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Abstract

Many regularized methods, such as the lasso and ridge regression, are sensitive to the scales
of the features in the data. As a consequence, it has become standard practice to normalize
(center and scale) features such that they share the same scale. For continuous data, the
most common strategy is standardization: centering and scaling each feature by its mean and
and standard deviation, respectively. For binary data, especially when it is high-dimensional
and sparse, the most common strategy, however, is to not scale at all. In this paper, we show
that this choice has dramatic effects for the estimated model in the case when the binary
features are imbalanced and that these effects, moreover, depend on the type regularization
(lasso or ridge) used. In particular, we demonstrate the size of a feature’s corresponding
coefficient in the lasso is directly related to its class imbalance and that this effect depends
on the normalization used. We suggest possible remedies for this problem and also discuss
the case when data is mixed, that is, contains both continuous and binary features.

1 Introduction

When the data you want to model is high-dimensional, that is, the number of features p exceed the number
of observations n, it is impossible to apply classical statistical models such as standard linear regression since
the design matrix X is no longer of full rank. A common remedy to this problem is to regularize the model by
adding a term to the objective function that punishes models with large coefficients (β). If we let g(β; X, y)
be the original objective function—which when minimized improves the model’s fit to the data (X, y)—then

f(β0, β; X, y) = g(β0, β; X, y) + h(β)

is a composite function within which we have added a penalty term h(β). In contrast to g, this penalty
depends only on β. The intercept, β0, is not typically penalized.

Some of the most common penalties are the ℓ1 norm and squared ℓ2 norm penalties, that is h(β) = ∥β∥1 or
h(β) = ∥β∥2

2/21, which, if h is the standard ordinary least-squares objective, represent lasso (Tibshirani, 1996;
Santosa & Symes, 1986; Donoho & Johnstone, 1994) and ridge (Tikhonov) regression respectively. Other
common penalities include SLOPE (Bogdan et al., 2013; 2015), the minimax-concave penalty (MCP) (Zhang,
2010), hinge loss (used in support vector machines (Cortes & Vapnik, 1995)) and smoothly-clipped absolute
deviation (SCAD) (Fan & Li, 2001). Many of these penalities—indeed all of the previously mentioned
ones—shrink coefficients in proportion to their sizes.

The issue with this type of shrinkage is that it is typically sensitive to the scales of the features in X. A
common remedy is to normalize the features before fitting the model by translating and dividing each column

1Division by two in this case is used only for convenience.
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Figure 1: Lasso paths for real datasets using two types of normalization: standardization and maximum
absolute value scaling (max–abs). We have fit the lasso path to four different datasets: housing (Harrison &
Rubinfeld, 1978), leukemia (Golub et al., 1999), triazines (King), and w1a (Platt, 1998). For each dataset,
we have colored the coefficients if they were among the first five features to become active in under either
of the two types of normalization schemes. We see that the paths differ with regards to the size as well as
the signs of the coefficients, and that, in addition, the coefficients to become active first differ between the
normalization types.

by respective translation and scaling factors. For some problems, such factors may arise naturally from
knowledge of the problem at hand. A researcher may for instance have collected data on coordinates within a
limited area and know that the coordinates are measured in meters. Often, however, these scaling factors
must be estimated from data. The most popular choices for this type of scaling are based only on the marginal
distributions of the features. Some types of normalization, such as that applied in the adaptive lasso2 (Zou,
2006), however, are based on the conditional distributions of the features and the response. After fitting
the model, the estimated coefficients are then usually returned to their original scale. Another reason for
normalizing the features is to improve the performance and stability of optimization algorithms used to fit
the model. We will not cover this aspect in this paper, but note that it is an important one.

In most sources and discussions on regularized methods, normalization is typically treated as a preprocessing
step—separate from modeling. As we will show in this paper, however, the type of normalization used can
have a critical effect on the estimated model, sometimes leading to entirely different conclusions with regard
to feature importance as well as predictive performance. As a first example of this, consider Figure 1, which
displays the lasso paths for four real data sets and two different types of normalization. Each panel shows the
union of the first five predictors picked under either normalization scheme. The choice of normalization can
have a significant impact on the estimated model. In the case of the leukemia data set, for instance, the
models are starkly different with respect to both the identities of the features selected as well as their signs
and magnitudes.

In addition, discussions on the choice of normalization are often focused on computational aspects and data
storage requirements, rather than on the statistical properties of the choice of normalization. In our paper,

2The adaptive lasso typically uses estimates of the regression coefficients, typically from ordinary-least squares or ridge
regression, to scale the features with.
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we argue that normalization should rather we considered as an integral part of the model and that it is
problematic to base the choice of normalization on the type of data storage, which implicitly encodes the
belief that the information in a data set is different if it is stored in a sparse viz-a-viz dense format. At the
time of writing, for instance, the popular machine learning library scikit-learn (scikit-learn developers,
2024) recommends max–abs scaling in the case of sparse data.

2 Preliminaries

Throughout this paper, we assume that the data is generated from a linear model, that is,

yi = β∗
0 + x⊺

i β∗ + εi for i ∈ {1, 2, . . . , n},

where we use β∗
0 and β∗ to denote the true intercept and coefficients, respectively, and εi to denote measurement

noise. X is the n × p design matrix with columns xj and y the n × 1 response vector. Furthermore, we use
β̂0 and β̂ to denote our estimates of the intercept and coefficients and use β0 and β to refer to corresponding
variables in the optimization problem. Unless otherwise stated, we assume X, β∗

0 , and β∗ to be fixed.

There is ambiguity regarding many of the key terms in the field of normalization. Scaling, standardization, and
normalizaton are for instance used interchangeably throughout the literature. Here, we define normalization
as the process of centering and scaling the feature matrix, which we formalize in Definition 2.1.
Definition 2.1 (Normalization). Let X̃ be the normalized feature matrix, with elements

x̃ij = xij − cj

sj
,

where xij is an element of the (unnormalized) feature matrix X and cj and sj are the centering and scaling
factors respectively.

Some authors refer to this procedure as standardization, but here we define standardization only as the case
when centering with the arithmetic mean and scaling with the (uncorrected) standard deviation. Also note
that normalization is sometimes defined as the process of scaling the samples, rather than the features. We
will not consider this type of normalization in this paper.

2.1 Types of Normalization

There are many different strategies for normalizing the design matrix. We list a few of the most common
choices in Table 1.

Table 1: Common ways to normalize a matrix of features

Normalization Centering (cj) Scaling (sj)

Standardization 1
n

∑n
i=1 xij

√
1
n

∑n
i=1(xij − x̄j)2

Max–Abs 0 maxi(|xij |)
Min–Max mini(xij) maxi(xij) − mini(xij)
Norm Scaling 0 ∥xj∥p, p ∈ {1, 2, . . . }
Adaptive Lasso 0 βOLS

j

Standardization is perhaps the most common type of normalization, at least in the field of statistics. It is
sometimes known as z-scoring or z-transformation. One of the benefits of using standardization is that it
simplifies certain aspects of fitting the model. For instance, the intercept term β̂0 is equal to the mean of
the response y. For regularized methods, it is typically the case that we standardize with the uncorrected
sample standard deviation (division by n). The downside of standardization is that it involves centering by
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the mean, which typically destroys sparsity in the data structure. This is not a problem when the data is
stored as a dense matrix; but when the data is sparse, it can lead to a significant increases in memory usage
and processing time.

A common alternative to standardization, particularly when data is sparse, is to scale the features by their
maximum absolute value (max–abs normalization). This method has no impact on binary data3, and therefore
retains sparsity. For other types of data, it scales the features to take values in the range [−1, 1]. Since the
scaling is determined by a single value for each feature, the method is naturally sensitive to outliers. In
addition, it is for many types of continuous data, such as normally distributed data, the case that the sample
maximum depends on the sample size, which makes the method problematic for much continuous data. In
Theorem A.1 (Appendix A), we study how this effect comes into play in the case when the feature is normally
distributed.

Min-max normalization scales the data to lie in [0, 1]. As with maximum absolute value scaling, min-max
normalization retains sparsity and also shares its sensitivity to outliers and sample size. Unlike max–abs
scaling, min–max scaling is not sensitive to the location of the data, only its spread. Norm-scaling, scaling
by a norm, is seldom used in practice and more often encountered in theoretical work. The norm can be
any p-norm, and the choice of p will determine the scaling. Standard choices are p = 1, when the scaling is
the sum of the absolute values of the features, and p = 2, where it is the Euclidean norm. A special case of
normalization is the adaptive lasso (Zou, 2006), which is a two-step procedure. In the first step, a model,
often ordinary least-squares regression (OLS) or ridge regression, is fit to the data. The estimated coefficients
from the model are then used to scale the features.

