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Popular summary

If you have ever had an X-ray or CT scan in a hospital, you are most likely familiar with
X-ray imaging. An X-ray source, a sample, and a detector are all that are needed for the
simplest X-ray imaging experiments. By measuring the different levels of absorption of
X-rays as they pass through different materials, an image can be created that reveals the
internal structures and details of the sample.

Conventionally, X-ray experiments were mainly performed in laboratories using small-scale
X-ray sources, similar to the ones used in hospitals. Nowadays, X-ray imaging experiments
are carried out not only in laboratories but also at large-scale facilities. These facilities, in-
cluding synchrotron radiation sources and X-ray free-electron lasers, can produce intense
X-ray beams that allow scientists to study the structure and properties of materials with
unprecedented detail. Researchers from various fields, from biology and chemistry to ma-
terials science and physics, use these facilities to conduct complicated experiments that are
impossible with conventional lab-based X-ray sources. These large-scale X-ray sources are
generally shared resources, with scientists from around the world submitting research pro-
posals to apply for beamtime, i.e., the time allotted for experiments. Approved proposals
are granted a specific amount of beamtime, typically between 3 and 7 days, to conduct
experiments at these facilities.

During the beamtime, experiments can easily produce hundreds of gigabytes or even tera-
bytes of data every day. Given the large amount of data, manually analyzing it is impractical
due to the time and effort required. As a result, automated data analysis tools are required
to process and interpret the data efficiently. Since the 2010s, deep learning has been rapidly
developed as an essential branch of artificial intelligence (AI). Deep learning involves having
machines perform tasks based on available data without human interference. For instance,
internet companies use deep learning algorithms to categorize photos in your smartphone’s
album based on visual content, allowing you to search for images by keywords like “cats”
or “selfies.” Deep learning algorithms are also employed to recommend personalized ad-
vertisements, using data about your online behavior to tailor content that aligns with your
interests. Additionally, deep learning is at the heart of virtual assistants, enabling them to
understand voice commands, respond to questions, and carry on conversations. Beyond
these applications, deep learning also plays a critical role in X-ray imaging. It helps doctors
to analyze medical images, create 3D reconstructions, and predict patient outcomes based
on historical data.

Deep learning methods are driven by data, making them particularly well-suited to handle
the large amount of data generated by these experiments. Once trained, a deep learning
algorithm can process data rapidly, nearly in real-time, dramatically cutting down the time
needed for analysis, and can help researchers make decisions during experiments.
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However, deep learning methods also come with challenges. The first is a lack of explain-
ability in most current deep-learning approaches. AI is often described as a “black box”
because we can observe what goes into the system and what comes out, but the underly-
ing processes remain obscure. This lack of transparency makes it difficult to understand
how a deep learning model reaches its conclusions, leading researchers to be cautious about
relying on AI for critical decisions.

Another challenge is that many commonly used deep learning methods are supervised, re-
quiring paired training data, i.e., sets of inputs and corresponding outputs. Acquiring these
large paired datasets can be difficult and impossible in some experimental settings. This lim-
itation can restrict the application of deep learning when sufficient data is unavailable or
too costly to obtain.

Finally, the robustness and reliability of deep learning are barriers to more general applic-
ations in scientific research. Robustness refers to a model’s ability to perform consistently
despite variations in data or unexpected environmental changes. Reliability involves the
consistency and stability of results over time. Both robustness and reliability are critical for
scientific applications.

In this thesis, we investigate deep learning X-ray image reconstruction algorithms for exper-
iments at large-scale X-ray facilities. Specially, we combine deep learning with the physics
of X-ray imaging. By incorporating physics, we show that AI approaches can achieve im-
proved explainability, robustness, and reliability. It also enables us to design robust deep
learning models without requiring large paired training datasets, which is particularly be-
neficial for experiments when such data is limited or difficult to get.

vi



Chapter 1

Introduction

Since the discovery of X-rays byWilhelm Conrad Röntgen in 1895, X-ray imaging has been
widely used in many aspects of our daily life, from medical diagnosis to industrial non-
destructive inspection. The short wavelength and high penetration power of X-rays make
them an excellent scientific probe for studying microstructures from micrometer down
to nanometer scales. Early X-ray imaging experiments were carried out in laboratories.
Nowadays, with the advancement of science and technology, many large-scale X-ray sources
have emerged, and X-ray imaging experiments are carried out not only in laboratories but
also at large-scale facilities.

Two of the most important large-scale X-ray sources are synchrotron radiation sources and
X-ray free-electron lasers. In 1947, scientists at the General Electric Research Laboratory
in Schenectady, New York, first observed the radiation that is now known as synchrotron
radiation. Synchrotron radiation is the electromagnetic radiation emitted when charged
particles are being accelerated. The main difference between synchrotron radiation sources
and laboratory X-ray sources is the brilliance. Simply speaking, brilliance describes the
quantity of desired photons that illuminate a unit area of the sample per unit time. A
synchrotron light source is up to 1015 more brilliant than a laboratory X-ray source. The
higher the brilliance, the more precise the information that can be obtained from the X-
ray. Since the 1970s, X-ray free-electron laser have been developed, pushing the brilliance
of X-rays to unprecedented levels and producing laser-like X-ray beams.

The development of these large-scale X-ray sources has offered opportunities for new X-ray
imaging approaches that were not possible before. The enhanced X-ray brilliance facilitates
imaging of fast dynamics using short exposures, even with single X-ray pulses. Moreover,
phase-contrast imaging has been introduced, which not only captures the absorption but
also the phase shift of X-rays as they pass through an object, offering opportunities like a
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laser.

New opportunities come with new challenges. Reconstructing high-quality representation
from these imaging techniques requires computational efforts. Conventional image recon-
struction methods are not always applicable to these newly developed techniques. Since
the 2010s, deep learning approaches have undergone rapid development and revolutionized
the approach to addressing imaging problems. Deep learning methods employ deep neural
networks to automatically learn image representations from the given data, allowing for
the handling of large datasets without the need for human intervention. Moreover, neural
networks are differential operators, facilitating the integration of physical prior knowledge
into the learning process.

Deep learning approaches have been widely applied in X-ray imaging. However, current
deep-learning methods for X-ray imaging face two major challenges. First, they usually
require paired training datasets. One can easily think of scenarios where it is difficult or
impossible to obtain a large number of paired datasets. Second, the robustness and reliance
of such methods continue to be a barrier to more general applications.

In the present work, we explore how deep learning approaches can potentially address the
challenges associated with image reconstructions for X-ray imaging experiments. Specific-
ally, we study image reconstructions of phase-contrast imaging and single-pulse imaging
experiments for both static and dynamic scenes.

Chapter 2 introduces the fundamentals of X-ray imaging. This chapter describes the fun-
damental principles of X-ray propagation and interaction with matter and presents X-ray
imaging methods relevant to the thesis.

Chapter 3 provides an overview of deep learning and introduces state-of-the-art deep learn-
ing models for image reconstruction.

Chapter 4 presents the development of four image reconstruction algorithms for the thesis.
We describe the scientific questions and the design of the deep learning algorithms, each
addressing specific challenges in X-ray imaging.
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Chapter 2

X-ray imaging

Light allows us to perceive and understand the world around us. From a physical perspect-
ive, light is an electromagnetic wave. The electromagnetic spectrum contains multiple dif-
ferent components, including visible light and also light that we cannot see, such as radio
waves, microwaves, infrared, ultraviolet, X-rays, and gamma rays. The properties of these
electromagnetic waves are depicted in Figure 2.1, including their wavelength, frequency,
and energy.

Figure 2.1: Illustration of the electromagnetic spectrum. From left to right, the electromagnetic waves decrease in their
wavelength and increase in their frequency and energy. The wavelength, frequency, and energy are connected
by Equation 2.1. Icons show the length scale of the wavelengths of the electromagnetic waves.

Quantummechanics revealed that light exhibits wave-particle duality. From a particle view,
the energy of the electromagnetic wave is carried by elementary particles called photons.
The energy of a photon is proportional to the frequency and inversely proportional to the
wavelength of the electromagnetic wave, as in

E = hν =
hc
λ

=
1.24 keV · nm

λ
, (2.1)

3



where E is the energy of the photon, h = 6.626 × 10−34J·s is the Planck constant, c =
3× 108m/s is the speed of light in vacuum, ν is the frequency, and λ is the wavelength.

Figure 2.1 also depicts example objects that are of the same length scale as the wavelength of
each electromagnetic wave. When we illuminate an object with light, it becomes challen-
ging to resolve microscopic structures within the object that are smaller than the wavelength
of the light due to the diffraction nature of light. Considering an electromagnetic wave with
wavelength λ, traveling in a medium with refractive index n and converging to a spot with
half-angle θ, the minimum structure that an optical system can resolve is determined by
the Abbe diffraction limit [1]:

d =
λ

2n sin(θ)
, (2.2)

The smaller the d, the better the resolving power of the system. Consequently, the study of
structures at smaller scales necessitates electromagnetic waves with shorter wavelengths.

X-rays are electromagnetic waves with a wavelength between 10 nm to 0.01 nm. The short
wavelength property of X-rays allows the investigation of microscopic structures down to
the atomic level. Specifically, X-rays with wavelength below 0.1 nm (or 1 Å, with 1 Å=10−10

m) are categorized as hard X-rays, while those with longer wavelength are called soft X-rays.

As seen from Equation 2.1, the energy of hard X-rays is higher than that of soft X-rays. As
we will see in Section 2.1.1, higher X-ray energy indicates potentially higher penetration
ability. For example, the attenuation length of 2 nm soft X-rays in water is less than 1 μm,
while it is 3.8mm for 0.1 nm hard X-rays [2]. The high penetration power of hard X-ray
makes it an effective probe for studying the internal features of objects in a non-destructive
manner.

This chapter introduces the fundamentals of X-ray imaging and concepts relevant to the
thesis work. Firstly, we discuss the interaction between X-rays and matter, both from the
atomic level, how X-ray photons interact with the electrons within atoms, and from a
computational perspective, how to quantify the perturbation of X-ray wave function when
passing through an object. Secondly, we explain the propagation of X-rays and differ-
ent regimes of diffraction imaging. Following this, the phase-contrast imaging methods
are introduced. Expanding the understanding developed in two-dimensional (2D) ima-
ging, we then transition to three-dimensional (3D) and four-dimensional (4D) imaging
methods and discuss the possibility of capturing fast dynamics with time-resolved imaging
techniques. Concluding the chapter, a brief background on the evolution of advanced
large-scale X-ray sources is provided in the end.
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2.1 X-ray interaction with matter

Imaging involves mapping interactions in both space and time. Therefore, understanding
how X-rays interact with matter forms the basics of X-ray imaging, which is discussed in
this section. First, from a particle perspective, we discuss the interaction between individual
X-ray photons and individual atoms. Then, from a wave perspective, we introduce the
concept of complex refractive index and explain how the X-ray wavefield changes after
traveling through a uniform medium.

2.1.1 Atomic interactions

When X-rays travel through a medium, they are absorbed, transmitted, or scattered. From
an atomic view, the interaction between X-rays and matter can be treated as the interac-
tion between X-ray photons and the electrons within atoms. X-ray photons interact with
electrons in two ways: photoelectric absorption and scattering, as illustrated in Figure 2.2.

As the energy of hard X-ray photons is higher than the binding energy of many core elec-
trons, an incoming X-ray photon can remove a core electron from the atom and ionize it.
This process is called photoelectric absorption (Figure 2.2 a), and the ejected electron is called
a photoelectron. If the X-ray photon is absorbed, it transfers all its energy to the photo-
electron. Following the ejection of the photoelectron, a vacancy is created at the position
previously occupied by the photoelectron. Because atoms tend to stay at their lowest energy
state with all orbitals filled up in energy order, the vacancy formed by the photoelectron
will be filled up by an outer shell electron. The transition of the outer shell election will
lead to secondary processes, such as the emission of an X-ray photon (X-ray fluorescence)
or the ejection of an Auger electron.

As shown in Figure 2.2 b, X-ray photons can also be scattered by electrons. This process can
occur in two main ways: coherent scattering or incoherent scattering. Coherent scattering
is also called Rayleigh scattering. It is an elastic scattering process where the X-ray photon
undergoes scattering without losing any energy. The process of incoherent scattering, also
known as Compton scattering, is inelastic, meaning that the photon loses part of the energy
as it is scattered. The energy is transferred to the kinetic energy of the scattering electron,
causing it to be ejected from the atom. The ejected electron is called a Compton recoil
electron. According to the law of conservation of energy and momentum, the energy of the
Compton recoil electron is determined by the scattering angle of the X-ray photon.

