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Abstract

Breast cancer is one of the most prevalent and diverse malignancies affecting
women worldwide, with an estimated 2.3 million new cases globally in 2020
alone. In Sweden, breast cancer is a major societal issue with over 8600 new
diagnoses and 1300 deaths per year. It presents significant challenges in
diagnosis, treatment, and prognostication due to its complex biological,
molecular, and clinical heterogeneity. The advent of molecular markers and
advanced genomic technologies has opened new avenues for understanding
and managing this disease more effectively. This thesis compiles five studies
that underscore the importance of these advancements in refining breast
cancer classification and contribute to new biomarker assessment which may
ultimately improve patient outcomes.

Study I explores the implications of estrogen receptor 3 (ERB; ESR2) mRNA
expression in breast cancer through a comprehensive transcriptomic analysis
of a large cohort, SCAN-B. The findings indicate that higher ESRZ expression
correlates with improved overall survival, especially in cases receiving
endocrine therapy and in triple-negative breast cancer, suggesting ESR2's
potential as a valuable prognostic marker and its potential role in immune
modulation. Study II introduces a novel multiplex droplet digital PCR (ddPCR)
assay for the accurate determination of HER2/ERBB2 DNA copy number, and
demonstrated high accuracy compared to traditional clinical methods. This
study revealed an “ultrahigh” ERBBZ copy number subgroup, as quantified by
ddPCR, found to be associated with worse survival outcomes in patients
treated with trastuzumab, emphasizing the assay’s potential utility in refining
treatment decision-making and its implications for tailored therapeutic
strategies. Study III examined CITED1 as a predictive marker for anti-
endocrine treatment efficacy, particularly in the context of tamoxifen therapy.
The association between higher CITED1 expression and favorable treatment
outcomes in ER+ patients position CITEDI as a promising biomarker for
tailoring endocrine therapy. Study IV details the first 10-years of achievements
of the Sweden Cancerome Analysis Network - Breast (SCAN-B) project, a
population-based initiative that integrates genomic profiling and RNA-
sequencing into clinical practice. By analyzing a large and diverse group of
patients, SCAN-B aims to enhance personalized breast cancer care through
detailed molecular analysis, demonstrating the project's contribution to
advancing the field of personalized medicine in breast cancer. Study V
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addresses the classification and treatment implications of the “HER2-low”
breast cancer subclass. By developing a refined ddPCR assay for ERBBZ mRNA
expression, this study provides a more nuanced understanding of ERBBZ
expression levels, offering insights into the potential benefits of emerging
targeted therapies such as trastuzumab deruxtecan for this distinct group.

In conclusion, the research projects presented in this thesis demonstrate the
critical role of molecular markers and genomic technologies in advancing our
understanding and management of breast cancer. By enabling a more precise
approach to diagnosis, treatment, and prognosis, these studies contribute to
the ongoing advancement towards more individualized and effective breast
cancer care.
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Popular Summary

Breast cancer is an enormous public health concern, having surpassed lung
cancer as the most frequently diagnosed cancer worldwide. Breast cancer is
not a single disease, but in fact there are several different types of breast
cancer, each requiring different treatment approaches. Although the 5-year
survival statistics for breast cancer is good, with generally more than 90%
surviving, itis less commonly known that many breast cancer patients can have
“late” relapses even after 5-years, leading to a 15-year survival rate of about
70%. In Sweden, it is the second most common cause of cancer death with over
1300 deaths per year. Although the number of breast cancer diagnoses has
been increasing over the decades, the mortality rates show a general decrease,
reflecting advancements in detection and treatment.

The concept of “precision medicine”, particularly in the realm of molecular
genomics and diagnostics, has improved the management of breast cancer.
Recent research has been focusing on better understanding and stratifying
different breast cancer subtypes and finding more precise ways to treat them.
This thesis explores the application of precision medicine in breast cancer,
focusing on the molecular characterization of tumors and the implications for
diagnostics and treatment strategies using large scale analyses of breast cancer
tissues and advanced sequencing methods and digital polymerase chain
reaction (ddPCR) methods. Specifically, the five studies presented in this thesis
explore the role of three cancer biomarkers, the ‘estrogen receptor beta’ (ERp;
encoded by the gene ESR2), HER2 (encoded by ERBBZ), and CITED1 (encoded
by CITED1) across very large subsets of breast tumor samples that have been
collected within the Sweden Cancerome Analysis Network - Breast (SCAN-B)
study.

In Study I, we analyzed over 3,000 breast tumors from SCAN-B and found that,
although ERB/ESRZ is generally present at low levels, higher levels of this
receptor are associated with better survival rates, especially in patients
receiving specific hormone therapies or those with an aggressive form of
breast cancer called “triple-negative breast cancer” (TNBC). Gene expression
signatures indicative of the immune response were linked to ESRZ-high
tumors, and higher expression of ESR2 was associated with improved overall
survival and may influence immune response modulation. These findings
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suggest ERB's potential role as a biomarker for more favorable outcomes in
patients receiving hormone therapy and in TNBC.

In Study II, we investigated the important biomarker HER2 (ERBBZ) which is
a protein that promotes the growth of cancer cells. In about 20% of breast
cancers, excessive copies of the ERBBZ gene are present leading to excessive
HER2 protein, which can then be treated with anti-HER2 drugs which are now
part of standard medical practice for over 20 years. Therefore, assessing
HER2/ERBBZ status is crucial for guiding treatment decisions in breast cancer,
but current gold standard testing methods used in clinics for HER2 evaluation
have their drawbacks and can show variable results. To improve this, we
developed a new cutting-edge droplet digital PCR assay that can more precisely
quantify the copy number (CN) of the ERBBZ2 gene. Our ddPCR assay showed
high accuracy and reliability in predicting HER2 status in breast cancer tissues
from 909 patients. Interestingly, a group of patients with an “ultrahigh” ERBBZ2
gene copy number were also discovered, who showed significantly worse
survival outcomes despite treatment with the HER2-targeting drug
trastuzumab (Herceptin). This finding, which was also confirmed in a larger
SCAN-B cohort, suggests that ultrahigh ERBBZ copy number levels could
predict poorer long-term survival, highlighting the need for alternative
therapeutic strategies in these cases.

CITED1 is a gene involved in how breast cancer cells respond to estrogen.
Study III investigated the role of CITED1 as a biomarker for response to anti-
hormone therapy in breast cancer and indicated that higher levels of CITED1
are linked with a better response to tamoxifen, a standard anti-estrogen
treatment. This correlation was particularly strong in patients with estrogen
receptor-positive, lymph node-negative breast cancer. Although early, this
study suggests CITED1 as a potential predictive biomarker to identify which
patients will benefit most from tamoxifen, and provides a potential mechanism
that helps to mediate breast cancer response to hormone therapy.

The SCAN-B project is a large-scale population-based precision medicine
initiative, initially started in Sweden in 2010, that aims to enroll all patients
with primary (non-metastatic) breast cancer at all of the participating
hospitals to build an infrastructure for breast cancer research and for
dissemination of new diagnostic tools developed within SCAN-B. This effort
has already led to the implementation of new molecular tests in healthcare in
Skane region of southern Sweden. In Study IV we present a status update of
the SCAN-B project, summarizing the progress and patient inclusion for the
project’s first 10 full calendar years from late 2010 through the end of 2020.
During this 10-year period, almost 14 thousand patients were enrolled in
SCAN-B and over 9300 breast tumors were RNA-sequenced, making it one of
the largest, if not the largest, breast cancer RNA-sequencing study in the world.
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We present up-to-date clinical subtyping, treatment, and outcome results. The
advantage of such population-based study is the ability to capture a
representative cohort of patients, reflect real-world clinical outcomes, and
identify rare subtypes of breast cancer, thereby enhancing the generalizability
and applicability of research findings to a broader patient population.

Lastly, in Study V we again investigated HER2, but instead of analyzing ERBB2
DNA copies, we measured ERBB2 mRNA levels. This is because a new
classification of breast cancer is emerging, termed “HER2-low”, given that
metastatic breast tumors with a moderate amount of HER2 appear to respond
to a new class of drugs related to trastuzumab/Herceptin with an additional
toxic linker molecule attached. Approximately 50% of all breast cancer cases
are HER2-low, however the conventional semi-quantitative clinical tests for
HER2 levels are imperfect and may not accurately evaluate low HER2
expression, due to differences in antibodies, protocols, and interpretations
among pathologists. To address these concerns, we developed another new
multiplex ddPCR assay to measure ERBB2 mRNA expression levels, which we
validated on control samples and then analyzed over 1200 breast tumor
samples from SCAN-B. This study aims to redefine HER2 expression
categorizations in breast cancer, offering a more precise, cost-effective, and
easily implementable tool based on ddPCR, which could improve diagnostic
accuracy and also enhance treatment specificity, tailoring interventions to the
molecular profile of each tumor.

In summary, these studies highlight the continuous efforts to understand
breast cancer's molecular underpinnings and how this knowledge could lead
to more personalized and effective diagnostics and treatments. Ultimately,
through these efforts and many others, the goal is to improve patient
stratification, leading to better informed treatment decisions, and improve the
survival rates and quality of life for breast cancer patients.
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1. Introduction

1.1  Hallmarks of Cancer

Cancer, a leading cause of death globally, represents a complex group of
diseases characterized by many traits including unregulated cellular growth,
proliferation, and invasion, with the “hallmarks of cancer” recently being
updated to include now 14 key neoplastic capabilities [1-3]. The multifaceted
nature of cancer, with a wide spectrum of types and subtypes, each with
distinct molecular and histopathological features, presents a substantial
challenge to healthcare systems worldwide.

Historically, the term 'cancer' traces its origin to the Greek word 'karkinos'
coined by Hippocrates, considered by many to be the father of medicine. The
term was metaphorically used to describe the behavior of tumors, likening
their spread to the legs of a crab. Throughout history, while the biological
understanding and terminology of tumorigenesis have evolved, the word
cancer has remained a constant representation of this complex and varied
disease [4].

Epidemiologically, the incidence and mortality rates of cancer types vary
significantly across different geographical regions, largely influenced by
varying exposure to risk factors, hereditary predisposition, and disparities in
healthcare resources [5]. Cancer is forecasted to become the leading cause of
death worldwide within the 21st century and the greatest obstacle to
extending life expectancy [6]. In many developed countries including Sweden,
cancer represents a major public health challenge, with breast, prostate, lung,
and colorectal cancers being the most common [7]. Lifestyle factors, including
tobacco use, diet, alcohol consumption, and physical inactivity, are well-
established contributors to cancer risk [8]. Additionally, environmental
exposures, such as to chemical carcinogens or ionizing and non-ionizing
radiation, along with genetic predispositions, play crucial roles in the
development of cancer [9].

The advent of high-throughput genomic technologies has revolutionized the
field of cancer research. In 2001, the first human genome draft sequence was
published, a watershed moment in cancer research that paved the way for
deeper understanding of the disease's genetic underpinnings [10]. This
milestone and the comprehensive genomic analyses it has since enabled have



unearthed a plethora of genetic alterations and molecular mechanisms driving
cancer development, significantly influencing the study of cancer by providing
a comprehensive reference of alterations associated with each cancer type
[11]. This knowledge has led to the identification of key driver mutations and
disrupted signaling pathways, providing a more nuanced understanding of
cancer biology [12]. Furthermore, these insights have identified new
therapeutic targets and fueled the development of targeted therapies, marking
a transition towards true personalized and precision medicine in oncology
[13].

Cancers are broadly categorized based on their tissue of origin: carcinomas are
the most common type, are derived from epithelial cells, and form solid
tumors; sarcomas originate from connective tissues such as bone and muscle;
myeloma develops from bone marrow plasma cells; leukemias and lymphomas
originate from lymphocytes usually in the bone marrow or lymphatics,
respectively; and mixed types exhibit characteristics of multiple categories
[14]

Tumorigenesis (also called oncogenesis or carcinogenesis) is a multistep
process involving the accumulation of genetic and epigenetic changes that
confer a selective growth advantage to cells. These changes disrupt normal
regulatory mechanisms governing processes such as cell proliferation,
apoptosis, and differentiation, leading to the transformation of a normal cells
towards a neoplastic state, eventually resulting in the development of cancer.
All cancers were thought to originate from viruses 80 years ago [15]. However,
a major paradigm-shift in 1960s revealed that some of our genes, termed,
oncogenes, and then a decade later, tumor suppressor genes (TSG), could be
causative culprits that go awry within our own cells and initiate and promote
cancer [15]. Oncogenes and TSG are critical in promoting or inhibiting cell
growth and proliferation, respectively. Mutations in these genes play a central
role in cancer development. Oncogenes, initially normal genes or 'proto-
oncogenes,' can become cancer-promoting when mutated or overexpressed by
gain-of-function events. Examples include the HER2/ERBBZ2 gene in breast
cancer and the BCR-ABL fusion gene in chronic myeloid leukemia. The notion
of Alfred Knudson’s “two-hit hypothesis” also emerged in 1971, which
indirectly led to the identification of TSGs. According to this hypothesis, a TSG
(RB1 in this case) requires both alleles to be inactivated, either through
mutations or through epigenetic silencing, to cause a phenotypic change [16].
Other TSG were identified later, such as TP53 and BRCA1/BRCAZ, which
function mainly to manage DNA damage [17], or PTEN which limits cell growth
and proliferation [18]. Loss-of-function mutations or epigenetic changes that
inactivate or suppress the expression of these tumor suppressor genes can lead
to cancer development. The interplay between oncogenes and tumor



suppressor genes is a key aspect of the molecular basis of cancer [19].
However, some genes exhibits both oncogenic and tumor-suppressor functions
under different cellular contexts [20]. For example, TP53 gene mutations not
only abolish the tumor suppressive functions but also equip the protein to
acquire novel pro-oncogenic properties, by gain-of-function effect [21,22].
Another example is NOTCH receptors that are tumor-suppressors in squamous
epithelial cells while plays an oncogenic role in T-lineage acute lymphoblastic
leukemia [23,24].

A fundamental framework for understanding cancer was established by
Hanahan and Weinberg, who delineated the hallmarks of cancer in their
seminal works published in 2000 and later updated in 2011, 2022, and 2024
[1-3,25]. These hallmarks encapsulate the critical traits that distinguish cancer
cells from normal cells, including sustained proliferative signaling, evasion of
growth suppressors, resistance to cell death, replicative immortality,
angiogenesis, and activation of invasion and metastasis. Later additions to
these hallmarks include reprogramming of energy metabolism and evading
immune destruction. This comprehensive framework is visually summarized
in Figure 1.1.

Although these cancer hallmarks comprehensively delineate the framework
encapsulating the various characteristics of cancer as a disease, a complex
variety of mechanistic effects and phenotypes exists, both within the tumors
and their micro-, macro- and immune- environments, which was recently
expanded upon in the 2024 update to the hallmarks [25]. Briefly, the 13
additional systemic “clouds of complexity” includes tumor macro- and
microenvironments, senescent cell states, aging systems and tissues, cancer
cachexia, metabolic effects, dietary influences, pleiotropic immune responses,
physiological prevention, thrombo-inflammation, obesity and physical activity,
circadian clocks, and neural-cancer crosstalks. The authors also argued that
these additional “building blocks” of cancer, which govern the tumor initiation
and promotion are yet incompletely understood.

The understanding of these hallmarks not only contributes to a deeper
understanding of cancer biology but also guides the development of new
therapeutic strategies targeting these specific characteristics of cancer cells.
An example, which is also relevant to this thesis, is the “sustaining proliferative
signaling” hallmark. In breast cancer (BC), this characteristic can be
exemplified by the overexpression of the HER2 protein, a receptor tyrosine
kinase that promotes cell growth and proliferation. Therapies such as
trastuzumab (Herceptin) and pertuzumab, which are monoclonal antibodies
(mAb) targeting the HER2 receptor, directly inhibit this proliferative signaling
pathway [26-28]. This targeted approach has significantly improved outcomes
for patients with HER2-positive breast cancer.
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Figure 1.1: Hallmarks of Cancer from Hanahan & Weinberg [2]. Reproduced with
permission from Elsevier.

Advances in screening, diagnostics, and treatment have improved survival
rates, however cancer remains a significant burden and public health
challenge, underscoring the need for continued research. Efforts must focus on
improving early detection, understanding the complex molecular mechanisms
underlying cancer progression, and developing effective, individualized
treatment strategies. The ultimate goal of cancer research is to increase
understanding and translate findings to enhance patient outcomes and reduce
the global burden of cancer.

In this thesis, a multifaceted approach to breast cancer's complex biology was
explored, by linking several key hallmarks of cancer, such as “sustaining
proliferative signaling,” “resisting cell death,” “evading growth suppressors”,
and “genomic instability and mutation”. For example, Study I links the
exploration of the estrogen receptor beta (ERB) and ER-mediated signaling to
“resisting cell death.” In Study I, high ERB expression was found to be
significantly associated with improved survival, especially in contexts like
endocrine therapy treated patients and triple-negative breast cancer (TNBC).



This suggests that it may contribute to “resisting cell death” by modulating
immune responses, which may influence the tumor microenvironment’s
capacity of ESRZ-high tumors making them more favorable to immune cell
infiltration and less conducive to immune suppression. Next, in Studies II and
V, HER2 signaling, crucial for “sustaining proliferative signaling,” has been
analyzed through ddPCR assay development that accurately quantifies HER2
copy number (CN) and its varied expression levels in breast cancer
respectively. Additionally, in Study II, HER2/ERBBZ-ultrahigh expression
category, a subset with poor survival outcomes, emphasizes the complexity of
“genomic instability and mutation” where this subgroup might exacerbate
tumor aggressiveness and resistance to therapy. This precise quantification of
CN and classification of HER2 expression at mRNA level into low, zero, and
positive categories (Study V) may directly impact treatment decisions,
especially with targeted therapies like trastuzumab and more recently FDA
approved trastuzumab deruxtecan (T-DXd), an antibody-drug conjugate
(ADC). In Study III, we showed that higher levels of CITED1 expression, linked
to ER+ and luminal breast cancer subtypes, correlate with better outcomes in
tamoxifen-treated patients, and appears to modulate the ER pathway in a way
that enhances the effectiveness of anti-estrogen therapies. This finding
underlines its potential role in “evading growth suppressors” by influencing ER
signaling.

1.2 The Cancer Genome

Cancer is often referred to as a disease of the genome. While many factors can
contribute to the onset and progression of cancer, in many cases genetics plays
a critical role. In addition to one’s inherited genetic variants, this can include
somatic mutations that accumulate in cells over the course of a lifetime.
Consequently, every cancer is in fact unique at the genome level, and
understanding the specific drivers and vulnerabilities of an individual’'s cancer
can give insights into how to treat it more effectively. The cancer genome and
driver mutations are crucial areas of oncology research, impacting cancer
development and treatments.

Germline and somatic mutations

Germline mutations, inherited and present in every cell, can predispose
individuals with a higher risk of developing cancer, for example as seen with
BRCA1 and BRCAZ mutations that are linked to breast and ovarian cancers.
Women who inherit a deleterious BRCAI1 mutation face a 55-72% lifetime risk



of developing BC, while those with an inactivating BRCAZ variant confront a 45-
69% lifetime risk. These germline mutations also confer a heightened
likelihood of cancer emerging in the contralateral breast following an initial BC
diagnosis [29-31]. Other cancer-predisposing germline mutations in genes
such as TP53, CHEKZ2, and PTEN also significantly contribute to cancer
susceptibility. For example, TP53 mutations are linked to Li-Fraumeni
syndrome [32,33], also predisposing individuals to cancers of the breast [34],
glioblastomas [35], sarcomas [36], and adrenal carcinoma [37]. CHEKZ
mutations are associated with an increased risk of colon cancer [38], prostate
cancers [39], and double the risk for BC [40,41]. PTEN mutations are a hallmark
of the autosomal dominant Cowden syndrome [42], and increases the risk for
breast [43,44], thyroid [45], and endometrial carcinomas [46].

Somatic mutations, acquired in individual cells during a person'’s lifetime, are
found in essentially all cancers. Somatic mutations can be ‘driver’ mutations or
‘passenger’ mutations. Mutations that provide a selective growth advantage,
and thus promote cancer development, are termed drivers, and those that do
not necessarily provide any significant advantage are termed passengers [47].
Acquisition of mutations in the PIK3CA oncogene, often found in various cancer
types, is a typical example of driver somatic mutation. Given the inherent
instability of cancer genomes, passenger mutations are quite abundant in
cancer genomes, but their specific roles are less clear compared to driver
mutations. A recent meta-analysis study examining 19 cancer types in The
Cancer Genome Atlas (TCGA) dataset identified an average of 11 core driver
mutation combinations per cancer. Each combination consisted of 2 to 6
alterations, highlighting the complexity and diversity of genetic changes
driving various cancers. These finding signifies the complex genomic landscape
of cancers and the importance of understanding these mutation combinations
for targeted therapy strategies [48]. Another example driver mutation is the
epidermal growth factor receptor (EGFR) mutations that are commonly
observed in 43-89% of non-small cell lung cancer [49].

Solid tumors exhibit somatic mutations, with the amount varying significantly
across different types of tumors. Somatic mutations can also play different
roles at various stages of cancer development. For instance, some driver
mutations arise early in the cancer's evolution, initiating the malignant
transformation by providing a growth advantage to cells. However, as the
tumor progresses, the dependence on these initial mutations may decrease,
and they may no longer be essential for the survival of the cancer. A classic
example is the driver gene that is often mutated early in the development of
various cancers is KRAS. KRAS mutations are prevalent in about 30% of lung
cancers and 90% of pancreatic cancers [50]. These mutations leads to tumor
initiation by activating the KRAS protein, which triggers RAS/MAPK pathway



[51,52]. However, some studies have shown that as the tumor evolves, it can
increase the expression or activity of other growth factor receptors or signaling
molecules independent of KRAS, such as the Hedgehog signaling pathway, IGF-
1R (insulin-like growth factor 1 receptor), or even rely on autocrine growth
factor loops in pancreatic tumors [53,54]. This variation in mutational load is
influenced by many factors such as the tumor's origin, environmental
exposures to mutagens, intrinsic cellular processes like errors in DNA
replication and repair, influence of metabolic activities, as well as various
selective pressures (such as hypoxia, nutrient deprivation, and therapeutic
interventions), cancer cells can adapt by upregulating or activating alternative
pathways [55].

DNA damage and repair

To maintain cellular integrity and prevent oncogenesis, human cells have
evolved highly attuned DNA repair pathways as well as DNA damage
checkpoints to cope with the frequent challenge of endogenous and exogenous
DNA insults. DNA damage can result from a multitude of factors, both internal
and external, leading to changes that can disrupt the cell's genetic integrity. The
DNA repair mechanisms are discussed below.

The causes of DNA damage include 1) oxidative damage in which the reactive
oxygen species (ROS), byproducts of cellular metabolism, can oxidize
nucleobases leading to modifications like 8-oxoguanine [56]; and 2) hydrolytic
damage, where the DNA hydrolysis can cause deamination, depurination, or
depyrimidination, creating sites without a base (apurinic/apyrimidinic sites,
or AP sites) [57]. These changes are primarily repaired by the base excision
repair (BER) pathway discussed below. 3) A third cause of DNA damage is
ultraviolet radiation from the sun that can distort the DNA structure by
disrupting the covalent bonding between adjacent pyrimidine bases, forming
photoproducts such as thymine dimers and cyclobutane pyrimidine dimers
and are typically repaired by nucleotide excision repair (NER) [58]. Fourth, 4)
ionizing radiation can cause double-strand breaks (DSBs) and complex DNA
damage, including crosslinks and clustered damage sites. DSBs are among the
most lethal forms of DNA damage and are repaired through pathways such as
homologous recombination (HoR) and non-homologous end joining (NHE])
[59]. A fifth 5) cause is environmental chemicals and mutagens, such as
polycyclic aromatic hydrocarbons and aflatoxins, which can add bulky groups
to bases (adduct formation) or crosslink DNA strands. These are typically
repaired by NER or, in the case of crosslinks, by a combination of NER and HoR
[60].



DNA damage can manifest as either single-stranded breaks (SSBs) or DSBs,
each presenting unique challenges and requiring different repair strategies.
DNA SSBs are caused by oxidative damage, abasic sites, or DNA topoisomerase
errors and can disrupt vital cellular processes like replication and
transcription, potentially leading to cell death. SSBs can be corrected through
BER, NER, and mismatch repair (MMR) [61,62]. During the replication phase of
the cell cycle, DNA polymerases, an enzyme that copies DNA, also performs
‘proofreading’ by removing and replacing the incorrectly paired nucleotide
right away, before continuing with DNA synthesis [63]. Following DNA
replication, MMR removes and replaces mis-paired bases (ones that escaped
correction during proofreading). MMR can also detect and correct small
insertions and deletions that happen when the polymerases "slips" during
replication, losing its correct positioning on the template [64]. Germline
mutations in MMR genes such as MSHZ, MLH1, and MSH6 can lead to Lynch
syndrome, a hereditary condition associated with an increased risk of colon,
ovarian, and other cancers [65,66]. Malfunctioning of the MMR repair pathway
also leads to the alterations of microsatellites (short, repeated sequences of
DNA), and the overall mutational rate of a given cell increases. These kind of
cancers are known as MSI-high (MSI-H), have treatment implications, and are
most commonly are found in colorectal cancer, gastric cancer, and endometrial
cancer [67,68].

BER corrects DNA by removing faulty bases through enzymes like OGG1, then
fills the gaps with DNA polymerase and seals with ligase, ranging from short
patch repair for single nucleotides to long patch repair for larger sections. One
example of BER is the repair of uracil-containing DNA (caused by deamination
of cytosine by hydrolysis, chemical agents, oxidative stress, or
misincorporation of uracil by DNA polymerase during replication), where
uracil is excised by DNA glycosylase, creating an abasic gap called an AP site.
The gap is then cleaved by AP endonuclease and is filled using DNA polymerase
and sealed with ligase [69].

NER corrects bulky DNA lesions caused by UV radiation or chemicals. It
involves removing a damaged DNA segment and synthesizing a new strand.
NER operates through two pathways: global genome NER (GG-NER) for
repairing damage across the genome, and transcription-coupled NER (TC-
NER) for lesions on the transcribed DNA strand [70]. Pre-clinical and clinical
studies have revealed NER as a major resistance mechanism against cisplatin
[71], and patients with alterations in the excision repair cross complement,
ERCC(C1, had a high response to nivolumab due to their genetic instability [72].
Thus, NER pathway aberrations might predict the prognosis of cancer patients
treated with immunotherapy. DNA DSBs, the most cytotoxic DNA lesions,
initiate a comprehensive cellular DNA damage response (DDR). This process



involves the activation of the ATM kinase, part of the phosphoinositide 3-
kinase-related protein kinase family, which rapidly associates with chromatin
upon DSBs in coordination with the MRE11-RAD50-NBS1 (MRN) complex [73].
DNA DSB repair can be achieved by two broad categories depending on the use
or not of a homologous DNA sequence as a template: HoR is a high-precision
repair method utilizing a matching DNA sequence, often the sister chromatid,
as a template. Active mainly in the S, G2, and M cell cycle phases, HoR involves
creating single-stranded DNA, which is initially coated with RPA proteins and
then replaced by Rad51 for pairing with a homologous template to facilitate
repair [74]. Pathogenic mutations in a number of genes encoding HoR-related
proteins are a well-studied cause of HoR deficiency (HRD), and, at the germline
level, can confer risk for BC, but also occur somatically and contribute to
sporadic breast cancer development, progression, and response to therapy
[75].

NHE] is a straightforward DNA repair mechanism that directly joins broken
DNA ends without requiring a homologous template. Active across the cell
cycle, this process involves proteins such as Ku70/Ku80, which protect DNA
ends, as well as DNA-dependent protein kinase catalytic subunits, and XRCC4-
LIG4 for end joining. NHE] is quicker but tends to be more error-prone
compared to HoR [73]. The tumor suppressors BRCA1 and BRCAZ2 play pivotal
roles in HoR, maintaining a balance between HoR and NHE] in healthy cells.
However, when key DNA repair genes are deficient, this balance is disrupted.
BRCA1's recruitment to DNA DSBs favors HoR repair, while the recruitment of
53BP1, another protein, promotes NHE], illustrating the delicate equilibrium
in cellular DNA repair mechanisms [76,77].

Types of mutations

Across the genomic landscape, mutations may be classified at small or large
genomic scales. Two types of small-scale mutations are prominent: 1) single
nucleotide variants (SNVs; also known as point mutations) that involve the
substitution of one nucleotide for another, and 2) small insertions and
deletions, called indels, which introduce or remove short DNA segments of
varying size but most commonly less than 50 base pairs (bp). These mutations
have significant implications in genomic variation and disease processes,
including cancer.

Single nucleotide variants and single nucleotide polymorphisms

Single nucleotide variants (SNVs) are central in cancer genomics, representing
the most common mutation type. These mutations encompass six primary



substitution types, including transitions and transversions. Transitions,
exchanges between purine to purine (G>A, A>G) or pyrimidine to pyrimidine
(C>T, T>C), are more frequent due to structural compatibility compared to
transversions, which is when a purine (A and G) and pyrimidine (C and T)
interchanges - i.e., A>C, A>T, G>C, G>T, and their opposites C>A, T>A, C>G, and
T>G.

SNVs can be classified based on their genomic location and impact on protein
coding. If in the coding region of a protein, a SNV may be synonymous/silent
(not altering amino acids) or non-synonymous (altering amino acids), and if
outside of a coding region, then it is termed a non-coding SNV. A non-
synonymous SNV can lead to different types of mutations in a protein. These
include "missense" mutations, which change one amino acid to another,
potentially altering mRNA and protein function, "nonsense" mutations which
create a premature stop codon (UAA, UAG, or UGA in mRNA) resulting in a
truncated protein, or a "read-through" or "stop loss" mutation, that leads to
loss of a stop codon and thereby a longer than normal protein [78]. Changes in
the amino acid structure and length of proteins often affects their normal
functions, which can directly or indirectly contribute to cancer initiation and
progression [79]. Another type of mutation called a regulatory region mutation
can occur in promoters, enhancers, silencers, and insulators. For example, a
substitution mutation could potentially disrupt the binding of transcription
factors or other regulatory proteins, thereby affecting gene expression [80].
SNVs and regulatory region mutations are depicted in Figure 1.2. Non-coding
and synonymous SNVs, once considered less impactful, are now recognized for
their roles in oncogenesis. They may affect DNA binding domains and gene
regulation, transcription efficiency, mRNA secondary structure, translation
and splicing, for example as has been shown for specific mutations in TP53 [81]
and KRAS [82].

A germline SNV can be defined as a single nucleotide polymorphism (SNP)
when it is found in a sufficiently large fraction of the population, typically >1%
of the population. This threshold distinguishes SNPs as common normal
variations in the human genome rather than rare mutations and are used as
genetic markers that are important in studying genetic diversity, disease
susceptibility, and even response to drugs. SNP genotyping, measurement of
genetic variations at known SNP positions, can today be performed genome-
wide at relatively low-cost using tools such as SNP microarrays.
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Figure 1.2: Types of SNV and indels. The effects of SNVs (missense and non-sense
mutations) as well as indels (frameshift mutations) on downstream mRNA and protein
product is shown. Regulatory region mutations can occur as either SNVs or indels.
Created with BioRender.com.

Small insertions and deletions

Indels are pivotal in cancer genomics for both diagnostic and therapeutic
implications because they can significantly impact gene function and are a
common mechanism of kinase activation. These mutations, often comprising
less than 50 bp, alter the reading frame of genes, leading to abnormal or
dysfunctional proteins. Indels can be broadly categorized into two types: 1)
frame-shift indels, which alter the DNA reading frame, leading to significantly
different and often non-functional proteins (Figure 1.2); and 2) in-frame indels,
which do not disrupt the reading frame but rather introduce or delete a small
number of amino acids in the protein [83,84]. Accurate identification of indels
in genomic studies poses a challenge due to presence of repeats, short
interspersed elements, homopolymers/dimers and type of indel detection
methods used [85]. Some NGS based studies have reported that indels are
severely under-reported due to difficulties in accurate indel detection and it is
estimated that, due to false-negative rates, up to one-third of the small indels
in human genomes may be undetected [86].

Large chromosomal rearrangements: structural variations

Larger chromosomal aberrations, classified as structural variations (SV), are
significant alterations defined by variations of at least 50 bp in size (typically
much larger) and include large insertions and deletions, segmental
duplications, amplifications, inversions, translocations, and chromosomal
losses and gains, as well as more complex DNA rearrangement patterns (Figure
1.3A) [87]. SVs are prevalent in cancer, emerging during tumor development,
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progression, and even in resistance to treatment [88]. SVs can lead to the
amplification or disruption of crucial driver cancer genes or alter gene
expression by rearranging coding or noncoding DNA elements to juxtapose
regulatory regions or create fusion genes with new functions, making SVs
highly significant in the study of genomic instability and cancer development.
SVs often occur amidst periods of genomic or chromosomal instability, leading
to intratumor heterogeneity and complex rearrangement events like
chromothripsis [89] and chromoplexy [90]. The classic example of a clinically
actionable gene fusion SV is the so-called Philadelphia chromosome, a
translocation between chromosomes 22 and 9 creating the BCR-ABL1 fusion
gene in chronic myelogenous leukemia, and which is treatable with specific
tyrosine kinase inhibitors such as imatinib [91].

Pan cancer WGS data generated in large patient cohorts revealed that somatic
SVs are the most common class of driver mutation in cancer, surpassing SNVs
and indels in terms of proportion [92,93]. International initiatives like the Pan-
Cancer Analysis of Whole Genomes (PCAWG) project, conducted by
collaborations such as the International Cancer Genome Consortium (ICGC)
and TCGA, have provided a comprehensive overview of the prevalence of
somatic SVs in cancer. Their analyses reveal that across various cancers, SV -
which include partially resolved SVs grouped with somatic copy-number
alterations - account for approximately 55% of driver mutations, thus
surpassing the number of point mutation drivers [93].

Despite several large pan-cancer analyses, compared to SNVs, SVs are rather
underexplored in cancer genomes. Their discovery and characterization pose
challenges, particularly with complex SVs being common in cancer, as they are
difficult to detect with short-read sequencing data. Often, cancer studies
categorize SVs under the broad term "somatic copy-number alterations"
without deeply investigating their specific roles, structural details, or
mechanism of formation. Interpreting somatic SVs is more complex than point
mutations as they can impact multiple genes or entire chromosomes, with their
effects on cancer gene expression frequently mediated by alterations in
intergenic regulatory sequences [94].

Of particular interest to this thesis, copy number gains, a type of copy number
variant (CNV) or copy number alteration (CNA), refers to a genomic change
where additional copies of a section of DNA are present. This results in an
increased number of certain gene copies within a cell, which if it is affecting an
oncogene, it can lead to its overexpression and contributing to cancer
development and progression. CNVs arise through diverse mutational
processes, which include DNA recombination, replication, and repair
mechanisms. As depicted in Figure 1.3B, CNVs can be classified as 1) recurrent
CNV that have same size and show common breakpoints enriched in repeated
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sequences such as low-copy repeats (LCRs; e.g., segmental duplications). LCRs
and high-copy repeats (e.g., SINEs, LINEs), are often found near breakpoints,
playing a critical role in CNV instability. These sequences are crucial for
triggering key mechanisms for generation of recurrent CNV like non-allelic
homologous recombination (NAHR) [95]. Secondly they can be classified as 2)
non-recurrent CNVs which scattered breakpoints with different sizes but
which may share a smallest region of overlap (SRO) between different patients
[96] (see Figure 1.3B). They might be formed by mechanisms such as NHE] and
microhomology-mediated end joining (MME]) or replicative mechanisms such
as replication slippage, fork stalling and template switching or
microhomology-mediated break-induced replication [97].
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Figure 1.3: Types of chromosomal rearrangements. A. Different types of large structural
rearrangements including large deletions, CNVs, large insertions, translocations,
inversion are shown. B. Recurrent and non-recurrent rearrangements are shown.
Recurrent CNVs have the same size and common breakpoints enriched in LCRs. Non-
recurrent CNVs with different sizes may share SRO. Abbreviations: LCR: low-copy
repeats; SRO: Smallest Region of Overlap; Ref: reference chromosome. Created with
BioRender.com.

The locus-specific mutation frequency for CNV and other SV have been
estimated to be two to four orders of magnitude greater than for point
mutations [97]. CN gains are significant markers in cancer genomics for
understanding tumor biology and guiding treatment strategies, precision
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oncology and diagnostics [86,92,96,97]. In Study II, an absolute quantitative
assessment of ERBB2 CN was performed using a novel digital PCR (dPCR)
assay, which was also shown to be predictive of outcome in early breast cancer
patients treated with adjuvant trastuzumab.

Mutational signatures

Mutational signatures are distinctive patterns of mutations found in cancer
genomes, reflecting the natural history of the mutations and their underlying
mechanisms. First characterized by Alexandrov et al. using a non-negative
matrix factorization (NMF) method, they determined a set of signature profiles
and could estimate the contributions of each signature to each cancer genome
[98]. They classified mutational signatures into different categories, single base
substitutions (SBS), double base substitutions (DBS), multi-base substitutions
(MBS), and indels, and made these signatures available via the Catalogue of
Somatic Mutations in Cancer (COSMIC) database [99]. These signatures can be
attributed to various factors, including exposure to environmental agents (e.g.,
smoking, UV), defects in DNA repair mechanisms such as BRCA1, activities of
APOBEC cytidine deaminases, as well as to the physiological state of cells. Each
category has distinct characteristics and implications for understanding cancer
genomics. SBS involve single nucleotide changes, DBS are adjacent nucleotide
pair changes, whereas MBS cover larger sequences, and indels involve
insertions or deletions of DNA segments. These classifications help in
understanding the complex mutational landscape of cancers and may provide
valuable insights into the etiology of cancers and may provide predictive
information independent of known clinical and molecular biomarkers [100].

Tumor heterogeneity

Tumor heterogeneity can be divided broadly into two types. Intratumoral
heterogeneity (ITH) refers to the presence of genetically diverse cancer cells
within a single tumor. This variability arises from mutations, genetic
rearrangements, and epigenetic modifications that occur over the course of
tumor development. As cancer cells proliferate, they can accumulate
differences in their genome, leading to subpopulations of cells with distinct
molecular and phenotypic characteristics. This diversity within a single tumor
can result in significant challenges in treatment, as different subclones within
the tumor may respond variably to therapies. For instance, some clones might
be sensitive to a particular chemotherapy drug, while others might be
resistant, leading to treatment failure and disease progression. ITH is also a
major contributor to cancer relapse, as minor resistant subpopulations can
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survive initial treatment and repopulate the tumor [101]. Conversely, inter-
tumor heterogeneity describes the differences observed between separate
tumors within the same patient, or in the most extreme sense, between tumors
in different patients. This form of heterogeneity can occur between a primary
tumor and its metastases or between multiple primary tumors in cases of
multifocal diseases. Each tumor can develop unique genetic and epigenetic
profiles, influenced by its microenvironment, which can affect its growth,
metastatic potential, and response to therapy. For example, a primary breast
cancer tumor might have a different genetic makeup compared to metastatic
sites in the bone or brain, complicating devising the treatment strategies. This
type of heterogeneity is particularly challenging in cases where metastatic
disease needs to be treated differently from the primary tumor due to distinct
characteristics that influence drug sensitivity and resistance [102].

ITH is considered one of the main causes for poor prognosis and outcomes in
cancer patients because it leads to therapeutic resistance and treatment failure
[103]. Moreover, ITH presents significant challenges in accurately
understanding and treating a tumor due to issues related to tumor sampling. If
the sampled tissue which was sequenced represents only a fraction of the
tumor's cellular diversity, it may not capture the full spectrum of the genetic
variability present. This incomplete view can lead to misunderstandings about
the tumor's genetic landscape and potentially lead to ineffective treatment
decisions [104]. Related to issues of cancer genome interpretation and ITH, it
is worth mentioning several additional factors which can influence
interpretation of cancer genomes. Good sample quality, the quality and
quantity of DNA or RNA extracted from a tumor sample can affect the accuracy
and completeness of sequencing results. Another factor is Tumor purity: the
proportion of tumor cells in a sample can affect the sensitivity of sequencing
assays. Samples with low tumor purity may require deeper sequencing to
detect mutations with high confidence. Pre-analytical factors pose a challenge
too, the way in which tumor samples are handled, processed, and stored prior
to sequencing can affect the quality and quantity of DNA or RNA extracted.
Analytical parameters used during sequencing data analysis, such as quality
score thresholds, variant allele frequency cutoffs, and filtering criteria, can also
influence the types and number of mutations that are identified. The type of
sequencing analysis performed (i.e, whole genome sequencing or a gene
panel) will also influence which portions of the genome are characterized, and
how much data will be available about each of those regions. The type of
software used for analysis and the chosen parameters will determine what
type of variants (i.e.,, SNVs, CNVs, rearrangements) are identified and whether
individual variants will be deemed significant or not. All these factors will
influence the final list of variants, ITH and mutation burden.
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Clonal diversity is a key aspect of ITH. Tumors can consist of multiple clones
and subclones, each with distinct genetic and phenotypic characteristics. These
subpopulations can evolve and adapt over time and understanding the clonal
structure of tumors might be an important aspect for developing effective
treatment strategies that target the diverse cell populations within a cancer
[105]. For example, different subtypes of breast cancer, like HER2-positive,
triple-negative, and hormone receptor-positive, exhibit distinct molecular
profiles. Within a single tumor, genetic diversity can lead to various cell
populations, affecting responses to treatment and contributing to drug
resistance. This complexity poses challenges in treatment and underscores the
need for personalized approaches [106]. In this thesis ITH has been touched
upon in Studies I, II, and 1V.

1.3 The Cancer Transcriptome

Genetic alterations and gene expression changes in cancer can be analyzed
across at least three levels: genomic, transcriptomic, and proteomic. Each level
offers unique insights and poses specific challenges. Understanding the
complex interplay among these levels is crucial for personalized oncology,
helping tailor treatments to individual genetic and molecular profiles.

Transcriptomics refers to the study of all the RNA transcripts in a sample,
typically by using high-throughput technologies such as microarrays or RNA-
sequencing (RNA-seq) [107]. As compared to the cancer genome, which
represents the blueprint of the cell's genetic program, the cancer
transcriptome is more dynamic because measurement of transcripts varies
with biologic activity and cellular status over time. Transcriptomics can
encompass assessments of complete set of RNA transcripts, including coding
mRNAs and non-coding RNAs, alternative splicing, alternative
polyadenylation, identification of fusion transcripts, explorations of noncoding
RNAs (tRNA, miRNA, piRNA, siRNA, IncRNA, enhancer RNA), transcript
annotation, and discovery of novel transcripts, but usually only a subset of
these are investigated at any one time. Given its dynamic and comprehensive
nature, transcriptomics serves as a valuable resource for understanding
cancer mechanisms and identifying biomarkers [108]. While the genomic level
can be regarded as the farthest from the cellular phenotype, transcriptomics
can be seen as an intermediatory level, whereas the protein level may be seen
as being closer to the cellular phenotype.

Coding mRNAs translate into proteins, which can include oncogenes and tumor
suppressors, directly impacting cancer development and progression. Non-
coding RNAs, like microRNAs and long non-coding RNAs, play crucial roles in
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gene regulation and can influence cancer cell behavior [109]. For example,
miRNAs can regulate gene expression post-transcriptionally by binding to the
3" untranslated regions (UTRs) of target mRNAs, leading to their degradation
or inhibition of translation. A well-documented example of how miRNAs can
influence cancer is miR-21, which is often upregulated in various cancers, such
as gliomas, breast cancer, and colorectal cancer. miR-21 targets and
downregulates the tumor suppressor PTEN [110]. Additionally, IncRNAs
through interactions with proteins, DNA, and RNA, can modulate gene
expression at multiple levels including by changing chromatin structure and
the post-transcriptional processing of RNA. One notable mechanism is through
the competing endogenous RNA (ceRNA) hypothesis, where IncRNAs act as
molecular sponges to sequester miRNAs, reducing their regulatory impact on
target mRNAs. An example of this is PTEN and its ceRNA the PTEN pseudogene
(PTENP1), which can bind miRNAs that normally are targeting the PTEN
mRNA. By sponging these miRNAs, PTENP1 indirectly increases PTEN
expression, thus impacting cell growth and apoptosis pathways [111].

Gene expression is regulated by a combination of genetic and epigenetic
factors, including DNA methylation and histone modifications. Additionally,
the epitranscriptome, which involves modifications on RNA molecules, adds
another layer of complexity, influencing both gene expression and protein
translation. In cancer, the delicate balance among these regulatory
mechanisms is disrupted, resulting in altered gene expression patterns,
splicing anomalies, and aberrant RNA modifications. Studying the
transcriptome offers critical insights into the functional consequences of
genetic alterations in cancer, bridging the gap between DNA and the proteome,
and aiding in the identification of new therapeutic targets and a deeper
understanding of cancer biology at a molecular level.

As the field of oncology continues to evolve, the integration of transcriptomics
alongside genomics in clinical trials has proven to be a groundbreaking
strategy for advancing precision medicine. This approach not only identifies
clinically actionable molecular alterations but also deepens our understanding
of the mechanisms underlying different cancers. An exemplary illustration of
this advancement is the WINTHER precision medicine clinical trial, one of the
first prospective trials in diverse solid malignancies to assess both genomics
and transcriptomics to tailor treatments to specific molecular alterations. This
trial demonstrated how transcriptomic analysis could significantly expand the
number of patients effectively matched to drugs [112]. Other noteworthy
precision medicine trials that incorporated gene expression analysis at coding
and non-coding RNA level include PROVABES [113], INFORM [114] and PIPseq
[115]. In this thesis, large scale transcriptomics analysis is performed in Study
Iand IV.
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1.4 Breast Cancer

1.4.1 Mammary gland development

The mammary gland, or breast, distinguishes mammals from all other animals
due to its unique anatomical structure. It evolved from apocrine sweat glands
approximately 300 million years ago, highlighting a significant evolutionary
adaptation that has played a crucial role in mammalian reproduction [116].
The structure and development of the mammary gland are highly conserved
across mammals. Mammary gland development is a dynamic process
influenced by hormonal, genetic, and environmental factors. It starts in
embryogenesis, progresses through puberty, pregnancy, lactation, and finally
involution. This complex organ comprises various cell types like epithelial cells
that grow from the nipple into a fat pad, formed by adipocytes and infiltrated
by vascular endothelial cells, fibroblasts and immune cells. Signals from the
mesenchyme direct embryonic development, while circulating hormones
released from the pituitary and ovary influence changes in puberty and
adulthood.

The mammary epithelium consists of basal and luminal cells. Basal epithelium
comprises myoepithelial cells forming its outer layer and a small stem cell
population supplying various cell types. The luminal epithelium in the
mammary gland is characterized primarily by the presence of hormone
receptors for estrogen and progesterone. These hormone receptors are critical
in defining the function and behavior of luminal cells, influencing their role in
forming the ducts and secretory alveoli essential for milk production. These
two epithelia create a bi-layered structure essential for lactation. Puberty
triggers ductal growth and branching and is under hormonal influence,
especially estrogen. During pregnancy, hormones such as progesterone and
prolactin stimulate lobuloalveolar development, preparing for milk
production. Post-lactation, the gland undergoes involution, reverting to a near-
pre-pregnancy state [117]. The terminal duct lobular unit is the functional unit
of the breast, and is made up of a cluster of alveoli connected to an adjoining
ductule, as illustrated in Figure 1.4.

During menopause, the mammary gland typically undergoes involution,
marked by the senescence and size reduction of the terminal duct lobular units.
Incomplete and lobular involution which is a histological observation as well
as mammographic breast density (MBD), a radiological assessment, have been
found to be associated with an increased risk of developing breast cancer and
may also serve as prognostic factors [118].
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The female reproductive hormones, estrogens, progesterone, and prolactin are
crucial for female reproductive processes and control postnatal mammary
gland development and have a major impact on breast cancer. Estrogen
synthesis mainly occurs in ovaries, but other tissues such as adipose tissues
and osteoblasts also contribute. Four major types of estrogens exist: estrone
(E1), estradiol (E2), estriol (E3) and estetrol (E4), with E2 being the most
potent and prevalent form and dominant during fertile years. E1 is produced
after menopause, whereas E3 and E4 are produced only during pregnancy. In
the breast, estrogen drives duct development and influences prolactin
secretion, while progesterone, aided by estrogen-induced progesterone
receptor (PR) transcription, is vital for alveolar growth. These hormones play
key roles in breast tissue development and function [119].
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Figure 1.4: The female breast. A. The nipple, areola, lymph nodes, lobes and lobules,
ducts, muscles, chest wall, ribs, and fatty tissue are illustrated. B. The normal duct
architecture and invasive ductal carcinoma are depicted. Reprinted and adapted from
National Cancer Institute © 2011, Terese Winslow LLC.