2.2 The Lasso and Ridge Regression

From now on, we will direct our focus on ridge regression and the lasso. Both of these models are special cases
of the elastic net (Zou & Hastie, 2005), which is the ordinary-least squares regression objective regularized
by a combination of the ℓ1 and squared ℓ2 norms. For the normalized feature matrix X̃, the elastic net is
represented by the following convex optimization problem:

minimize
β0∈R,β∈Rp

(
f(β0, β; X, y, λ1, λ2) = 1

2∥y − β0 − X̃β∥2
2 + λ1∥β∥1 + λ2

2 ∥β∥2
2

)
. (1)

We define (β̂(n)
0 , β̂(n)) as a solution to the optimization problem in Equation (1). When λ1 > 0 and λ2 = 0,

the elastic net is equivalent to the lasso, and when λ1 = 0 and λ2 > 0, it is equivalent to ridge regression.
Expanding f in Equation (1), we have

1
2
(
y⊺y − 2(X̃β + β0)⊺y + (X̃β + β0)⊺(X̃β + β0)

)
+ λ1∥β∥1 + λ2

2 ∥β∥2
2.

Taking the subdifferential with respect to β and β0, the KKT stationarity condition yields the following
system of equations: {

X̃⊺(X̃β + β0 − y) + λ1g + λ2β ∋ 0,

nβ0 + (X̃β)⊺1 − y⊺1 = 0,
(2)

where g is a subgradient of the ℓ1 norm that has elements gi such that

gi ∈
{

{sign βi} if βi ̸= 0,

[−1, 1] otherwise.

2.3 Orthogonal Features

If the features of the normalized design matrix are orthogonal, that is, X̃⊺X̃ = diag
(
x̃⊺

1 x̃1, . . . , x̃⊺
px̃p

)
, then

Equation (2) can be decomposed into a set of p + 1 conditions:
{

x̃⊺
j x̃jβj + x̃⊺

j 1β0 − x̃⊺
j y + λ2βj + λ1g ∋ 0, j = 1, . . . , p,

nβ0 + (X̃β)⊺1 − y⊺1 = 0.

3Except in the extreme case when all values are 0.
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The inclusion of an intercept, β0, ensures that the locations of the features (their means) does not affect
the solution (except for the intercept itself). Therefore, we will from now on assume that the features are
mean-centered, that is, cj = x̄j for all j and therefore x̃⊺

j 1 = 0. A solution to the system of equations is then
given by the following set of equations (Donoho & Johnstone, 1994):

β̂
(n)
j =

Sλ1

(
x̃⊺

j y
)

x̃⊺
j x̃j + λ2

, β̂
(n)
0 = y⊺1

n
,

where S is the soft-thresholding operator, defined as

Sλ(z) = sign(z) max(|z| − λ, 0) = I|z|>λ

(
z − sign(z)λ

)
.

2.4 Rescaling Regression Coefficients

Normalization changes the optimization problem and therefore its solution, the coefficients, which will now be
on the scale of the normalized features. We, however, are interested in β̂: the coefficients on the scale of the
original problem. To obtain these, we transform the coefficients from the normalized poblem, β̂

(n)
j , back via

β̂j =
β̂

(n)
j

sj
for j = 1, 2, . . . , p. (3)

There is a similar transformation for the intercept which we omit here since we are not interested in it.

3 Bias and Variance of the Elastic Net Estimator

Now, assume that X is fixed and that y = Xβ + ε, where εi is identically and independently distributed
noise with mean zero and finite variance σ2

ε . As in the previous section, we assume that the feature vectors
are orthogonal. We are interested in the expected value of Equation (3), E β̂j . Let

Z = x̃⊺
j y = x̃⊺

j (Xβ∗ + ε) = x̃⊺
j (xjβ∗

j + ε) and dj = sj(x̃⊺
j x̃j + λ2)

so that β̂j = Sλ1(Z)/dj . Since dj is fixed under our assumptions, we will direct most of our focus towards
Sλ1(Z). First observe that

x̃⊺
j x̃j = 1

s2
j

(xj − cj)⊺(xj − cj) =
x⊺

j xj − nc2
j

s2
j

= nvj

s2
j

,

x̃⊺
j xj = 1

sj
(x⊺

j xj − x⊺
j 1cj) = nvj

sj
,

where vj is the uncorrected sample variance of xj . This means that

Z =
β∗

j nvj − x⊺
j ε

sj
and dj = sj

(
nvj

s2
j

+ λ2

)
. (4)

For the expected value and variance of Z we then have

E Z = µ = E
(
x̃⊺

j (xjβj + ε)
)

= x̃⊺
j xjβj ,

Var Z = σ2 = Var
(
x̃⊺

j ε
)

= x̃⊺
j x̃jσ2

ε .

The expected value of the soft-thresholding estimator is

E Sλ(Z) =
∫ ∞

−∞
Sλ(z)fZ(z) dz

=
∫ ∞

−∞
I|z|>λ(z − sign(z)λ)fZ(z) dz

=
∫ −λ

−∞
(z + λ)fZ(z) dz +

∫ ∞

λ

(z − λ)fZ(z) dz.

5



And then the bias of β̂j with respect to the true coefficient β∗
j is

E β̂j − β∗
j = 1

dj
E Sλ(Z) − β∗

j .

Finally, we note that the variance of the soft-thresholding estimator is

Var Sλ(Z) =
∫ −λ

−∞
(z + λ)2fZ(z) dz +

∫ ∞

λ

(z − λ)2fZ(z) dz − (E Sλ(Z))2 (5)

and that the variance of the elastic net estimator is therefore

Var β̂j = 1
d2

j

Var Sλ(Z). (6)

3.1 Normally Distributed Noise

Next, we add the additional assumption that ε is normally distributed. Then

Z ∼ Normal
(
µ = x̃⊺

j xjβj , σ2 = x̃⊺
j x̃jσ2

ε

)
.

Let θ = −µ − λ1 and γ = µ − λ1. Then the expected value of soft-thresholding of Z is

E Sλ1(Z) =
∫ θ

σ

−∞
(σu − θ) ϕ(u) du +

∫ ∞

− γ
σ

(σu + γ) ϕ(u) du

= −θ Φ
(

θ

σ

)
− σ ϕ

(
θ

σ

)
+ γ Φ

(γ

σ

)
+ σ ϕ

(γ

σ

)
(7)

where ϕ(u) and Φ(u) are the probability density and cumulative distribution functions of the standard normal
distribution, respectively.

Next, we consider what the variance of the elastic net estimator looks like. Starting with the first term on
the left-hand side of Equation (5), we have
∫ −λ1

−∞
(z + λ1)2fZ(z) dz = σ2

∫ θ
σ

−∞
y2 ϕ(y) dy + 2θσ

∫ θ
σ

−∞
y ϕ(y) dy + θ2

∫ θ
σ

−∞
ϕ(y) dy

= σ2

2

(
erf
(

θ

σ
√

2

)
− θ

σ

√
2
π

exp
(

− θ2

2σ2

)
+ 1
)

+ 2θσ ϕ

(
θ

σ

)
+ θ2 Φ

(
θ

σ

)
. (8)

Similar computations for the second term on the left-hand side of Equation (5) yield
∫ ∞

λ1

(z − λ1)2fZ(z) dz = σ2

2

(
erf
(

γ

σ
√

2

)
− γ

σ

√
2
π

exp
(

− γ2

2σ2

)
+ 1
)

+ 2γσ ϕ
(γ

σ

)
+ γ2 Φ

(γ

σ

)
. (9)

Plugging Equations (7) to (9) into Equation (6) yields the variance of the estimator. Consequently, we can
also compute the mean-squared error via the bias-variance decomposition

MSE(β̂j , β∗
j ) = Var β̂j +

(
E β̂j − β∗

j

)2
.

