. Applying coordinate
descent to SLOPE is not, however, straightforward
since convergence guarantees for coordinate descent
require the non-smooth part of the objective to be
coordinate-wise separable, which is not the case for
SLOPE. As a result, naive coordinate descent schemes
can get stuck (Figure 1).

In this article, we address this problem by introducing
a new, highly effective algorithm for SLOPE based
on a hybrid proximal gradient and coordinate descent
scheme. Our method features convergence guarantees
and reduces the time required to fit SLOPE by orders
of magnitude in our empirical experiments.

Notation Let (i)− be the inverse of (i) such that
(

(i)−
)−

= (i); see Table 1 for an example of this
operator for a particular β. This means that

J(β) =

p
∑

j=1

λj |β(j)| =

p
∑

j=1

λ(j)− |βj | .

1See Appendix B.1 for details on this experiment.
2Note that we do not use any screening rule in the current

implementation of our algorithm, unlike the SLOPE package,
which uses the strong screening rule for SLOPE (Larsson,
Bogdan, and Wallin, 2020).
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(β

)
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P (β)

Figure 1: An example of standard coordinate descent
getting stuck on a two-dimensional SLOPE problem.
The main plot shows level curves for the primal objec-
tive (1), with the minimizer β∗ = [0, 0]T indicated by
the orange cross. The marginal plots display objective
values at β1 = 0.2 when optimizing over β2 and vice
versa. At β = [0.2, 0.2]T , standard coordinate descent
can only move in the directions indicated by the dashed
lines—neither of which are descent directions for the
objective. As a result, the algorithm is stuck at a sub-
optimal point.

Sorted `1 norm penalization leads to solution vectors
with clustered coefficients in which the absolute values
of several coefficients are set to exactly the same value.
To this end, for a fixed β such that |βj | takes m distinct
values, we introduce C1, C2, . . . , Cm and c1, c2, . . . , cm

for the indices and coefficients respectively of the m
clusters of β, such that Ci = {j : |βj | = ci} and
c1 > c2 > · · · > cm ≥ 0. For a set C, let C̄ denote
its complement. Furthermore, let (ei)i∈[d] denote the

canonical basis of Rd, with [d] = {1, 2, . . . , d}. Let Xi:

and X:i denote the i-th row and column, respectively,
of the matrix X. Finally, let sign(x) = x/|x| (with
the convention 0/0 = 1) be the scalar sign, that acts
entrywise on vectors.

Table 1: Example of the permutation operator (i) and
its inverse (i)− for β = [0.5,−5, 4]T

i βi (i) (i)−

1 0.5 2 3
2 −5 3 1
3 4 1 2
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2 COORDINATE DESCENT FOR

SLOPE

Proximal coordinate descent cannot be applied to Prob-
lem (1) because the non-smooth term is not separable.
If the clusters C∗

1 , . . . , C∗
m∗ and signs of the solution β∗

were known, however, then the values c∗
1, . . . , c∗

m∗ taken
by the clusters of β∗ could be computed by solving

min
z∈Rm∗

(

1

2

∥

∥

∥y −X

m∗

∑

i=1

∑

j∈C∗

i

zi sign(β∗
j )ej

∥

∥

∥

2

+
m∗

∑

i=1

|zi|
∑

j∈C∗

i

λj

)

.

(4)

Conditionally on the knowledge of the clusters and the
signs of the coefficients, the penalty becomes separa-
ble (Dupuis and Tardivel, 2022), which means that
coordinate descent could be used.

Based on this idea, we derive a coordinate descent
update for minimizing the SLOPE problem (1) with re-
spect to the coefficients of a single cluster at a time (Sec-
tion 2.1). Because this update is limited to updating
and, possibly, merging clusters, we intertwine it with
proximal gradient descent in order to correctly identify
the clusters (Section 2.2). In Section 2.3, we present
this hybrid strategy and show that is guaranteed to
converge. In Section 3, we show empirically that our
algorithm outperforms competing alternatives for a
wide range of problems.

2.1 Coordinate Descent Update

In the sequel, let β be fixed with m clusters C1, . . . , Cm

corresponding to values c1, . . . , cm. In addition, let
k ∈ [m] be fixed and sk = sign βCk

. We are interested
in updating β by changing only the value taken on the
k-th cluster. To this end, we define β(z) ∈ R

p by:

βi(z) =

{

sign(βi)z , if i ∈ Ck ,

βi , otherwise .
(5)

Minimizing the objective in this direction amounts to
solving the following one-dimensional problem:

min
z∈R

(

G(z) = P (β(z)) =
1

2
‖y −Xβ(z)‖2 + H(z)

)

,

(6)
where

H(z) = |z|
∑

j∈Ck

λ(j)−

z
+

∑

j /∈Ck

|βj |λ(j)−

z
(7)

is the partial sorted `1 norm with respect to the k-th
cluster and where we write λ(j)−

z
to indicate that the

inverse sorting permutation (j)−
z is defined with respect

to β(z). The optimality condition for Problem (6) is

∀δ ∈ {−1, 1}, G′(z; δ) ≥ 0,

where G′(z; δ) is the directional derivative of G in the
direction δ. Since the first part of the objective is
differentiable, we have

G′(z; δ) = δ
∑

j∈Ck

X>
:j (Xβ(z)− y) + H ′(z; δ) ,

where H ′(z; δ) is the directional derivative of H.

Throughout the rest of this section, we derive the solu-
tion to (6). To do so, we will introduce the directional
derivative for the sorted `1 norm with respect to the
coefficient of the k-th cluster. First, as illustrated in
Figure 2, note that H is piecewise affine, with break-
points at 0 and all ±ci’s for which i 6= k. Hence, the
partial derivative is piecewise constant, with jumps at
these points; in addition, H ′(·; 1) = H ′(·,−1) except
at these points.

−3 −c2 −c3 0 c3 c2 3−c2 −c3 c2c3

0.8

1.0

1.2

1.4

H
(z

)

Figure 2: Graph of the partial sorted `1 norm with
β = [−3, 1, 3, 2]T , k = 1, and so c1, c2, c3 = (3, 2, 1).

Let C(z) be the function that returns the cluster of
β(z) corresponding to |z|, that is

C(z) = {j : |β(z)j | = |z|} . (8)

Remark 2.1. Note that if z is equal to some ci, then
C(z) = Ci ∪ Ck, and otherwise C(z) = Ck. Related
to the piecewise affineness of H is the fact that the
permutation3 corresponding to β(z) is















Ck, Cm, . . . , C1 if z ∈ (0, cm) ,

Cm, . . . , Ci, Ck, Ci−1, . . . , C1
if z ∈ (ci, ci−1)

and i ∈ J2, mK ,

Cm, . . . C1, Ck if z ∈ (c1, +∞) ,

and that this permutation also reorders β(z ± h) for
z 6= ci (i 6= k) and h small enough. The only change
in permutation happens when z = 0 or z = ci (i 6= k).
Finally, the permutations differ between β(z + h) and
β(z−h) for arbitrarily small h if and only if z = ci 6= 0.

3the permutation is in fact not unique, without impact
on our results. This is discussed when needed in the proofs.
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We can now state the directional derivative of H.

Theorem 2.2. Let c\k be the set containing
all elements of c except the k-th one: c\k =
{c1, . . . ck−1, ck+1, . . . , cm}. Let εc > 0 such that

εc <
∣

∣ci − cj

∣

∣, ∀ i 6= j and εc < cm if cm 6= 0 . (9)

The directional derivative of the partial sorted `1 norm
with respect to the k-th cluster, H, in the direction δ is

H ′(z; δ) =































∑

j∈C(εc)

λ(j)−

εc
if z = 0 ,

sign(z)δ
∑

j∈C(z+εcδ)

λ(j)−

z+εcδ

if |z| ∈ c\k \ {0},

sign(z)δ
∑

j∈C(z)

λ(j)−

z
otherwise .

The proof is in Appendix A.1; in Figure 3, we show an
example of the directional derivative and the objective
function.
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′
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)

δ

1

−1

Figure 3: The function G and its directional derivative
G′(·; δ) for an example with β = [−3, 1, 3, 2]T , k =
1, and consequently c\k = {1, 2}. The solution of
Problem (6) is the value of z for which G′(z; δ) ≥ 0 for
δ ∈ {−1, 1}, which holds only at z = 2, which must
therefore be the solution.

Using the directional derivative, we can now introduce
the SLOPE thresholding operator.

Theorem 2.3 (The SLOPE Thresholding Operator).
Define S(x) =

∑

j∈C(x) λ(j)−

x
and let

T (γ; ω, c, λ) =


































































0 if |γ| ≤ S(εc),

sign(γ)ci if ωci + S(ci − εc)

≤ |γ| ≤

ωci + S(ci + εc),
sign(γ)

ω

(

|γ| − S(ci + εc)
)

if ωci + S(ci + εc)

< |γ| <

ωci−1 + S(ci−1 − εc),
sign(γ)

ω

(

|γ| − S(c1 + εc)
)

if |γ| ≥

ωc1 + S(c1 + εc).

with εc defined as in (9). Let x̃ = XCk
sign(βCk

) and
r = y −Xβ. Then

T
(

ck‖x̃‖
2 + x̃T r; ‖x‖2, c\k, λ

)

= arg min
z∈R

G(z) . (10)

An illustration of this operator is given in Figure 4.

Remark 2.4. The minimizer is unique because G is the
sum of a quadratic function in one variable and a norm.

Remark 2.5. In the lasso case where the λi’s are all
equal, the SLOPE thresholding operator reduces to the
soft thresholding operator.

In practice, it is rarely necessary to compute all sums in
Theorem 2.3. Instead, we first check in which direction
we need to search relative to the current order for
the cluster and then search in that direction until we
find the solution. The complexity of this operation
depends on how far we need to search and the size
of the current cluster and other clusters we need to
consider. In practice, the cost is typically larger at
the start of optimization and becomes marginal as
the algorithm approaches convergence and the cluster
permutation stabilizes.

2.2 Proximal Gradient Descent Update

The coordinate descent update outlined in the previous
section updates the coefficients of each cluster in uni-
son, which allows clusters to merge—but not to split.
This means that the coordinate descent updates are
not guaranteed to identify the clusters of the solution
on their own, and thus are not guaranteed to con-
verge to a solution of (1). To circumvent this issue, we
combine these coordinate descent steps with a full prox-
imal gradient step (Bogdan et al., 2015). This enables
the algorithm to identify the cluster structure (Liang,
Fadili, and Peyré, 2014) due to the partial smoothness
property of the sorted `1 norm that we prove in Ap-
pendix A.4. A similar idea has previously been used in
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Figure 4: An example of the SLOPE thresholding operator for β = [0.5,−0.5, 0.3, 0.7]T , c = (0.7, 0.5, 0.3) with an
update for the second cluster (k = 2), such that c\k = (0.5, 0.3). Across regions where the function is constant,
the operator sets the result to be either exactly 0 or to the value of one of the elements of ±c\k.

Bareilles, Iutzeler, and Malick (2022), wherein Newton
steps are taken on the problem structure identified after
a proximal gradient descent step.

2.3 Hybrid Strategy

We now present the proposed solver in Algorithm 1.
For the first and every v-th iteration4, we perform a
proximal gradient descent update. For the remaining
iterations, we take coordinate descent steps.

The combination of the proximal gradient steps and
proximal coordinate descent allows us to overcome the
problem of vanilla proximal coordinate descent getting
stuck because of non-separability and allows us to enjoy
the speed-up provided by making local updates on each
cluster, as we illustrate in Figure 5.

We now state that our proposed hybrid algorithm con-
verges to a solution of Problem (1).

Lemma 2.6. Let β(t) be an iterate generated by Algo-
rithm 1. Then

lim
t→∞

(

P (β(t))− P (β∗)
)

= 0.

Computional Complexity We examine the com-
plexity of the proximal gradient step and the coordinate

4Our experiments suggest that v has little impact on
performance as long as it is at least 3 (Appendix B.2). We
have therefore set it to 5 in our experiments.

Algorithm 1 Hybrid coordinate descent and proximal
gradient descent algorithm for SLOPE

input: X ∈ R
n×p, y ∈ R

n, λ ∈ {Rp : λ1 ≥ λ2 ≥ · · · >
0}, v ∈ N, β ∈ R

p

1 for t← 0, 1, . . . do

2 if t mod v = 0 then

3 β ← proxJ/‖X‖2
2

(

β − 1
‖X‖2

2

XT (Xβ − y)
)

4 Update c, C

5 else

6 k ← 1
7 while k ≤ |C| do

8 x̃k ← XCk
sign(βCk

)

9 z ← T (ck‖x̃‖
2 − x̃T (Xβ − y); ‖x‖2, c\k, λ)

10 βCk
← z sign(βCk

)
11 Update c, C
12 k ← k + 1

13 return β

descent separately. For the proximal gradient step, the
complexity is O

(

np + p log(p)
)

, where np comes from
the matrix-vector multiplication and p log(p) from the
computation of the proximal operator of the sorted
`1 norm (Zeng and Figueiredo, 2014). For the co-
ordinate descent step, the worst case complexity is
O

(

np + m(m + n)
)

. As we will see in Section 3, how-
ever, the cost of the coordinate descent step turns out
to be much lower in practice. The reason for this is
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Figure 5: Illustration of the proposed solver. The figures show progress until convergence for the coordinate
descent (CD) solver that we use as part of the hybrid method, our hybrid method, and proximal gradient descent
(PGD). The orange cross marks the optimum. Dotted lines indicate where the coefficients are equal in absolute
value. The dashed lines indicate PGD steps and solid lines CD steps. Each dot marks a complete epoch, which
may correspond to only a single coefficient update for the CD and hybrid solvers if the coefficients flip order. Each
solver was run until the duality gap was smaller than 10−10. Note that the CD algorithm cannot split clusters
and is therefore stuck after the third epoch. The hybrid and PGD algorithms, meanwhile, reach convergence after
67 and 156 epochs respectively.

that the order of the clusters becomes increasingly sta-
ble during optimization. If, for instance, the order of
the clusters is unchanged with respect to the previous
step, then the complexity, in our implementation of
Algorithm 1, reduces to O(np + mn).