1.4.2 Breast cancer epidemiology

Incidence

Breast cancer is the most frequently diagnosed cancer among women globally,
surpassing lung cancer as the most common cancer worldwide. It accounts for
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approximately 11.7% of new cases, with an estimated 2.3 million women
diagnosed annually. This is followed by lung (11.4%), colorectal (10.0%),
prostate (7.3%), and stomach (5.6%) cancers. [5,120]. This rise in incidence
may be attributed to improved detection, the availability and utilization of BC
screening methods such as self-breast examinations and mammography,
depending on a country’s developmental index, where developed countries
have the highest incidence [121]. Comparing cancer incidence rates is key for
understanding cancer risk factors, guiding cancer control initiatives, and
evaluating prevention programs. For instance, low and medium low and
medium development index countries have also been experiencing increases
in incidence due to a combination of factors including physical inactivity,
excess body weight, delaying the onset of childbearing, shortening the
breastfeeding period, and increasing the use of oral contraceptives that all
contribute to BC development [122]. Although rare, men can develop breast
cancer as well, with about 1% of all BC being diagnosed in men and invasive
ductal carcinoma being the most common type among men, constituting
approximately 90% of all male BC [123].

In Sweden, breast cancer is the most common type of cancer among women. In
2021, 8619 women were diagnosed with breast cancer and 1326 women died
with breast cancer as the underlying cause of death [7,124].In 2021, there was
a 3.9% increase in the number of women diagnosed with BC as compared to
the average of the three years prior to the start of the pandemic in 2020 [124].
Breast cancer affects women of all races and ethnicities, but there are notable
differences in incidence and outcomes across these groups. Although the
reasons behind racial and ethnic disparities are not fully understood, for
example in the United States BC incidence is highest among white non-Hispanic
women [125].

Mortality

In terms of mortality, breast cancer mortality rates show significant global
variation, being higher in socio-economically disadvantaged areas due to
limited access to early screening and treatment. In developed countries, some
disparities are also evident, for example with higher mortality rates among
black women compared to white women in the United States [126].

Globally, according to GLOBCAN 2020 estimates, BC is the fifth leading cause of
mortality and the leading cause of death from cancer among women,
accounting for 6.9% of all cancer-related deaths in 2020 [127]. One in 6 cancer-
related deaths is due to BC, making it a leading cause of cancer mortality in 110
countries [121]. In the developing world, women have a 17% higher BC
mortality rate due to a lack of defined early screening standards and poor or
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delayed access to treatment [128]. Since the mid-1990s, Northern European
countries have experienced a decline in mortality rates [129].

Despite a high number of total deaths, short- to mid-term survival rates for
breast cancer patients are relatively favorable compared to other cancers, with
a 98% survival rate at one year and 88.5% at five years [130]. However, it's
important to note that a 5-year survival rate does not equate to a cure. In fact,
the rate of relapse of BC approximates a nearly straight line, with about an
equal number of relapses occurring before 5-years as the number that occurs
after 5-years of diagnosis. Long-term survival rates decline significantly, with
only 60% of patients surviving 15 years and 50% surviving 20 years, often due
to the recurrence of the disease [131].

Age-standardized incidence rate and mortality rate (ASIR and ASMR,
respectively), allows for meaningful comparisons across different
demographic segments, aiding in understanding risk factors and shaping
cancer control policies. ASIR with substantial regional differences is illustrated
by data from the World Health Organization for 2020 in Figure 1.5.
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Figure 1.5: Global breast cancer incidence. Estimated ASIR for breast cancer per
100,000 women for the year 2020 are shown. Source: World Health Organization Global
Cancer Observatory (https://gco.iarc.fr).

Early detection, enhanced awareness and advancements in treatment have
notably lowered BC mortality in developed regions. Yet, in less affluent parts
of the world, high mortality persists due to healthcare disparities [132].
Implementing organized screening, establishing regularly updated reliable
breast cancer registries, and expanding mammography in these regions can
boost early diagnosis, decrease mortality, and lessen the global impact of BC
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[133]. That being said, it should be noted that BC has seen remarkable
advancements in diagnosis, treatment, and patient survival, outpacing many
other cancer types in the past decades [134]. This significant progress reflects
a triumph in medical science and patient care.

1.4.3 Risk factors

A woman'’s likelihood or risk of developing BC is influenced by non-modifiable
risk factors, such as sex, aging, race, BRCA1 or BRCA2 mutations, family history
of breast cancer, and familial breast cancer syndromes, as well as by modifiable
risk factors, such as alcohol use, smoking, obesity, and physical activity. Among
non-modifiable risk factors, female gender is the strongest breast cancer risk
factor, with BC diagnosis most common in middle-aged and older women, with
an increasing cumulative risk of developing BC of 1.5% at age 40, 3% at age 50,
and more than 4% at age 70 [135]. Globally, a woman has approximately a 1 in
8 chance, or about 12.5%, of developing breast cancer at some point during her
life. This statistic can vary significantly depending on a range of factors
including genetics, lifestyle, and environmental exposures, as well as regional
healthcare practices and screening rates [120,136]. BC subtypes and age has
also an observed link, where aggressive, resistant TNBC is more common in
individuals under 40, while the luminal A subtype predominates in patients
over 70 years of age [135]. This pattern reflects a broader trend where cancer
risk increases with age, likely due to the accumulation of cellular alterations
and prolonged exposure to carcinogens over time. Circulating estrogens and
androgens are also positively associated with the risk for breast cancer in
premenopausal women, with multiparity being protective [137]. Having a
family history of breast and ovarian cancer (especially those characterized by
BRCA1 and BRCAZ mutations) is a significant risk factor for breast cancer, with
about 13-19% of breast cancer patients reporting a first-degree relative with
the same disease [138,139]. Genetic mutations in BRCAI and BRCAZ, mostly
inherited in an autosomal dominant manner, are strongly linked to increased
breast cancer risk, though sporadic mutations are also common [140]. As
stated previously, women with a germline BRCA1 mutation have a significantly
elevated 55-72% risk of developing BC by age 70-80. For those with a germline
BRCAZ mutation, the risk ranges from about 45% to 69% [141,142]. Other key
genes associated with high breast cancer risk include TP53 [143], CDH1 [144],
PTEN [145,146], and STK11 [147].

Reproductive history including early menarche, pregnancy, breastfeeding,
menstruation, menopause, hormonal imbalance, along with duration and
exposure to hormones such as E2 and progesterone, are crucial factors that
influence the breast microenvironment and BC risk [148]. Pregnancy and
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lactation or breast feeding are protective factors against breast cancer, where
the risk is reduced by 4.3% for every 12 months of breastfeeding [149]. Higher
breast tissue density correlates with increased risk for breast cancer, a trend
observed both in pre- and post-menopausal women [150]. A personal history
of breast cancer as well as non-cancerous breast alterations such as atypical
hyperplasia or carcinoma in situ significantly increases the risk of new
cancerous lesions in the breasts [151].

Among modifiable risk factors, physical activity among females with a family
history of breast cancer, was found to be associated with a reduced risk of
cancer, during both the premenopausal and postmenopausal periods [152].
The reason might be that being physically active and exercise might alter
immune system responses, reduce the exposure to the endogenous sex
hormones as well as lower IGF-1 levels [153]. Obesity and a higher body mass
index (BMI = 25 kg/m?2) are known risk factors that increase the incidence of
BC [154]. Data shows that these factors are associated with poorer clinical
outcomes and more aggressive tumor characteristics, including a higher
percentage of lymph node metastasis and larger tumor sizes [155]. Obesity
may be a reason for greater mortality rates and a higher probability of cancer
relapse, especially in premenopausal women [156]. Alcohol consumption was
observed to be associated with increased risk of BC, in particular for ER+ BC
[157], perhaps due to direct and indirect carcinogenic effects of alcohol
metabolites and alcohol-related impaired nutrient intake [158], or due to
hormonal imbalances caused by increased levels of estrogens induced by
alcohol intake [159]. Active as well as passive smoking significantly
contributes to initiation of cancer by directly causing DNA damage, increasing
the possibility of mutations within oncogenes and/or tumor suppressor genes
[160]. Dietary supplementation with vitamin D has been shown to be
associated with lower mortality rates in BC patients [161]. A diet high in ultra-
processed foods, which are now classified as a Group 1 carcinogen, has been
shown to increase the risk for not only BC but also for gastrointestinal cancers
[162]. Chronic exposure to harmful chemicals such as pesticides, insecticides,
hydrocarbons, and solvents may promote breast carcinogenesis by altering the
tumor microenvironment and inducing epigenetic changes along with DNA
damage [163,164]. Prolonged use of hormone replacement therapy (HRT)
longer than 5 or 7 years also increases risk of BC [165,166] and lengthy use of
specific drugs including a number of antidepressants, antibiotics, non-steroidal
anti-inflammatory drugs, as well as statins, have been shown to be associated
to an elevated risk of BC [167,168].
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1.5 Breast Cancer Biomarkers

Breast cancers are clinically stratified based on key biomarkers that
significantly influence treatment decisions and prognosis. These biomarkers
include the expression of the estrogen receptor (ER), progesterone receptor
(PR), and the overexpression or gene amplification of HER2 (encoded by the
ERBBZ gene). While ERa is acknowledged for its well-established significance
in breast cancer pathology and treatment, ER is of particular focus in this
thesis. In this section, the roles and actions of biomarkers ERJ, along with
CITED1 and HERZ2, are detailed.

1.5.1 Estrogen receptors

Estrogens play a crucial role in the development of both normal and malignant
mammary tissues. Their biological effects are mediated by estrogen receptors,
specifically ERa and ER[, which are part of the nuclear receptor superfamily of
transcription factors. These receptors are characterized by highly conserved
DNA-binding and ligand-binding domains [169].

Jensen and Jacobson first observed estrogen retention in hormone-responsive
tissues in the 1960s [170]. Later, Jensen and colleagues discovered the
existence of intracellular estrogen-binding receptors [171,172]. In 1986, the
ERa gene was cloned by Chambon's group, revealing its DNA-binding domain
with zinc finger motifs and a ligand-binding domain, typical of transcription
factors [173,174]. They also identified the N-terminal activating function (AF-
1) domain, crucial for ER's transcriptional activity through protein
interactions. ERa protein consists of 595 amino acids (aa), encoded by gene
ESR1, located on chromosome 6.

A decade later, in 1996, estrogen signaling was further refined and, adding to
the mechanistic complexity, a second ER gene was discovered from rat prostate
by Gustafsson and Kuiper and was named ER[ [175]. As depicted in Figure 1.6,
ER( is encoded by the ESRZ gene located on chromosome 14, produced from
eight exons, and comprising a 530 aa protein (full-length ERB, the ERf1
isoform) [176]. The genes for both estrogen receptors, ERa and ERf, consist of
eight exons and are alternatively transcribed into isoforms. These isoforms
have different C-terminals but contain similar functional domains, exhibiting
varying degrees of homology, as described below [177].
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Figure 1.6: Schematic representation of ESR2 gene. Mapping of gene organization to
mRNA and its protein sequence are illustrated. Abbreviations: AF1: activating function
1; AF2: activating function 2; TSS: transcription start site. Figure modified from [178].
Created with BioRender.com.

A third known ER, G protein-coupled estrogen receptor 1, GPER (formerly
known as GPR30), is a G protein-coupled receptor (GPCR) that was cloned in
the late 1990s [179,180]. Unlike the classical ERs, GPER predominantly
induces rapid, non-genomic estrogen signaling. Its activation leads to a
multitude of downstream signaling events, including Ca2* mobilization, cyclic
adenosine monophosphate synthesis, and indirect activation of kinase
pathways, including phosphatidylinositol-3-kinase (PI3K) and mitogen-
activated protein kinase (MAPK) pathways through trans-activation of EGFR
[180,181].

ERf signaling

ERa and ER share highly homologous protein domains, with different degrees
of sequence conservation. The tertiary structure of ERa and ERp includes an N
terminal AF1 or A/B domain that mediates weak ligand-independent
transcriptional activity. The DNA binding domain (DBD) or C domain is
extremely well-conserved between ERa and ERB with 97% homology and
contains 2 functionally different zinc finger motifs, responsible for specific DNA
binding to estrogen response elements (EREs) with high affinity, and mediates
a weak receptor dimerization. The hinge domain, also known as the flexible D
domain, includes a nuclear localization signal motif and a weak dimerization
interface. The ligand-binding domain (LBD), or E domain, is highly conserved
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and encompasses a ligand-binding pocket and the transactivation function
(AF2). This domain also features a dimerization interface and is responsible for
activating transcription in response to ligand binding. The DBD and LBD of the
ERf are 96% and 60% homologous with those of ERa, respectively, indicating
that they may have similar but not identical functions [182]. The D domain,
often referred to as the hinge domain, serves as a link between the DBD and
LBD. The C-terminal or F domain, which is less conserved across different
species, plays a role in negatively regulating ligand-dependent dimerization of
both receptors [183-185].

ER is present in a cytosolic complex as a free unliganded form along with
chaperones HSP70 and HSP90 and associated proteins. Binding of ligand to the
AF2/LBD results in homo (a/«, B/B) and heterodimerization (a/f) with ERa
and with other ER[ isoforms and dissociation from HSP70 and HSP90 as well
as cytoplasmic relocalization of HSP90, and binding to EREs in promoters of
estrogen-regulated genes [186,187]. While ERa and ERf can bind to most EREs
identically, transcription regulation depends on the ER subtype, tethering
differential transcription factors and then modulating different target genes
[177,188]. For example, in ERq, coactivators simultaneously bind to AF1 and
AF2 to reach full activation, while ERB has a lower activity of AF1 but a
completely functional AF2 [189]. Generally, binding of agonist results in
persistent nuclear localization, while that of anti-estrogens results in the
formation of perinuclear clusters of ER-ligand complex [190]. Thus, the
activation of ERa or ERf3 can produce both unique and overlapping effects.

The natural ligands of ERa and ERf includes estrogenic compounds including
estradiol, estrone, and estriol, but relative to ERa, ER binds estriol and ring B
unsaturated estrogens with higher affinity [191]. Phytoestrogens present in
food that mimic estrogens in the body, have greater affinity for ER than ERa.
For example, soybean isoflavones (genistein, daidzein, and biochanin A) are
ERp-selective agonists of transcriptional activation or repression, creating
more stable the complexes with lower binding free energy [192,193].
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ERa and ER transcriptional activity

ERa and ERP exhibit multiple modes of action that influence their regulatory
impact on gene expression. Upon ligand binding, these receptors translocate to
the nucleus where they dimerize and engage with EREs in the DNA of target
genes. This interaction initiates the transcriptional processes essential for
executing estrogen's effects in cells [194]. Both receptors can directly bind to
EREs, yet they display distinct binding dynamics and transcriptional outcomes
[195]. The complexity of ERa and ER[ interaction with DNA is highlighted by
the fact that EREs exist in multiple conformations. These include consensus
EREs, characterized by palindromic ERE repeats, non-consensus EREs, which
deviate from the typical sequence, single binding site EREs, multiple binding
site EREs, and composite ERE sites which involve combinations of these
elements [196].

ERa and ERP compete for binding to these ERE sites. However, compared to
ERa, ERB has reduced binding affinity for non-consensus EREs, which
constitute the majority of EREs and include those associated with genes such
as C-fos, c-jun, pS2, and cathepsin D. Additionally, as shown in Figure 1.7, both
ERs can interact with DNA indirectly by tethering to other DNA-bound
transcription factors (TFs) such as AP-1, SP1, or NF-kB, as revealed by genome-
wide mapping of ERP binding sites that have extensive overlap with AP-1
binding sites [197]. Other non-genomic estrogen-dependent pathway signals
are triggered by ligand binding to membrane ERs and mediated through
signaling cascades (Akt, PKA, and ERK1/2) to activate STAT, CREB, NF-kB, and
Jun TFs.

In aligand-independent action in the absence of estrogen, ER[ can also activate
expression of a unique sets of genes activating the pathways related to growth
factor signaling via activated kinases (Figure 1.7). In an in vitro study, it was
observed that the main difference in the specific activation of survival
pathways mediated by ERa and apoptotic pathways mediated by ERP is
through their non-genomic membrane-initiated signaling [198]. Another in
vitro study highlighted that while estrogen signaling through ERa promotes
cell cycle entry, ERB temporarily hinders it. The absence of ER3 expression is
linked to increased cell transformation, suggesting distinct roles of ERa and
ERB in cellular processes [199]. Clinical studies on breast carcinomas align
with in vitro findings, showing that whenever there is a shift in the ERa/ER]
ratio: ERa is often upregulated while ER[ is downregulated [200].
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Figure 1.7: The estrogen Receptor (ER) signaling pathway. ER and CITED1 mechanisms
for transcription activation are shown. After activation by ligand or upon
phosphorylation, ER translocates to the nucleus, dimerizes and binds to ERE response
elements either directly or in conjunction with transcriptional co-factor complexes.
CITED1 can selectively coactivate the estrogen-dependent ER-mediated transcription of
AREG and TGF-a. Abbreviations: CITED1: CBP/p300-interacting transactivator with
Asp/Glu-rich C-terminal domain 1; CoA: co-activator; E2: estradiol; EGFR: epidermal
growth factor receptor; ER: estrogen receptor; ERE: estrogen response element; IGFR:
insulin like growth factor receptor; P: phosphoryl group; TF: transcription factor; TFRE:
transcription factor response element. Created with BioRender.com.

Expression of ERs

In normal beast tissues, ERa is expressed in luminal epithelial cells but not in
the stroma, whereas ERf is present in luminal, myoepithelial, and stromal cells
[201]. Though at lower levels than those found in reproductive tissues, ERa
and ER[ are both expressed in other cell types as well including lymphocyte
precursors [202], T and B cells [203], and in the brain [204].

In primary BC, tumors are classified as ER-positive or ER-negative based on the
expression of ERa. At diagnosis, approximately 75% of BCs are ERa positive.
[205], ERa expression defines luminal-type tumors, whereas basal-like BC are
ER-negative [206]. ERa-positive tumors indicate a better prognosis due to
their responsiveness to endocrine therapies and CDK4/6 inhibitors [207]. In
contrast, ERa-negative tumors tend to be more aggressive and progress more
rapidly [208]. Intriguingly, ERa expression is dynamic; approximately 50% of
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ERa-positive breast cancers that recur after endocrine therapy lose expression
of ERa [209].

The role of ER expression in breast cancer has been a subject of considerable
debate and investigation, with conflicting reports regarding its prognostic
value. For instance, some studies have suggested that high ER[} expression,
regardless of ERa status, serves as a marker of positive treatment response in
breast cancer patients undergoing chemotherapy [210-212] and endocrine
therapy [210,213-215]. Conversely, other groups have shown that increased
ERp expression is associated with poor prognosis and reduced disease-free
survival (DFS) in patients receiving endocrine therapy in postmenopausal
primary BC [216,217] and reduced DFS in TNBC patients [215,218]. However,
another study found no significant relationship between ER expression and
patient outcomes, further complicating the narrative around ERB's role in
breast cancer [219].

In Study I of this thesis, large-scale transcriptomic analyses were performed
that has demonstrated that ESRZ (ER[) is expressed at higher levels in ERa-
negative breast tumors (basal-like subtype) and that ESRZ showed a slight
inverse correlation with ESRI expression. Also, ESRZ-high tumors had
favorable overall survival (OS), more pronounced in subgroups receiving
endocrine therapy and TNBC [220]. These findings align with two other
independent studies by Austin et al., [218] and Dey et al. [221] which further
confirmed ERf’s role as a potential target for therapy in TNBC using TMA and
in vivo studies, respectively.

Gene regulation of ERf

Transcription factors that have basic-helix-loop-helix (bHLH) protein
structural motifs bind to the evolutionally conserved E-box motif of the ESR2
promoter, enhancing transcription of downstream genes. Many TFs, including
c-jun, CREB, AP2a and AP2y (AP2a and AP2y also regulates ESRI
transcription) binds to the ESRZ promoter and regulates ESRZ transcription
[222,223]. ERB, unlike ERq, was also shown to be modulated by circadian clock
proteins, and the expression levels of these circadian regulators significantly
impact ER signaling by controlling the intracellular concentrations of
endogenous ER[ [224]. ESRZ2 expression is also regulated by promoter
methylation and histone modifications on the ESRZ promoters known as 0K
and ON, controlling its transcription [225].
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ERf alternative splicing

To date, five experimentally validated functional ERf isoforms termed ER[31-
ERB5 have been described, which may be attributed to frame-shift mutations
or alternative splicing of last coding exons, and found to be expressed in both
normal and cancerous tissues [226]. The first cloned wild-type ESRZ transcript,
termed ERB1, is the only isoform that retains full transcriptional activity. For
the remaining isoforms, exons 1 to 7 are the same and only exon 8 is specific to
a given isoform. These isoforms yield proteins of a lower molecular weight
than the wild-type protein [227]. ERB isoforms have different expression levels
in different tissues, different associations with tumor characteristics,
prognosis, and purportedly different roles in tumorigenesis. For example, ERf1
(which is abundantly expressed in most normal breast epithelial cells) was
thought to be present in 20-30% of breast cancers [228]. In other research,
ERfB1 expression by IHC in breast cancer was reported to be present in over
60% of cases [229,230]. ER4 and ER5, which do not bind estrogen but can
bind to DNA, are expressed in the testis and placenta, respectively. ER32, ER[34,
and ERB5 can heterodimerize with ERa and negatively regulate its
transactivation activity [227,231]. ERB1 overexpression predicts favorable
prognosis and better survival in tamoxifen-treated BC patients [232] as well as
TNBC [233]. ERB2 was found to be associated with poor OS in BC patients [234]
and ERB5 was associated with poor outcome in HER2+ and TNBC [235]. Absent
or decreased transcription of ERf1, ERf2, and ERf4 in some breast, ovarian,
and prostate cancer tissues and cell lines may be attributed to methylation of
CpG sites in the promoter ON [236]. Moreover, it has been reported that miR-
92 canreduce ERB1 expression by direct targeting of the 3’-UTR of ESR2 mRNA
[237].

Clinical significance and prognostic value of ERf in breast cancer

The exact role of ERB in BC is controversial and was one subject that we
addressed in this thesis work. ER3 expression has been reported in ERa-
negative subtypes (basal and TNBC) [238,220], and majority of data from BC
cell lines and clinical samples suggests that ER might have antiproliferative,
pro-apoptotic, and tumor-suppressive functions [200,239-241]. In ERa-
positive BC, some reports suggest that ER[3 acts mainly as a tumor-suppressor
[242,243].

In addition to studies stated above for ERf transcripts and correlations to BC
patient prognosis, it was also found that ERB expression might be an
independent predictor of response to tamoxifen in tamoxifen treated BC
patients in adjuvant setting [244]. In another study, it was shown that ER3
regulates gene expression, proliferation, increases apoptosis in BC by
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attenuating ERa-induced cell proliferation, reversing transcriptional
activation and repression by ERa. The mechanism was suggested to be related
to how ERa functionally incapacitates p53’s tumor-suppressive actions by
recruiting nuclear receptor corepressor (N-CoR) to repress p53-mediated
transcriptional activation and prevent p53-dependent apoptosis (despite
harboring wild-type p53). To reduce and destabilize this ERa-p53 binding, ER3
physically interacts with p53 and antagonizes ERa-p53-mediated
transcriptional regulation, and activates ERa-repressed genes, supporting the
notion that ER[ is a novel activator of the p53 pathway and can act as a tumor
suppressor in BC cells [245]. In ERa-negative BC, studies have also supported
the tumor-suppressive role of ER3 [218,246]

A multivariate analysis of 442 invasive BCs treated with adjuvant tamoxifen
revealed that ER1 expression was associated with significantly better survival
in patients with basal-like and TNBC tumors [234]. This study also showed that
ERp1 status was significantly associated with survival in postmenopausal, but
not premenopausal, women, indicating an emerging role of ER[B as
independent predictor of recurrence and mortality. Wang et al. showed that
ERPB1 protein expression with negative pAKT predicted favorable prognosis in
TNBC. The PI3K/AKT pathway, commonly activated in BC, is regulated by
PTEN and controls proliferation, invasion, apoptosis, and hypoxia-related
proteins. Increasing PTEN levels can reduce Akt signaling, increasing ERf31
expression and blocking HER2/HER3 signaling in BC cells. Conversely,
activation of PI3K/AKT leads to ERP ubiquitination and degradation,
influenced by Akt's interaction with MDM2 and CBP, promoting ERf
polyubiquitination [233]. Another study supports these results showing ERf3
to be an independent marker for favorable prognosis after adjuvant tamoxifen
treatment in ERa-negative BC tumors [214]. ERB exerts its anti-proliferative
role by reducing cell migration, invasion, and angiogenesis by inhibiting HIF-
la-mediated transcription by downregulating aryl hydrocarbon receptor
nuclear translocator, ARNT, which further reduces the expression of VEGF,
leading to the reduction of the number of intertumoral blood vessels [247,248].
These findings are further supported by a study where patients with ERa-
negative BC, expressing high ERB1 and ERB2 protein, had significantly
improved DFS and OS [249]. ERB expression has also shown to inhibit cell
growth by inducing G1 cell cycle arrest, which was further enhanced by 17-
estradiol treatment in TNBC cell lines [250].

Thus, a series of mounting evidence points to ERP as having a tumor
suppressive, pro-apoptotic and anti-proliferative role in BC, and its loss
promoting breast carcinogenesis. In the future, ERB may have clinical value
regarding prediction, prognosis, and as a possible therapeutic target.
Conversely, some studies have also reported that ER[ is not associated with
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recurrence or survival in basal-like and TNBC [251]. The observed differences
in the role of ERB across various studies could be attributed to multiple factors.
These include the co-expression of ER with its binding partners, the isolated
expression of ERP or its co-expression with ERq, the presence of different ERf3
isoforms, the use of poorly specific antibodies, and variations in experimental
approaches such as ectopic expression and gene knockdown [252,253].
Regarding gene knockdown, CRISPR/Cas genome editing technology presents
a reliable alternative to traditional methods, helping to minimize artifacts and
incidental effects. This technique was employed in a recent study to reassess
the role of ERP by creating an ERB knockout mouse model. Observations from
this model, which included the development of in situ ductal cancer in both the
prostate and mammary gland, confirmed ERf's oncosuppressive role [254]. To
ensure the accuracy and reliability of research findings on ERf's role in cancer,
itis crucial to develop and utilize highly selective ER[3 antibodies which should
then be rigorously evaluated across a broad spectrum of well-characterized
cancer samples. This approach will help clarify the discrepancies observed in
previous studies using IHC and provide a more definitive understanding of
ERB's function in cancer biology. Thus, continued research is essential to
precisely understand ERf's roles, which could enhance diagnostic clarity and
treatment for certain breast cancer subtypes such as TNBC, offering new
management strategies.

1.5.2 CITED1

CITED1 is a transcriptional co-regulator of the CBP/p300-interacting
transactivator with Asp/Glu-rich C-terminal domain (CITED) family of
proteins [255]. It was originally named melanocyte-specific gene 1 (MSG1)
following its discovery in highly pigmented murine melanocytes [256]. MSG1
expression was also identified in mammary epithelium, testes, the brain,
embryonic tissues, and various tumors, leading to a broader understanding of
its biological characteristics [257-259]. As a result of these findings and its
expanded role, MSG1 was subsequently renamed “CITED1”. The CITED1 gene
is located on chromosome Xq13.1 and is highly conserved, comprising three
exons and two introns. Its promoter region includes a TATA box and potential
binding sites for various TFs such as USF, Brn-3, Brn-2, TFE3, Oct-1, AP-2, and
Sp1. This region is crucial for initiating transcription of the CITED1 gene, which
translates into a 27-kDa nuclear protein [256]. CITED1 shares a conserved
transcriptional activation region, CR2 (145-193 aa; Figure 1.8), with CITED2,
CITED3, and CITED4 [260]. The CR2 region is rich in aspartic and glutamic acid
residues which enhances its transcriptional activity by facilitating binding to
the co-activators CBP/p300 as depicted in Figure 1.8 [255,256]. Several
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proteins including heat shock cognate protein 70, hypoxia-inducible factor-1,
-catenin, and microphthalmia-associated transcription factor (MITF) can
inhibit this interaction by competing for CBP/p300, thus suppressing
transcription. Additionally, phosphorylation of CITED1 at five serine residues
during the M-phase of the cell cycle (Ser16, Ser63, Ser67, Ser71, and Ser137)

diminishes its ability to activate transcription by reducing its binding affinity
for CBP/p300 [261,262].

As CITED1 lacks DNA-binding ability, it functions primarily as a facilitator that
enhances the interactions between CBP/p300 and certain DNA-binding
proteins such as SMAD4, ERa, and others (protein domains are shown in Figure
1.8). These complexes then translocate to the nucleus, bind to the promoters
of specific genes, and amplify transcription. Notably, CITED1 interacts with the
TF SMAD4 via its N-terminal SMAD4-interacting domain (SID; aa 30-60),
enhancing TGF-/BMP-induced transcription. It also interacts with ERa via its
N-terminal CR2 region (aa 157-158), a connection that does not depend on its

interaction with CBP/p300, thus supporting the coactivation of estrogen-
dependent transcription [261].
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Figure 1.8: Schematic representation of CITED1 gene. Mapping of genomic organization
of mRNA and protein sequence are illustrated, and the protein domains are marked.
Abbreviations: SID: SMAD4-interacting domain; CR2: conserved transcriptional
activation region; TSS: transcription start site. Created with BioRender.com.
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Role of CITED1 in estrogen signaling

CITED1 promotes the growth of mammary epithelium and the formation of
mammary ducts by activating the transcription of amphiregulin (AREG) via the
estrogen signaling pathway during pubertal mammary gland development
(Figure 1.7) [263,258]. CITED1 can also coactivate the ER-mediated
transcription of TGF-a in an estrogen-dependent manner, promoting the
growth of MCF-7 cells in an autocrine manner [261]. CITED1 was also shown
to enhance transcriptional activation of both ERa and ERf in an estrogen-
dependent manner, and functions as a selective coactivator for estrogen-
dependent transcription in mammary epithelial cells [258,261].

In Study III of this thesis, CITEDI mRNA and protein expression was analyzed
using GOBO, TMA, and TCGA datasets. Notably, CITED1 mRNA was found to be
expressed in ER+ luminal breast cancer subtype and higher CITED1 was found
to be correlated with tamoxifen response, suggesting its role as a marker of
better prognosis and favorable outcome in anti-endocrine treated, ER+, lymph-
node negative BC patients. CITED1 protein expression was validated using
TMA and was found to be associated with favorable outcome in ER4+,
tamoxifen-treated patients. It was also found that MCF-7 cells overexpressing
CITED1 exhibit selective amplification of AREG but not TGF-a, and the
maintenance of specific ERa/CITED1-mediated transcription is a good
prognostic marker in patients with anti-endocrine-treated ER+/lymph node
negative (LN-) breast cancer [264].

1.5.3 HER2 signaling

Human epidermal growth factor receptor 2 (HER2), also known as ErbB-2 or
Neu, is one of the four members of the epidermal growth factor receptors with
tyrosine kinase (TK) activity [265,266]. It is a proto-oncogene encoded by the
ERBBZ gene located on chromosome 17q12, was found to be amplified in a
human BC cell line in 1980s, and has since then has been extensively studied in
BC [267]. ERBB2Z mRNA is composed of 27 exons. The first exon codes for 30
aa, where the first 22 aa constitute a signal peptide which is cleaved during the
migration of mature ERBBZ mRNA to the cell membrane [268]. Full-length
HER2 is a 185 kDa transmembrane receptor, a total 1255 aa in length, which is
composed of a 620 aa extracellular domain, followed by a 23 aa
transmembrane domain and a 490 aa intracellular domain with a tyrosine
kinase activity as shown in Figure 1.9 [269,270]. HERZ2 is the only EGFR family
member for which no ligand has been found, which can be explained by the
unique structure of its extracellular domain, which is not favorable for ligand
binding [271]. Yet, it is the preferred binding partner of all ERBB receptors
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even as a monomer, because its extracellular domain is always in the open
conformation [272]. Itis now known that ERBBZ gene amplification and HER2
protein overexpression is observed in 15-30% of breast cancers [273]. Out of
the four receptors, all of which are transmembrane proteins with an
intracellular TK domain, HER2 is the only one that does not bind to a ligand.
HER2 overexpression and homo- and/or heterodimerization of this receptor
with other EGFR family members leads to autophosphorylation of tyrosine
residues initiating a cascade of signaling pathways, namely PI3K and MAPK
signaling, which confer strong proliferative and tumor growth advantages
[274]. ERBB2 amplification and overexpression correlate with aneuploidy,
lymph node metastasis, grade and size of tumor, and was found to be a
significant predictor of patient outcome, poor prognosis (both overall survival
and time to relapse), as well as therapy response in BC patients [265,275].

Chr17q
)
g3 L // |
A ERBB2 7
2 T / I\
T nooan
’ ’l i " ,I: N
1 vV 1
S :: [ “ o \\
A TR ¢ o \
’ N fora \
’ oy N ,' (] \
/I oy [N} \\
," TSS " " \
< ’ " :’ \
z [[Tata [1]2] 3 26 27 | [exon]
[ d
1A 30 1255 exon size (bp)

isp :

H translated sequence

H 1255 bp

: Intracellular domain

Transmembrane Tyrosine Kinase
£ § H domain domain :
Q1n y X .
8% HER2 ( I/ / /v | | | | ) [domain]
Qo

g 1 653 675 731 906 1240 1255 AA position

Figure 1.9: Schematic representation of ERBB2 gene. Mapping of genomic organization
of mRNA and protein sequence are illustrated, and the protein domains are marked.
Abbreviations: SP: signal peptide; TSS: transcription start site. Created with

BioRender.com.

HER2 signaling pathway is a complex network comprising various membrane
receptors, their ligands, protein kinases and regulating genes, regulating
various cellular functions such as cell proliferation, cell cycle progression,
differentiation, migration, cell adhesion, and cell death [276]. As shown in
Figure 1.10, four TK receptors, HER1 to HER4, and their multiple ligands form
an input layer, exerting their effect via their TK activities upon ligand binding
and subsequent dimerization (homo- in the case of HER2-to-HER2, and hetero-
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for HER2-to-HER1/3/4). Upon dimerization, tyrosine residues on the
intracellular domain of the receptors are auto- or trans-phosphorylated,
serving as docking sites for various signaling molecules [277,278]. The most
common downstream effectors of HER signaling include MAPK [279], the
PI3K/Akt signaling pathway [278], and protein kinase C (PKC) activation
(Figure 1.10). The signaling pathways activated in response depends on the
ligand involved, the dimer formed as well as on cellular context. HER2 and
HER3 are considered the preferred dimerization partners in the HER signaling
pathway because HER2, despite having no known ligands, exhibits the
strongest catalytic kinase activity among all family members. Conversely,
HER3 lacks intrinsic TK activity, yet it can be activated upon binding with
ligands such as heregulins [274,280].
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Figure 1.10: HER?2 Signaling pathway. HER2 as well as the other members of the EGFR
family which are located on the cell membrane and responds to a wide variety of ligands.
Phosphorylation of the tyrosine kinase domain in the cytoplasm initiates downstream
oncogenic signaling pathways such as PI3K/AKT pathway and Ras/MAPK pathway.
Created with BioRender.com.

ERBBZ copy number

As discussed previously in section 1.2, gene amplification refers to an increase
in the copy number of a specific chromosomal region and is commonly linked
to overexpression of the affected gene(s). The ERBBZ2 gene can be amplified up
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to 25-50 or more copies in a BC genome, and there can be up to 40-100 fold
increase in HER2 protein which corresponds to more than 2 million receptors
expressed at the cell surface [281].

ERBBZ amplification is generally associated with a more aggressive form of
breast cancer, and most in situ cancers with HER2 amplification are at a higher
risk of progressing to invasive carcinoma [282,283]. While treatments with
HER2-targeted therapies such as trastuzumab (discussed later) can lead to loss
of HER2 expression, possibly due to selection of HER2-negative clones [284], it
is also possible for HER2-negative tumors to become HER2-positive over time
particularly post-ER-targeted therapy [285]. The observed changes in HER2
and ER expression may be due to their inverse relationship, where the
regulation of one can influence the other. Specifically, blocking ER can lead to
the upregulation of HER2, and conversely, targeting HER2 may induce ER
expression. This interaction suggests a compensatory mechanism between the
two pathways, as demonstrated in several studies [286,287]. ERBB2-amplified
BC exhibit unique biological characteristics and clinical responses. These
tumors typically show increased proliferation rates, a high histologic grade,
and varied levels of ER and PR. They also demonstrate high aneuploidy, a
propensity to metastasize to the CNS and viscera, and relative resistance to
endocrine therapy, increased sensitivity to cytotoxic agents such as
doxorubicin, and often present co-amplification of topoisomerase 2.
Importantly, they respond well to HER2-targeted therapies [288,289]. The
correct assessment of ERBBZ CNA is of prime importance in BC clinically, as it
further affects patient management and treatment decisions. This is the topic
which is addressed in Study I

Clinical assessment of HERZ status

To assess HER2 overexpression and/or ERBBZ amplification, the updated 2018
American Society of Clinical Oncology and College of American Pathologists
(ASCO/CAP) HERZ2 guidelines are followed in Sweden. Immunohistochemistry
(IHC) and fluorescence or silver in situ hybridization (FISH or SISH) are the
recommended methods for analyzing tumor tissues. These techniques,
however, come with various challenges, as will be discussed later. HER2
expression can be scored as 0, 1+ (or 0/1+), 2+, and 3+ by IHC.

Briefly, BC is considered HERZ positive when there is evidence of HER2
overexpression with [HC score 3+ or gene amplification on ISH assay in at least
one tumor sample, according to recent 2018 ASCO/CAP guidelines (Figure 1.11
and Table 1.1) [290-292]. In the case of [HC score 2+, reflex ISH testing is
required to define HER2 status, with additional concomitant review of IHC
slides in case of particular ISH results from groups 2, 3, and 4. In case of IHC 0
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and 1+ or IHC 2+ with a negative ISH assay, the cancer is considered HER2
negative, and no HER2-targeted therapy is recommended, with the exception
of dual-probe ISH testing group 3 results (HER2/CEP17 ratio < 2.0 with
average ERBBZ CN of 4.0 to 5.9 per cell) where tumors that are IHC 2+ are
deemed HER2 positive (Figure 1.11) [290].

With IHC, results may vary with the use of lab-specific protocols including
different fixation methods, fixation times, antigen retrieval solutions and
methods, primary and secondary antibodies, as well as variation due to the
subjective qualities of the observer. Altogether this leads to considerable issues
with reproducibility of scoring. On the other hand, ISH is more labor intensive,
time-consuming, and expensive, whereas the signals are easier to interpret.
Both methods are affected by intra-tumoral heterogeneity, adding to
variability in evaluation.

Table 1.1: 2018 ASCO/CAP HER2 dual ISH clinical subgroups and final determination
based on integration with [HC.

L. HER2/CEP1 Mean 2018 ASCO/CAP
Group Description . .
7 ratio HER2 CN recommendation
Classic HER2 amplified .
1 >2.0 >4.0 Positive
cancer
Negative, unless
2 Monosomy 17 22.0 <4.0
concurrent I[HC 3+
Co-amplification, Negative, unless
3 previously polysomy <2.0 26.0 IHC concurrent 2+
17 or 3+
. ) >4.0 and Negative, unless
4 Borderline/equivocal <2.0
<6.0 concurrent I[HC 3+

Classic HER2 non- .
5 . <2.0 <4.0 Negative
amplified cancer
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Figure 1.11: ASCO/CAP 2018 ISH determination algorithm. *Observed in a
homogeneous and contiguous population. fAn explanatory comment should be
provided. Figure modified from [290,293]. Reprinted with permission.

Influence of polysomy 17

True polysomy is defined by the presence of extra copies of one or more whole
chromosomes, and in case of chromosome 17, it provides an alternative
mechanism for increasing HER2 gene dosage [294]. Chromosome enumeration
probe 17 (CEP17) is alocus within the chromosome 17 centromere and is used
to determine ERBB2/CEP17 ratio in ISH experiments. However, according to
recent studies, true polysomy of chromosome 17 is rare in breast cancer and
focal amplifications encompassing the centromere can increase the number of
CEP17 signals in ISH testing [295]. Increase in CEP17 copies can alter the
ERBBZ /CEP17 ratio and subsequently influence the interpretation of the final
HER2 ISH result. Currently, the commonly adopted threshold for polysomy 17
is a mean of 23 CEP17 signals per nucleus [290].

ERBBZ2 SNPs

According to the NCBI dbSNP database (accessed on 2024-01-18), there are
more than 20,000 SNPs within ERBBZ2. Most of the studies on ERBB2 SNPs have
focused on two coding SNPs, rs1058808 (Pro1170Ala) and rs1136200
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(Ile655Val). Some studies have found that HER2 overexpression is more
common in proline carriers of rs1058808 SNP [296], while others reported it
can identify a subset of HER2+ BC patients who are at increased risk of
cardiotoxicity from trastuzumab therapy [297]. SNPs rs1136201and
rs1058808 were also found to be significantly associated with the
susceptibility of cervical cancer [298]. rs1058808 was also proposed as
potential biomarker of a good response to anti-HER2 treatment in patients
with early HER2+ BC [299]. rs1136200 might be a susceptibility factor that
favors early-onset BC and was found to be strongly associated with BC
susceptibility in the young female population [300]. In Study II, as an
exploratory analysis the SNP rs1058808 was genotyped as part of the custom
dPCR assay, but no association between rs1058808 genotype and clinical HER2
status or outcome was found [301]. In Study V, we quantified ERBBZ mRNA
expression levels and analyzed two alleles of the SNP rs1136201 using dPCR.

HER?Z targeted therapies

The importance of HER2 status as a prognostic marker and drug target in
various cancer types, in particular in BC, lead to the discovery and development
of several FDA-approved therapeutic mAb such as trastuzumab (Herceptin),
pertuzumab (Perjeta), and trastuzumab emtansine (Kadcyla) [302-306].
These mAbs exert therapeutic effects partly by blocking downstream signaling
through targeting the HER2 receptor-binding regions. This interaction leads to
several cellular responses, including G1 arrest, induction of apoptosis, and
inhibition of cell growth and migration [307]. Additionally, these mAbs
facilitate the internalization and degradation of the HER2 receptor. Moreover,
they can also engage immune mechanisms such as antibody-dependent
cellular cytotoxicity (ADCC), enhancing their efficacy against cancer cells [308].
Small molecule inhibitors of HER2 kinase such as lapatinib, neratinib, and
tucatinib [309-311] also block downstream signaling by preventing
phosphorylation of HER2 receptor by blocking ATP-binding regions. Another
class of anti-HER2-targeted agents known as antibody-drug conjugates (ADCs)
are among the fastest growing drug class that combines a humanized mAb,
mainly immunoglobulin G (IgG), bound to a cytotoxic agent, called the payload,
via a molecular linker [312-314].

The first HER2-targeting ADC approved for the treatment of advanced HER2-
positive BC was trastuzumab emtansine (T-DM1; Kadcycla) [305,315]. The
second FDA-approved ADC was trastuzumab deruxtecan (T-DXd; Enhertu)
given as second line of treatment in advanced BC after at least two prior lines
of HER2-targeting therapy [316-318]. Recently, T-DXd has become the first
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FDA approved tumor-agnostic HER2-directed therapy for previously treated
patients with unresectable or metastatic HER2-positive solid tumors [319].

HERZ2-low BC

Across BC, HERZ expression levels are on a continuous spectrum from
negligible expression to, in the case of amplified cases, very high
overexpression. Until recently, only the amplified case was viewed as a
therapeutic target. However, quite recently, a new subgroup called “HER-low”
has been identified. HER2-low is defined as IHC 1+ or IHC 2+ and ISH not-
amplified. Approximately 50% of BC are reported to be HER2-low, according
to current scoring systems [318,320,321]. In standard clinical practice, these
tumors are reported as HER2-negative, either TNBC or luminal-like, depending
on the absence or expression of hormone receptors [320]. The HERZ-low
definition has gained relevance because these tumors with low levels of HER2
expression and no detectable ERBBZ amplification were shown to derive
survival benefit from targeting HER2 with T-DXd, which improved
progression-free survival (PFS) and OS compared with chemotherapy in
patients with pretreated HER2-low metastatic BC in the phase III DESTINY-
Breast04 trial [322]. Due to these recent therapeutic implications, which may
also become relevant for primary BC in the future, the proper assessment of
HER2-low status with high accuracy and sensitivity is of high importance. This
issue, to categorize HER2-zero, HER2-low, and HER2-positive subgroups using
absolute quantification techniques, is addressed in Study V of this thesis.

Trastuzumab resistance

In the neoadjuvant treatment of primary BC, the addition of trastuzumab to
neoadjuvant chemotherapy is associated with a pathological complete
response (pCR) of the breast and lymph nodes in 38-55% of patients [323].
However, despite initial responses, some patients after surgery eventually
experience disease progression, a phenomenon known as acquired HER2
resistance. This resistance to trastuzumab can develop at any point during
treatment and is a significant contributor to the failure of anti-HER2 therapies
[324].

In recent years, several resistance mechanisms have been identified, such as
disrupted trastuzumab-HER2 receptor binding [325] and ERBBZ gene
mutations in kinase activation (intracellular domain) region that impairs the
ability of the mAb to bind to HER2 [326]. HER2 heterogeneity, currently
clinically defined as the presence of any aggregate population of amplified cells
comprising >10% of the tumor cells on the slide (not scattered single cells in a
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mosaic pattern) also affects trastuzumab responses and survival in patients
with HER2-positive primary or metastatic BC [327]. Constitutive activation of
signaling pathways parallel or downstream of HER2 such as PI3K/Akt/mTOR
pathways are also implicated in acquired resistance to HER2-targeted therapy
[328], as well as metabolic reprogramming or reduced immune system
activation [329]. PTEN loss and PIK3CA mutation in PI3K/Akt/mTOR signaling
were shown to be the cause of de novo resistance to HER2-targeted therapy in
preclinical and clinical studies [330]. Adaptation of HER2-targeting ADCs that
incorporate technological advances in the antibody, linker and/or payload
conception have shown promising activity in preclinical and clinical studies
and some of them are now being evaluated in larger clinical trials [331]. It is
crucial to reassess the mechanisms of resistance to anti-HERZ2 therapies,
especially in the context of combination treatments. This is particularly
important given reports from the recent DAISY trial that resistance to
antibody-drug conjugates like T-DXd is emerging and thus, further
understanding of these resistance patterns are essential for optimizing
treatment strategies [332]. An ongoing challenge is how to adapt the treatment
algorithms and their sequence to include all these recently approved and
emerging agents and combination approaches.

1.5.4 Progesterone receptors

In addition to ER and HER2, there are additional clinically relevant biomarkers
that affect cancer biology, tumor cell phenotype, patient prognosis, and
treatment efficacy. This includes progesterone receptor (PR), which has two
predominant isoforms, PR-A and PR-B, both of which are encoded from the
same gene PGR located on chromosome 11 but from two different promoters.
PR-B is a full-length receptor, whereas PR-A is a truncated form lacking 164
amino acids at the N-terminus of the protein [333]. Being structurally different,
they also exhibit different transcriptional and biological activities as members
of steroid nuclear receptor family ligand-activated TFs. Breast tissues are a
main target of progesterone, where it regulates development of the branched
ductal epithelium and expansion of milk-secreting alveoli during lactation.
Progesterone is produced in a cyclical manner in the ovaries, but also in
peripheral tissues including adrenal glands, nervous system and brain in
premenopausal women [334,335]. While circulating progesterone levels
decline sharply at menopause, local tissue production continues is unknown.
As a key target of ERq, ligand activated PR presence indicates ER activation and
interplays with ER in BC [336]. Expression of PR is an established prognostic
factor associated with improved outcomes in particular in patients with ER-
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positive BC [337]. It also plays a determining factor in treatment decision
making in ER-positive BC patients [338]. As such, PR along with ERa and HERZ,
is part of the routine pathological assessment of every breast cancer.