3.2 Binary Features

The main focus in this paper is the case when xj is a binary feature with class balance q = x̄j , that is,
xij ∈ {0, 1} for all i and

∑n
i=1 xij = nq. In this case, inserting vj = (q − q2) (the uncorrected sample variance

for a binary feature) into Equation (4), we have

Z =
β∗

j n(q − q2) − x⊺
j ε

sj
, dj = sj

(
n(q − q2)

s2
j

+ λ2

)
,
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and consequently

µ =
β∗

j n(q − q2)
sj

and σ2 = σ2
εn(q − q2)

s2
j

.

We will allow ourselves to abuse notation and overload the definitions of µ, σ2, and dj as functions of q.
Then, an expression for the expected value of the elastic net estimate with respect to q can be obtained by
plugging in µ and σ into Equation (7).

The presence of the factor q − q2 in µ, σ2, and dj means that there is a relationship between class balance
and the elastic net estimator and that this relationship is mediated by the scaling factor sj . To achieve some
initial intuition for this relationship, we begin by considering the noiseless case (σε = 0) in which, inserting µ
and dj into Equation (3) yields

β̂j =
Sλ1(x̃⊺

j y)
sj

(
x̃⊺

j x̃j + λ2
) =

Sλ1

(
β∗

j n(q−q2)
sj

)

sj

(
n(q−q2)

s2
j

+ λ2

) . (10)

This expression shows that the class balance, q, directly affects the estimator. For values of q close to 0 or 1,
the input into the soft-thresholding part of the estimator will diminish and consequently force the estimate to
zero, that is, unless we use the scaling factor sj = (q − q2), in which case the soft-thresholding part will be
unaffected by class imbalance. This choice will not, however, mitigate the impact of class imbalance on the
ridge part of the estimator, for which we would instead need sj =

√
q − q2. For any other choices of δ, such

as δ = 0, q will affect the estimator through both the ridge and lasso parts.

Based on these facts, we will consider the scaling parameterization sj = (q − q2)δ, δ ≥ 0. This includes the
cases that we are primarily interested in, that is, δ = 0 (no scaling), δ = 1/2 (standard-deviation scaling),
and δ = 1 (variance scaling). Note that the last of these types, variance scaling, is not a standard type
of normalization; yet, as we have already seen, it has some interesting properties in the context of binary
features.

Another interesting fact about Equation (10), which holds also in the noisy situation, is that even when the
binary feature is balanced (q = 1/2), normalization will still have an effect on the estimator. Using δ = 0,
for instance, leads the true coefficient β∗

j in the input to Sλ to be scaled by n(q − q2) = n/4. For δ = 1,
there would be, in contrast, be no scaling in the class-balanced case. And for δ = 1/2, the scaling factor is
n/2. Generalizing this, we see that to achieve equivalent scaling in the class-balanced case for all types of
normalization, under our parameterization, we would need to use

sj = 4δ−1(q − q2)δ.

This only resolves the issue for the lasso. To achieve a similar effect for ridge regression, we would need
another (but similar) modification. Since all features are binary under our current assumptions, however, we
will for now just assume that we scale λ1 and λ2 to account for this effect,4 which is equivalent to modifying
sj . We will return to this issue later in Section 3.3 where we consider mixes of binary and normally distributed
features in, in which case this has significant implications.

We now leave the noise-less scenario and proceed to consider how class balance affects the probability of
selection, bias, and variance of the elastic net estimator, starting with the first of these. A consequence of the
normal error distribution and consequent normal distribution of Z is that the probability of selection in the

4We do this in all of the following examples.
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elastic net problem is given analytically by

Pr
(

β̂j ̸= 0
)

= Pr (Sλ1(Z) ̸= 0)

= Pr (Z > λ1) + Pr (Z < −λ1)

= Φ
(

µ − λ1

σ

)
+ Φ

(−µ − λ1

σ

)
.

= Φ
(

β∗
j n(q − q2)1/2 − λ1(q − q2)δ−1/2

σε
√

n

)
+ Φ

(
−β∗

j n(q − q2)1/2 − λ1(q − q2)δ−1/2

σε
√

n

)
.

Letting θ = −µ − λ1 and γ = µ − λ1, we can express the probability of selection in the limit as q → 1+ as

lim
q→1+

Pr(β̂j ̸= 0) =





0 if 0 ≤ δ < 1
2 ,

2 Φ
(

− λ1
σε

√
n

)
if δ = 1

2 ,

1 if δ > 1
2 .

In Figure 2, we plot this probability for various settings of δ for a single feature. Our intuition from the
noise-less case holds: δ mitigates the influence of class imbalance on selection probability. The lower the
value of δ, the larger the effect of class imbalance becomes. Note that the probability of selection initially
decreases also in the case when δ ≥ 1. This is a consequence of increased variance of Z dues to the scaling
factor that scales the measurement noise σ2

ε upwards. Then, as q approaches 1, the probability picks up again
and eventually approaches 1 for these δ ∈ {1, 1.5}. The reason for this is that the variance of Z eventually
explodes (again due to the scaling), which ultimately removes the soft-thresholding effect altogether. Note
that the selection probability is unaffected by λ2 (the ridge penalty), so these results hold for any value of it.

0.50 0.65 0.80 0.95
q

0.00

0.25

0.50

0.75

1.00

Pr
( β̂
6=

0)

σe = 0.25

0.50 0.65 0.80 0.95
q

σe = 0.5

0.50 0.65 0.80 0.95
q

σe = 1.0

0.50 0.65 0.80 0.95
q

σe = 2.0

δ
0.0
0.25
0.5
1.0
1.5

Figure 2: Probability of selection in the lasso given a measurement noise level σε, a regularization parameter
λ1, and a class balance q. The scaling factor is parameterized by sj = (q − q2)δ, δ ≥ 0. The dotted line
represents the asymptotic limit for the standardization case, δ = 1/2.

Now we turn to the impact of class imbalance on bias and variance of the elastic net estimator. We begin, in
Theorem 3.1, by considering the expected value of the elastic net estimator in the limit as q → 1+.
Theorem 3.1. If xj is a binary feature with class balance q ∈ (0, 1), λ1 ∈ (0, ∞), λ2 ∈ [0, ∞), σε > 0, and
sj = (q − q2)δ, δ ≥ 0 then

lim
q→1+

E β̂j =





0 if 0 ≤ δ < 1
2 ,

2nβ∗
j

n+λ2
Φ
(

− λ1
σε

√
n

)
if δ = 1

2 ,

β∗
j if δ > 1

2 .

Theorem 3.1 shows that the bias of the elastic net estimator when 0 ≤ δ < 1/2 approaches −β∗
j as q → 1+.

Interestingly, when δ = 1/2 (standardization), the estimate does not in fact tend to zero. Instead, it
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approaches the true coefficient scaled by the probability that a standard normal variable is smaller than
β∗

j

√
nσ−1

ε . For δ > 1/2, the estimate is unbiased asymptotically, which is related to the scaled variance of
the error term. Note that this unbiasedness is paralleled by a surge in variance and therefore also a rise in
mean-squared error, and only serves to demonstrate that the cost of the decoupling of q is unbearable in the
large noise–large imbalance scenario. In Theorem 3.2, we continue by studying the variance in the limit as
q → 1+.
Theorem 3.2. If xj is a binary feature with class balance q ∈ (0, 1) and λ1, λ2 ∈ (0, ∞), σε > 0, and
sj = (q − q2)δ, δ ≥ 0, then

lim
q→1+

Var β̂j =
{

0 if 0 ≤ δ < 1
2 ,

∞ if δ ≥ 1
2 .

Corollary 3.2.1 (Variance in Ridge Regression). Assume the conditions of Theorem 3.2 hold, except that
λ1 = 0. Then

lim
q→1+

Var β̂j =





0 if 0 ≤ δ < 1/4,
σ2

εn

λ2
2

if δ = 1/4,

∞ if δ > 1/4.

Theorem 3.2 formally proves the asymptotic variance effects of our scaling parameter sj which we have already
discussed in the context of selection probability and bias. Taken together with the results from Theorem 3.1,
this suggests that the choice of scaling parameter, at least in the case of our specific parameterization,
introduces a bias–variance tradeoff with respect to δ: to reduce bias (with respect to q), we need to pay the
cost of increased variance.