The probability of these processes is characterized by the cross section, which depends on
the element type, electron density, and the physical properties of the X-rays. Two examples
of the interaction cross sections for C and Fe atoms are shown in Figure 2.3. As can be
seen, from 1 keV to 1 MeV, the total attenuation cross sections are initially dominated
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Figure 2.2: Demonstration of X-ray interaction with matter. a Photoelectric absorption: The incident X-ray photon is absorbed,
leading to the ejection of a core electron. The ejected electron, known as a photoelectron, creates a vacancy in
the core, subsequently filled by an outer-shell electron. This process may result in the creation of a photon causing
fluorescence or the ejection of an Auger electron. b Scattering: The incident X-ray photons are scattered by electrons.
The scatteringmay be elastic (Rayleigh scattering) or inelastic (Compton scattering). In the latter case, the wavelength
of the scattered X-rays increases due to energy loss, and the scattering electron is ejected (Compton recoil electron)
as a result of the energy transfer.

by photoelectric absorption, transitioning gradually to incoherent scattering. The cross
section of the coherent scattering is at least one order of magnitude smaller than the total
attenuation cross section. For C, photoelectric absorption dominates the total attenuation
when the photon energy is below ∼ 20 keV, while incoherent scattering dominates when
the energy is above that. For Fe, photoelectric absorption dominates the total attenuation
until the photon energy reaches∼ 100 keV, and incoherent scattering takes precedence over
photoelectric absorption when the energy is beyond that. At 7.1 keV, the incident photon
energy matches the binding energy of the innermost electrons, leading to a sharp jump in
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Figure 2.3: Photon cross sections in (a) C and (b) Fe as a function of energy. The three dashed lines show the cross sections for
coherent scattering (blue), incoherent scattering (orange), and photoelectric absorption (green), respectively. The
red solid line shows the total attenuation cross section formed by the absorption and scattering processes. Data
extracted from the NIST XCOM database [3].

the photoelectric absorption cross section. This is usually referred to as an absorption edge.
Depending on the energy level of the electrons, absorption edges can be categorized, e.g.,
a K-shell absorption edge indicates that the X-ray energy is equal to the binding energy
of the innermost electron shell, while an L-shell absorption edge indicates that the X-ray
energy matches the binding energy of the second innermost electron shell. The absorption
edge shown in Figure 2.3 b represents the K-shell absorption edge of Fe.

2.1.2 Complex refractive index

So far, we have treated X-rays as particles and discussed the interaction between individual
X-ray photons and electrons within atoms. In imaging applications, it is more common to
treat X-rays as waves and consider what will happen when X-rays pass through an object
instead of an atom.

When X-rays pass through a uniform medium, as depicted in Figure 2.4, it undergoes
amplitude attenuation and phase shift. The amplitude attenuation is mainly due to the
process of photoelectric absorption and incoherent scattering, while the phase shift is the
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result of coherent scattering.

The attenuation and phase shift of X-rays is determined by the refractive index of the me-
dium. In X-ray physics, the refractive index n is complex and extremely close to unity.
Because of this, it can be expressed by

n = 1− δ + i · β , (2.3)

where δ, β are real and positive numbers that are much less than unity, as

δ, β ∈ R+ and |δ| , |β| � 1. (2.4)

In general, both δ and β decrease with the increase of X-ray energy (with exemptions such as
absorption edges), while β decreases faster than δ, as will be discussed later (see Figure 2.7).
In the hard X-ray regime, δ is of order 10−5 in solids and around 10−8 in air, and β is
orders of magnitude smaller than δ.

Figure 2.4: Comparison of X-ray propagation in free space (a) and through a medium of constant index of refraction n and
thickness T (b).

The refractive index describes how an incident wavefield is modulated by the object. Let us
consider a time-independent incoming plane wave traveling in the z direction, as expressed
by

ψz0 = A exp (ikz) . (2.5)

Here, A describes the amplitude of the incoming X-rays, and k = 2π/λ is the wavenumber,
which is inversely proportional to the X-ray wavelength λ.
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After passing through an object with a thickness T and a refractive index n described by
Equation 2.3, the transmitted wavefield becomes

ψzexit = ψz0 exp (inkT )

= ψz0 exp {ikT [1− δ(x, y; z) + iβ(x, y; z)]}
= ψz0 exp (ikT ) exp [−ikδ(x, y; z)T ] exp [−kβ(x, y; z)T ] .

(2.6)

As can be seen, the result of Equation 2.6 contains a phase shift exp (ikT ) due to the
propagation of X-rays in vacuum. On top of that, the transmitted wavefield undergoes
an amplitude attenuation of exp [−kβ(x, y; z)T ] and a phase shift of exp [−ikδ(x, y; z)T ]
with respect to vacuum.

Equation 2.6 is commonly referred to as the projection approximation. Consider varying
refractive index or object thickness in the (x,y) plane, Equation 2.6 tells us that the exit
wave also varies in the (x,y) plane and is a projection of the object. This approximation
is usually valid for thin objects where multiple scattering can be neglected. For thicker
objects, multi-slice methods may be needed [4, 5]. As we can see in Figure 2.3, when
photoelectric absorption dominates the total attenuation, the scattering cross sections are
at least an order of magnitude smaller than absorption. In this scenario, the scattered
photons are more likely to be absorbed rather than scattered. Therefore, the probability of
multiple scattering events is much lower compared to absorption events.

The intensity of the transmitted wavefield can be derived by taking the squared modulus
of Equation 2.6, as expressed by

Iexit = A2 exp(−2kβT ). (2.7)

If we write the intensity of the incoming wavefield as I0 and the linear absorption coefficient
as μ = 2kβ, we end up at the well-known Beer-Lambert law

Iexit = I0 exp(−μT ). (2.8)

From Equation 2.8, we see that when the thickness T is equal to the inverse of the linear
absorption coefficient 1/μ, the intensity of the exit wave is attenuated to about 1/e ≈ 37%
of I0. This distance is usually referred to as the attenuation length.

As an empirical rule, the linear absorption coefficient of an element is approximately pro-
portional to the fourth power of the atomic number (μ ∝ Z 4) and inversely proportional
to the third power of the X-ray energy (μ ∝ E−3) [6]. Therefore, absorption is more signi-
ficant in low-energy X-ray regions with high-Z materials. From Equation 2.8, it is evident
that absorption is more visible in thick and dense areas of an object compared to thin and
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light areas. When imaging an object with X-rays, these differences in absorption will create
contrasts in the obtained image, which contains information about material properties and
thickness of the internal structure of the studied object. Absorption-contrast imaging tech-
niques are commonly used in medical diagnosis and industrial inspection, such as X-ray
radiography and computed tomography.

From Equation 2.6, we notice that it is also possible to examine an object by measuring
the phase shift of X-rays. Obtaining phase contrast in X-rays is more challenging than
absorption due to the difficulty in directly measuring the phase of X-rays caused by their
short wavelength and rapid oscillation. Therefore, we are unable to directly measure the
phase of the X-rays at the exit plane. The way to measure phase is to use interference. One
way to interfere is through propagation-based methods, where we allow X-rays to propagate
over a certain distance to let interference patterns build up, and thenmeasure the diffraction
patterns at a specific plane located a distance away from the exit plane. In order to produce
interference, coherence is required. Details of coherence and the phase-contrast imaging
will be discussed in Section 2.3.

2.2 X-ray propagation and imaging regimes

Before introducing phase-contrast imaging methods, we first discuss the propagation of
X-ray wavefields in free space and the generation of interference effects. This is presented
in the first half of this section. In the second half of this section, we introduce imaging
regimes. X-ray imaging experiments can be categorized into different regimes depending on
the visibility of the interference patterns. Knowledge of the imaging regimes and wavefield
propagation is fundamental for phase imaging experiments.

2.2.1 Free-space propagation

Consider a simple scenario where a plane wave is passing through a single slit, and the
diffraction patterns are observed from a distance behind it, as shown in Figure 2.5. If the
plane of observation is very close to the slit, almost in contact, the shape of the slit is
easily discernible, and interference patterns are minimal. Interference patterns build up
as the plane is moved away from the slit, particularly at the edges. As the propagation
distance increases, the interference fringes become more structured, while the shape of
the slit remains recognizable. This region is commonly referred to as the near field or
the Fresnel regime. With further increase of the propagation distance, diffraction patterns
become consistent and nearly independent of the shape of the slit. In this region, as the
observation plane is moved further away, the shape of the diffraction pattern remains almost
constant, with only the size varying. This area is commonly referred to as the far field or
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the Fraunhofer regime.

Figure 2.5: Single slit diffraction patterns at different propagation distances. Note that the distances shown between the dif-
fraction patterns are not proportional to the real propagation distances.

In general, the diffraction intensity I of wavefield ψ propagated through a distance L can
be calculated by [7]

I (x, y, z = L) = |ψ (x, y; z = L)|2

= |H[ψ (x0, y0; z = 0)]|2 ,
(2.9)

where (x, y) denotes coordinates on the observation plane and (x0, y0) denotes coordinates
on the aperture plane (z = 0). H represents the free-space propagation operator, or the
propagator, that can be expressed by

H( · ) = F−1 {HF ( · )}

= F−1
{
exp

[
ikL

√
1− (λfx)2 − (λfy)2

]
F ( · )

}
.

(2.10)

Here,F represents the Fourier transform, andH is theHelmholtz free-space transfer function
representing the phase delay of each spatial frequency component over the propagation
distance, and fx and fy are the spatial frequencies in the x and y direction.

The method of studying the propagation of light in free space using Equation 2.9 and
Equation 2.10 is generally known as the angular spectrum method or momentum decom-
position, which formulates a complex wavefield as a linear combination of a series of plane
waves of the same frequency and different directions.

A thorough derivation of Equation 2.10 involves solving the time-independent Helmholtz
equation, which originates from the Maxwell wave equation. Helmholtz equation governs
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the propagation of electromagnetic waves in free space, as expressed by(
∇2 + k2

)
ψ (x, y, z) = 0, (2.11)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplace operator. Note that wavefields are treated
as scalars in this equation, which neglects the vectorial nature (polarization) of electromag-
netic fields. This assumption is valid when the process of light propagation does not involve
optical components close to the size of the wavelength of light, and the study of the dif-
fraction problem is not adjacent to the plane of diffraction. Beyond these conditions, the
scalar theory can still be accurate to some extent [8]. We refer the readers to [7] for detailed
discussions about the theory of wavefield propagation.

Fresnel approaximation

Now we further consider the case where |λfx| � 1 and
∣∣λfy∣∣ � 1 in Equation 2.10. Phys-

ically, this means the waves are propagated in small angles with respect to the propagation
direction. In this case, we can simplify Equation 2.10 by applying Maclaurin expansion√

1− (λfx)2 − (λfy)2 ≈ 1− λ2

2 (fx
2+ fy2). Under this approximation, the propagator can

be written as

H( · ) = F−1 {exp(ikL) exp [−iπλL(fx2 + fy2)
]
F ( · )

}
. (2.12)

This is the propagator for the near field or the Fresnel regime. In other words, Fresnel
propagation is equivalent to paraxial propagation, i.e., the wavevectors of the plane wave
components of the complex wave field have small angles with respect to the propagation
direction.

Fresnel diffraction equation is also commonly written in its integral form, given by

ψ(x, y; L) =
exp(ikL)

iλL

∫∫ ∞

−∞
ψ(x0, y0; 0) exp

{
i
k
2L

[
(x− x0)2 + (y− y0)2

]}
dx0dy0.

(2.13)
This equation, known as the Fresnel diffraction integral, can also be represented as a convo-
lution

ψ(x, y; L) =
∫∫ ∞

−∞
ψ(x0, y0; 0) h(x− x0, y− y0; L)dx0dy0, (2.14)

where
h(x, y; L) =

exp(ikL)
iλL

exp

[
ik
2L

(
x2 + y2

)]
. (2.15)

The convolution kernel h(x, y; L) is also called the real-space transfer function or the impulse
response function, which describes the response of the system to an impulse function. As
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can be seen, the Fourier transform of the impulse response function h(x, y; L) is equal to
the free-space transfer function derived in Equation 2.12, as

F [h(x, y; L)] = H(fx , fy ; L) = exp(ikL) exp
[
−iπλL(fx2 + fy2)

]
. (2.16)

Therefore, according to the convolution theorem, Equation 2.13 and Equation 2.12 are equi-
valent.

Bymoving the exp
[
ik
2L

(
x2 + y2

)]
term outside the integral, the Fresnel diffraction integral

(2.13) can also be viewed as a Fourier transform, as expressed by

ψ(x, y; z = L) = h(x, y; L)F
{
ψ(x0, y0; z = 0) exp

[
ik
2L

(
x02 + y02

)]}
. (2.17)

This result indicates that the propagated wavefield can be calculated bymultiplying the real-
space transfer function at the observation plane by the Fourier transform of the product of
the wavefield before propagation and a quadratic phase exponential.

Fraunhofer approaximation

If the propagation distance is further increased, a more stringent assumption can be con-
sidered, expressed as

L � k
2
(x02 + y02)max. (2.18)

Under this assumption, the quadratic phase exponential in Equation 2.17 can be approx-
imated as 1. Consequently, Equation 2.17 can be greatly simplified, yielding

ψ(x, y; z = L) = h(x, y; L)F [ψ(x0, y0; z = 0)]

=
exp(ikL)

iλL
exp

[
ik
2L

(
x2 + y2

)]
F [ψ(x0, y0; z = 0)] .

(2.19)

The factor exp(ikL)
iλL is independent of x and y. Therefore, it can be neglected when calcu-

lating the relative distribution of the diffraction intensity. In this context, the propagated
wavefield can be simply expressed as the product of a quadratic phase exponential and the
Fourier transform of the unpropagated wavefield, as

H( · ) = exp

[
ik
2L

(
x2 + y2

)]
F ( · ) . (2.20)

Equation 2.20 represents the propagator for the far field or the Fraunhofer regime.
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2.2.2 Imaging regimes

As we can see from Figure 2.5, the visibility of the interference fringes increases with the
increase of the propagation distance. In fact, the diffraction effect is not only dependent
on the propagation distance (L) but also on the wavelength of the incoming wave (λ) and
the size of the imaging feature (a). The visibility of diffraction effects can be determined by
the Fresnel number, which is defined as

NF =
a2

λL
. (2.21)

Imaging experiments can be classified into three regimes depending on the Fresnel number:

• NF � 1: Contact regime, where the interference pattern cannot be resolved.

• NF ∼ 1: Fresnel regime or the near field, where the interferences fringes become
visible, but the shape of the aperture is still recognizable. Diffraction largely reflects
local effects in this regime.

• NF � 1: Fraunhofer regime or the far field, where the shape of the aperture is
invisible and the diffraction pattern represents the Fourier transform of the original
aperture (non-locality).