1.5.5 Intrinsic subtypes

As first described in 2000 by Perou and colleagues, utilizing DNA microarrays
representing more than 8000 genes to analyze 65 breast tumor surgical
specimens from 42 patients and 17 cultured cell lines, the so-called “intrinsic
subtypes” of BC were defined. Using identified gene expression patterns,
tumors were classified into five intrinsic subtypes with distinct clinical
outcomes, i.e., luminal A, luminal B, HER2-enriched, basal-like, and normal-like
subtypes [339,340]. The rationale behind this classification is that the
differences underlying the gene expression patterns among cancer subtypes
reflects the fundamental differences of the tumors at the molecular level.
Towards a clinical assay, in 2009 Perou and colleagues developed a simpler
predictor, where the number of intrinsic genes were reduced from about 2000
to only 50, termed the PAM50 genes (utilizing a method called Prediction
Analysis of Microarray) [341].

Table 1.2: Intrinsic subtypes of breast cancer, their proportions, biological profile,
therapy used for their management.

Sub p " Biological Profil Tumor Therapy of
u e roportion iological Profile
P P & Grade Choice
) ERa+ and/or PR+, Endocrine
Luminal A 60-70% . 1-2
HER2-, Ki67 low therapy
Luminal B 10-20% ERo+ and/or PR+, 9.3 ET
umina - -
’ HER2+/-, Ki67 high +/- chemo
HER2- Anti-HER2
. 15-30% ERa+/-, PR+/-, HER2+ 2-3
enriched therapy
TNBC / 10-20% ERa-, PR-, HER2-, 3 Chemoth
Basal-like ’ + basal markers emotherapy
Normal-like 5-20% [ER+|PR+] HER2-, Ki67- 1-3
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Summarized in Table 1.2, luminal A and B are mainly composed of ER-positive
tumors. Luminal A tumors are characterized by the presence of ER and/or PR
and the absence of HER2 and have a low expression of cell proliferation marker
Ki67 (less than 20%). Clinically these tumors are low grade, slow growing, and
have the best prognosis with less incidence of relapse and higher survival rate.
Luminal B tumors are ER positive and can be PR negative and have a high
expression of Ki67, higher grade and worse prognosis compared to luminal A
(Figure 1.12). These tumors may benefit from chemotherapy in addition to
hormonal therapy. Luminal B tumors are characterized by more rapid growth,
elevated Ki67, and generally worse prognosis than luminal A [342]. HER2-
enriched breast cancer is characterized by high HER2 expression and can occur
with or without the presence of ER and PR. They are more aggressive and fast-
growing than luminal tumors, however the prognosis has improved
dramatically after the introduction of HER2-targeted therapies. They can be
further classified as luminal HER2 (ER+, PR+, HER2+ and Ki67 15-30%) and
HER2-enriched (HER2+, ER-, PR-, Ki67 >30%) [343]. Triple-negative BC
(TNBC), as the name implies, do not express the three most important BC
biomarkers: ER-negative, PR-negative, and HER2-negative. Constituting 10-
20% of all BC, TNBC are poorly differentiated, highly proliferative, highly
aggressive, have early relapse, a greater tendency to present at advanced
stages, and frequently harbor aberrations in DNA repair genes and exhibit
increased genomic instability. Approximately 80% of mutated BRCA1 BC
belongs to this group. TNBC can be further divided into 7 subgroups [344],
although the clinical utility of these subgroups has not been established.
Generally, depending on the surrogate algorithm being employed, there isa 70-
80% concordance between the gene expression-based molecular subtypes and
[HC-based clinical subtypes [345,346].

After some time, at least six commercial genomic assays were developed for
the prediction of clinical outcome for BC patients. In 2007, a 70-gene signature
assay MammaPrint became the first FDA-cleared prognostic signature assay
[347]. Another well-known FDA-approved assay named OncotypeDX was
developed which uses qPCR to measure the expression of 21 genes (including
16 cancer-related and 5 reference genes) to predict risk of recurrence and
treatment response [348]. Other tests include the PAM50-based Prosigna Risk
of Recurrence (ROR) score prediction assay (NanoString Technologies) [349],
EndoPredict (EP; Myriad Genetics) [350] and the Breast Cancer Index test (BCI;
Biotheranostics) [351]. Within the SCAN-B study, single- and multi-gene
classifiers and single-sample predictor (SSP) models were developed for
clinical markers, subtypes, and ROR prediction from RNA-seq data [352,353]
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1.6  Clinical Diagnostics

Breast cancer detection primarily involves self-examination, periodic clinical
examination, and mammographic screening. In most Western countries,
mammographic screening regimes typically recommend that women aged 50
to 74 undergo mammography every two years [354]. Some guidelines suggest
starting screening as early as age 40, especially for those at higher risk, with
annual screenings until the age of 55, after which biennial screening may be
sufficient depending on individual risk factors [355]. While screening detects
many cancers early, it also poses risks of overdiagnosis, with the possibility
that some lesions never becoming invasive [356]. Current screening methods
may miss tumors due to factors like the lesion’s lobular phenotype or high
breast density [357]. Clinically, BC often presents as a lump. Despite its
imperfections, mammographic screening is currently the most effective
method for early BC detection, offering the best chance for successful
treatment outcomes and higher survival rates. In Sweden, 70% of all breast
cancer cases are detected via screening, with guidelines recommending a
diagnostic triad: clinical examination, radiological imaging, and biopsy or
cytological evaluation [358].

Histopathology

Tumor biopsies and surgical samples are analyzed through histopathological
techniques to inform treatment choices. These analyses classify breast tumors
based on their distinct morphological and clinicopathological biomarker
characteristics. Morphological assessment is crucial and remains the mainstay
in diagnosing neoplastic lesions, where pathologists analyze gross and
microscopic tissue structures. This analysis helps determine the disease’s
origin, aids in prognosis prediction, and is correlated with clinical symptoms
[359]. Most of the breast malignancies are adenocarcinomas, developing from
glandular epithelial cells, and constitutes more than 95% of BC. Morphological
analysis of BC assesses if tumors are confined to the epithelium (in situ) or
whether malignant abnormal proliferation has invaded the stroma (invasive),
and their origin from the ducts or lobules.

Histopathologically, tumors are distinguished as ductal or lobular by cellular
characteristics, cell quantity, secretion, immunohistochemical profile, and
tissue architecture. Invasive carcinoma and carcinoma in situ are classified as
ductal or lobular based on the site from which the tumor appears to have
originated. In situ breast carcinomas are classified into ductal carcinoma in situ
(DCIS), which makes up about 80% of cases, and lobular carcinoma in situ
(LCIS), accounting for roughly 20%. DCIS, considered as a precursor to invasive
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breast cancer (IBC), is the most common type of non-invasive breast
malignancy and comprises ~20% of all breast neoplasms diagnosed [360].
Invasive ductal carcinoma (IDC) is the most common histologic type
comprising 72-80% of all invasive BC, while invasive lobular carcinoma (ILC)
is less common and accounts for 5-15% of all invasive BC [361,362]. The most
frequent subgroup of IDC (40-80%) is termed “not otherwise specified” (IDC-
NOS) or “of no special type” (IDC-NST) because these tumors do not exhibit
sufficient characteristics to be determined as a more specific histological type.
Some tumors can also be recognized as a “special type” if they present sufficient
distinctive characteristics, and particular cellular and molecular behavior, e.g.,
mucinous adenocarcinoma and invasive micropapillary carcinoma of the
breast [363,364].

Tumor grade

The Nottingham histological grade (NHG) is a well-established, simple yet
strong prognostic method for evaluating all invasive breast cancer types,
translating three histological features into a numerical tumor grade score to
assess cancer characteristics, that is broadly used in clinical decision-making.

The grading system was modified from Bloom and Richardson [365] by Elston
and Ellis and became more semi-quantitative as compared to the previous
methods [366]. The features analyzed are tubule formation, nucleus
pleomorphism, and mitotic count, evaluating the level of tumor differentiation
to inform prognosis and treatment decisions. For each feature, a compound
score is calculated, where score 1 for low, score 2 for moderate, and score 3 for
high scores is assigned, then these feature scores are summed, and with
increasing grade scores the resemblance to normal cells decreases and tumor
aggressiveness generally increases.

Despite its straightforward approach, NHG’s application can be complex due to
the diversity and morphological variability of BCs, sometimes causing
discrepancies among pathologists, particularly for grade 2 cases [367]. The
International Collaboration on Cancer Reporting, ICCR dataset commentary,
crafted and reviewed by an international panel of breast pathology experts,
offers comprehensive guidance for pathologists on NHG’'s practical
implementation [368].
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Tumor staging

Tumor staging describes how advanced a cancer is, taking into account the
anatomical properties and spread of the tumor, and in the TNM staging system
is classified according to the categories of T (tumor size), N (status of the
regional lymph nodes), and M (distant metastasis) [369]. T stage is based on
the size and degree of loco-regional invasion by primary tumor and is
categorized from T1 to T4. The N stage is determined by the extent of nodal
involvement including axillary, internal mammary, and ipsilateral
supraclavicular lymph nodes, and can be assessed clinically (by imaging or
clinical examination) or pathologically (by examination of sampled tissues).
Distant metastases are evaluated to determine the M stage, with positive
spread, M1, indicative of stage IV disease. The updated 8t edition of American
Joint Committee on Cancer (AJCC) defines nine stages (0, IA, IB, IIA, IIB, IIIA,
[1IB, IIIC, and IV) based on different combinations of T, N, and M status [370].

For higher stages in advanced tumors, imaging methods such as magnetic
resonance imaging (MRI) may provide a more accurate assessment than
mammography or ultrasound (for example, of chest wall extension) [371],
however pathological assessment is optimal. Tumor staging is critical for
guiding treatment decisions and prognostic assessments in breast cancer.
However, considerable inter-assessor and inter-laboratory variability exists,
which can introduce uncertainty in staging accuracy. This variability often
stems from differences in interpretation and measurement standards between
different assessors and laboratories [372].

IHC and ISH markers

Immunohistochemistry is the gold standard technique in research and
diagnostics for detecting and quantifying antigens in tissue samples and is most
often performed on formalin-fixed paraffin-embedded (FFPE) tissue samples.
It is preferred for its ease, dependability, and adaptability. IHC typically
employs chromogenic detection via light microscopy for visualizing antigen-
antibody reactions, although fluorescence detection is also done.

As previously described, IHC detection of prognostic and therapeutic markers
ER, PR, HER2, and Ki67 are part of the routine work-up in BC [373,374]. For
the hormone receptors, different thresholds are suggested for proportion of
positive stained cells, at least 1% (or 210% in some countries such as Sweden)
is considered a endocrine-treatable state, categorized responsive (10%),
response uncertain (1%-9%), and nonresponsive (0%). According to the
recent 2023 St. Gallen treatment guidelines, the panel voted 50% favoring a
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1% ER-positive breast cancer to be treated with endocrine therapy, jumping to
nearly 80% in favor of endocrine therapy at an ER IHC score of 9% [375,376].

According to the Swedish guidelines, ER and PR status are considered positive
when 210% of tumor cells show ER- and PR-specific staining in tumor nuclei
detected by IHC. Both ER and PR status taken into account as binary variables,
either positive (210%) or negative (<10%) [377]. According to the same
Swedish guidelines, Ki67 proliferation index is evaluated as a continuous
measure defined by the percentage of positively staining tumor cell nuclei and
the threshold for Ki67 intermediate is 6% to 29%, and 230% as Ki67-high
[377]. For HER2Z overexpression and ERBBZ amplification testing, the
ASCO/CAP 2018 guidelines are followed in Sweden and performed on the
invasive component. IHC is performed first, with [HC 3+ tumors considered
HER2 positive, and IHC 0, 1+ are considered negative. For IHC 2+, a reflex ISH
assay is performed [290]. The ERBBZ ISH detects specific DNA sequences
through the use of labeled complementary nucleic acid probes, and either a
fluorescent (FISH) or chromogenic (CISH or SISH) readout. For ERBBZ, a case
is ISH positive if the HER2/CEP17 ratio is 22.0, and the HER2 copy number
signals/cell is 24, negative if HER2/CEP17 ratio is <2.0, and the HER2 copy
number signals/cell is <4. Further HER2 groups known as groups 2, 3, and 4,
are determined pending further workup, as explained in the earlier ‘Clinical
assessment of HER2 status’ section and in Figure 1.11. Concordance between
[HC and ISH results in case of HER2/ERBBZ have been reported with varied
results, although, significantly lower incongruities for both IHC-/ISH+ and
[HC+/ISH- were found in the studies that were published after the 2018
guideline update [378]. IHC and/or ISH determination of ER, PR, and HERZ,
along with other markers Ki67 and NHG (Figure 1.12) are used as standard for
clinical subtyping of breast cancers, as well as prognostic and predictive
biomarkers to guide treatment [379].
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Figure 1.12: Breast Cancer histological and intrinsic subtypes.
permission from [380].
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from early detection, to detection of targetable mutations, to monitoring
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the recent development of FDA-approved techniques for ctDNA assessment
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1.7 Breast Cancer Treatments

Breast cancer treatment is guided by tumor burden (total amount of cancer in
the body, assessed with radiological exams) as well as tumor subtype.
Generally, hormone receptor positive (HR+) tumors receive endocrine
therapy, with chemotherapy for cases with more aggressive features. HER2+
tumors are treated with anti-HER2-directed antibody therapy plus
chemotherapy, and additional endocrine therapy if HR+. TNBC, by definition
do not have these targets, and are treated exclusively with chemotherapy.

1.7.1 Early breast cancer

Therapeutic goals of primary, early, nonmetastatic BC are eradicating tumor
from the breast and regional lymph nodes and preventing metastatic
recurrence. Most patients are evaluated for potential pre-operative treatment,
so called neoadjuvant therapy (as discussed below), which has the objective of
reducing tumor burden to facilitate less radical surgery.

Surgery

Surgical removal of the primary breast tumor is key to curative treatment. Also
known as ‘local therapy’, these tumors undergo surgical resection
(lumpectomy/ breast conserving or mastectomy) and sampling or removal of
axillary lymph nodes, with consideration of postoperative radiation. For
patients with suspicious axillary lymph nodes, preoperative evaluation using
ultrasound and fine needle aspiration or core biopsy helps in deciding the
appropriate surgical method and assessing the need for neoadjuvant therapy.
Patients with a clinically negative axillary examination undergoes sentinel
lymph node biopsy at the time of surgery. De-escalation of nodal assessment
has been successfully implemented in some pivotal clinical trials, that showed
no overall survival difference between sentinel lymph node biopsy and axillary
lymph node dissection [384].

Lumpectomy is a breast-conserving surgery where only the tumor and a small
margin of surrounding tissue are removed, preserving most of the breast, often
followed by radiation therapy (RT) to target any residual disease. On the other
hand, mastectomy involves removal of the entire breast and may be
appropriate for larger tumors or multifocal tumors. Breast-conserving surgery
has largely replaced mastectomy, the historical standard [385]. The choice
between immediate surgery or initial systemic neoadjuvant therapy depends
on factors like tumor size, its ratio to breast size, tumor biology, patient
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comorbidities, and personal preference, and generally the use of neoadjuvant
treatment has increased considerably in the past decade. The surgical planning
should be based on the updated size and extent of the tumor following
neoadjuvant systemic therapy [386].

Radiation therapy

Radiation therapy (RT; or radiotherapy) involves using high-energy rays, X
rays (photons), protons, or electron particles, to destroy cancer cells. Typically
administered after surgery, it aims to eliminate any remaining cancer cells,
reducing the risk of recurrence. RT generated by a linear accelerator is
delivered by a machine that directs radiation to the affected area. The
treatment plan, including the dose and duration, is tailored to the patient’s
specific condition and type of surgery (lumpectomy or mastectomy). It can also
be given internally (brachytherapy), after surgery, where a radiation-delivery
device is temporarily placed in the breast in the area where the tumor was
located. Adaptive radiotherapy involves modifying the radiation plan in
response to changes during therapy, to optimize therapy effectiveness
ensuring precise and effective radiation delivery throughout the course of
treatment [387]. RT is an integral part of BC treatment, where postoperative
RT was shown to improve disease-free and overall survival for patients with
early BC with lymph node involvement by the elimination of residual tumor
cells after both breast-conserving surgery [388] as well as mastectomy [389]
assessed in large scale longer (15 years) follow-up meta-analysis studies.

Systemic therapy

Systemic therapy consists of treatment with drugs that work throughout and
affect the entire body, as opposed to localized treatments like surgery or RT.
They can be given as an injection, infusion, or oral medication and includes
chemotherapy, hormonal treatment, targeted therapy, and immunotherapy.
The type of treatment depends on individual indication based on tumor
biomarkers, molecular subtype, tumor burden, and risk of recurrence.
Systemic therapy may be preoperative (neoadjuvant), postoperative
(adjuvant), or both.

Neoadjuvant therapy rationale

Neoadjuvant (or preoperative) systemic therapies (NST) are treatments given
before operation or surgery, and depending on the clinicopathological features,
can include chemotherapy, hormonal therapy, and/or targeted therapy, and in
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some cases, RT. The rationale behind neoadjuvant chemotherapy (NAC) is to
reduce the size or extent of the tumor before surgery, making it easier to
remove, which can improve the surgical outcomes. It may also allow for
surgical de-escalation, allowing for less extensive surgery in the breast and
axilla. It was shown in a clinical trial that around 40% of HER2+ and TNBC
tumors that initially required mastectomy can be converted to breast-
conserving surgery (BCS) candidates using NST [390]. However, it has also
been observed in randomized clinical trials (RCT) that systemic chemotherapy
given before or after surgery showed no differences in long-term outcomes
among all BC tumors [391].

Further, NST may also offer prognostic information, providing an opportunity
to assess the tumor’s response to the therapy, identifying patients with
residual disease at primary surgery who may then require additional adjuvant
therapy, potentially improving long-term outcomes. In HER2+ and TNBC
patients it was shown that achieving pathological complete response (pCR)
after NAC is predictive of significantly better DFS and OS [392,393].

Therefore, based on evidence from multiple RCT, NAT is now preferred for
most patients with stage II or Il BC, in particular if TNBC or HER2+. For
instance, the KATHERINE trial revealed that patients with HER2+ early BC
without a pCR to neoadjuvant therapy with trastuzumab had improved DFS
when switched from standard adjuvant HER2-targeted antibody therapy to T-
DM1, an ADC, as opposed to those who continued with anti-HER2 antibody
treatment, with DFS increasing from 77% with trastuzumab to 88% with T-
DM1 [394].

Chemotherapy

Chemotherapy (CT) is the use of cytotoxic drugs to kill cancer cells throughout
the body. Different chemotherapy regimens are considered in neoadjuvant and
adjuvant settings, also depending on whether the patient is low-risk (less
aggressive, 0-3 lymph nodes involved, HR+/HER2-, low ROR) or high-risk
(with >3 positive nodes and aggressive subtypes TNBC or HER2+, high ROR).
According to the 2018 NICE (National Institute of Clinical Excellence, United
Kingdom) guidelines for low-risk patients, docetaxel, cyclophosphamide, and
5-fluorouracil are considered reasonable choices with less toxicity. For high-
risk patients, anthracycline (e.g, adriamycin) and taxane (such as
adriamycin/cyclophosphamide followed by a taxane) remains the appropriate
choice to achieve the highest risk reduction, specifically, for TNBC with greater
LN involvement, anthracyclines appear to be the most effective option [395].
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In luminal HR+/HER2-, a gene expression assay such as MammaPrint,
Oncotype DX, Prosigna, EndoPredict, or BCI, may be considered in determining
the recommendation for chemotherapy in addition to endocrine therapy [396].

In HER2+ and TNBC, NAC and adjuvant CT is preferred for stage Il or Il tumors
and dose-dense (in which the rate of delivery, rather than the overall dose, is
increased) anthracycline and taxane-based CT are the standard of care. Also,
for stage I TNBC, an anthracycline-free regimen might be considered [397].
Moreover, adding platinum based NAC was shown to be associated with
improved pCR rates and significantly increased event free survival (EFS) in
TNBC patients [398].

Endocrine therapy

Endocrine therapy (ET), which counteracts estrogen-promoted tumor growth,
is standard systemic therapy for HR+ BC patients after surgery. It consists of
antiestrogen medication taken daily, typically for 5 years, and options differ
according to menopausal status. Tamoxifen (a selective estrogen receptor
modulator, SERM, which binds to and inhibits ER) is effective in both pre- and
postmenopausal women, and is a standard in premenopausal patients [399].
Aromatase inhibitors (Al) such as anastrozole, exemestane, and letrozole are
effective only in postmenopausal women (including those who are
postmenopausal because of medical ovarian suppression or oophorectomy),
and work by inhibiting conversion of androgens to estrogen, thereby
decreasing systemic estrogen levels. Five years of Al has been shown to reduce
BC mortality by ~15%, reducing recurrence rate and BC death, compared with
tamoxifen monotherapy [400].

Compared to HR- BC, HR+ breast tumors are characterized by Ilater
recurrences, which can occur from 5 to 20 years after surgery. Clinical trial
results have shown that continuation of ET after 5 years and extended for up
to 10-15 years decreased relapse rates in patients at high risk (e.g., node-
positive or high genomic score) [401]. Treatment management summary of
early breast cancer based on tumor burden and subtype is shown in Figure
1.13.
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HERZ2-targeted treatments

As summarized in section 1.5.3, development of HERZ2/ERBBZ2-targeted
therapy has been one of the greatest advances in BC treatment. Addition of 1
year of trastuzumab, a mAb targeting the HER2 extracellular domain, to
standard adjuvant chemotherapy, has been shown to markedly improve DFS
and OS in HER2+ BC in four randomized adjuvant trials [26,27]. Dual blocking
by adding pertuzumab to trastuzumab and chemotherapy significantly
improved the invasive-disease-free survival, iDFS rate in patients with LN+,
HER2+, operable BC in the adjuvant setting [402]. For low-risk HER2+ stage |
tumors, weekly CT for 12 weeks + trastuzumab for 1 year is generally accepted
as a standard of care based on non-randomized clinical trials [403,404]. For
high-risk HER2+ BC, an additional adjuvant treatment of neratinib (a TKI that
targets HER1/HER2/HER4) for 1 year after completion of trastuzumab had
shown to improve iDFS and decrease the risk of central nervous system
recurrence in two independent phase IlI clinical trials [405,406].
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Figure 1.13: Treatment management summary for early breast cancer. The treatment
algorithm is based on histological subtypes and tumor burden. Abbreviations: -,
negative; +, positive; GnRH: gonadotropin-releasing hormone; HR: hormone receptor;
pCR: pathological complete response; PR: progesterone receptor; N: node status; T:
tumor size; T-DM1: ado-trastuzumab emtansine. Reprinted with permission from [380].
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1.7.2 Advanced breast cancer

For advanced BC (ABC, or metastatic BC, MBC), prolonging life and symptom
palliation are the main therapeutic goals. ABC comprises inoperable locally
advanced BC, which has not spread to distant organs, together with metastatic
ABC (MBC), which has common sites of spread to the bone, lungs and liver
[407]. Currently, ABC management utilizes the same basic categories of
systemic therapy as in neoadjuvant/adjuvant approaches in addition to some
recently adapted ones, summarized here. Local therapies such as surgery and
RT are typically used for palliation only in metastatic disease. Despite
aggressive treatment, ABC still remains virtually an incurable disease, with
metastases being the cause of death in almost all patients, with a median OS of
approximately 2-3 years.

According to the BC subtype, systemic therapy in MBC includes standard
regimens used early in treatment course (i.e., early lines) plus agents for
consideration later in treatment course (i.e., later lines). In HR+HER2- MBC,
several lines of endocrine-based therapy and their combinations (such as
tamoxifen, Al, or fulvestrant) are used (along with ovarian suppression or
ablation, in pre-menopausal patients) until endocrine resistance develops or
unless severe organ dysfunction emerges [408]. To delay or overcome
endocrine resistance, incorporating CDK4/6 inhibitors and target of
rapamycin (mTOR) inhibitors, which have been shown to improve PFS and in
some circumstances OS, are being introduced as standard of care in first,
second or further lines in postmenopausal and premenopausal MBC patients
[409-411].

For HER2+ MBC, dual HER2 blockade with trastuzumab and pertuzumab in
combination with chemotherapy is currently the recommended first-line
therapy [412]. For HER2+HR+ tumors, receives ET in combination with HER2-
targeted therapy [318]. T-DM1, T-DXd, and pyrotinib, an irreversible pan-ErbB
receptor TKI, are currently being studied as second line options. For example,
T-DXd showed significant improvement in PFS versus T-DM1 in second-line
treatment for HER2+ unresectable or MBC in the phase IIl DESTINY-Breast03
trial [413]. Another currently ongoing trial, DESTINY-Breast(09, is comparing
the combination of T-DXd with pertuzumab and trastuzumab plus docetaxel as
first-line standard-of-care regimen [414]. After previous adjuvant exposure to
trastuzumab and taxanes, the combination of capecitabine and pyrotinib, have
shown to significantly improve PFS compared with lapatinib plus capecitabine,
in phase Il randomized PHOEBE trial in HER2+ MBC [415]. In the future, the
advent of new and more specific anti-HER2 drugs should significantly bolster
treatment options for HER2+ MBC, for whom continuous anti-HER2 treatment
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is essential. Regardless, continuous HER2 pathway suppression is crucial,
HER2-targeted therapy should be offered beyond progression.

As for other targeted therapies, in PD-L1+ metastatic TNBC, the addition of an
immune checkpoint inhibitor to chemotherapy (atezolizumab or
pembrolizumab + CT) as a first-line treatment, was shown to modestly
improved PFS with the addition of atezolizumab in the entire study population
of TNBC but indicated a significant PFS improvement in the PD-L1-positive
subset of TNBC patients [416,417]. ADCs directed towards Trop-2, trophoblast
cell-surface antigen 2, have also shown promising results with significantly
improved both PFS and OS in TNBC without brain metastases as compared
with standard therapy [418]. In PD-L1+ BRCA1/2 germline mutated metastatic
TNBC, checkpoint inhibitor-based therapy in the first and the PARPi (olaparib
or talazoparib) in the latter lines are being currently tested as compared to
chemotherapy [419,420]. In PD-L1-negative (without PD-L1 expression)
BRCA1/2 germline mutated metastatic TNBC, chemotherapy is currently
offered as first-line treatment. Additionally, new cytotoxic agents and non-
taxane microtubule dynamics inhibitor such as eribulin shown to significantly
improved OS in heavily pretreated patients when compared with treatment of
physician’s choice [421,422].

1.8 Methodological Advancements

In the field of oncology, accurately determining gene expression levels and
genetic variations is crucial for diagnosis, prognosis, and treatment decision-
making. As described in section 1.6, traditional methodologies such as IHC and
ISH have been extensively used in clinical settings to detect and quantify
biomarkers such as HER2 in breast cancer. However, these techniques come
with inherent methodological challenges that can impact their reliability and
sensitivity.

Briefly, IHC method involves staining tissue sections with antibodies that are
specific to the proteins of interest, and then visually inspecting the stained
slides to determine the proportion of cells that exhibit positive staining. A
cutoff value is used to categorize the expression level of these biomarkers into
“low” and “high” categories. Despite its widespread use, IHC is susceptible to
several disadvantages that can affect its reliability and reproducibility.
Technical variability arises from differences in the choice of antibodies, tissue
preparation and staining protocols, and equipment calibration, which can lead
to inconsistent results [423]. Additionally, IHC interpretations are semi-
quantitative, subjective, and can vary between pathologists or even on
different occasions by the same pathologist, leading to potential
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misclassification of biomarker status, impacting treatment decisions [424].
Despite efforts to standardize IHC scoring, it cannot overcome being semi-
quantitative, with staining intensity and cell percentage estimates introducing
further uncertainty. Moreover, in critical cases such as HER2 testing, IHC often
requires supplementary genetic testing like FISH or SISH to confirm gene
amplification, particularly in ambiguous cases.

ISH is another critical diagnostic tool used in breast cancer to assess gene
expression directly within the tissue context. ISH techniques, including
FISH/SISH/CISH, involve hybridizing a labeled DNA or RNA probe to specific
nucleic acid targets within a tissue section. The probe's signal is then visualized
under a microscope, providing spatial information about gene expression or
copy number variations like HER2 amplification. While ISH offers valuable
insights into the genetic aspects of tumor cells within their native histological
context, it comes with several limitations: it is complex and considerably more
costly as compared to IHC. It requires sophisticated equipment and skilled
personnel, and the interpretation of results can be subjective, especially with
SISH/CISH where the signal is not fluorescent. Additionally, the ISH process is
time-consuming and sensitive to sample and probe quality (potential for probe
signal degradation), potentially leading to delays in diagnosis and false-
negative results [425].

Limitations in both IHC and ISH highlight the need for more efficient and
precise methods such as digital PCR (dPCR), which offers absolute
quantification of nucleic acids with high sensitivity and specificity, and without
the subjective interpretation associated with traditional IHC or ISH, making it
an advantageous approach for determining and assessing biomarker status in
breast cancer diagnostics.

To overcome these challenges, Study II and Study V of this thesis has utilized
droplet digital PCR (ddPCR), an enhancement over traditional IHC and ISH
methods as well as other quantitative molecular methods such as quantitative
PCR (qPCR). Although dPCR is discussed in more detail in Section 3.7, briefly,
this method works by partitioning a sample into thousands of tiny droplets,
each containing zero, one, or more copies of the target nucleic acid (DNA or
cDNA). PCR amplification then occurs in each individual droplet, allowing for
direct counting of the DNA molecules present. This allows for the precise
quantification of nucleic acids, making it highly effective in detecting small
variations in gene copies, mutations, and transcript levels that might be missed
by IHC or ISH [426]. The key advantage of dPCR over traditional PCR methods
is its ability to provide absolute quantification without the need for external
standards [427]. This makes dPCR particularly useful for applications
requiring high precision, such as measuring slight differences in gene
expression, detecting rare genetic variants, and quantifying copy number
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variations. Clinical applications where decision-making depends on precise
biomarker quantification, dPCR may provide a more reproducible and reliable
result by minimizing the variability associated with operator interpretation
and technical execution. Its high sensitivity and accuracy make it an excellent
choice for clinical diagnostics and research in oncology. Moreover, dPCR can
process multiple samples simultaneously with a high degree of automation,
thereby increasing the throughput and scalability, also reducing the hands-on
time required for large-scale studies [428].

1.9 Precision Medicine

Precision or personalized medicine encompasses both precision diagnosis and
precision therapy, each tailored to the individual patient. This approach aims
to treat conditions as accurately as possible, thereby avoiding overtreatment
or unnecessary interventions, enhancing the effectiveness of targeted
treatment and potentially reduce side effects that could otherwise diminish a
patient's quality of life. By carefully matching therapies to the individual
characteristics of each patient's disease, precision medicine helps to optimize
therapeutic outcomes while minimizing adverse effects. Precision medicine
achieved significant milestones in oncology in 2017 with two major
breakthroughs. In May, FDA granted accelerated approval to pembrolizumab,
an anti-programmed cell death-1 (PD-1) mAb, for the treatment of adult and
pediatric patients with unresectable or metastatic solid tumors identified as
microsatellite instability-high (MSI-H) or deficient in DNA mismatch repair
(dMMR) [429]. Shortly thereafter, in August, nivolumab, another anti-PD-1
mADb, also received accelerated approval for adult and pediatric patients with
MSI-H or dMMR metastatic colorectal cancer and melanoma that had
progressed following standard chemotherapy [430]. These approvals are
particularly noteworthy as they mark the first instances of a cancer treatment
being approved based on a common biomarker, regardless of the tumor’s
location in the body. In the same year, larotrectinib - an oral, potent, and
selective inhibitor of tropomyosin receptor kinases - demonstrated
unprecedented efficacy in treating unresectable or metastatic solid tumors
harboring neurotrophic tropomyosin receptor kinase (NTRK) fusion proteins
in both adult and pediatric patients [431]. This breakthrough highlights the
potential of targeting specific genetic drivers of cancer across different tumor

types.

Precision diagnosis involves using comprehensive biomarker testing to
accurately diagnose each cancer patient and their unique cancer biology. This
testing identifies molecular and immunological vulnerabilities in tumors which
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helps stratify patients for therapy. As the foundational step in this process,
precision diagnostics are critical because they enable the matching of patients
with treatments specifically suited to target their cancer’s unique genetic and
molecular aberrations. Developing highly precise assays is essential for
accurately identifying these cancer vulnerabilities in an absolute quantitative
manner. Achieving this goal allows for the optimal matching of drugs to
patients, ensuring the right treatment is administered at the right dose and at
the right time, while minimizing potential harm to the patient. ESCAT (ESMO
Scale for Clinical Actionability of Molecular Targets) system plays an important
role in the execution of precision medicine for clinical cancer therapy. It ranks
molecular targets in six different classes based on the clinical indication of
actionability for a specific cancer type, assisting clinicians in making informed
therapeutic decisions. ESCAT categorizes genomic alterations and their
associated targeted therapies into tiers based on the level of evidence from
clinical studies. For instance, Tier la represents targets evaluated in
prospective, randomized trials; Tier Ib signifies evaluation in prospective,
single-arm trials; and Tier Ic in basket trials. Key molecular targets such as
ERBB2, PIK3CA, and germline BRCA1/2 alterations, which have shown
significant survival benefits in breast cancer when matched with appropriate
therapies, have been evaluated in a number of Tier la studies [432,433]. In this
context, the research presented in this thesis aligns with the themes of
precision diagnostics emphasized by the ESCAT system. Studies II and V
consists of the development of multiplex ddPCR assays to detect ERBBZ CN and
classify HER2 mRNA expression levels, including those classified as HER2-low.
This advanced and sensitive diagnostic capability is crucial for accurately
stratifying patients and matching them with the most effective targeted
therapies.

1.10 The SCAN-B Initiative

The Sweden Cancerome Analysis Network - Breast (SCAN-B; ClinicalTrials.gov
identifier NCT02306096) Initiative is a large-scale multicenter, population-
based, prospective study, initiated in 2010, focusing on breast cancer [434].
The study’s primary objective is to elucidate the molecular mechanisms and
genetic underpinnings of breast cancer by analyzing NGS transcriptomics and
genomic data from a broad cohort of patients, to develop new diagnostics tools,
and to validate these and eventually clinically-implement the most promising
tests. As of the time this thesis was written, nearly 21,000 patients diagnosed
with breast cancer were consented and accrued into the SCAN-B study. Of
these, over 20,000 have provided blood samples, over 14,000 have provided
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tumor tissue samples, and more than 13,000 of these breast tumors have been
processed to obtain RNA-seq data. This extensive collection allows for in-depth
analysis and understanding of the diverse molecular landscapes across breast
cancer subtypes. This comprehensive study seeks to improve the
understanding of breast cancer biology and develop new prognostic and
predictive tests, which can lead to more effective and personalized treatment
strategies. The project involves collaboration among various hospitals, mostly
from southern Sweden and employs advanced molecular profiling by NGS
RNA-Seq for every available breast tumor [435].

Across awide geography of Sweden, as shown in Figure 1.14, nearly all patients
at the participating hospitals diagnosed with primary breast cancer are
consented and included, and as part of the national treatment guidelines
receive standardized therapeutic regimens. Mass enrollment of BC patients in
this manner on the population level scale provides as unbiased group of cases
as realistically possible with which molecular studies can be performed to
deepen our understanding of cancer biology and air biomarker development.

The SCAN-B cohort is representative and generalizable for the wider
population, because it reflects the disease at population level. This strategy
provides comprehensive data across diverse demographic groups, reflecting
real-world scenarios. This inclusivity improves understanding of the natural
history of breast cancer and may also provide insights into cancer
epidemiology and risk factors. Additionally, it can track long-term outcomes
and treatment effectiveness across a population, aiding in identifying public
health trends and guiding healthcare policies. Population-level trends can be
analyzed to identify unintended consequences of screening, such as
overdiagnosis, and drive efforts aimed at improving outcomes. Other cohorts
such as TCGA have been found to over-represent high grade and ER negative
tumors leading to difficulty in cross-comparison, which may lead to biases
[436].
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Figure 1.14: Map of Sweden indicating the hospital sites enrolling
patients in SCAN-B. The month and year of sites joining after 2010 are
indicated in parentheses.

Studies I, II, IV, and V included in this thesis uses material from SCAN-B, with
Study IV providing a 10-year update on SCAN-B, including updates on
enrolment, study demographics, baseline clinical variables, patient treatment,
and long-term outcomes. Additionally, the SCAN-B cohort has facilitated a
broad spectrum of research projects. These studies have explored various
aspects of BC, including the characteristics of TNBC [437] and BRCA1-abnormal
tumors [438], multi gene expression signatures benchmarking [439], dynamics
of gene fusions [440], refinement of molecular and PAM50 subtyping [441-
443], lymph node metastasis predictors [444], RNA-seq based classifiers for
conventional histopathological biomarkers [352], SNV/indel detection from
RNA-seq data [445], identification of pre-existing somatic ESRI mutations
[446], detection of ctDNA before and after mammographic breast compression
[447], and integration of single-sample predictor (SSP) models trained on RNA-
seq data into clinical decision-making [353].

As previously mentioned, the SCAN-B initiative aims to i) integrate advanced -
omic profiling into the clinical routine for breast cancer, ii) improve patient
stratification, diagnosis, prognostication, and prediction of treatment effects,
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and iii) ensure these advancements are accessible to patients by implementing
them within the healthcare system via SCAN-B, and in clinical trials, and in
collaboration with industry. These goals align closely with the precision
medicine and diagnostics studies presented in this thesis. This thesis
contributes to these objectives by exploring precision medicine and
diagnostics approach in five studies, enhancing the understanding and
application of biomarkers in breast cancer treatment. Study I investigate the
role of ESRZ, highlighting its potential as a tumor suppressor and its association
with favorable clinical outcomes due to immune activation. Study II utilizes
ddPCR for precise quantification of ERBBZ copy number, identifying a
biologically distinct group with 'ultrahigh' ERBBZ2 CN, underscoring the need
for tailored treatment strategies. Study III emphasizes CITED1 as a prognostic
marker for anti-endocrine therapy in ER+/LN- breast cancer, enhancing
tamoxifen responsiveness prediction. Study IV provides a 10-year update on
how RNA-sequencing can be integrated into clinical practice to improve tumor
classification, prognosis, and treatment prediction. This work highlights the
utility of large-scale, population-based genomic analyses in translational
research and biomarker signature development, hopefully leading to novel
clinical tools. Study V advances the precise classification of HER2 mRNA status
by developing a new multiplex ddPCR assay, with a specific focus on the HER2-
low category. This assay enhances the differentiation of HER2-low from HER2-
zero and HER2-positive subtypes, facilitating more targeted therapeutic
strategies, particularly for the emerging subclass of HER2-low breast cancer.
Together, these studies underscore the significant role of advanced molecular
genomics and transcriptomics technologies that have the potential to refine the
current diagnostic and treatment paradigms within the clinical framework,
advancing the field towards more personalized breast cancer management.

62



2. Aims

The overall aim of this thesis is to enhance precision diagnostics in breast
cancer by leveraging sophisticated molecular assays and refining patient
stratification based on biomarker analysis through extensive transcriptomics
data evaluation within SCAN-B. Focusing on pivotal biomarkers such as ESRZ,
ERBBZ2, and CITED1, this thesis aims to sharpen diagnostic methods using
digital PCR assays, advance prognostic evaluations, and tailor treatment
approaches to individual BC patient needs, in line with personalized medicine
principles. Supported by the SCAN-B initiative's framework, this work
demonstrates the potential of RNA-seq to improve breast cancer management
by providing practical applications of advanced genomic tools in a clinical
context.

Study I: The aim was to assess the prevalence and clinical significance of ESR2
mRNA expression in invasive BC, particularly its correlation with
clinicopathological parameters, survival outcomes and immune activation. The
study also aimed to provide initial evidence from large-scale population-based
SCAN-B dataset and enhance understanding of ERB's role in breast tumor
biology and its microenvironment.

Study II: This study aimed to validate and demonstrate the effectiveness of
multiplex dPCR as a tool for precise and accurate ERBBZ copy number analysis
in invasive BC diagnostics. The objective was to establish dPCR as a potential
standard diagnostic approach.

Study III: The objective was to explore the potential of CITED1 as a prognostic
biomarker for anti-endocrine therapy in ER+/LN- BC patients. This study
focused on assessing the expression levels of CITED1 at mRNA and protein
level and its association with treatment outcomes, its role in ERa-mediated
transcription and its impact on patient response to anti-endocrine treatments.

Study IV: The aim of this project was to provide a comprehensive 10-year
update on the SCAN-B initiative, showcasing the progress made in
incorporating RNA-seq into clinical decision-making, and presenting an up-to-
date analysis of the clinical subtypes, treatment overviews, and survival
outcomes.

Study V: This study aimed to refine the classification of HER2/ERBBZ mRNA
status in invasive BC using a newly developed multiplex dPCR assay. The goal
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was to improve the precision in classifying HER2-low, HER2-ultralow, HER2-
zero, and HER2-positive subgroups, thereby enhancing the selection of
patients for targeted therapies like T-DXd based on a more accurate
assessment of ERBB2 mRNA expression levels.
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3. Methods

3.1 Patients, Ethics, and Samples

In this thesis Studies I, II, IV, and V are based on breast cancer samples
collected from patients that are part of the SCAN-B cohort, as well as a minority
of cases in Study II from SCAN-B’s precursor, the All Breast Cancer in Malmo
(ABiM) cohort. Study III utilized the GOBO (Gene expression-based Outcome
for Breast cancer Online) database of 11 publicly available breast cancer
microarray datasets, comprised of 1881 cases [448], as well as the public gene
expression data from 51 breast cancer cell lines [449]. Within SCAN-B and
ABiM, all patients provide informed written consent. Studies I, II, IV, and V
were performed under approvals from the Regional Ethical Review Board of
Lund at Lund University (approval numbers 2002/613, 2007/155, 2009/658,
2009/659, 2010/383, 2012/58, 2013/459, and 2015/277), the Swedish Data
Inspection group (diary number 364-2010) and were conducted in adherence
to the World Medical Association’s Declaration of Helsinki [434]. In Study III,
data was retrieved from publicly available datasets and thus no ethical
permissions were required: TCGA is publicly available data and information on
the ethics and policies of data usage, including informed content can be found
here https://www.cancer.gov/ccg/research/genome-sequencing/tcga/history/ethics-policies. Sampling
of surgical tumor samples in SCAN-B and ABiM occurred after the completion
of the pathological assessment, ensuring that participation does not
compromise the standard clinical care of the patients. In SCAN-B, tissue
samples are preserved fresh in RNAlater (Thermo Fisher Scientific) prior to
storage at -80 C. In ABiM, the tumor samples were obtained were preserved
flash frozen on dry ice prior to storage at -80 C. Table 3.1 summarizes the
patient material and experimental setups used in the thesis works.
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Table 3.1: Patient cohorts, data sources, and experimental setup used in Studies.

. Experimental Patient
Study | Sources Materials P
Setup numbers
I SCAN-B Tumors RNA-seq 3207
SCAN-B, Tumors, DNA ddPCR &
I ABiM cell lines RNA-seq 909 & 682
)| GOBO Tumors, Microarray 1881 & 51
cell lines
IV SCAN-B Tumors RNA-seq 9323
Tumors, RNA ddPCR &
v SCAN-B cell lines RNA-seq 1223

Study I: A total of 3207 patients were included from the SCAN-B cohort, which
were a subset of previously described cases in Brueffer et al. [352] that
comprised 3217 patients (reduced to 3207 samples due to additional quality
controls). The median follow-up time was 6.2 years. Tumor samples are
preserved in RNAlater (Thermo Fisher Scientific) at the pathology laboratory
immediately after surgery, flash frozen, and processed with the AllPrep
(Qiagen) method according to standardized SCAN-B protocols [434,352,435].

Study II: This study included 909 primary invasive breast tumors in the droplet
digital PCR (ddPCR) part, and 682 cases in the RNA-seq validation part, with all
patients diagnosed between 2006 to 2019. Among the 909 cases, 510 SCAN-B
cases were comprised of three random selections of 170 BCs each from within
the clinical HER2 IHC 0-1+, 2+, and 3+ groups [434], and 399 of 405 ABiM cases
previously described [352]. Of the 909 patients, 177 patients were clinically
HER2-positive, received no neoadjuvant treatment, and received adjuvant
trastuzumab alone or in combination with chemotherapy and/or endocrine
therapy according to Swedish treatment guidelines. For validation, an RNA-seq
data set for 682 consecutive patients with HER2-positive BC from SCAN-B was
used, wherein the patients were diagnosed between 2010 and 2018, and
similarly received no neoadjuvant therapy but received adjuvant trastuzumab
alone or in combination with chemotherapy and/or endocrine therapy. Tumor
DNA isolated from the BC samples using the AllPrep method according to
standardized SCAN-B protocols [434,352,435] was utilized.

Study III: The primary dataset for the analysis comprised gene expression
profiles from 1,881 breast tumor samples and 51 breast cancer cell lines,
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classified according to molecular subtypes [448]. All gene expression
measurements were generated using Affymetrix U133A microarrays across
several published studies. The tumor samples consisted of ER-positive, ER-
negative, untreated tumors and tumors treated with tamoxifen (TAM). TAM
treated ER+/luminal tumors were selected for mRNA expression and survival
analysis. Additionally, TCGA data was utilized to further explore the prognostic
significance of CITED1 expression within the ER+/luminal subtype. Tissue
microarray (TMA) dataset was used for CITED1 mRNA and protein correlation
analysis, consisting of 400 breast tumors with long term follow up [450].
Additionally, cell line experiments with CITED1 gene overexpression and TAM
treatment were performed, western blots and IHC were performed to assess
CITED1 and ER-a protein expression, and ddPCR was performed on
complementary DNA (cDNA) to quantify gene expression levels of CITEDI,
IPO8 (internal control), AREG, and TGFa.

Study IV: This manuscript summarizes the SCAN-B cohort for its first 10
complete calendar years, from August 30, 2010, to December 31, 2020, thus
comprising a total of 16381 patients (16269 women and 112 men) diagnosed
with primary breast cancer. Of these, 9915 patients have a tumor specimen
sampled for research, of which 9323 have available RNA-seq data.

Study V: This study utilized 1,242 primary invasive ductal breast tumors from
1223 consecutive patients enrolled in SCAN-B that met the following selection
criteria: diagnosed between September 2010 to February 2013 at the hospitals
in Kristianstad, Halmstad, Helsingborg, Lund, or Malmd, and receiving no
neoadjuvant treatment. All samples were handled as described previously for
SCAN-B [434,435].

3.2  High-throughput Sequencing

The thesis studies herein utilize data generated by massively-parallel
sequencing, also known as next-generation sequencing (NGS), which refers to
high-throughput sequencing technologies developed in the mid-1990s and
commercially available since 2005 [451]. NGS methods utilize the concept of
parallel processing, enabling the simultaneous sequencing of millions to
billions of short DNA fragments. Each sequencing run can generate vast
quantities of data, with individual reads ranging up to 400 bases in typical NGS
approaches [452]. This technological advancement has revolutionized
genomic research by significantly increasing the speed and scope of DNA and
RNA analysis.

67



Foundational methodology

The foundational innovations underpinning sequencing are the Sanger dideoxy
synthesis [453,454] and Maxam-Gilbert [455] chemical cleavage methods. The
Maxam-Gilbert method involves chemical modification of DNA and subsequent
cleavage at modified nucleotides. Sanger sequencing, on the other hand, uses
chain-terminating dideoxy nucleotides which halt DNA synthesis at specific
points, with these terminators being detectable via radioactive and later
fluorescent labeling. Significant advancements in Sanger sequencing were: 1)
development of fluorescent dyes, 2) thermal-cycle sequencing with reduced
DNA input and thermostable polymerases for efficient terminator dye
incorporation, 3) lower requirement for toxic chemicals and radioisotopes
compared to the Maxam-Gilbert method, and 4) software advancements for
sequence interpretation and analysis [454]. Due to its advantages, the Sanger
method for many years was the dominant DNA sequencing method prior to
NGS. The demand for higher throughput, largely fueled by the Human Genome
Project, led to automation and parallelization of Sanger-based instruments
across many laboratories, and contributed to a 13 years effort to completing
the first human genome sequence in 2004 [456].