Alternative Datafits So far we have only consid-
ered sorted `1-penalized least squares regression. In
Appendix C, we consider possible extensions to alter-
native datafits.

3 EXPERIMENTS

To investigate the performance of our algorithm, we
performed an extensive benchmark against the follow-
ing competitors:

• Alternating direction method of multipliers (ADMM,
Boyd et al., 2010). We considered several alter-
native for the choice of the augmented Lagragian
parameter: an adaptive method to update the
parameter throughout the algorithm (Boyd et al.,
2010, Sec. 3.4.1) and fixed values. In the follow-
ing sections, we only kept the ADMM solver with a
fixed value of 100 for the augmented Lagrangian
parameter. We present in Appendix B.3 a more
detailed benchmarks for ADMM solvers with different
values of this parameter and the adaptive setting.
Choosing this parameter is not straightforward
and the best value changes across datasets and
regularization strengths.

• Anderson acceleration for proximal gradient de-
scent (Anderson PGD, Zhang, O’Donoghue, and
Boyd, 2020)

• Proximal gradient descent (PGD, Combettes and
Wajs, 2005)

• Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA, Beck and Teboulle, 2009)

• Semismooth Newton-Based Augmented La-
grangian (Newt-ALM, Luo et al., 2019)

• The hybrid (our) solver (see Algorithm 1) combines
proximal gradient descent and coordinate descent
to overcome the non-separability of the SLOPE
problem. We perform a coordinate descent step
every fifth iteration (v = 5) in the algorithm. (See
Section 2.3.)

• The oracle solver (oracle CD) solves Problem (4)
with coordinate descent, using the clusters ob-
tained via another solver. Note that it cannot be
used in practice as it requires knowledge of the
solution’s clusters.

We used Benchopt (Moreau et al., 2022) to obtain the
convergence curves for the different solvers. Benchopt is
a collaborative framework that allows reproducible and
automatic benchmarks. The repository to reproduce
the benchmark is available at github.com/klopfe/be

nchmark_slope.

Unless we note otherwise, we used the Benjamini–
Hochberg method to compute the λ sequence (Bogdan
et al., 2015), which sets λj = η−1(1− q × j/(2p)) for
j = 1, 2, . . . , p where η−1 is the probit function. For the
rest of the experiments section, the parameter q of this
sequence has been set to 0.1 if not stated otherwise.5

We let λmax be the λ sequence such that β∗ = 0, but for

5We initially experimented with various settings for q

but found that they made little difference to the relative
performance of the algorithms.
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which any scaling with a strictly positive scalar smaller
than one produces a solution with at least one non-zero
coefficient. We then parameterize the experiments by
scaling λmax, using the fixed factors 1/2, 1/10, and
1/50, which together cover the range of very sparse
solutions to the almost-saturated case.

We pre-process datasets by first removing features with
less than three non-zero values. Then, we center and
scale each feature by its mean and standard deviation
respectively. For sparse data, we scale each feature by
its maximum absolute value. This approach is in line
with recommendations in, for instance, Pedregosa et al.
(2022).

Each solver was coded in python, using numpy (Harris et
al., 2020) and numba (Lam, Pitrou, and Seibert, 2015)
for performance-critical code. The code is available
at github.com/jolars/slopecd. In Appendix D, we
provide additional details on the implementations of
some of the solvers used in our benchmarks.

The computations were carried out on a computing
cluster with dual Intel Xeon CPUs (28 cores) and 128
GB of RAM.

3.1 Simulated Data

The design matrix X was generated such that features
had mean one and unit variance, with correlation be-
tween features j and j′ equal to 0.6|j−j′|. We generated
β ∈ R

p such that k entries, chosen uniformly at random
throughout the vector, were sampled from a standard
Gaussian distribution. The response vector, meanwhile,
was set to y = Xβ + ε, where ε was sampled from a
multivariate Gaussian distribution with variance such
that ‖Xβ‖/‖ε‖ = 3. The different scenarios for the
simulated data are described in Table 2.

Table 2: Scenarios for the simulated data in our bench-
marks, including the number of rows (n), columns (p),
signals (k), and the fraction of non-zero entries (den-
sity) of X.

Scenario n p k Density

1 200 20 000 20 1
2 20 000 200 40 1
3 200 200 000 20 0.001

In Figure 6, we present the results of the benchmarks
on simulated data. We see that for smaller fractions of
λmax our hybrid algorithm allows significant speedup
in comparison to its competitors mainly when the num-
ber of features is larger than the number of samples.
On very large scale data such as in simulated data
setting 3, we see that the hybrid solver is faster than
its competitors by one or two orders of magnitude.

For the second scenario, notice that all solvers take con-
siderably longer than the oracle CD method to reach
convergence. This gap is a consequence of Cholesky fac-
torization in the case of ADMM and computation of ‖X‖2

in the remaining cases. For the hybrid method, we can
avoid this cost, with little impact on performance, since
‖X‖2 is used only in the PGD step.

3.2 Real data

The datasets used for the experiments have been de-
scribed in Table 3 and were obtained from Chang and
Lin (2011), Chang and Lin (2022), and Breheny (2022).

Table 3: List of real datasets used in our experiments,
including the number of rows (n), columns (p), sig-
nals (k), and the fraction of non-zero entries (density)
of the corresponding X matrices. See Table 6 in Ap-
pendix E for references on these datasets.

Dataset n p Density

bcTCGA 536 17 322 1
news20 19 996 1 355 191 0.000 34
rcv1 20 242 44 504 0.0017
Rhee2006 842 360 0.025

Figure 7 shows the suboptimality for the objective func-
tion P as a function of the time for the four different
datasets. We see that when the regularization parame-
ter is set at λmax/2 and λmax/10, our proposed solver
is faster than all its competitors—especially when the
datasets become larger. This is even more visible for
the news20 dataset where we see that our proposed
method is faster by at least one order of magnitude.

When the parametrization value is set to λmax/50, our
algorithm remains competitive on the different datasets.
It can be seen that the different competitors do not
behave consistently across the datasets. For example,
the Newt-ALM method is very fast on the bcTCGA dataset
but is very slow on the news20 dataset whereas the
hybrid method remains very efficient in both settings.

4 DISCUSSION

In this paper we have presented a new, fast algo-
rithm for solving Sorted L-One Penalized Estimation
(SLOPE). Our method relies on a combination of prox-
imal gradient descent to identify the cluster structure
of the solution and coordinate descent to allow the
algorithm to take large steps. In our results, we have
shown that our method often outperforms all competi-
tors by orders of magnitude for high-to-medium levels
of regularization and typically performs among the best
algorithms for low levels of regularization.
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Figure 6: Benchmark on simulated datasets. The plots show suboptimality (difference between the objective
at the current iterate, P (β), and the optimum, P (β∗)) as a function of time for SLOPE on multiple simulated
datasets and λ sequences of varying strength.

We have not, in this paper, considered using screening
rules for SLOPE (Larsson, Bogdan, and Wallin, 2020;
Elvira and Herzet, 2021). Although screening rules
work for any algorithm considered in this article, they
are particularly effective when used in tandem with
coordinate descent (Fercoq, Gramfort, and Salmon,
2015) and, in addition, easy to implement due to the
nature of coordinate descent steps. Coordinate descent
is moreover especially well-adapted to fitting a path of λ
sequences (Friedman et al., 2007; Friedman, Hastie, and
Tibshirani, 2010), which is standard practice during
cross-validating to obtain an optimal λ sequence.

Future research directions may include investigating
alternative strategies to split clusters, for instance by
considering the directional derivatives with respect to
the coefficients of an entire cluster at once. Another
potential approach could be to see if the full proximal
gradient steps might be replaced with batch stochas-
tic gradient descent in order to reduce the costs of
these steps. It would also be interesting to consider
whether gap safe screening rules might be used not
only to screen predictors, but also to deduce whether
clusters are able to change further during optimization.
Finally, combining cluster identification of proximal

gradient descent with solvers such as second order ones
as in Bareilles, Iutzeler, and Malick (2022) is a direction
of interest.
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Supplement to Coordinate Descent for SLOPE

A PROOFS

A.1 Proof of Theorem 2.2

Let c\k be the set containing all elements of c except the k-th one: c\k = {c1, . . . ck−1, ck+1, . . . , cm}.

From the observations in Remark 2.1, we have the following cases to consider: |z| ∈ c\k, |z| = 0, and |z| /∈ {0}∪c\k.

Since C(z + δh) = C(z) = Ck and sign(z + δh) = sign(z) for h small enough,

H(z + δh)−H(z) =

p
∑

j=1

|β(z + δh)j |λ(j)−

z+δh

−

p
∑

j=1

|β(z)j |λ(j)−

z

=

p
∑

j=1

(|β(z + δh)j | − |β(z)j |)λ(j)−

z

=

p
∑

j=1

(|β(z + δh)j | − |β(z)j |)λ(j)−

z

=

p
∑

j∈C(z)

(|β(z + δh)j | − |β(z)j |)λ(j)−

z

=
∑

j∈C(z)

sign(β(z)j)(z + δh− z)λ(j)−

z

=
∑

j∈C(z)

sign(z)δhλ(j)−

z

=
∑

j∈Ck

sign(z)δhλ(j)−

z
. (11)

Case 2 Then if z 6= 0 and |z| is equal to one of the ci’s, i 6= k, one has C(z) = Ck ∪ Ci, C(z + δh) = Ck, and
sign(z + δh) = sign(z) for h small enough. Thus

H(z + δh)−H(z) =

p
∑

j=1

|β(z + δh)j |λ(j)−

z+δh

−

p
∑

i=1

|β(z)j |λ(j)−

z

=
∑

j∈Ck∪Ci

(

|β(z + δh)j |λ(j)−

z+δh

− |β(z)j |λ(j)−

z

)

=
∑

j∈Ck

(ci + δh) λ(i)−

z+δh

− ciλ(i)−

z
+

∑

j∈Ci

(

ciλ(j)−

z+δh

− ciλ(i)−

z

)

. (12)

Note that there is an ambiguity in terms of permutation, since, due to the clustering, there can be more than
one permutation reordering β(z). However, choosing any such permutation result in the same values for the
computed sums.
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Case 3 Finally let us treat the case z = 0. If cm = 0 then the proof proceeds as in case 2, with the exception
that |β(z + δh)| = h and so the result is just:

H(z + δh)−H(z) = h
∑

j∈Ck

λ(i)−

z+δh

. (13)

If cm 6= 0, then the computation proceeds exactly as in case 1.

A.2 Proof of Theorem 2.3

Recall that G(z) : R→ R is a convex, continuous piecewise-differentiable function with breakpoints whenever

|z| = c
\k
i or z = 0. Let γ = ck‖x̃‖

2 + x̃T r and ω = ‖x̃‖2 and note that the optimality criterion for (6) is

δ(ωz − γ) + H ′(z; δ) ≥ 0, ∀δ ∈ {−1, 1},

which is equivalent to
ωz −H ′(z;−1) ≤ γ ≤ ωz + H ′(z; 1). (14)

We now proceed to show that there is a solution z∗ ∈ arg minz∈R
H(z) for every interval over γ ∈ R.

First, assume that the first case in the definition of T holds and note that this is equivalent to (14) with z = 0
since C(εc) = C(−εc) and λ(j)−

−εc

= λ(j)−

εc
. This is sufficient for z∗ = 0.

Next, assume that the second case holds and observe that this is equivalent to (14) with z = c
\k
i , since

C(ci + εc) = C(−ci − εc) and C(−ci + εc) = C(ci − εc). Thus z∗ = sign(γ)c
\k
i .

For the third case, we have
∑

j∈C(ci+εc)

λ(j)−

ci+εc

=
∑

j∈C(ci−1−εc)

λ(j)−

ci−1−εc

and therefore (14) is equivalent to

ci <
1

ω

(

|γ| −
∑

j∈C(ci+εc)

λ(j)−

ci+εc

)

< ci−1.

Now let

z∗ =
sign(γ)

ω

(

|γ| −
∑

j∈C(ci+εc)

λ(j)−

ci+εc

)

(15)

and note that |z∗| ∈
(

c
\k
i , c

\k
i−1

)

and hence

1

ω

(

|γ| −
∑

j∈C(ci+εc)

λ(j)−

ci+εc

)

=
1

ω

(

|γ| −
∑

j∈C(z∗)

λ(j)−

z∗

)

.

Furthermore, since G is differentiable in
(

c
\k
i , c

\k
i−1

)

, we have

∂

∂z
G(z)

∣

∣

∣

z=z∗

= ωz∗ − γ + sign(z∗)
∑

j∈C(z∗)

λ(j)−

z∗

= 0,

and therefore (15) must be the solution.

The solution for the last case follows using reasoning analogous to that of the third case.

A.3 Proof of Lemma 2.6

To prove the lemma, we will show that limt→∞ β(t) ∈ Ω = {β : 0 ∈ ∂P (β)} using Convergence Theorem A in
Zangwill (1969, p. 91). For simplicity, we assume that the point to set map A is generated by v iterations of
Algorithm 1, that is A(β(0)) = {β(vi)}∞

i=0. To be able to use the theorem, we need the following assumptions to
hold.
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1. The set of iterates, A(β(0)) is in a compact set.