Figure 2.6: Illustration of different imaging regimes. The diffraction patterns develop with the increase of the propagation
distance, and the imaging regime shifts from the contact regime to the Fresnel regime, and finally to the Fraunhofer
regime.

As can be seen in Figure 2.6 and Equation 2.21, for a fixed light wavelength and feature
size, the visibility of diffraction effects builds up with the increase of the propagation dis-
tance. In the contact regime, the detector intensity contains no contrast that is due to the
phase shifts, i.e., the diffraction effect is negligible. As the propagation distance increases,
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the interference patterns start to show up, and the intensity image contains not only the
amplitude information but also the phase.

Imaging samples with hard X-rays (λ < 0.1nm) in all three imaging regimes is not always
feasible. If the size of the feature of interest is below 1 nm, it can be seen from Equation 2.21
that NF ∼ 10−8(m)

L , indicating that obtaining information from the contact or Fresnel
regime is not realistic. Therefore, achieving nanometer imaging resolution is constrained to
the Fraunhofer regime, for instance, through methods such as coherent diffraction imaging
(CDI) [9] and ptychography [10]. For imaging at micrometer resolution, NF ∼ 10−2(m)

L ,
allowing experiments to be performed at different regimes depending on the position of
the detector. If the feature of interest is larger than 1 mm, NF ∼ 104(m)

L , suggesting that
diffraction patterns may not be visible unless a very long propagation distance is used.

In the present work, we mainly focus on the contact regime and the Fresnel regime. Pa-
per II and Paper III address holographic phase reconstruction problems, which fall within
the Fresnel regime. The experiments performed in the remaining papers are focused on
the contact regime. From a computational standpoint, it is important to note that the
propagators used in these imaging regimes, despite being described in different mathem-
atical forms, are all unitary differentiable operators. The differentiable property is of great
importance for deep learning applications. It allows for automatic differentiation, which
is the basis of deep learning. In addition, the deep learning methodologies designed for
one imaging regime can be easily adapted to other regimes as well. For example, the idea
of including a physical propagator into neural networks, as presented in Paper II, can be
applied to the Fraunhofer regime by substituting the Fresnel propagator (Equation 2.12)
with the Fraunhofer propagator (Equation 2.20), as evidenced in [11].

2.3 Phase-contrast imaging

In this section, we introduce phase-contrast imaging, i.e., imaging the phase shift of the
X-rays when passing through an object.

Although X-ray absorption-contrast imaging has proven to be a versatile and straightfor-
ward technique, its effectiveness may be compromised when imaging elements with similar
absorption contrast or light materials like soft tissues. Phase-contrast imaging emerges as
a promising alternative, enabling the imaging of light elements that pose challenges for
absorption methods.

When imaging light materials like soft tissues using absorption methods, variations within
the materials are mainly visible at low photon energies [12]. As the photoelectric absorp-
tion increases greatly with the decrease of energy (Figure 2.3), imaging at lower energies
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Figure 2.7: The absorption and phase shift determined by the complex refractive index as a function of X-ray energy for differ-
ent materials. a The ratio δ/β of five common materials at different X-ray energies. b The comparison between
absorption and phase shift for the five elements at an example condition: 50 μm thickness and a photon energy of
17.5 keV.

may lead to higher radiation damage on the sample being measured, although the con-
trast is enhanced. An exception to this is the “water window” spectral region, which lies
between the carbon K-shell absorption edges at 290 eV and the oxygen K-shell absorption
edges at 540 eV. In this region, organic materials such as biological cells show particularly
good absorption contrast because water is relatively transparent while organic materials are
not [5, 13]. In many cases, phase-contrast imaging provides enhanced image quality with
reduced radiation exposure compared to absorption-contrast techniques. As discussed in
Section 2.1.2, the refractive index of a medium contains a real part δ and an imaginary part
β, where the phase shift is proportional to the real part δ and the amplitude attenuation is
proportional to the imaginary part β. Figure 2.7 a shows the ratio δ/β for five common
materials at different X-ray energies. For light materials like beryllium and carbon, δ is
generally two to three orders of magnitude greater than β in the hard X-ray region, indic-
ating the potential for low-dose imaging. An example is given in Figure 2.7 b, where, at a
photon energy of 17.5 keV and a thickness of 50 μm, the difference in absorption for light
materials is minimal, while the phase shift is apparent. Therefore, phase imaging offers a
low-dose possibility for imaging materials with low or similar absorption contrasts.

This section is divided into three subsections. We first explain the concept of coherence,
which is required for phase-contrast imaging experiments. Then, we introduce in-line holo-
graphy, a commonly used phase-contrast imaging technique. Finally, we discuss the phase
problem, i.e., reconstructing phase information from the intensity measurements.
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2.3.1 Coherence

In our discussion of wave field propagation, we have confined ourselves to monochromatic
plane waves traveling in the same direction. In reality, the incoming X-ray waves may have
different wavelengths and may not propagate precisely in the same direction, which can
affect the visibility of the interference pattern. As an example, if the waves are completely
out of phase, no interference pattern will be visible. Certain criteria must met for the
interference pattern to be visible.

Coherence describes the capability of waves to interfere with each other. Waves are con-
sidered fully coherent if they maintain a constant phase difference during propagation.
However, it is challenging to achieve full coherence in illumination. In this context, it is
relevant to discuss under what conditions light waves can be considered coherent.

Coherence involves both temporal coherence and spatial coherence. Temporal coherence
describes the correlation between the phases of a light wave at different points along the
direction of propagation, which indicates the monochromaticity of the light wave. The
degree of temporal coherence is expressed by longitudinal coherence length. Let us consider
two waves from the same source, one with a wavelength of λ1 = λ and the other with a
wavelength of λ2 = λ1 + ∆λ. Longitudinal coherence length quantifies the distance over
which the two waves become fully out of phase, as can be calculated by

LL =
λ2

2∆λ
, (2.22)

Spatial coherence describes the correlation between the phases of a light wave at different
points transverse to the direction of propagation. It indicates how much the waves deviate
from a well-defined propagation direction due to the finite size of the light source. The
degree of spatial coherence is quantified by the transverse coherence length, expressed as

LT =
λR
2D

. (2.23)

Here, D is the size of the incoherent light source, and R is the distance between the source
and the imaging plane. The size of the X-ray beam is usually different in the horizontal
and vertical directions. Therefore, it is more helpful to split the transverse coherence length
into an x and a y component, as LTx = λR

2Dx
, and LTy = λR

2Dy
. As can be seen, the transverse

coherence length increases as light propagates, suggesting that waves from a finite source
will naturally become coherent over distance.

An illustration of the longitudinal coherence length and transverse coherence length is il-
lustrated in Figure 2.8. Typically, the volume formed by the product of the longitudinal
coherence length and the transverse coherence length in the two directions is referred to as
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Figure 2.8: Conceptual illustration of longitudinal coherence length (LL), transverse coherence length along the two directions
(LTx and LTy), and coherence volume. Light propagates along the z-axis.

the coherence volume, as can be expressed by

V = LL · LTx · LTy = λ3
λ

2∆λ
R2

4DxDy
. (2.24)

It determines the maximum scale at which light can be considered coherent, or partially co-
herent, and will give rise to the interference effect. For phase-contrast imaging experiments,
it is crucial that the imaging feature falls within the coherence volume of the incoming waves
to capture interference patterns effectively.

2.3.2 In-line holography

As mentioned in Section 2.1.2, phase contrast is achieved by analyzing the diffraction pat-
terns of X-rays following a certain distance of propagation. The diffraction patterns carry
the phase information of the measuring object. One of the simplest phase-contrast meth-
ods is in-line holography, which differs from conventional absorption imaging only in that a
propagation distance is introduced between the object and the detector to provide sufficient
distance for the refracted rays to be separable from the unperturbed ones.

In-line holography was proposed by Dennis Gabor, who was awarded the Nobel Prize in
Physics “for his invention and development of the holographic method” in 1971. As shown
in Figure 2.9, in-line holography is a lensless imaging approach, where the light illuminates
directly on the sample without any optical components. Holography experiments involve
two wavefields: a reference wavefield, which is a coherent light beam, and an object wave-
field formed by light scattered from the object. A hologram is created by recording the
interference pattern between the reference wave and the object wave. The name “holo-
gram” came from the Greek word “holos” — the whole, because it contains the whole
information, i.e., amplitude and phase [14].
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Figure 2.9: Schematic setup of in-line holography.

Originally, holograms were recorded on photographic films, which capture the intensity
distribution generated by the interference of the two wavefields. To read the hologram and
reconstruct the object wavefront, a coherent light source similar to the reference one is then
used to illuminate the hologram [14]. Nowadays, holograms are usually recorded by digital
cameras, and the subsequent reconstruction process is carried out on computers.

Reconstructing the phase of the object from the detector intensity involves phase-retrieval
methods, as will be discussed in the next subsection. Before describing the solutions, we
first provide a brief explanation of the twin-image problem, a longstanding challenge in
in-line holography.

If we write the reference wavefield as U and the object wavefield as O, then the captured
intensity of the hologram can be expressed as

I = |U+ O|2 = |U|2 + |O|2 + UO∗ + U∗O. (2.25)

The recorded hologram includes the object field O and its conjugation O∗, representing a
real and virtual image. As the reference wave and the object wave share the same optical path
for the in-line holography, these two images are not separable. Therefore, this problem is
known as the twin image problem. One way to overcome the twin image problem is to use
off-axis holography, which employs a small angle between the reference beam and the object
beam to separate the real image from the virtual one [15]. As off-axis holography usually
requires additional experimental effort than in-line holography, it is beyond the scope of
this thesis. The twin image problem can also be solved via computational approaches, e.g.,
iterative algorithms and deep learning methods, as will be discussed in the next section.

2.3.3 Phase retrieval methods

In phase-contrast imaging experiments like in-line holography, the phase information of the
wave after passing through an object is recorded in the interferencemeasurement. However,
as the detectors are only sensitive to the intensity of the signal, the phase information is
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lost. Reconstructing phase from an intensity-only measurement is referred to as the phase
problem.

The phase problem is an inverse problem [16]. Generally speaking, phase retrieval meth-
ods address the inverse problem of reconstructing original sample images from detector
intensity images measured by a specific optical system. It can be described by

Ô = argmin
O

‖I− F(O)‖ , (2.26)

where Ô is the reconstructed object images, I is the measured intensity, O is the ground
truth. F is the forward imaging model that related the object O to the measured intensity
I. The goal of solving this equation is to accurately reconstruct the object image to match
the ground truth.

Conventional phase retrieval methods can be categorized into two main types: analytical
methods and iterative methods.

Analytical methods reconstruct the phase by solving the forward imaging model based
on certain assumptions, The transport-of-intensity equation (TIE) is one of the analyt-
ical methods that describes the relationship between intensity and the second derivative of
the phase of an object. Under the short-propagation assumption, phase can be determ-
ined by recording intensity at different propagation distances [17]. Another commonly
used analytical approach is the contrast transfer function (CTF) method, which relies on
the assumption of weak absorption and slowly varying phase shifts. The CTF method is
not limited by the short-propagation requirement, but it typically requires more intens-
ity measurements at different distances [18]. As it is not always feasible to capture images
at different distances, single-distance phase retrieval approaches are often favored. While
single-distance phase reconstruction approaches have also been proposed, they often rely
on stricter assumptions that may not always be valid [19, 20, 21].

Figure 2.10: Diagram of iterative phase retrieval method.

On the other hand, iterative approaches can be applied to reconstruct phases from single-
intensity images. As illustrated in Figure 2.10, iterative phase retrieval methods project
between the object space and the detector space using physical propagators and impose
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constraints on both spaces [22, 23]. These methods start by randomly initializing a phase
to the intensity measurement, and then iteratively minimize the difference between the
projected intensity and the measured intensity until convergence is achieved. However,
these methods may suffer from long computation times, and convergence is not always
guaranteed [20].

Recently, there has been a growing interest in deep learning phase retrieval approaches,
with demonstrations of real-time image reconstructions [24, 25]. In Paper II, we introduce
a deep-learning-based phase retrieval approach, which incorporates the physical propag-
ator into the learning process of deep neural networks and eliminates the need for paired
datasets during network training. This approach provides a solution for scenarios where
conventional phase retrieval approaches fail or are not applicable. Once trained, it enables
rapid and high-quality phase reconstruction using single detector images.

2.4 Extend to 3D and 4D imaging

Up to this point, we have discussed the interaction of X-rays with matter and contrast
mechanisms of X-ray imaging, including absorption and phase contrast imaging. Since we
live in a 3D world, it is natural to think about imaging an object directly in 3D. Moreover,
understanding the evolution of objects over time is fundamental to the study of many
scientific phenomena. Therefore, 4D imaging, which integrates 3D spatial information
with temporal evolution, is indispensable for dynamic studies.

In this section, we present state-of-the-art 3D and 4D X-ray imaging methods.

The 3D information of an object can be reconstructed from its 2D projections [26]. These
projections are typically acquired by scanning the sample from different directions over a
period of 180◦ or 360◦, as performed in computed tomography (CT). In recent years,
rotation-free 3D imaging techniques have been developed, which illuminate the sample
simultaneously from multiple angles without scanning [27, 28, 29]. We first explain the
theory and reconstruction methods of CT. Following that, we briefly describe tomoscopy, a
4D imaging technique based on tomography. Finally, we introduce X-ray multi-projection
imaging, a rotation-free 4D imaging technique for fast dynamics. In particular, we em-
phasize the difficulties of tomoscopy for dynamic imaging and the need to apply X-ray
multi-projection imaging to capture fast dynamics.