3.2.1 Next-generation sequencing

The need for greater throughput sequencing of large genomes at lower cost
triggered the development of many second-generation or ‘next’ generation
methods which have become the mainstay in biomedical research and
diagnostics. NGS enables sequencing of all nucleic acid types, including DNA,
mRNA, and small RNAs and long non-coding RNAs as well as methylated DNA
using either whole genome, whole transcriptome, or targeted approaches
[457]. Second-generation sequencing or NGS methods fall into three main
categories: sequencing by hybridization, sequencing by ligatation, and
sequencing by synthesis (SBS). As we have utilized [llumina instrumentations,
which implement SBS, for generating sequencing data in Studies [, II, IV, and
V, only SBS technology will be covered here.

Sequencing by synthesis

SBS has been the dominant NGS method for the past decade. SBS is an
evolution of Sanger sequencing, combining continuous synthesis cycles on a
solid substrate in massively-parallel fashion, fluorescent dye-tagged reversible
dideoxy terminators, and advanced imaging (Figure 3.1). Upon addition of a
single dNTP tagged and terminating base at each of millions of growing
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sequencing clusters, a series of stitched together images are taken of the entire
surface (so called flowcell), identifying the base added at each cluster
coordinate one base at a time. Via flow chemistry, the terminator is reversed,
and the next dye terminator is added, and new images are taken. In such a way,
each sequencing cycle adds one of the four possible sequence bases at each
cluster position, and thus millions of templates can be sequenced
simultaneously. This approach was pioneered by Solexa, which was later
acquired by [llumina and commercialized at scale [458]. SBS methods typically
are limited to relatively short reads of 50-400 bases. Although SBS may have a
higher per-base error rate of individual reads, the overall sequence accuracy
can be very high, now exceeding that of Sanger sequencing when sufficient
coverage is obtained [459]. Depending on the setup, DNA sequencing (DNA-
seq) or RNA-seq can be performed, as well as specialized variants for
epigenetic profiling and identification of specific bound fragments (e.g.,
chromatin immunoprecipitation sequencing, CHIP-seq; assay for transposase-
accessible chromatin with sequencing, ATAC-Seq; and many others). The most
common DNA-seq setups include whole genome sequencing (WGS), whole
exome sequencing (WES), or targeted sequencing using hybrid capture-based
panels. The key distinction among these methods lies in the specific parts of
the genome they target for sequencing. Although SBS methods have evolved
through a variety of approaches [460], driven by the need for faster, cheaper,
and more accurate sequencing methods, the [llumina SBS implementation is
described here, which was used in this thesis Studies I, II, IV, and V.

Library preparation

As depicted in Figure 3.1, the first step is to prepare the nucleic acid (NA; from
either DNA or RNA) library. After the NA is purified, it is fragmented into
smaller pieces primarily by one of three methods: chemical cation-mediated,
sonication/acoustic shearing, or enzymatic tagmentation. Chemical
fragmentation involves the use of chemicals, typically divalent cations like
magnesium or zinc, to induce breaks in the DNA. The process is influenced by
factors such as pH and temperature, allowing for controlled cleavage that
produces fragments of specific sizes [461]. Chemical fragmentation can be
precisely controlled to yield fragments of desired sizes, typically ranging from
several hundred to a few thousand bps, making it particularly suitable for
standardized protocols in large-scale studies like SCAN-B. Sonication/acoustic
DNA fragmentation is a multi-step method that uses high-frequency ultrasonic
sound waves to physically shear NA randomly into smaller pieces, typically
ranging from a few hundred to a few thousand bp in length. These fragments
have variable strand overhanging ends, therefore enzymes such as T4 DNA
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polymerase (which has both polymerase and exonuclease activity) are used to
create blunt ends. In a A-tailing process, a single adenine (A) nucleotide is then
added to the 3' ends of the blunt DNA fragments, preparing them for adapter
ligation. Right and left adapters are ligated by T7 DNA polymerase and T4 DNA
ligase, providing a priming site for sequencing, and allowing the NA fragments
to attach to the sequencing flow cell.

Tagmentation is a more recent and quicker method that uses transposases to
simultaneously fragment the DNA and add adapters [462]. The generated NA
is then size-selected to obtain fragments within a desired range for optimal
sequencing performance, followed by PCR in order to both amplify the amount
of NA available for sequencing and to add additional sequences, adapters,
required for binding to the sequencing flow cell and for indexing, if samples
were multiplexed. Adapters contains three key segments - a sequence that
binds to the flow cell, a unique barcode for sample identification (index), and a
sequencing primer binding site - are attached to NA fragments. These adapters
allow for multiplexing, enabling simultaneous sequencing of multiple samples
(up to 96) by grouping reads with the same index during analysis. The
sequencing then takes place in a flow cell, where fragmented DNA hybridizes
to complementary oligonucleotides, facilitating the sequence by synthesis
process.

Bridge amplification

Within the flow cell, the NA fragments undergo bridge amplification to form
distinct, clonal clusters on the flowcell surface. NA fragments with left and right
adapters attach to complementary oligonucleotides on the flowcell. DNA
polymerase synthesizes a complementary strand for each attached NA
fragment. These newly synthesized strands bend and attach to complementary
oligonucleotides on the flowcell, forming a bridge-like structure. A new round
of polymerization begins on these bent strands, creating double-stranded NA
clusters. The double-stranded NA is denatured, allowing each single strand to
independently form new bridges. The process is repeated multiple times,
resulting in millions of dense clusters of identical DNA sequences. This step
ensures sufficient signal for accurate sequencing in subsequent steps and
quality control.

Clonal sequencing on a flowcell

During clonal amplification in Illumina sequencing, all reverse strands are
removed from the flow cell, leaving only forward strands. A primer specific to
the adapter's primer binding site attaches to each forward strand. DNA
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polymerase adds fluorescently tagged deoxynucleotides (dANTPs) to the NA
strand (Figure 3.1). Each dNTP carries a distinct fluorescent label and a
reversible blocking group. The use of blocking group or reversible terminators
on the fluorophore is the key process, ensuring that only one base is added per
cycle. It enables the sequencer to pause and record each base addition before
continuing with the next cycle, allowing for the precise identification of which
base is incorporated at each physical position on the flowcell. The sequencer
uses four-color chemistry, with each of the four bases (A, T, C, G) tagged with a
unique fluorescent dye. After each dNTP addition, the machine takes an image
to record the base added, based on the color emitted by the fluorescent tag.
After the base incorporation is recorded, the fluorescent label and blocking
group are chemically removed, or 'cleaved’, from the NA strand. This process
is repeated with the flow of new dNTPs over the flowcell, continuing the cycle
of base addition, imaging, and cleavage. This meticulous process of sequencing
one base at a time and recording each incorporation allows for highly accurate
determination of the NA sequence in a massively-parallelized manner [463]

A notable technical issue in [llumina sequencing is the decline in base-call
accuracy with longer read lengths, largely attributed to “dephasing noise.” This
occurs when nucleotides are incorrectly added or omitted, or when the
blocking groups are not properly removed during sequencing cycles. As these
errors accumulate over multiple cycles, they result in a cluster of NA strands of
varying lengths. This variation leads to reduced signal clarity and impacts the
precision of identifying each base, particularly at the 3’ ends of the reads [464].

In sequencing experiments, “depth of coverage” or “read depth” is a crucial
parameter, reflecting the average number of times each base in the target
region is sequenced. For DNA-seq, a common target depth might be 30X,
implying that, on average, each base in the targeted genomic region is covered
by 30 independent sequencing reads. This uniform distribution of reads across
the genome, however, can be affected by various biases. For example, GC-rich
regions may exhibit skewed coverage due to library preparation and
sequencing biases. RNA-seq, on the other hand, fundamentally differs from
DNA-seq in terms of read distribution. In RNA-seq, the distribution of reads is
not uniform but is instead roughly proportional to the expression levels of the
RNA in the sample. This means that highly expressed genes will have more
reads compared to those that are less expressed. Due to this non-uniform
distribution, the average sequencing depth in a RNA-seq dataset is not a
particularly informative measure. Instead, the total number of reads generated
is a more relevant metric for RNA-seq, as it indicates the extent to which the
sample's RNA content has been sequenced, or “how deep” the sequencing
overall has been performed for a sample. This total read count is critical in
ensuring sufficient data to accurately quantify and compare the expression
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levels of different genes or transcripts within the sample [465,466]. For SCAN-
B, llumina HiSeq 2000 or NextSeq 500 sequencers were utilized, aiming for
approximately 25-30 million read-pairs per sample.

The different sets of RNA-seq data from SCAN-B that were included in Study I,
II, IV, and V were prepared using a customized dUTP, TruSeq, or NeoPrep
protocol, and sequenced in paired-end mode [434]. Briefly, starting from 1pg
total RNA, mRNA is purified using poly-DT DynaBeads (Thermo Fisher
Scientific). Following isolation, the mRNA is subjected to zinc-mediated
fragmentation (Ambion), resulting in approximately 240bp fragments which
are isolated using Zymo spin columns (Zymo Research). Using this fragmented
mRNA as input, first-strand cDNA synthesis is performed by adding random
hexamer primers, reverse transcriptase, and dNTPs. During cDNA synthesis,
the second strand is synthesized by adding polymerase and dNTPs and dUTP
instead of dTTP (i.e. uracil is incorporated into the second strand). The rest of
library preparation continues as usual, with adapter ligation and amplification.
However, before PCR amplification, an enzyme called uracil-DNA glycosylase
(UDG) is used to degrade the second strand (the one containing uracil). During
the PCR amplification stage, the uracil-containing strand is not amplified
because UDG has removed the uracil bases causing this DNA strand to fragment
and no longer able to serve as a template (in a process known as selective
amplification). As a result, only the original, first-strand cDNA is efficiently
amplified, which corresponds to the mRNA's coding strand. Hence the final
library is “stranded” because it retains the information about which strand of
DNA the mRNA is transcribed from. In SCAN-B, the customized dUTP method
is favored because it provides high strand specificity and preserving this
information can be crucial for alignment and correct gene annotation,
especially in areas where genes are overlapping or closely adjacent on opposite
strands, and for understanding gene regulation [463,465].
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Figure 3.1: [llumina sequencing workflow. 1. DNA library is prepared by fragmenting
DNA (or RNA), then ligating adapters to the fragments. 2. Library is hybridized to the
solid flowcell, which contains anchored baits to the adapter sequence, and clusters are
formed by bridge amplification. 3. The millions of discrete clusters are sequenced
through a series of flowed chemical cycles which add fluorescent-labeled reversible
terminating nucleotides for imaging, building the complementary sequence to the
template base by base. 4. Obtained images are analyzed and encoded into sequence
information, which are then aligned and analyzed. Created with BioRender.com.

3.2.2 DNA microarrays

DNA microarrays, introduced in the mid-1990s, were once the primary method
for analyzing RNA expression, SNPs, or methylation genetic markers, enabling
the simultaneous measurement of thousands of markers in a single
hybridization [464,457]. These chips carry hundreds of thousands of short
oligonucleotide probes on a solid surface, each designed to match a specific
DNA segment or "feature." Briefly, for gene expression studies, mRNA is
converted into fluorescently labeled cDNA, which binds to complementary
probes on the chip and unbound cDNA is washed off. The intensity of
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fluorescence, measured by a scanner, reflects the amount of hybridized cDNA,
which is proportional to gene expression.

Study III utilized Affymetrix U133A DNA microarray that has been widely used
in gene expression studies [448]. This microarray platform allows for the
comprehensive analysis of gene expression levels across approximately
22,000 cDNA probes simultaneously [465]. Although the U133A
microarray is a powerful tool for gene expression analysis, it has certain
limitations compared to RNA-Seq technology as discussed below.

DNA microarrays require prior knowledge of the genomic sequences to design
specific probes, limiting their ability to detect novel transcripts, gene fusions,
or other genomic elements that are not represented on the array. RNA-seq, on
the other hand, can sequence and quantify all RNA molecules present in a
sample without prior knowledge, offering a more comprehensive view of the
transcriptome, including the detection of novel transcripts, splice variants, and
gene fusions. RNA-seq has a broader dynamic range of detection, as it can
identify both very lowly and highly expressed genes with greater precision.
Microarrays, in contrast, have limitations in detecting lowly expressed genes
and distinguishing between high expression levels due to the saturation of
signal [466]. RNA-seq offers more accurate quantification of gene expression
levels than microarrays [434,467,468]. The quantification with RNA-seq is
based on the number of reads aligning to a gene or transcript, providing a
relatively direct measure of its abundance, while microarray signals can be
affected by cross-hybridization, the quality of the probe, and background noise.
Since it is a sequencing technology, RNA-seq can be used to identify SNVs,
indels, and other sequence variations within the transcribed regions, offering
insights into genetic variability and its impact on gene function [469-472,445].
Microarrays do not typically provide information on sequence variability
[460,473].

3.2.3 RNA-seq bioinformatics

Data processing and analysis are crucial components in a RNA-seq workflow,
significantly impacting the reliability and interpretation of results. The RNA-
seq bioinformatic data analysis for Studies I, II, IV, and V generally followed
the standard SCAN-B analysis pipeline [474]. The pipeline is initially integrated
within the BASE laboratory information management system [475,476], which
was further enhanced by the Reggie extension package [474], providing a
structured approach to data handling. The principal steps specific for the RNA-
seq analysis is described below.
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Quality control and data cleaning: FASTQ conversion

During sequencing, the raw sequencing data output by Illumina’s instruments
is in binary base call or BCL format. As depicted in Figure 3.2. this data is
converted into the sample specific FASTQ format, a standardized ASCII text-
based format for storing both the nucleotide sequences and their
corresponding quality scores, which is then used in subsequent analysis steps.

Quality control and data cleaning: demultiplexing and read trimming

In high-throughput sequencing, the sequencing library generated from a
sample is often tagged with a unique barcode sequence (indices) and then
many libraries are pooled together in a single sequencing run - a process
known as multiplexing. Demultiplexing is the process of sorting the sequencing
reads back into separate samples based on these barcode indices, to
distinguish reads from different samples in a pooled sequencing run.
[lluminaBasecallsToFastq from the Picard suite was used to demultiplex SCAN-
B sequencing runs [477]. Sequencing reads may also contain adapter
sequences, low-quality bases, or other non-biological sequences that can
interfere with accurate alignment and analysis. Trimmomatic was used in
SCAN-B for this task as it can handle paired-end data [478].

Quality control and data cleaning: quality filtering

Quality filtering involves removing reads that are too short or of overall low
quality or unwanted reads such as PhiX lambda phage DNA that is spiked-in as
a control and ribosomal RNA (rRNA) sequences were removed to ensure that
only high-quality, reliable data specific to mRNA is used in downstream
analysis, which is crucial for accurate mapping and interpretation. In SCAN-B,
reads that aligned to the PhiX phage genome and rRNA were removed using
the University of California Santa Cruz (UCSC) RepeatMasker track [479] and
Bowtie2 [480].

The quality score in a FASTQ file, called Phred quality score, which reflects the
probability of a base call error, is used to guide this filtering. The Phred score
is calculated using the formula: Q = -10 log1o(P), where Q is the quality score
and P is the probability of an error (P = 10*(Q/-10). So, a Phred score of 20
translates to a 1% chance of an error (1 incorrect base call in 100), and a score
of 30 means a 0.1% chance of an error. After trimming and filtering, the FastQC
[481] tool was used in SCAN-B to assess the quality of the processed reads.
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Read mapping or alignment

Next, filtered high quality reads are aligned or mapped to a reference genome,
or in the case of RNA, to a reference transcriptome. For RNA-seq, this process
is challenging due to the complex nature of RNA, including splicing, reads
spanning exon-exon junctions and RNA editing. Thus, aligners designed for
RNA-seq are “splice-aware” and can align reads across exon-exon junctions, a
crucial feature for accurate RNA-seq alignment. HISAT2 was used for this
purpose in SCAN-B [482] and the reads were aligned to the human genome
reference GRCh38/hg38 together with transcript annotations from the UCSC
knownGenes track [483]. The output of RNA-seq alignment is typically a file in
SAM/BAM format, containing the alignment information for each read.
Assembling the aligned reads into transcripts was done by StringTie2 [484] in
SCAN-B (Figure 3.2).
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Figure 3.2: General schema of RNA-seq computational analyses utilized in this thesis.
Starting from quality control and data cleaning, read mapping or alignment,
quantification of gene expression and downstream data analysis. Abbreviations: DGE:
Differential Gene Expression; GSEA: Gene Set Enrichment Analysis.

Quantification of gene expression and normalization

The primary goal of RNA-seq is to estimate gene and transcript expression
levels, which involves various computational strategies and normalization
methods.
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Count-based methods

This straightforward approach involves counting the number of reads that
align to each gene or transcript using a gene transfer format (GTF) file, which
provides the coordinates of genes and exons in the genome. However, for most
applications, simply counting raw reads for expression comparison across
samples is inadequate due to influences like varying transcript lengths, total
number of reads (library size), and potential biases from fragmentation, PCR
amplification, and other technical issues.

Normalization methods

RPKM (Reads Per Kilobase of exon model per Million mapped reads) and is
paired-end variant, FPKM (Fragments Per Kilobase of exon model per Million
mapped reads), are normalization methods that account for gene length and
total read count. They enable comparisons of expression levels within a sample
but are not ideal for between-sample comparisons. For single-end reads, RPKM
and FPKM are equivalent. While both RPKM and FPKM normalize for gene
length and sequencing depth, TPM (transcripts per million) adjusts the
normalized read counts against the total transcriptome size, ensuring that the
sum of all TPM values in a sample is constant at one million. This makes TPM
particularly useful for comparing expression levels between samples because
it provides a consistent scale. The distinction between comparing gene
expression within a single sample and across different samples has sometimes
led to confusion. While adjusting for gene length is less critical when comparing
the same gene across samples with minimal batch variability, it is crucial for
accurately comparing different genes within a sample, as longer genes
naturally attract more reads. The key difference between FPKM and TPM lies
in how the total reads are incorporated into the normalization process. For
both FPKM and TPM, each gene's read count is initially normalized by the gene
length. However, FPKM then normalizes this result by the total reads in the
sample, effectively adjusting for sequencing depth. In contrast, TPM further
normalizes the length-adjusted read counts by the sum of all these adjusted
counts across the entire sample before scaling up to a million. This approach
makes TPM values generally more comparable across different samples
because it adjusts for the varying composition of the transcriptome, not just
the raw number of reads. This ensures that the sum of all TPM values in a
sample is precisely one million, facilitating more accurate comparisons of
transcript abundance across samples.

Despite normalization, these measures can still suffer from biases introduced
by factors like library preparation methods, varying transcriptome sizes, low
abundance transcripts, high biological variability, and nonlinear relationships.
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TPM calculation are as follows:

1. Calculate RPK (Reads Per Kilobase) for each gene:
RPK = Number of reads mapped to the gene / Length of the gene in
kilobases

2. Scaling Factor = (Sum of all RPK values) / 1e6

3. Calculate TPM for each gene:
TPM = (RPK for the gene) / (Scaling Factor)

TPM is generally more comparable between different samples but is not
entirely free from biases [485]. For instance, while TPM is suitable for
comparing the same gene across samples, it's less suitable for comparing
different genes within the same sample because TPM normalization, by design,
makes the sum of all TPMs in a sample equal to a constant (1e6), potentially
obscuring significant differences in expression levels between genes. For
studies [, II, IIl and V, TPM was used to reduce skewing of the data and ease
fold-change calculations and comparisons. Briefly, in Study I, tximport [486]
was used to summarize transcript-level abundance estimates from StringTie
[484,487] v1.3.3b into gene-level TPMs from .ctab files. TPM was calculated
using formula:

read count 1,000,000

TPM = transcript length inkb =~ sum of all RPK

Here, the read count is derived from the coverage value and the transcript
length, and the RPK is calculated. Then, each RPK is scaled by the sum of all
RPKs across the dataset, normalized to one million. After calculating TPM for
each transcript, tximport aggregates these values to the gene level by summing
the TPMs of all transcripts that belong to the same gene. The output is a matrix
of TPM values for each gene across samples, which can be used for downstream
differential expression analysis (DGE) [220]. Since StringTie is continuously
evolving and improving, one of these enhancements includes the ability to
directly output TPM values in a .tsv format. In Study Il and V, TPM matrix was
generated directly from .tsv files [301]. The TPM values were transformed to
log; i.e. (TPM+ 0.1). The addition of 0.1 was done to avoid infinite values, since
log>(0) is undefined.

Batch correction

Batch correction is applied to eliminate variations in data that arise from
differences in experimental conditions, rather than from the biological
variables of interest. It's crucial for ensuring that the results reflect true
biological effects and not artifacts introduced by differing sample processing
methods or protocols used. For Study Il and V batch correction was performed
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by normalizing ERBBZ gene expression values between SCAN-B library
preparation protocols (dUTP, TruSeq and NeoPrep) by mean centering as
previously described in Staafetal. [353]. In brief, dUTP was used as a reference
protocol, ERBBZ gene expression values were normalized to dUTP by mean
centering log, transformed TPM to derive gene specific mean differences
between library protocols so that TruSeq and NeoPrep values were converted
to dUTP like as baseline, dUTP remained unchanged. The calculated protocol
differences for ERBB2 were used as correction factor for converting gene
expression between protocols. For example, protocol difference (for ERBBZ
gene) for dUTP and TruSeq, i.e., dutp.truseq.diff, was calculated using:

dutp.truseq.diff = mean(logz(dUTP +0.1 )) - mean(logz(TruSeq +0.1))
TruSeq can be transformed to dUTP-like using:
log2(dUTP +0.1) = logz(TruSeq +0.1) + dutp.truseq.diff

Similarly, protocol differences were also calculated to be able to transform
ERBBZ gene expression between dUTP and NeoPrep library protocols.

Differential expression and functional analysis

DGE analysis, that is identifying genes or transcripts that show statistically
significant differences in expression across different conditions, treatments, or
sample categories, is a common analytical goal of gene expression profiling.
Further, assigning biological meaning to the differentially expressed genes,
such as using gene set enrichment analysis (GSEA) is also performed that could
provide insights into the underlying biological processes or pathways that are
active or suppressed in different condition by focusing on groups of
functionally related gene sets.

In Study I, DGE was performed using the limma-voom package [488] in R. A
linear model was fit to log TPM values using ImFit and empirical Bayes
smoothing was applied using eBayes with the trend = TRUE option, without
voom transformation, as suggested by Gordon Smyth and colleagues [489].
Voom was not used, because it expects count data and not normalized data like
TPM. For estimation of relative library sizes, arrayWeights() was used to
improve the robustness of the analysis [490]. The results of DGE analysis
comprise of log-fold change (log:FC), P-values, and adjusted P-values to control
for false discovery rate using methods like Benjamini-Hochberg.

GSEA was performed using the fgsea package [491] in R as well as WebGestalt
[492]. Both fgsea and WebGestalt assume that the gene sets are predefined and
that the ranking of genes reflects biological relevance. Gene list was by the
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negative log of adjusted P-value multiplied by the sign of the log2FC. The sign
of the log,FC (positive for up-regulated, negative for down-regulated) was
preserved. This ranking method prioritizes genes that are both highly
significant and have large changes. Figure 6 in Study I was generated using
WebGestalt, chosen for its enhanced visual clarity compared to fgsea.

3.3 Polymerase Chain Reaction

Studies Il and V utilize droplet digital PCR polymerase chain reaction (ddPCR).
To understand ddPCR, first PCR must be understood. PCR is an efficient
technique for amplifying a specific DNA fragment from a diverse DNA mixture.
Invented by Dr. Kary Mullis, PCR is a powerful tool that exponentially increases
a targeted DNA sequence, making it a highly sensitive method for DNA analysis
[493]. It requires minimal DNA, which can be obtained from various sources
like blood, skin, hair, saliva, or microbes, which is then exponentially amplified
by thermal cycling through a repeating series of temperature changes to
denature DNA, anneal primers, and allow for polymerase extension [494]. Due
to its sensitivity and versatility, PCR is widely used in genetic research,
forensics, and medical diagnostics.

Essential components in almost all PCR reactions include:

Template: The nucleic acid sample that contains the target region to be
amplified. The source of the nucleic acid can be DNA, RNA, or cDNA.

DNA polymerase: a thermostable DNA polymerase I enzyme originally
isolated from Thermus aquaticus (hence named Taq polymerase) by Chien
etal.in 1976 [495]. It is used for synthesizing new DNA strands because it
remains active during the high temperatures used in PCR.

Primers: two short single stranded DNA sequences, typically of 18-24
bases long, that are complementary to the ends of the target DNA region,
marking the starting point of DNA synthesis. Primers are crucial because
DNA polymerase adds nucleotides to a double-stranded DNA in the 5’ to
3’ direction.

Deoxynucleoside triphosphates (dANTPs): These are the building blocks of
DNA. During PCR, dNTPs (A, T, G, C) are incorporated into the new DNA
strand by the DNA polymerase.

Buffer solution and cations: This provides the optimal chemical
environment for the DNA polymerase to function effectively. Bivalent
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cations usually magnesium (Mg) or manganese (Mn) ions and monovalent
cations, potassium (K) ions, which are also part of the reaction mixture.

Widespread use and standardization of PCR components have led to the
commercial availability of pre-mixed solutions known as a “super mix” or
“master mix.” These mixes simplify the PCR setup process and ensure that the
concentrations of each component are ideal and maintained consistent across
experiments. This uniformity is crucial for reproducibility in PCR results, and
also in reducing the preparation time significantly. The machine used for
carrying out PCR is known as a thermal cycler. This device plays a critical role
in the PCR process by precisely controlling the temperature cycles that are
necessary for DNA amplification.

Setup: The mixture of PCR components, which includes the DNA template,
primers, DNA polymerase, dNTPs, buffer solution, and necessary ions, is
prepared in a PCR tube or a well of a 96-well or larger well plate. This setup
allows for multiple samples to be processed simultaneously, which is
particularly useful for high-throughput experiments.

Thermal cycling: The test tube or plate is placed in the thermal cycler, which
then undergoes a series of temperature changes, each of which facilitates a
different step of the PCR process, as shown in Figure 3.3:

o Denaturation: The DNA is heated to a high temperature (typically
around 95°C) to separate the double-stranded DNA into single
strands.

o Annealing: The temperature is lowered (usually to between 50°C and
65°C) to allow the primers to bind (anneal) to their complementary
sequences on the DNA strands.

o Extension/Elongation: The temperature is raised slightly (typically to
72°C) to enable the DNA polymerase to synthesize new DNA strands
by adding dNTPs to the annealed primers.

These three steps are repeated typically for 5 to 40 cycles, depending on the
application and desired amount of DNA amplification. Each cycle in theory
doubles the amount of target DNA, leading to an exponential increase in the
number of DNA copies (~2n» copies). After the cycles are completed, the PCR
product, which is the amplified DNA, can be used for various applications
downstream such as DNA sequencing, cloning, or analysis. The thermal cycler
is essential for PCR because it provides the precise and rapid temperature
changes required for the different stages of the reaction. Modern thermal
cyclers are highly automated and can be programmed for specific PCR
protocols, making the process efficient and reproducible.
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Figure 3.3: Basic schema of PCR technique. DNA polymerase is used to synthesize
millions of new DNA copies via a template DNA strand (red and blue). 1. Denaturation
separates the double-stranded DNA into single strands 2. Annealing allows the primers
(green) to bind to their complementary sequences on the DNA strands 3. Elongation
where DNA polymerase synthesizes new DNA strands by adding dNTPs (purple) to the
annealed primers. Created with BioRender.com.

3.3.1 Digital PCR

Digital PCR (dPCR) is a third-generation advanced form of PCR that provides a
highly accurate and sensitive method for measuring the quantity of specific
DNA or RNA sequences in a sample. The capability of dPCR to accurately detect
and absolute quantification across a wide dynamic range of target abundances
has led to its fast-growing applications in diagnostics. The key concept of digital
PCR is to randomly partition the target molecules into reaction compartments,
and then to dichotomously score each compartment as either positive or
negative (0 or 1, hence digital) based on whether the compartment contains
the target or not. A compartment is dichotomized based on presence of a
fluorescent label, whose intensity increases as the PCR product abundance
increases. Once above a threshold value (above noise), the compartment is
scored as positive. In droplet digital PCR (ddPCR), the compartments are
comprised of microdroplets of water:oil emulsions or micelles.
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Figure 3.4: Schematic representation of digital PCR workflow. 1. Partitioning of sample
2. Amplification of target sequences inside the nano droplets. 3. Reading of each droplet
for fluorescence 4. Analysis by counting number of fluorescent droplets and Poisson
approximation (formula) is used to precisely quantify DNA or RNA targets within a
sample. Created with BioRender.com.

Partitioning of sample: In ddPCR, the sample containing the target DNA or RNA
is divided into thousands (~20,000) tiny droplets, each acting as an individual
micro-reactor (Figure 3.4). This partitioning is achieved using a specialized
device that creates a water:oil emulsion, with each droplet containing a
fraction of the sample. Importantly, the target molecules are randomly
partitioned into the droplets.

PCR inside droplets: PCR is then carried out in each of these droplets
independently and in parallel. Like standard PCR, ddPCR involves the cycles of
denaturation, annealing, and extension. However, due to the partitioning, each
droplet will either contain amplified target sequences (positive or 1) or not
(negative or 0), depending on whether the target sequence was present in that
droplet.

Fluorescence detection: Each droplet is analyzed for fluorescence after the PCR.
Droplets containing the amplified product will fluoresce due to the cleavage of
sequence-specific fluorescent probe linkers, so called hydrolysis probes, via
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the 5’ nuclease activity of the polymerase. The intensity and number of
droplets is measured using a flow cytometer-like system.

Unlike gPCR, which provides relative quantification compared to standards or
reference genes, ddPCR allows for absolute quantification of nucleic acids
without the need for external standards. It does this by counting the number of
positive and negative droplets (thus total droplets), knowing the average
volume of each droplet and the volume of input sample, and applying Poisson
statistical analysis to determine the precise concentration of target molecules
that were present in the original sample to yield the measured ratio of positive,
negative, and total droplets. ddPCR is known for its high sensitivity and
precision, especially in detecting low abundance targets, rare genetic variants,
and in samples with complex backgrounds.

Poisson approximation

The Poisson approximation in dPCR is a technique used to precisely quantify
DNA or RNA targets within a sample. The method involves dividing the sample
into numerous partitions, then uses statistical analyses to determine the
likelihood original concentration of the target that would yield a particular
distribution of positive partitions given a total number of partitions generated.
By tallying the partitions that test positive, negative, and thus total number of
partitions, and utilizing the Poisson distribution, dPCR accurately measures the
concentration of target DNA or RNA. This process is underpinned by a binomial
distribution scenario, where 'm' represents the number of target molecules
and 'n' the number of partitions. Molecules are distributed across partitions in
a manner analogous to placing balls into boxes, resulting in partitions that are
either positive (contain at least one molecule) or negative (contain none). The
probability 'p' of a partition being positive is calculated using the formula p =
1-(1-1/n)m indicating the odds of a partition not being empty. The Poisson
approximation, particularly relevant when 'n' is large and the ratio of 1/n is
very small, predicts the number of partitions containing specific quantities of
target sequences using the probability p # 1e(-}), where A = (m/n) is the average
number of molecules per partition. This principle is central to the operation of
ddPCR technologies [496,497].

Digital PCR has been extensively used to measure genetic imbalances, or CNV,
that result from the deletion or amplification of genomic regions or locus. In
CNV analysis, the copy number of a locus relative to another is the relevant
information. In Study II, dPCR absolute quantification is used to determine the
copy number of ERBB2 gene (with alleles of SNP rs1058808) relative to a copy
number stable region on chromosome 2p13, and also CEP17, located on
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chromosome 17.In Study V, a novel multiplex ddPCR assay was developed that
simultaneously detected and quantified HERZ expression levels and two alleles
of the SNP rs1136201 within ERBBZ, alongside two reference controls, GNB1
and PUM1.

ddPCR vs. other PCR technologies

dPCR offers distinctive advantages in the replication, amplification, and
accurate quantification of NA, providing highly accurate and precise
quantification which is particularly useful in applications such as detecting
low-abundance mutations, precise gene quantification, and applications where
absolute quantification is necessary such as in Study II and V. Most significant
benefits of dPCR are i) absolute quantification: dPCR does not require external
standards or reference curves for quantification. It provides absolute counts of
target NA molecules without the need for calibration against standards or
references, which is often necessary in qPCR [498]. ii) High precision and
sensitivity: in ddPCR, the partitioning of the sample into around twenty
thousand droplets per sample of 20 pl allows precise measurement of low-
abundance targets with better reproducibility and less susceptibility to PCR
efficiency variations. iii) Reduced impact of inhibitors: ddPCR's partitioning
approach can dilute PCR inhibitors present in the sample, potentially allowing
for more accurate results with complex matrices than qPCR. iv) High resistance
to contamination: The droplet format minimizes the risk of contamination
because the reactions are isolated in tiny droplets. v) Detection of small fold
changes: ddPCR is extremely sensitive to small fold changes in gene copy
numbers, making it ideal for detecting slight variations in gene expression or
small increases in mutation load. vi) Simpler interpretation: Since ddPCR
provides direct absolute quantification, it avoids the need for complex
calculations required in qPCR to determine relative gene expression or copy
number variation [499].

Summary of ddPCR protocol to detect ERBB2 amplification

In Study II, DNA was isolated from fresh tumor samples collected at primary
surgery. The genomic DNA isolated from the ERBBZ-amplified SK-BR-3 cell line
served as a positive control, and NS12911, a reference DNA sample, was
utilized as a normal copy number sample.

The ddPCR assay was designed for multiplexed analysis, allowing for the
simultaneous quantification of ERBBZ alleles along with a control region CEP17
and a copy number stable region near cytoband 2p13.1 (CNS-2p13.1). Each 20
ul PCR reaction, prepared with 10 ng of DNA and 4X ddPCR supermix according
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to the manufacturer's instructions (Bio-Rad), was processed in an Automated
Droplet Generator (Bio-Rad) to form emulsified droplets. These were then
thermocycled in a 96-well plate with a protocol involving an initial
denaturation at 95 °C for 10 minutes, followed by 40 cycles of 94 °C for 30
seconds and 60 °C for 60 seconds, a final extension at 98 °C for 10 minutes, and
a hold at 4 °C. The plates were subsequently read using a Bio-Rad QX200
Droplet Reader, with data analyzed using QuantaSoft software. In total, nine
separate runs were performed, each containing control samples, and an
average of 19,738 droplets were analyzed per reaction (with SD of 3492 and
lower quartile, median, and upper quartile of yielded droplets was 19923,
20869, and 21606, respectively).

Summary of ddPCR protocol to measure ERBB2 mRNA expression

In Study V, a multiplex ddPCR assay was developed to quantify ERBBZ mRNA
expression levels in breast tumors. RNA was isolated from fresh tumor samples
and cell lines, then converted to cDNA by reverse transcription using the Bio-
Rad iScript Synthesis Kit employing oligo(dT) and random hexamer primers. A
novel multiplex ddPCR assay was designed for quantifying ERBBZ and two
alleles of SNP rs1136201, along with reference genes GNB1 and PUM1, using
designed primers that target long introns. PUM1 was selected as a reference
gene as it was demonstrated as the most stable gene among 32 frequently used
reference genes [500]. GNB1 was selected as a stable gene with low coefficient
of variation calculated using FPKM of each gene among 9206 SCAN-B samples.
The assay was validated on 19 tumor and 2 non-tumor breast cell line samples,
and measurements were made for 1242 invasive breast cancer samples that
received no neoadjuvant treatment from within the SCAN-B cohort. For ddPCR,
a 20 pl reaction with 5 ng of cDNA was prepared, droplets were generated, and
PCR was conducted with 95 °C for 10 min, 40 cycles of 94 °C for 30 s and 59 °C
for 60 s, 98 °C for 10 min, and hold at 4 °C. The temperature ramp rate was
2°C/s for all steps. Digital PCR was performed with negative control (DNA from
cell line MCF12A) and a no template control (containing elution buffer from
Qiagen) within each run. Analysis was performed using Bio-Rad's QuantaSoft
software. Dilution series of HCC1954 cell line RNA were tested to demonstrate
linearity of quantification, and 21 cell lines were analyzed to show concordance
between independent The Human Protein Atlas RNA-seq TPM and ERBB2
expression. ERBBZ expression was calculated as ERBBZ copies/sqrt(GNB1
copies*PUM]1 copies).
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3.4 Statistical Analysis

Statistical testing allows one to draw conclusions whether a specific null
hypothesis can be explained or rejected by the data at hand. This process yields
a P-value, representing the probability of obtaining the observed results, or
more extreme ones, under the assumption that the null hypothesis is true.
Although debatable, in practice, a P-value of less than 0.05 is commonly
interpreted as indicating a significant difference [501]. However, it's crucial to
understand that P-values do not measure the size of an effect but rather the
probability under the assumption of no effect (null hypothesis) of obtaining a
result equal or more extreme than what was observed, and they are
significantly influenced by the size of the sample. In other words, minimal
effect sizes observed in very large sample sizes can still have small P-values.

The choice of statistical tests, whether parametric or non-parametric, depends
largely on the data's structure and distribution. Parametric tests, suitable for
data that approximates normal distribution, include methods like Student’s t-
test or the Chi-squared test. On the other hand, non-parametric tests like the
Mann-Whitney U-test or Fisher’s exact test are used for data not following a
normal distribution [502]. These tests evaluate the probability that any
observed difference between groups could occur by chance. Although a P-value
of 0.05 is typically used as a threshold for statistical significance, its
interpretation should be contextual; a P-value of less than 0.05 is not an
absolute indicator for rejecting the null hypothesis. Additionally, the likelihood
of encountering a "significant” P-value increases with the number of tests
performed, necessitating corrections for multiple hypothesis testing.

The confidence interval (CI) is another critical statistical measure, providing a
range within which the variable of interest likely falls, with a specified level of
certainty (e.g., 95%). This interval helps address the risk of sampling error,
offering a perspective analogous to that provided by a P-value of 0.05.

In Studies I-V, continuous variables were compared using Student’s t-test
when data was normally distributed and for non-normally distributed data,
Kruskal-Wallis non-parametric test (for significant difference between
groups) as well as Wilcoxon rank sum test (for multiple pairwise comparisons
between groups) were used, and categorical variables were compared using
Chi-square test or Fisher’s exact test. Spearman rank correlation was used to
determine correlations between expression levels of genes in Study I and IIIL.
To evaluate significant differences in the clinicopathological variables between
two groups, Mann Whitney U test (for continuous variables) and Fisher’s exact
test (for categorical data) were used in Study I, IV, and V. All statistical analyses
were performed in R.
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Survival Analysis

Survival analysis is a biostatistical method used in cancer research to study the
time from a significant starting point (such as cancer diagnosis in this thesis)
to an important endpoint, which could be e.g., death, disease progression, or
relapse. The Definition for the Assessment of Time-to-event Endpoints in
CANcer trials (DATECAN) initiative has provided guidelines for defining these
endpoints in cancer research [503]. Commonly used endpoints include overall
survival (0S), relapse-free survival (RFS), and relapse-free interval (RFI). OS
refers to the time until death from any cause, while RFS is the time until a
patient experiences a tumor relapse or death. RFI, on the other hand, is
specifically concerned with the time until a locoregional or distant relapse.

The Kaplan-Meier (KM) method is a fundamental tool in survival analysis
[504]. It estimates the survival function for a group of patients, for instance,
those stratified by the status of a biomarker as in Study I, II, and IV. The KM
method computes the fraction of patients still alive (or without an event such
as relapse) at any given time after a starting event, such as cancer diagnosis. A
KM plot visualizes this information, showing the proportion of patients
without an event over time. Patients are 'censored’ from the plot if they are lost
to follow-up or if the event hasn't occurred by the end of the study. Diverging
curves on a KM plot can indicate that a certain factor, like biomarker status, has
prognostic or predictive significance. The statistical relevance of differences in
survival curves is commonly assessed using the log-rank test [505].

To quantify the effect of (multiple) variables on survival, Cox proportional
hazards models may be used [506]. These models can be univariable,
examining the effect of one variable as seen in KM plots, or multivariable,
adjusting for multiple potential confounders. The hazard ratio (HR) derived
from Cox models quantifies relative risk. For example, a HR of 1 indicates no
difference in risk between groups, a HR of 1.5 signifies a 50% increased risk,
and a HR of 0.5 implies a 50% reduced risk. The interpretation of HR depends
on the proportional hazards assumption, which posits that the factors affecting
the groups have a constant impact over time [507]. Non-proportionality,
suggested by crossing survival curves, can affect the model's validity. To ensure
the appropriateness of the Cox model, it's crucial to test for non-
proportionality using Schoenfeld residuals, as was used in Study I-V.

Survival analysis was performed by KM and Cox regression survival analyses
using the package survival and survminer in R. OS and RFS as endpoints in
Study I, II, IV, and V, distant metastasis-free survival (DMFS) was used as an
endpoint in Study III and V along with OS. Proportional hazards assumptions
were checked graphically by Schoenfeld residual plots.
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4. Results and Discussions

Study I: Clinical associations of ESR2 (estrogen receptor beta)
expression across thousands of primary breast tumors.

Unlike ERa, which has been well-characterized and extensively studied for
decades and is the target of standard anti-endocrine therapies in HR+ B(, the
role of ER[ (encoded by ESRZ) is less clear, has been controversial, and appears
to be context-dependent [253,508]. While some studies suggests a link
between ER[ presence and improved breast cancer outcomes, potentially by
moderating ERa's tumor-promoting effects [509,510], inconsistencies and
challenges in accurately detecting ER at protein level have plagued earlier
studies, largely owing to the unreliability of available antibodies [511,512]. For
example, discrepancies between mRNA and protein levels of ERB have been
noted, with events like post-transcriptional regulatory mechanisms likely
influencing ERf} expression [513,514]. This underscores the complexity in
assessing ERB's role due to the challenges in detecting the protein reliably,
even in cell lines once thought to express it.

To address these challenges and to better understand the potential role of ERf3
across a large cohort of primary breast cancers, our study aimed to quantify
ESR2 mRNA expression and explore its correlation with clinical features and
patient outcomes. We utilized RNA-seq to analyze gene expression across a
substantial cohort of 3,207 primary invasive breast tumors, drawing from a
broad, population-based sample. This approach bypasses the issues of
antibody reliability, providing a robust assessment of ESR2's expression levels
in breast tumors.

ESR2 mRNA expression and its association with prognosis

In this study, ESRZ mRNA expression (TPM values) across both SCAN-B
(n=3207) and TCGA (n=1089) cohorts were generally low and there was a
slight inverse correlation between ESR1 and ESRZ expression, indicating
differing expression patterns based on clinical ERa status (Figure 1 in Paper I).
By categorizing the samples into tertiles for ESRZ expression to capture its non-
linear distribution across the sample population, we identified that ESR2-high
was most prevalent in the basal subtype and ERa-negative tumors in general
(with ~47% of ERa-negative and ~31% of ERa-positive cases classified into
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the ESRZ-high category, Table 1 in Paper I). In the SCAN-B dataset, ESR2
expression was highest in normal-like tumors, decreasing through basal-like,
HER2-enriched, luminal A, to lowest in luminal B. Conversely, ESR1 showed the
opposite pattern, peaking in luminal B and lowest in basal-like tumors. Age
analysis revealed ESR1 expression increased with patient age, whereas ESR2
remained stable across all ages (Figure 2 in Paper I).

High ESR2 expression correlated with improved OS in patients, particularly
those receiving endocrine therapy (logrank test p=0.03; Figure 3D) and in
TNBC (logrank test p=0.01; Figure 4F). No significant association was found
between ESRZ expression and relapse-free interval (RFI). Multivariable Cox
regression analysis, adjusting for potential confounding factors such as age,
tumor size, lymph node status, and grade, confirmed high ESRZ expression as
a significant positive prognostic factor for OS with a hazard ratio (HR) of 1.34
(95% CI 1.06-1.32; p=0.01) in the full cohort (Figure 5),. In the endocrine
therapy group, low ESRZ expression was not significantly associated with OS
(HR 1.24; p=0.1). However, in TNBC, low ESRZ expression significantly
increased the risk of poor outcomes, with an HR of 2.0 (95% CI 1.25-3.23;
p=0.004). A significant association of ESRZ expression was not found with RFI
as an endpoint for this analysis.

Our findings from the SCAN-B cohort indicating high ESRZ expression’s
association with improved OS were validated in the TCGA breast cancer
dataset. Despite TCGA’s bias towards larger, higher-grade tumors, ESRZ mRNA
showed low expression similar to what was observed in the SCAN-B cohort.
ESR1 and ESRZ2 exhibited a weak inverse correlation in both datasets. The
distribution of ESRZ2 expression across molecular subtypes in TCGA mirrored
SCAN-B, with higher expression in normal-like, basal-like, and HER2-enriched
tumors compared to luminal subtypes. However, No significant differences in
ESR2 expression across molecular subtypes were found in TCGA, contrasting
with SCAN-B. Analysis of OS and RFI in TCGA, stratified by treatment received
and clinical subgroups, did not show a consistent association with ESRZ
expression, except in the ERa-negative (p=0.02, logrank test) and HER2-
positive subgroup (p=0.03, logrank test), where high ESRZ was linked to
significantly improved outcomes (Figure S2 in Paper I).

Differential gene expression (DGE) and GSEA analysis

DGE analysis between tumors with high versus low ESRZ expression, while
controlling for ERa's influence (by performing the analysis separately within
the ERa-positive and -negative subgroups), revealed distinct upregulation of
genes associated with immune responses in both ERa-positive and -negative
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groups. This analysis, applying stringent criteria for identifying differentially
expressed genes (logFC = 1.5 for up-regulated genes and log;FC< -1.5 for
down-regulated genes), uncovered a significant upregulation of genes involved
in B-cell activation, immune response signaling, and other processes linked to
immune system modulation in ESRZ2-high tumors. These findings suggest a
more pronounced immune landscape in ESRZ-high tumors, potentially
contributing to their improved prognosis.

Next, gene set enrichment analysis (GSEA) further reinforced the notion of an
activated immune environment in ESRZ-high tumors, with enriched biological
processes related to immune system activities, including B and T cell activation
and leukocyte cell-cell adhesion (Figure 6 in Paper I). The presence of genes
involved in these processes suggests a robust immune-mediated tumor
surveillance in ESRZ-high cases, possibly underpinning the observed survival
benefits. This immune-centric view posits that high ESRZ expression may
foster a tumor microenvironment more conducive to immune infiltration and
activation, thereby enhancing immunogenicity and potentially improving
patient outcomes through more effective immune-mediated tumor
suppression. Alternatively, the measured ESRZ expression may primarily be
coming from the immune compartment of the analyzed tissue, and thus be a
proxy for immune infiltration.

According to Reese et al.,, ERp is implicated in upregulating cystatins, a family
of secreted proteins that are known to interfere with canonical TGFf3 signaling
pathways, which are crucial for tumor progression and metastasis in TNBC
[515]. TGFp signaling typically plays a role in immune evasion by suppressing
immune cell activity within the tumor microenvironment [516]. By
downregulating this pathway, cystatins indirectly promote a more active and
vigilant immune surveillance against tumor cells. This mechanism highlights a
potential pathway through which high ESRZ expression could contribute to a
more immunogenic tumor microenvironment, enabling better recognition and
destruction of cancer cells by the immune system. The suppression of TGFf3
signaling by cystatins could mitigate the metastatic phenotype of TNBC,
thereby enhancing the efficacy of immune-mediated tumor suppression in
ESR2-high tumors. This insight provides a possible molecular basis for the
observed correlation between high ESRZ expression and improved clinical
outcomes, underlining the potential of ESR2 in being a modulator of tumor-
immune interactions in our study.

In summary, our comprehensive analysis revealed that while ESRZ expression
in primary breast tumors is generally low, elevated levels are linked to
enhanced survival outcomes. Despite the technical challenges associated with
mRNA-based quantification methods, such as distinguishing between tumor
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and stromal/immune expression and navigating issues with template
amplification and RNA editing, our findings underscore the potential of mRNA
quantification to provide insights into ESRZ’s role in breast cancer. This
approach offers a complementary perspective to antibody-based assays, which
have produced inconsistent results, thereby enriching our understanding of
ERB's involvement in breast cancer pathology and its impact on patient
prognosis.

Study II: Quantitative digital PCR measurement of ERBB2 copy
number is predictive of outcome in early breast cancer patients
treated with adjuvant trastuzumab.