In Figure 3, we now visualize bias, variance, and mean-squared error for ranges of class balance and various
noise-level settings for a lasso problem. The figure demonstrates the bias–variance tradeoff that our asymptotic
results suggested and indicates that the optimal choice of δ is related to the noise level in the data. Since this
level is unknown for most data sets, it suggests there might be value in selecting δ through hyper-optimization
as is typically done for the other hyper-parameters in the elastic net (λ1, λ2)

So far, we have only considered a single binary feature. But under the assumption of orthogonal features,
it is straightforward to introduce multiple binary features. In a first example, we study how the power of
correctly detecting k = 10 signals under q linearly spaced in [0.5, 0.99] (Figure 5a). We set β∗

j = 2 for each of
the signals, use n = 100 000, and let σε = 1. The level of regularization is set to λ1 = n4δ/10. As we can see,
the power is directly related to q and for unbalanced features stronger the higher the choice of δ is.

We also consider a version of the same setup, but with p linearly spaced in [20, 100] to compute the normalized
mean-squared error (NMSE) and false discovery rate (FDR) (Figure 5b). As before, we let k = 10 and
consider three different levels of class imbalance. The remaining p − k features have class balances spaced
evenly on a logarithmic scale from 0.5 to 0.99. Unsurprisingly, the increase in power gained from selecting
δ = 1 imposes increased false discovery rates. The mean-squared error depends on the class balance. For
class-balanced signals, δ ∈ {0, 1/2} proves to b the best choice, while for unbalanced signals, δ = 1 is the best
choice. In the case when q = 0.99, the model under scaling with δ = 0 is altogether unable to detect any of
the true signals, instead picking up on the noisy, but better-balanced, features.

In Section 4, we will continue to study binary features in simulated experiments. For now, however, we will
turn to the case of mixed data.

3.3 Mixed Data

In this section, we consider the case where the features are made up of a mix of continuous and and binary
features. Throughout the section, we will continue to assume that X is fixed and that the features are
orthogonal to one another. As in our theoretical results, we will also restrict our focus to the case where the
continuous features are normally distributed.

A fundamental problem in the context of mixed data is how to put the binary and normal features on the
same scale, which we need to do in order for regularization to be, roughly speaking, “fair”, given that the
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Figure 3: Bias, variance, and mean-squared error for a one-dimensional lasso problem. We show these
measures for various noise levels (σε), class balances (q), and scaling factors (δ). The dotted lines represent
the asymptotic bias of the lasso estimator in the case of δ = 1/2.
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(a) The power (probability of detecting all true
signals) of the lasso. In our orthogonal setting,
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omitted the parameter in the plot.
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Figure 5: Normalized mean-squared error (NMSE), false discovery rate (FDR), and power for a lasso problem
with k = 10 true signals (nonzero β∗

j ), varying p, and q ∈ [0.5, 0.99]. The noise level is set at σε = 1 and
λ1 = 0.02.
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solution is sensitive to the scale of the features. In essence, we need to say something about how an effect
associated with a one-unit change in the binary feature (a flip) relates to a one-unit change in the continuous
feature. Since we assume our continuous feature to be normal, however, we will instead reason about change
in terms of standard deviations of the normal feature.

To setup this situation more formally, we will say that the effect of a binary feature x1 and a normal feature
x2 are comparable if

β∗
1 = κσ2β∗

2 ,

where σ2 is the standard deviation of x2 and κ > 0 is a scaling factor that represents the number of standard
deviations (of the continuous feature) we consider achieves comparability between the features’ effects. (Note
that σ2β∗

2 is just the standardized coefficient for the normal feature.) We illustrate this notion of comparability
by a couple of examples.
Example 3.1. Assume κ = 2. If x2 is sampled from Normal(µ, 1/22), then the effects of x1 and x2 are
comparable if β∗

1 = β∗
2 .

Example 3.2. Assume κ = 1. If x2 is sampled from Normal(µ, 22), then the effects of x1 and x2 are
comparable if β∗

1 = 2β∗
2 .

Note that this definition refers to the data-generating mechanism, and not the regularized estimates. What
we ultimately want for comparability, however, is for the following relationship to hold:

β̂1 = κσ2β̂2.

Put plainly, we want the effects of regularization to be distributed evenly across the estimates. The crux
of the problem is how to choose the scaling factor sj for the binary features in order to achieve this effect
for a given κ. Let us assume that we have two features, x1 and x2, where x1 is binary and x2 is normally
distributed and that their effects are comparable in the sense given above. Then it should hold that

β̂1 = κσ2β̂2 =⇒
Sλ1(x̃⊺

1y)
s1 (x̃⊺

1 x̃1 + λ2) = κσ2 Sλ1(x̃⊺
2y)

s2 (x̃⊺
2 x̃2 + λ2) =⇒

Sλ1

(
nβ∗

1 (q−q2)
s1

)

s1

(
n(q−q2)

s2
1

+ λ2

) =
κ Sλ1

(
nβ∗

1
κ

)

n + λ2
(11)

since we strandadize he normal feature and therefore s2 = σ2. For the lasso (λ2 = 0) and ridge regression
(λ1 = 0), we observe that s1 = κ(q − q2) and s1 = (q − q2)1/2, respectively, are the values for which
Equation (11) hold. In other words, we can achieve comparability in the lasso by scaling each binary feature
with its variance times κ, the number of standard deviations we consider achieves comparability between the
features’ effects. And for ridge regression, we can achieve comparability by scaling with standard deviation,
irrespective of κ.

For any other choices of s1, equality can only hold for a specific level of class balance. If we let this level be
q0, then, to achieve equality for λ2 = 0, we need s1 = κ(q0 − q2

0)1−δ(q − q2)δ. Similarly, for λ1 = 0, we need
s1 = (q0 − q2

0)1−2δ(q − q2)δ. In the sequel, we will assume that q0 = 1/2, to have effects be equivalent for the
class-balanced case.

Note that this also means that there is an implicit relationship between the strength of penalization for binary
and normal features, which depends on the level of class balance and normalization type. This means, for
instance, that even in the class-balanced case (q = 1/2), we have to account for the type of normalization if
we want binary and normal features to be treated equally. For example, if we were to use δ = 0 and fit the
lasso, then Equation (11) for a binary feature with q = 1/2 becomes

4 Sλ1

(
nβ∗

1
4

)

n
=

κ Sλ1

(
nβ∗

1
κ

)

n
,
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which then implies κ = 4, which may or may not agree with our assumptions about comparability between
these features’ effects.

For the rest of this paper, we will use κ = 2. That is, we will say that the effects are comparable if the
effect of a flip in the binary feature equals the effect of a two-standard deviation change in the normal
feature. We base this argument on the discussion by Gelman (2008), who argues that the classical approach of
comparing standardized coefficients5 awards effects of continuous features undue strength for most real data,
since a change from, for instance, the lower to the upper 16% of the distribution will equal approximately
twice the effect of a change in the binary feature. Using two standard deviations as a comparability factor
would, in contrast, equivocate this change with the flip of the binary feature, which we believe is a better
default. We want to stress that the choice of κ should, if possible, in general be made on a case-by-case
(feature-by-feature) basis, using all available knowledge about the data at hand. But, irrespective of this,
we also want to emphasize that the choice should be made. If you do not make it explicitly, then it will be
implicitly dictated through the combination of normalization and penalization types you use.

Finally, note that the reasoning of comparability above rests on the assumption of no noise. And we are, in
fact, in general instead more interested in the expected value of the estimators, which depend on the noise
level. In the case of large class-imbalances and large noise, for instance, our previous results (see Figure 3 for
instance), suggest that the estimators for normally distributed and binary features will not be comparable in
this case.

4 Experiments

In the following sections, we present the results of our experiments. We begin by examining the variability
and bias in the estimates of the regression coefficients. We then move on to predictive performance and
hyperparameter selection. We also consider the effect of class imbalance on the estimates of the regression
coefficients. Finally, we look at the effect of interactions between features on the estimates of the regression
coefficients.

In all cases where we use simulated data, we generate our response vector according to

y = Xβ∗ + ε,

with ε ∼ Normal(0, σ2
εI), where X is the design matrix, β∗ is the vector of true regression coefficients, and

σ2
ε is the noise level.

We consider two types of features: binary and quasi-normal features. To generate binary vectors, we sample
⌈qn⌉ indexes uniformly at random without replacement from {1, 2, . . . , n} and set the corresponding elements
to one and the remaining ones to zero. To generate quasi-normal features, we generate a linear sequence w
with n values from 10−4 to 1 − 10−4, and set

xij = Φ−1(wi)

and then shuffle the elements of xj uniformly at random.