2. P is continuous and if β /∈ Ω = {β : 0 ∈ ∂P (β)}, then for any β̂ ∈ A(β) it holds that P (β̂) < P (β).

3. If β ∈ Ω = {β : 0 ∈ ∂P (β)}, then for any β̂ ∈ A(β) it holds that P (β̂) ≤ P (β).

Before tackling these three assumptions, we decompose the map into two parts: v − 1 coordinate descent steps,
TCD, and one proximal gradient decent step, TPGD. This clearly means that

P (TCD(β)) ≤ P (β)

for all β ∈ R
p. For TPGD, we have two useful properties: first, if ||TPGD(β)− β|| = 0, then by Lemma 2.2 in Beck

and Teboulle (2009) it follows that β ∈ Ω. Second, by Lemma 2.3 in Beck and Teboulle (2009), using x = y, it
follows that

P (TPGD(β))− P (β) ≤ −
L(f)

2
||TPGD(β)− β||2,

where L(f) is the Lipschitz constant of the gradient of f(β) = 1
2 ||y −Xβ||2.

We are now ready to prove that the three assumptions hold.

• Assumption 1 follows from the fact that the level sets of P are compact and from P (TP GD(β)) ≤ P (β) and
P (TCD(β)) ≤ P (β).

• Assumption 2 holds since if β /∈ Ω, it follows that ||TPGD(β)− β|| > 0 and thus P (TPGD(β)) < P (β).

• Assumption 3 follows from P (TP GD(β)) ≤ P (β) and P (TCD(β)) ≤ P (β).

Using Theorem 1 from Zangwill (1969), this means that Algorithm 1 converges as stated in the lemma.

A.4 Partial Smoothness of the Sorted `1 Norm

In this section, we prove that the sorted `1 norm J is partly smooth (Lewis, 2002). This allows us to apply results
about the structure identification of the proximal gradient algorithm.

Definition A.1. Let J be a proper closed convex function and x a point of its domain such that ∂J(x) 6= ∅. J is
said to be partly smooth at x relative to a set M containing x if:

1. M is a C2-manifold around x and J restricted to M is C2 around x.

2. The tangent space of M at x is the orthogonal of the parallel space of ∂J(x).

3. ∂J is continuous at x relative to M.

Because the sorted `1 norm is a polyhedral, it follows immediately that it is partly smooth (Vaiter et al., 2017,
Example 18). But since we believe a direct proof is interesting in and of itself, we provide and prove the following
proposition here.

Proposition A.2. Suppose that the regularization parameter λ is a strictly decreasing sequence. Then the sorted
`1 norm is partly smooth at any point of Rp.

Proof. Let m be the number of clusters of x and C1, . . . , Cm be those clusters, and let c1 > · · · > cm > 0 be the
value of |x| on the clusters.

We define εc as in Equation (9) and let B = {u ∈ R
p : ‖u− x‖∞ < εc/2}. Let vk ∈ R

p for k ∈ [m] be equal to
sign(xCk

) on Ck and to 0 outside, such that x =
∑m

k=1 ckvk. We define

M =

{

span(v1, . . . , vm) ∩ B if cm 6= 0 ,

span(v1, . . . , vm−1) ∩ B otherwise .

We will show that J is partly smooth at x relative to M.
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As a first statement, we prove that any u ∈ M shares the same clusters as x. For any u ∈ M there exists
c′ ∈ R

m, u =
∑m

k=1 c′
kvk (with c′

m = 0 if cm = 0). Suppose that there exist k 6= k′ such that c′
k = c′

k′ . Then since
‖x− u‖∞ = maxk |ck − c′

k| and |ck − ck′ | > εc, one has:

εc < |ck − ck′ | = |ck − c′
k + c′

k′ − ck′ |

≤ |ck − c′
k|+ |c

′
k′ − ck′ |

≤ 2‖x− u‖∞

≤ εc .

This shows that clusters of any u ∈M are equal to clusters of x. Further, clearly the tangent space of M at x is
span(v1, . . . , vm) if cm 6= 0 and span(v1, . . . , vm−1) otherwise.

1. The set M is then the intersection of a linear subspace and an open ball, and hence is a C2 manifold. Since
the clusters of any u ∈M are the same as the clusters of x, we can write that

J(u) =
m

∑

k=1





∑

j∈Ck

λj



 c′
k , (16)

and hence J is linear on M and thus C2 around x.

2. We let x↓ denote a version of x sorted in non-increasing order and let R : Rp → N
p be the function that

returns the ranks of the absolute values of its argument. The subdifferential of J at x (Larsson, Bogdan, and
Wallin, 2020, Thm. 1)6 is the set of all g ∈ R

p such that

gCi
∈ Gi ,



















s ∈ R
|Ci| :



















cumsum(|s|↓ − λR(g)Ci
) � 0 if xCi

= 0 ,

cumsum(|s|↓ − λR(g)Ci
) � 0

and
∑

j∈Ci
(|sj | − λR(g)Ci

) = 0

and sign(xCi
) = sign(s) otherwise.



















(17)

Hence, the problem can be decomposed over clusters. We will restrict the analysis to a single Ci without loss
of generality and proceed in R

|Ci|.

• First we treat the case where |Ci| = 1 and xCi
6= 0. The set Gi is then the singleton {sign(xCi

)λR(s)Ci
}

and its parallel space is simply {0}. Hence, par(Gi)
⊥ = R = span(sign(x)Ci

).

• Then, we study the case where |Ci| 6= 1 and xCi
6= 0. Since for all j ∈ [p], λj 6= 0 and

λ is a strictly decreasing sequence, we have that for ε > 0 small enough, the |Ci| − 1 points
λR(g)Ci

+ε[− sign(xCi
)1, sign(xCi

)2, 0, . . . , 0]T , λR(g)Ci
+ε[0,− sign(xCi

)2, sign(xCi
)3, . . . , 0]T , . . ., λR(g)Ci

+

ε[0, 0, 0, . . . ,− sign(xCi
)|Ci|−1, sign(xCi

)|Ci|]
T belong to Gi. Since these vectors are linearly independent,

and using the last equality in the feasible set that, we have that

∑

j∈Ci

sign(xj)sj =
∑

j∈Ci

λR(g)Ci
.

Its parallel space is simply the set {s ∈ R
|Ci| :

∑

j∈Ci
sign(xj)sj = 0}, that is just span(sign(xCi

))⊥.

Hence par(Gi)
⊥ = span(sign(xCi

)).

• Finally, we study the case where xCm
= 0. Then the `∞ ball {s ∈ R

|Cm| : ‖s‖∞ ≤ λp} is contained in
the feasible set of the differential, hence the parallel space of Gm is R

|Cm| and its orthogonal is reduced
to {0}.

We can now prove that par(∂J(x))⊥ is the tangent space of M. From the decomposability of ∂J (Equa-
tion (17)), one has that u ∈ par(∂J(x))⊥ if and only if uCi

∈ par(Gi)
⊥ for all i ∈ [m].

6We believe there to be a typo in the definition of the subgradient in (Larsson, Bogdan, and Wallin, 2020, Thm. 1).
We believe the argument of R should be g, not s, since otherwise there is a dimension mismatch.
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If cm > 0, we have

par(∂J(x))⊥ = {u ∈ R
p : ∀i ∈ [m], uCi

∈ par(Gi)
⊥}

= {u ∈ R
p : ∀i ∈ [m], uCi

∈ span(sign(xCi
))}

= span(v1, . . . , vm) .

(18)

If cm = 0, we have

par(∂J(x))⊥ = {u ∈ R
p : ∀i ∈ [m], uCi

∈ par(Gi)
⊥}

= {u ∈ R
p : ∀i ∈ [m− 1], uCi

∈ span(sign(xCi
)) & uCm

= 0}

= span(v1, . . . , vm−1) .

(19)

3. The subdifferential of J is a constant set locally around x along M since the clusters of any point in the
neighborhood of x inM shares the same clusters with x. This shows that it is continuous at x relative toM.

Remark A.3. We believe that the assumption λ1 > · · · > λp can be lifted, since for example the `1 and `∞ norms
are particular instances of J that violate this assumption, yet are still partly smooth. Hence this assumption
could probably be lifted in a future work using a slightly different proof.

B ADDITIONAL EXPERIMENTS

B.1 glmnet versus SLOPE Comparison

In this experiment, we ran the glmnet (Friedman et al., 2022) and SLOPE (Larsson et al., 2022) packages on
the bcTCGA dataset, selecting the regularization sequence λ such that there were 100 nonzero coefficients and
clusters at the optimum for glmnet and SLOPE respectively. We used a duality gap of 10−6 as stopping criteria.
The features were centered by their means and scaled by their standard deviation. The code is available at
github.com/jolars/slopecd.

B.2 Study on Proximal Gradient Descent Frequency

To study the impact of the frequence at which the PGD step in the hybrid solver is used, we performed a
comparative study with the rcv1 dataset. We set this parameter to values ranging from 1 i.e., the PGD algorithm, to
9 meaning that a PGD step is taken every 9 epochs. The sequence of λ has been set with the Benjamini-Hochberg
method and parametrized with 0.1λmax.

Figure 8 shows the suboptimality score as a function of the time for the different values of the parameter controlling
the frequency at which a PGD step is going to be taken. A first observation is that as long as this parameter is
greater than 1 meaning that we perform some coordinate descent steps, we observe a significant speed-up. For all
our experiments, this parameter was set to 5. The figure also shows that any choice between 3 and 9 would lead
to similar performance for this example.

B.3 Benchmark with Different Parameters for the ADMM Solver

We reproduced the benchmarks setting described in Section 3 for the simulated and real data. We compared the
ADMM solver with our hybrid algorithm for different values of the augmented Lagrangian parameter ρ. We tested
three different values 10, 100 and 1000 as well as the adaptive method (Boyd et al., 2010, Sec. 3.4.1).

We present in Figure 9 and Figure 10 the suboptimality score as a function the time for the different solvers.
We see that the best value for ρ depends on the dataset and the regularization strengh. The value chosen for
the main benchmark (Section 3) performs well in comparison to other ADMM solvers. Nevertheless, our hybrid

approach is consistently faster than the different ADMM solvers.
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Figure 9: Benchmark on simulated datasets. Suboptimality score as a function of time for SLOPE on
multiple simulated datasets and for multiple sequence of λ.
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Figure 10: Benchmark on simulated datasets. Suboptimality score as a function of time for SLOPE on
multiple simulated datasets and for multiple sequence of λ.

B.4 SLOPE Path Benchmarks

The choice of λ sequence in SLOPE is usually made via cross-validation on a training partition of the data across
a grid of the q parameter, which controls the shape of the λ sequence, and α, a factor that scales the λ sequence.
The α grid is typically a decreasing sequence where the first and last values correspond to the intercept-only
and almost-saturated models respectively. The set of models generated from fitting SLOPE across this grid of α
values is called the SLOPE path. In this section, we report benchmarks on the performance of our algorithm in
the case of fitting a SLOPE path to the simulated and real data sets used in Section 3.

We use the same path setup that is used by default for the lasso in the glmnet package (Friedman, Hastie, and
Tibshirani, 2010). This entails using a grid of 100 α values spaced evenly on the loge-scale. The first value, α1, is
chosen such that it leads to the intercept-only model, that is α1λ = λmax (see Section 3). The last value, α100 is
set to 10−4 if p > n and 10−2 otherwise. We terminate the path early if the number of unique nonzero coefficients
exceed n7, if the increase in the coefficient of determination is less than 10−4 between two subsequent αs on the
path, or if the coefficient of determination equals or exceeds 0.999. The λ sequence setup, preprocessing, and
data simulation setup is exactly the same as in Section 3.

For ADMM, we used ρ = 100 following the results in Appendix B.3. The Newt-ALM solver is missing from these

7Here we deviate from the standard lasso path setup because the lasso can at most select n nonzero coefficients, whilst
SLOPE can select at most n nonzero unique coefficients
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benchmarks because we encountered several issues with convergence.

Our method outperforms the other methods for all of the real datasets (Table 4). In the case of bcTCGA, the
difference is particularly striking, with our method taking less than one twentieth of the time taken for the
runner-up. In the other cases, our method is roughly twice as fast as the second-best method.

Table 4: Time in seconds to fit a full SLOPE path to real data sets. See Table 3 for information about the
datasets. For ADMM we set ρ = 100.

Dataset Rhee2006 bcTCGA news20 rcv1

ADMM 47 9252 139 415 6852
Anderson (PGD) 30 9867 29 867 592
FISTA 335 12 682 138 363 1988
hybrid (ours) 14 379 11 574 391

For simulated data (Table 5), our method performs best for the p > n scenarios (1 and 2), being roughly
ten and five times faster, respectively, than the runner up. In the case of Scenario 2 where n > p, however,
Anderson (PGD) instead comes out on top.

Table 5: Time in seconds to fit a full SLOPE path to simulated data sets. See Table 2 for information on what
the different scenarios mean. For ADMM we set ρ = 100.

Method Scenario 1 Scenario 2 Scenario 3

ADMM 593 732 649
Anderson (PGD) 539 36 451
FISTA 589 67 279
hybrid (ours) 54 83 49

This experiment was run on a dedicated high-performance computing cluster, using two Intel Xeon E5-2650
v3 (2.3 Ghz, 10-core) CPUs and 64 GB of memory. The computations were enabled by resources provided by
LUNARC.

C EXTENSIONS TO OTHER DATAFITS

Our algorithm straightforwardly generalizes to problems where the quadratic datafit 1

2
‖y −Xβ‖2 is replaced by

F (β) =
∑n

i=1
fi(X

>
i: β), where the fi’s are L smooth (and so F is L ∗ ‖X‖2

2-smooth), such as logistic regression.