The ERBBZ oncogene, known as HER2 and located on chromosome 17q12,
plays a crucial role in primary breast cancer progression through its function
in cell growth and proliferation, and is amplified in approximately 15-20% of
cases [266,517]. Recognized for promoting aggressive tumor growth and
conferring poor prognosis, HER2 amplification has directed the development
of targeted therapies such as trastuzumab, which has become a symbol of
personalized therapy and precision medicine, and has significantly improved
the clinical outcomes for patients with HER2-positive breast cancer [518,519].
However, despite these advancements, a subset of HER2-positive patients still
face relapse [520], highlighting the ongoing need for refined diagnostic tools to
better predict treatment responses.

ERBBZ2 DNA copy number assay development

Our study developed a novel multiplex ddPCR assay for precise quantification
of ERBBZ gene amplification, utilizing reference controls CEP17 and CNS-
2p13.1, to assess ERBBZ status in 909 primary breast cancer samples (Figure
1 in Paper II). This assay's validation revealed its high reproducibility and
accuracy, correlating well with clinical HER2 assessments for IHC and ISH,
thereby offering a reliable diagnostic tool for stratifying HER2 status. The assay
showed high reproducibility and measurements in line with expectations for
both the Coriell NS12911 normal human DNA, with mean copy numbers
closely aligning with the expected normal copy numbers, and the ERBBZ2-
amplified SK-BR-3 cell line, matching well with literature-reported estimates
(with mean CEP17 CN ~3, mean ERBBZ CN ~20 and mean ERBBZ /CEP17 ratio
of 6.5) (Supplementary Figure 1 in Paper II). This underscores the assay's
accuracy in quantifying ERBBZ gene copies, demonstrating its potential as a
reliable tool for HER2 status assessment in breast cancer diagnostics.
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ERBBZ2 ddPCR measurements and clinical HER2 evaluations

To determine thresholds for ERBBZ CN and ERBBZ2/CEP17 ratio, we first
divided the 909 breast tumors into balanced 70% training and 30% validation
groups. Initially, we conducted a ROC analysis exclusively on the training set to
establish the most effective thresholds for discerning ERBBZ ddPCR status,
focusing on achieving high sensitivity and specificity. This approach allowed us
to refine our criteria for ERBB2 CN and ERBB2/CEP17 ratio, ensuring robust
predictive accuracy. Satisfied with the thresholds determined from the training
set, we applied these criteria to the validation group (Figure 2 and Table 2 in
Paper II). This sequential analysis reinforced the validity of our initial findings,
demonstrating the assay's capacity to accurately classify HER2 status across
different subsets of breast cancer samples.

Combined categorization of 909 cases according to ddPCR metrics aligned well
with 2018 ASCO/CAP guidelines, identifying classic HER2 amplified and non-
amplified groups, alongside monosomy and co-amplification subsets. This
categorization revealed a high concordance between ddPCR results and clinical
HER2 status, highlighting the assay's predictive value (Table 3 in Paper II).
Notably, a few cases showed discrepancies between ddPCR classification and
clinical HER2 status, possibly hinting at clinical false-negatives (FN) or
intratumoral heterogeneity. For example, 6 cases were defined as ddPCR group
1 amplified but were clinically HER2-negative and therefore did not receive
anti-HER2 therapy (Figure 3 and Table 3 in Paper II). 3 out 6 ddPCR+ patients
had relapse during follow up. These discrepant cases may represent clinical
HER2 FN due to technical or biological factors where the subclone analyzed at
diagnosis being HER2-negative but the specimen analyzed by ddPCR in this
study containing a subclone with ERBBZ CN gain. These findings underscore
the ddPCR assay's potential in enhancing HER2/ERBBZ status assessment in
breast cancer, offering insights into cases that might benefit from targeted
therapies despite conventional diagnostic challenges.

Our study also included analysis of the ERBBZ SNP rs1058808 as a genetic
marker due to previous suggestions of association of this SNP with HER2
protein expression, cancer risk, and trastuzumab-induced cardiotoxicity
[297,298]. Despite these prior publications, our findings revealed no
correlation between rs1058808 genotype and any clinical or pathological
variables, including HER2 status, ERBBZ CN, or the ERBBZ/CEP17 ratio.
However, notably our analysis utilizing this SNP confirmed, for informative
heterozygous cases, that amplifications of ERBB2 were always monoallelic,
involving either the G or C allele but not both (Supplementary Figure 2 in Paper
1.
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ERBBZ CN survival analysis in ddPCR cohort

We further explored the impact of ERBBZ ddPCR CN on survival outcomes in
patients with HER2+ disease treated with adjuvant trastuzumab , either as a
standalone treatment or in combination with chemotherapy and/or endocrine
therapy. Our dataset comprised 177 patients, within which we identified an
“ultrahigh” CN group with a ERBBZ CN above 19.7 (24 patients, 13.6%). Over a
median follow-up of 5.4 years, KM survival analysis indicated significantly
inferior RFS (p=0.039, log rank test) and OS (p=0.040, log rank test) among
patients with ultrahigh ERBB2 CN (Figure 4a and 4c in Paper II). Further,
multivariate Cox regression analysis, accounting for all clinically significant
variables from univariate analyses, identified ERBBZ CN as an independent
predictor of poor prognosis in trastuzumab-treated patients, with hazard
ratios of 3.3 (95% CI 1.1-9.6; p=0.031) for RFS and 3.6 (95% CI 1.1-12.6;
p=0.041) for OS (Figure 4b and 4d in Paper II). Notably, all patients in the
ultrahigh ERBBZ CN group were also found to have high Ki67 levels (p=0.016),
suggesting a link between ERBBZ CN and cell proliferation, although no
significant correlations were found with other clinical or pathological features.

ERBBZ CN survival analysis in surrogate RNA-seq SCAN-B cohort

To validate our ddPCR survival analysis findings, we aimed to include a larger
cohort treated with in a uniform way with trastuzumab. Therefore, we utilized
RNA-seq data from the SCAN-B study, incorporating 682 consecutive patients
with HER2+ disease and treated with adjuvant trastuzumab, diagnosed
between 2010 and 2019, with available RNA-seq data. The median follow-up
for this group was 6.8 years. By selecting the top 13.6% of cases based on
highest ERBB2 mRNA expression, paralleling the “ultrahigh” ERBBZ CN
category from ddPCR analysis, we observed similar outcomes: notably worse
0S (p = 0.044), albeit without significant differences in RFS (Figure 5a and 5b).
Given that ERBBZ mRNA levels serve as a proxy for DNA CN, we further refined
the “ultrahigh” group by adjusting the threshold to encompass 17.5% of cases
based on mRNA expression. This adjustment underscored the initial findings,
with the ultrahigh ERBB2 mRNA group showing a trend towards reduced RFS
(p = 0.083) and significantly poorer OS (p = 0.021) (Figure 5c and 5d).
Multivariable analyses affirmed that having four or more positive lymph nodes
was a critical factor for RFS (p = 0.001) and both = 4 positive lymph nodes and
ultrahigh ERBBZ status significantly impacted OS (p = 0.001 and p = 0.039,
respectively), aligning with ddPCR-based classifications.

Poorer survival outcomes observed in the ERBBZ ultrahigh group prompted
speculation on the underlying biological contributions. One plausible
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explanation is the incomplete engagement of HER2 receptors by therapeutic
antibodies in cases of extreme HERZ2 overexpression, leaving residual signaling
still in an active state. Additionally, the ultrahigh HER2 expression may be a
biomarker for the presence of other aggressive tumor characteristics, such as
immune evasion capabilities or a heightened mutation rate, facilitating rapid
development of resistance to trastuzumab. It is noteworthy that the temporal
pattern of survival curves, diverging only after 2-3 years post-surgery (a period
during which the patient is receiving trastuzumab), implies initial
responsiveness to therapy in these ultrahigh ERBBZ patients, followed by
eventual relapse perhaps due to tumor aggressiveness or activation of
compensatory signaling pathways downstream of HER2. While these
hypotheses shed light on the complex dynamics between HER2 expression
levels and treatment response, they underscore the need for further
investigation into the molecular underpinnings of HER2-driven tumorigenesis
and resistance mechanisms.

Our findings on the prognostic significance of ‘ultrahigh’ ERBB2 CN, as
determined by ddPCR, were recently corroborated by an independent study.
This validation confirms that patients with the highest levels of ERBBZ gene
amplification or ERBB2 mRNA have a significantly worse prognosis (RFS)
compared to those with intermediate levels (RFS with HR=2.7, p=0.003 for
both ERBB2 CNA and ERBB2 mRNA) [521]. This parallel finding not only
reinforced our results but also underscores the need for further clinical
investigations to refine HER2-targeted therapies for this group.

In summary, we have successfully designed and validated a robust, cost-
effective ddPCR assay for the precise quantification of ERBBZ CN in breast
cancer, demonstrating high accuracy, specificity, and sensitivity. This assay
offers a significant advancement in the stratification of HER2+ BC patients,
identifying those with "ultrahigh" HER2 amplification who exhibit worse
outcomes despite adjuvant trastuzumab treatment. Our findings highlight the
complexity of HER2-driven BC and suggest the need for tailored therapeutic
approaches for patients with extreme levels of ERBBZ overexpression. This
work paves the way for further research into the mechanisms underlying
differential responses to HER2-targeted therapies, with the potential to
improve personalized treatment strategies for breast cancer patients.
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Study III: CITED1 as a marker of favourable outcome in anti-
endocrine treated, estrogen-receptor positive, lymph-node
negative breast cancer.

This study aimed to explore the role of CITED1, a transcription coactivator, as
a biomarker for predicting the response to anti-endocrine therapy and
recurrence in breast cancer. This investigation builds on previous research that
identified CITED1's involvement in estrogen-dependent transcription and its
influence on mammary gland development [522,523].

To achieve these objectives, CITEDI mRNA and protein levels were analyzed in
human breast cancer cell lines and several independent tumor datasets in
GOBO database [448] in a characterized tissue microarray (TMA) as well as in
the TCGA breast cancer dataset. Additionally, MCF7 cell lines were engineered
with stable overexpression of CITED1 to investigate its impact on downstream
transcriptional programs. In the GOBO dataset, CITED1 mRNA was found to be
selectively expressed in ER+ luminal-molecular subtype cell lines and tumors
(Figure 1a and 1b in Paper III). Higher levels of CITED1 were correlated with
improved outcomes in patients treated with tamoxifen, especially notable in
ER+, lymph-node-negative (ER+/LN-) patients. This correlation became
evident after five years, highlighting CITED1's potential role in predicting long-
term anti-estrogen treatment response (Figure le and 1f in Paper III). IHC
analysis of tissue microarrays further supported CITED1 protein's association
with favorable outcomes in tamoxifen-treated, ER+ patients (Figure 2a and 2b
in Paper III). Interestingly, while a general favorable response to anti-
endocrine treatment was observed in a larger TCGA dataset (Figure 2c and 2d
in Paper III), the tamoxifen-specific effect noted in GOBO dataset was not
replicated (Figure S1d). In vitro, MCF7 cells overexpressing CITED1 showed
an increased expression of AREG but not TGFa, suggesting a specific role of
ERa-CITED1 mediated transcription in the response to anti-endocrine therapy
(Figure 3 in Paper III).

In summary, CITED1 expression was found to be associated with favorable
prognosis in ER+, tamoxifen-treated breast cancer patients, particularly in the
ER+/LN- subset, suggesting its utility as a prognostic biomarker for anti-
endocrine therapy response. The differential expression of AREG in CITED1-
overexpressing cells underlines the importance of specific ERa-CITED1
mediated pathways in sustaining long-term response to anti-endocrine
treatment. While this study confirms CITED1's potential role in breast cancer
prognosis and treatment response, further research, including larger datasets
and prospective studies, are needed to fully establish its diagnostic and
prognostic value. The findings also highlight the broader therapeutic potential
of targeting coregulators like CITED1 in disease management.
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Study IV: The Sweden Cancerome Analysis Network - Breast
Initiative: a 10-year interim update of the ongoing multicenter
multiomic study to improve personalization of breast cancer care.

Breast cancer, with its significant heterogeneity, presents challenges in
treatment due to the current limitations in predicting outcomes and responses
to therapy. The SCAN-B initiative, launched in 2010, aims to integrate advanced
NGS-based diagnostics into clinical routines to address these challenges, with
the goal to improve personalized care through enhanced patient stratification
[434,435]. Despite advances in treatment, breast cancer's complexity demands
more precise biomarkers for better management strategies. SCAN-B's
approach leverages RNA-sequencing for real-time clinical implementation,
aiming to refine prognostic and therapeutic decisions. The study adhered to
ethical standards and involved comprehensive patient enrollment across
Southern Healthcare Region, with sample collection and processing protocols,
from across seven hospital centers-namely Malmdé, Lund, Helsingborg,
Kristianstad, Halmstad, Vaxjo, and Karlskrona. In this Paper, we have
summarized the SCAN-B cohort for its first 10 full calendar years: from
initiation in 2009 through the end of 2020, SCAN-B enrolled 16381 eligible
breast cancer patients, collecting a vast array of samples, including tumor
samples and baseline and follow-up blood samples (Figure 2 in Paper IV). RNA-
seq was performed on a large cohort of 9323 out of 9915 tumor samples (94
%) employing a high-throughput protocol to analyze transcriptomes and
identify transcriptomic alterations relevant to breast cancer [474-476]. Initial
analyses have demonstrated the feasibility of molecular subtyping and
mutation screening from RNA-seq data, offering insights into the genomic
landscape of breast cancer in a population-based setting [352,445]. Although
the analysis is still in progress at the time of writing this manuscript, the
statistics provided herein represent an initial summary of all accrued breast
cancer patients (n=13940) in SCAN-B.

Real world treatment profile analysis

Treatment profiles from patients who were accrued and have tumor specimen
available delineated the pre-neoadjuvant and post-adjuvant therapeutic
interventions, including chemotherapy, immunotherapy, endocrine therapy,
and radiotherapy (Figure 4 in Paper IV). This categorization provides as
overview of the treatment sequence (from pre to post transitions) as well as
the timing of treatments in breast cancer management in clinics in real time.
For instance, neo-adjuvant chemotherapy and HER2 targeted therapy reflects
the use of therapies intended to reduce tumor size or address metastasis
before surgical intervention. Adjuvant chemotherapy and HER2 targeted
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therapy suggests use of these interventions following initial surgical or
primary treatments in the aggressive tumor types.

Survival analyses

Survival analysis using OS, RFS as endpoints was performed across five key
clinical subgroups: HER2 positive with estrogen receptor positive
(HER2pERp), estrogen receptor positive and HER2 negative with lymph node
positive (ERpHERZnLNp), estrogen receptor positive and HER2 negative with
lymph node negative (ERpHER2nLNn), HER2 positive with estrogen receptor
negative (HERZpERn), and triple-negative breast cancer (TNBC) (Figure 5).
This analysis demonstrated the distinct prognostic outcomes associated with
each clinical subgroup. HER2 positive subgroup showed more favorable
survival outcome compared to TNBC, reflecting the impact of targeted HER2
therapies. In contrast, patients with TNBC exhibit a more challenging
prognosis, underscored by lower OS and RFS outcomes (p < 0.0001).

OS analysis in ER+ HER- LN+ patients that received endocrine therapies,
including tamoxifen and aromatase inhibitors (Al), chemotherapies including
anthracyclines and taxanes, showed variable outcomes as compared to the
patients who did not receive any endocrine therapy. ER+ HER2- LN+ tumors
with either no therapy or chemotherapy only, where estrogenic signaling was
not targeted, had poor RFS and OS (p < 0.0001; Figure 6), whereas for LN-
cases this was not as apparent: patients receiving no therapy had slightly better
OS than patients receiving endocrine-only, which is likely because most of
these patients receiving no therapy were clinical stage 1, whereas those
receiving endocrine-only were generally of higher stages. HERZ+ patients who
have been treated with targeted anti-HER2 therapies (including trastuzumab
and pertuzumab) distinctly showed a significant improvement in both OS and
RFS (p < 0.0001 for both) compared to those who did not (Figure 7A-B). This
data reinforces the importance of HER2 targeted treatments in the clinical
management of HER2 + tumors. TNBC patients who received chemotherapy,
including anthracycline and docetaxel showed improved OS and RFS
(p < 0.0001; Figure 7C-D) as compared to the untreated group reflects the
effectiveness of chemotherapy in not only prolonging life but also in sustaining
periods free from cancer recurrence, a critical outcome for TNBC patients given
the disease's propensity for early recurrence and absence of targeted
treatments.

In summary, SCAN-B initiative demonstrates the feasibility of large-scale,

population-based cohort and RNA-sequencing analysis for breast cancer
patients, making this project the largest study of its kind. This approach has
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and continues to expedite the discovery, validation, and clinical application of
innovative biomarkers and molecular tests that have the potential to transform
into clinics in future [301].

Study V: Characterization of HER2-low and -ultralow using digital
PCR for ERBB2 expression profiling of breast cancer in breast
cancer.

Breast cancer treatment has significantly advanced and is continuously
evolving with HER2-targeting therapies and other antibody-drug conjugates
(ADCs), especially for cancers expressing HER2. Approximately 60% of
traditionally defined HER2-negative breast cancers express low levels of HER2,
a new subclass now known as “HER2-low” [524]. HER2-low cancers are
defined as i) HER2 non-amplified but ii) having lowered ERBBZ expression
levels, and iii) responding to new antibody-drug conjugates such as
trastuzumab deruxtecan (T-DXd) [525]. Since HER2-low tumors in the
metastatic treatment setting have been shown as targetable in DESTINY-
Breast04 trial, this change in the clinical landscape poses significant challenges
related to HER2 assessment. Traditional HER2 clinical classification is by IHC
(with scores of 0, 1+, 2+ or 3+) can be subjective and varies in precision,
underscoring the need for a more objective approach [526]. This highlights the
need for more precise and reliable methods to define “HER2-low” status [318].

Hence, this study aimed to refine HER2 classification at the gene expression
level using ddPCR to measure ERBBZ mRNA expression across a large
consecutive series (n=1242) of breast tumor samples from 1223 BC patients in
SCAN-B. In this study we developed and validated a novel single-reaction
multiplex ddPCR assay for quantification of ERBBZ expression levels, including
two alleles of SNP rs1136201 within ERBBZ, simultaneously with two
reference control regions, GNB1, and PUM1 (Figure 1 and Primers for ERBBZ,
GNB1 and PUM1 are listed in Table 2 in Paper V). This approach aimed to offer
a more objective and quantitative method for assessing ERBBZ2 mRNA
expression, hopefully allowing us to define more clearly HER2-low and -
ultralow breast cancer. The ddPCR results with IHC scores and consensus
among pathologists were also compared.

ddPCR assay validation

ERBB2 mRNA ddPCR assay performance was validated using a twofold RNA
input serial dilution series using the HER2-amplified breast cancer cell line
HCC1954, beginning with 4 ng RNA input down to 0.0156 ng RNA input.
Multiplex mRNA measurements for ERBB2, GNB1, and PUM1 showed high
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linearity across the dilution series (Figure 2 in Paper V). The quotient of ERBBZ2
compared to each housekeeping gene individually as well as to their geometric
mean was calculated, showing high consistency of the gene expression ratio
across the entire dilution series.

Additionally, the multiplex ERBBZ mRNA gene expression ddPCR assay’s
performance was validated and analyzed across 21 cell lines, including 19
breast cancer cell lines and 2 normal mammary epithelial cell lines (Table 1 in
Paper V). The ddPCR quantifications were compared to publicly available RNA-
seq measurements for the same cell lines and showed very high reproducibility
and consistency in the quantification between laboratories and measurement
methods. After categorizing the cell lines into three distinct groups based on
their HER2 status, cell lines with known HERZ amplification, cell lines with
normal HER2 copy number, and the normal epithelial cell lines with a normal
HER2 copy number, the distribution of ERBB2-to-reference gene ratios within
each group showed the expected patterns of ERBB2 expression ratios within
each cell line group, with some variability within the HER2 amplification group
(Figure 3 in Paper V). This distinction not only reaffirms the ddPCR assay's
precision in quantifying ERBBZ2 expression but also highlights its capacity to
differentiate between varying levels of ERBBZ expression.

Although in this manuscript some analyses are still ongoing, such as survival
analyses and final delineation of cutoffs between HER2 mRNA expression
groups, in summary, this ddPCR assay accurately quantifies ERBBZ mRNA
levels and is easily scalable for analysis of many tumor samples. This assay
may enable a more objective assessment compared to current IHC methods.
This study therefore may contribute to significant progress in the field of
breast cancer diagnostics and treatment, with the potential to elucidate
further the molecular characteristics of HER2-low breast cancer.

100



5. Conclusions

Study I

We have comprehensively assessed ESRZ expression across the most extensive
population-based breast cancer cohort SCAN-B, and validated it in TCGA,
detailing its correlation with various clinicopathological features and patient
outcomes. Our analysis revealed that while ESRZ mRNA is generally expressed
atlow levels in primary breast cancer, it is notably more prevalent within ERa-
negative breast cancer subtypes. Importantly, elevated ESRZ expression is
significantly associated with improved survival outcomes, especially among
patients receiving endocrine therapy and those diagnosed with TNBC. The
upregulation of genes associated with immune activation and surveillance in
ESR2-high tumors was also observed, indicating an association to immune-
mediated gene expression patterns. This study adds critical insights to the
ongoing discourse on ERB/ESR2, emphasizing its potential impact on
prognosis and inviting further investigation into this relatively underexplored
receptor.

Study II

Our study validates the effectiveness of ddPCR for ERBBZ CN analysis in breast
cancer, demonstrating high concordance with clinical HER2 evaluation by [HC
and ISH. Our ddPCR assay achieved an accuracy of 93.7% and 94.1% in training
and validation cohorts, respectively, with positive and negative predictive
values of 97.2% and 94.8% for identifying HER2 amplified cases. Importantly,
we identified an “ultrahigh” ERBBZ CN subgroup associated with significantly
poorer survival in patients with HER2+ disease treated with trastuzumab (HR
of 3.3 for RFS and 3.6 for 0S). These findings suggest that ddPCR could serve
as a rapid, cost-effective initial screening tool in conjunction with IHC and
before ISH, particularly for complex cases. The presence of the ultrahigh ERBB2
CN group highlights the need for additional confirmatory studies as well as
clinical trials to explore tailored treatments that could improve outcomes for
these higher-risk HER2+ patients.
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Study III

This study highlights CITED1’s potential as a prognostic biomarker for
enhancing the prediction of anti-endocrine treatment outcomes and
recurrence in breast cancer, particularly within the ER+/LN- patient subgroup.
We found that elevated CITED1 mRNA levels are significantly associated with
improved survival outcomes in patients treated with tamoxifen, notably in
luminal subtype tumors. This association underscores CITED1's role in
modulating ERa-dependent transcription, which was further evidenced by the
selective amplification of AREG in CITED1-overexpressing MCF7 cells,
highlighting its specific involvement in sustaining anti-endocrine therapy
response. While broader dataset analyses from TCGA confirmed the positive
response to anti-endocrine treatments, the specific enhancement of tamoxifen
response was notably prominent in the ER+ tamoxifen-treated cohort. These
findings suggest CITED1 as a biomarker could help tailor anti-endocrine
therapies, warranting further research.

Study IV

This study shows that over a decade, SCAN-B initiative has successfully
demonstrated the feasibility of conducting large-scale, population-based RNA-
sequencing analysis for breast cancer. During the first 10 full calendar years of
SCAN-B, from late 2010 through the end of 2020, this initiative has accrued
nearly 14,000 patients, achieving comprehensive molecular profiling for more
than 9300 breast tumors that is representative of the broader patient
population. This extensive dataset has enabled not only the deep exploration
of breast cancer biology but also the development and clinical integration of
novel biomarker assays. Implementation of molecular diagnostics, via the
integration of RNA-seq based SSP models into clinical practice in Region Skdne
in 2021 exemplifies how SCAN-B's findings are being translated into actionable
clinical tools that enhance personalized treatment strategies. This model
serves as a benchmark for comprehensive cancer treatment centers and even
nation-states worldwide, highlighting the potential benefits of continued
expansion and collaboration where translational research is closely integrated
and symbiotic to clinical implementation and patient care.

Study V

Our study underscores the potential utility of a novel ddPCR assay for refined
HER2/ERBB2 mRNA classification in invasive breast cancer, especially
distinguishing the HER2-low subgroup. This assay was validated using 21
normal and neoplastic breast epithelial cell lines and 1,242 breast tumor RNA
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samples from within the SCAN-B project have been analyzed, demonstrating
high concordance with HER2 IHC results. The assay's capability for multiplex
detection of ERBBZ, GNB1, and PUM1 genes allows for precise and accurate
HER2/ERBBZ expression quantification. It showed robust performance across
a diverse range of RNA inputs and maintained consistent expression ratios
critical for accurate gene expression studies. Moreover, the assay's reliable
quantitative measurement in diverse cell lines highlights its sensitivity and
specificity, and in the future potentially could be used in clinical decision-
making for guiding use of targeted therapies such as the ADC T-DXd. This
ERBB2 mRNA ddPCR assay is expected to enrich our understanding of HER2
expression dynamics and support application of new anti-HER2 therapies in
breast cancer treatment.
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6. Future Perspectives

Acknowledging the rapid advancements and shifting paradigms in BC research
and treatment driven by precision diagnostics and large-scale initiatives like
SCAN-B, it is crucial to explore further enhancements and applications in this
field. This thesis represents an effort to enhance diagnostic precision by
exploring the capabilities of dPCR in precisely quantifying the key biomarker
ERBBZ2 and refining the classification of HER2 expression levels. It also
investigates the roles of ESRZ and CITED1 in influencing patient outcomes. The
insights gained contributes towards the potential of precise molecular
diagnostics to personalize treatment strategies. Moving forward, it is
important to expand upon these findings by integrating multi-omics data,
incorporating liquid biopsies, enhancing machine learning (ML) applications
for data analysis, and developing robust clinical trials to validate and refine
these diagnostic assays [527].

SCAN-B

Due to the complexities in the formation and development of BC, the study of
mechanisms underlying cancer has gone beyond just one field of the omics
arena. As cancer involves complex genomic, epigenomics, transcriptomics,
proteomic, and metabolic alterations, multi-omics approaches are crucial for
comprehensive insights. As the field progresses, sequencing techniques are
expanding to include emerging areas such as the microbiome, exposome, and
immunome, further broadening our view of cancer's complex behavior. Each
of these layers contributes to our understanding of BC’s multifaceted nature
and have the potential to provide an in-depth investigation of the tumor for a
thorough characterization of tumor evolution, plasticity, heterogeneity,
microenvironment, immune evasion and drug resistance [528].

Future research in the SCAN-B initiative should aim to generate, integrate,
analyze, and connect different resultant data emerging from these different
-omic layers that has the potential to pave the way facilitating the discovery of
novel prognostic, diagnostic, and therapeutic approaches, as conceptualized in
Figure 6.1. RNA-seq using Illumina SBS is currently the method of choice for
molecular profiling in SCAN-B. This technique is cost-effective, accurate,
supported by a wide range of analysis tools and pipelines, and invaluable for

105



its high-throughput capabilities and precision in sequencing short reads, it
does encounters limitations. These limitations include difficulties in accurately
assembling highly repetitive or complex regions of the genome, and an inability
to read through long segments of DNA or RNA without interruption. This can
lead to gaps or ambiguities in genomic reconstructions and an incomplete
understanding of structural variations, gene fusions and detecting allele-
specific expression. NGS depends on PCR amplification as a crucial step for
DNA amplification. However, PCR amplification can introduce biases and
errors, such as preferential amplification of certain sequences over others,
base misincorporations and skewing allelic frequencies, which can skew the
results and complicate data interpretation [529]. This is particularly
problematic in quantifying gene expression levels or in detecting rare genetic
variants. Additionally, because of errors that arise during cluster amplification,
cycle sequencing, and image analysis, ~1% of bases are incorrectly identified
across various sequencing platforms, including [llumina [530,531]. Therefore,
high-coverage assembly is required to compensate for this high error rate, that
often results in very low allele frequency mutations being lost in the inherent
sequencing noise.

Third-generation sequencing (TGS) technologies, like those offered by Pacific
Biosciences’ single-molecule-real-time (SMRT) and Oxford Nanopore’s
platforms, can mitigate some of these challenges by enabling direct sequencing
of single DNA molecules without the need for PCR amplification. These
approaches reduce amplification biases, better resolves complex genomic
regions, and can provide more accurate characterization of structural
variations, chimeric transcripts, and transcript isoform identification. The
ability to read through long segments of DNA or RNA in a single, continuous
read in real time spanning large genomic regions, fully capturing long
transcripts in transcriptome analysis, and identifying complex rearrangements
and variants that are otherwise missed by short-read sequencing [532].
Furthermore, TGS can directly detect RNA and DNA base modifications during
the sequencing process, which is pivotal for advanced epigenetic profiling
[533]. Recently, owing to its capability in generating real-time sequencing data,
nanopore sequencing has been adopted for clinical diagnostics, including the
rapid variant detection of SARS-CoV-2 [534]. By integrating TGS with single-
cell sequencing (sc-seq) technologies, understanding of individual cancer cells'
heterogeneity, clonal and sub clonal evolution of tumors, their reactions to
therapeutic interventions, and their contributions to disease progression can
be explored with greater depth and precision.
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Figure 6.1: Multi-omics data integration and analysis framework. Starting from tumor
tissue or liquid biopsy samples, different layers of omics data such as genomics,
transcriptomics, epigenomics, proteomics, metabolomics and clinical data can be
integrated and analyzed to do bioinformatics and ML analysis, adding spatial
information (ST) to it to generate outcomes such as improved patient treatment
monitoring, patient stratification, and identification of BC biomarkers. Abbreviations:
sc-seq: single-cell sequencing; ST: spatial transcriptomics; PI: protein interaction; GRN:
gene regulatory networks. Created with BioRender.com.

Although TGS technologies offer improvements for research and clinical
diagnostics, they also present significant challenges. A primary concern is the
relatively high error rate observed during sequencing runs, approximately
15%, making TGS less suitable for accurate detection of SNPs and point
mutations, thus NGS still remains the best technology for mutational analysis
[535]. Efforts are ongoing to refine the sequencing chemistry of TGS platforms
to reduce these error rates and improve overall accuracy [536]. Furthermore,
being relatively new, TGS technologies necessitate the development of
specialized additional bioinformatics tools, pipelines and algorithms for
downstream data analysis [536].

While TGS and sc-seq provides detailed insights into individual cells'
transcriptomes, it loses the spatial context during tissue processing. On the
other hand, spatially resolved techniques like IHC and ISH are limited by the
need to pre-select targets, which constrains their utility for high-throughput
exploratory analyses. Tumor-associated cell states are complex and cannot
always be fully characterized by a limited set of markers or surface receptors
[537]. Thus, spatial transcriptomics (ST), pioneered by Stahl and Salmén et al,,
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offers a powerful solution by providing comprehensive, transcriptome-wide
expression data within its spatial context [538]. This technology is particularly
effective for analyzing cellular interactions and the spatial dynamics of gene
expression in the tumor stroma, bridging the gap between high-throughput
RNA-seq and the necessity to maintain spatial resolution. By mapping the gene
expression patterns directly to the locations of cells within a tumor, ST helps
identify different tumor regions and their potential response or resistance to
treatments. In BC research ST has been extensively used to define high
resolution map of cellular interactions in HER2+ BC [539], analyze the
transcriptional states of TNBC [540], define cancer-immune interactions and
niches as determinants of Immune checkpoint blockade (ICB) benefit in TNBC
[541], characterization of immune cell subsets and TILs, predictive of patient
outcome and response to systemic therapy in TNBC [542], probe ITH of tumor
and their TME and TME’s influence on drug responses in breast cancer [543],
detection of rare high-plasticity (mesenchymal transdifferentiation) BC
subtypes [544], build a detailed transcriptional atlas of BC and stratified them
into nine clusters (‘ecotypes’) with unique cellular compositions and clinical
outcomes [545]. A significant challenge in treating BC is the tumor
heterogeneity and development of resistance to therapies - which is also
crucial for SCAN-B - can be addressed by utilization of ST. Improvements in all
these technologies are enhancing the accuracy of tumor profiling, leading to
better patient stratification. The integration of ST and TGS into clinical practice
continues to evolve, with ongoing research focused on making these
technologies more accessible and interpretable. This progression is expected
to further refine treatment strategies and improve the precision of
interventions in BC care, ensuring that each patient receives the most
appropriate therapy based on a comprehensive understanding of their tumor
biology.

As data complexity increases with the integration of various omics layers, there
is a critical need to develop and refine bioinformatics pipelines and ML
algorithms that can effectively analyze, predict and interpret this data.
Integrating ML in the bioinformatics workflow has been shown enhance the
accuracy of tumor classification [546,547], prognosis [548-550], biomarker
identification [551,552] and prediction of treatment responses [553] in BC.

Precision diagnostics and clinical implications

There is a need to continuously improve diagnostic assays such as dPCR
performed in Study II and V, for even better sensitivity and specificity, on a
larger patient population. The future should see the development of newer,
even more precise diagnostic assays that can detect low-abundance, clinically
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significant variations in biomarkers and provide faster results to accelerate
clinical decision-making. Clinical translation of these assays requires robust
validation in FFPE tissues and liquid biopsy (ctDNA) samples, different patient
populations and finally through clinical trials. For example, in Study II, the
separation of KM survival curves emerges after about 2-3 years post-surgery
between ultrahigh and the moderate-high groups, meaning the tumors appear
to be initially responsive to treatment or at least kept under control during the
treatment. Therefore, assuming that ultrahigh BC relapse due to
aggressiveness and resistance or downstream HERZ2 signaling activation, these
tumors likely need to be treated differently. Keeping these speculations in
mind, a clinical trial can be envisioned with different arms to try new,
improved, more aggressive combination therapies including at least one HER2-
targeting agent for HER2+ ultrahigh group and another arm for prolonged
treatment duration or varied dosage of HER2 treatment. After establishing the
results from the clinical trial, improved treatment strategies may change the
way ultrahigh HER2+ group is treated, potentially improving HER+ BC patient
outcomes.

Moreover, to integrate this assay into clinical routines effectively, it is possible
that dPCR could supplant conventional ISH techniques and be used as a
screening test earlier in the testing workup algorithm, due to its lower cost and
relative ease of use compared to ISH (~$10-30/run vs. a minimum of $300 for
FISH) [554-556]. Also, implementing dPCR could reduce the total number of
ISH tests required, thereby decreasing false positive and false negative rates
and expediting the diagnostic process without significant delays. It would be
pragmatic to implement dPCR alongside the current standard of IHC. For all BC
cases, both IHC and dPCR should be conducted in parallel to assess HER2
status. This dual-testing approach would leverage the sensitivity of dPCR for
gene copy number alterations and the visual confirmation of protein
expression provided by IHC. If our results are validated in a larger patient
cohort, these hypotheses could then be tested in clinical trials, as stated above.
Integrating dPCR into clinical practice represents a significant advancement in
precision diagnostics, offering a faster, more cost-effective, and potentially
more accurate assessment of ERBBZ amplification (Study II) and HER2
expression status (Study V). By adopting a strategic approach that includes
parallel testing, resolving discrepancies, economically feasible for widespread
clinical adoption and optimizing adjuvant therapy durations and combinations
based on precise genetic insights, dPCR can profoundly impact the
management of BC patients.
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Liquid biopsy

Liquid biopsy technologies, particularly those utilizing ctDNA, are increasingly
recognized for their potential to revolutionize cancer management. These
techniques offer promising avenues for early cancer detection, monitoring
minimal residual disease, and assessing treatment response in solid tumors
including BC [557-559]. The implementation of liquid biopsies into clinical
practice as companion diagnostics depends on the success of well-designed
prospective clinical studies that validate their effectiveness in enhancing
patient treatment outcomes and survival rates [560].

For SCAN-B initiative, liquid biopsy projects such as the NeoCircle study and
SCAN-B-rec, both of which I have been involved in, are paving the way for these
advancements. The NeoCircle study focuses on using a novel ultra-sensitive
tumor-informed approach based on structural variant analysis combining
whole-genome sequencing and multiplex dPCR (unpublished). This study aims
to track ctDNA dynamics during the neoadjuvant treatment of early BC, helping
to identify patients with high-risk disease. Persistent detection of ctDNA after
tumor resection (molecular residual disease, MRD) signals the presence of
occult metastatic disease and a higher risk of disease relapse. Similarly, the
SCAN-B-rec study is currently gathering plasma samples from BC patients
experiencing recurrence or metastasis. This project aims to provide a deeper
understanding of the molecular underpinnings of cancer recurrence through
ctDNA analysis. Both initiatives underscore the growing importance of
integrating liquid biopsy techniques into large-scale research frameworks like
SCAN-B, enhancing the capacity to tailor treatments to individual molecular
profiles and improve overall patient management in breast cancer.

110



Acknowledgments

Reflecting on my PhD journey, [ attribute a significant part of my academic and
personal growth to the guidance and support of my supervisors, colleagues,
and friends.

Dr. Lao Saal, as my main supervisor, was the one who opened the door to my
PhD studies. Under his guidance, I have flourished academically and
scientifically. His unwavering support and keen guidance have been
instrumental throughout my research. I still remember the first day he picked
me up from the train station, [ was full of doubts. My journey towards the
completion of my PhD has been profoundly influenced by his dedication,
exceptional guidance and wisdom. His steadfast mentorship and the
intellectual freedom he granted me have been the key factors in my academic
and personal growth. Dr. Saal's commitment transcended the bounds of typical
supervision; he was a mentor in the truest sense. His ability to provide timely
advice and thoughtful feedback, despite his many commitments, has been
remarkable. He created an environment that fostered independent thinking
and encouraged me to venture beyond my comfort zone, all while ensuring I
had the support needed to succeed. His kindness and empathy, especially
during the most challenging periods marked by my personal struggles and the
pandemic, have been a source of great strength. He assisted with my PhD
extension, promptly providing reference letters, advising on postdoctoral
positions, and offering me space and understanding during difficult times. Such
support was more than I could have ever expected and has left an indelible
impact on my life. The dedication I have witnessed in Dr. Saal has not only
inspired me but has also instilled in me a deep respect for scientific pursuits. It
is his model of leadership and compassion that I aspire to emulate in my future
endeavors. He is truly a gem of a person. Therefore, it is with immense respect
and profound gratitude that I dedicate my work to Dr. Lao Saal. His mentorship
has been one of the greatest gifts of my PhD journey, and I am honored to have
had the opportunity to work under his guidance. His influence extends beyond
the pages of my thesis and into the foundational fabric of my career and
character.

My co-supervisor, Dr. Niklas Loman, has been an invaluable part of my
academic journey. His contributions have been greatly appreciated,
complementing the collective guidance [ received throughout my PhD. Dr.

111



Loman supported my future aspirations by providing crucial references for my
postdoctoral applications.

Christian, my senior and frequent co-author, extended his generosity beyond
what could be expected, assisting me with all aspects of bioinformatics
analysis. His willingness to help, regardless of how trivial my questions
seemed, has been a testament to the collaborative environment fostered within
our team. Sergii, your expertise as a skilled bioinformatician has been
immensely beneficial. I've learned a lot about bioinformatics, Snakemake, and
GitHub from you. Pei, a colleague and friend has been instrumental in teaching
me dPCR and wet lab techniques. I will not forget our spicy food sessions.
Thanks to - Malin, for our great teamwork on ER and CITED1 projects and for
providing guidance throughout. Alan (Yilun) and Robert for your readiness to
assist with my questions and providing me with a good headstart in the lab.
Anna-Sophia, for great teamwork on HER2-low project.

A big thanks to all my friends at MV - Mats, Carina, Kamila, Pontus, Jacob, as well
as my Indian group including Om, Kumkum, Megha, Varsha, and Kreema for
memorable times and for fun potlucks.

Additionally, I would like to thank my co-authors - Jill Howlin, Sofia Gruvberger-
Saal, Anthony (Tony), Miguel, Anna Ehinger, and my collaborators on the DYPD
project - Kristin and Ana Bosch.

[ am deeply grateful for the financial support received from the CanFaster
program. My heartfelt gratitude to Sara Ek and Jana, your dedication and hard
work in orchestrating such a supportive environment for researchers is
immensely appreciated. To my CanFaster colleagues, thank you for being part
of this enriching journey. Also, to all the funding bodies that supported my PhD
research.

Susanne André and Anne Vihdniemi for support in all things administrative.

Stefan Hansson for being a great support and approving my extension
application. I also express my sincere gratitude to my M.Phil. supervisor Dr.
Simon Tomlinson, for his support and guidance before I came to Lund.

[ also want to thank Kevin Blighe, Michael Love and all contributors of Biostars
and Stackoverflow - for providing bioinformatics support.

Pedro, my heartfelt thanks to you for being there to guide and support me
whenever | needed it. Your unwavering support and profound insights have
been my guiding light throughout this journey.

To my son, Yatharth, though you are young now and may read this when you
are older, you have been my greatest inspiration throughout this journey. The
sacrifices made, especially the times spent away from you, have been some of

112



the most challenging moments of my life. I hope one day you will understand
the depth of my love and commitment to our future, which fueled my efforts.
You are my heart and my motivation.

My parents for their love and support.

[ extend my deepest gratitude to the thousands of patients who participated in
the SCAN-B and ABiM studies, generously donating their biological materials.
Their invaluable contributions have not only laid the foundation for this thesis
but also continue to support numerous ongoing and future projects through
the SCAN-B biobank, potentially aiding patients around the globe.

[ owe a debt of gratitude to those who have listened, advised, and encouraged
me throughout this process. Without your invaluable support, this would not
have been possible. You have each in your own way, contributed to the
completion of this work. For all those who walked this path with me but remain
unnamed here, know that your contributions are deeply appreciated and
cherished.

1| 3 3T URY |l

End is the new beginning

Heena Dalal
Lund, May 2024

113






References

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000;100: 57-70. doi:10.1016/S0092-
8674(00)81683-9

Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011;144: 646-674.
doi:10.1016/j.cell.2011.02.013

Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discovery. 2022;12: 31-46.
doi:10.1158/2159-8290.CD-21-1059

Hippocrates. The Genuine Works of Hippocrates. Sydenham Society; 1849.

Bray F, Ferlay ], Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018:
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A
Cancer Journal for Clinicians. 2018;68: 394-424. doi:10.3322/caac.21492

Sung H, Ferlay ], Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics
2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.
CA: A Cancer Journal for Clinicians. 2021;71: 209-249. doi:10.3322 /caac.21660

Socialstyrelsen. Socialstyrelsen Cancer Statistics Database. Statistics on Cancer Incidence 2020.
2020. Visited: 2024-04-12

Thun M, Linet MS, Cerhan JR, Haiman CA, Schottenfeld D, Thun M, et al, editors. Cancer
Epidemiology and Prevention. Fourth Edition, Fourth Edition. Oxford, New York: Oxford University
Press; 2018.

Vineis P, Wild CP. Global cancer patterns: causes and prevention. Lancet. 2014;383: 549-557.
doi:10.1016/S0140-6736(13)62224-2

Venter JC, Adams MD, Myers EW, Li PW, Mural R], Sutton GG, et al. The sequence of the human
genome. Science. 2001;291: 1304-1351. doi:10.1126/science. 1058040

Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458: 719-724.
doi:10.1038/nature07943

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer Genome
Landscapes. Science. 2013;339: 1546-1558. doi:10.1126/science.1235122

Ledford H. Cancer treatment: The killer within. Nature. 2014;508: 24-26. doi:10.1038/508024a
Kumar. Robbins Basic Pathology - 10th Edition. Available:
https://shop.elsevier.com/books/robbins-basic-pathology/kumar/978-0-323-35317-5

Five decades of advances in cancer research. Cell. 2024;187: 1567-1568.
d0i:10.1016/j.cell.2024.02.044

Knudson AG. Mutation and Cancer: Statistical Study of Retinoblastoma. Proc Natl Acad Sci U S A.
1971;68: 820-823.

Oren M, Prives C. p53: A tale of complexity and context. Cell. 2024;187: 1569-1573.
d0i:10.1016/j.cell.2024.02.043

Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a Putative Protein Tyrosine
Phosphatase Gene Mutated in Human Brain, Breast, and Prostate Cancer. Science. 1997;275: 1943-
1947.do0i:10.1126/science.275.5308.1943

Alberts B, Johnson A, Lewis ], Raff M, Roberts K, Walter P. The Molecular Basis of Cancer-Cell
Behavior. Molecular Biology of the Cell 4th edition. Garland Science; 2002. Available:
https://www.ncbi.nlm.nih.gov/books/NBK26902/

Datta N, Chakraborty S, Basu M, Ghosh MK. Tumor Suppressors Having Oncogenic Functions: The
Double Agents. Cells. 2020;10: 46. doi:10.3390/cells10010046

Alexandrova EM, Mirza SA, Xu S, Schulz-Heddergott R, Marchenko ND, Moll UM. p53 loss-of-
heterozygosity is a necessary prerequisite for mutant p53 stabilization and gain-of-function in vivo.
Cell Death Dis. 2017;8: e2661. doi:10.1038/cddis.2017.80

Pitolli C, Wang Y, Mancini M, Shi Y, Melino G, Amelio I. Do Mutations Turn p53 into an Oncogene?
Int ] Mol Sci. 2019;20: 6241. do0i:10.3390/ijms20246241

115



23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Grabher C, von Boehmer H, Look AT. Notch 1 activation in the molecular pathogenesis of T-cell
acute lymphoblastic leukaemia. Nat Rev Cancer. 2006;6: 347-359. doi:10.1038/nrc1880

Dotto GP. Crosstalk of Notch with p53 and p63 in cancer growth control. Nat Rev Cancer. 2009;9:
587-595. doi:10.1038/nrc2675

Swanton C, Bernard E, Abbosh C, André F, Auwerx ], Balmain A, et al. Embracing cancer complexity:
Hallmarks of systemic disease. Cell. 2024;187: 1589-1616. doi:10.1016/j.cell.2024.02.009
Romond EH, Perez EA, Bryant ], Suman V], Geyer CE, Davidson NE, et al. Trastuzumab plus adjuvant
chemotherapy for operable HER2-positive breast cancer. N Engl ] Med. 2005;353: 1673-1684.
doi:10.1056/NEJMoa052122

Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, et al. Adjuvant trastuzumab in
HER2-positive breast cancer. N Engl ] Med. 2011;365: 1273-1283. doi:10.1056/NEJM0a0910383
Bradley R, Braybrooke ], Gray R, Hills R, Liu Z, Peto R, et al. Trastuzumab for early-stage, HER2-
positive breast cancer: a meta-analysis of 13 864 women in seven randomised trials. The Lancet
Oncology. 2021;22: 1139-1150. doi:10.1016/S1470-2045(21)00288-6

Antoniou A, Pharoah PDP, Narod S, Risch HA, Eyfjord JE, Hopper JL, et al. Average risks of breast
and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected
for family history: a combined analysis of 22 studies. Am ] Hum Genet. 2003;72: 1117-1130.
doi:10.1086/375033

Chen S, Parmigiani G. Meta-analysis of BRCA1 and BRCA2 penetrance. ] Clin Oncol. 2007;25: 1329-
1333.d0i:10.1200/JC0.2006.09.1066

Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips K-A, Mooij TM, Roos-Blom M-], et al. Risks of
Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA.
2017;317: 2402-2416. doi:10.1001/jama.2017.7112

Li FP, Fraumeni JF, Mulvihill J], Blattner WA, Dreyfus MG, Tucker MA, et al. A cancer family
syndrome in twenty-four kindreds. Cancer Res. 1988;48: 5358-5362.