Please note that the methods presented in this section are applicable to both absorption
and phase contrast imaging, due to the fact that both the absorption and phase shift can
be considered as projections through, e.g., line integrals, as described in Section 2.1.2.
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2.4.1 Computed tomography

Computed tomography (CT) was first developed by Allan M. Cormack and Godfrey N.
Hounsfield in 1972 [26], who were awarded the Nobel Prize in Physiology or Medicine
“for the development of computer assisted tomography” in 1979. The concept behind CT
involves capturing multiple projections of the sample from various angles and subsequently
combining them through computational methods to reconstruct a 3D tomogram. Since its
development, CT has been widely used in medical diagnosis and non-destructive industrial
inspections. In medical CT, the sample (patient) remains fixed, while the X-ray source
is rotated, with the patient lying in the center. For imaging at large-scale facilities like
synchrotron radiation sources, the light usually travels a long distance before reaching the
experimental stage. Therefore, it is impractical to rotate the light sources. Luckily, as the
samples being measured are usually much smaller than a patient, it is possible to rotate
the sample instead of the light source. An illustration of the CT setup is shown in In this
context, the setup of a CT experiment can be simplified as a beam of X-rays, a sample
rotation stage, and an X-ray detector, as shown in Figure 2.11.

Figure 2.11: Basic components of a CT experiment.

Fourier slice theorem

The collected 2D projections from different angles can be combined into 3D using back
projections according to the Fourier slice theorem.

An illustration of the Fourier slice theorem is shown in Figure 2.12. Here, we use the
2D Shepp–Logan phantom image as an example, which was created by Larry Shepp and
Benjamin F. Logan in the 1970s. This image simulates the structure of a human head and
serves as a standard test image for the evaluation of image reconstruction algorithms [30].
The Fourier slice theorem states that when we project an image f (x, y) along a specific angle
θ and then perform a 1D Fourier transform on the projection, the result is equivalent to
taking a 2D Fourier transform of the image F(u, v) and extracting the slice corresponding
to the same angle θ [6, 5]. Here, F(u, v) = F(f (x, y)).

Extending this to 3D, the Fourier slice theorem states that the slice of the 3D Fourier trans-
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Figure 2.12: Illustration of the Fourier slice theorem.

form of an object along a plane perpendicular to the projection direction is identical to
the 2D Fourier transform of the corresponding projection image. Therefore, the 3D image
can be reconstructed by combining the 2D Fourier transform of projections from various
angles to fill the 3D Fourier domain and then performing the inverse 2D Fourier transform.
In the experiment, we usually treat 3D volume as a stack of 2D slices and reconstruct the
3D by reconstructing each individual 2D slice.

Crowther criterion

A certain number of projections is necessary to adequately fill the Fourier space for CT
reconstruction. This number, denoted by Nθ, is determined by the Crowther criterion

Nθ =
πD
d
, (2.27)

where D denotes the maximum size of the imaging object and d is the spatial resolution
of the 3D reconstruction. Depending on the dimension and resolution of the experiment,
several hundred to thousands of projections are typically required for a proper reconstruc-
tion.

Reconstruction algorithms

Although the Fourier slice theorem provides a theoretical foundation for reconstructing
sample details from projections, directly applying it for the reconstruction may cause prob-
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lems.

Figure 2.13: Comparison between CT reconstructions from simple backprojection and filtered backprojection. a The Shepp–
Logan test phantom. Nθ = 400 projections of this phantom were simulated from different angles, equally spaced
from 0◦ to 180◦, which satisfy the Crowther criterion for the 256×256 image. b The reconstruction results of simple
backprojection. c Illustration of sampling problem in Fourier space. The reconstruction of simple backprojection
is oversampled in the low-frequency area and undersampled in the high-frequency area. d The reconstruction
results of filtered backprojection. The ramp filter was applied for the reconstruction. e The reconstruction results
of simultaneous algebraic reconstruction technique (SART). The result is obtained after ten iterations.

To illustrate the problem, we simulate Nθ = 400 projections from the Shepp–Logan
phantom image (Figure 2.13 a) and then show the results reconstructed from the pro-
jections. The number of projections sufficiently satisfies the Crowther criterion for the
256 × 256 image. Figure 2.13 b shows the results of simple backprojection, where the
projections are simply smeared back in the direction from which they were measured. As
can be seen, this back-smearing process causes blurring in the reconstructed images. When
we fill the Fourier space with slices, the sampling density is different for low and high fre-
quencies. As illustrated in Figure 2.13 c, the sampling density decreases with the increase
of the frequency, causing oversampling for the low-frequency area and undersampling for
the high-frequency area. This blurring can be mathematically corrected by applying filters
in the backprojection process, which is known as filtered backprojection. As shown in Fig-
ure 2.13 d, filtered backprojection fixes the blurring problem in simple backprojection and
properly reconstructs the shape of the original image.

Although filtered backprojection can effectively reconstruct the sample from its projections,
complete projections are required to sample sufficiently in the Fourier space, as described by
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the Crowther criterion. Inmany scenarios, it is challenging to acquire a complete set of pro-
jections due to practical concerns. For example, medical imaging aims to limit the number
of projections needed to minimize the radiation doses exposed to the sample. In addition,
the projection angles may be limited in a specific range because of the constraints of the
scanning environment. Filtered backprojection may run into difficulties when handling
incomplete projections. In such a scenario, iterative approaches may be applicable. Iter-
ative approaches solve the reconstruction problem by minimizing the difference between
the measured projections and the predicted projections. Figure 2.13 e shows the recon-
struction result of simultaneous algebraic reconstruction technique (SART), an effective
iterative method.

Figure 2.14: Reconstruction results of filtered backprojection and SART with different numbers of projections (Nθ ).

Figure 2.14 shows the reconstruction results with a limited number of input projections.
The number of projections decreases from 150 to 50, 25, and down to 10. The quality of
the reconstruction results appears acceptable when using 150 projections, but drops signi-
ficantly when using fewer than 50 projections. When comparing the two reconstruction
methods, SART outperforms filtered backprojection; nonetheless, neither of them is able
to reconstruct the details of the phantom using fewer than 25 projections.

Deep learning approaches that incorporate prior knowledge can also be applied to CT re-
constructions. These approaches have demonstrated the capability to achieve high-quality
reconstructions from extremely sparse projections [31, 32]. In Paper IV, we present a deep-
learning-based sparse-view reconstruction method, which integrates state-of-the-art deep-
learning concepts with the physics of X-ray imaging. This approach can effectively recon-
struct 3D from less than ten projections.

25



2.4.2 Tomoscopy

Tomography can be further extended to 4D if temporal information is accessible. Time-
resolved tomography experiment is also termed tomoscopy. Tomoscopy exploits fast rota-
tion stages and high-brilliance X-ray sources to capture multiple tomograms per second,
enabling the recording of 3D movies (4D) showcasing dynamic processes.

State-of-the-art tomoscopy techniques can record up to 1000 tomograms per second, facil-
itating the capture of dynamics at kHz rates. This has been demonstrated in [33], where
the foaming process of metal bubbles was recorded with a temporal resolution of 1ms and
a spatial resolution of 8.2 μm.

However, the rotation process inherent in tomoscopy has led to some problems, limiting
its applications and the achievable temporal resolution. These difficulties arise from both
the equipment used for rotation and the nature of the sample itself. Firstly, the rotation
itself is constrained by mechanical limitations, preventing it from exceeding a certain speed.
As a result, the projections obtained during rotation are not simultaneous, meaning that
dynamics occurring faster than the rotation speed will not be captured or reconstructed.
Secondly, the sample being imaged needs to withstand rapid rotations, which may not
always be possible. The centrifugal force F acting on an object of mass m can be calculated
by

F = ma = mω2r, (2.28)

where a represents the radial acceleration, ω is the angular velocity of the rotation, and r is
the distance between the center of mass of the object and the axis of rotation. Achieving a
temporal resolution of 1 ms with tomoscopy necessitates a minimum of 500 rotations per
second, resulting in a radial acceleration that is 500 times the gravitational acceleration for
an object with a diameter of 1 mm. This could potentially alter the structure or dynamics of
the sample. Besides, preparing a sample environment for fast rotations can be challenging.

One way to improve temporal resolution while avoiding sample rotation is to use multi-
projection approaches [27, 28, 29, 34, 35], which use multiple beams to simultaneously
illuminate the sample from different angles. These approaches offer improved temporal
resolution without sample rotation at the cost of a reduced number of projections, as wii
be discussed in the next subsection.

2.4.3 X-ray multi-projection imaging

X-ray multi-projection imaging (XMPI) is a rotation-free imaging approach that has been
developed to address the aforementioned problems in tomoscopy.

In contrast to tomoscopy experiments, which capture projections by rotating the sample,
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XMPI relies on advanced X-ray sources and a series of beam splitters to split the beam and
simultaneously record projections from various angles.

Figure 2.15: XMPI conceptual illustration.

The concept of XMPI is illustrated in Figure 2.15. As can be seen, the sample remains fixed
at the center, while the incoming X-ray beam is divided into multiple beamlets by a group
of beam splitters, often crystals. The split beamlets simultaneously illuminate the sample
from different angles, and the projections are recorded using ultrafast cameras from various
angles. The recorded projections can then be used for 3D and 4D reconstruction.

As a rotation-free method, XMPI has several advantages as well as disadvantages over tom-
oscopy. Firstly, it eliminates the constraint on temporal resolution imposed by the rotation
process. The resolution is ultimately determined by the speed of the detector and the flux
of the X-ray source. Secondly, XMPI allows for in situ and operando studies of rotation-
sensitive samples and dynamical processes. There is no need to prepare a reaction environ-
ment capable of tolerating fast rotations, and dynamic processes can be measured in real
situations without the disturbance of rotations. Thirdly, it is a single-shot 3D approach.
When combined with the unique capabilities of high-brilliance X-ray sources, such as X-
ray free-electron lasers and diffraction-limited storage rings, XMPI enables the recording
of 3D information of dynamical processes beyond ms and μs temporal resolutions using
single X-ray pulses.

However, XMPI’s rotation-free advantage comes at the cost of reduced data: the num-
ber of acquired projections is much less compared with tomoscopy. The Crowther cri-
terion (Equation 2.27) indicates that a sufficient number of projections are needed for each
timestamp to achieve a reliable 4D reconstruction. For example, more than one hundred
projections are needed for reconstructing 128 × 128 images with a spatial resolution of
three pixels. However, due to practical constraints, current XMPI configurations record
no more than eight projections in a range of less than 90◦, constrained by practical limit-
ations [27, 28, 35]. This results in a highly ill-defined sparse-view reconstruction problem,
making it extremely challenging to reconstruct 4D from such sparse projections using clas-
sic algorithms.
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In Paper V, we introduce a deep-learning-based sparse-view reconstruction approach for
reconstructing 4D from the extremely sparse projections recorded by XMPI.

Figure 2.16: Illustration of the MHz XMPI setup performed at the European X-Ray Free-Electron Laser Facility (European XFEL).
The collision process of water droplets was recorded from two directions and reconstructed using deep learning
methods.

In Paper VI, we present the first megahertz (MHz) XMPI experiment performed at the
European XFEL. The experimental setup of this experiment is shown in Figure 2.16. The
collision process of two water droplets was imaged from two angles simultaneously at a
1.128 MHz frame rate. The incoming X-ray beam was split by two crystal beam splitters,
with the diffracted beams illuminating the sample from two directions. Diamond crys-
tals were chosen for this experiment to mitigate potential crystal damage from the intense
XFEL pulses. At the end of each beamlet, two MHz detectors were positioned to record
projections of the sample. The deep learning approach reported in Paper V was employed
to reconstruct the collision process from the recorded projections.

2.5 X-ray sources

We have discussed various imaging techniques in this chapter. Many of these techniques
would not have been possible without the advancement of high-brilliance X-ray sources.
Brilliance quantifies the coherent photon flux of an X-ray light source, as defined by

Brilliance =
photons / second

mrad2 ·mm2 · 0.1% bandwidth
. (2.29)

As can be seen from Equation 2.29, it calculates the number of photons per unit time
per unit photon beam size per unit photon beam divergence, within a specific bandwidth
interval. The higher the brilliance, the brighter and more coherent the light source is.

The development of synchrotron radiation sources significantly improves the brilliance of
the X-ray sources. More recently, advancements in X-ray free-electron lasers have propelled
the brilliance of X-ray sources to unprecedented levels, enabling the generation of “laser-
like” X-rays. In this section, we provide a brief background of the development of high-
brilliance sources, from synchrotron radiation sources to X-ray free-electron lasers.
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2.5.1 Synchrotron radiation sources

Synchrotron radiation is the electromagnetic radiation generated when relativistic charged
particles are accelerated in a magnetic field. It was first observed from an electron synchro-
tron at the General Electric Research Laboratory in New York in 1947 [36]. The early uses
of synchrotron radiation were parasitic in electron synchrotrons designed for high-energy
physics. High-energy physicists consider synchrotron radiation as a drawback because it
consumes energy from the electron synchrotron and thus reduces the energy of the elec-
trons. Over time, scientists gradually realized this radiation can be used as standalone sci-
entific probes without interference with high-energy physics, and dedicated storage rings
for synchrotron radiation have been developed since then.