In that case, one has by the descent lemma applied to F (β(z)), using F (β) = F (β(ck)),

F (β(z)) + H(z) ≤ F (β) +
∑

j∈Ck

∇jF (β) sign βj(z − ck) +
L‖x̃‖2

2
(z − ck)2 + H(z) (20)

and so a majorization-minimization approach can be used, by minimizing the right-hand side instead of directly
minimizing F (β(z)) + H(z). Minimizing the RHS, up to rearranging, is of the form of Problem (6).

D IMPLEMENTATION DETAILS OF SOLVERS

D.1 ADMM

Our implementation of the solver is based on Boyd et al. (2011). For high-dimensional sparse X, we use the
numerical LSQR algorithm (Paige and Saunders, 1982) instead of the typical direct linear system solver. We
originally implemented the solver using the adaptive step size (ρ) scheme from Boyd et al. (2010) but discovered
that it performed poorly. Instead, we used ρ = 100 and have provided benchmarks of the alternative configurations
in Appendix B.3.
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D.2 Newt-ALM

The implementation of the solver is based on the pseudo-code provided in Luo et al. (2019). According to the
authors’ suggestions, we use the Matrix inversion lemma for high-dimensional and sparse X and the preconditioned
conjugate gradient method if, in addition, n is large. Please see the source code for further details regarding
hyper-parameter choices for the algorithm.

After having completed our own implementation of the algorithm, we received an implementation directly from
the authors. Since our own implementation performed better, however, we opted to use it instead.

E REFERENCES AND SOURCES FOR DATASETS

In Table 6, we list the reference and source (from which the data was gathered) for each of the real datasets used
in our experiments.

Table 6: Sources and references for the real data sets used in our experiments.

Dataset Reference Source

bcTCGA National Cancer Institute (2022) Breheny (2022)
news20 Keerthi and DeCoste (2005) Chang and Lin (2022)
rcv1 Lewis et al. (2004) Chang and Lin (2022)
Rhee2006 Rhee et al. (2006) Breheny (2022)
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Abstract

Many regularized methods, such as the lasso and ridge regression, are sensitive to the scales
of the features in the data. As a consequence, it has become standard practice to normalize
(center and scale) features such that they share the same scale. For continuous data, the
most common strategy is standardization: centering and scaling each feature by its mean and
and standard deviation, respectively. For binary data, especially when it is high-dimensional
and sparse, the most common strategy, however, is to not scale at all. In this paper, we show
that this choice has dramatic effects for the estimated model in the case when the binary
features are imbalanced and that these effects, moreover, depend on the type regularization
(lasso or ridge) used. In particular, we demonstrate the size of a feature’s corresponding
coefficient in the lasso is directly related to its class imbalance and that this effect depends
on the normalization used. We suggest possible remedies for this problem and also discuss
the case when data is mixed, that is, contains both continuous and binary features.

1 Introduction

When the data you want to model is high-dimensional, that is, the number of features p exceed the number
of observations n, it is impossible to apply classical statistical models such as standard linear regression since
the design matrix X is no longer of full rank. A common remedy to this problem is to regularize the model by
adding a term to the objective function that punishes models with large coefficients (β). If we let g(β; X, y)
be the original objective function—which when minimized improves the model’s fit to the data (X, y)—then

f(β0, β; X, y) = g(β0, β; X, y) + h(β)

is a composite function within which we have added a penalty term h(β). In contrast to g, this penalty
depends only on β. The intercept, β0, is not typically penalized.

Some of the most common penalties are the ℓ1 norm and squared ℓ2 norm penalties, that is h(β) = ∥β∥1 or
h(β) = ∥β∥2

2/21, which, if h is the standard ordinary least-squares objective, represent lasso (Tibshirani, 1996;
Santosa & Symes, 1986; Donoho & Johnstone, 1994) and ridge (Tikhonov) regression respectively. Other
common penalities include SLOPE (Bogdan et al., 2013; 2015), the minimax-concave penalty (MCP) (Zhang,
2010), hinge loss (used in support vector machines (Cortes & Vapnik, 1995)) and smoothly-clipped absolute
deviation (SCAD) (Fan & Li, 2001). Many of these penalities—indeed all of the previously mentioned
ones—shrink coefficients in proportion to their sizes.

The issue with this type of shrinkage is that it is typically sensitive to the scales of the features in X. A
common remedy is to normalize the features before fitting the model by translating and dividing each column

1Division by two in this case is used only for convenience.
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Figure 1: Lasso paths for real datasets using two types of normalization: standardization and maximum
absolute value scaling (max–abs). We have fit the lasso path to four different datasets: housing (Harrison &
Rubinfeld, 1978), leukemia (Golub et al., 1999), triazines (King), and w1a (Platt, 1998). For each dataset,
we have colored the coefficients if they were among the first five features to become active in under either
of the two types of normalization schemes. We see that the paths differ with regards to the size as well as
the signs of the coefficients, and that, in addition, the coefficients to become active first differ between the
normalization types.

by respective translation and scaling factors. For some problems, such factors may arise naturally from
knowledge of the problem at hand. A researcher may for instance have collected data on coordinates within a
limited area and know that the coordinates are measured in meters. Often, however, these scaling factors
must be estimated from data. The most popular choices for this type of scaling are based only on the marginal
distributions of the features. Some types of normalization, such as that applied in the adaptive lasso2 (Zou,
2006), however, are based on the conditional distributions of the features and the response. After fitting
the model, the estimated coefficients are then usually returned to their original scale. Another reason for
normalizing the features is to improve the performance and stability of optimization algorithms used to fit
the model. We will not cover this aspect in this paper, but note that it is an important one.

In most sources and discussions on regularized methods, normalization is typically treated as a preprocessing
step—separate from modeling. As we will show in this paper, however, the type of normalization used can
have a critical effect on the estimated model, sometimes leading to entirely different conclusions with regard
to feature importance as well as predictive performance. As a first example of this, consider Figure 1, which
displays the lasso paths for four real data sets and two different types of normalization. Each panel shows the
union of the first five predictors picked under either normalization scheme. The choice of normalization can
have a significant impact on the estimated model. In the case of the leukemia data set, for instance, the
models are starkly different with respect to both the identities of the features selected as well as their signs
and magnitudes.

In addition, discussions on the choice of normalization are often focused on computational aspects and data
storage requirements, rather than on the statistical properties of the choice of normalization. In our paper,

2The adaptive lasso typically uses estimates of the regression coefficients, typically from ordinary-least squares or ridge
regression, to scale the features with.
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we argue that normalization should rather we considered as an integral part of the model and that it is
problematic to base the choice of normalization on the type of data storage, which implicitly encodes the
belief that the information in a data set is different if it is stored in a sparse viz-a-viz dense format. At the
time of writing, for instance, the popular machine learning library scikit-learn (scikit-learn developers,
2024) recommends max–abs scaling in the case of sparse data.

2 Preliminaries

Throughout this paper, we assume that the data is generated from a linear model, that is,

yi = β∗
0 + x

⊺

i β∗ + εi for i ∈ {1, 2, . . . , n},

where we use β∗
0 and β∗ to denote the true intercept and coefficients, respectively, and εi to denote measurement

noise. X is the n × p design matrix with columns xj and y the n × 1 response vector. Furthermore, we use

β̂0 and β̂ to denote our estimates of the intercept and coefficients and use β0 and β to refer to corresponding
variables in the optimization problem. Unless otherwise stated, we assume X, β∗

0 , and β∗ to be fixed.

There is ambiguity regarding many of the key terms in the field of normalization. Scaling, standardization, and
normalizaton are for instance used interchangeably throughout the literature. Here, we define normalization
as the process of centering and scaling the feature matrix, which we formalize in Definition 2.1.

Definition 2.1 (Normalization). Let X̃ be the normalized feature matrix, with elements

x̃ij =
xij − cj

sj
,

where xij is an element of the (unnormalized) feature matrix X and cj and sj are the centering and scaling
factors respectively.

Some authors refer to this procedure as standardization, but here we define standardization only as the case
when centering with the arithmetic mean and scaling with the (uncorrected) standard deviation. Also note
that normalization is sometimes defined as the process of scaling the samples, rather than the features. We
will not consider this type of normalization in this paper.

2.1 Types of Normalization

There are many different strategies for normalizing the design matrix. We list a few of the most common
choices in Table 1.

Table 1: Common ways to normalize a matrix of features

Normalization Centering (cj) Scaling (sj)

Standardization 1
n

∑n
i=1 xij

√

1
n

∑n
i=1(xij − x̄j)2

Max–Abs 0 maxi(|xij |)
Min–Max mini(xij) maxi(xij) − mini(xij)

Norm Scaling 0 ∥xj∥p, p ∈ {1, 2, . . . }
Adaptive Lasso 0 βOLS

j

Standardization is perhaps the most common type of normalization, at least in the field of statistics. It is
sometimes known as z-scoring or z-transformation. One of the benefits of using standardization is that it
simplifies certain aspects of fitting the model. For instance, the intercept term β̂0 is equal to the mean of
the response y. For regularized methods, it is typically the case that we standardize with the uncorrected
sample standard deviation (division by n). The downside of standardization is that it involves centering by
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the mean, which typically destroys sparsity in the data structure. This is not a problem when the data is
stored as a dense matrix; but when the data is sparse, it can lead to a significant increases in memory usage
and processing time.

A common alternative to standardization, particularly when data is sparse, is to scale the features by their
maximum absolute value (max–abs normalization). This method has no impact on binary data3, and therefore
retains sparsity. For other types of data, it scales the features to take values in the range [−1, 1]. Since the
scaling is determined by a single value for each feature, the method is naturally sensitive to outliers. In
addition, it is for many types of continuous data, such as normally distributed data, the case that the sample
maximum depends on the sample size, which makes the method problematic for much continuous data. In
Theorem A.1 (Appendix A), we study how this effect comes into play in the case when the feature is normally
distributed.

Min-max normalization scales the data to lie in [0, 1]. As with maximum absolute value scaling, min-max
normalization retains sparsity and also shares its sensitivity to outliers and sample size. Unlike max–abs
scaling, min–max scaling is not sensitive to the location of the data, only its spread. Norm-scaling, scaling
by a norm, is seldom used in practice and more often encountered in theoretical work. The norm can be
any p-norm, and the choice of p will determine the scaling. Standard choices are p = 1, when the scaling is
the sum of the absolute values of the features, and p = 2, where it is the Euclidean norm. A special case of
normalization is the adaptive lasso (Zou, 2006), which is a two-step procedure. In the first step, a model,
often ordinary least-squares regression (OLS) or ridge regression, is fit to the data. The estimated coefficients
from the model are then used to scale the features.

2.2 The Lasso and Ridge Regression

From now on, we will direct our focus on ridge regression and the lasso. Both of these models are special cases
of the elastic net (Zou & Hastie, 2005), which is the ordinary-least squares regression objective regularized
by a combination of the ℓ1 and squared ℓ2 norms. For the normalized feature matrix X̃, the elastic net is
represented by the following convex optimization problem:

minimize
β0∈R,β∈Rp

(

f(β0, β; X, y, λ1, λ2) =
1

2
∥y − β0 − X̃β∥2

2 + λ1∥β∥1 +
λ2

2
∥β∥2

2

)

. (1)

We define (β̂
(n)
0 , β̂(n)) as a solution to the optimization problem in Equation (1). When λ1 > 0 and λ2 = 0,

the elastic net is equivalent to the lasso, and when λ1 = 0 and λ2 > 0, it is equivalent to ridge regression.
Expanding f in Equation (1), we have

1

2

(

y⊺y − 2(X̃β + β0)⊺y + (X̃β + β0)⊺(X̃β + β0)
)

+ λ1∥β∥1 +
λ2

2
∥β∥2

2.

Taking the subdifferential with respect to β and β0, the KKT stationarity condition yields the following
system of equations:

{

X̃⊺(X̃β + β0 − y) + λ1g + λ2β ∋ 0,

nβ0 + (X̃β)⊺1 − y⊺
1 = 0,

(2)

where g is a subgradient of the ℓ1 norm that has elements gi such that

gi ∈
{

{sign βi} if βi ̸= 0,

[−1, 1] otherwise.

2.3 Orthogonal Features

If the features of the normalized design matrix are orthogonal, that is, X̃⊺X̃ = diag
(

x̃
⊺

1 x̃1, . . . , x̃⊺

px̃p

)

, then
Equation (2) can be decomposed into a set of p + 1 conditions:

{

x̃
⊺

j x̃jβj + x̃
⊺

j 1β0 − x̃
⊺

j y + λ2βj + λ1g ∋ 0, j = 1, . . . , p,

nβ0 + (X̃β)⊺1 − y⊺
1 = 0.

3Except in the extreme case when all values are 0.
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The inclusion of an intercept, β0, ensures that the locations of the features (their means) does not affect
the solution (except for the intercept itself). Therefore, we will from now on assume that the features are
mean-centered, that is, cj = x̄j for all j and therefore x̃

⊺

j 1 = 0. A solution to the system of equations is then
given by the following set of equations (Donoho & Johnstone, 1994):

β̂
(n)
j =

Sλ1

(

x̃
⊺

j y
)

x̃
⊺

j x̃j + λ2
, β̂

(n)
0 =

y⊺
1

n
,

where S is the soft-thresholding operator, defined as

Sλ(z) = sign(z) max(|z| − λ, 0) = I|z|>λ

(

z − sign(z)λ
)

.