Guha T, Malkin D. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. Cold Spring Harb
Perspect Med. 2017;7: a026187. d0i:10.1101/cshperspect.a026187

Blondeaux E, Arecco L, Punie K, Graffeo R, Toss A, De Angelis C, et al. Germline TP53 pathogenic
variants and breast cancer: A narrative review. Cancer Treat Rev. 2023;114: 102522.
doi:10.1016/j.ctrv.2023.102522

Olafson LR, Gunawardena M, Nixdorf S, McDonald KL, Rapkins RW. The role of TP53 gain-of-
function mutation in multifocal glioblastoma. ] Neurooncol. 2020;147: 37-47.
doi:10.1007/s11060-019-03318-5

Ognjanovic S, Olivier M, Bergemann TL, Hainaut P. Sarcomas in TP53 germline mutation carriers: a
review of the IARC TP53 database. Cancer. 2012;118: 1387-1396. d0i:10.1002/cncr.26390
Raymond VM, Else T, Everett N, Long JM, Gruber SB, Hammer GD. Prevalence of germline TP53
mutations in a prospective series of unselected patients with adrenocortical carcinoma. J Clin
Endocrinol Metab. 2013;98: E119-125. doi:10.1210/jc.2012-2198

Cybulski C, Wokotorczyk D, Ktadny ], Kurzwaski G, Suchy ], Grabowska E, et al. Germline CHEK2
mutations and colorectal cancer risk: different effects of a missense and truncating mutations? Eur
] Hum Genet. 2007;15: 237-241. doi:10.1038/sj.ejhg.5201734

Wang Y, Dai B, Ye D. CHEK2 mutation and risk of prostate cancer: a systematic review and meta-
analysis. Int ] Clin Exp Med. 2015;8: 15708-15715.

Rainville [, Hatcher S, Rosenthal E, Larson K, Bernhisel R, Meek S, et al. High risk of breast cancer in
women with biallelic pathogenic variants in CHEK2. Breast Cancer Res Treat. 2020;180: 503-509.
doi:10.1007/s10549-020-05543-3

Oropeza E, Seker S, Carrel S, Mazumder A, Lozano D, Jimenez A, et al. Molecular portraits of cell
cycle checkpoint kinases in cancer evolution, progression, and treatment responsiveness. Science
Advances. 2023;9: eadf2860. doi:10.1126/sciadv.adf2860

Nelen MR, Kremer H, Konings IB, Schoute F, van Essen A], Koch R, et al. Novel PTEN mutations in
patients with Cowden disease: absence of clear genotype-phenotype correlations. Eur ] Hum Genet.
1999;7: 267-273. doi:10.1038/sj.ejhg.5200289

Xing Y, Lin NU, Maurer MA, Chen H, Mahvash A, Sahin A, et al. Phase II trial of AKT inhibitor MK-
2206 in patients with advanced breast cancer who have tumors with PIK3CA or AKT mutations,
and/or PTEN loss/PTEN mutation. Breast Cancer Res. 2019;21: 78. doi:10.1186/s13058-019-
1154-8

Chen J, Sun ], Wang Q, Du Y, Cheng ], Yi ], et al. Systemic Deficiency of PTEN Accelerates Breast
Cancer Growth and Metastasis. Front Oncol. 2022;12. doi:10.3389/fonc.2022.825484

116



45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Colombo C, Pogliaghi G, Tosi D, Muzza M, Bulfamante G, Persani L, et al. Thyroid cancer harboring
PTEN and TP53 mutations: A peculiar molecular and clinical case report. Front Oncol. 2022;12.
doi:10.3389/fonc.2022.949098

Guo C, Song W, Sun P, Jin L, Dai H. LncRNA-GASS5 induces PTEN expression through inhibiting miR-
103 in endometrial cancer cells. ] Biomed Sci. 2015;22: 100. d0i:10.1186/s12929-015-0213-4

Pon JR, Marra MA. Driver and Passenger Mutations in Cancer. Annual Review of Pathology:
Mechanisms of Disease. 2015;10: 25-50. d0i:10.1146/annurev-pathol-012414-040312

Klein MI, Cannataro VL, Townsend JP, Newman S, Stern DF, Zhao H. Identifying Modules of
Cooperating Cancer Drivers. bioRxiv; 2020. p. 2020.06.29.168229.
doi:10.1101/2020.06.29.168229

O’Leary C, Gasper H, Sahin KB, Tang M, Kulasinghe A, Adams MN, et al. Epidermal Growth Factor
Receptor (EGFR)-Mutated Non-Small-Cell Lung Cancer (NSCLC). Pharmaceuticals (Basel). 2020;13:
273.d0i:10.3390/ph13100273

Tyc KM, Kazi A, Ranjan A, Wang R, Sebti SM. Novel mutant KRAS addiction signature predicts
response to the combination of ERBB and MEK inhibitors in lung and pancreatic cancers. iScience.
2023;26:106082. doi:10.1016/j.isci.2023.106082

Huang L, Guo Z, Wang F, Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal
Transduct Target Ther. 2021;6: 386. doi:10.1038/s41392-021-00780-4

Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from
mechanism to clinical studies. Sig Transduct Target Ther. 2023;8: 1-38. doi:10.1038/s41392-023-
01705-z

Mutgan AC, Besikcioglu HE, Wang S, Friess H, Ceyhan GO, Demir IE. Insulin/IGF-driven cancer cell-
stroma crosstalk as a novel therapeutic target in pancreatic cancer. Molecular Cancer. 2018;17: 66.
doi:10.1186/s12943-018-0806-0

Du C, da Silva A, Morales-Oyarvide V, Costa AD, Kozak MM, Dunne RF, et al. Insulin-like growth
factor-1 receptor expression and disease recurrence and survival in patients with resected
pancreatic ductal adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 2020;29: 1586-1595.
doi:10.1158/1055-9965.EPI-19-1315

Vander Velde R, Yoon N, Marusyk V, Durmaz A, Dhawan A, Miroshnychenko D, et al. Resistance to
targeted therapies as a multifactorial, gradual adaptation to inhibitor specific selective pressures.
Nat Commun. 2020;11: 2393. doi:10.1038/s41467-020-16212-w

Hahm JY, Park ], Jang E-S, Chi SW. 8-Oxoguanine: from oxidative damage to epigenetic and
epitranscriptional modification. Exp Mol Med. 2022;54: 1626-1642. doi:10.1038/s12276-022-
00822-z

Kim Y-J, Wilson DM. Overview of Base Excision Repair Biochemistry. Curr Mol Pharmacol. 2012;5:
3-13.

Budden T, Bowden NA. The Role of Altered Nucleotide Excision Repair and UVB-Induced DNA
Damage in Melanomagenesis. Int ] Mol Sci. 2013;14: 1132-1151. do0i:10.3390/ijms14011132

van de Kamp G, Heemskerk T, Kanaar R, Essers ]. DNA Double Strand Break Repair Pathways in
Response to Different Types of Ionizing Radiation. Front Genet. 2021;12.
doi:10.3389/fgene.2021.738230

Tiwari V, Wilson DM. DNA Damage and Associated DNA Repair Defects in Disease and Premature
Aging. The  American Journal of  Human Genetics. 2019;105: 237-257.
doi:10.1016/j.ajhg.2019.06.005

Chatterjee N, Walker GC. Mechanisms of DNA damage, repair and mutagenesis. Environ Mol
Mutagen. 2017;58: 235-263. doi:10.1002/em.22087

Rahimian E, Amini A, Alikarami F, Pezeshki SMS, Saki N, Safa M. DNA repair pathways as guardians
of the genome: Therapeutic potential and possible prognostic role in hematologic neoplasms. DNA
Repair. 2020;96: 102951. doi:10.1016/j.dnarep.2020.102951

Albertson TM, Ogawa M, Bugni JM, Hays LE, Chen Y, Wang Y, et al. DNA polymerase € and &
proofreading suppress discrete mutator and cancer phenotypes in mice. Proc Natl Acad Sci U S A.
2009;106: 17101-17104. doi:10.1073 /pnas.0907147106

Dexheimer TS. DNA Repair Pathways and Mechanisms. In: Mathews LA, Cabarcas SM, Hurt EM,
editors. DNA Repair of Cancer Stem Cells. Dordrecht: Springer Netherlands; 2013. pp. 19-32.
doi:10.1007/978-94-007-4590-2_2

Ramsoekh D, Wagner A, van Leerdam ME, Dooijes D, Tops CM, Steyerberg EW, et al. Cancer risk in
MLH1, MSH2 and MSH6 mutation carriers; different risk profiles may influence clinical
management. Hered Cancer Clin Pract. 2009;7: 17. doi:10.1186,/1897-4287-7-17

117



66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

Nolano A, Medugno A, Trombetti S, Liccardo R, De Rosa M, Izzo P, et al. Hereditary Colorectal
Cancer: State of the Art in Lynch Syndrome. Cancers (Basel). 2022;15: 75.
doi:10.3390/cancers15010075

LiK, Luo H, Huang L, Luo H, Zhu X. Microsatellite instability: a review of what the oncologist should
know. Cancer Cell Int. 2020;20: 16. doi:10.1186/s12935-019-1091-8

Peéina-Slaus N, Kafka A, Salamon I, Bukovac A. Mismatch Repair Pathway, Genome Stability and
Cancer. Front Mol Biosci. 2020;7. doi:10.3389/fmolb.2020.00122

Krokan HE, Bjgras M. Base Excision Repair. Cold Spring Harb Perspect Biol. 2013;5: a012583.
doi:10.1101/cshperspect.a012583

Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH]. Understanding nucleotide excision repair and
its roles in cancer and ageing. Nat Rev Mol Cell Biol. 2014;15: 465-481. doi:10.1038/nrm3822
Duan M, Ulibarri ], Liu K], Mao P. Role of Nucleotide Excision Repair in Cisplatin Resistance. Int ]
Mol Sci. 2020;21: 9248. doi:10.3390/ijms21239248

Aiello MM, Vigneri PG, Bruzzi P, Verderame F, Paratore S, Restuccia N, et al. Excision repair cross
complementation group 1 (ERCC-1) gene polymorphisms and response to nivolumab in advanced
non-small cell lung cancer (NSCLQ). ]JcoO. 2017;35: 3032-3032.
doi:10.1200/]JC0.2017.35.15_suppl.3032

Vitor AC, Huertas P, Legube G, de Almeida SF. Studying DNA Double-Strand Break Repair: An Ever-
Growing Toolbox. Frontiers in Molecular Biosciences. 2020;7. Available:
https://www.frontiersin.org/articles/10.3389 /fmolb.2020.00024

Elbakry A, Lobrich M. Homologous Recombination Subpathways: A Tangle to Resolve. Front Genet.
2021;12: 723847. doi:10.3389 /fgene.2021.723847

Ali RMM, McIntosh SA, Savage KI. Homologous recombination deficiency in breast cancer:
Implications for risk, cancer development, and therapy. Genes Chromosomes Cancer. 2021;60:
358-372.d0i:10.1002/gcc.22921

Yi C, He C. DNA Repair by Reversal of DNA Damage. Cold Spring Harb Perspect Biol. 2013;5:
a012575. doi:10.1101/cshperspect.a012575

Gillyard T, Davis ]. DNA double-strand breaks repair in cancer: A path to achieving precision
medicine. Int Rev Cell Mol Biol. 2021;364: 111-137. d0i:10.1016/bs.ircmb.2021.06.003

Li B, Yu L, Gao L. Cancer classification based on multiple dimensions: SNV patterns. Computers in
Biology and Medicine. 2022;151: 106270. do0i:10.1016/j.compbiomed.2022.106270

Chu D, Wei L. Nonsynonymous, synonymous and nonsense mutations in human cancer-related
genes undergo stronger purifying selections than expectation. BMC Cancer. 2019;19: 359.
doi:10.1186/s12885-019-5572-x

Castro-Mondragon JA, Aure MR, Lingjerde OC, Langergd A, Martens JWM, Bgrresen-Dale A-L, et al.
Cis-regulatory mutations associate with transcriptional and post-transcriptional deregulation of
gene regulatory programs in cancers. Nucleic Acids Res. 2022;50: 12131-12148.
doi:10.1093 /nar/gkac1143

Supek F, Mifiana B, Valcarcel ], Gabaldén T, Lehner B. Synonymous mutations frequently act as
driver mutations in human cancers. Cell. 2014;156: 1324-1335. d0i:10.1016/j.cell.2014.01.051
Sharma Y, Miladi M, Dukare S, Boulay K, Caudron-Herger M, Grofd M, et al. A pan-cancer analysis of
synonymous mutations. Nat Commun. 2019;10: 2569. doi:10.1038/s41467-019-10489-2

Zaidi SH, Harrison TA, Phipps Al Steinfelder R, Trinh QM, Qu C, et al. Landscape of somatic single
nucleotide variants and indels in colorectal cancer and impact on survival. Nat Commun. 2020;11:
3644. doi:10.1038/s41467-020-17386-z

ChenJ, GuoJ. Structural and functional analysis of somatic coding and UTR indels in breast and lung
cancer genomes. Sci Rep. 2021;11: 21178. doi:10.1038/s41598-021-00583-1

Bennett EP, Petersen BL, Johansen IE, Niu Y, Yang Z, Chamberlain CA, et al. INDEL detection, the
‘Achilles heel’ of precise genome editing: a survey of methods for accurate profiling of gene editing
induced indels. Nucleic Acids Research. 2020;48: 11958-11981. doi:10.1093 /nar/gkaa975
Mullaney JM, Mills RE, Pittard WS, Devine SE. Small insertions and deletions (INDELs) in human
genomes. Human Molecular Genetics. 2010;19: R131-R136. d0i:10.1093 /hmg/ddq400

Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, et al. Mapping copy number variation
by population-scale genome sequencing. Nature. 2011;470: 59-65. doi:10.1038/nature09708
Priestley P, Baber ], Lolkema MP, Steeghs N, de Bruijn E, Shale C, et al. Pan-cancer whole-genome
analyses of metastatic solid tumours. Nature. 2019;575: 210-216. d0i:10.1038/s41586-019-1689-

y

118



89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

Bolkestein M, Wong JKL, Thewes V, Korber V, Hlevnjak M, Elgaafary S, et al. Chromothripsis in
Human Breast Cancer. Cancer Res. 2020;80: 4918-4931. doi:10.1158/0008-5472.CAN-20-1920
Shen MM. Chromoplexy: a new category of complex rearrangements in the cancer genome. Cancer
Cell. 2013;23: 567-569. d0i:10.1016/j.ccr.2013.04.025

Fernandes A, Shanmuganathan N, Branford S. Genomic Mechanisms Influencing Outcome in
Chronic Myeloid Leukemia. Cancers (Basel). 2022;14: 620. doi:10.3390/cancers14030620
Aaltonen LA, Abascal F, Abeshouse A, Aburatani H, Adams DJ, Agrawal N, et al. Pan-cancer analysis
of whole genomes. Nature. 2020;578: 82-93. d0i:10.1038/s41586-020-1969-6

Cosenza MR, Rodriguez-Martin B, Korbel JO. Structural Variation in Cancer: Role, Prevalence, and
Mechanisms. Annual Review of Genomics and Human Genetics. 2022;23: 123-152.
doi:10.1146/annurev-genom-120121-101149

Li Y, Roberts ND, Wala JA, Shapira O, Schumacher SE, Kumar K, et al. Patterns of somatic structural
variation in human cancer genomes. Nature. 2020;578: 112-121. doi:10.1038/s41586-019-1913-
9

Pos O, Radvanszky ], Bugly6 G, Pos Z, Rusnakova D, Nagy B, et al. DNA copy number variation: Main
characteristics, evolutionary significance, and pathological aspects. Biomed J. 2021;44: 548-559.
doi:10.1016/j.bj.2021.02.003

Gu W, Zhang F, Lupski JR. Mechanisms for human genomic rearrangements. Pathogenetics. 2008;1:
4.doi:10.1186/1755-8417-1-4

Hastings PJ, Lupski JR, Rosenberg SM, Ira G. Mechanisms of change in gene copy number. Nat Rev
Genet. 2009;10: 551-564. doi:10.1038/nrg2593

Alexandrov LB, Kim ], Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, et al. The repertoire of
mutational signatures in human cancer. Nature. 2020;578: 94-101. doi:10.1038/s41586-020-
1943-3

Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate ], et al. COSMIC: somatic cancer
genetics at  high-resolution. = Nucleic  Acids  Research.  2017;45: D777-D783.
doi:10.1093 /nar/gkw1121

Brady SW, Gout AM, Zhang ]. Therapeutic and prognostic insights from the analysis of cancer
mutational signatures. Trends Genet. 2022;38: 194-208. doi:10.1016/j.tig.2021.08.007

Ramoén y Cajal S, Sesé M, Capdevila C, Aasen T, De Mattos-Arruda L, Diaz-Cano SJ, et al. Clinical
implications of intratumor heterogeneity: challenges and opportunities. ] Mol Med (Berl). 2020;98:
161-177. doi:10.1007/s00109-020-01874-2

Fumagalli C, Barberis M. Breast Cancer Heterogeneity. Diagnostics (Basel). 2021;11: 1555.
doi:10.3390/diagnostics11091555

Marusyk A, Janiszewska M, Polyak K. Intratumor Heterogeneity: The Rosetta Stone of Therapy
Resistance. Cancer Cell. 2020;37: 471-484. doi:10.1016/j.ccell.2020.03.007

Lopez ]I, Cortes JM. A divide-and-conquer strategy in tumor sampling enhances detection of
intratumor heterogeneity in routine pathology: A modeling approach in clear cell renal cell
carcinoma. F1000Res. 2016;5: 385. d0i:10.12688/f1000research.8196.2

Dentro SC, Leshchiner I, Haase K, Tarabichi M, Wintersinger ], Deshwar AG, et al. Characterizing
genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell. 2021;184: 2239-
2254.e39.d0i:10.1016/j.cell.2021.03.009

Liond F, Tiede S, Christofori G. Breast cancer as an example of tumour heterogeneity and tumour
cell plasticity during malignant progression. Br ] Cancer. 2021;125: 164-175.d0i:10.1038/s41416-
021-01328-7

Cies$lik M, Chinnaiyan AM. Cancer transcriptome profiling at the juncture of clinical translation. Nat
Rev Genet. 2018;19: 93-109. doi:10.1038/nrg.2017.96

Tsimberidou AM, Fountzilas E, Bleris L, Kurzrock R. Transcriptomics and solid tumors: The next
frontier in precision cancer medicine. Seminars in Cancer Biology. 2022;84: 50-59.
doi:10.1016/j.semcancer.2020.09.007

Hu W, Wu Y, Shi Q, Wu ], Kong D, Wu X, et al. Systematic characterization of cancer transcriptome
at transcript resolution. Nat Commun. 2022;13: 6803. d0i:10.1038/s41467-022-34568-z
Bautista-Sanchez D, Arriaga-Canon C, Pedroza-Torres A, De La Rosa-Velazquez IA, Gonzélez-Barrios
R, Contreras-Espinosa L, et al. The Promising Role of miR-21 as a Cancer Biomarker and Its
Importance in RNA-Based Therapeutics. Mol Ther Nucleic Acids. 2020;20: 409-420.
doi:10.1016/j.0mtn.2020.03.003

119



111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

Sen R, Ghosal S, Das S, Balti S, Chakrabarti J. Competing Endogenous RNA: The Key to
Posttranscriptional Regulation. The Scientific World Journal. 2014;2014.
doi:10.1155/2014/896206

Rodon ], Soria J-C, Berger R, Miller WH, Rubin E, Kugel A, et al. Genomic and transcriptomic profiling
expands precision cancer medicine: the WINTHER trial. Nat Med. 2019;25: 751-758.
doi:10.1038/541591-019-0424-4

Weidenbusch B, Richter GHS, Kesper MS, Guggemoos M, Gall K, Prexler C, et al. Transcriptome based
individualized therapy of refractory pediatric sarcomas: feasibility, tolerability and efficacy.
Oncotarget. 2018;9: 20747-20760. doi:10.18632/oncotarget.25087

Worst BC, van Tilburg CM, Balasubramanian GP, Fiesel P, Witt R, Freitag A, et al. Next-generation
personalised medicine for high-risk paediatric cancer patients - The INFORM pilot study. European
Journal of Cancer. 2016;65: 91-101. doi:10.1016/j.ejca.2016.06.009

Oberg JA, Glade Bender JL, Sulis ML, Pendrick D, Sireci AN, Hsiao SJ, et al. Implementation of next
generation sequencing into pediatric hematology-oncology practice: moving beyond actionable
alterations. Genome Medicine. 2016;8: 133. d0i:10.1186/s13073-016-0389-6

Oftedal O. The mammary gland and its origin during synapsid evolution. Journal of mammary gland
biology and neoplasia. 2002;7. do0i:10.1023/a:1022896515287

Macias H, Hinck L. Mammary Gland Development. Wiley Interdiscip Rev Dev Biol. 2012;1: 533-557.
doi:10.1002/wdev.35

Ghosh K, Vachon CM, Pankratz VS, Vierkant RA, Anderson SS, Brandt KR, et al. Independent
Association of Lobular Involution and Mammographic Breast Density With Breast Cancer Risk.
JNCI: Journal of the National Cancer Institute. 2010;102: 1716-1723. do0i:10.1093/jnci/djq414
Arendt LM, Kuperwasser C. Form and function: how estrogen and progesterone regulate the
mammary epithelial hierarchy. ] Mammary Gland Biol Neoplasia. 2015;20: 9-25.
do0i:10.1007/s10911-015-9337-0

SungH,J F,RIS,ML,IS, A]J, etal. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence
and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians.
2021;71. doi:10.3322/caac.21660

Joko-Fru W, E J-A,AK, 0 O, Cp D, E C, et al. The evolving epidemic of breast cancer in sub-Saharan
Africa: Results from the African Cancer Registry Network. International journal of cancer.
2020;147. doi:10.1002/ijc.33014

Reports UNDPHD. Human Developmental Index UN. Human Development Report 2021-22. Human
Development Reports. United Nations; 2022 Sep. Available: https://hdr.undp.org/content/human-
development-report-2021-22

Khattab A, Kashyap S, Monga DK. Male Breast Cancer. StatPearls. Treasure Island (FL): StatPearls
Publishing; 2023. Available: http://www.ncbi.nlm.nih.gov/books/NBK526036/

Socialstyrelsen. Socialstyrelsen Cancer Statistics Database . Statistics on Cancer Incidence 2021.
2021. Available at: https://www.socialstyrelsen.se/globalassets/sharepoint-
dokument/artikelkatalog/statistik/2022-12-8309.pdf. Visited: 2024-05-12

Yedjou CG, Sims JN, Miele L, Noubissi F, Lowe L, Fonseca DD, et al. Health and Racial Disparity in
Breast Cancer. Adv Exp Med Biol. 2019;1152: 31-49. doi:10.1007/978-3-030-20301-6_3
Arzanova E, Mayrovitz HN. The Epidemiology of Breast Cancer. Breast Cancer [Internet]. Exon
Publications; 2022. doi:10.36255/exon-publications-breast-cancer-epidemiology

Sung H, Ferlay ], Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics
2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.
CA Cancer ] Clin. 2021;71: 209-249. doi:10.3322/caac.21660

American  Cancer Society. Cancer Facts and Figured. 2022. Available at:
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-
cancer-facts-and-figures/2022/2022-cancer-facts-and-figures.pdf. Visited: 2024-05-15.

DeSantis CE, Bray F, Ferlay ], Lortet-Tieulent ], Anderson BO, Jemal A. International Variation in
Female Breast Cancer Incidence and Mortality Rates. Cancer Epidemiol Biomarkers Prev. 2015;24:
1495-1506. doi:10.1158/1055-9965.EPI-15-0535

Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Br ] Radiol.
2022;95:20211033. doi:10.1259/bjr.20211033

Pan Hongchao, Gray Richard, Braybrooke Jeremy, Davies Christina, Taylor Carolyn, McGale Paul, et
al. 20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years. New
England Journal of Medicine. 2017;377: 1836-1846. d0i:10.1056/NE]JMo0a1701830

120



132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. Breast Cancer Statistics,
2022. CA: A Cancer Journal for Clinicians. 2022;72: 524-541. doi:10.3322 /caac.21754
Lukasiewicz S, Czeczelewski M, Forma A, Baj ], Sitarz R, Stanistawek A. Breast Cancer—
Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies—
An Updated Review. Cancers (Basel). 2021;13: 4287. doi:10.3390/cancers13174287

Barrios CH. Global challenges in breast cancer detection and treatment. The Breast. 2022;62: S3-
S6.doi:10.1016/j.breast.2022.02.003

McGuire A, Brown JAL, Malone C, McLaughlin R, Kerin M]. Effects of age on the detection and
management of breast cancer. Cancers (Basel). 2015;7: 908-929. doi:10.3390/cancers7020815
Lukasiewicz S, Czeczelewski M, Forma A, Baj ], Sitarz R, Stanistawek A. Breast Cancer—
Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies—
An Updated Review. Cancers (Basel). 2021;13: 4287. doi:10.3390/cancers13174287

Endogenous Hormones and Breast Cancer Collaborative Group, Key T], Appleby PN, Reeves GK,
Travis RC, Alberg A], et al. Sex hormones and risk of breast cancer in premenopausal women: a
collaborative reanalysis of individual participant data from seven prospective studies. Lancet
Oncol. 2013;14: 1009-1019. doi:10.1016/S1470-2045(13)70301-2

Collaborative Group on Hormonal Factors in Breast Cancer. Familial breast cancer: collaborative
reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast
cancer and 101,986 women without the disease. Lancet. 2001;358: 1389-1399.
doi:10.1016/S0140-6736(01)06524-2

Bethea TN, Ochs-Balcom HM, Bandera EV, Beeghly-Fadiel A, Camancho F, Chyn D, et al. First- and
second-degree family history of ovarian and breast cancer in relation to risk of invasive ovarian
cancer in African American and White women. Int ] Cancer. 2021;148: 2964-2973.
doi:10.1002/ijc.33493

Shiovitz S, Korde LA. Genetics of breast cancer: a topic in evolution. Ann Oncol. 2015;26: 1291-
1299. doi:10.1093/annonc/mdv022

Mehrgou A, Akouchekian M. The importance of BRCA1 and BRCA2 genes mutations in breast cancer
development. Med ] Islam Repub Iran. 2016;30: 369.

Kotsopoulos ]J. BRCA Mutations and Breast Cancer Prevention. Cancers (Basel). 2018;10: 524.
doi:10.3390/cancers10120524

Shahbandi A, Nguyen HD, Jackson JG. TP53 Mutations and Outcomes in Breast Cancer: Reading
beyond the Headlines. Trends Cancer. 2020;6: 98-110. doi:10.1016/j.trecan.2020.01.007

Corso G, Veronesi P, Sacchini V, Galimberti V. Prognosis and outcome in CDH1-mutant lobular
breast cancer. Eur ] Cancer Prev. 2018;27: 237-238. doi:10.1097/CE].0000000000000405

Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a putative protein tyrosine
phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275: 1943-
1947. doi:10.1126/science.275.5308.1943

Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, et al. Identification of a candidate
tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced
cancers. Nat Genet. 1997;15: 356-362. d0i:10.1038/ng0497-356

ChenJ, Lindblom A. Germline mutation screening of the STK11/LKB1 gene in familial breast cancer
with LOH on 19p. Clin Genet. 2000;57: 394-397. d0i:10.1034/j.1399-0004.2000.570511.x

Mao X, Omeogu C, Karanth S, Joshi A, Meernik C, Wilson L, et al. Association of reproductive risk
factors and breast cancer molecular subtypes: a systematic review and meta-analysis. BMC Cancer.
2023;23: 644. doi:10.1186/512885-023-11049-0

Migliavacca Zucchetti B, Peccatori FA, Codacci-Pisanelli G. Pregnancy and Lactation: Risk or
Protective Factors for Breast Cancer? Adv Exp Med Biol. 2020;1252: 195-197. d0i:10.1007 /978-3-
030-41596-9_27

Kim EY, Chang Y, Ahn ], Yun J-S, Park YL, Park CH, et al. Mammographic breast density, its changes,
and breast cancer risk in premenopausal and postmenopausal women. Cancer. 2020;126: 4687-
4696. d0i:10.1002/cncr.33138

Dyrstad SW, Yan Y, Fowler AM, Colditz GA. Breast cancer risk associated with benign breast disease:
systematic review and meta-analysis. Breast Cancer Res Treat. 2015;149: 569-575.
doi:10.1007/s10549-014-3254-6

Thune I, Brenn T, Lund E, Gaard M. Physical activity and the risk of breast cancer. N Engl ] Med.
1997;336: 1269-1275. doi:10.1056/NEJM199705013361801

Hoffman-Goetz L. Influence of physical activity and exercise on innate immunity. Nutr Rev. 1998;56:
$126-130.doi:10.1111/j.1753-4887.1998.tb01629.x

121



154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

Pati S, Irfan W, Jameel A, Ahmed S, Shahid RK. Obesity and Cancer: A Current Overview of
Epidemiology, Pathogenesis, Outcomes, and Management. Cancers (Basel). 2023;15: 485.
doi:10.3390/cancers15020485

Protani M, Coory M, Martin JH. Effect of obesity on survival of women with breast cancer: systematic
review and meta-analysis. Breast Cancer Res Treat. 2010;123: 627-635.do0i:10.1007/s10549-010-
0990-0

Sun L, Zhu Y, Qian Q, Tang L. Body mass index and prognosis of breast cancer: An analysis by
menstruation status when breast cancer diagnosis. Medicine (Baltimore). 2018;97: e11220.
doi:10.1097/MD.0000000000011220

Zeinomar N, Knight JA, Genkinger JM, Phillips K-A, Daly MB, Milne RL, et al. Alcohol consumption,
cigarette smoking, and familial breast cancer risk: findings from the Prospective Family Study
Cohort (ProF-SC). Breast Cancer Res. 2019;21: 128. d0i:10.1186/s13058-019-1213-1

Coronado GD, Beasley ], Livaudais J. Alcohol consumption and the risk of breast cancer. Salud
Publica Mex. 2011;53: 440-447.

Erol A, Ho AM-C, Winham §J, Karpyak VM. Sex hormones in alcohol consumption: a systematic
review of evidence. Addict Biol. 2019;24: 157-169. d0i:10.1111/adb.12589

Terry PD, Rohan TE. Cigarette smoking and the risk of breast cancer in women: a review of the
literature. Cancer Epidemiol Biomarkers Prev. 2002;11: 953-971.

Huss L, Butt ST, Borgquist S, Elebro K, Sandsveden M, Rosendahl A, et al. Vitamin D receptor
expression in invasive breast tumors and breast cancer survival. Breast Cancer Res. 2019;21: 84.
doi:10.1186/s13058-019-1169-1

Dandamudi A, Tommie ], Nommsen-Rivers L, Couch S. Dietary Patterns and Breast Cancer Risk: A
Systematic Review. Anticancer Res. 2018;38: 3209-3222. doi:10.21873/anticanres.12586

Casey SC, Vaccari M, Al-Mulla F, Al-Temaimi R, Amedei A, Barcellos-Hoff MH, et al. The effect of
environmental chemicals on the tumor microenvironment. Carcinogenesis. 2015;36 Suppl 1: S160-
183. doi:10.1093/carcin/bgv035

Leso V, Ercolano ML, Cioffi DL, Iavicoli I. Occupational Chemical Exposure and Breast Cancer Risk
According to Hormone Receptor Status: A Systematic Review. Cancers (Basel). 2019;11: 1882.
doi:10.3390/cancers11121882

Narod SA. Hormone replacement therapy and the risk of breast cancer. Nat Rev Clin Oncol. 2011;8:
669-676.d0i:10.1038/nrclinonc.2011.110

Vinogradova Y, Coupland C, Hippisley-Cox J. Use of hormone replacement therapy and risk of breast
cancer: nested case-control studies using the QResearch and CPRD databases. BMJ. 2020;371:
m3873. doi:10.1136/bmj.m3873

Wernli K], Hampton JM, Trentham-Dietz A, Newcomb PA. Antidepressant medication use and breast
cancer risk. Pharmacoepidemiol Drug Saf. 2009;18: 284-290. doi:10.1002 /pds.1719

Friedman GD, Oestreicher N, Chan ], Quesenberry CP, Udaltsova N, Habel LA. Antibiotics and risk of
breast cancer: up to 9 years of follow-up of 2.1 million women. Cancer Epidemiol Biomarkers Prev.
2006;15:2102-2106. doi:10.1158/1055-9965.EP1-06-0401

Hewitt SC, Korach KS. Estrogen Receptors: New Directions in the New Millennium. Endocr Rev.
2018;39: 664-675. d0i:10.1210/er.2018-00087

Jensen EV, Jacobson HI. Fate of Steroid Estrogens in Target Tissues. Biological Activities of Steroids
in Relation to Cancer. 1960; 161-178. doi:10.1016/b978-1-4832-2866-2.50015-5

Jensen EV, Suzuki T, Kawashima T, Stumpf WE, Jungblut PW, DeSombre ER. A two-step mechanism
for the interaction of estradiol with rat uterus. Proc Natl Acad Sci U S A. 1968;59: 632-638.
doi:10.1073/pnas.59.2.632

Toft D, Gorski J. A receptor molecule for estrogens: isolation from the rat uterus and preliminary
characterization. Proc Natl Acad Sci U S A. 1966;55: 1574-1581. doi:10.1073/pnas.55.6.1574
Green S, Walter P, Kumar V, Krust A, Bornert JM, Argos P, et al. Human oestrogen receptor cDNA:
sequence, expression and homology to v-erb-A. Nature. 1986;320: 134-139.
doi:10.1038/320134a0

Kumar V, Green S, Staub A, Chambon P. Localisation of the oestradiol-binding and putative DNA-
binding domains of the human oestrogen receptor. EMBO J. 1986;5: 2231-2236.
doi:10.1002/j.1460-2075.1986.tb04489.x

Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor
expressed in rat prostate and ovary. Proc Natl Acad Sci U S A. 1996;93: 5925-5930.
doi:10.1073/pnas.93.12.5925

122



176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

Ogawa S, Inoue S, Watanabe T, Hiroi H, Orimo A, Hosoi T, et al. The Complete Primary Structure of
Human Estrogen Receptor $ (hERB) and Its Heterodimerization with ER ain Vivoandin Vitro.
Biochemical and  Biophysical = Research ~ Communications. 1998;243: 122-126.
doi:10.1006/bbrc.1997.7893

Nilsson S, Makela S, Treuter E, Tujague M, Thomsen ], Andersson G, et al. Mechanisms of Estrogen
Action. Physiological Reviews. 2001;81: 1535-1565. d0i:10.1152/physrev.2001.81.4.1535
Gruvberger S. Estrogen receptor alpha and beta in breast cancer - gene expression profiles and
clinical implications. Doctoral Thesis (compilation), Department of Oncology, Clinical Sciences,
Lund University. 2005.

Carmeci C, Thompson DA, Ring HZ, Francke U, Weigel R]. Identification of a gene (GPR30) with
homology to the G-protein-coupled receptor superfamily associated with estrogen receptor
expression in breast cancer. Genomics. 1997;45: 607-617. doi:10.1006/geno0.1997.4972

Filardo EJ, Quinn JA, Bland KI, Frackelton AR Jr. Estrogen-Induced Activation of Erk-1 and Erk-2
Requires the G Protein-Coupled Receptor Homolog, GPR30, and Occurs via Trans-Activation of the
Epidermal Growth Factor Receptor through Release of HB-EGF. Molecular Endocrinology. 2000;14:
1649-1660. doi:10.1210/mend.14.10.0532

Pepermans RA, Sharma G, Prossnitz ER. G Protein-Coupled Estrogen Receptor in Cancer and
Stromal Cells: Functions and Novel Therapeutic Perspectives. Cells. 2021;10: 672.
d0i:10.3390/cells10030672

Hall JM, McDonnell DP, Korach KS. Allosteric regulation of estrogen receptor structure, function,
and coactivator recruitment by different estrogen response elements. Mol Endocrinol. 2002;16:
469-486.d0i:10.1210/mend.16.3.0814

Enmark E, Pelto-Huikko M, Grandien K, Lagercrantz S, Lagercrantz ], Fried G, et al. Human estrogen
receptor beta-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol
Metab. 1997;82: 4258-4265. doi:10.1210/jcem.82.12.4470

Kong EH, Pike ACW, Hubbard RE. Structure and mechanism of the oestrogen receptor. Biochemical
Society Transactions. 2003;31: 56-59. doi:10.1042/bst0310056

Bai Z, Gust R. Breast Cancer, Estrogen Receptor and Ligands. Archiv der Pharmazie. 2009;342: 133-
149. d0i:10.1002/ardp.200800174

Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin
chaperones. Endocr Rev. 1997;18: 306-360. d0i:10.1210/edrv.18.3.0303

Joab I, Radanyi C, Renoir M, Buchou T, Catelli MG, Binart N, et al. Common non-hormone binding
component in non-transformed chick oviduct receptors of four steroid hormones. Nature.
1984;308: 850-853. d0i:10.1038/308850a0

Hall JM, Couse JF, Korach KS. The multifaceted mechanisms of estradiol and estrogen receptor
signaling. ] Biol Chem. 2001;276: 36869-36872. d0i:10.1074/jbc.R100029200

Delaunay F, Pettersson K, Tujague M, Gustafsson ]-A. Functional Differences between the Amino-
Terminal Domains of Estrogen Receptors a and {. Mol Pharmacol. 2000;58: 584-590.
doi:10.1124/mol.58.3.584

Devin-Leclerc ], Meng X, Delahaye F, Leclerc P, Baulieu EE, Catelli MG. Interaction and dissociation
by ligands of estrogen receptor and Hsp90: the antiestrogen RU 58668 induces a protein synthesis-
dependent clustering of the receptor in the cytoplasm. Mol Endocrinol. 1998;12: 842-854.
doi:10.1210/mend.12.6.0121

Barkhem T, Carlsson B, Nilsson Y, Enmark E, Gustafsson ], Nilsson S. Differential response of
estrogen receptor alpha and estrogen receptor beta to partial estrogen agonists/antagonists. Mol
Pharmacol. 1998;54: 105-112. doi:10.1124 /mol.54.1.105

An ], Tzagarakis-Foster C, Scharschmidt TC, Lomri N, Leitman DC. Estrogen Receptor (-Selective
Transcriptional Activity and Recruitment of Coregulators by Phytoestrogens*. Journal of Biological
Chemistry. 2001;276: 17808-17814. doi:10.1074/jbc.M100953200

Chrzan BG, Bradford PG. Phytoestrogens activate estrogen receptor 1 and estrogenic responses in
human breast and bone cancer cell lines. Molecular Nutrition & Food Research. 2007;51: 171-177.
doi:10.1002/mnfr.200600091

Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol.
2019;116: 135-170. doi:10.1016/bs.apcsb.2019.01.001

Yasar P, Ayaz G, User SD, Giipiir G, Muyan M. Molecular mechanism of estrogen-estrogen receptor
signaling. Reproductive Medicine and Biology. 2017;16: 4. d0i:10.1002/rmb2.12006
Katzenellenbogen BS, Katzenellenbogen JA. Estrogen receptor transcription and transactivation:
Estrogen receptor alpha and estrogen receptor beta: regulation by selective estrogen receptor

123



197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

modulators and importance in breast cancer. Breast Cancer Res. 2000;2: 335-344.
doi:10.1186/bcr78

Zhao C, Gao H, Liu Y, Papoutsi Z, Jaffrey S, Gustafsson J-A, et al. Genome-wide mapping of estrogen
receptor-beta-binding regions reveals extensive cross-talk with transcription factor activator
protein-1. Cancer Res. 2010;70: 5174-5183. d0i:10.1158/0008-5472.CAN-09-4407

Acconcia F, Totta P, Ogawa S, Cardillo I, Inoue S, Leone S, et al. Survival versus apoptotic 17f3-
estradiol effect: Role of ERa and ERP activated non-genomic signaling. Journal of Cellular
Physiology. 2005;203: 193-201. d0i:10.1002/jcp.20219

Helguero LA, Faulds MH, Gustafsson ]-A, Haldosén L-A. Estrogen receptors alfa (ERa) and beta
(ERPB) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial
cell line HC11. Oncogene. 2005;24: 6605-6616. doi:10.1038/sj.0nc.1208807

Bardin A, Boulle N, Lazennec G, Vignon F, Pujol P. Loss of ERbeta expression as a common step in
estrogen-dependent tumor progression. Endocr Relat Cancer. 2004;11: 537-551.
doi:10.1677 /erc.1.00800

Alferez DG, Simodes BM, Howell SJ, Clarke RB. The Role of Steroid Hormones in Breast and Effects
on Cancer Stem Cells. Curr Stem Cell Rep. 2018;4: 81-94. doi:10.1007 /s40778-018-0114-z
Igarashi H, Kouro T, Yokota T, Comp PC, Kincade PW. Age and stage dependency of estrogen
receptor expression by lymphocyte precursors. Proc Natl Acad Sci U S A. 2001;98: 15131-15136.
doi:10.1073/pnas.011513098

Seto K, Hoang M, Santos T, Bandyopadhyay M, Kindy MS, Dasgupta S. Non-genomic oestrogen
receptor signal in B lymphocytes: An approach towards therapeutic interventions for infection,
autoimmunity and cancer. Int ] Biochem Cell Biol. 2016;76: 115-118.
doi:10.1016/j.biocel.2016.04.018

Hedges VL, Chen G, Yu L, Krentzel AA, Starrett JR, Zhu J-N, et al. Local Estrogen Synthesis Regulates
Parallel Fiber-Purkinje Cell Neurotransmission Within the Cerebellar Cortex. Endocrinology.
2018;159: 1328-1338. d0i:10.1210/en.2018-00039

Allred DC, Brown P, Medina D. The origins of estrogen receptor alpha-positive and estrogen
receptor alpha-negative human breast cancer. Breast Cancer Res. 2004;6: 240-245.
doi:10.1186/bcr938

Bertucci F, Finetti P, Cervera N, Charafe-Jauffret E, Buttarelli M, Jacquemier ], et al. How different
are luminal A and basal breast cancers? Int ] Cancer. 2009;124: 1338-1348. d0i:10.1002/ijc.24055
Petrossian K, Kanaya N, Lo C, Hsu P-Y, Nguyen D, Yang L, et al. ERa-mediated cell cycle progression
is an important requisite for CDK4/6 inhibitor response in HR+ breast cancer. Oncotarget. 2018;9:
27736.d0i:10.18632/oncotarget.25552

Hua H, Zhang H, Kong Q, Jiang Y. Mechanisms for estrogen receptor expression in human cancer.
Experimental Hematology & Oncology. 2018;7: 24. d0i:10.1186/s40164-018-0116-7

Johnston SR, Saccani-Jotti G, Smith IE, Salter ], Newby ], Coppen M, et al. Changes in estrogen
receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer.
Cancer Res. 1995;55: 3331-3338.

Yan M, Rayoo M, Takano EA, kConFab Investigators, Fox SB. Nuclear and cytoplasmic expressions
of ERB1 and ERB2 are predictive of response to therapy and alters prognosis in familial breast
cancers. Breast Cancer Res Treat. 2011;126: 395-405. doi:10.1007 /s10549-010-0941-9

Elebro K, Borgquist S, Rosendahl AH, Markkula A, Simonsson M, Jirstrom K, et al. High estrogen
receptor f3 expression Is prognostic among adjuvant chemotherapy-treated patients-results from a
population-based breast cancer cohort. Clin Cancer Res. 2017;23: 766-777. doi:10.1158/1078-
0432.CCR-16-1095

Chang], Liu ], LiH, Li], Mu Y, Feng B. Expression of ER( gene in breast carcinoma and the relevance
in neoadjuvant therapy. Oncol Lett. 2017;13: 1641-1646. d0i:10.3892/01.2017.5659

Hopp TA, Weiss HL, Parra IS, Cui Y, Osborne CK, Fuqua SAW. Low levels of estrogen receptor beta
protein predict resistance to tamoxifen therapy in breast cancer. Clin Cancer Res. 2004;10: 7490-
7499. doi:10.1158/1078-0432.CCR-04-1114

Gruvberger-Saal SK, Bendahl P-O, Saal LH, Laakso M, Hegardt C, Edén P, et al. Estrogen Receptor
Expression Is Associated with Tamoxifen Response in ERa-Negative Breast Carcinoma. Clinical
Cancer Research. 2007;13: 1987-1994. d0i:10.1158/1078-0432.CCR-06-1823

Hamilton N, Marquez-Garban D, Mah V, Fernando G, Elshimali Y, Garban H, et al. Biologic roles of
estrogen receptor-f and insulin-like growth factor-2 in triple-negative breast cancer. Biomed Res
Int. 2015;2015: 925703. d0i:10.1155/2015/925703

124



216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

Guo L, Zhang Y, Zhang W, Yilamu D. Correlation between estrogen receptor 3 expression and the
curative effect of endocrine therapy in breast cancer patients. Exp Ther Med. 2014;7: 1568-1572.
doi:10.3892/etm.2014.1634

Guo L, Zhang YU, Yilamu D, Liu S, Guo C. ER(3 overexpression results in endocrine therapy resistance
and poor prognosis in postmenopausal ERa-positive breast cancer patients. Oncol Lett. 2016;11:
1531-1536.d0i:10.3892/01.2016.4095

Austin D, Hamilton N, Elshimali Y, Pietras R, Wu Y, Vadgama J. Estrogen receptor-beta is a potential
target for triple negative breast cancer treatment. Oncotarget. 2018;9: 33912-33930.
doi:10.18632 /oncotarget.26089

Stefanou D, Batistatou A, Briasoulis E, Arkoumani E, Agnantis NJ. Estrogen receptor beta (ERbeta)
expression in breast carcinomas is not correlated with estrogen receptor alpha (ERalpha) and
prognosis: the Greek experience. Eur ] Gynaecol Oncol. 2004;25: 457-461.

Dalal H, Dahlgren M, Gladchuk S, Brueffer C, Gruvberger-Saal SK, Saal LH. Clinical associations of
ESR2 (estrogen receptor beta) expression across thousands of primary breast tumors. Sci Rep.
2022;12: 4696. doi:10.1038/s41598-022-08210-3

Dey P, Wang A, Ziegler Y, Kumar S, Yan S, Kim SH, et al. Estrogen Receptor Beta 1: A Potential
Therapeutic Target for Female Triple Negative Breast Cancer. Endocrinology. 2022;163: bqac172.
doi:10.1210/endocr/bqac172

Zhang X, Leung Y-K, Ho S-M. AP-2 regulates the transcription of estrogen receptor (ER)-beta by
acting through a methylation hotspot of the ON promoter in prostate cancer cells. Oncogene.
2007;26: 7346-7354. doi:10.1038/sj.onc.1210537

ZhouY, Zeng C, Li X, Wu P-L, Yin L, Yu X-L, et al. IGF-I stimulates ER( and aromatase expression via
IGF1R/PI3K/AKT-mediated transcriptional activation in endometriosis. ] Mol Med (Berl). 2016;94:
887-897.d0i:10.1007/s00109-016-1396-1

Cai W, Rambaud ], Teboul M, Masse I, Benoit G, Gustafsson J-A, et al. Expression levels of estrogen
receptor beta are modulated by components of the molecular clock. Mol Cell Biol. 2008;28: 784-
793.doi:10.1128/MCB.00233-07

Hirata S, Shoda T, Kato ], Hoshi K. The multiple untranslated first exons system of the human
estrogen receptor beta (ER beta) gene. ] Steroid Biochem Mol Biol. 2001;78: 33-40.
doi:10.1016/s0960-0760(01)00071-1

Leung Y-K, Mak P, Hassan S, Ho S-M. Estrogen receptor (ER)-beta isoforms: a key to understanding
ER-beta  signaling. Proc Natl Acad Sci U S A 2006;103: 13162-13167.
doi:10.1073/pnas.0605676103

Moore JT, McKee DD, Slentz-Kesler K, Moore LB, Jones SA, Horne EL, et al. Cloning and
characterization of human estrogen receptor beta isoforms. Biochem Biophys Res Commun.
1998;247: 75-78. d0i:10.1006/bbrc.1998.8738

Hawse JR, Carter JM, Aspros KGM, Bruinsma ES, Koepplin JW, Negron V, et al. Optimized
immunohistochemical detection of estrogen receptor beta using two validated monoclonal
antibodies confirms its expression in normal and malignant breast tissues. Breast Cancer Res Treat.
2020;179: 241-249. doi:10.1007/s10549-019-05441-3

Marotti JD, Collins LC, Hu R, Tamimi RM. Estrogen receptor-beta expression in invasive breast
cancer in relation to molecular phenotype: results from the Nurses’ Health Study. Mod Pathol.
2010;23: 197-204. d0i:10.1038/modpathol.2009.158

Elebro K, Borgquist S, Rosendahl AH, Markkula A, Simonsson M, Jirstrom K, et al. High Estrogen
Receptor (3 Expression [s Prognostic among Adjuvant Chemotherapy-Treated Patients-Results from
a Population-Based Breast Cancer Cohort. Clin Cancer Res. 2017;23: 766-777. d0i:10.1158/1078-
0432.CCR-16-1095

Hall JM, McDonnell DP. The estrogen receptor beta-isoform (ERbeta) of the human estrogen
receptor modulates ERalpha transcriptional activity and is a key regulator of the cellular response
to estrogens and antiestrogens. Endocrinology. 1999;140: 5566-5578.
doi:10.1210/endo0.140.12.7179

Reese JM, Suman V], Subramaniam M, Wu X, Negron V, Gingery A, et al. ERB1: characterization,
prognosis, and evaluation of treatment strategies in ERa-positive and -negative breast cancer. BMC
Cancer. 2014;14: 749. doi:10.1186/1471-2407-14-749

Wang ], Zhang C, Chen K, Tang H, Tang ], Song C, et al. ERB1 inversely correlates with
PTEN/PI3K/AKT pathway and predicts a favorable prognosis in triple-negative breast cancer.
Breast Cancer Res Treat. 2015;152: 255-269. doi:10.1007 /s10549-015-3467-3

125



234.