Nowadays, synchrotron radiation facilities are widely used all over the world. They are
powerful tools that generate high-intensity X-ray beams, enabling scientists to conduct
cutting-edge research in diverse fields. The development of synchrotron radiation sources
has gone through four generations. The first generation of synchrotron radiation sources can
be dated back to the 1960s and early 1970s, when the use of synchrotron radiation was para-
sitic to storage rings used for conducting electron-positron colliding experiments. In the
1980s, dedicated storage rings designed for synchrotron radiation were built, which were the
second generation of synchrotron radiation sources [37]. For example, Synchrotron Radi-
ation Source (SRS) in the UK andNational Synchrotron Light Sources (NSLS) in the USA.
Bending magnets were employed to generate X-rays at the second-generation synchrotron
radiation sources, and insertion devices comprising periodic magnetic arrays like wigglers
and undulators were developed during this period [38]. The synchrotron radiation facilities
designed with the primary use of insertion devices were the third generation. Starting from
the 1990s, the widespread use of insertion devices has significantly increased the brightness
and coherence of synchrotron radiation sources. Examples of the third generation syn-
chrotron radiation sources include European Synchrotron Radiation Facility (ESRF) [39]
in France, Advanced Photon Source (APS) [40] in theUSA, Swiss Light Source (SLS) [41] in
Switzerland, and Super Photon Ring –8 GeV (SPring-8) [42] in Japan. The development of
fourth-generation synchrotron radiation sources aimed to achieve even higher brightness and
coherence of light, primarily through hardware improvements, particularly in multi-bend
achromat lattices [43, 44]. MAX IV Laboratory [45] in Lund, Sweden is the first fourth-
generation storage ring. ESRF and APS have upgraded to fourth-generation sources. The
upgraded facilities are named ESRF–EBS (Extremely Brilliant Source) and APS-U (Up-
grade), respectively. SLS is currently undergoing an upgrade toward the fourth generation.
Other major fourth-generation synchrotron radiation sources include the Sirius synchro-
tron light source in Brazil and the High Energy Photon Source (HEPS) in China.
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Figure 2.17: The evolution of the peak brilliance of X-ray sources.

2.5.2 X-ray free-electron lasers

The brightness and coherence of synchrotron radiation sources are, to some extent, in-
trinsically limited by their photon generation mechanism [46]. To further improve the
brilliance of X-rays, X-ray free-electron lasers (XFELs) has been developed. The advent
of XFELs enables the generation of “laser-like” X-rays with extremely brilliant X-rays that
were not possible before [47].

Unlike synchrotron radiation sources, which accelerate electrons in circular accelerators,
an XFEL accelerates electrons by a long (typically several kilometers) linear accelerator and
then applies periodic magnetic structures (undulators) to generate X-rays from the electron
beam. The most common type of XFELs is based on a mechanism called self-amplified
spontaneous emission (SASE), where electrons are grouped into micro-bunches, ampli-
fying the generated X-rays as they propagate through the undulator. This process yields
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short-duration, high-intensity, and coherent X-ray pulses. The peak brilliance of XFELs can
reach 1030 photons/second/mrad2/mm2/0.1% bandwidth. The unique brilliance of XFELs
has opened the opportunity for imaging with unprecedented spatial and temporal resol-
utions [48, 49], and made it possible to perform imaging experiments using single X-ray
pulses [50]. European XFEL is the first operational XFEL, which can generate femtosecond
duration short pulses at megahertz repetition rate [51], as used in this thesis.

Figure 2.17 shows the evolution of the peak brilliance of X-ray sources over the last century.
With the development of the fourth-generation synchrotron radiation sources and XFELs,
the brilliance of X-ray light sources has increased by more than 20 orders of magnitude
over the past 50 years, providing new scientific opportunities for a variety of fields. The
increased photon flux enables imaging with the same quality but much shorter exposure
times. This reduction in exposure time enables the study of rapid dynamics in both 2D
and 3D, opening up new possibilities for dynamic imaging applications, as presented in
Paper I, Paper IV, Paper V, and Paper VI. The enhanced coherence greatly progresses the
development of phase-contrast imaging methods, as presented in Paper II and Paper III.
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Chapter 3

Fundamentals of deep learning

This chapter introduces the basic concepts and fundamentals of deep learning. We start
by giving a general overview of deep learning. Next, we introduce supervised learning
and unsupervised learning, two different learning types depending on the requirement of
the input data. Then, we introduce three neural network architectures, which are used in
the thesis work. In the end, we describe neural implicit representation and deep learning
frameworks based on it.

3.1 Overview of deep learning

Deep learning is a subset of machine learning and artificial intelligence, which involves
having machines perform tasks based on available data without interference from humans.
Classic machine-learning approaches focus on learning the features of the data. However,
extracting these features typically involves human input. Machine learning algorithms learn
to make predictions based on the selected features, but the selection of features strongly
influences the model’s performance, leading to feature engineering challenges, i.e., how to
extract features from raw data to enhance the performance of models.

Deep learning is a form of machine learning that relies on deep neural networks to learn
data representations and features automatically. The neural networks learn by themselves
the features of the data and the weights of each feature, allowing them to handle more
complex tasks.

Mathematically, deep learning can be expressed as the process of finding the optimal para-
meters (θ) for a neural network through the optimization of a loss functionL using provided
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data. For the simplest case of supervised learning, the loss function can be written as

L(θ) = E(xxx,yyy)∼pdataL(f (xxx,θ), yyy) (3.1)

where pdata denotes the data distribution, f (xxx,θ) denotes the network predictions with the
input xxx, and yyy is the ground truth or the target output of the model. L specify the loss
function of each sample and E denotes expectation. The choice of loss functions is crucial
and usually depends on the specific task.

Once determined, machines can minimize the loss function using optimization methods
such as backpropagation and gradient descent [52, 53]. The network optimization process
is commonly referred to as training. Usually, this involves a large number of operations and
is performed on graphics processing units (GPUs) for its parallelism.

The mathematical foundations of deep learning can be traced back to the 1950s [54, 55].
However, its significant influence and widespread use did not occur until the 21st century.
The key factors driving this surge in popularity were the availability of powerful hardware
and the emergence of massive datasets. Deep learning algorithms are data-driven, requiring
large amounts of high-quality training data to achieve optimal performance. In the mid-
20th century, computational resources were limited, and data collection was a laborious
and expensive process. This constrained the development and application of deep learning
models. The beginning of the 21st century was a changing point. The rise of the “big data
era” enabled researchers to train deep learningmodels onmassive datasets, which has greatly
expedited the progress of deep learning. Projects like ImageNet [56], established in 2009,
collected millions of carefully labeled images, allowing researchers to train deep learning
models with unprecedented accuracy and generalizability.

3.2 Supervised learning and unsupervised learning

Deep learning approaches can be categorized into supervised learning and unsupervised
learning, depending on the difference in input data [52]. In certain scenarios, the training
data comes with labels or ground truth, which specifies the target output for each data;
whereas in other scenarios, only the data itself is accessible. The former is referred to as
supervised learning, while the latter is referred to as unsupervised learning.

The difference between supervised learning and unsupervised learning is visualized in Fig-
ure 3.1. As shown in Figure 3.1 a, in supervised learning, each data is paired with a cor-
responding label or a ground truth. There is a one-to-one relationship between the data
and the labels. Therefore, supervised learning is also called a paired approach [57]. In un-
supervised learning, the training data comes without labels, as shown in Figure 3.1 b. The
algorithm learns by itself the underlying relationship of the training data, enabling it to
accomplish various tasks.
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Figure 3.1: Comparison between supervised learning (a) and unsupervised learning (b).

The data is typically divided into three datasets for supervised training: the training dataset,
the validation dataset, and the testing dataset. The model is trained on the training dataset,
selected based on the validation data, and in the end, applied to the testing dataset, which
contains new data that is never shown to the model. Unsupervised learning approaches do
not require data division. The entire dataset can be used for training, and the performance
of the model can be evaluated on the same data.

While supervised learning generally achieves higher accuracy, it is constrained by the need
for labeled training data. Unsupervised learning is particularly effective in scenarios where
labeled training data is unavailable or difficult to acquire, making it a valuable tool for many
practical applications.

Depending on the difference in training strategy, unsupervised learning can be further cat-
egorized. Numerous unsupervised learning approaches have been developed. Here, we
introduce the unpaired approach and the self-supervised approach, which are two com-
mon unsupervised learning strategies in image reconstruction tasks. An illustration of the
two approaches is shown in Figure 3.2.

Unpaired approaches rely on unpaired training datasets [57]. If we write the distribution of
input images as X, and the distribution of target images as Y, unpaired approaches require
training data from both of the two distributions. Instead of learning the {xxxi ↔ yyyi} rela-
tionship as in supervised approaches, an unpaired approach learns the translation between
the two domains X ↔ Y, without the correspondence of each individual sample. Please
note the difference between a paired approach (Figure 3.1 a) and an unpaired approach
(Figure 3.2 a). While the target domain is expressed using the same notation, in supervised
learning yyyi is the label of the training data, whereas in an unpaired approach, it is part of
the training data.
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Figure 3.2: Two unsupervised learning approaches: unpaired approach (a) and self-supervised approach (b). The blue circles
mark the range of the training data, as in Figure 3.1.

Self-supervised learning is another type of unsupervised learning. As shown in Figure 3.2 b,
a self-supervised approach differs from an unpaired approach in that no data from the target
distribution is available, and the model learns only from the distribution of the input im-
ages. The target can be inferred from the input data. Typically, self-supervised approaches
are trained on a part of the input and supervised by another part of the input. For example,
if we equally divide the training data into i (i ∈ Z and i ⩾ 2) batches, during each training
iteration, the model can be trained on one batch of data (x1, xi+1, x2i+1, ...) while being su-
pervised by the other i− 1 batches. With self-supervised learning, networks can be trained
to reconstruct missing details in masked images [58] or to reconstruct 3D representations
from parts of the 2D views while being supervised by the other 2D projections [59].

In the papers presented, Paper I introduces a supervised method that corrects shot noise
in detector images by learning the mapping from noisy-clean image pairs. Paper II and
Paper III present unsupervised phase-retrieval approaches using unpaired datasets. Paper
IV applies self-supervised learning to learn the 3D self-consistency between the projection
images measured by X-ray multi-projection imaging. Paper V forces self-consistency on all
3D reconstructions in order to learn a 4D representation of dynamical processes.

3.3 Deep neural networks

Deep learning approaches use deep neural networks to extract features and make predic-
tions. In this section, we introduce network architectures that are commonly used for
imaging tasks.
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3.3.1 Fully connected neural networks

A neural network is constituted of fundamental units called neurons, which are also com-
monly known as perceptrons. As illustrated in Figure 3.3 a, a neuron consists of several
inputs and an output. The neuron’s input accepts a vector xxx, multiplies it by a weight vec-
tor www, and then adds a bias term b to it. After that, the result is transferred to the output,
which generates a prediction y by applying a non-linear activation function f to the earlier
results. This process can be expressed as

y = f (www · xxx+ b). (3.2)

Figure 3.3: Illustration of neural networks. a A neuron with three inputs (x1, x2, x3) and a single output (y). The middle dashed
circle shows an intermediate state, which multiplies each input by a corresponding weight (w1, w2, w3) and adds a
bias term (b) on top of it. The intermediate result is sent into a non-linear activation function f , which produces the
final output y. b An example of a fully connected neural network with two hidden layers. Similar to the neuron
shown in a, a fully connected neural network also contains input and output layers, but with extra hidden layers
(h) in between. The first hidden layer contains five neurons (h11 - h15), while the second hidden layer contains four
neurons (h21 - h24). For simplicity, the biases and activation functions are omitted.

Figure 3.3 a shows a fully connected neural network, also referred to as a multi-layer per-
ceptron [60]. A fully connected neural network differs from a neuron in that it includes
hidden layers between the input and the output, where each hidden layer contains a series of
neurons. The output takes the results from the last hidden layer and generates a prediction
based on the contributions from all neurons.

It is important to note that the activation functions need to be non-linear. As a linear com-
bination of a group of linear functions is still linear, neural networks with linear activation
functions are equivalent to a single perceptron. Therefore, having non-linear activation
functions is crucial for the network to approximate non-linear functions. As stated in [60],
multi-layer perceptrons can be considered as universal approximators, i.e., in principle,
they can approximate any continuous functions. Commonly used activation functions are
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the sigmoid function f (a) = 1/(1 + e−a) and the ReLU function f (a) = max(0, a), as
illustrated in Figure 3.4.

Figure 3.4: Two common activation functions: the sigmoid function (a) and the ReLU function (b).

In a fully connected neural network, each neuron is connected to all neurons in its adja-
cent layers, which comes with drawbacks. The number of parameters grows quadratically as
the number of neurons increases, potentially resulting in memory issues and training diffi-
culties. A common issue in training is overfitting, i.e., the neural network performs well on
the training data but not on the test data. Therefore, fully connected neural networks are
not ideal for imaging tasks. As an example, consider a simple five-neuron network for ima-
ging tasks, where the input and output are both images with dimensions of 1000× 1000.
The images are treated as vectors in a fully connected neural network, so the number of
parameters needed to train this network is around 106 × 5 + 5 × 106 = 107 (with the
bias neglected). Typical fully connected neural networks contain hundreds to thousands of
neurons distributed in multiple hidden layers, which will further magnify the number of
trainable parameters needed.

It is intuitive to think that, for imaging tasks, many of these parameters may be redundant.
In general, the value of a pixel in an image is more dependent on its neighboring pixels
and has less correlation with pixels that are farther away. Fully connected neural networks
neglect this local correlation of pixels, potentially leading to increased model complexity
without effectively capturing essential features of an image.

Paper IV and Paper V employ fully connected neural networks to learn the refractive index
of an object from its latent features and encoded coordinates.

3.3.2 Convolutional neural networks

For the above reasons, it is usually more common to use convolutional neural networks
[61] for imaging tasks.