In each case, we fit either the lasso (the elastic net with λ1 = αλ ) or ridge (the elastic net with λ2 = (1−α)λ).
To normalize the data, we use standardization for all quasi-normally distributed features and otherwise

sj = (q − q2)δ,

which is equivalent to the (uncorrected) sample variance raised to the power of δ.

Throughout the experiments, we have used the Lasso.jl package (Kornblith, 2024) to fit lasso or ridge
regression, which implements the coordinate descent algorithm by citetfriedman2010. All experiments
were coded using the Julia programming language (Bezanson et al., 2017) and the code is availabe at
https://github.com/jolars/normreg.

5Coefficients multiplied by the standard deviation of the respective feature.
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4.1 Variability and Bias in Estimates

In our first experiment, we consider fitting the lasso to a simulated data set with n = 500 observations and
p = 1000 features, out of which the first 20 features correspond to signals, with β∗

j decreasing linearly from
1 to 0.1. We introduce dependence between the features by copying the first ⌈ρn/2⌉ values from the first
feature to each of the following features. In addition, we set the class balance of the first 20 features so that
it decreases linearly on a log-scale from 0.5 to 0.99. We estimate the regression coefficients using the lasso,
setting λ1 = 2σε

√
2 log p and compare the estimates to the true coefficients. We run the experiment for 50

iterations in each case and aggregate the results by reporting means and standard deviations.

The results (Figure 6) show that there is a considerable effect of class balance, particularly in the case of no
scaling (δ = 0), which corroborates our theoretical results from Section 3.2. At q = 0.99, for instance, the
estimate (β̂20) is consistently zero when δ = 0. There is a similar effect also in the case of standardization
(δ = 1/2), but it is less pronounced. For δ = 1 (variance scaling), we see that the effect of class balance on
the estimates is, if anything, the reverse when the class imbalance is severe. What is also clear is that the
variance of the estimates increase with class imbalance and that this effect increases together with δ. The
level of correlation between the features introduces additional variance in the estimates but also seems to
increase the effect of class imbalance in the cases when δ = 0 or 1/2.
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Figure 6: Estimates of the regression coefficients from the lasso, β̂, for the first 30 coefficients in the
experiment. All of the features are binary and the first 20 features correspond to true signals with β∗

j = 2
and geometrically decreasing class balance from 0.5 to 0.99. The remaining features have a class balance
qj ∈ [0.5, 0.99], distributed linearly among the features. The plot shows means and standard deviations
averaged over 50 iterations.

4.2 Predictive Performance

In this experiment, we consider predictive performance in terms of mean-squared error of the lasso given
different levels of class balance (q ∈ {0.5, 0.9, 0.99}), signal-to-noise ratio, and normalization (δ). As in the
previous section, all of the features are binary, but here we have used n = 300, p = 1000. The k = 10 first
features correspond to true signals with β∗

j = 1 and all have class balance q. To set signal-to-noise ratio levels,
we rely on the same choice as in Hastie et al. (2020) and use a log-spaced sequence of values from 0.05 to 6.
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To estimate prediction performance, we use a standard hold-out validation method equal splits for the training,
validation, and test sets. We fit a full lasso path, parameterized by a log-spaced grid of 100 values6, from
λmax (the value of λ at which the first feature enters the model) to 10−2λmax on the training set and pick a
λ based on validation set error. Then we compute the hold-out test set error and aggregate the results across
100 iterations.

The results (Figure 7) show that the optimal normalization type in terms of prediction power depends on the
class balance of the true signals. If the imbalance is severe, then we gain from using δ = 1/2 or 1, which gives
a chance of recovering the true signals. If everything is balanced, however, then we do better by not scaling
at all. In general, δ = 1/2 works well for these specific combinations of settings.
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Figure 7: Normalized mean-squared prediction error in a lasso model for different types of normalization (δ),
types of class imbalances (q), and signal-to-noise ratios (0.05 to 6) in a data set with n = 300 observations
and p = 1000 features. The error is aggregated test-set error from hold-out validation with 100 observations
in each of the training, validation, and test sets. The plot shows means and Student’s t-based 95% confidence
intervals.

4.3 Normalization as a Hyperparameter

Our previous results (particularly those from Section 4.2) suggest that the choice of normalization matters
for predictive performance. These results have relied on knowledge of the measurement error (signal-to-noise
ratio), which we do not have reliable estimates of in practice (at least not in the high-dimensional context).
An alterative that, however, comes naturally as a consequence of our particular parameterization using δ, is
to treat the choice of normalization as a hyperparameter and optimize over it. This is the approach we take
in this experiment.

We set up a grid of λ values as in Section 4.2 and, in addition, also create a linearly spaced grid of δ values in
[0, 1]. We split the data into a 50/50 training/validation set split and for each point in this two-dimensional
grid fit the lasso or ridge to the training set and compute a hold-out validation set error. We do this for three
data sets: a1a (Becker & Kohavi, 1996), rhee2006 (Rhee et al., 2006), and w1a (Platt, 1998).

Table 2: Details of the real datasets used in the experiments

Dataset n p Response
w1a 2477 300 Binary
a1a 1605 123 Binary
rhee2006 842 361 Continuous

6This is a standard choice of grid, used for instance by Friedman et al. (2010)
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We show estimated level-curves of validation set error, in terms of normalized mean-squared error (NMSE),
in Figure 8. For a1a, the lasso is generally quite insensitive to the type of normalization, even if the optimal
value is around 0.2. For ridge regression, lower values of δ clearly work better. With the w1a data set,
however, the relationship is flipped in the case of ridge regression and the optimal value is approximately 0.8.
In the case of the lasso (for w1a), a value around 0.5 is optimal and low values (little scaling) yield worse
prediction errors. Finally, for rhee2006, the lasso is again insensitive to normalization type. This is not the
case for ridge, however, where a value around 0.2 is optimal and high values of δ yield worse prediction errors.
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Figure 8: Contour plots of normalized mean-squared error (NMSE) for the hold-out validation set across a
grid of δ and λ values for ridge regression and the lasso. The dotted path shows the smallest NMSE as a
function of λ. The dot marks the combination with the smallest error.

We would like to point out that there is a dependency between λ and δ here that make it difficult to interpret
the relationship between them and the error. This comes fro mthe fact that scaling with a smaller value (as
in δ = 1) increases the sizes of the vectors, which means that the level of penalization is relaxed, relative
speaking.

In Figure 9, we have, in addition to NMSE on the validation set, also plotted the size of the support of the
lasso (cardinality of the set of features that have corresponding nonzero coefficients). Here, however, we only
show results for δ ∈ {0, 1/2, 1}. It is clear that δ = 1/2 works quite well for all of these three data sets, being
able to attain a value close to the mininum for each of the three data sets. This is not the case for δ ∈ {0, 1},
for which the best possible prediction error is considerably worse. This is particularly the case with δ = 0
and the w1a data set. The dependency between λ and δ is also visible here by looking at the support size.

4.4 Mixed Data

In Section 3.3, we discovered that extra care needs to be taken when normalizing mixed data. In this
experiment, we construct a quasi-normal feature with mean zero and standard deviation 1/2 and a binary
feature with varying class balance q. We set the signal-to-noise ratio to 0.5 and generate our response
vector y as before, with n = 1000. These features are constructed so that their effects are comparable
under the notion of comparability that we introduce in Section 3.3, using κ = 2. In order to preserve the
comparability for the baseline case q0 = 1/2, we use the scaling introduced in Section 3.3, which leads to
sj = 2 × (1/4)1−δ(q − q2)δ. For the lasso, we set the level of penalization to λmax/2 and for ridge regression,
we set the level of penalization to 2λmax.7

7This makes the level of regularization comparable between the two cases.
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Figure 9: Support size and normalized mean-squared error (NMSE) for the validation set for the lasso fit
to datasets a1a, w1a, and rhee2006 across combinations of δ and λ. The optimal δ is marked with dashed
black lines and the best combination of δ (among 0, 1/2, and 1) and λ is shown as a dot.