2.4 Rescaling Regression Coefficients

Normalization changes the optimization problem and therefore its solution, the coefficients, which will now be
on the scale of the normalized features. We, however, are interested in β̂: the coefficients on the scale of the

original problem. To obtain these, we transform the coefficients from the normalized poblem, β̂
(n)
j , back via

β̂j =
β̂

(n)
j

sj
for j = 1, 2, . . . , p. (3)

There is a similar transformation for the intercept which we omit here since we are not interested in it.

3 Bias and Variance of the Elastic Net Estimator

Now, assume that X is fixed and that y = Xβ + ε, where εi is identically and independently distributed
noise with mean zero and finite variance σ2

ε . As in the previous section, we assume that the feature vectors
are orthogonal. We are interested in the expected value of Equation (3), E β̂j . Let

Z = x̃
⊺

j y = x̃
⊺

j (Xβ∗ + ε) = x̃
⊺

j (xjβ∗
j + ε) and dj = sj(x̃⊺

j x̃j + λ2)

so that β̂j = Sλ1
(Z)/dj . Since dj is fixed under our assumptions, we will direct most of our focus towards

Sλ1(Z). First observe that

x̃
⊺

j x̃j =
1

s2
j

(xj − cj)⊺(xj − cj) =
x
⊺

j xj − nc2
j

s2
j

=
nvj

s2
j

,

x̃
⊺

j xj =
1

sj
(x⊺

j xj − x
⊺

j 1cj) =
nvj

sj
,

where vj is the uncorrected sample variance of xj . This means that

Z =
β∗

j nvj − x
⊺

j ε

sj
and dj = sj

(

nvj

s2
j

+ λ2

)

. (4)

For the expected value and variance of Z we then have

E Z = µ = E
(

x̃
⊺

j (xjβj + ε)
)

= x̃
⊺

j xjβj ,

Var Z = σ2 = Var
(

x̃
⊺

j ε
)

= x̃
⊺

j x̃jσ2
ε .

The expected value of the soft-thresholding estimator is

E Sλ(Z) =

∫ ∞

−∞
Sλ(z)fZ(z) dz

=

∫ ∞

−∞
I|z|>λ(z − sign(z)λ)fZ(z) dz

=

∫ −λ

−∞
(z + λ)fZ(z) dz +

∫ ∞

λ

(z − λ)fZ(z) dz.
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And then the bias of β̂j with respect to the true coefficient β∗
j is

E β̂j − β∗
j =

1

dj
E Sλ(Z) − β∗

j .

Finally, we note that the variance of the soft-thresholding estimator is

Var Sλ(Z) =

∫ −λ

−∞
(z + λ)2fZ(z) dz +

∫ ∞

λ

(z − λ)2fZ(z) dz − (E Sλ(Z))
2

(5)

and that the variance of the elastic net estimator is therefore

Var β̂j =
1

d2
j

Var Sλ(Z). (6)

3.1 Normally Distributed Noise

Next, we add the additional assumption that ε is normally distributed. Then

Z ∼ Normal
(

µ = x̃
⊺

j xjβj , σ2 = x̃
⊺

j x̃jσ2
ε

)

.

Let θ = −µ − λ1 and γ = µ − λ1. Then the expected value of soft-thresholding of Z is

E Sλ1
(Z) =

∫ θ
σ

−∞
(σu − θ) ϕ(u) du +

∫ ∞

− γ
σ

(σu + γ) ϕ(u) du

= −θ Φ

(

θ

σ

)

− σ ϕ

(

θ

σ

)

+ γ Φ
(γ

σ

)

+ σ ϕ
(γ

σ

)

(7)

where ϕ(u) and Φ(u) are the probability density and cumulative distribution functions of the standard normal
distribution, respectively.

Next, we consider what the variance of the elastic net estimator looks like. Starting with the first term on
the left-hand side of Equation (5), we have

∫ −λ1

−∞
(z + λ1)2fZ(z) dz = σ2

∫ θ
σ

−∞
y2 ϕ(y) dy + 2θσ

∫ θ
σ

−∞
y ϕ(y) dy + θ2

∫ θ
σ

−∞
ϕ(y) dy

=
σ2

2

(

erf

(

θ

σ
√

2

)

− θ

σ

√

2

π
exp

(

− θ2

2σ2

)

+ 1

)

+ 2θσ ϕ

(

θ

σ

)

+ θ2 Φ

(

θ

σ

)

. (8)

Similar computations for the second term on the left-hand side of Equation (5) yield

∫ ∞

λ1

(z − λ1)2fZ(z) dz =
σ2

2

(

erf

(

γ

σ
√

2

)

− γ

σ

√

2

π
exp

(

− γ2

2σ2

)

+ 1

)

+ 2γσ ϕ
(γ

σ

)

+ γ2 Φ
(γ

σ

)

. (9)

Plugging Equations (7) to (9) into Equation (6) yields the variance of the estimator. Consequently, we can
also compute the mean-squared error via the bias-variance decomposition

MSE(β̂j , β∗
j ) = Var β̂j +

(

E β̂j − β∗
j

)2

.

3.2 Binary Features

The main focus in this paper is the case when xj is a binary feature with class balance q = x̄j , that is,
xij ∈ {0, 1} for all i and

∑n
i=1 xij = nq. In this case, inserting vj = (q − q2) (the uncorrected sample variance

for a binary feature) into Equation (4), we have

Z =
β∗

j n(q − q2) − x
⊺

j ε

sj
, dj = sj

(

n(q − q2)

s2
j

+ λ2

)

,
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and consequently

µ =
β∗

j n(q − q2)

sj
and σ2 =

σ2
εn(q − q2)

s2
j

.

We will allow ourselves to abuse notation and overload the definitions of µ, σ2, and dj as functions of q.
Then, an expression for the expected value of the elastic net estimate with respect to q can be obtained by
plugging in µ and σ into Equation (7).

The presence of the factor q − q2 in µ, σ2, and dj means that there is a relationship between class balance
and the elastic net estimator and that this relationship is mediated by the scaling factor sj . To achieve some
initial intuition for this relationship, we begin by considering the noiseless case (σε = 0) in which, inserting µ
and dj into Equation (3) yields

β̂j =
Sλ1(x̃⊺

j y)

sj

(

x̃
⊺

j x̃j + λ2

) =
Sλ1

(

β∗

j n(q−q2)

sj

)

sj

(

n(q−q2)
s2

j

+ λ2

) . (10)

This expression shows that the class balance, q, directly affects the estimator. For values of q close to 0 or 1,
the input into the soft-thresholding part of the estimator will diminish and consequently force the estimate to
zero, that is, unless we use the scaling factor sj = (q − q2), in which case the soft-thresholding part will be
unaffected by class imbalance. This choice will not, however, mitigate the impact of class imbalance on the
ridge part of the estimator, for which we would instead need sj =

√

q − q2. For any other choices of δ, such
as δ = 0, q will affect the estimator through both the ridge and lasso parts.

Based on these facts, we will consider the scaling parameterization sj = (q − q2)δ, δ ≥ 0. This includes the
cases that we are primarily interested in, that is, δ = 0 (no scaling), δ = 1/2 (standard-deviation scaling),
and δ = 1 (variance scaling). Note that the last of these types, variance scaling, is not a standard type
of normalization; yet, as we have already seen, it has some interesting properties in the context of binary
features.

Another interesting fact about Equation (10), which holds also in the noisy situation, is that even when the
binary feature is balanced (q = 1/2), normalization will still have an effect on the estimator. Using δ = 0,
for instance, leads the true coefficient β∗

j in the input to Sλ to be scaled by n(q − q2) = n/4. For δ = 1,
there would be, in contrast, be no scaling in the class-balanced case. And for δ = 1/2, the scaling factor is
n/2. Generalizing this, we see that to achieve equivalent scaling in the class-balanced case for all types of
normalization, under our parameterization, we would need to use

sj = 4δ−1(q − q2)δ.

This only resolves the issue for the lasso. To achieve a similar effect for ridge regression, we would need
another (but similar) modification. Since all features are binary under our current assumptions, however, we
will for now just assume that we scale λ1 and λ2 to account for this effect,4 which is equivalent to modifying
sj . We will return to this issue later in Section 3.3 where we consider mixes of binary and normally distributed
features in, in which case this has significant implications.

We now leave the noise-less scenario and proceed to consider how class balance affects the probability of
selection, bias, and variance of the elastic net estimator, starting with the first of these. A consequence of the
normal error distribution and consequent normal distribution of Z is that the probability of selection in the

4We do this in all of the following examples.
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elastic net problem is given analytically by

Pr
(

β̂j ̸= 0
)

= Pr (Sλ1(Z) ̸= 0)

= Pr (Z > λ1) + Pr (Z < −λ1)

= Φ

(

µ − λ1

σ

)

+ Φ

(−µ − λ1

σ

)

.

= Φ

(

β∗
j n(q − q2)1/2 − λ1(q − q2)δ−1/2

σε
√

n

)

+ Φ

(

−β∗
j n(q − q2)1/2 − λ1(q − q2)δ−1/2

σε
√

n

)

.

Letting θ = −µ − λ1 and γ = µ − λ1, we can express the probability of selection in the limit as q → 1+ as

lim
q→1+

Pr(β̂j ̸= 0) =















0 if 0 ≤ δ < 1
2 ,

2 Φ
(

− λ1

σε

√
n

)

if δ = 1
2 ,

1 if δ > 1
2 .

In Figure 2, we plot this probability for various settings of δ for a single feature. Our intuition from the
noise-less case holds: δ mitigates the influence of class imbalance on selection probability. The lower the
value of δ, the larger the effect of class imbalance becomes. Note that the probability of selection initially
decreases also in the case when δ ≥ 1. This is a consequence of increased variance of Z dues to the scaling
factor that scales the measurement noise σ2

ε upwards. Then, as q approaches 1, the probability picks up again
and eventually approaches 1 for these δ ∈ {1, 1.5}. The reason for this is that the variance of Z eventually
explodes (again due to the scaling), which ultimately removes the soft-thresholding effect altogether. Note
that the selection probability is unaffected by λ2 (the ridge penalty), so these results hold for any value of it.
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Figure 2: Probability of selection in the lasso given a measurement noise level σε, a regularization parameter
λ1, and a class balance q. The scaling factor is parameterized by sj = (q − q2)δ, δ ≥ 0. The dotted line
represents the asymptotic limit for the standardization case, δ = 1/2.

Now we turn to the impact of class imbalance on bias and variance of the elastic net estimator. We begin, in
Theorem 3.1, by considering the expected value of the elastic net estimator in the limit as q → 1+.

Theorem 3.1. If xj is a binary feature with class balance q ∈ (0, 1), λ1 ∈ (0, ∞), λ2 ∈ [0, ∞), σε > 0, and
sj = (q − q2)δ, δ ≥ 0 then

lim
q→1+

E β̂j =















0 if 0 ≤ δ < 1
2 ,

2nβ∗

j

n+λ2
Φ
(

− λ1

σε

√
n

)

if δ = 1
2 ,

β∗
j if δ > 1

2 .

Theorem 3.1 shows that the bias of the elastic net estimator when 0 ≤ δ < 1/2 approaches −β∗
j as q → 1+.

Interestingly, when δ = 1/2 (standardization), the estimate does not in fact tend to zero. Instead, it
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approaches the true coefficient scaled by the probability that a standard normal variable is smaller than
β∗

j

√
nσ−1

ε . For δ > 1/2, the estimate is unbiased asymptotically, which is related to the scaled variance of
the error term. Note that this unbiasedness is paralleled by a surge in variance and therefore also a rise in
mean-squared error, and only serves to demonstrate that the cost of the decoupling of q is unbearable in the
large noise–large imbalance scenario. In Theorem 3.2, we continue by studying the variance in the limit as
q → 1+.

Theorem 3.2. If xj is a binary feature with class balance q ∈ (0, 1) and λ1, λ2 ∈ (0, ∞), σε > 0, and
sj = (q − q2)δ, δ ≥ 0, then

lim
q→1+

Var β̂j =

{

0 if 0 ≤ δ < 1
2 ,

∞ if δ ≥ 1
2 .

Corollary 3.2.1 (Variance in Ridge Regression). Assume the conditions of Theorem 3.2 hold, except that
λ1 = 0. Then

lim
q→1+

Var β̂j =











0 if 0 ≤ δ < 1/4,
σ2

εn

λ2
2

if δ = 1/4,

∞ if δ > 1/4.

Theorem 3.2 formally proves the asymptotic variance effects of our scaling parameter sj which we have already
discussed in the context of selection probability and bias. Taken together with the results from Theorem 3.1,
this suggests that the choice of scaling parameter, at least in the case of our specific parameterization,
introduces a bias–variance tradeoff with respect to δ: to reduce bias (with respect to q), we need to pay the
cost of increased variance.

In Figure 3, we now visualize bias, variance, and mean-squared error for ranges of class balance and various
noise-level settings for a lasso problem. The figure demonstrates the bias–variance tradeoff that our asymptotic
results suggested and indicates that the optimal choice of δ is related to the noise level in the data. Since this
level is unknown for most data sets, it suggests there might be value in selecting δ through hyper-optimization
as is typically done for the other hyper-parameters in the elastic net (λ1, λ2)

So far, we have only considered a single binary feature. But under the assumption of orthogonal features,
it is straightforward to introduce multiple binary features. In a first example, we study how the power of
correctly detecting k = 10 signals under q linearly spaced in [0.5, 0.99] (Figure 5a). We set β∗

j = 2 for each of

the signals, use n = 100 000, and let σε = 1. The level of regularization is set to λ1 = n4δ/10. As we can see,
the power is directly related to q and for unbalanced features stronger the higher the choice of δ is.