As shown in Figure 3.5 a, convolutional neural networks consist of a stack of convolu-
tional layers and pooling layers. Convolutional layers include a sequence of weight-sharing
convolutional kernels to extract features from the images (Figure 3.5 b). Commonly used
convolutional kernels are 3 × 3, 5 × 5, and 7 × 7 kernels. The use of these small kernels
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Figure 3.5: Illustration of a convolutional neural network. a Layout of a convolutional neural network. It is composed of a series
of convolutional layers and pooling layers. The convolutional layers extract feature maps from the input, while the
pooling layers reduce the dimension of the extracted feature maps. b In the convolution operation, convolutional
kernels slide through the input matrix and apply the sum of element-wise multiplication. For simplicity, we only
show a single-channel convolutional kernel with the size of 3 × 3, and the input is not padded. In most scenarios,
multi-channel convolutional kernels are used, and the input is padded with zeros in a way that the output has the
same dimension as the input. c Pooling operation reduces the dimension of the input. Here, we show an example
of a max pooling with a 2 × 2 kernel and a stride of 2.

effectively addresses the memory problems of multi-layer perceptrons, as the size of the
convolutional kernels is independent of the dimension of the input. In addition, convolu-
tional kernels allow the extracting of local features of the images [62]. The pooling layers
reduce the dimension of the images by pixel binning, usually by taking the maximum or
the average (Figure 3.5 c). The combination of convolutional layers and pooling layers al-
lows convolutional neural networks to learn multi-scale features from local to global. More
importantly, it indicates the translation invariance of convolutional neural networks, i.e.,
they are capable of recognizing features regardless of the positions. Translation invariance is
particularly important for tasks such as feature extraction and image denoising, where fea-
tures of interest may appear in different parts of an image or undergo shifts due to practical
considerations.

Paper I uses a convolutional neural network to learn and correct shot-to-shot noise on the
detector images. Paper II and Paper III both use two convolutional neural networks, one
learning to reconstruct the phase and attenuation of the object from the holographic images,
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while the other learning the experimental effects of the holographic intensitymeasurements,
such as the experimental noise and the point spread function. Paper IV and Paper V use
convolutional neural networks as encoders to extract latent features from 2D projections
measured from different directions. These features are then integrated in fully connected
neural networks to reconstruct 3D representations of the object. In addition, Paper I, Paper
II,Paper III, and Paper V also use convolutional neural networks as discriminators, as will
be discussed in the next subsection.

3.3.3 Generative adversarial networks

Though multi-layer perceptrons and convolutional neural networks are good at learning
the data distribution and extracting features, the creativity for generative tasks of such
frameworks is limited [63]. This limitation has been overcome by generative adversarial
networks [52, 63].

Figure 3.6: Illustration of a generative adversarial network.

Generative adversarial networks enhance the capabilities of single-network approaches by
incorporating a second network. As shown in Figure 3.6, a generative adversarial network
consists of two neural networks: a generator and a discriminator. These networks can be
implemented as multi-layer perceptrons or convolutional neural networks. Like an artist,
the generator learns to create images that resemble real images. On the other hand, the
discriminator works like a critic. It accesses both real images and the generator outputs and
learns to distinguish the generated ones from the real images. Both networks are trained
simultaneously, with the generator aiming to generate images that can fool the discrimin-
ator, while the discriminator improves its ability to better distinguish between the generated
and the real data. In the end, the generator can be trained to produce high-quality images
that are nearly indistinguishable to the discriminator.
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With the inclusion of the adversarial component, generative adversarial networks allow for
learning the probability distribution of target images without the need for ground truth
(labels), i.e., training in an unsupervised way. Therefore, it opens up possibilities for not
only supervised but also unsupervised learning.

Paper I includes adversarial learning in a supervised way. A discriminator is used to dis-
tinguish between noisy detector images and clean denoised images so that the generator
can produce better noise-free images. Paper II and Paper III employ generative adversarial
networks in unsupervised phase retrieval tasks to learn the image transformation between
detector images and object images. Paper V exploits adversarial training to confine the 3D
reconstruction of X-ray multi-projection imaging experiment. The objective is to ensure
that the generated 2D projections are indistinguishable from the experimental projections.

3.4 Neural implicit representation learning

Typically, an image is treated as a matrix in deep learning, with the matrix elements filled up
by the pixel values, as shown in Figure 3.5. When it comes to higher dimensions, it is natural
to think of representing 3D (4D) information of an object as a high-dimension matrix, and
train high-dimension neural networks to directly reconstruct the matrices, same as in 2D.
However, this comes with several problems. The most straightforward is the memory prob-
lem. As the dimensionality of the data and the network increases, the size of the matrices
and network parameters grows geometrically, causing memory problems for the network
training. As a result, training 3D grids with 3D convolutional neural networks is usually
performed on low-resolution objects with a size below 1283. Beyond this limit, excessive
GPU memory is required [64]. Additionally, another drawback of the grid-based repres-
entation is its limited resolution. Grids cannot represent continuous variations. Therefore,
grid-based representation is not always suitable for capturing the fine details required in
high-quality representations.

These drawbacks are addressed by neural implicit representation [65, 66, 59]. Just like
the shape of an object can be expressed by an implicit function, and the function can be
approximated with a neural network. Neural implicit representation implies training neural
networks to represent relevant information about an object. For example, the refractive
index of a 3D object can be expressed as a continuous function f : (x, y, z) → n, with
(x, y, z) representing the 3D spatial coordinates and n the refractive index of the object at
each spatial point. As it is flexible to sample the function at different rates, the memory
constraints imposed by grid-based representations can be addressed.

Neural radiance field (NeRF) [59], introduced by Mildenhall et al. in 2021, is one of the
popular applications of neural implicit representation. It is designed to reconstruct 3D
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images from multiple 2D views. In NeRF, a multi-layer perceptron is trained to learn the
mapping from the spatial coordinates and viewing directions to the density of the object
and view-dependent RGB color of a static scene. After the training, the network learns a
continuous representation of the 3D object and is able to produce novel views from any
given viewpoint.

The effectiveness of neural implicit representation and NeRF has been widely applied in
many fields, including X-ray imaging. The first application of implicit neural represent-
ation on X-ray imaging was performed by Sun et al. [67], where a neural network was
trained to reconstruct 2D sinograms for sparse-view CT measurement. However, the au-
thors neglected the physics model of X-ray imaging. As NeRF was originally designed
for the optical field, where the object is opaque to the light and the color of the object is
dependent on the viewpoint, it is not directly applicable to X-rays. As we introduced in
Chapter 2, X-rays process much higher penetration power than visible light, and most of
the objects are transparent to X-rays. Additionally, the 3D object formed by X-ray imaging
is not view-dependent, and the 3D consistency should be maintained regardless of the view
angles.

Paper IV applied neural implicit representation for addressing the problem of reconstruct-
ing 3D from X-ray multi-projection imaging experiments, where a neural network was
trained to represent the mapping from the spatial coordinates to the refractive index of an
object (x, y, z) → n. The physics of X-ray propagation and interaction with matter was
also considered. Similarly, Paper V exploits neural implicit representation for reconstruct-
ing 4D (3D+time) dynamic processes from X-ray multi-projection imaging experiments,
where the collision process of water droplets was studied by a neural network with the
mapping (x, y, z; t) → n.
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Chapter 4

Advancing X-ray imaging with deep
learning

In the previous chapters, we discussed the challenges of X-ray imaging and introduced com-
mon deep-learning frameworks addressing imaging tasks. In this chapter, we demonstrate
several applications of deep learning as enabling techniques for X-ray imaging, addressing
experimental challenges encountered in X-ray image reconstruction.

We start this chapter with 2D image reconstructions and move on to 3D and 4D volumet-
ric dynamical reconstructions. In Section 4.1, we introduce the deep-learning approach
presented in Paper I. This is a supervised learning approach developed for shot-to-shot
flat-field correction at XFELs when conventional approaches do not work, i.e., to mitig-
ate the imaging artifacts caused by non-uniform illumination and detector noise. Section
4.2 introduces unpaired deep-learning approaches for phase retrieval and holographic im-
age reconstruction. We present PhaseGAN, our physics-based unpaired approach, and
its comparison to other state-of-the-art unpaired approaches. The results are presented in
Paper II and Paper III. Section 4.3 describes the application of deep learning in 3D and
4D X-ray imaging. We introduce ONIX and 4D-ONIX, two self-supervised learning ap-
proaches for reconstructing 3D and 4D information from sparse X-ray projections. The 3D
reconstruction results of ONIX are reported in Paper IV.The dynamical 3D reconstruction
results of 4D-ONIX are presented in Paper V and Paper VI.

It is worth mentioning that, the deep learning (DL) approaches presented in this chapter
do not apply neural networks simply to the experimental data of X-ray imaging. Instead,
we include the physics of X-ray imaging into the neural network architecture to improve
the performance and explainability of the model. Beyond these benefits, incorporating
physics also accelerates the training process of deep learning models. State-of-the-art large
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models often require millions of training data and heavy neural networks with up to 1012

parameters, trained on high-performance GPUs [68]. Such resource-demanding processes
are not generally accessible and can cause severe environmental effects [69]. The inclusion of
physics in the neural network design enhances the performance and robustness of existing
deep learning models, making the training process more sustainable and accessible [70], as
evidenced in Paper II and Paper III.

4.1 FFCGAN: A supervised approach for shot-to-shot flat-field
correction at X-ray free-electron lasers

In this section, we describe our deep learning approach for solving the flat-field correction 
problem of X-ray free-electron lasers. This approach i s based on a  generative adversarial 
network (GAN). For brevity, we refer to this approach as FFCGAN.

First, we explain the requirement of flat-field correction for imaging experiments and in-
troduce the conventional method for tackling this problem. Then, we introduce dynamic 
flat-field correction approaches, which are effective when the conventional approach fails. 
In the end, we present FFCGAN, our deep-learning approach that can perform flat-field 
correction at the level of state-of-the-art dynamic approaches and is suitable for real-time 
image analysis.

The results of this approach a re presented in detail in Paper I . Please note that Paper I 
introduces two methods, a dynamic flat-field correction approach adapted by  K.  Buakor 
(see Section 4.1.2, this approach is originally reported in [71]) and a deep learning approach 
developed by myself. In this section, the focus will be on my contributions to the deep 
learning part.

4.1.1 Conventional flat-field correction

Typically, an imaging process involves illuminating an object with a probe light and then 
recording the signal responses on the detector. In an ideal scenario, uniform illumination 
and a noise-free detector are desirable, with the signal response of the detector being linear 
with the intensity of the incoming light. However, this is not always valid. Firstly, for 
the X-ray imaging experiments at high-brilliant sources, the incoming X-ray illumination 
(flat-field) is  often non-uniform and may contain specific patterns [72 ]. Secondly, com-
monly used indirect X-ray detectors convert X-rays into visible light using scintillators for 
detection, and the sensitivity of the scintillator can be non-uniform. Thirdly, the detector 
usually contains thermal or electronic noises, leading to non-zero intensities even in the 
absence of any illumination.
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The process of obtaining a noise-free and artifact-free image of the probed object is referred
to as flat-field correction. If we write the measured sample images as Isample, flat-field
correction normally requires measuring two additional images: the flat-field image without
any sample (Iflat) and the dark-field image without any illumination (Idark). The flat-field
corrected image (IFFC) can then be calculated by

IFFC =
Isample − Idark
Iflat − Idark

. (4.1)

This method, described in Equation 4.1, is the conventional and the most common ap-
proach for flat-field correction [73]. It is important to note that as it can be challenging
to measure Isample, Iflat, and Idark simultaneously, Equation 4.1 is only valid for imaging
systems with slow temporal variations, e.g., imaging systems with stable illumination and
detector responses.

The conventional flat-field correction approach is not suitable for single-pulse imaging ex-
periments performed at XFELs. As described in Chapter 2, XFELs commonly use self-
amplified spontaneous emission (SASE) to produce high-intensity coherent X-ray pulses.
This process, however, is intrinsically stochastic due to the random distribution of the elec-
tron beam’s initial current density. As a result, the generated X-rays exhibit relatively poor
temporal coherence and contain spatial and frequency fluctuations [74]. The illumina-
tion carries rapid-varying shot-to-shot noise that can not be corrected by the conventional
flat-field correction method described in Equation 4.1 as it is not slowly varying.

4.1.2 Dynamic flat-field correction

Dynamic flat-field correction approaches, which estimate the flat-field component of each
image from frame to frame, are suitable for correcting the shot noise for rapid-varying illu-
mination [71]. These approaches use principal component analysis (PCA) [75] to determine
the eigenvectors associated with shot noise from a set of flat-field images. After selecting the
eigenvectors, the contribution of each eigenvector is evaluated and subsequently removed
from the image to be corrected.

K. Buakor has implemented a PCA-based dynamic flat-field correction approach [71],
which selects the flat-field eigenvectors based on the total variance explained by each ele-
ment. This approach has been successfully applied to the data collected at MAX IV and
European XFEL, and the results are presented in [76] as well as Paper I. One drawback of
this approach, however, is that it is computationally slow, and thus not suitable for real-
time image corrections. Additionally, this approach necessitates a significant number of
flat-field images to adequately represent all potential artifact distributions and variations.
It is unable to rectify feature shifts, such as drifts in illuminations, due to the locality of
the method. From a practical standpoint, acquiring flat-field images before and after each
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sample measurement is often necessary, thereby reducing the overall acquisition time for
each sample.

4.1.3 Deep learning flat-field correction

To address the aforementioned problems, we developed FFCGAN, a deep-learning flat-
field correction approach. FFCGAN applies an end-to-end fully-convolutional neural net-
work to learn the image mapping from the noisy detector images to the noise-free flat-field
corrected images.

Figure 4.1: Schema of FFCGAN

The architecture of FFCGAN is presented in Figure 4.1. As can be seen, FFCGAN is based
on a generative adversarial network, which consists of a generator and a discriminator. Both
the generator and the discriminator are convolutional neural networks. The generator of
FFCGAN takes the detector image as input and learns to eliminate the shot noise, whereas
the discriminator sees both the noise-free images and the generator output to minimize the
difference between the two distributions.