The results (Figure 10) reflect our theoretical results from Section 3. In the case of the lasso, we need δ = 1
to avoid the effect of class imbalance, whereas for ridge we instead need δ = 1/2 (standardization). As our
theory suggests, this extra scaling mitigates this class-balance dependency at the cost of added variance.
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Figure 10: Lasso and ridge estimates for a two-dimensional problem where one feature is a binary feature
with class balance q, Bernoulli(q), and the other is a quasi-normal feature with standard deviation 1/2,
Normal(0, 0.5). Here, we have n = 1000 observations. The signal-to-noise ratio is 0.5 In every case, we
standardize the normal feature. The binary feature, meanwhile, is centered by its mean and scaled by (q −q2)δ.
The experiment is run for 50 iterations and we aggregate and report means and standard deviations of the
estimates.
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Note that we do not see the bias reduction that we observed in our theoretical results for high q values and
δ ≥ 1/2 in Figure 10. This is related to the error term (signal-to-noise ratio) and level of q. Typically, we
would need stronger class imbalance and larger error for the effect to show up in our experiments.

4.5 Interactions

In our final experiment, we study the effect of normalization and class balance on interactions when using the
lasso. Our example consists of a two-feature problem with an added interaction term given by xi3 = xi1xi2.
The first feature is binary with class balance q = 0.9 and the second quasi-normal with standard deviation
0.5. We set n = 1000 and specify λ1 = n/4 as the level of regularization. Note that we normalize after the
interaction term is added.

The results (Section 4.5) show, as before, that class balance (which, recall, is set to 0.9 here) has a dramatic
effect on estimates of the binary feature when δ ∈ {0, 1/2}. Somewhat surprisingly, however, the interaction
term does not seem to be affected by the normalization type for any of the cases in which it is present.
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Figure 11: Lasso estimates for a three-feature problem where the third feature is an interaction term between
the first two features. The first feature is binary (quasi-Bernoulli) with class balance q = 0.9 and the second
is quasi-normal with standard deviation 0.5. The signal-to-noise ratio is 0.5. The experiment is run for 50
iterations and we aggregate and report means across all iterations.

Note that the interaction in this experiment naturally introduces correlation between the features and that
this has an effect on the lasso estimates since we, for instance, can penalize the main effect whilst still
retaining information about it in the interaction term.

5 Discussion

In this paper, we have studied the effects of normalization in ridge regression and the lasso for features that
are binary—an issue that has so far been treated with disregarded in the literature. We have discovered the
class imbalance of binary features—the proportion of ones and zeros in the features—have a pronounced
effect on both lasso and ridge estimates, and that this effect depends on the type of normalization used. For
the lasso, for instance, our results show that features with large class imbalances will be regularized heavily,
and provided that λ is large enough might stand little chance of being selected, even if the true effect of the
feature on the response is large.

We have, however, found that scaling binary features with standard deviation in the case of ridge regression
and variance in the case of the lasso mitigates this effect, but that doing so comes at the price of increased
variance. This effectively means that the choice of normalization constitutes a bias–variability trade-off with
respect to imbalanced binary features.

To study these effects theoretically and in practice, we have introduced the scaling parameterization

sj = (q − q2)δ,

which, for instance, includes the cases δ = 0 (no scaling), δ = 1/2 (standard deviation scaling), and δ = 1
(variance scaling). These, in turn, correspond to standard choices of normalization types for this kind of data.
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The common variants max–abs and min–max normalization, for instance, in practice correspond to δ = 0 in
the case of binary data, whilst standardization corresponds to δ = 1/2. As far as we know, scaling with δ = 1
have previously not been considered in the literature nor to any extent that we are aware of in practice.

Our results demonstrate, however, that the choice of δ affects the lasso and ridge estimates heavily in many
cases. This is particularly true with respect to selective inference, in which case δ = 0 scaling will reduce
the chances of finding the true model via the lasso in class-imbalanced settings (Section 4.1). But it will
also bias the regression coefficients in both the lasso and ridge, which may also lead to suboptimal predictive
performance (Section 4.2).

Both our theoretical results (Section 3.2) and experiments (Section 4.1) show that the optimal choice of δ may
depend on the error in the data-generating process, which is typically unknown. As an alternative, we investi-
gated choosing δ in a data-driven manner by optimizing over δ as if it were a hyperparameter (Section 4.3).

We have also studied the case of mixed data: designs that consist of both binary and normally distributed
features. In this setting, our first finding is that there is an implicit relationship between the choice of
normalization and the manner in which regularization affects binary viz-a-viz normally distributed features.
For instance, the choice of max–abs normaliation carries a specific assumption about how the effect of a
binary feature should be compared to that of a normally distributed feature. There is still much uncertainty
about how to best handle the mixed data case and no ground truth given that a binary feature can mean any
number of things—few of which are directly comparable to a continuous feature.

In our experimental results, we touch briefly on the case of interactions. In this case, it seems that the
interaction term between a normal feature and a binary one is more-or-less unaffected by the class balance of
the latter (Section 4.5). An interesting avenue for future research could be to study this in more detail, both
theoretically and empirically. One particular problem with interactions is that the interaction term depends
on the location, and not just the scale, of the normal feature (in this two-feature setting), which may call for
conditional normalization strategies. Much remain to be explored in this area.

Finally, note that our theoretical results are limited by several assumptions: 1) a fixed feature matrix X, 2)
orthogonality between the features, and 3) normal and idependent errors. Future work could relax these
assumptions to study the effects of normalization in more general settings. For instance, the assumption
of orthogonality could be relaxed to allow for correlated features, which is often the case in practice. This
would allow for a more general understanding of the effects of normalization in regularized regression models.
We have also limited ourselves to the case of the lasso and ridge regression. Investigating to which extent, if
any, the effects we observe generalize to other models as well would yield valuable insights. We have also
focused on the case of binary and continuous features here, but we are convinced that the case of categorical
features is also of interest and might raise additional challenges with respect to normalization.
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A Additional Theory

A.1 Why Maximum–Absolute and Min–Max Scaling are Unsuitable for Normally Distributed Data

In Theorem A.1, we show that the scaling factor in the max–abs method converges in distribution to a
Gumbel distribution.
Theorem A.1. Let X1, X2, . . . , Xn be a sample of normally distributed random variables, each with mean µ
and standard deviation σ. Then

lim
n→∞

Pr
(

max
i∈[n]

|Xi| ≤ x

)
= G(x),

where G is the cumulative distribution function of a Gumbel distribution with parameters

bn = F −1
Y (1 − 1/n) and an = 1

nfY (µn) ,

where fY and F −1
Y are the probability distribution function and quantile function, respectively, of a folded

normal distribution with mean µ and standard deviation σ.

The gist of Theorem A.1 is that the limiting distribution of maxi∈[n] |Xi| has expected value bn + γan, where
γ is the Euler-Mascheroni constant. This indicates that the scaling factor strongly dependent on the sample
size. In Figure 12a, we observe empirically that the limiting distribution agrees well with the empirical
distribution in expected value even for small values of n.

In Figure 12b we show the effect of increasing the number of observations, n, in a two-feature lasso model with
max-abs normalization applied to both features. The coefficient corresponding to the Normally distributed
feature shrinks as the number of observation n increases. Since the expected value of the Gumbel distribution
diverges with n, this means that there’s always a large enough n to force the coefficient in a lasso problem to
zero with high probability.
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(a) Theoretical versus empirical distribu-
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Figure 12: Effects of maximum absolute value scaling.

For min–max scaling, the situation is similar and we omit the details here. The main point is that the scaling
factor is strongly dependent on the sample size, which makes it unsuitable for normally distributed data in
several situations, such as on-line learning (where sample size changes over time) or model validation with
uneven data splits.

B Proofs

B.1 Proof of Theorem A.1

If Xi ∼ Normal(µ, σ), then |Xi| ∼ FoldedNormal(µ, σ). By the Fisher–Tippett–Gnedenko theorem, we know
that (maxi |Xi| − bn)/an converges in distribution to either the Gumbel, Fréchet, or Weibull distribution,
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given a proper choice of an > 0 and bn ∈ R. A sufficient condition for convergence to the Gumbel distribution
for a absolutely continuous cumulative distribution function (Nagaraja & David, 2003, Theorem 10.5.2) is

lim
x→∞

d

dx

(
1 − F (x)

f(x)

)
= 0.