We also consider a version of the same setup, but with p linearly spaced in [20, 100] to compute the normalized
mean-squared error (NMSE) and false discovery rate (FDR) (Figure 5b). As before, we let k = 10 and
consider three different levels of class imbalance. The remaining p − k features have class balances spaced
evenly on a logarithmic scale from 0.5 to 0.99. Unsurprisingly, the increase in power gained from selecting
δ = 1 imposes increased false discovery rates. The mean-squared error depends on the class balance. For
class-balanced signals, δ ∈ {0, 1/2} proves to b the best choice, while for unbalanced signals, δ = 1 is the best
choice. In the case when q = 0.99, the model under scaling with δ = 0 is altogether unable to detect any of
the true signals, instead picking up on the noisy, but better-balanced, features.

In Section 4, we will continue to study binary features in simulated experiments. For now, however, we will
turn to the case of mixed data.

3.3 Mixed Data

In this section, we consider the case where the features are made up of a mix of continuous and and binary
features. Throughout the section, we will continue to assume that X is fixed and that the features are
orthogonal to one another. As in our theoretical results, we will also restrict our focus to the case where the
continuous features are normally distributed.

A fundamental problem in the context of mixed data is how to put the binary and normal features on the
same scale, which we need to do in order for regularization to be, roughly speaking, “fair”, given that the
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Figure 3: Bias, variance, and mean-squared error for a one-dimensional lasso problem. We show these
measures for various noise levels (σε), class balances (q), and scaling factors (δ). The dotted lines represent
the asymptotic bias of the lasso estimator in the case of δ = 1/2.
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measures for various noise levels (σε), class balances (q), and scaling factors (δ). The dotted lines represent
the asymptotic bias of the lasso estimator in the case of δ = 1/2.
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(a) The power (probability of detecting all true
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omitted the parameter in the plot.
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Figure 5: Normalized mean-squared error (NMSE), false discovery rate (FDR), and power for a lasso problem
with k = 10 true signals (nonzero β∗

j ), varying p, and q ∈ [0.5, 0.99]. The noise level is set at σε = 1 and
λ1 = 0.02.

vi 191



solution is sensitive to the scale of the features. In essence, we need to say something about how an effect
associated with a one-unit change in the binary feature (a flip) relates to a one-unit change in the continuous
feature. Since we assume our continuous feature to be normal, however, we will instead reason about change
in terms of standard deviations of the normal feature.

To setup this situation more formally, we will say that the effect of a binary feature x1 and a normal feature
x2 are comparable if

β∗
1 = κσ2β∗

2 ,

where σ2 is the standard deviation of x2 and κ > 0 is a scaling factor that represents the number of standard
deviations (of the continuous feature) we consider achieves comparability between the features’ effects. (Note
that σ2β∗

2 is just the standardized coefficient for the normal feature.) We illustrate this notion of comparability
by a couple of examples.

Example 3.1. Assume κ = 2. If x2 is sampled from Normal(µ, 1/22), then the effects of x1 and x2 are
comparable if β∗

1 = β∗
2 .

Example 3.2. Assume κ = 1. If x2 is sampled from Normal(µ, 22), then the effects of x1 and x2 are
comparable if β∗

1 = 2β∗
2 .

Note that this definition refers to the data-generating mechanism, and not the regularized estimates. What
we ultimately want for comparability, however, is for the following relationship to hold:

β̂1 = κσ2β̂2.

Put plainly, we want the effects of regularization to be distributed evenly across the estimates. The crux
of the problem is how to choose the scaling factor sj for the binary features in order to achieve this effect
for a given κ. Let us assume that we have two features, x1 and x2, where x1 is binary and x2 is normally
distributed and that their effects are comparable in the sense given above. Then it should hold that

β̂1 = κσ2β̂2 =⇒
Sλ1

(x̃⊺

1y)

s1 (x̃⊺

1 x̃1 + λ2)
=

κσ2 Sλ1
(x̃⊺

2y)

s2 (x̃⊺

2 x̃2 + λ2)
=⇒

Sλ1

(

nβ∗

1 (q−q2)
s1

)

s1

(

n(q−q2)
s2

1
+ λ2

) =
κ Sλ1

(

nβ∗

1

κ

)

n + λ2
(11)

since we strandadize he normal feature and therefore s2 = σ2. For the lasso (λ2 = 0) and ridge regression
(λ1 = 0), we observe that s1 = κ(q − q2) and s1 = (q − q2)1/2, respectively, are the values for which
Equation (11) hold. In other words, we can achieve comparability in the lasso by scaling each binary feature
with its variance times κ, the number of standard deviations we consider achieves comparability between the
features’ effects. And for ridge regression, we can achieve comparability by scaling with standard deviation,
irrespective of κ.

For any other choices of s1, equality can only hold for a specific level of class balance. If we let this level be
q0, then, to achieve equality for λ2 = 0, we need s1 = κ(q0 − q2

0)1−δ(q − q2)δ. Similarly, for λ1 = 0, we need
s1 = (q0 − q2

0)1−2δ(q − q2)δ. In the sequel, we will assume that q0 = 1/2, to have effects be equivalent for the
class-balanced case.

Note that this also means that there is an implicit relationship between the strength of penalization for binary
and normal features, which depends on the level of class balance and normalization type. This means, for
instance, that even in the class-balanced case (q = 1/2), we have to account for the type of normalization if
we want binary and normal features to be treated equally. For example, if we were to use δ = 0 and fit the
lasso, then Equation (11) for a binary feature with q = 1/2 becomes

4 Sλ1

(

nβ∗

1

4

)

n
=

κ Sλ1

(

nβ∗

1

κ

)

n
,
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which then implies κ = 4, which may or may not agree with our assumptions about comparability between
these features’ effects.

For the rest of this paper, we will use κ = 2. That is, we will say that the effects are comparable if the
effect of a flip in the binary feature equals the effect of a two-standard deviation change in the normal
feature. We base this argument on the discussion by Gelman (2008), who argues that the classical approach of
comparing standardized coefficients5 awards effects of continuous features undue strength for most real data,
since a change from, for instance, the lower to the upper 16% of the distribution will equal approximately
twice the effect of a change in the binary feature. Using two standard deviations as a comparability factor
would, in contrast, equivocate this change with the flip of the binary feature, which we believe is a better
default. We want to stress that the choice of κ should, if possible, in general be made on a case-by-case
(feature-by-feature) basis, using all available knowledge about the data at hand. But, irrespective of this,
we also want to emphasize that the choice should be made. If you do not make it explicitly, then it will be
implicitly dictated through the combination of normalization and penalization types you use.

Finally, note that the reasoning of comparability above rests on the assumption of no noise. And we are, in
fact, in general instead more interested in the expected value of the estimators, which depend on the noise
level. In the case of large class-imbalances and large noise, for instance, our previous results (see Figure 3 for
instance), suggest that the estimators for normally distributed and binary features will not be comparable in
this case.

4 Experiments

In the following sections, we present the results of our experiments. We begin by examining the variability
and bias in the estimates of the regression coefficients. We then move on to predictive performance and
hyperparameter selection. We also consider the effect of class imbalance on the estimates of the regression
coefficients. Finally, we look at the effect of interactions between features on the estimates of the regression
coefficients.

In all cases where we use simulated data, we generate our response vector according to

y = Xβ∗ + ε,

with ε ∼ Normal(0, σ2
εI), where X is the design matrix, β∗ is the vector of true regression coefficients, and

σ2
ε is the noise level.

We consider two types of features: binary and quasi-normal features. To generate binary vectors, we sample
⌈qn⌉ indexes uniformly at random without replacement from {1, 2, . . . , n} and set the corresponding elements
to one and the remaining ones to zero. To generate quasi-normal features, we generate a linear sequence w

with n values from 10−4 to 1 − 10−4, and set

xij = Φ−1(wi)

and then shuffle the elements of xj uniformly at random.

In each case, we fit either the lasso (the elastic net with λ1 = αλ ) or ridge (the elastic net with λ2 = (1−α)λ).
To normalize the data, we use standardization for all quasi-normally distributed features and otherwise

sj = (q − q2)δ,

which is equivalent to the (uncorrected) sample variance raised to the power of δ.

Throughout the experiments, we have used the Lasso.jl package (Kornblith, 2024) to fit lasso or ridge
regression, which implements the coordinate descent algorithm by citetfriedman2010. All experiments
were coded using the Julia programming language (Bezanson et al., 2017) and the code is availabe at
https://github.com/jolars/normreg.

5Coefficients multiplied by the standard deviation of the respective feature.
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4.1 Variability and Bias in Estimates

In our first experiment, we consider fitting the lasso to a simulated data set with n = 500 observations and
p = 1000 features, out of which the first 20 features correspond to signals, with β∗

j decreasing linearly from
1 to 0.1. We introduce dependence between the features by copying the first ⌈ρn/2⌉ values from the first
feature to each of the following features. In addition, we set the class balance of the first 20 features so that
it decreases linearly on a log-scale from 0.5 to 0.99. We estimate the regression coefficients using the lasso,
setting λ1 = 2σε

√
2 log p and compare the estimates to the true coefficients. We run the experiment for 50

iterations in each case and aggregate the results by reporting means and standard deviations.

The results (Figure 6) show that there is a considerable effect of class balance, particularly in the case of no
scaling (δ = 0), which corroborates our theoretical results from Section 3.2. At q = 0.99, for instance, the

estimate (β̂20) is consistently zero when δ = 0. There is a similar effect also in the case of standardization
(δ = 1/2), but it is less pronounced. For δ = 1 (variance scaling), we see that the effect of class balance on
the estimates is, if anything, the reverse when the class imbalance is severe. What is also clear is that the
variance of the estimates increase with class imbalance and that this effect increases together with δ. The
level of correlation between the features introduces additional variance in the estimates but also seems to
increase the effect of class imbalance in the cases when δ = 0 or 1/2.
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Figure 6: Estimates of the regression coefficients from the lasso, β̂, for the first 30 coefficients in the
experiment. All of the features are binary and the first 20 features correspond to true signals with β∗

j = 2
and geometrically decreasing class balance from 0.5 to 0.99. The remaining features have a class balance
qj ∈ [0.5, 0.99], distributed linearly among the features. The plot shows means and standard deviations
averaged over 50 iterations.

4.2 Predictive Performance

In this experiment, we consider predictive performance in terms of mean-squared error of the lasso given
different levels of class balance (q ∈ {0.5, 0.9, 0.99}), signal-to-noise ratio, and normalization (δ). As in the
previous section, all of the features are binary, but here we have used n = 300, p = 1000. The k = 10 first
features correspond to true signals with β∗

j = 1 and all have class balance q. To set signal-to-noise ratio levels,
we rely on the same choice as in Hastie et al. (2020) and use a log-spaced sequence of values from 0.05 to 6.
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To estimate prediction performance, we use a standard hold-out validation method equal splits for the training,
validation, and test sets. We fit a full lasso path, parameterized by a log-spaced grid of 100 values6, from
λmax (the value of λ at which the first feature enters the model) to 10−2λmax on the training set and pick a
λ based on validation set error. Then we compute the hold-out test set error and aggregate the results across
100 iterations.

The results (Figure 7) show that the optimal normalization type in terms of prediction power depends on the
class balance of the true signals. If the imbalance is severe, then we gain from using δ = 1/2 or 1, which gives
a chance of recovering the true signals. If everything is balanced, however, then we do better by not scaling
at all. In general, δ = 1/2 works well for these specific combinations of settings.
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Figure 7: Normalized mean-squared prediction error in a lasso model for different types of normalization (δ),
types of class imbalances (q), and signal-to-noise ratios (0.05 to 6) in a data set with n = 300 observations
and p = 1000 features. The error is aggregated test-set error from hold-out validation with 100 observations
in each of the training, validation, and test sets. The plot shows means and Student’s t-based 95% confidence
intervals.

4.3 Normalization as a Hyperparameter

Our previous results (particularly those from Section 4.2) suggest that the choice of normalization matters
for predictive performance. These results have relied on knowledge of the measurement error (signal-to-noise
ratio), which we do not have reliable estimates of in practice (at least not in the high-dimensional context).
An alterative that, however, comes naturally as a consequence of our particular parameterization using δ, is
to treat the choice of normalization as a hyperparameter and optimize over it. This is the approach we take
in this experiment.

We set up a grid of λ values as in Section 4.2 and, in addition, also create a linearly spaced grid of δ values in
[0, 1]. We split the data into a 50/50 training/validation set split and for each point in this two-dimensional
grid fit the lasso or ridge to the training set and compute a hold-out validation set error. We do this for three
data sets: a1a (Becker & Kohavi, 1996), rhee2006 (Rhee et al., 2006), and w1a (Platt, 1998).

Table 2: Details of the real datasets used in the experiments

Dataset n p Response

w1a 2477 300 Binary
a1a 1605 123 Binary
rhee2006 842 361 Continuous

6This is a standard choice of grid, used for instance by Friedman et al. (2010)
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We show estimated level-curves of validation set error, in terms of normalized mean-squared error (NMSE),
in Figure 8. For a1a, the lasso is generally quite insensitive to the type of normalization, even if the optimal
value is around 0.2. For ridge regression, lower values of δ clearly work better. With the w1a data set,
however, the relationship is flipped in the case of ridge regression and the optimal value is approximately 0.8.
In the case of the lasso (for w1a), a value around 0.5 is optimal and low values (little scaling) yield worse
prediction errors. Finally, for rhee2006, the lasso is again insensitive to normalization type. This is not the
case for ridge, however, where a value around 0.2 is optimal and high values of δ yield worse prediction errors.
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Figure 8: Contour plots of normalized mean-squared error (NMSE) for the hold-out validation set across a
grid of δ and λ values for ridge regression and the lasso. The dotted path shows the smallest NMSE as a
function of λ. The dot marks the combination with the smallest error.