The training of FFCGAN is constrained by three losses. The adversarial process between
the generator and the discriminator is governed by the GAN loss. Additionally, FFCGAN
is supervised by the L2 loss, minimizing the L2 distance between the ground truth and the
generator output. Aside from the GAN loss and the L2 loss, we also include a novel loss
function in FFCGAN based on Fourier ring correlation (FRC) [77]. FRC loss maximizes
the normalized cross-correlation of the two images x1 and x2 in the frequency space over
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rings, as expressed by

LFRC =

∥∥∥∥∥∥1−
∑

r∈RF [x1] (r) · F [x2] (r)∗√∑
r∈R |F [x1] (r)|2 ·

∑
r∈R |F [x2] (r)|2

∥∥∥∥∥∥
2

, (4.2)

where R stands for the radius of the ring in Fourier space, and r denotes individual rings.
The introduction of constraints in the frequency space has been demonstrated to be effective
in mitigating artifacts and improving results [25, 78, 79].

We assess the performance of FFCGAN using both simulated data and experimental data
of single-pulse X-ray imaging experiments collected at the European XFEL. The results are
reported in Paper I. After the training, FFCGAN can perform flat-field correction at a
speed of 10−4 s at the level of dynamic flat-field correction approaches. In comparison to
dynamic flat-field correction approaches, which require seconds of execution time for each
image, FFCGAN operates four orders of magnitude faster. This significantly accelerates the
process, opening up the possibility for real-time image correction and on-line image analysis
during the experiment. In addition, as we mentioned in Section 3.3.2, convolutional neural
networks exhibit translation invariance. This property enables FFCGAN to correct artifacts
regardless of their locations, which can be crucial for practical applications, e.g., when the
beam oscillates from frame to frame as in the SASE process of XFELs.

Although effective, it’s important to note that FFCGAN is a supervised approach, neces-
sitating ground truth data for each input during training. For the rest of this chapter, we
will focus on unsupervised deep-learning approaches, where ground truth is not needed.

4.2 PhaseGAN: a phase-retrieval approach for unpaired datasets

In this section, we demonstrate PhaseGAN, an unpaired deep-learning phase-retrieval ap-
proach. PhaseGAN includes the physics of image formation in the learning process, which
further improves the capabilities of unpaired approaches.

First, we recapitulate the phase problem and traditional methods for solving it. Next,
we introduce state-of-the-art paired deep-learning approaches addressing the phase prob-
lem. Then, we introduce unpaired phase-retrieval approaches and discuss the design of
PhaseGAN. A comparison of state-of-the-art unpaired approaches is given in the end.

The results of this section are presented in Paper II and Paper III.
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4.2.1 Classic approach for the phase problem

As discussed in Chapter 2, the phase problem, i.e., retrieving samples’ original phase from
the intensity measurement, is a fundamental problem in coherent imaging experiments.

Conventional methods addressing the phase problem rely on either analytical or iterat-
ive solutions. Analytical approaches have limited application scenarios, because they are
based on mathematical derivations calculated under specific assumptions about the char-
acteristics of the light source, sample, and propagation distance. Iterative solutions are not
limited by application scenarios. They map between the object and detector spaces, apply-
ing constraints in both spaces (see Figure 4.2a). However, they come with the drawback of
extended computational time, and the convergence is not guaranteed.

4.2.2 Paired deep-learning phase-retrieval approaches

In recent years, deep learning methods have also been applied to solve the phase problem.
In 2017, A. Sinha et al. [80] first reported the use of a deep neural network to solve the
phase problem in computational imaging. They trained a convolutional neural network to
reconstruct phase from the diffraction patterns. The phase object was generated by a spatial
light modulator, using the images from ImageNet [56]. Ten thousand image-diffraction
pattern pairs were used for the training, and the trained network was applied to an unseen
test dataset for evaluation. The first deep learning for phase retrieval on real experimental
samples was reported by Y. Rivenson et al. [24] in 2018, where sample-specific deep neural
networks were trained to perform phase recovery on biological tissue samples measured
by holography experiments. For each sample, 100 pairs of image-diffraction patterns were
used in the training process. Although these approaches demonstrate the effectiveness of
deep learning methods on the phase problem, they are all paired approaches, i.e., they learn
from paired training datasets.

As discussed, paired approaches rely on a large amount of paired training data, i.e., for
each diffraction intensity pattern, a corresponding phase image is needed. The phase im-
age can be obtained in one of the following two ways. First, conventional phase retrieval
algorithms are suitable when the quality of the diffraction intensity is good enough (e.g.,
low noise, high spatial resolution), and the experimental conditions meet the required as-
sumptions. However, the effectiveness of the deep learning model in this case is constrained
by the quality of the phase retrieval methods, which may be prone to artifacts. Second, if
the hologram image cannot be accurately phase-reconstructed using conventional phase
retrieval algorithms, but the image quality can be enhanced through experimental condi-
tion improvements (e.g., increased exposure time, selection of a higher resolution detector,
etc.), then additional experiments can be conducted on a small dataset to obtain enhanced
images suitable for phase retrieval. These images can then be phase-retrieved and paired
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with the holographic images to form a training dataset. After the training, the model can
be applied to other holographic images for phase reconstruction.

However, acquiring many high-quality holographic images can be challenging. For ex-
ample, images collected at XFELs often suffer from shot-to-shot noise that can hinder the
performance of phase reconstructions. Additionally, when imaging sub-microsecond dy-
namical processes, the short exposure time may lead to low spatial resolution and high noise
that pose difficulties in the reconstruction process. If the amount of training data is inad-
equate, or the phase reconstructions provided are inaccurate, the deep learning model will
not be able to get the correct reconstructions.

4.2.3 PhaseGAN: a physics-based unpaired phase-retrieval approach

In cases where the paired approach is not applicable, an unpaired approach may be con-
sidered as an alternative. As introduced in Section 3.2, unpaired approaches use unpaired
training datasets. In unpaired datasets, the one-to-one match between the phase and in-
tensity images is not required. The diffraction intensity image and the phase image can
be obtained through different imaging modalities using similar but not exactly identical
samples. Therefore, the use of unpaired datasets allows for phase reconstruction in the case
where prior phase reconstructions are not available.

Figure 4.2: Comparison of phase retrieval methods: (a) iterative approach, (b) CycleGAN, and (c) PhaseGAN.

PhaseGAN is an unpaired deep learning phase reconstruction approach. It is based on
CycleGAN [57]. As shown in Figure 4.2 b, CycleGAN is a standard unpaired deep learning
approach that allows learning the image transformation between two domains by using two
generator neural networks: the object generator GO and the detector generator GD. Two
discriminator neural networks (DO,DD) are employed to apply constraints in both spaces.
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In PhaseGAN, we include a physics propagator H, as shown in Figure 4.2 c, similar to the
one used in the iterative approach. By including the propagator, the detector generator
GD does not need to learn the physical process of image formation, and it needs to learn
experimental effects such as the response function of the optical system and noises. Aside
from including the physics propagator, we also include the Fourier ring correlation loss in
PhaseGAN to better constrain the model in the frequency space, as explained in Section
4.1.3.

We validated PhaseGAN using simulated holographic images based on the CelabA data-
set [81] and compared the results with state-of-the-art paired approaches [82] and Cycl-
eGAN. The reconstruction results are presented in Paper II. PhaseGAN outperformed
CycleGAN and reconstructed results at the level of state-of-the-art paired approaches. By
comparing the results of PhaseGAN trained with and without the Fourier ring correlation
loss, we also proved the effectiveness of adding constraints in the frequency space.

We also applied PhaseGAN to time-resolved imaging experiments using single pulses of
the Advanced Photon Source (APS), capturing the cell wall rupture of metallic foams. As
shown in Paper II, the measured holographic images are very noisy and thus can not be
phase reconstructed using conventional approaches. We formed an unpaired dataset by
combining the single-pulse noisy images with phase images reconstructed from a different
imaging modality, which were captured using a high-resolution camera integrated over 31
pulses. PhaseGAN successfully learned the image reconstruction from the unpaired train-
ing dataset, and was able to perform phase reconstructions for the time-resolved imaging
experiments where paired approaches were not applicable.

4.2.4 A comparison: Unpaired deep-learning approaches for holographic image
reconstruction

In recent years, several unpaired phase-retrieval approaches have been developed for holo-
graphic image reconstruction, with a wide range of applications [83, 84]. Biomedical ima-
ging, in particular, poses challenges where collecting paired datasets can be difficult or im-
practical due to various considerations. A recent study by C. Lee et al. [70] has introduced
a parameterized physical model for adaptive holographic imaging. This model, referred to
as FMGAN, replaces the forward generator with a physical model that is parameterized by
the propagation distance of the probing light. Unlike PhaseGAN, which requires knowing
the accurate physical model, FMGAN can learn to determine the physical model from the
training data. FMGAN can predict not only the phase and attenuation images but also the
propagation distance of the probing light.

In Paper III, we evaluated the reusability and generalizability of FMGAN. Furthermore, we
compared the reconstruction results of three unpaired approaches—CycleGAN, PhaseGAN,
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and FMGAN [70]—using polystyrene microsphere samples measured by optical holo-
graphy [85], and investigated their performance under non-perfect optical systems. The
results show that both PhaseGAN and FMGAN are capable of reconstructing the phase and
absorption of the polystyrene microsphere samples from their holographic images, while
CycleGAN fails. FMGAN outperforms PhaseGAN in both accuracy and generalizability.
However, FMGAN encounters difficulties when dealing with blurring non-perfect optical
systems, while PhaseGAN succeeds because the detector generator allows it to learn the
response of the optical system.

4.3 ONIX and 4D-ONIX: Self-supervised approaches for recon-
structing (dynamical) 3D from sparse X-ray projections

In this section, we shift our focus from 2D to 3D and 4D reconstructions. We introduce
ONIX and 4D-ONIX, two deep-learning approaches for reconstructing 3D and 4D from
sparse X-ray projections.

ONIX and 4D-ONIX are developed mainly for solving the 3D reconstruction problems
in X-ray multi-projection imaging (XMPI). As discussed in Section 2.4.3, XMPI captures
fast dynamics of the sample simultaneously from different angles, but reconstructing dy-
namical 3D information from the sparsely recorded projections is extremely difficult. This
section first discusses the reconstruction challenges in XMPI. Then, we introduce ONIX,
a self-supervised sparse-view reconstruction approach capable of reconstructing 3D from
fewer than ten projections. Last, we introduce 4D-ONIX, a self-supervised 4D reconstruc-
tion approach based on ONIX, and demonstrate its reconstruction results on experimental
XMPI data. By integrating adversarial learning, 4D-ONIX further enhances the capability
of ONIX, enabling reconstruction with as few as two projections separated by approxim-
ately 24◦.

The results of ONIX are presented in Paper IV. The results of 4D-ONIX are presented in
Paper V and Paper VI.

4.3.1 Reconstruction challenges for X-ray multi-projection imaging

As discussed in Section 2.4.3, X-ray multi-projection imaging is a rotation-free single-pulse
imaging technique that captures multiple projections of a sample simultaneously from
different angles. When combined with high-brilliance X-ray sources such as the fourth-
generation synchrotron radiation sources and XFELs, it can record volumetric information
of a sample or dynamical processes at kHz up to MHz rate. However, the current XMPI
design allows for recording just a small and limited set of sparse projections [28, 35]. There-
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fore, there is a need for a reconstruction method that can reconstruct a 3D representation
from these sparsely recorded XMPI projections.

Deep learning approaches have shown convincing results in 2D and 3D image reconstruc-
tions [86]. Specifically, as discussed in Section 3.4, deep learning approaches based on
neural implicit representation, such as NeRF, have shown their capability to learn a con-
tinuous implicit 3D representation of objects from 2D views [59, 87, 88]. Unlike voxel-based
3D reconstruction approaches, where the quality of the reconstruction is constrained by
the memory limitations of available hardware, NeRF-based approaches can go beyond the
memory limit and reconstruct high-resolution 3D representations without the need to train
on slices [89, 90] or cropped patches [91, 92]. Nevertheless, these approaches are designed
for visible light imaging, where most of the objects are opaque to the light. By applying
the principles of X-ray propagation and interaction with matter as outlined in Chapter 2,
it is possible to extend these methods to reconstruct objects imaged using X-rays. ONIX is
specifically designed for this purpose.

4.3.2 Optimized neural implicit X-ray imaging (ONIX)

ONIX stands for Optimized Neural Implicit X-ray imaging. It employs neural implicit
representation to learn the mapping from the 3D coordinate to the complex refractive index
of an object: (x) 7→ n(δ, β).

Figure 4.3: Overview of the ONIX learning process. By forcing the self-consistency of the imaging object over recorded pro-
jections, ONIX learns the complex refractive index at each spatial coordinate and reconstructs a comprehensive 3D
representation of the object.

ONIX is composed of convolutional neural networks and fully connected neural networks,
as illustrated in Figure 2 of Paper IV and Figure 4.3. The convolutional neural networks
serve as encoders, extracting features from the recorded projections and learning common
features among the measured samples. The fully-connected neural networks take the input
from the encoders and generate the refractive index at each point.

To understand the learning process of ONIX, let us consider a hypothetical scenario where
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four projections are available for each XMPI measurement, as illustrated in Figure 4.3. We
randomly select three of them as constraints. For each query point in the 3D space, we
project the corresponding pixel in the camera space for each of the three constraints and
collect the pixel-aligned latent features extracted by the encoder. These extracted vectors
are then fed into the fully connected neural network, together with the positional-encoded
spatial coordinates of the query point. Positional encoding is a technique commonly used
in NeRF-based 3D reconstruction approaches. It maps the spatial coordinates to a high-
dimensional space, enhancing the model’s performance on learning high-frequency de-
tails [59].