We have
1 − FY (x)

fY (x) =
1 − 1

2 erf
(

x−µ√
2σ2

)
− 1

2 erf
(

x+µ√
2σ2

)

1√
2πσ2 e

−(x−µ)2
2σ2 + 1√

2πσ2 e
−(x+µ)2

2σ2

=
2 − Φ

(
x−µ

σ

)
− Φ

(
x+µ

σ

)
1
σ

(
ϕ
(

x−µ
σ

)
+ ϕ

(
x+µ

σ

))

→ σ(1 − Φ(x))
ϕ(x) as n → n,

where ϕ and Φ are the probability distribution and cumulative density functions of the standard normal
distribution respectively. Next, we follow Nagaraja & David (2003, example 10.5.3) and observe that

d

dx

σ(1 − Φ(x))
ϕ(x) = σx(1 − Φ(x))

ϕ(x) − σ → 0 as x → ∞

since
1 − Φ(x)

ϕ(x) ∼ 1
x

.

In this case, we may take bn = F −1
Y (1 − 1/n) and an =

(
nfY (bn)

)−1.

B.2 Proof of Theorem 3.1

Since sj = (q − q2)δ, we have

µ = β∗
j n(q − q2)1−δ θ

σ
= −a

√
q(1 − q) − b(q − q2)δ−1/2,

σ = σε

√
n(q − q2)1/2−δ,

γ

σ
= a

√
q(1 − q) − b(q − q2)δ−1/2,

dj = n(q − q2)1−δ + λ2(q − q2)δ,
θ

dj
= −β∗

j − λ1(q − q2)δ−1

n
,

θ = −β∗
j n(q − q2)1−δ − λ1,

γ

dj
= β∗

j − λ1(q − q2)δ−1

n
,

γ = β∗
j n(q − q2)1−δ − λ1,

with

a =
β∗

j

√
n

σε
and b = λ1

σε
√

n
.

We are interested in

lim
q→1+

E β̂j = lim
q→1+

1
d

(
−θ Φ

(
θ

σ

)
− σ ϕ

(
θ

σ

)
+ γ Φ

(γ

σ

)
+ σ ϕ

(γ

σ

))
. (12)

Before we proceed, note the following limits, which we will make repeated use of throughout the proof.

lim
q→1+

θ

σ
= lim

q→1+

γ

σ
=





−∞ if 0 ≤ δ < 1
2 ,

−b if δ = 1
2 ,

0 if δ > 1
2 ,

(13)
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Starting with the terms involving Φ inside the limit in Equation (12), for now assuming that they are
well-defined and that the limits of the remaining terms also exist seperately, we have

lim
q→1+

(
−θ

d
Φ
(

θ

σ

)
+ γ

dj
Φ
(γ

σ

))

= lim
q→1+

((
β∗

j n

n + λ2(q − q2)2δ−1 + λ1

n(q − q2)1−δ + λ2(q − q2)δ

)
Φ
(

θ

σ

)

+
(

β∗
j n

n + λ2(q − q2)2δ−1 − λ1

n(q − q2)1−δ + λ2(q − q2)δ

)
Φ
(γ

σ

))

= lim
q→1+

β∗
j n

n + λ2(q − q2)2δ−1

(
Φ
(

θ

σ

)
+ Φ

(γ

σ

))

+ lim
q→1+

λ1

n(q − q2)1−δ + λ2(q − q2)δ

(
Φ
(

θ

σ

)
− Φ

(γ

σ

))
. (14)

Considering the first term in Equation (14), we see that

lim
q→1+

β∗
j n

n + λ2(q − q2)2δ−1

(
Φ
(

θ

σ

)
+ Φ

(γ

σ

))
=





0 if 0 ≤ δ < 1/2,
2nβ∗

j

n+λ2
Φ(−b) if δ = 1/2,

β∗
j if δ > 1/2.

For the second term in Equation (14), we start by observing that if δ = 1, then q(1 − q)δ−1 = 1, and if δ > 1,
then limq→1+(q − q2)δ−1 = 0. Moreover, the arguments of Φ approach 0 in the limit for δ ≥ 1, which means
that the entire term vanishes in both cases (δ ≥ 1).

For 0 ≤ δ < 1, the limit is indeterminite of the form ∞ × 0. We define

f(q) = Φ
(

θ

σ

)
− Φ

(γ

σ

)
and g(q) = n(q − q2)1−δ + λ2(q − q2)δ,

such that we can express the limit as limq→1+ f(q)/g(q). The corresponding derivatives are

f ′(q) =
(

−a

2 (1 − 2q)(q − q2)−1/2 − b(δ − 1/2)(1 − 2q)(q − q2)δ−3/2
)

ϕ

(
θ

σ

)

−
(

−a

2 (1 − 2q)(q − q2)−1/2 − b(δ − 1/2)(1 − 2q)(q − q2)δ−3/2
)

ϕ
(γ

σ

)
,

g′(q) = n(1 − δ)(1 − 2q)(q − q2)−δ + λ2δ(1 − 2q)(q − q2)δ−1

Note that f(q) and g(q) are both differentiable and g′(q) ̸= 0 everywhere in the interval (1/2, 1). Now note
that we have

f ′(q)
g′(q) = 1

n(1 − δ)(q − q2)1/2−δ + λ2δ(1 − 2q)(q − q2)δ−1/2

×
((

−a

2 − b(δ − 1/2)(q − q2)δ−1
)

ϕ

(
θ

σ

)
−
(a

2 − b(δ − 1/2)(q − q2)δ−1
)

ϕ
(γ

σ

))
. (15)

For 0 ≤ δ < 1/2, limq→1+ f ′(q)/g′(q) = 0 since the exponential terms of ϕ in Equation (15) dominate in the
limit.

For δ = 1/2, we have

lim
q→1+

f ′(q)
g′(q) = − a

n + λ2
lim

q→1+

(
ϕ

(
θ

σ

)
+ ϕ

(γ

σ

))
= − a

n + λ2
ϕ(−b)

so that we can use L’Hôpital’s rule to show that the second term in Equation (14) becomes

−
2β∗

j λ1
√

n

σε(n + λ2) ϕ

( −λ1

σε
√

n

)
. (16)
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For δ > 1/2, we have

lim
q→1+

f ′(q)
g′(q) = lim

q→1+

− a
2
(
ϕ
(

θ
σ

)
+ ϕ

(
γ
σ

))

n(1 − δ)(q − q2)1/2−δ + λ2δ(1 − 2q)(q − q2)δ−1/2

+ lim
q→1+

b(δ − 1/2)
(
ϕ
(

γ
σ

)
− ϕ

(
θ
σ

))

n(1 − δ)(q − q2)3/2−2δ + λ2δ(1 − 2q)(q − q2)1/2

= 0 + lim
q→1+

b(δ − 1/2)e− 1
2 (a2(q−q2)+b2(q−q2)2δ−1)

(
e−ab(q−q2)δ − eab(q−q2)δ

)

√
2π
(
n(1 − δ)(q − q2)3/2−2δ + λ2δ(1 − 2q)(q − q2)1/2

)

= 0

since the exponential term in the numerator dominates.

Now we proceed to consider the terms involving ϕ in Equation (12). We have

lim
q→1+

σ

d

(
ϕ
(γ

σ

)
− ϕ

(
θ

σ

))
= σε

√
n lim

q→1+

ϕ
(

γ
σ

)
− ϕ

(
θ
σ

)

n(q − q2)1/2 + λ2(q − q2)2δ−1/2 (17)

For 0 ≤ δ < 1/2, we observe that the exponential terms in ϕ dominate in the limit, and so we can distribute
the limit and consider the limits of the respective terms individually, which both vanish.

For δ ≥ 1/2, the limit in Equation (17) has an indeterminate form of the type ∞ × 0. Define

u(q) = ϕ
(γ

σ

)
− ϕ

(
θ

σ

)
and v(q) = n(q − q2)1/2 + λ2(q − q2)2δ−1/2

which are both differentiable in the interval (1/2, 1) and v′(q) ̸= 0 everywhere in this interval. The derivatives
are

u′(q) = − ϕ
(γ

σ

) γ

σ

(
1
2

(
a(1 − 2q)(q − q2)−1/2

)
− b(δ − 1/2)(1 − 2q)(q − q2)δ−3/2

)

+ ϕ

(
θ

σ

)
θ

σ

(
−1

2

(
a(1 − 2q)(q − q2)−1/2

)
− b(δ − 1/2)(1 − 2q)(q − q2)δ−3/2

)
,

v′(q) = n

2 (1 − 2q)(q − q2)−1/2 + λ2(2δ − 1/2)(1 − 2q)(q − q2)2δ−3/2.