235.

236.

237.

238.

239.

240.

241.

242.

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

Honma N, Horii R, Iwase T, Saji S, Younes M, Takubo K, et al. Clinical importance of estrogen
receptor-beta evaluation in breast cancer patients treated with adjuvant tamoxifen therapy. J Clin
Oncol. 2008;26: 3727-3734. d0i:10.1200/]C0.2007.14.2968

Wimberly H, Han G, Pinnaduwage D, Murphy LC, Yang XR, Andrulis IL, et al. ERB splice variant
expression in four large cohorts of human breast cancer patient tumors. Breast Cancer Res Treat.
2014;146: 657-667. doi:10.1007/s10549-014-3050-3

BozZovi¢ A, Marki¢evi¢ M, Dimitrijevi¢ B, Jovanovi¢ (Iupi(: S, Krajnovi¢ M, Lukic¢ S, et al. Potential
clinical significance of ERB ON promoter methylation in sporadic breast cancer. Med Oncol.
2013;30: 642. doi:10.1007/s12032-013-0642-4

Al-Nakhle H, Burns PA, Cummings M, Hanby AM, Hughes TA, Satheesha S, et al. Estrogen receptor
{beta}1 expression is regulated by miR-92 in breast cancer. Cancer Res. 2010;70: 4778-4784.
doi:10.1158/0008-5472.CAN-09-4104

Chen J-Q, Russo J. ERa-negative and triple negative breast cancer: Molecular features and potential
therapeutic approaches. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2009;1796:
162-175. doi:10.1016/j.bbcan.2009.06.003

Palmieri C, Cheng GJ, Saji S, Zelada-Hedman M, W\/§rri A, Weihua Z, et al. Estrogen receptor beta in
breast cancer. Endocrine-Related Cancer. 2002;9: 1-13.

Fuqua SAW, Schiff R, Parra I, Moore JT, Mohsin SK, Osborne CK, et al. Estrogen Receptor 8 Protein
in Human Breast Cancer: Correlation with Clinical Tumor Parameters1. Cancer Research. 2003;63:
2434-2439.

Mandusi¢ V, Nikoli¢-Vukosavljevi¢ D, Tani¢ N, Kanjer K, NeSkovic-Konstantinovic¢ Z, Celeketié¢ D, et
al. Expression of estrogen receptor $ wt isoform (ERB1) and ERBAS splice variant mRNAs in
sporadic breast cancer. ] Cancer Res Clin Oncol. 2007;133: 571-579. do0i:10.1007/s00432-007-
0209-x

Haldosén L-A, Zhao C, Dahlman-Wright K. Estrogen receptor beta in breast cancer. Molecular and
Cellular Endocrinology. 2014;382: 665-672. doi:10.1016/j.mce.2013.08.005

Omoto Y, Iwase H. Clinical significance of estrogen receptor 8 in breast and prostate cancer from
biological aspects. Cancer Science. 2015;106: 337-343. doi:10.1111/cas.12613

Hopp TA, Weiss HL, Parra IS, Cui Y, Osborne CK, Fuqua SAW. Low levels of estrogen receptor beta
protein predict resistance to tamoxifen therapy in breast cancer. Clin Cancer Res. 2004;10: 7490-
7499. doi:10.1158/1078-0432.CCR-04-1114

Lu W, Katzenellenbogen BS. Estrogen Receptor- Modulation of the ERa-p53 Loop Regulating Gene
Expression, Proliferation, and Apoptosis in Breast Cancer. HORM CANC. 2017;8: 230-242.
doi:10.1007/s12672-017-0298-1

Dey P, Wang A, Ziegler Y, Kumar S, Yan S, Kim SH, et al. Estrogen Receptor Beta 1: A Potential
Therapeutic Target for Female Triple Negative Breast Cancer. Endocrinology. 2022;163: bqac172.
doi:10.1210/endocr/bqac172

Lim W, Park Y, Cho ], Park C, Park ], Park Y-K, et al. Estrogen receptor beta inhibits transcriptional
activity of hypoxia inducible factor-1 through the downregulation of arylhydrocarbon receptor
nuclear translocator. Breast Cancer Res. 2011;13: R32. doi:10.1186/bcr2854

Park C, Lee Y. Overexpression of ERB is sufficient to inhibit hypoxia-inducible factor-1
transactivation. Biochem Biophys Res Commun. 2014;450: 261-266.
doi:10.1016/j.bbrc.2014.05.107

Tan W, Li Q, Chen K, Su F, Song E, Gong C. Estrogen receptor beta as a prognostic factor in breast
cancer patients: A systematic review and meta-analysis. Oncotarget. 2016;7: 10373-10385.
doi:10.18632 /oncotarget.7219

Shanle EK, Zhao Z, Hawse ], Wisinski K, Keles S, Yuan M, et al. Research resource: global
identification of estrogen receptor B target genes in triple negative breast cancer cells. Mol
Endocrinol. 2013;27: 1762-1775. d0i:10.1210/me.2013-1164

Shanle EK, Onitilo AA, Huang W, Kim K, Zang C, Engel ]M, et al. Prognostic significance of full-length
estrogen receptor beta expression in stage I-1II triple negative breast cancer. Am ] Transl Res.
2015;7:1246-1259.

Sellitto A, D’Agostino Y, Alexandrova E, Lamberti ], Pecoraro G, Memoli D, et al. Insights into the
Role of Estrogen Receptor [ in Triple-Negative Breast Cancer. Cancers. 2020;12: 1477.
doi:10.3390/cancers12061477

Zhou Y, Liu X. The role of estrogen receptor beta in breast cancer. Biomark Res. 2020;8: 39.
doi:10.1186/s40364-020-00223-2

126



254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

Warner M, Wu W-F, Montanholi L, Nalvarte I, Antonson P, Gustafsson J-A. Ventral prostate and
mammary gland phenotype in mice with complete deletion of the ER( gene. Proc Natl Acad Sci U S
A.2020;117: 4902-4909. doi:10.1073 /pnas.1920478117

Shioda T, Fenner MH, Isselbacher KJ. msgl, a novel melanocyte-specific gene, encodes a nuclear
protein and is associated with pigmentation. Proc Natl Acad Sci U S A. 1996;93: 12298-12303.
Fenner MH, Parrish JE, Boyd Y, Reed V, MacDonald M, Nelson DL, et al. MSG1(Melanocyte-Specific
Gene 1): Mapping to Chromosome Xq13.1, Genomic Organization, and Promoter Analysis.
Genomics. 1998;51: 401-407. doi:10.1006/geno.1998.5383

Rodriguez TA, Sparrow DB, Scott AN, Withington SL, Preis JI, Michalicek ], et al. Cited1 Is Required
in Trophoblasts for Placental Development and for Embryo Growth and Survival. Mol Cell Biol.
2004;24: 228-244. d0i:10.1128/MCB.24.1.228-244.2004

Howlin ], McBryan ], Napoletano S, Lambe T, McArdle E, Shioda T, et al. CITED1 homozygous null
mice display aberrant pubertal mammary ductal morphogenesis. Oncogene. 2006;25: 1532-1542.
doi:10.1038/sj.0nc.1209183

Gerstner JR, Landry CF. Expression of the transcriptional coactivator CITED1 in the adult and
developing murine brain. Dev Neurosci. 2007;29: 203-212. doi:10.1159/000096389

Yahata T, de Caestecker MP, Lechleider R], Andriole S, Roberts AB, Isselbacher K], et al. The MSG1
non-DNA-binding transactivator binds to the p300/CBP coactivators, enhancing their functional
link to the Smad transcription factors. ] Biol Chem. 2000;275: 8825-8834.
doi:10.1074/jbc.275.12.8825

Yahata T, Shao W, Endoh H, Hur ], Coser KR, Sun H, et al. Selective coactivation of estrogen-
dependent transcription by CITED1 CBP/p300-binding protein. Genes Dev. 2001;15: 2598-2612.
doi:10.1101/gad.906301

Shi G, Boyle SC, Sparrow DB, Dunwoodie SL, Shioda T, de Caestecker MP. The transcriptional activity
of CITED1 is regulated by phosphorylation in a cell cycle-dependent manner. ] Biol Chem. 2006;281:
27426-27435. d0i:10.1074/jbc.M602631200

McBryan ], Howlin ], Kenny PA, Shioda T, Martin F. ERalpha-CITED1 co-regulated genes expressed
during pubertal mammary gland development: implications for breast cancer prognosis. Oncogene.
2007;26: 6406-6419. doi:10.1038/sj.onc.1210468

Dahlgren M, Lettiero B, Dalal H, Martensson K, Gaber A, Nodin B, et al. CITED1 as a marker of
favourable outcome in anti-endocrine treated, estrogen-receptor positive, lymph-node negative
breast cancer. BMC Res Notes. 2023;16: 105. doi:10.1186/s13104-023-06376-1

Slamon DJ, Clark GM, Wong SG, Levin W], Ullrich A, McGuire WL. Human Breast Cancer: Correlation
of Relapse and Survival with Amplification of the HER-2/neu Oncogene. Science. 1987;235: 177-
182.doi:10.1126/science.3798106

Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2 /neu Proto-
Oncogene in Human Breast and Ovarian Cancer. Science. 1989;244: 707-712.
doi:10.1126/science.2470152

King CR, Kraus MH, Aaronson SA. Amplification of a Novel v-erbB-Related Gene in a Human
Mammary Carcinoma. Science. 1985;229: 974-976. doi:10.1126/science.2992089

Schechter AL, Stern DF, Vaidyanathan L, Decker SJ, Drebin JA, Greene M], et al. The neu oncogene:
an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature. 1984;312: 513-516.
doi:10.1038/312513a0

Akiyama T, Sudo C, Ogawara H, Toyoshima K, Yamamoto T. The product of the human c-erbB-2
gene: a 185-kilodalton glycoprotein with tyrosine kinase activity. Science. 1986;232: 1644-1646.
doi:10.1126/science.3012781

Hua G, Bergon A, Cauchy P, Kahn-Perles B, Bertucci F, Birnbaum D, et al. ERBB2b mRNA isoform
encodes a nuclear variant of the ERBB2 oncogene in breast cancer. Journal of Cellular Biochemistry.
2020;121: 4870-4886. d0i:10.1002/jcb.29762

Cho H-S, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW, et al. Structure of the
extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421: 756-
760.doi:10.1038/nature01392

Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of
all ErbB receptors, is a mediator of lateral signaling. EMBO ]. 1997;16: 1647-1655.
doi:10.1093 /emboj/16.7.1647

Loibl S, Gianni L. HER2-positive breast cancer. The Lancet. 2017;389: 2415-2429.
doi:10.1016/S0140-6736(16)32417-5

127



274.

275.

276.

2717.

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:
127-137.d0i:10.1038/35052073

Ross ]S, Fletcher JA. The HER-2 /neu oncogene in breast cancer: prognostic factor, predictive factor,
and target for therapy. Stem Cells. 1998;16: 413-428. d0i:10.1002/stem.160413

YuZ YeS, HuG, Lv M, Tu Z, Zhou K, et al. The RAF-MEK-ERK pathway: targeting ERK to overcome
obstacles to effective cancer therapy. Future Med Chem. 2015;7: 269-289. doi:10.4155/fmc.14.143
Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human
cancer pathogenesis. Oncogene. 2007;26: 6469-6487. do0i:10.1038/sj.onc.1210477

Wieduwilt M], Moasser MM. The epidermal growth factor receptor family: biology driving targeted
therapeutics. Cell Mol Life Sci. 2008;65: 1566-1584. doi:10.1007/s00018-008-7440-8

Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A. The epidermal growth factor receptor family as a
central element for cellular signal transduction and diversification. Endocr Relat Cancer. 2001;8:
11-31. doi:10.1677/erc.0.0080011

Yarden Y, Pines G. The ERBB network: at last, cancer therapy meets systems biology. Nat Rev
Cancer. 2012;12: 553-563. d0i:10.1038/nrc3309

Kallioniemi OP, Kallioniemi A, Kurisu W, Thor A, Chen LC, Smith HS, et al. ERBB2 amplification in
breast cancer analyzed by fluorescence in situ hybridization. Proc Natl Acad Sci U S A. 1992;89:
5321-5325. doi:10.1073/pnas.89.12.5321

Allred DC, Clark GM, Molina R, Tandon AK, Schnitt SJ, Gilchrist KW, et al. Overexpression of HER-
2/neu and its relationship with other prognostic factors change during the progression of in situ to
invasive breast cancer. Hum Pathol. 1992;23: 974-979. doi:10.1016/0046-8177(92)90257-4
Park K, Han S, Kim HJ, Kim ], Shin E. HER2 status in pure ductal carcinoma in situ and in the
intraductal and invasive components of invasive ductal carcinoma determined by fluorescence in
situ  hybridization and immunohistochemistry. Histopathology. 2006;48: 702-707.
doi:10.1111/j.1365-2559.2006.02403 .x

Mittendorf EA, Wu Y, Scaltriti M, Meric-Bernstam F, Hunt KK, Dawood S, et al. Loss of HER2
amplification following trastuzumab-based neoadjuvant systemic therapy and survival outcomes.
Clin Cancer Res. 2009;15: 7381-7388. d0i:10.1158/1078-0432.CCR-09-1735

Gutierrez MC, Detre S, Johnston S, Mohsin SK, Shou ], Allred DC, et al. Molecular changes in
tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38
mitogen-activated protein kinase. ] Clin Oncol. 2005;23: 2469-2476.doi:10.1200/]C0.2005.01.172
Guo S, Sonenshein GE. Forkhead box transcription factor FOX03a regulates estrogen receptor alpha
expression and is repressed by the Her-2/neu/phosphatidylinositol 3-kinase/Akt signaling
pathway. Mol Cell Biol. 2004;24: 8681-8690. doi:10.1128/MCB.24.19.8681-8690.2004

Pegram M, Jackisch C, Johnston SRD. Estrogen/HER2 receptor crosstalk in breast cancer:
combination therapies to improve outcomes for patients with hormone receptor-positive/HER2-
positive breast cancer. npj Breast Cancer. 2023;9: 1-19. doi:10.1038/s41523-023-00533-2
Villman K, Sjostrom J, Heikkila R, Hultborn R, Malmstrém P, Bengtsson N-O, et al. TOP2A and HER2
gene amplification as predictors of response to anthracycline treatment in breast cancer. Acta
Oncol. 2006;45: 590-596. doi:10.1080/02841860500543182

Gutierrez C, Schiff R. HER 2: Biology, Detection, and Clinical Implications. Arch Pathol Lab Med.
2011;135: 55-62. do0i:10.1043/2010-0454-RAR.1

Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, et al. Human Epidermal
Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College
of American Pathologists Clinical Practice Guideline Focused Update. JCO. 2018;36: 2105-2122.
doi:10.1200/]C0.2018.77.8738

Farshid G, Bilous M, Morey A, Fox S, Lakhani S, Loi S, et al. ASCO/CAP 2018 breast cancer HER2
testing guidelines: summary of pertinent recommendations for practice in Australia. Pathology.
2019;51: 345-348. doi:10.1016/j.pathol.2019.02.004

Farshid G, Dhatrak D, Gilhotra A, Koszyca B, Nolan ]. The impact of 2018 ASCO-CAP HER2 testing
guidelines on breast cancer HER2 results. An audit of 2132 consecutive cases evaluated by
immunohistochemistry and in situ hybridization. Mod Pathol. 2020;33: 1783-1790.
doi:10.1038/s41379-020-0555-7

Zhang H, Moisini I, Ajabnoor RM, Turner BM, Hicks DG. Applying the New Guidelines of HER2
Testing in Breast Cancer. Curr Oncol Rep. 2020;22: 51. d0i:10.1007/s11912-020-0901-4

Vranic S, Teruya B, Repertinger S, Ulmer P, Hagenkord ], Gatalica Z. Assessment of HER2 gene status
in breast carcinomas with polysomy of chromosome 17. Cancer. 2011;117: 48-53.
doi:10.1002 /cncr.25580

128



295.

296.

297.

298.

299.

300.

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

311.

312.

313.

Tse CH, Hwang HC, Goldstein LC, Kandalaft PL, Wiley JC, Kussick SJ, et al. Determining true HER2
gene status in breast cancers with polysomy by using alternative chromosome 17 reference genes:
implications for anti-HER2 targeted therapy. ] Clin Oncol. 2011;29: 4168-4174.
doi:10.1200/JC0.2011.36.0107

Cresti N, Lee ], Rourke E, Televantou D, Jamieson D, Verrill M, et al. Genetic variants in the HER2
gene: Influence on HER2 overexpression and loss of heterozygosity in breast cancer. European
Journal of Cancer. 2016;55: 27-37. d0i:10.1016/j.ejca.2015.10.066

Stanton SE, Ward MM, Christos P, Sanford R, Lam C, Cobham MV, et al. Pro1170 Ala polymorphism
in HER2-neu is associated with risk of trastuzumab cardiotoxicity. BMC Cancer. 2015;15: 267.
doi:10.1186/s12885-015-1298-6

Gao Y, Tang X, Cao J, Rong R, Yu Z, Liu Y, et al. The Effect of HER2 Single Nucleotide Polymorphisms
on Cervical Cancer Susceptibility and Survival in a Chinese Population. ] Cancer. 2019;10: 378-387.
doi:10.7150/jca.27976

Novillo A, Gaibar M, Romero-Lorca A, Malén D, Antén B, Moreno A, et al. HER2 and BARD1
Polymorphisms in Early HER2-Positive Breast Cancer Patients: Relationship with Response to
Neoadjuvant Anti-HER2 Treatment. Cancers (Basel). 2023;15: 763. doi:10.3390/cancers15030763
Thanh TN, Tran BSN, Thi APH, Binh TT, Nguyen TB, Minh TL, et al. HER2Ile655Val Single Nucleotide
Polymorphism Associated with Early-Onset Breast Cancer Susceptibility: A Systematic Review and
Meta-Analysis. Asian Pac ] Cancer Prev. 2021;22: 11-18. doi:10.31557/AP]JCP.2021.22.1.11

Meng P, Dalal H, Chen Y, Brueffer C, Gladchuk S, Alcaide M, et al. Digital PCR quantification of
ultrahigh ERBB2 copy number identifies poor breast cancer survival after trastuzumab. npj Breast
Cancer. 2024;10: 1-10. d0i:10.1038/s41523-024-00621-x

Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus
amonoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl
] Med. 2001;344: 783-792. doi:10.1056/NEJM200103153441101

Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab
after adjuvant chemotherapy in HER2-positive breast cancer. N Engl ] Med. 2005;353: 1659-1672.
doi:10.1056/NEJM0a052306

Romond EH, Perez EA, Bryant ], Suman V], Geyer CE, Davidson NE, et al. Trastuzumab plus adjuvant
chemotherapy for operable HER2-positive breast cancer. N Engl ] Med. 2005;353: 1673-1684.
doi:10.1056/NEJMo0a052122

Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga ], et al. Trastuzumab emtansine for HER2-
positive  advanced breast cancer. N Engl ] Med. 2012;367: 1783-1791.
doi:10.1056/NEJMoa1209124

Swain SM, Baselga ], Kim S-B, Ro ], Semiglazov V, Campone M, et al. Pertuzumab, Trastuzumab, and
Docetaxel in HER2-Positive Metastatic Breast Cancer. N Engl ] Med. 2015;372: 724-734.
doi:10.1056/NEJMoa1413513

Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future
directions. Nat Rev Drug Discov. 2023;22: 101-126. d0i:10.1038/s41573-022-00579-0
Gornowicz A, Szymanowski W, Czarnomysy R, Bielawski K, Bielawska A. Anti-HER2 monoclonal
antibodies intensify the susceptibility of human gastric cancer cells to etoposide by promoting
apoptosis, but not autophagy. PLoS One. 2021;16: e0255585. doi:10.1371 /journal.pone.0255585
Geyer CE, Forster ], Lindquist D, Chan S, Romieu CG, Pienkowski T, et al. Lapatinib plus capecitabine
for HER2-positive advanced breast cancer. N Engl ] Med. 2006;355: 2733-2743.
doi:10.1056/NEJM0a064320

Press MF, Finn RS, Cameron D, Di Leo A, Geyer CE, Villalobos IE, et al. HER-2 gene amplification,
HER-2 and epidermal growth factor receptor mRNA and protein expression, and lapatinib efficacy
in women with metastatic breast cancer. Clin Cancer Res. 2008;14: 7861-7870. doi:10.1158/1078-
0432.CCR-08-1056

Piccart-Gebhart M, Holmes E, Baselga ], de Azambuja E, Dueck AC, Viale G, et al. Adjuvant Lapatinib
and Trastuzumab for Early Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer:
Results From the Randomized Phase IIl Adjuvant Lapatinib and/or Trastuzumab Treatment
Optimization Trial. ] Clin Oncol. 2016;34: 1034-1042. doi:10.1200/]C0.2015.62.1797

Moolten FL, Cooperband SR. Selective destruction of target cells by diphtheria toxin conjugated to
antibody directed against antigens on the cells. Science. 1970;169: 68-70.
doi:10.1126/science.169.3940.68

Rowland GF, O’'Neill GJ, Davies DA. Suppression of tumour growth in mice by a drug-antibody
conjugate using a novel approach to linkage. Nature. 1975;255: 487-488. doi:10.1038/255487a0

129



314.

315.

316.

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

327.

328.

329.

330.

331.

Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity.
Nature. 1975;256: 495-497. doi:10.1038/256495a0

Junttila TT, Li G, Parsons K, Phillips GL, Sliwkowski MX. Trastuzumab-DM1 (T-DM1) retains all the
mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast
cancer. Breast Cancer Res Treat. 2011;128: 347-356. d0i:10.1007/s10549-010-1090-x

Ogitani Y, Aida T, Hagihara K, Yamaguchi ], Ishii C, Harada N, et al. DS-8201a, A Novel HER2-
Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor
Efficacy with Differentiation from T-DM1. Clinical Cancer Research. 2016;22: 5097-5108.
doi:10.1158/1078-0432.CCR-15-2822

Tamura K, Tsurutani ], Takahashi S, Iwata H, Krop IE, Redfern C, et al. Trastuzumab deruxtecan (DS-
8201a) in patients with advanced HER2-positive breast cancer previously treated with
trastuzumab emtansine: a dose-expansion, phase 1 study. Lancet Oncol. 2019;20: 816-826.
doi:10.1016/S1470-2045(19)30097-X

Modi S, Saura C, Yamashita T, Park YH, Kim S-B, Tamura K, et al. Trastuzumab Deruxtecan in
Previously Treated HER2-Positive Breast Cancer. N Engl ] Med. 2020;382: 610-621.
doi:10.1056/NEJMoal1914510

Enhertu approved in the US as first tumour-agnostic HER2-directed therapy for previously treated
patients with metastatic HER2-positive solid tumours. 6 Apr 2024. Available:
https://www.astrazeneca.com/media-centre/press-releases/2024 /enhertu-approved-in-the-us-
as-first-tumour-agnostic-her2-directed-therapy-for-previously-treated-patients-with-metastatic-
her2-positive-solid-tumours.html

Tarantino P, Hamilton E, Tolaney SM, Cortes ], Morganti S, Ferraro E, et al. HER2-Low Breast Cancer:
Pathological and Clinical Landscape. JCO. 2020;38: 1951-1962. d0i:10.1200/JC0.19.02488
Molinelli C, Jacobs F, Agostinetto E, Nader-Marta G, Ceppi M, Bruzzone M, et al. Prognostic value of
HER2-low status in breast cancer: a systematic review and meta-analysis. ESMO Open. 2023;8.
doi:10.1016/j.esmoop.2023.101592

Modi S, Jacot W, Yamashita T, Sohn ], Vidal M, Tokunaga E, et al. Trastuzumab Deruxtecan in
Previously Treated HER2-Low Advanced Breast Cancer. New England Journal of Medicine.
2022;387:9-20. doi:10.1056/NEJM0a2203690

Buzatto IPC, Ribeiro-Silva A, Andrade JM, Carrara HHA, Silveira WA, Tiezzi DG. Neoadjuvant
chemotherapy with trastuzumab in HER2-positive breast cancer: pathologic complete response
rate, predictive and prognostic factors. Braz ] Med Biol Res. 2017;50: e5674. doi:10.1590/1414-
431X20165674

Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. The HER-2 receptor
and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist.
2009;14: 320-368. do0i:10.1634/theoncologist.2008-0230

Hunter FW, Barker HR, Lipert B, Rothé F, Gebhart G, Piccart-Gebhart M], et al. Mechanisms of
resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br | Cancer.
2020;122: 603-612. doi:10.1038/s41416-019-0635-y

Trowe T, Boukouvala S, Calkins K, Cutler RE Jr, Fong R, Funke R, et al. EXEL-7647 Inhibits Mutant
Forms of ErbB2 Associated with Lapatinib Resistance and Neoplastic Transformation. Clinical
Cancer Research. 2008;14: 2465-2475. doi:10.1158/1078-0432.CCR-07-4367

Hou Y, Nitta H, Li Z. HER2 Intratumoral Heterogeneity in Breast Cancer, an Evolving Concept.
Cancers (Basel). 2023;15: 2664. d0i:10.3390/cancers15102664

Elster N, Cremona M, Morgan C, Toomey S, Carr A, O’Grady A, et al. A preclinical evaluation of the
PI3K alpha/delta dominant inhibitor BAY 80-6946 in HER2-positive breast cancer models with
acquired resistance to the HER2-targeted therapies trastuzumab and lapatinib. Breast Cancer Res
Treat. 2015;149: 373-383. d0i:10.1007/s10549-014-3239-5

Luque-Cabal M, Garcia-Teijido P, Ferndndez-Pérez Y, Sanchez-Lorenzo L, Palacio-Vazquez 1.
Mechanisms Behind the Resistance to Trastuzumab in HER2-Amplified Breast Cancer and
Strategies to Overcome It. Clin Med Insights Oncol. 2016;10: 21-30. doi:10.4137/CM0.S34537
Kataoka Y, Mukohara T, Shimada H, Saijo N, Hirai M, Minami H. Association between gain-of-
function mutations in PIK3CA and resistance to HER2-targeted agents in HER2-amplified breast
cancer cell lines. Ann Oncol. 2010;21: 255-262. d0i:10.1093 /annonc/mdp304

Ferraro E, Drago JZ, Modi S. Implementing antibody-drug conjugates (ADCs) in HER2-positive
breast cancer: state of the art and future directions. Breast Cancer Research. 2021;23: 84.
doi:10.1186/s13058-021-01459-y

130



332.

333.

334.

335.

336.

337.

338.

339.

340.

341.

342.

343.

344.

345.

346.

347.

348.

349.

350.

351.

Mosele MF, Lusque A, Dieras V, Deluche E, Ducoulombier A, Pistilli B, et al. LBA1 Unraveling the
mechanism of action and resistance to trastuzumab deruxtecan (T-DXd): Biomarker analyses from
patients from DAISY trial. Annals of Oncology. 2022;33: S123. doi:10.1016/j.annonc.2022.03.277
Graham ]D, Yeates C, Balleine RL, Harvey SS, Milliken JS, Bilous AM, et al. Characterization of
progesterone receptor A and B expression in human breast cancer. Cancer Res. 1995;55: 5063-
5068.

Giatti S, Romano S, Pesaresi M, Cermenati G, Mitro N, Caruso D, et al. Neuroactive steroids and the
peripheral nervous system: An update. Steroids. 2015;103: 23-30.
doi:10.1016/j.steroids.2015.03.014

Africander D, Storbeck K-H. Steroid metabolism in breast cancer: Where are we and what are we
missing? Mol Cell Endocrinol. 2018;466: 86-97. doi:10.1016/j.mce.2017.05.016

Horwitz KB, McGuire WL. Estrogen control of progesterone receptor in human breast cancer.
Correlation with nuclear processing of estrogen receptor. ] Biol Chem. 1978;253: 2223-2228.
Horwitz KB, Sartorius CA. 90 YEARS OF PROGESTERONE: Progesterone and progesterone
receptors in breast cancer: past, present, future. Journal of Molecular Endocrinology. 2020;65: T49-
T63. doi:10.1530/JME-20-0104

LiZ, WeiH, Li S, Wu P, Mao X. The Role of Progesterone Receptors in Breast Cancer. Drug Des Devel
Ther. 2022;16: 305-314. doi:10.2147/DDDT.S336643

Perou CM, Sgrlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human
breast tumours. Nature. 2000;406: 747-752. d0i:10.1038/35021093

Segrlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast
carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National
Academy of Sciences. 2001;98: 10869-10874. doi:10.1073/pnas.191367098

Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of
breast cancer based on intrinsic subtypes. ] Clin Oncol. 2009;27: 1160-1167.
doi:10.1200/JC0.2008.18.1370

Inic Z, Zegarac M, Inic M, Markovic I, Kozomara Z, Djurisic |, et al. Difference between Luminal A and
Luminal B Subtypes According to Ki-67, Tumor Size, and Progesterone Receptor Negativity
Providing Prognostic Information. Clin Med Insights Oncol. 2014;8: 107-111.
doi:10.4137/CMO0.S18006

Krishnamurti U, Silverman JF. HER2 in breast cancer: a review and update. Adv Anat Pathol.
2014;21:100-107. d0i:10.1097/PAP.0000000000000015

Zagami P, Carey LA. Triple negative breast cancer: Pitfalls and progress. npj Breast Cancer. 2022;8:
1-10. doi:10.1038/541523-022-00468-0

Kim HK, Park KH, Kim Y, Park SE, Lee HS, Lim SW, et al. Discordance of the PAM50 Intrinsic Subtypes
Compared with Immunohistochemistry-Based Surrogate in Breast Cancer Patients: Potential
Implication of Genomic Alterations of Discordance. Cancer Res Treat. 2019;51: 737-747.
doi:10.4143/crt.2018.342

Picornell AC, Echavarria I, Alvarez E, Lopez-Tarruella S, Jerez Y, Hoadley K, et al. Breast cancer
PAMS50 signature: correlation and concordance between RNA-Seq and digital multiplexed gene
expression technologies in a triple negative breast cancer series. BMC Genomics. 2019;20: 452.
doi:10.1186/s12864-019-5849-0

van 't Veer L], Dai H, van de Vijver MJ], He YD, Hart AAM, Mao M, et al. Gene expression profiling
predicts clinical outcome of breast cancer. Nature. 2002;415: 530-536. d0i:10.1038/415530a
Paik S, Shak S, Tang G, Kim C, Baker ], Cronin M, et al. A multigene assay to predict recurrence of
tamoxifen-treated, node-negative breast cancer. N Engl ] Med. 2004;351: 2817-2826.
doi:10.1056/NEJMoa041588

Wallden B, Storhoff ], Nielsen T, Dowidar N, Schaper C, Ferree S, et al. Development and verification
of the PAM50-based Prosigna breast cancer gene signature assay. BMC Med Genomics. 2015;8: 54.
doi:10.1186/s12920-015-0129-6

Filipits M, Rudas M, Jakesz R, Dubsky P, Fitzal F, Singer CF, et al. A new molecular predictor of distant
recurrence in ER-positive, HER2-negative breast cancer adds independent information to
conventional clinical risk factors. Clin Cancer Res. 2011;17: 6012-6020. doi:10.1158/1078-
0432.CCR-11-0926

Jerevall P-L, Ma X-J, Li H, Salunga R, Kesty NC, Erlander MG, et al. Prognostic utility of
HOXB13:IL17BR and molecular grade index in early-stage breast cancer patients from the
Stockholm trial. Br ] Cancer. 2011;104: 1762-1769. doi:10.1038/bjc.2011.145

131



352.

353.

354.

355.

356.

357.

358.

359.

360.

361.

362.

363.

364.

365.

366.

367.

368.

369.

370.

371.

372.

373.

Brueffer C, Vallon-Christersson ], Grabaut D, Ehinger A, Hakkinen ], Hegardt C, et al. Clinical Value
of RNA Sequencing-Based Classifiers for Prediction of the Five Conventional Breast Cancer
Biomarkers: A Report From the Population-Based Multicenter Sweden Cancerome Analysis
Network—Breast Initiative. JCO Precis Oncol. 2018; 1-18. d0i:10.1200/P0.17.00135

Staaf ], Hakkinen ], Hegardt C, Saal LH, Kimbung S, Hedenfalk I, et al. RNA sequencing-based single
sample predictors of molecular subtype and risk of recurrence for clinical assessment of early-stage
breast cancer. npj Breast Cancer. 2022;8: 1-17. doi:10.1038/s41523-022-00465-3

Klarenbach S, Sims-Jones N, Lewin G, Singh H, Thériault G, Tonelli M, et al. Recommendations on
screening for breast cancer in women aged 40-74 years who are not at increased risk for breast
cancer. CMAJ. 2018;190: E1441-E1451. doi:10.1503/cma;j.180463

Ren W, Chen M, Qiao Y, Zhao F. Global guidelines for breast cancer screening: A systematic review.
Breast. 2022;64: 85-99. doi:10.1016/j.breast.2022.04.003

Ryser MD, Lange ], Inoue LYT, O'Meara ES, Gard C, Miglioretti DL, et al. Estimation of Breast Cancer
Overdiagnosis in a U.S. Breast Screening Cohort. Ann Intern Med. 2022;175: 471-478.
doi:10.7326/M21-3577

Gordon PB. The Impact of Dense Breasts on the Stage of Breast Cancer at Diagnosis: A Review and
Options for Supplemental Screening. Curr Oncol. 2022;29: 3595-3636.
do0i:10.3390/curroncol29050291

Swedish Cancer Society Report - Segregated screening.pdf. Available: https://static-
files.cancerfonden.se/Swedish%Z20Cancer%20Society%20Report%20-
%20Segregated%?20screening.pdf

Leong AS-Y, Zhuang Z. The Changing Role of Pathology in Breast Cancer Diagnosis and Treatment.
Pathobiology. 2011;78: 99-114. d0i:10.1159/000292644

Makki J. Diversity of Breast Carcinoma: Histological Subtypes and Clinical Relevance. Clin Med
Insights Pathol. 2015;8: 23-31. d0i:10.4137/CPath.S31563

Masood S. Breast Cancer Subtypes: Morphologic and Biologic Characterization. Womens Health
(Lond Engl). 2016;12: 103-119. doi:10.2217 /whe.15.99

Henry NL, Cannon-Albright LA. Breast cancer histologic subtypes show excess familial clustering.
Cancer. 2019;125: 3131-3138. d0i:10.1002 /cncr.32198

Weigelt B, Geyer FC, Reis-Filho JS. Histological types of breast cancer: How special are they? Mol
Oncol. 2010;4: 192-208. d0i:10.1016/j.molonc.2010.04.004

WHO Classification of Tumours Editorial Board Breast Tumours. Lyon (France): International
Agency for Research on Cancer; 2019 (WHO classification of tumours series, 5th ed.; vol. 2),
p.87,102-104. https://publications.iarc.fr/581

Bloom HJ, Richardson WW. Histological grading and prognosis in breast cancer; a study of 1409
cases of which 359 have been followed for 15 years. Br ] Cancer. 1957;11: 359-377.
doi:10.1038/bjc.1957.43

Elston CW, Ellis 10. Pathological prognostic factors in breast cancer. I. The value of histological
grade in breast cancer: experience from a large study with long-term follow-up. Histopathology.
1991;19: 403-410. doi:10.1111/j.1365-2559.1991.tb00229.x

Ellis 10, Rakha EA, Tse GM, Tan PH. An international unified approach to reporting and grading
invasive breast cancer. An overview of the International Collaboration on Cancer Reporting (ICCR)
initiative. Histopathology. 2023;82: 189-197. doi:10.1111/his.14802

Fox SB, Webster F, Chen C-], Chua B, Collins L, Foschini M-P, et al. Dataset for pathology reporting
of ductal carcinoma insitu, variants of lobular carcinoma insitu and low-grade lesions:
recommendations from the International Collaboration on Cancer Reporting (ICCR).
Histopathology. 2022;81: 467-476. doi:10.1111/his.14725

Giuliano AE, Edge SB, Hortobagyi GN. Eighth Edition of the AJCC Cancer Staging Manual: Breast
Cancer. Ann Surg Oncol. 2018;25: 1783-1785. doi:10.1245/s10434-018-6486-6

Koh J, Kim MJ. Introduction of a New Staging System of Breast Cancer for Radiologists: An Emphasis
on the Prognostic Stage. Korean ] Radiol. 2019;20: 69-82. doi:10.3348/kjr.2018.0231

Morris EA, Schwartz LH, Drotman MB, Kim SJ, Tan LK, Liberman L, et al. Evaluation of pectoralis
major muscle in patients with posterior breast tumors on breast MR images: early experience.
Radiology. 2000;214: 67-72. d0i:10.1148/radiology.214.1.r00ja1667

Cadiz F, Gormaz ]G, Burotto M. Breast Cancer Staging: Is TNM Ready to Evolve? ] Glob Oncol. 2017;4:
JG0.17.00004. doi:10.1200/]JG0.17.00004

Allred DC, Bustamante MA, Daniel CO, Gaskill HV, Cruz AB. Immunocytochemical analysis of
estrogen receptors in human breast carcinomas. Evaluation of 130 cases and review of the

132



374.

375.

376.

377.

378.

379.

380.

381.

382.

383.

384.

385.

386.

387.

388.

389.

390.

literature regarding concordance with biochemical assay and clinical relevance. Arch Surg.
1990;125: 107-113. doi:10.1001 /archsurg.1990.01410130113018

Barnes DM, Harris WH, Smith P, Millis RR, Rubens RD. Immunohistochemical determination of
oestrogen receptor: comparison of different methods of assessment of staining and correlation
with clinical outcome of breast cancer patients. Br ] Cancer. 1996;74: 1445-1451.
doi:10.1038/bjc.1996.563

Thomssen C, Balic M, Harbeck N, Gnant M. St. Gallen/Vienna 2021: A Brief Summary of the
Consensus Discussion on Customizing Therapies for Women with Early Breast Cancer. Breast Care.
2021;16: 135-143. d0i:10.1159/000516114

Curigliano G, Burstein HJ, Gnant M, Loibl S, Cameron D, Regan MM, et al. Understanding breast
cancer complexity to improve patient outcomes: The St Gallen International Consensus Conference
for the Primary Therapy of Individuals with Early Breast Cancer 2023. Annals of Oncology. 2023;34:
970-986. d0i:10.1016/j.annonc.2023.08.017

nationellt-vardprogram-brostcancer.pdf. Available: https://www.swebcg.se/wp-
content/uploads/2016/09/nationellt-vardprogram-brostcancer.pdf

Memon R, Prieto Granada CN, Harada S, Winokur T, Reddy V, Kahn AG, et al. Discordance Between
Immunohistochemistry and In Situ Hybridization to Detect HER2 Overexpression/Gene
Amplification in Breast Cancer in the Modern Age: A Single Institution Experience and Pooled
Literature Review Study. Clinical Breast Cancer. 2022;22: el23-e133.
doi:10.1016/j.clbc.2021.05.004

Curigliano G, Burstein HJ, P Winer E, Gnant M, Dubsky P, Loibl S, et al. De-escalating and escalating
treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference
on the Primary Therapy of Early Breast Cancer 2017. Ann Oncol. 2019;30: 1181.
doi:10.1093 /annonc/mdy537

Harbeck N, Penault-Llorca F, Cortes ], Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat
Rev Dis Primers. 2019;5: 1-31. doi:10.1038/s41572-019-0111-2

Davidson BA, Croessmann S, Park BH. The breast is yet to come: current and future utility of
circulating tumour DNA in breast cancer. Br ] Cancer. 2021;125: 780-788. doi:10.1038/s41416-
021-01422-w

Venetis K, Cursano G, Pescia C, D’Ercole M, Porta FM, Blanco MC, et al. Liquid biopsy: Cell-free DNA
based analysis in breast cancer. The Journal of Liquid Biopsy. 2023;1: 100002.
doi:10.1016/j.j1b.2023.100002

Kuderer NM, Burton KA, Blau S, Rose AL, Parker S, Lyman GH, et al. Comparison of 2 Commercially
Available Next-Generation Sequencing Platforms in Oncology. JAMA Oncol. 2017;3: 996-998.
d0i:10.1001/jamaoncol.2016.4983

Krag DN, Anderson SJ, Julian TB, Brown AM, Harlow SP, Costantino JP, et al. Sentinel-lymph-node
resection compared with conventional axillary-lymph-node dissection in clinically node-negative
patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3
trial. Lancet Oncol. 2010;11: 927-933. d0i:10.1016/S1470-2045(10)70207-2

McLaughlin SA. Surgical management of the breast: breast conservation therapy and mastectomy.
Surg Clin North Am. 2013;93: 411-428. d0i:10.1016/j.suc.2012.12.006

Buchholz TA, Mittendorf EA, Hunt KK. Surgical Considerations After Neoadjuvant Chemotherapy:
Breast Conservation Therapy. ] Natl Cancer Inst Monogr. 2015;2015: 11-14.
doi:10.1093/jncimonographs/1gv020

De-Colle C, Kirby A, Russell N, Shaitelman SF, Currey A, Donovan E, et al. Adaptive radiotherapy for
breast cancer. Clinical and Translational Radiation Oncology. 2023;39: 100564.
doi:10.1016/j.ctro.2022.100564

Ebctcg (Early Breast Cancer Trialists’ Collaborative Group). Effect of radiotherapy after breast-
conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of
individual patient data for 10 801 women in 17 randomised trials. The Lancet. 2011;378: 1707~
1716.doi:10.1016/S0140-6736(11)61629-2

Ebctcg (Early Breast Cancer Trialists’ Collaborative Group). Effect of radiotherapy after
mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-
analysis of individual patient data for 8135 women in 22 randomised trials. The Lancet. 2014;383:
2127-2135.doi:10.1016/S0140-6736(14)60488-8

Golshan M, Cirrincione CT, Sikov WM, Carey LA, Berry DA, Overmoyer B, et al. Impact of
neoadjuvant therapy on eligibility for and frequency of breast conservation in stage II-1Il HER2-

133



391.

392.

393.

394.

395.

396.

397.

398.

399.

400.

401.

402.

403.

404.

405.

406.

407.

positive breast cancer: surgical results of CALGB 40601 (Alliance). Breast Cancer Res Treat.
2016;160: 297-304. doi:10.1007/s10549-016-4006-6

Rastogi P, Anderson S, Bear HD, Geyer CE, Kahlenberg MS, Robidoux A, et al. Preoperative
chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and
B-27.] Clin Oncol. 2008;26: 778-785. doi:10.1200/]C0.2007.15.0235

von Minckwitz G, Untch M, Blohmer J-U, Costa SD, Eidtmann H, Fasching PA, et al. Definition and
impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various
intrinsic breast cancer subtypes. ] Clin Oncol. 2012;30: 1796-1804. doi:10.1200/]JC0.2011.38.8595
Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, et al. Pathological complete
response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet.
2014;384:164-172. doi:10.1016/S0140-6736(13)62422-8

von Minckwitz G, Huang C-S, Mano MS, Loibl S, Mamounas EP, Untch M, et al. Trastuzumab
Emtansine for Residual Invasive HER2-Positive Breast Cancer. N Engl ] Med. 2019;380: 617-628.
doi:10.1056/NE]Mo0a1814017

De Wilde RL, Devassy R, Torres-de la Roche LA, Krentel H, Tica V, Cezar C. Guidance and Standards
for Breast Cancer Care in Europe. ] Obstet Gynaecol India. 2020;70: 330-336.d0i:10.1007 /s13224-
020-01316-6

National Comprehensive Cancer Network (NCNN) Guidelines. Breast cancer (version 2.2024).
Available: https://www.nccn.org/guidelines/guidelines-detail. Visited: 2024-04-23

Nitz U, Gluz O, Clemens M, Malter W, Reimer T, Nuding B, et al. West German Study PlanB Trial:
Adjuvant Four Cycles of Epirubicin and Cyclophosphamide Plus Docetaxel Versus Six Cycles of
Docetaxel and Cyclophosphamide in HER2-Negative Early Breast Cancer. ] Clin Oncol. 2019;37:
799-808. doi:10.1200/JC0.18.00028

Poggio F, Tagliamento M, Ceppi M, Bruzzone M, Conte B, Fregatti P, et al. Adding a platinum agent
to neoadjuvant chemotherapy for triple-negative breast cancer: the end of the debate. Ann Oncol.
2022;33: 347-349. doi:10.1016/j.annonc.2021.11.016

Francis PA, Pagani O, Fleming GF, Walley BA, Colleoni M, Lang ], et al. Tailoring Adjuvant Endocrine
Therapy for Premenopausal Breast Cancer. N Engl ] Med. 2018;379: 122-137.
doi:10.1056/NE]Mo0a1803164

Ebctcg (Early Breast Cancer Trialists’ Collaborative Group). Aromatase inhibitors versus tamoxifen
in early breast cancer: patient-level meta-analysis of the randomised trials. The Lancet. 2015;386:
1341-1352.doi:10.1016/S0140-6736(15)61074-1

Tjan-Heijnen VCG, van Hellemond IEG, Peer PGM, Swinkels ACP, Smorenburg CH, van der Sangen
MJC, et al. Extended adjuvant aromatase inhibition after sequential endocrine therapy (DATA): a
randomised, phase 3 trial. Lancet Oncol. 2017;18: 1502-1511. doi:10.1016/S1470-
2045(17)30600-9

von Minckwitz G, Procter M, de Azambuja E, Zardavas D, Benyunes M, Viale G, et al. Adjuvant
Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. N Engl ] Med. 2017;377: 122~
131. doi:10.1056/NEJMo0al1703643

Tolaney SM, Barry WT, Dang CT, Yardley DA, Moy B, Marcom PK, et al. Adjuvant paclitaxel and
trastuzumab for node-negative, HER2-positive breast cancer. N Engl ] Med. 2015;372: 134-141.
doi:10.1056/NE]Moa1406281

Tolaney SM, Guo H, Pernas S, Barry WT, Dillon DA, Ritterhouse L, et al. Seven-Year Follow-Up
Analysis of Adjuvant Paclitaxel and Trastuzumab Trial for Node-Negative, Human Epidermal
Growth Factor Receptor 2-Positive Breast Cancer. ] Clin Oncol. 2019;37: 1868-1875.
doi:10.1200/]JC0.19.00066

Martin M, Holmes FA, Ejlertsen B, Delaloge S, Moy B, Iwata H, et al. Neratinib after trastuzumab-
based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised,
double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18: 1688-1700.
doi:10.1016/S1470-2045(17)30717-9

Chan A, Moy B, Mansi J, Ejlertsen B, Holmes FA, Chia S, et al. Final Efficacy Results of Neratinib in
HER2-positive Hormone Receptor-positive Early-stage Breast Cancer From the Phase III ExteNET
Trial. Clin Breast Cancer. 2021;21: 80-91.e7. doi:10.1016/j.clbc.2020.09.014

Cardoso F, Senkus E, Costa A, Papadopoulos E, Aapro M, André F, et al. 4th ESO-ESMO International
Consensus Guidelines for Advanced Breast Cancer (ABC 4)t. Ann Oncol. 2018;29: 1634-1657.
doi:10.1093 /annonc/mdy192

134



408.

409.

410.

411.

412.

413.

414.

415.

416.

417.

418.

4109.

420.

421.

422.

423.