With a sufficient number of query points sampled within the object, we integrate along
rays to form pixels in the projection plane, resulting in a prediction image. The integration
is based on the projection approximation. Nonetheless, it can be extended beyond this by
using multi-slice methods. To train ONIX, we use the fourth projection. By minimizing
the squared L2 loss between the recorded projection and the prediction, ONIX learns the
self-consistency of the projections in 3D space without using any 3D information.

Although only four projections are shown in Figure 4.3 for simplicity, in reality, we use a
minimum of eight projections and four of them as constraints. It is important to note that
ONIX learns from all of the measurements, not just the projections of a single sample. It
learns common features of the samples and generalizes across similar samples and experi-
ments.

We validated ONIX using a simulated dataset of ellipsoids and an experimental dataset of
metallic foams. For each object in both datasets, eight projections in a range of less than
140◦ were prepared for the 3D reconstruction. The reconstruction results were compared
with three other approaches: i) simultaneous algebraic reconstruction technique (SART), a
classic sparse-view reconstruction approach, ii) 3D supervised method, a supervised deep-
learning approach trained on stacks of individual 2D slices, and iii) Noise2Inverse, a self-
supervised deep-learning approach [93]. The results are presented in detail in Paper IV.
As can be seen, ONIX successfully reconstructed the 3D details of the objects in both
datasets, using only eight projections for each object. The reconstruction results of ONIX
outperform SART and Noise2Inverse and are comparable to the 3D supervised approach.

4.3.3 4D-ONIX: Reconstructing 4D for X-ray multi-projection imaging

Although ONIX has demonstrated its ability to reconstruct 3D from sparse X-ray pro-
jections, acquiring eight projections simultaneously from XMPI, as required by ONIX, is
extremely cumbersome. The metallic foam data presented in Paper IV was extracted from
a tomographic dataset rather than an XMPI one, i.e., we selected eight projections from a
total of 96 projections for evaluating the performance of ONIX.
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During the development of ONIX, the experimental setup of XMPI has been successfully
deployed at the European XFEL, achieving acquisition rates beyond MHz. While not
yet capable of capturing eight projections simultaneously, the XMPI setup allows for the
simultaneous capture of two or more projections using a single X-ray pulse.

Figure 4.4: Overview of the 4D-ONIX learning process.

In this subsection, we present 4D-ONIX, a self-supervised deep-learning approach for re-
constructing 3D movies from the ultra-sparse projections measured with XMPI. As shown
in Figure 4.4, 4D-ONIX is based on ONIX, with two main differences. First, the time di-
mension is included as a fourth dimension of the input of the model. With time included,
the goal is to learn the mapping from 4D spatial-temporal coordinates to the refractive
index: (x, t) 7→ n. Second, we include adversarial learning in 4D-ONIX. As reported in
Paper VI, the first MHz XMPI experiment at European XFEL allows for the simultaneous
measurement of only two projections. Due to the limited number of projections from dif-
ferent angles, assessing the self-consistency of the 3D sample using only squared L2 loss,
as in ONIX, is unrealistic. Instead, 4D-ONIX introduces a discriminator neural network
and trains with both the squared L2 loss and an additional adversarial loss. The discrimin-
ator learns to distinguish between the predicted projections and the measurements, thereby
compelling the reconstructions to adhere to the distribution of the measured projections
of all the experiments from any given angle on the experimental plane.

We validated 4D-ONIX using simulated data of water droplet collision, with detailed res-
ults reported in Paper V. Our evaluation of 4D-ONIX includes two scenarios: reprodu-
cible processes and quasi-reproducible processes. For reproducible processes, the dynamical
process can be measured multiple times with different sample orientations, but only two
projections per experiment. However, achieving reproducibility in many cases poses exper-
imental challenges. Therefore, it is more practical to measure multiple similar dynamical
processes within the experimental tolerance, and each process being measured only once.
We refer to this as the scenario of quasi-reproducible processes. We simulated XMPI ex-
periments for both scenarios, mimicking the experimental setup at European XFEL, and
assessed the reconstruction results of 4D-ONIX. As detailed in Paper V, our results demon-
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strate that 4D-ONIX effectively reconstructs the dynamics of the droplet collision process
for both scenarios, with slightly better results observed for reproducible processes compared
to quasi-reproducible ones. The reconstruction results from 16 experiments provide a 3D
spatial resolution of 4 ± 1 voxels for reproducible processes and 6 ± 1 voxels for quasi-
reproducible processes. The voxel dimension corresponds to the pixel dimension of the
input projections. These validation results indicate the potential of 4D-ONIX to achieve
dynamical 3D reconstructions from as few as two projections. With additional projections
or experiments, the results can be further improved. When combined with XMPI, this
opens up possibilities to study ultrafast dynamical processes at a rate that was not possible
before.

In Paper VI, we applied 4D-ONIX to experimental data of water droplet collision collec-
ted at the European XFEL. Here, we present an additional analysis of the experimental
reconstruction results.

4.3.4 4D-ONIX results on experimental data

As described inPaper VI, we applied 4D-ONIX on experimental data collected at European
XFEL, where collisions of water droplets were recorded at 10 keV in 1.128 MHz frame rate
using XMPI with two split beamlets. The relative angle between the two beamlets was
23.8◦. Unfortunately, only two sequences of the droplet collision were captured, with a
minimal shift in sample orientation. Each sequence contains 127 timestamps, correspond-
ing to ∼ 113 μs recording time. We trained 4D-ONIX using the two sequences of data
collected, and present the reconstruction results for one of the droplet sequences in Fig-
ure 4.5.

Figure 4.5(a) shows the preprocessed detector frames and reconstruction results at different
timestamps, demonstrating different stages of the water droplet collision. Figure 4.5(b)
shows the distribution of the center of mass along the direction of collision (x-axis) for
each droplet and for the whole system over time. Before the collision, the two droplets
moved towards each other. The motion of the two individual droplets is estimated with a
linear fit, assuming that each droplet moved with a constant velocity. The quality of the fit
is evaluated by the coefficient of determination R2, ranging from 0 (no fit) to 1 (perfect fit).
The fitting result for the movement of Droplet_1 is x1 = (1.51±0.04) · t+(100.8±0.6),
where x1 is the position of the center of mass of Droplet_1 along the collision axis and t is
time. The coefficient of determination for the fitting is R2 = 0.98. The fitting result for the
movement of the center of mass of Droplet_2 is x2 = (−1.10± 0.05) · t+(297.6± 0.8),
with R2 = 0.94. These fitting results indicate the velocity and position of the two droplets.
The two fitted lines collide at the time of 75 μs. The collision point of the two fitted lines
was marked by a red star, indicating the completion of the droplet collision. Figure 4.5(c)
shows the center of mass of the droplets as a function of time for the y-axis and z-axis,

55



Figure 4.5: Collision of the two water droplets as measured by XMPI. a The preprocessed projections obtained from the two
detectors and the 3D rendering of the reconstructions at different stages of the collision. b,c Movement of the
center of mass over time for a period of ∼ 120 μs, shown for the x-axis (b), y-axis and z-axis (c), respectively. The
movement of the center of mass of each individual droplet and the collision point are also shown in b.

respectively, where the z-axis is the axis of gravity and the y-axis is perpendicular to the
collision axis and gravity.
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As can be seen from Figure 4.5, prior to the collision, the two droplets could be observed
moving toward each other at a consistent speed. They started at a distance of 197 μm apart
from each other. The velocity of the two droplets were derived to be 1.5m/s and−1.1m/s,
respectively, and the relative velocity between the droplets were 2.6m/s. After a period of
30 μs, the droplets coalesced into a single droplet and became inseparable. The convergence
point of each droplet’s center of mass, denoted by the red star in Figure 4.5(b), lies on the
trajectory of the combined center of mass, marking the completion of the collision between
the two droplets. The collision process lasted for around 45 μs. As shown in Figure 4.5(c),
the overall center of mass for both droplets remains relatively steady along the y-axis, while
the two droplets descend along the z-axis due to gravity.

The reconstruction results include some level of error. First, as depicted in Figure 4.5(a),
the recorded projections contain some degree of noise and artifacts, which may affect the
accuracy and consistency of the reconstructions. The imperfections are particularly no-
ticeable for the second detector. The signal-to-noise ratio for detector 2 is significantly
inferior to that of detector 1, largely attributed to the second beamlet being generated from
a higher order of diffraction, which leads to decreased diffraction efficiency. Second, only
two experiments of the collision process were collected, which may not be sufficient for the
reconstruction. As evidenced in Paper V, the performance of the model may be comprom-
ised when trained with only two experiments. Increasing the number of experiments for
identical or similar samples is crucial to improve both convergence and the accuracy of the
reconstructions.
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Chapter 5

Conclusion and outlook

5.1 Conclusion

In this thesis, we have presented different X-ray imaging methods and discussed the chal-
lenges in the image reconstruction process. In addition, we have provided an overview of
deep-learning models relevant to imaging tasks. Specially, we presented how deep learning
can be used as an enabling tool to address the challenges in X-ray imaging. We intro-
duced four deep-learning-based image reconstruction algorithms, and demonstrated their
performance on both simulated and experimental X-ray imaging data.

Firstly, we introduced FFCGAN, a flat-field correction approach designed to mitigate ima-
ging artifacts for X-ray free-electron lasers. It provides comparable performance to dynamic
flat-field correction methods, but with significantly faster reconstruction speeds, enabling
real-time image correction. In addition, the translation-invariant property of FFCGAN al-
lows it to correct for non-local artifacts, such as systematic drifts in the illumination, where
conventional approaches fail.

Secondly, we present PhaseGAN, a phase-retrieval approach for unpaired datasets. PhaseGAN
enables high-quality holographic image reconstructions without requiring paired datasets,
making it a valuable algorithm for scenarios where conventional phase reconstruction is
difficult or unavailable. Examples of these scenarios include single-pulse imaging, where
conventional methods encounter difficulties due to low image quality, and biological ima-
ging, where acquiring paired datasets poses challenges. Additionally, we compared the
performance of state-of-the-art unpaired image reconstruction approaches and evaluated
their efficacy for imperfect optical systems.

Lastly, we presented ONIX and 4D-ONIX, two self-supervised deep-learning approaches
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for sparse-view reconstructions. ONIX enables the reconstruction of 3D information from
fewer than ten projections, while 4D-ONIX extends this capability to reconstruct 4D from
as few as two projections. We envision these approaches as enabling computational tools
for dynamical 3D analysis, offering new spatiotemporal resolutions to study ultrafast dy-
namical processes at a rate that was not possible before. Specifically, these approaches offer
the potential to record 3D movies beyond kHz rate when combined with X-ray multi-
projection imaging and exploit the unique capabilities of high brilliance X-ray sources such
as X-ray free-electron lasers and synchrotron radiation facilities.

5.2 Outlook

Looking to the future, there are still lots of possibilities to improve the efficiency and accur-
acy of the models. As we mentioned in Chapter 3, deep learning approaches rely on three
fundamental components: training data, neural networks, and loss functions. From a phys-
ical standpoint, physical principles and known physical prior can serve as a fourth pillar.
As presented in Chapter 4, including known physical principles in the learning process im-
proves the performance, robustness, and interpretability of the deep learning approaches.
Future advancements in deep learning can be achieved by enhancing these aspects.

Firstly, the quality and quantity of training data greatly influence the performance of deep-
learning models. Acquiring better quality and a larger quantity of experimental data can
enhance the performance of the model. Besides, building extensive databases for X-ray ima-
ging would facilitate the development of models, enabling techniques like transfer learning,
which involves pretraining on large datasets and fine-tuning on specific data. This approach
has already shown promise in medical X-ray imaging for patient diagnosis [94] and allows
for 3D reconstruction from as few as single projection images [95, 96]. Applying it to gen-
eral microscopy faces challenges due to the diversity and complexity of imaging samples.
Nevertheless, it can serve as valuable prior knowledge, especially for 4D imaging of rapid
dynamics, where data availability is limited.

Secondly, from the architecture perspective, incorporating advanced deep architectures
would also enhance the model’s performance. DL is a rapidly evolving field, with new net-
work architectures rapidly replacing old ones. Staying updated with these developments
and incorporating state-of-the-art network architectures can enhance the effectiveness and
adaptability of deep learning models. For example, attention-based transformer models
and diffusion models have demonstrated improved performance on imaging tasks, includ-
ing noise reduction and image reconstruction [97, 98, 99].

Thirdly, investigating a variety of loss functions and their combinations has the potential
to further enhance the performance of the model. For instance, integrating Fourier do-
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main constraints can help the model to better capture image details in the frequency space.
Including perceptual loss functions can potentially improve the visual quality of the recon-
structions [100, 101].

Finally, physics can serve as a crucial enhancement to the model. If the imaging process
adheres to well-known physical principles, integrating this knowledge directly into the net-
work architecture can significantly improve the model’s performance and robustness, as
demonstrated in Section 4.2. On the other hand, physics can also be integrated into the
loss function to better condition the deep learning model. For example, if the sample dy-
namics are governed by a partial differential equation, incorporating it into the loss function
can enhance training efficiency and overall results [102, 103].

In the present work, our primary objective is to address real experimental challenges en-
countered in X-ray imaging with deep learning and apply physical principles to improve the
performance of the models. While enhancing the first three aspects will certainly improve
model effectiveness, from a physics perspective, the incorporation of physical principles
into learning algorithms, as a fourth pillar, is indispensable to making deep learning meth-
ods more robust, interpretable, and sustainable [69, 104].
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