We would like to point out that there is a dependency between λ and δ here that make it difficult to interpret
the relationship between them and the error. This comes fro mthe fact that scaling with a smaller value (as
in δ = 1) increases the sizes of the vectors, which means that the level of penalization is relaxed, relative
speaking.

In Figure 9, we have, in addition to NMSE on the validation set, also plotted the size of the support of the
lasso (cardinality of the set of features that have corresponding nonzero coefficients). Here, however, we only
show results for δ ∈ {0, 1/2, 1}. It is clear that δ = 1/2 works quite well for all of these three data sets, being
able to attain a value close to the mininum for each of the three data sets. This is not the case for δ ∈ {0, 1},
for which the best possible prediction error is considerably worse. This is particularly the case with δ = 0
and the w1a data set. The dependency between λ and δ is also visible here by looking at the support size.

4.4 Mixed Data

In Section 3.3, we discovered that extra care needs to be taken when normalizing mixed data. In this
experiment, we construct a quasi-normal feature with mean zero and standard deviation 1/2 and a binary
feature with varying class balance q. We set the signal-to-noise ratio to 0.5 and generate our response
vector y as before, with n = 1000. These features are constructed so that their effects are comparable
under the notion of comparability that we introduce in Section 3.3, using κ = 2. In order to preserve the
comparability for the baseline case q0 = 1/2, we use the scaling introduced in Section 3.3, which leads to
sj = 2 × (1/4)1−δ(q − q2)δ. For the lasso, we set the level of penalization to λmax/2 and for ridge regression,
we set the level of penalization to 2λmax.7

7This makes the level of regularization comparable between the two cases.
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Figure 9: Support size and normalized mean-squared error (NMSE) for the validation set for the lasso fit
to datasets a1a, w1a, and rhee2006 across combinations of δ and λ. The optimal δ is marked with dashed
black lines and the best combination of δ (among 0, 1/2, and 1) and λ is shown as a dot.

The results (Figure 10) reflect our theoretical results from Section 3. In the case of the lasso, we need δ = 1
to avoid the effect of class imbalance, whereas for ridge we instead need δ = 1/2 (standardization). As our
theory suggests, this extra scaling mitigates this class-balance dependency at the cost of added variance.
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Figure 10: Lasso and ridge estimates for a two-dimensional problem where one feature is a binary feature
with class balance q, Bernoulli(q), and the other is a quasi-normal feature with standard deviation 1/2,
Normal(0, 0.5). Here, we have n = 1000 observations. The signal-to-noise ratio is 0.5 In every case, we
standardize the normal feature. The binary feature, meanwhile, is centered by its mean and scaled by (q −q2)δ.
The experiment is run for 50 iterations and we aggregate and report means and standard deviations of the
estimates.
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Note that we do not see the bias reduction that we observed in our theoretical results for high q values and
δ ≥ 1/2 in Figure 10. This is related to the error term (signal-to-noise ratio) and level of q. Typically, we
would need stronger class imbalance and larger error for the effect to show up in our experiments.

4.5 Interactions

In our final experiment, we study the effect of normalization and class balance on interactions when using the
lasso. Our example consists of a two-feature problem with an added interaction term given by xi3 = xi1xi2.
The first feature is binary with class balance q = 0.9 and the second quasi-normal with standard deviation
0.5. We set n = 1000 and specify λ1 = n/4 as the level of regularization. Note that we normalize after the
interaction term is added.

The results (Section 4.5) show, as before, that class balance (which, recall, is set to 0.9 here) has a dramatic
effect on estimates of the binary feature when δ ∈ {0, 1/2}. Somewhat surprisingly, however, the interaction
term does not seem to be affected by the normalization type for any of the cases in which it is present.
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Figure 11: Lasso estimates for a three-feature problem where the third feature is an interaction term between
the first two features. The first feature is binary (quasi-Bernoulli) with class balance q = 0.9 and the second
is quasi-normal with standard deviation 0.5. The signal-to-noise ratio is 0.5. The experiment is run for 50
iterations and we aggregate and report means across all iterations.

Note that the interaction in this experiment naturally introduces correlation between the features and that
this has an effect on the lasso estimates since we, for instance, can penalize the main effect whilst still
retaining information about it in the interaction term.

5 Discussion

In this paper, we have studied the effects of normalization in ridge regression and the lasso for features that
are binary—an issue that has so far been treated with disregarded in the literature. We have discovered the
class imbalance of binary features—the proportion of ones and zeros in the features—have a pronounced
effect on both lasso and ridge estimates, and that this effect depends on the type of normalization used. For
the lasso, for instance, our results show that features with large class imbalances will be regularized heavily,
and provided that λ is large enough might stand little chance of being selected, even if the true effect of the
feature on the response is large.

We have, however, found that scaling binary features with standard deviation in the case of ridge regression
and variance in the case of the lasso mitigates this effect, but that doing so comes at the price of increased
variance. This effectively means that the choice of normalization constitutes a bias–variability trade-off with
respect to imbalanced binary features.

To study these effects theoretically and in practice, we have introduced the scaling parameterization

sj = (q − q2)δ,

which, for instance, includes the cases δ = 0 (no scaling), δ = 1/2 (standard deviation scaling), and δ = 1
(variance scaling). These, in turn, correspond to standard choices of normalization types for this kind of data.
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The common variants max–abs and min–max normalization, for instance, in practice correspond to δ = 0 in
the case of binary data, whilst standardization corresponds to δ = 1/2. As far as we know, scaling with δ = 1
have previously not been considered in the literature nor to any extent that we are aware of in practice.

Our results demonstrate, however, that the choice of δ affects the lasso and ridge estimates heavily in many
cases. This is particularly true with respect to selective inference, in which case δ = 0 scaling will reduce
the chances of finding the true model via the lasso in class-imbalanced settings (Section 4.1). But it will
also bias the regression coefficients in both the lasso and ridge, which may also lead to suboptimal predictive
performance (Section 4.2).

Both our theoretical results (Section 3.2) and experiments (Section 4.1) show that the optimal choice of δ may
depend on the error in the data-generating process, which is typically unknown. As an alternative, we investi-
gated choosing δ in a data-driven manner by optimizing over δ as if it were a hyperparameter (Section 4.3).

We have also studied the case of mixed data: designs that consist of both binary and normally distributed
features. In this setting, our first finding is that there is an implicit relationship between the choice of
normalization and the manner in which regularization affects binary viz-a-viz normally distributed features.
For instance, the choice of max–abs normaliation carries a specific assumption about how the effect of a
binary feature should be compared to that of a normally distributed feature. There is still much uncertainty
about how to best handle the mixed data case and no ground truth given that a binary feature can mean any
number of things—few of which are directly comparable to a continuous feature.

In our experimental results, we touch briefly on the case of interactions. In this case, it seems that the
interaction term between a normal feature and a binary one is more-or-less unaffected by the class balance of
the latter (Section 4.5). An interesting avenue for future research could be to study this in more detail, both
theoretically and empirically. One particular problem with interactions is that the interaction term depends
on the location, and not just the scale, of the normal feature (in this two-feature setting), which may call for
conditional normalization strategies. Much remain to be explored in this area.

Finally, note that our theoretical results are limited by several assumptions: 1) a fixed feature matrix X, 2)
orthogonality between the features, and 3) normal and idependent errors. Future work could relax these
assumptions to study the effects of normalization in more general settings. For instance, the assumption
of orthogonality could be relaxed to allow for correlated features, which is often the case in practice. This
would allow for a more general understanding of the effects of normalization in regularized regression models.
We have also limited ourselves to the case of the lasso and ridge regression. Investigating to which extent, if
any, the effects we observe generalize to other models as well would yield valuable insights. We have also
focused on the case of binary and continuous features here, but we are convinced that the case of categorical
features is also of interest and might raise additional challenges with respect to normalization.
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A Additional Theory

A.1 Why Maximum–Absolute and Min–Max Scaling are Unsuitable for Normally Distributed Data

In Theorem A.1, we show that the scaling factor in the max–abs method converges in distribution to a
Gumbel distribution.

Theorem A.1. Let X1, X2, . . . , Xn be a sample of normally distributed random variables, each with mean µ
and standard deviation σ. Then

lim
n→∞

Pr

(

max
i∈[n]

|Xi| ≤ x

)

= G(x),

where G is the cumulative distribution function of a Gumbel distribution with parameters

bn = F −1
Y (1 − 1/n) and an =

1

nfY (µn)
,

where fY and F −1
Y are the probability distribution function and quantile function, respectively, of a folded

normal distribution with mean µ and standard deviation σ.

The gist of Theorem A.1 is that the limiting distribution of maxi∈[n] |Xi| has expected value bn + γan, where
γ is the Euler-Mascheroni constant. This indicates that the scaling factor strongly dependent on the sample
size. In Figure 12a, we observe empirically that the limiting distribution agrees well with the empirical
distribution in expected value even for small values of n.

In Figure 12b we show the effect of increasing the number of observations, n, in a two-feature lasso model with
max-abs normalization applied to both features. The coefficient corresponding to the Normally distributed
feature shrinks as the number of observation n increases. Since the expected value of the Gumbel distribution
diverges with n, this means that there’s always a large enough n to force the coefficient in a lasso problem to
zero with high probability.
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(a) Theoretical versus empirical distribu-
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mally distributed random variables.
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Figure 12: Effects of maximum absolute value scaling.

For min–max scaling, the situation is similar and we omit the details here. The main point is that the scaling
factor is strongly dependent on the sample size, which makes it unsuitable for normally distributed data in
several situations, such as on-line learning (where sample size changes over time) or model validation with
uneven data splits.

B Proofs

B.1 Proof of Theorem A.1

If Xi ∼ Normal(µ, σ), then |Xi| ∼ FoldedNormal(µ, σ). By the Fisher–Tippett–Gnedenko theorem, we know
that (maxi |Xi| − bn)/an converges in distribution to either the Gumbel, Fréchet, or Weibull distribution,

vi 201



given a proper choice of an > 0 and bn ∈ R. A sufficient condition for convergence to the Gumbel distribution
for a absolutely continuous cumulative distribution function (Nagaraja & David, 2003, Theorem 10.5.2) is

lim
x→∞

d

dx

(

1 − F (x)

f(x)

)

= 0.

We have

1 − FY (x)

fY (x)
=

1 − 1
2 erf

(

x−µ√
2σ2

)

− 1
2 erf

(

x+µ√
2σ2

)

1√
2πσ2

e
−(x−µ)2

2σ2 + 1√
2πσ2

e
−(x+µ)2

2σ2

=
2 − Φ

(

x−µ
σ

)

− Φ
(

x+µ
σ

)

1
σ

(

ϕ
(

x−µ
σ

)

+ ϕ
(

x+µ
σ

))

→ σ(1 − Φ(x))

ϕ(x)
as n → n,

where ϕ and Φ are the probability distribution and cumulative density functions of the standard normal
distribution respectively. Next, we follow Nagaraja & David (2003, example 10.5.3) and observe that

d

dx

σ(1 − Φ(x))

ϕ(x)
=

σx(1 − Φ(x))

ϕ(x)
− σ → 0 as x → ∞

since
1 − Φ(x)

ϕ(x)
∼ 1

x
.

In this case, we may take bn = F −1
Y (1 − 1/n) and an =

(

nfY (bn)
)−1

.

B.2 Proof of Theorem 3.1

Since sj = (q − q2)δ, we have

µ = β∗
j n(q − q2)1−δ θ

σ
= −a

√

q(1 − q) − b(q − q2)δ−1/2,

σ = σε

√
n(q − q2)1/2−δ,

γ

σ
= a

√

q(1 − q) − b(q − q2)δ−1/2,

dj = n(q − q2)1−δ + λ2(q − q2)δ,
θ

dj
= −β∗

j − λ1(q − q2)δ−1

n
,

θ = −β∗
j n(q − q2)1−δ − λ1,

γ

dj
= β∗

j − λ1(q − q2)δ−1

n
,

γ = β∗
j n(q − q2)1−δ − λ1,

with

a =
β∗

j

√
n

σε
and b =

λ1

σε
√

n
.

We are interested in

lim
q→1+

E β̂j = lim
q→1+

1

d

(

−θ Φ

(

θ

σ

)

− σ ϕ

(

θ

σ

)

+ γ Φ
(γ

σ

)

+ σ ϕ
(γ

σ

)

)

. (12)

Before we proceed, note the following limits, which we will make repeated use of throughout the proof.

lim
q→1+

θ

σ
= lim

q→1+

γ

σ
=











−∞ if 0 ≤ δ < 1
2 ,

−b if δ = 1
2 ,

0 if δ > 1
2 ,

(13)
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Starting with the terms involving Φ inside the limit in Equation (12), for now assuming that they are
well-defined and that the limits of the remaining terms also exist seperately, we have

lim
q→1+

(

−θ

d
Φ

(

θ

σ

)

+
γ

dj
Φ
(γ

σ

)

)

= lim
q→1+

(

(

β∗
j n

n + λ2(q − q2)2δ−1
+

λ1

n(q − q2)1−δ + λ2(q − q2)δ

)

Φ

(

θ

σ

)

+

(

β∗
j n

n + λ2(q − q2)2δ−1
− λ1

n(q − q2)1−δ + λ2(q − q2)δ

)

Φ
(γ

σ

)

)

= lim
q→1+

β∗
j n

n + λ2(q − q2)2δ−1

(

Φ

(

θ

σ

)

+ Φ
(γ

σ

)

)

+ lim
q→1+

λ1

n(q − q2)1−δ + λ2(q − q2)δ

(

Φ

(

θ

σ

)

− Φ
(γ

σ

)

)

. (14)

Considering the first term in Equation (14), we see that

lim
q→1+

β∗
j n

n + λ2(q − q2)2δ−1

(

Φ

(

θ

σ

)

+ Φ
(γ

σ

)

)

=











0 if 0 ≤ δ < 1/2,
2nβ∗

j

n+λ2
Φ(−b) if δ = 1/2,

β∗
j if δ > 1/2.