Rugo HS, Rumble RB, Macrae E, Barton DL, Connolly HK, Dickler MN, et al. Endocrine Therapy for
Hormone Receptor-Positive Metastatic Breast Cancer: American Society of Clinical Oncology
Guideline. ] Clin Oncol. 2016;34: 3069-3103. doi:10.1200/JC0.2016.67.1487

Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, et al. The cyclin-dependent kinase 4/6
inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of
oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a
randomised phase 2 study. Lancet Oncol. 2015;16: 25-35. d0i:10.1016/S1470-2045(14)71159-3
Turner NC, Slamon DJ, Ro ], Bondarenko I, Im S-A, Masuda N, et al. Overall Survival with Palbociclib
and Fulvestrant in Advanced Breast Cancer. N Engl ] Med. 2018;379: 1926-1936.
doi:10.1056/NEJMo0a1810527

Im S-A, Lu Y-S, Bardia A, Harbeck N, Colleoni M, Franke F, et al. Overall Survival with Ribociclib plus
Endocrine Therapy in Breast Cancer. N Engl ] Med. 2019;381: 307-316.
doi:10.1056/NE]M0a1903765

Swain SM, Miles D, Kim S-B, Im Y-H, Im S-A, Semiglazov V, et al. Pertuzumab, trastuzumab, and
docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a
double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 2020;21: 519-530.
doi:10.1016/S1470-2045(19)30863-0

Modi S, Saura C, Yamashita T, Park YH, Kim S-B, Tamura K, et al. Trastuzumab Deruxtecan in
Previously Treated HER2-Positive Breast Cancer. N Engl ] Med. 2020;382: 610-621.
doi:10.1056/NEJM0a1914510

Tolaney SM, Barroso-Sousa R, Jiang Z, Park YH, Rimawi M, Manich CS, et al. 328TiP Phase III study
of trastuzumab deruxtecan (T-DXd) with or without pertuzumab vs a taxane, trastuzumab and
pertuzumab in first-line (1L), human epidermal growth factor receptor 2-positive (HER2+)
metastatic breast cancer (mBC): DESTINY-Breast09. Annals of Oncology. 2021;32: S507-S508.
doi:10.1016/j.annonc.2021.08.611

Xu B, Yan M, Ma F, Hu X, Feng ], Ouyang Q, et al. Pyrotinib plus capecitabine versus lapatinib plus
capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): a multicentre,
open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021;22: 351-360.
doi:10.1016/S1470-2045(20)30702-6

Schmid P, Rugo HS, Adams S, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab plus nab-
paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative
breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-
controlled, phase 3 trial. Lancet Oncol. 2020;21: 44-59. doi:10.1016/S1470-2045(19)30689-8
Emens LA, Adams S, Barrios CH, Diéras V, Iwata H, Loi S, et al. First-line atezolizumab plus nab-
paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer:
IMpassion130  final overall survival analysis. Ann Oncol. 2021;32: 983-993.
doi:10.1016/j.annonc.2021.05.355

Bardia A, Hurvitz SA, Tolaney SM, Loirat D, Punie K, Oliveira M, et al. Sacituzumab Govitecan in
Metastatic Triple-Negative Breast Cancer. N Engl ] Med. 2021;384: 1529-1541.
doi:10.1056/NE]Moa2028485

Litton JK, Rugo HS, Ettl ], Hurvitz SA, Gongalves A, Lee K-H, et al. Talazoparib in Patients with
Advanced Breast Cancer and a Germline BRCA Mutation. N Engl ] Med. 2018;379: 753-763.
doi:10.1056/NEJM0a1802905

Litton JK, Hurvitz SA, Mina LA, Rugo HS, Lee K-H, Gongalves A, et al. Talazoparib versus
chemotherapy in patients with germline BRCA1/2-mutated HER2-negative advanced breast
cancer: final overall survival results from the EMBRACA trial. Ann Oncol. 2020;31: 1526-1535.
doi:10.1016/j.annonc.2020.08.2098

Cortes ], O’Shaughnessy |, Loesch D, Blum JL, Vahdat LT, Petrakova K, et al. Eribulin monotherapy
versus treatment of physician’s choice in patients with metastatic breast cancer (EMBRACE): a
phase 3 open-label randomised study. Lancet. 2011;377: 914-923. doi:10.1016/S0140-
6736(11)60070-6

Xu B, Sun T, Zhang Q, Zhang P, Yuan Z, Jiang Z, et al. Efficacy of utidelone plus capecitabine versus
capecitabine for heavily pretreated, anthracycline- and taxane-refractory metastatic breast cancer:
final analysis of overall survival in a phase IIl randomised controlled trial. Ann Oncol. 2021;32: 218-
228.d0i:10.1016/j.annonc.2020.10.600

Meyerholz DK, Beck AP. Principles and approaches for reproducible scoring of tissue stains in
research. Lab Invest. 2018;98: 844-855. doi:10.1038/s41374-018-0057-0

135



424.

425.

426.

427.

428.

429.

430.

431.

432.

433.

434.

435.

436.

437.

438.

439.

440.

441.

442.

443.

Kim S-W, Roh ], Park C-S. Immunohistochemistry for Pathologists: Protocols, Pitfalls, and Tips. ]
Pathol Transl Med. 2016;50: 411-418. doi:10.4132/jptm.2016.08.08

Furrer D, Sanschagrin F, Jacob S, Diorio C. Advantages and Disadvantages of Technologies for HER2
Testing in Breast Cancer Specimens. American Journal of Clinical Pathology. 2015;144: 686-703.
doi:10.1309/AJCPT41TCBUEVDQC

Wu LR, Dai P, Wang MX, Chen SX, Cohen EN, Jayachandran G, et al. Ensemble of nucleic acid absolute
quantitation modules for copy number variation detection and RNA profiling. Nat Commun.
2022;13:1791. doi:10.1038/s41467-022-29487-y

Nazir S. Medical diagnostic value of digital PCR (dPCR): A systematic review. Biomedical
Engineering Advances. 2023;6: 100092. doi:10.1016/j.bea.2023.100092

Coccaro N, Tota G, Anelli L, Zagaria A, Specchia G, Albano F. Digital PCR: A Reliable Tool for
Analyzing and Monitoring Hematologic Malignancies. Int ] Mol Sci. 2020;21: 3141.
doi:10.3390/ijms21093141

Prasad V, Kaestner V, Mailankody S. Cancer Drugs Approved Based on Biomarkers and Not Tumor
Type-FDA Approval of Pembrolizumab for Mismatch Repair-Deficient Solid Cancers. JAMA Oncol.
2018;4: 157-158. doi:10.1001 /jamaoncol.2017.4182

Raedler LA. Opdivo (Nivolumab): Second PD-1 Inhibitor Receives FDA Approval for Unresectable
or Metastatic Melanoma. Am Health Drug Benefits. 2015;8: 180-183.

Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, et al. Efficacy of Larotrectinib
in TRK Fusion-Positive Cancers in Adults and Children. N Engl ] Med. 2018;378: 731-739.
doi:10.1056/NEJMoal714448

Wolff L, Kiesewetter B. Applicability of ESMO-MCBS and ESCAT for molecular tumor boards. memo.
2022;15: 190-195. doi:10.1007/s12254-022-00800-1

Subhan MA, Parveen F, Shah H, Yalamarty SSK, Ataide JA, Torchilin VP. Recent Advances with
Precision Medicine Treatment for Breast Cancer including Triple-Negative Sub-Type. Cancers
(Basel). 2023;15: 2204. doi:10.3390/cancers15082204

Saal LH, Vallon-Christersson ], Hakkinen ], Hegardt C, Grabau D, Winter C, et al. The Sweden
Cancerome Analysis Network - Breast (SCAN-B) Initiative: a large-scale multicenter infrastructure
towards implementation of breast cancer genomic analyses in the clinical routine. Genome Med.
2015;7: 20. doi:10.1186/s13073-015-0131-9

Rydén L, Loman N, Larsson C, Hegardt C, Vallon-Christersson ], Malmberg M, et al. Minimizing
inequality in access to precision medicine in breast cancer by real-time population-based molecular
analysis in the SCAN-B initiative. Br ] Surg. 2018;105: e158-e168. d0i:10.1002 /bjs.10741

Xie Y, Davis Lynn BC, Moir N, Cameron DA, Figueroa ]D, Sims AH. Breast cancer gene expression
datasets do not reflect the disease at the population level. NP] Breast Cancer. 2020;6: 39.
doi:10.1038/s41523-020-00180-x

Staaf ], Glodzik D, Bosch A, Vallon-Christersson ], Reuterswérd C, Hakkinen J, et al. Whole-genome
sequencing of triple-negative breast cancers in a population-based clinical study. Nat Med. 2019;25:
1526-1533.d0i:10.1038/s41591-019-0582-4

Glodzik D, Bosch A, Hartman ], Aine M, Vallon-Christersson ], Reutersward C, et al. Comprehensive
molecular comparison of BRCA1 hypermethylated and BRCA1 mutated triple negative breast
cancers. Nat Commun. 2020;11: 3747. doi:10.1038/s41467-020-17537-2

Vallon-Christersson ], Hakkinen J, Hegardt C, Saal LH, Larsson C, Ehinger A, et al. Cross comparison
and prognostic assessment of breast cancer multigene signatures in a large population-based
contemporary clinical series. Sci Rep. 2019;9: 12184. doi:10.1038/s41598-019-48570-x

Persson H, Sgkilde R, Hakkinen ], Pirona AC, Vallon-Christersson ], Kvist A, et al. Frequent miRNA-
convergent fusion gene events in breast cancer. Nat Commun. 2017;8: 788. doi:10.1038/s41467-
017-01176-1

Lundgren C, Bendahl P-O, Borg A, Ehinger A, Hegardt C, Larsson C, et al. Agreement between
molecular subtyping and surrogate subtype classification: a contemporary population-based study
of ER-positive/HER2-negative primary breast cancer. Breast Cancer Res Treat. 2019;178: 459-467.
doi:10.1007/s10549-019-05378-7

Sgkilde R, Persson H, Ehinger A, Pirona AC, Ferné M, Hegardt C, et al. Refinement of breast cancer
molecular classification by miRNA expression profiles. BMC Genomics. 2019;20: 503.
doi:10.1186/s12864-019-5887-7

Veerla S, Hohmann L, Nacer DF, Vallon-Christersson ], Staaf ]. Perturbation and stability of PAMS50
subtyping in population-based primary invasive breast cancer. NP] Breast Cancer. 2023;9: 83.
doi:10.1038/s41523-023-00589-0

136



444.

445.

446.

447.

448.

449.

450.

451.

452.

453.

454.

455.

456.

457.

458.

459.

460.

461.

462.

463.

464.

Dihge L, Vallon-Christersson ], Hegardt C, Saal LH, Hakkinen ], Larsson C, et al. Prediction of Lymph
Node Metastasis in Breast Cancer by Gene Expression and Clinicopathological Models:
Development and Validation within a Population-Based Cohort. Clinical Cancer Research. 2019;25:
6368-6381. doi:10.1158/1078-0432.CCR-19-0075

Brueffer C, Gladchuk S, Winter C, Vallon-Christersson ], Hegardt C, Hikkinen J, et al. The mutational
landscape of the SCAN-B real-world primary breast cancer transcriptome. EMBO Molecular
Medicine. 2020;12: e12118. doi:10.15252/emmm.202012118

Dahlgren M, George AM, Brueffer C, Gladchuk S, Chen Y, Vallon-Christersson J, et al. Preexisting
Somatic Mutations of Estrogen Receptor Alpha (ESR1) in Early-Stage Primary Breast Cancer. JNCI
Cancer Spectrum. 2021;5: pkab028. doi:10.1093/jncics/pkab028

Fornvik D, Aaltonen KE, Chen Y, George AM, Brueffer C, Rigo R, et al. Detection of circulating tumor
cells and circulating tumor DNA before and after mammographic breast compression in a cohort of
breast cancer patients scheduled for neoadjuvant treatment. Breast Cancer Res Treat. 2019;177:
447-455. doi:10.1007/s10549-019-05326-5

Ringnér M, Fredlund E, Hakkinen ], Borg A, Staaf ]. GOBO: Gene Expression-Based Outcome for
Breast Cancer Online. PLOS ONE. 2011;6: e17911. doi:10.1371/journal.pone.0017911

Wirapati P, Sotiriou C, Kunkel S, Farmer P, Pradervand S, Haibe-Kains B, et al. Meta-analysis of gene
expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping
and prognosis signatures. Breast Cancer Res. 2008;10: R65. doi:10.1186/bcr2124

O’Leary PC, Penny SA, Dolan RT, Kelly CM, Madden SF, Rexhepaj E, et al. Systematic antibody
generation and validation via tissue microarray technology leading to identification of a novel
protein prognostic panel in breast cancer. BMC Cancer. 2013;13: 175. doi:10.1186/1471-2407-13-
175

Ronaghi M, Uhlén M, Nyrén P. A sequencing method based on real-time pyrophosphate. Science.
1998;281: 363, 365. doi:10.1126/science.281.5375.363

Buermans HPJ, den Dunnen JT. Next generation sequencing technology: Advances and applications.
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2014;1842: 1932-1941.
doi:10.1016/j.bbadis.2014.06.015

Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with
DNA polymerase. ] Mol Biol. 1975;94: 441-448. d0i:10.1016,/0022-2836(75)90213-2

Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad
SciUS A.1977;74: 5463-5467. d0i:10.1073 /pnas.74.12.5463

Maxam AM, Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods
Enzymol. 1980;65: 499-560. doi:10.1016/s0076-6879(80)65059-9

International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the
human genome. Nature. 2004;431: 931-945. d0i:10.1038/nature03001

Qin D. Next-generation sequencing and its clinical application. Cancer Biol Med. 2019;16: 4-10.
doi:10.20892/j.issn.2095-3941.2018.0055

Balasubramanian S. Sequencing nucleic acids: from chemistry to medicine. Chem Commun (Camb).
2011;47: 7281-7286. doi:10.1039/c1cc11078k

Slatko BE, Gardner AF, Ausubel FM. Overview of Next Generation Sequencing Technologies. Curr
Protoc Mol Biol. 2018;122: e59. doi:10.1002/cpmb.59

Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, et al. A tale of three next generation
sequencing platforms: comparison of lon Torrent, Pacific Biosciences and Illumina MiSeq
sequencers. BMC Genomics. 2012;13: 341. doi:10.1186/1471-2164-13-341

Gyarmati P, Song Y, Hallman J, Kéller M. Chemical fragmentation for massively parallel sequencing
library preparation. Journal of Biotechnology. 2013;168: 95-100.
doi:10.1016/j.jbiotec.2013.08.020

Ribarska T, Bjgrnstad PM, Sundaram AYM, Gilfillan GD. Optimization of enzymatic fragmentation is
crucial to maximize genome coverage: a comparison of library preparation methods for Illumina
sequencing. BMC Genomics. 2022;23: 92. d0i:10.1186/s12864-022-08316-y

Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, et al. Transcriptome
analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res. 2009;37: e123.
doi:10.1093 /nar/gkp596

Khan J, Saal LH, Bittner ML, Jiang Y, Gooden GC, Glatfelter AA, et al. Gene expression profiling in
cancer using cDNA microarrays. Methods Mol Med. 2002;68: 205-222. doi:10.1385/1-59259-135-
3:205

137



465.

466.

467.

468.

469.

470.

471.

472.

473.

474.

475.

476.

477.

478.

479.

480.

481.

482.

483.

484.

485.

486.

487.

Mills JD, Kawahara Y, Janitz M. Strand-Specific RNA-Seq Provides Greater Resolution of
Transcriptome Profiling. Curr Genomics. 2013;14: 173-181. d0i:10.2174/1389202911314030003
Negi A, Shukla A, Jaiswar A, Shrinet ], Jasrotia RS. Chapter 6 - Applications and challenges of
microarray and RNA-sequencing. In: Singh DB, Pathak RK, editors. Bioinformatics. Academic Press;
2022. pp. 91-103. doi:10.1016/B978-0-323-89775-4.00016-X

Rao MS, Van Vleet TR, Ciurlionis R, Buck WR, Mittelstadt SW, Blomme EAG, et al. Comparison of
RNA-Seq and Microarray Gene Expression Platforms for the Toxicogenomic Evaluation of Liver
From Short-Term Rat Toxicity Studies. Front Genet. 2019;9: 636. doi:10.3389/fgene.2018.00636
Corchete LA, Rojas EA, Alonso-Lopez D, De Las Rivas ], Gutiérrez NC, Burguillo F]. Systematic
comparison and assessment of RNA-seq procedures for gene expression quantitative analysis. Sci
Rep. 2020;10: 19737. d0i:10.1038/s41598-020-76881-x

Kukurba KR, Montgomery SB. RNA Sequencing and Analysis. Cold Spring Harb Protoc. 2015;2015:
951-969. d0i:10.1101/pdb.top084970

Han Y, Gao S, Muegge K, Zhang W, Zhou B. Advanced Applications of RNA Sequencing and
Challenges. Bioinform Biol Insights. 2015;9: 29-46. doi:10.4137/BBI1.S28991

Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best
practices for RNA-seq data analysis. Genome Biology. 2016;17: 13.d0i:10.1186/s13059-016-0881-
8

Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW. Translating RNA
sequencing into clinical diagnostics: opportunities and challenges. Nat Rev Genet. 2016;17: 257-
271.doi:10.1038/nrg.2016.10

Slatko BE, Gardner AF, Ausubel FM. Overview of Next Generation Sequencing Technologies. Curr
Protoc Mol Biol. 2018;122: e59. doi:10.1002/cpmb.59

Hékkinen ], Nordborg N, Mansson O, Vallon-Christersson J. Implementation of an Open Source
Software solution for Laboratory Information Management and automated RNAseq data analysis
in a large-scale Cancer Genomics initiative using BASE with extension package Reggie. bioRxiv;
2016.p. 038976.d0i:10.1101/038976

Saal LH, Troein C, Vallon-Christersson ], Gruvberger S, Borg A, Peterson C. BioArray Software
Environment (BASE): a platform for comprehensive management and analysis of microarray data.
Genome Biology. 2002;3: software0003.1. doi:10.1186/gb-2002-3-8-software0003
Vallon-Christersson ], Nordborg N, Svensson M, Hakkinen J. BASE--2nd generation software for
microarray data management and analysis. BMC Bioinformatics. 2009;10: 330. doi:10.1186/1471-
2105-10-330

Picard toolkit. Broad Institute, GitHub repository. Broad Institute; 2019. Available:
http://broadinstitute.github.io/picard/

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data.
Bioinformatics. 2014;30: 2114-2120. doi:10.1093 /bioinformatics/btu170

Flynn JM, Hubley R, Goubert C, Rosen ], Clark AG, Feschotte C, et al. RepeatModeler2: automated
genomic discovery of transposable element families. Genomics; 2019 Nov. d0i:10.1101/856591
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9: 357-
359.doi:10.1038/nmeth.1923

Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. Available online
at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-Based Genome Alignment and Genotyping
with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37: 907-915. doi:10.1038/s41587-019-
0201-4

Kent W], Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The Human Genome
Browser at UCSC. Genome Res. 2002;12: 996-1006. doi:10.1101/gr.229102

Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved
reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33: 290-295.
doi:10.1038/nbt.3122

Zhao S, Ye Z, Stanton R. Misuse of RPKM or TPM normalization when comparing across samples
and sequencing protocols. RNA. 2020;26: 903-909. doi:10.1261/rna.074922.120

Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates
improve gene-level inferences. F1000Research; 2016. doi:10.12688/f1000research.7563.1

Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq
experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11: 1650-1667.
doi:10.1038/nprot.2016.095

138



488.

489.

490.

491.

492.

493.

494.

495.

496.

497.

498.

499.

500.

501.

502.
503.

504.

505.

506.

507.

508.

500.

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression
analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43: e47.
doi:10.1093 /nar/gkv007

Differential expression of FPKM from RNA-seq data using limma and voom(). [cited 5 May 2024].
Available: https://support.bioconductor.org/p/56275/#56299

Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for
RNA-seq read counts. Genome Biology. 2014;15: R29. doi:10.1186/gb-2014-15-2-r29
Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov MN, Sergushichev A. Fast gene set
enrichment analysis. bioRxiv. 2021; 060012. doi:10.1101/060012

Wang ], Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more comprehensive, powerful,
flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Research. 2017;45:
W130-W137. doi:10.1093 /nar/gkx356

Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in
vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51 Pt 1: 263-273.
do0i:10.1101/sqb.1986.051.01.032

Saiki RK, Gelfand DH, Stoffel S, Scharf S], Higuchi R, Horn GT, et al. Primer-directed enzymatic
amplification of DNA with a thermostable DNA polymerase. Science. 1988;239: 487-491.
doi:10.1126/science.2448875

Chien A, Edgar DB, Trela JM. Deoxyribonucleic acid polymerase from the extreme thermophile
Thermus aquaticus. ] Bacteriol. 1976;127: 1550-1557.

Majumdar N, Banerjee S, Pallas M, Wessel T, Hegerich P. Poisson Plus Quantification for Digital PCR
Systems. Sci Rep. 2017;7: 9617. doi:10.1038/s41598-017-09183-4

Quan P-L, Sauzade M, Brouzes E. dPCR: A Technology Review. Sensors (Basel). 2018;18: 1271.
doi:10.3390/s18041271

Sanchez-Martin V, Lépez-Lopez E, Reguero-Paredes D, Godoy-Ortiz A, Dominguez-Recio ME,
Jiménez-Rodriguez B, et al. Comparative study of droplet-digital PCR and absolute Q digital PCR for
ctDNA detection in early-stage breast cancer patients. Clinica Chimica Acta. 2024;552: 117673.
doi:10.1016/j.cca.2023.117673

Taylor SC, Laperriere G, Germain H. Droplet Digital PCR versus qPCR for gene expression analysis
with low abundant targets: from variable nonsense to publication quality data. Sci Rep. 2017;7:
2409.doi:10.1038/s41598-017-02217-x

Krasnov GS, Kudryavtseva AV, Snezhkina AV, Lakunina VA, Beniaminov AD, Melnikova NV, et al.
Pan-Cancer Analysis of TCGA Data Revealed Promising Reference Genes for qPCR Normalization.
Front Genet. 2019;10. doi:10.3389/fgene.2019.00097

Benjamin D], Berger ]JO, Johannesson M, Nosek BA, Wagenmakers E-], Berk R, et al. Redefine
statistical significance. Nat Hum Behav. 2018;2: 6-10. d0i:10.1038/s41562-017-0189-z

Winters R, Winters A, Amedee RG. Statistics: A Brief Overview. Ochsner J. 2010;10: 213-216.
Gourgou-Bourgade S, Cameron D, Poortmans P, Asselain B, Azria D, Cardoso F, et al. Guidelines for
time-to-event end point definitions in breast cancer trials: results of the DATECAN initiative
(Definition for the Assessment of Time-to-event Endpoints in CANcer trials)t. Ann Oncol. 2015;26:
873-879. doi:10.1093 /annonc/mdv106

Kaplan EL, Meier P. Nonparametric Estimation from Incomplete Observations. Journal of the
American Statistical Association. 1958;53: 457-481. doi:10.2307/2281868

Rich JT, Neely ]G, Paniello RC, Voelker CC], Nussenbaum B, Wang EW. A practical guide to
understanding Kaplan-Meier curves. Otolaryngol Head Neck Surg. 2010;143: 331-336.
doi:10.1016/j.0tohns.2010.05.007

Cox DR. Regression Models and Life-Tables. Journal of the Royal Statistical Society Series B
(Methodological). 1972;34: 187-220.

Zhang M-]. Cox Proportional Hazards Regression Models for Survival Data in Cancer Research. In:
Beam C, editor. Biostatistical Applications in Cancer Research. Boston, MA: Springer US; 2002. pp.
59-70. doi:10.1007/978-1-4757-3571-0_4

Lewoniewska S, Oscilowska I, Forlino A, Palka J. Understanding the Role of Estrogen Receptor
Status in PRODH/POX-Dependent Apoptosis/Survival in Breast Cancer Cells. Biology (Basel).
2021;10: 1314. doi:10.3390/biology10121314

Pons DG, Torrens-Mas M, Nadal-Serrano M, Sastre-Serra ], Roca P, Oliver J. The presence of estrogen
receptor 3 modulates the response of breast cancer cells to therapeutic agents. Int ] Biochem Cell
Biol. 2015;66: 85-94. doi:10.1016/j.biocel.2015.07.014

139



510.

511.

512.

513.

514.

515.

516.

517.

518.

519.

520.

521.

522.

523.

524.

525.

526.

527.

Song P, Li Y, Dong Y, Liang Y, Qu H, Qi D, et al. Estrogen receptor B inhibits breast cancer cells
migration and invasion through CLDN6-mediated autophagy. ] Exp Clin Cancer Res. 2019;38: 354.
doi:10.1186/s13046-019-1359-9

Nelson AW, Groen A], Miller JL, Warren AY, Holmes KA, Tarulli GA, et al. Comprehensive assessment
of estrogen receptor beta antibodies in cancer cell line models and tissue reveals critical limitations
in reagent specificity. Mol Cell Endocrinol. 2017;440: 138-150. doi:10.1016/j.mce.2016.11.016
Hawse JR, Carter JM, Aspros KGM, Bruinsma ES, Koepplin JW, Negron V, et al. Optimized
immunohistochemical detection of estrogen receptor beta using two validated monoclonal
antibodies confirms its expression in normal and malignant breast tissues. Breast Cancer Res Treat.
2020;179: 241-249. doi:10.1007/s10549-019-05441-3

Wegler C, Olander M, Wisniewski JR, Lundquist P, Zettl K, Asberg A, et al. Global variability analysis
of mRNA and protein concentrations across and within human tissues. NAR Genomics and
Bioinformatics. 2020;2:1qz010. doi:10.1093 /nargab/1qz010

Meng W, Liao Y, Chen J, Wang Y, Meng Y, Li K, et al. Upregulation of estrogen receptor beta protein
but not mRNA predicts poor prognosis and may be associated with enhanced translation in non-
small cell lung cancer: a systematic review and meta-analysis. ] Thorac Dis. 2021;13: 4281-4300.
doi:10.21037/jtd-21-658

Reese JM, Bruinsma ES, Nelson AW, Chernukhin [, Carroll J§, Li Y, et al. ERB-mediated induction of
cystatins results in suppression of TGFf signaling and inhibition of triple-negative breast cancer
metastasis. Proc Natl Acad Sci U S A. 2018;115: E9580-E9589. doi:10.1073/pnas.1807751115
Baba AB, Rah B, Bhat GhR, Mushtaq I, Parveen S, Hassan R, et al. Transforming Growth Factor-Beta
(TGF-B) Signaling in Cancer-A Betrayal Within. Frontiers in Pharmacology. 2022;13. Available:
https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2022.791272
Goutsouliak K, Veeraraghavan ], Sethunath V, De Angelis C, Osborne CK, Rimawi MF, et al. Towards
personalized treatment for early stage HER2-positive breast cancer. Nat Rev Clin Oncol. 2020;17:
233-250.d0i:10.1038/s41571-019-0299-9

Perez EA, Romond EH, Suman V], Jeong J-H, Sledge G, Geyer CE, et al. Trastuzumab plus adjuvant
chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint
analysis of overall survival from NSABP B-31 and NCCTG N9831.] Clin Oncol. 2014;32: 3744-3752.
doi:10.1200/]JC0.2014.55.5730

Bradley R, Braybrooke ], Gray R, Hills R, Liu Z, Peto R, et al. Trastuzumab for early-stage, HER2-
positive breast cancer: a meta-analysis of 13 864 women in seven randomised trials. The Lancet
Oncology. 2021;22: 1139-1150. doi:10.1016/5S1470-2045(21)00288-6

Salvo EM, Ramirez AO, Cueto ], Law EH, Situ A, Cameron C, et al. Risk of recurrence among patients
with HR-positive, HER2-negative, early breast cancer receiving adjuvant endocrine therapy: A
systematic review and meta-analysis. Breast. 2021;57: 5-17. doi:10.1016/j.breast.2021.02.009
Ronnlund C, Sifakis EG, Schagerholm C, Yang Q, Karlsson E, Chen X, et al. Prognostic impact of HER2
biomarker levels in trastuzumab-treated early HER2-positive breast cancer. Breast Cancer
Research. 2024;26: 24. d0i:10.1186/s13058-024-01779-9

Yahata T, Shao W, Endoh H, Hur ], Coser KR, Sun H, et al. Selective coactivation of estrogen-
dependent transcription by CITED1 CBP/p300-binding protein. Genes Dev. 2001;15: 2598-2612.
doi:10.1101/gad.906301

McBryan ], Howlin ], Kenny PA, Shioda T, Martin F. ERalpha-CITED1 co-regulated genes expressed
during pubertal mammary gland development: implications for breast cancer prognosis. Oncogene.
2007;26: 6406-6419. doi:10.1038/sj.0onc.1210468

Curigliano G, Dent R, Earle H, Modi S, Tarantino P, Viale G, et al. Open questions, current challenges,
and future perspectives in targeting human epidermal growth factor receptor 2-low breast cancer.
ESMO Open. 2024;9. doi:10.1016/j.esmoop.2024.102989

Tarantino P, Viale G, Press MF, Hu X, Penault-Llorca F, Bardia A, et al. ESMO expert consensus
statements (ECS) on the definition, diagnosis, and management of HER2-low breast cancer. Annals
of Oncology. 2023;34: 645-659. d0i:10.1016/j.annonc.2023.05.008

Gennari A, André F, Barrios CH, Cortés ], de Azambuja E, DeMichele A, et al. ESMO Clinical Practice
Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann
Oncol. 2021;32: 1475-1495. doi:10.1016/j.annonc.2021.09.019

Rossi C, Cicalini I, Cufaro MC, Consalvo A, Upadhyaya P, Sala G, et al. Breast cancer in the era of
integrating “Omics” approaches. Oncogenesis. 2022;11: 1-13. doi:10.1038/s41389-022-00393-8

140



528.

529.

530.

531.

532.

533.

534.

535.

536.

537.

538.

539.

540.

541.

542.

543.

544.

545.

546.

547.

Orsini A, Diquigiovanni C, Bonora E. Omics Technologies Improving Breast Cancer Research and
Diagnostics. International Journal of Molecular Sciences. 2023;24: 12690.
doi:10.3390/ijms241612690

Cheng C, Fei Z, Xiao P. Methods to improve the accuracy of next-generation sequencing. Front
Bioeng Biotechnol. 2023;11. doi:10.3389/fbioe.2023.982111

LiuL, LiY, Li S, Hu N, He Y, Pong R, et al. Comparison of next-generation sequencing systems. ]
Biomed Biotechnol. 2012;2012: 251364. d0i:10.1155/2012/251364

van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing
technology. Trends Genet. 2014;30: 418-426. doi:10.1016/j.tig.2014.07.001

Depledge DP, Srinivas KP, Sadaoka T, Bready D, Mori Y, Placantonakis DG, et al. Direct RNA
sequencing on nanopore arrays redefines the transcriptional complexity of a viral pathogen. Nat
Commun. 2019;10: 754. doi:10.1038/s41467-019-08734-9

Zheng P, Zhou C, Ding Y, Liu B, Lu L, Zhu F, et al. Nanopore sequencing technology and its
applications. MedComm (2020). 2023;4: e316. doi:10.1002/mco2.316

Brinkmann A, Ulm S-L, Uddin S, Forster S, Seifert D, Oehme R, et al. AmpliCoV: Rapid Whole-Genome
Sequencing Using Multiplex PCR Amplification and Real-Time Oxford Nanopore MinlON
Sequencing Enables Rapid Variant Identification of SARS-CoV-2. Front Microbiol. 2021;12: 651151.
doi:10.3389/fmicb.2021.651151

Athanasopoulou K, Boti MA, Adamopoulos PG, Skourou PC, Scorilas A. Third-Generation
Sequencing: The Spearhead towards the Radical Transformation of Modern Genomics. Life (Basel).
2021;12: 30. do0i:10.3390/1ife12010030

Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. Opportunities and challenges in long-
read sequencing data analysis. Genome Biology. 2020;21: 30. doi:10.1186/s13059-020-1935-5
Ren X, Zhang L, Zhang Y, Li Z, Siemers N, Zhang Z. Insights Gained from Single-Cell Analysis of
Immune Cells in the Tumor Microenvironment. Annu Rev Immunol. 2021;39: 583-609.
doi:10.1146/annurev-immunol-110519-071134

Stahl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson ], et al. Visualization and
analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353: 78-82.
doi:10.1126/science.aaf2403

Andersson A, Larsson L, Stenbeck L, Salmén F, Ehinger A, Wu SZ, et al. Spatial deconvolution of
HER2-positive breast cancer delineates tumor-associated cell type interactions. Nat Commun.
2021;12: 6012. doi:10.1038/s41467-021-26271-2

Bassiouni R, Idowu MO, Gibbs LD, Robila V, Grizzard P], Webb MG, et al. Spatial Transcriptomic
Analysis of a Diverse Patient Cohort Reveals a Conserved Architecture in Triple-Negative Breast
Cancer. Cancer Research. 2023;83: 34-48. doi:10.1158/0008-5472.CAN-22-2682

Wang XQ, Danenberg E, Huang C-S, Egle D, Callari M, Bermejo B, et al. Spatial predictors of
immunotherapy response in triple-negative breast cancer. Nature. 2023;621: 868-876.
doi:10.1038/s41586-023-06498-3

Romanens L, Chaskar P, Marcone R, Ryser S, Tille J-C, Genolet R, et al. Clonal expansion of intra-
epithelial T cells in breast cancer revealed by spatial transcriptomics. International Journal of
Cancer. 2023;153: 1568-1578. doi:10.1002/ijc.34620

Jiménez-Santos M]J, Garcia-Martin S, Rubio-Fernandez M, Gdmez-Lépez G, Al-Shahrour F. Spatial
Transcriptomics in Breast Cancer Reveals Tumour Microenvironment-Driven Drug Responses and
Clonal Therapeutic Heterogeneity. bioRxiv; 2024. p. 2024.02.18.580660.
doi:10.1101/2024.02.18.580660

Coutant A, Cockenpot V, Muller L, Degletagne C, Pommier R, Tonon L, et al. Spatial Transcriptomics
Reveal Pitfalls and Opportunities for the Detection of Rare High-Plasticity Breast Cancer Subtypes.
Laboratory Investigation. 2023;103: 100258. doi:10.1016/j.1abinv.2023.100258

Wu SZ, Al-Eryani G, Roden D, Junankar S, Harvey K, Andersson A, et al. A single-cell and spatially
resolved atlas of human breast cancers. Nat Genet. 2021;53: 1334-1347.d0i:10.1038/s41588-021-
00911-1

Huang Y, Zeng P, Zhong C. Classifying breast cancer subtypes on multi-omics data via sparse
canonical correlation analysis and deep learning. BMC Bioinformatics. 2024;25: 132.
doi:10.1186/s12859-024-05749-y

Choi JM, Chae H. moBRCA-net: a breast cancer subtype classification framework based on multi-
omics attention neural networks. BMC Bioinformatics. 2023;24: 169. doi:10.1186/s12859-023-
05273-5

141



548.

549.

550.

551.

552.

553.

554.

555.

556.

557.

558.

559.

560.

Chai H, Zhou X, Zhang Z, Rao ], Zhao H, Yang Y. Integrating multi-omics data through deep learning
for accurate cancer prognosis prediction. Comput Biol Med. 2021;134: 104481.
doi:10.1016/j.compbiomed.2021.104481

Huang Z, Zhan X, Xiang S, Johnson TS, Helm B, Yu CY, et al. SALMON: Survival Analysis Learning
With  Multi-Omics Neural Networks on Breast Cancer. Front Genet. 2019;10.
doi:10.3389 /fgene.2019.00166

Jiang L, Xu C, Bai Y, Liu A, Gong Y, Wang Y-P, et al. Autosurv: interpretable deep learning framework
for cancer survival analysis incorporating clinical and multi-omics data. npj Precis Onc. 2024;8: 1-
16.d0i:10.1038/541698-023-00494-6

Mandair D, Reis-Filho JS, Ashworth A. Biological insights and novel biomarker discovery through
deep learning approaches in breast cancer histopathology. npj Breast Cancer. 2023;9: 1-11.
doi:10.1038/s41523-023-00518-1

Gamble P, Jaroensri R, Wang H, Tan F, Moran M, Brown T, et al. Determining breast cancer
biomarker status and associated morphological features using deep learning. Commun Med.
2021;1: 1-12. doi:10.1038/s43856-021-00013-3

Sammut S-J, Crispin-Ortuzar M, Chin S-F, Provenzano E, Bardwell HA, Ma W, et al. Multi-omic
machine learning predictor of breast cancer therapy response. Nature. 2022;601: 623-629.
doi:10.1038/s41586-021-04278-5

Somasundaram DB, Aravindan S, Yu Z, Jayaraman M, Tran NTB, Li S, et al. Droplet digital PCR as an
alternative to FISH for MYCN amplification detection in human neuroblastoma FFPE samples. BMC
Cancer. 2019;19: 106. doi:10.1186/s12885-019-5306-0

Suryavanshi M, Jaipuria ], Mehta A, Kumar D, Panigrahi MK, Verma H, et al. Droplet digital
polymerase chain reaction offers an improvisation over conventional immunohistochemistry and
fluorescent in situ hybridization for ascertaining Her2 status of breast cancer. South Asian J Cancer.
2019;8: 203-210. doi:10.4103/sajc.sajc_344_18

Taylor SC, Laperriere G, Germain H. Droplet Digital PCR versus qPCR for gene expression analysis
with low abundant targets: from variable nonsense to publication quality data. Sci Rep. 2017;7:
2409. doi:10.1038/s41598-017-02217-x

Magbanua MJM, Swigart LB, Wu H-T, Hirst GL, Yau C, Wolf DM, et al. Circulating tumor DNA in
neoadjuvant-treated breast cancer reflects response and survival. Annals of Oncology. 2021;32:
229-239.d0i:10.1016/j.annonc.2020.11.007

Peng Y, Mei W, Ma K, Zeng C. Circulating Tumor DNA and Minimal Residual Disease (MRD) in Solid
Tumors: Current  Horizons and Future Perspectives. Front  Oncol. 2021;11.
doi:10.3389/fonc.2021.763790

Serafini MS, Molteni E, Nicolo E, Gerratana L, Reduzzi C, Cristofanilli M. Cellular residual disease
(CRD) in early breast cancer -Expanding the concept of minimal residual disease monitoring? The
Journal of Liquid Biopsy. 2024;3: 100132. d0i:10.1016/j.j1b.2023.100132

Baksh M, Mahajan B, Dufresne MM, Shoukry MM, Nussbaum S, Abbaszadeh-Kasbi A, et al.
Circulating tumor DNA for breast cancer: Review of active clinical trials. Cancer Treatment and
Research Communications. 2022;32: 100609. d0i:10.1016/j.ctarc.2022.100609

142



Studies -V

143






	Blank Page
	Blank Page


<<

  /ASCII85EncodePages false

  /AllowTransparency true

  /AutoPositionEPSFiles true

  /AutoRotatePages /None

  /Binding /Left

  /CalGrayProfile (Dot Gain 25%)

  /CalRGBProfile (sRGB IEC61966-2.1)

  /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)

  /sRGBProfile (sRGB IEC61966-2.1)

  /CannotEmbedFontPolicy /Warning

  /CompatibilityLevel 1.4

  /CompressObjects /Tags

  /CompressPages true

  /ConvertImagesToIndexed true

  /PassThroughJPEGImages true

  /CreateJobTicket false

  /DefaultRenderingIntent /Default

  /DetectBlends true

  /DetectCurves 0.0000

  /ColorConversionStrategy /UseDeviceIndependentColor

  /DoThumbnails false

  /EmbedAllFonts true

  /EmbedOpenType false

  /ParseICCProfilesInComments true

  /EmbedJobOptions true

  /DSCReportingLevel 0

  /EmitDSCWarnings false

  /EndPage -1

  /ImageMemory 1048576

  /LockDistillerParams false

  /MaxSubsetPct 10

  /Optimize false

  /OPM 1

  /ParseDSCComments true

  /ParseDSCCommentsForDocInfo true

  /PreserveCopyPage true

  /PreserveDICMYKValues true

  /PreserveEPSInfo true

  /PreserveFlatness false

  /PreserveHalftoneInfo false

  /PreserveOPIComments false

  /PreserveOverprintSettings true

  /StartPage 1

  /SubsetFonts true

  /TransferFunctionInfo /Apply

  /UCRandBGInfo /Remove

  /UsePrologue false

  /ColorSettingsFile ()

  /AlwaysEmbed [ true

  ]

  /NeverEmbed [ true

  ]

  /AntiAliasColorImages false

  /CropColorImages false

  /ColorImageMinResolution 250

  /ColorImageMinResolutionPolicy /OK

  /DownsampleColorImages true

  /ColorImageDownsampleType /Bicubic

  /ColorImageResolution 250

  /ColorImageDepth -1

  /ColorImageMinDownsampleDepth 1

  /ColorImageDownsampleThreshold 1.00000

  /EncodeColorImages true

  /ColorImageFilter /DCTEncode

  /AutoFilterColorImages false

  /ColorImageAutoFilterStrategy /JPEG

  /ColorACSImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /ColorImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /JPEG2000ColorACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /JPEG2000ColorImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /AntiAliasGrayImages false

  /CropGrayImages false

  /GrayImageMinResolution 250

  /GrayImageMinResolutionPolicy /OK

  /DownsampleGrayImages true

  /GrayImageDownsampleType /Bicubic

  /GrayImageResolution 250

  /GrayImageDepth -1

  /GrayImageMinDownsampleDepth 2

  /GrayImageDownsampleThreshold 1.20000

  /EncodeGrayImages true

  /GrayImageFilter /DCTEncode

  /AutoFilterGrayImages false

  /GrayImageAutoFilterStrategy /JPEG

  /GrayACSImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /GrayImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /JPEG2000GrayACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /JPEG2000GrayImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /AntiAliasMonoImages false

  /CropMonoImages false

  /MonoImageMinResolution 800

  /MonoImageMinResolutionPolicy /OK

  /DownsampleMonoImages true

  /MonoImageDownsampleType /Bicubic

  /MonoImageResolution 900

  /MonoImageDepth -1

  /MonoImageDownsampleThreshold 1.00000

  /EncodeMonoImages true

  /MonoImageFilter /CCITTFaxEncode

  /MonoImageDict <<

    /K -1

  >>

  /AllowPSXObjects false

  /CheckCompliance [

    /None

  ]

  /PDFX1aCheck false

  /PDFX3Check false

  /PDFXCompliantPDFOnly true

  /PDFXNoTrimBoxError false

  /PDFXTrimBoxToMediaBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXSetBleedBoxToMediaBox true

  /PDFXBleedBoxToTrimBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXOutputIntentProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)

  /PDFXOutputConditionIdentifier ()

  /PDFXOutputCondition ()

  /PDFXRegistryName ()

  /PDFXTrapped /False



  /CreateJDFFile false

  /Description <<

    /SVE ()

    /ENU <FEFF004600f6007200200074007200790063006b00200068006f00730020004d0065006400690061002d0054007200790063006b>

  >>

  /Namespace [

    (Adobe)

    (Common)

    (1.0)

  ]

  /OtherNamespaces [

    <<

      /AsReaderSpreads false

      /CropImagesToFrames true

      /ErrorControl /WarnAndContinue

      /FlattenerIgnoreSpreadOverrides true

      /IncludeGuidesGrids false

      /IncludeNonPrinting false

      /IncludeSlug false

      /Namespace [

        (Adobe)

        (InDesign)

        (4.0)

      ]

      /OmitPlacedBitmaps false

      /OmitPlacedEPS false

      /OmitPlacedPDF false

      /SimulateOverprint /Legacy

    >>

    <<

      /AddBleedMarks false

      /AddColorBars false

      /AddCropMarks true

      /AddPageInfo false

      /AddRegMarks false

      /BleedOffset [

        14.173230

        14.173230

        14.173230

        14.173230

      ]

      /ConvertColors /NoConversion

      /DestinationProfileName (Coated FOGRA39 \(ISO 12647-2:2004\))

      /DestinationProfileSelector /NA

      /Downsample16BitImages true

      /FlattenerPreset <<

        /PresetSelector /HighResolution

      >>

      /FormElements false

      /GenerateStructure false

      /IncludeBookmarks false

      /IncludeHyperlinks false

      /IncludeInteractive false

      /IncludeLayers false

      /IncludeProfiles true

      /MarksOffset 8.503940

      /MarksWeight 0.250000

      /MultimediaHandling /UseObjectSettings

      /Namespace [

        (Adobe)

        (CreativeSuite)

        (2.0)

      ]

      /PDFXOutputIntentProfileSelector /UseName

      /PageMarksFile /RomanDefault

      /PreserveEditing true

      /UntaggedCMYKHandling /UseDocumentProfile

      /UntaggedRGBHandling /UseDocumentProfile

      /UseDocumentBleed false

    >>

    <<

      /AllowImageBreaks true

      /AllowTableBreaks true

      /ExpandPage false

      /HonorBaseURL true

      /HonorRolloverEffect false

      /IgnoreHTMLPageBreaks false

      /IncludeHeaderFooter false

      /MarginOffset [

        0

        0

        0

        0

      ]

      /MetadataAuthor ()

      /MetadataKeywords ()

      /MetadataSubject ()

      /MetadataTitle ()

      /MetricPageSize [

        0

        0

      ]

      /MetricUnit /inch

      /MobileCompatible 0

      /Namespace [

        (Adobe)

        (GoLive)

        (8.0)

      ]

      /OpenZoomToHTMLFontSize false

      /PageOrientation /Portrait

      /RemoveBackground false

      /ShrinkContent true

      /TreatColorsAs /MainMonitorColors

      /UseEmbeddedProfiles false

      /UseHTMLTitleAsMetadata true

    >>

  ]

>> setdistillerparams

<<

  /HWResolution [2400 2400]

  /PageSize [612.000 792.000]

>> setpagedevice




 
 
    
   HistoryItem_V1
   StepAndRepeat
        
     Trim unused space from sheets: no
     Allow pages to be scaled: no
     Margins and crop marks: none
     Sheet size: 6.654 x 9.409 inches / 169.0 x 239.0 mm
     Sheet orientation: best fit
     Layout: rows 1 down, columns 1 across
     Align: centre
      

        
     D:20240514114739
      

        
     0.0000
     8.5039
     14.1732
     0
     Corners
     0.2999
     ToFit
     0
     0
     1
     1
     0.9500
     0
     0 
     1
     0.0000
     0
            
       D:20240514114704
       677.4803
       G5
       Blank
       479.0551
          

     Best
     1692
     488
     0.0000
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     C
     0
            
       CurrentAVDoc
          

     0.0000
     0
     2
     0
     0
     0 
      

        
     QITE_QuiteImposingPlus5
     Quite Imposing Plus 5.3d
     Quite Imposing Plus 5
     1
      

        
     1
     1
     0.0000
     0.0000
     0.0000
     0.0000
     276
     276
      

   1
  

    
   HistoryItem_V1
   StepAndRepeat
        
     Trim unused space from sheets: no
     Allow pages to be scaled: no
     Margins and crop marks: none
     Sheet size: 6.654 x 9.409 inches / 169.0 x 239.0 mm
     Sheet orientation: tall
     Layout: rows 1 down, columns 1 across
     Align: centre
      

        
     D:20240516133952
      

        
     0.0000
     8.5039
     14.1732
     0
     Corners
     0.2999
     ToFit
     0
     0
     1
     1
     0.9500
     0
     0 
     1
     0.0000
     0
            
       D:20240516133925
       677.4803
       G5
       Blank
       479.0551
          

     Tall
     1692
     488
     0.0000
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     C
     0
            
       CurrentAVDoc
          

     0.0000
     0
     2
     0
     0
     0 
      

        
     QITE_QuiteImposingPlus5
     Quite Imposing Plus 5.3d
     Quite Imposing Plus 5
     1
      

        
     1
     1
     1440.0000
     992.1260
     1440.0000
     992.1260
     276
     276
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 216.24, 395.00 Width 13.64 Height 11.76 points
     Origin: bottom left
     Colour: Default (white)
      

        
     D:20240517105158
      

        
     1
     0
     BL
     2870
     543
    
            
                
         Both
         2
         CurrentPage
         21
              

       CurrentAVDoc
          

     216.2424 394.9951 13.6364 11.7576 
      

        
     QITE_QuiteImposingPlus5
     Quite Imposing Plus 5.3d
     Quite Imposing Plus 5
     1
      

        
     271
     276
     271
     7c5ed61e-ce13-4194-924e-da5c16fbbbc9
     1
      

   1
  

 HistoryList_V1
 qi2base