And so

u′(q)
v′(q) = 1

n + λ2(4δ − 1)(q − q2)2δ−1

(
−
(
a − b(2δ − 1)(q − q2)δ−1)ϕ

(γ

σ

) γ

σ

−
(
a + b(2δ − 1)(q − q2)δ−1)ϕ

(
θ

σ

)
θ

σ

)
.

(18)

Taking the limit, rearranging, and assuming that the limits of the separate terms exist, we obtain

lim
q→1+

u′(q)
v′(q) = −a lim

q→1+

1
n + λ2(4δ − 1)(q − q2)2δ−1

(
ϕ
(γ

σ

) γ

σ
+ ϕ

(
θ

σ

)
θ

σ

)

+ b(2δ − 1) lim
q→1+

1
n + λ2(4δ − 1)(q − q2)2δ−1

(
ϕ
(γ

σ

)(
a(q − q2)δ−1/2 − b(q − q2)2δ−3/2

)

− ϕ

(
θ

σ

)(
−a(q − q2)δ−1/2 − b(q − q2)2δ−3/2

))
. (19)

For δ = 1/2, we have

lim
q→1+

u′(q)
v′(q) = − a

n + λ2
(−b ϕ(−b) − b ϕ(−b)) + 0 = 2ab ϕ(−b) =

2β∗
j λ1

σ2
ε(n + λ2) ϕ

( −λ1

σε
√

n

)
.
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Using L’Hôpital’s rule, the second term in Equation (17) must consequently be

2β∗
j λ1

√
n

σε(n + λ2) ϕ

( −λ1

σε
√

n

)
.

which cancels with Equation (16).

For δ > 1/2, we first observe that the first term in Equation (19) tends to zero due to Equation (13) and the
properties of the standard normal distribution. For the second term, we note that this is essentially of the
same form as Equation (15) and that the limit is therefore 0 here.

B.3 Proof of Theorem 3.2

The variance of the elastic net estimator is given by

Var β̂j = 1
d2

(
σ2

2

(
2 + erf

(
θ

σ
√

2

)
− θ

σ

√
2
π

exp
(

− θ2

2σ2

)
+ erf

(
γ

σ
√

2

)
− γ

σ

√
2
π

exp
(

− γ2

2γ2

))

+ 2θσ ϕ

(
θ

σ

)
+ θ2 Φ

(
θ

σ

)
+ 2γσ ϕ

(γ

σ

)
+ γ2 Φ

(γ

σ

))
−
(

1
d

E β̂j

)2
. (20)

We start by noting the following identities:

θ2 =
(
β∗

j n
)2 (q − q2)2−2δ + λ2

1 + 2λ1β∗
j n(q − q2)1−δ,

d2 = n2(q − q2)2−2δ + 2nλ2(q − q2) + λ2
2(q − q2)2δ,

θσ = −σε

(
β∗

j n3/2(q − q2)3/2−2δ +
√

nλ1(q − q2)1/2−δ
)

,

θ2

σ2 = a2(q − q2) + b2(q − q2)2δ−1 + 2ab(q − q2)δ,

σ

d
= σε

√
n

n(q − q2) 1
2 + λ2(q − q2)2δ−1/2

.

Expansions involving γ, instead of θ, have identical expansions up to sign changes of the individual terms.
Also recall the definitions provided in the proof of Theorem 3.1.

Starting with the case when 0 ≤ δ < 1/2, we write the limit of Equation (20) as

lim
q→

Var β̂j

= σ2
εn lim

q→1+

1
(
n(q − q2)1/2 + λ2(q − q2)2δ−1/2

)2

(
1 + erf

(
θ

σ
√

2

)
− θ

σ

√
2
π

exp
(

− θ2

2σ2

))

+ σ2
εn lim

q→1+

1
(
n(q − q2)1/2 + λ2(q − q2)2δ−1/2

)2

(
1 + erf

(
γ

σ
√

2

)
− γ

σ

√
2
π

exp
(

− γ2

2σ2

))

+ lim
q→1+

2θσ

d2 ϕ

(
θ

σ

)
+ lim

q→1+

θ2

d2 Φ
(

θ

σ

)
+ lim

q→1+

2γ

d2 σ ϕ
(γ

σ

)
+ lim

q→1+

γ2

d2 Φ
(γ

σ

)

−
(

lim
q→1+

1
d

E β̂j

)2
,

assuming, for now, that all limits exist. Next, let

f1(q) = 1 + erf
(

θ

σ
√

2

)
− θ

σ

√
2
π

exp
(

− θ2

2σ2

)
,

f2(q) = 1 + erf
(

γ

σ
√

2

)
− γ

σ

√
2
π

exp
(

− γ2

2σ2

)
,

g(q) =
(
n2(q − q2) + 2nλ2(q − q2)2δ + λ2

2(q − q2)4δ−1)2
.
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And

f ′
1(q) = θ2

σ2

√
2
π

exp
(

− θ2

2σ2

)
,

f ′
2(q) = γ2

σ2

√
2
π

exp
(

− γ2

2σ2

)
,

g′(q) = (1 − 2q)
(
(q − q2)−1 + 4nδλ2(q − q2)2δ−1 + λ2

2(4δ − 1)(q − q2)4δ−2) .

f1, f1 and g are differentiable in (1/2, 1) and g′(q) ̸= 0 everywhere in this interval. f1/g and f2/g are
indeterminate of the form 0/0. And we see that

lim
q→1+

f ′
1(q)

g′(q) = lim
q→1+

f ′
2(q)

g′(q) = 0

due to the dominance of the exponential terms as θ/σ and γ/σ both tend to −∞. Thus f1/g and f2/g also
tend to 0 by L’Hôpital’s rule.

Similar reasoning shows that

lim
q→1+

2θσ

d2 ϕ

(
θ

σ

)
= lim

q→1+

θ2

d2 Φ
(

θ

σ

)
= 0.

The same result applies to the respective terms involving γ.

And since we in Theorem 3.1 showed that limq→1+
1
d E β̂j = 0, the limit of Equation (20) must be 0.

For δ = 1/2, we start by establishing that

lim
q→1+

∫ −λ

−∞
(z + λ)2fZ(z) dz = lim

q→1+

(
σ2
∫ θ

σ

−∞
y2 ϕ(y) dy + 2θσ

∫ θ
σ

−∞
y ϕ(y) dy + θ2

∫ θ
σ

−∞
ϕ(y) dy

)

is a positive constant since θ/σ → −b, σ = σε
√

n, θ → −λ, and θσ → −σε
√

nλ. An identical argument can
be made in the case of

lim
q→1+

∫ ∞

λ

(z − λ)2fZ(z) dz.

We then have
lim

q→1+

1
d2

∫ −λ

−∞
(z + λ)2fZ(z) dz = C+

limq→1+ d2 = C+

0 = ∞,

where C+ is some positive constant. And because limq→1+
1
d E β̂j = β∗

j (Theorem 3.1), the limit of Equa-
tion (20) must be ∞.

Finally, for the case when δ > 1/2, we have

lim
q→1+

1
d2

(
σ2
∫ θ

σ

−∞
y2 ϕ(y) dy + 2θσ

∫ θ
σ

−∞
y ϕ(y) dy + θ2

∫ θ
σ

−∞
ϕ(y) dy

)

= lim
q→1+

(
nσ2

(
n(q − q2)1/2 + λ2(q − q2)2δ−1/2

)2

∫ θ
σ

−∞
y2 ϕ(y) dy

−
2σε

√
n
(
β∗

j n(q − q2)1−δ − λ1
)

(
n(q − q2)3/4−δ/2 + λ2(q − q2)3δ/2−1/4

)2

∫ θ
σ

−∞
y ϕ(y) dy

+
(

−β∗
j n(q − q2)1−δ − λ1

n(q − q2)1−δ + λ2(q − q2)δ

)2 ∫ θ
σ

−∞
ϕ(y) dy

)
.

Inspection of the exponents involving the factor (q − q2) shows that the first term inside the limit will
dominate. And since the upper limit of the integrals, θ/σ → 0 as q → 1+, the limit must be ∞.
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B.4 Proof of Corollary 3.2.1

We have

lim
q→1+

Var β̂j = lim
q→1+

σ2

d2
j

(
σε

√
n(q − q2)1/2−δ

n(q − q2)1−δ + λ2(q − q2)δ

)2

= σ2
εn

λ2
2

lim
q→1+

(q − q2)1−4δ,

from which the result follows directly.
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