For the second term in Equation (14), we start by observing that if δ = 1, then q(1 − q)δ−1 = 1, and if δ > 1,
then limq→1+(q − q2)δ−1 = 0. Moreover, the arguments of Φ approach 0 in the limit for δ ≥ 1, which means
that the entire term vanishes in both cases (δ ≥ 1).

For 0 ≤ δ < 1, the limit is indeterminite of the form ∞ × 0. We define

f(q) = Φ

(

θ

σ

)

− Φ
(γ

σ

)

and g(q) = n(q − q2)1−δ + λ2(q − q2)δ,

such that we can express the limit as limq→1+ f(q)/g(q). The corresponding derivatives are

f ′(q) =
(

−a

2
(1 − 2q)(q − q2)−1/2 − b(δ − 1/2)(1 − 2q)(q − q2)δ−3/2

)

ϕ

(

θ

σ

)

−
(

−a

2
(1 − 2q)(q − q2)−1/2 − b(δ − 1/2)(1 − 2q)(q − q2)δ−3/2

)

ϕ
(γ

σ

)

,

g′(q) = n(1 − δ)(1 − 2q)(q − q2)−δ + λ2δ(1 − 2q)(q − q2)δ−1

Note that f(q) and g(q) are both differentiable and g′(q) ̸= 0 everywhere in the interval (1/2, 1). Now note
that we have

f ′(q)

g′(q)
=

1

n(1 − δ)(q − q2)1/2−δ + λ2δ(1 − 2q)(q − q2)δ−1/2

×
(

(

−a

2
− b(δ − 1/2)(q − q2)δ−1

)

ϕ

(

θ

σ

)

−
(a

2
− b(δ − 1/2)(q − q2)δ−1

)

ϕ
(γ

σ

)

)

. (15)

For 0 ≤ δ < 1/2, limq→1+ f ′(q)/g′(q) = 0 since the exponential terms of ϕ in Equation (15) dominate in the
limit.

For δ = 1/2, we have

lim
q→1+

f ′(q)

g′(q)
= − a

n + λ2
lim

q→1+

(

ϕ

(

θ

σ

)

+ ϕ
(γ

σ

)

)

= − a

n + λ2
ϕ(−b)

so that we can use L’Hôpital’s rule to show that the second term in Equation (14) becomes

−
2β∗

j λ1
√

n

σε(n + λ2)
ϕ

( −λ1

σε
√

n

)

. (16)
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For δ > 1/2, we have

lim
q→1+

f ′(q)

g′(q)
= lim

q→1+

− a
2

(

ϕ
(

θ
σ

)

+ ϕ
(

γ
σ

))

n(1 − δ)(q − q2)1/2−δ + λ2δ(1 − 2q)(q − q2)δ−1/2

+ lim
q→1+

b(δ − 1/2)
(

ϕ
(

γ
σ

)

− ϕ
(

θ
σ

))

n(1 − δ)(q − q2)3/2−2δ + λ2δ(1 − 2q)(q − q2)1/2

= 0 + lim
q→1+

b(δ − 1/2)e− 1
2 (a2(q−q2)+b2(q−q2)2δ−1)

(

e−ab(q−q2)δ − eab(q−q2)δ
)

√
2π
(

n(1 − δ)(q − q2)3/2−2δ + λ2δ(1 − 2q)(q − q2)1/2
)

= 0

since the exponential term in the numerator dominates.

Now we proceed to consider the terms involving ϕ in Equation (12). We have

lim
q→1+

σ

d

(

ϕ
(γ

σ

)

− ϕ

(

θ

σ

))

= σε

√
n lim

q→1+

ϕ
(

γ
σ

)

− ϕ
(

θ
σ

)

n(q − q2)1/2 + λ2(q − q2)2δ−1/2
(17)

For 0 ≤ δ < 1/2, we observe that the exponential terms in ϕ dominate in the limit, and so we can distribute
the limit and consider the limits of the respective terms individually, which both vanish.

For δ ≥ 1/2, the limit in Equation (17) has an indeterminate form of the type ∞ × 0. Define

u(q) = ϕ
(γ

σ

)

− ϕ

(

θ

σ

)

and v(q) = n(q − q2)1/2 + λ2(q − q2)2δ−1/2

which are both differentiable in the interval (1/2, 1) and v′(q) ̸= 0 everywhere in this interval. The derivatives
are

u′(q) = − ϕ
(γ

σ

) γ

σ

(

1

2

(

a(1 − 2q)(q − q2)−1/2
)

− b(δ − 1/2)(1 − 2q)(q − q2)δ−3/2

)

+ ϕ

(

θ

σ

)

θ

σ

(

−1

2

(

a(1 − 2q)(q − q2)−1/2
)

− b(δ − 1/2)(1 − 2q)(q − q2)δ−3/2

)

,

v′(q) =
n

2
(1 − 2q)(q − q2)−1/2 + λ2(2δ − 1/2)(1 − 2q)(q − q2)2δ−3/2.

And so

u′(q)

v′(q)
=

1

n + λ2(4δ − 1)(q − q2)2δ−1

(

−
(

a − b(2δ − 1)(q − q2)δ−1
)

ϕ
(γ

σ

) γ

σ

−
(

a + b(2δ − 1)(q − q2)δ−1
)

ϕ

(

θ

σ

)

θ

σ

)

.

(18)

Taking the limit, rearranging, and assuming that the limits of the separate terms exist, we obtain

lim
q→1+

u′(q)

v′(q)
= −a lim

q→1+

1

n + λ2(4δ − 1)(q − q2)2δ−1

(

ϕ
(γ

σ

) γ

σ
+ ϕ

(

θ

σ

)

θ

σ

)

+ b(2δ − 1) lim
q→1+

1

n + λ2(4δ − 1)(q − q2)2δ−1

(

ϕ
(γ

σ

)(

a(q − q2)δ−1/2 − b(q − q2)2δ−3/2
)

− ϕ

(

θ

σ

)

(

−a(q − q2)δ−1/2 − b(q − q2)2δ−3/2
)

)

. (19)

For δ = 1/2, we have

lim
q→1+

u′(q)

v′(q)
= − a

n + λ2
(−b ϕ(−b) − b ϕ(−b)) + 0 = 2ab ϕ(−b) =

2β∗
j λ1

σ2
ε(n + λ2)

ϕ

( −λ1

σε
√

n

)

.
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Using L’Hôpital’s rule, the second term in Equation (17) must consequently be

2β∗
j λ1

√
n

σε(n + λ2)
ϕ

( −λ1

σε
√

n

)

.

which cancels with Equation (16).

For δ > 1/2, we first observe that the first term in Equation (19) tends to zero due to Equation (13) and the
properties of the standard normal distribution. For the second term, we note that this is essentially of the
same form as Equation (15) and that the limit is therefore 0 here.

B.3 Proof of Theorem 3.2

The variance of the elastic net estimator is given by

Var β̂j =
1

d2

(

σ2

2

(

2 + erf

(

θ

σ
√

2

)

− θ

σ

√

2

π
exp

(

− θ2

2σ2

)

+ erf

(

γ

σ
√

2

)

− γ

σ

√

2

π
exp

(

− γ2

2γ2

))

+ 2θσ ϕ

(

θ

σ

)

+ θ2 Φ

(

θ

σ

)

+ 2γσ ϕ
(γ

σ

)

+ γ2 Φ
(γ

σ

)

)

−
(

1

d
E β̂j

)2

. (20)

We start by noting the following identities:

θ2 =
(

β∗
j n
)2

(q − q2)2−2δ + λ2
1 + 2λ1β∗

j n(q − q2)1−δ,

d2 = n2(q − q2)2−2δ + 2nλ2(q − q2) + λ2
2(q − q2)2δ,

θσ = −σε

(

β∗
j n3/2(q − q2)3/2−2δ +

√
nλ1(q − q2)1/2−δ

)

,

θ2

σ2
= a2(q − q2) + b2(q − q2)2δ−1 + 2ab(q − q2)δ,

σ

d
=

σε
√

n

n(q − q2)
1
2 + λ2(q − q2)2δ−1/2

.

Expansions involving γ, instead of θ, have identical expansions up to sign changes of the individual terms.
Also recall the definitions provided in the proof of Theorem 3.1.

Starting with the case when 0 ≤ δ < 1/2, we write the limit of Equation (20) as

lim
q→

Var β̂j

= σ2
εn lim

q→1+

1
(

n(q − q2)1/2 + λ2(q − q2)2δ−1/2
)2

(

1 + erf

(

θ

σ
√

2

)

− θ

σ

√

2

π
exp

(

− θ2

2σ2

))

+ σ2
εn lim

q→1+

1
(

n(q − q2)1/2 + λ2(q − q2)2δ−1/2
)2

(

1 + erf

(

γ

σ
√

2

)

− γ

σ

√

2

π
exp

(

− γ2

2σ2

))

+ lim
q→1+

2θσ

d2
ϕ

(

θ

σ

)

+ lim
q→1+

θ2

d2
Φ

(

θ

σ

)

+ lim
q→1+

2γ

d2
σ ϕ
(γ

σ

)

+ lim
q→1+

γ2

d2
Φ
(γ

σ

)

−
(

lim
q→1+

1

d
E β̂j

)2

,

assuming, for now, that all limits exist. Next, let

f1(q) = 1 + erf

(

θ

σ
√

2

)

− θ

σ

√

2

π
exp

(

− θ2

2σ2

)

,

f2(q) = 1 + erf

(

γ

σ
√

2

)

− γ

σ

√

2

π
exp

(

− γ2

2σ2

)

,

g(q) =
(

n2(q − q2) + 2nλ2(q − q2)2δ + λ2
2(q − q2)4δ−1

)2
.
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And

f ′
1(q) =

θ2

σ2

√

2

π
exp

(

− θ2

2σ2

)

,

f ′
2(q) =

γ2

σ2

√

2

π
exp

(

− γ2

2σ2

)

,

g′(q) = (1 − 2q)
(

(q − q2)−1 + 4nδλ2(q − q2)2δ−1 + λ2
2(4δ − 1)(q − q2)4δ−2

)

.

f1, f1 and g are differentiable in (1/2, 1) and g′(q) ̸= 0 everywhere in this interval. f1/g and f2/g are
indeterminate of the form 0/0. And we see that

lim
q→1+

f ′
1(q)

g′(q)
= lim

q→1+

f ′
2(q)

g′(q)
= 0

due to the dominance of the exponential terms as θ/σ and γ/σ both tend to −∞. Thus f1/g and f2/g also
tend to 0 by L’Hôpital’s rule.

Similar reasoning shows that

lim
q→1+

2θσ

d2
ϕ

(

θ

σ

)

= lim
q→1+

θ2

d2
Φ

(

θ

σ

)

= 0.

The same result applies to the respective terms involving γ.

And since we in Theorem 3.1 showed that limq→1+
1
d E β̂j = 0, the limit of Equation (20) must be 0.

For δ = 1/2, we start by establishing that

lim
q→1+

∫ −λ

−∞
(z + λ)2fZ(z) dz = lim

q→1+

(

σ2

∫ θ
σ

−∞
y2 ϕ(y) dy + 2θσ

∫ θ
σ

−∞
y ϕ(y) dy + θ2

∫ θ
σ

−∞
ϕ(y) dy

)

is a positive constant since θ/σ → −b, σ = σε
√

n, θ → −λ, and θσ → −σε
√

nλ. An identical argument can
be made in the case of

lim
q→1+

∫ ∞

λ

(z − λ)2fZ(z) dz.

We then have

lim
q→1+

1

d2

∫ −λ

−∞
(z + λ)2fZ(z) dz =

C+

limq→1+ d2
=

C+

0
= ∞,

where C+ is some positive constant. And because limq→1+
1
d E β̂j = β∗

j (Theorem 3.1), the limit of Equa-
tion (20) must be ∞.

Finally, for the case when δ > 1/2, we have

lim
q→1+

1

d2

(

σ2

∫ θ
σ

−∞
y2 ϕ(y) dy + 2θσ

∫ θ
σ

−∞
y ϕ(y) dy + θ2

∫ θ
σ

−∞
ϕ(y) dy

)

= lim
q→1+

(

nσ2

(

n(q − q2)1/2 + λ2(q − q2)2δ−1/2
)2

∫ θ
σ

−∞
y2 ϕ(y) dy

−
2σε

√
n
(

β∗
j n(q − q2)1−δ − λ1

)

(

n(q − q2)3/4−δ/2 + λ2(q − q2)3δ/2−1/4
)2

∫ θ
σ

−∞
y ϕ(y) dy

+

(

−β∗
j n(q − q2)1−δ − λ1

n(q − q2)1−δ + λ2(q − q2)δ

)2
∫ θ

σ

−∞
ϕ(y) dy

)

.

Inspection of the exponents involving the factor (q − q2) shows that the first term inside the limit will
dominate. And since the upper limit of the integrals, θ/σ → 0 as q → 1+, the limit must be ∞.
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B.4 Proof of Corollary 3.2.1

We have

lim
q→1+

Var β̂j = lim
q→1+

σ2

d2
j

(

σε
√

n(q − q2)1/2−δ

n(q − q2)1−δ + λ2(q − q2)δ

)2

=
σ2

εn

λ2
2

lim
q→1+

(q − q2)1−4δ,

from which the result follows directly.
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