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Abstract—Event-based sensing and communication holds the
promise of lower resource utilization and/or better performance
for remote state estimation applications found in e.g. networked
control systems. Recently, stochastic event-triggering rules have
been proposed as a means to avoid the complexity of the problem
that normally arises in event-based estimator design. By using
a scaled Gaussian function in the stochastic triggering scheme,
the optimal remote state estimator becomes a linear Kalman
filter with a case dependent measurement update. In this paper
we propose a modified version of the stochastic send-on-delta
triggering rule. The idea is to use a very simple predictor in
the sensor, which allows the communication rate to be reduced
while preserving estimation performance compared to regular
stochastic send-on-delta sampling. We derive the optimal mean-
square error estimator for the new scheme and present upper and
lower bounds on the error covariance. The proposed scheme is
evaluated in numerical examples, where it compares favorably
to previous stochastic sampling approaches, and is shown to
preserve estimation performance well even at large reductions
in communication rate.

I. INTRODUCTION

In recent years, networked control systems (NCSs) have
been finding application in a broad range of areas, such as in-
dustrial automation, health care, public transport and aerospace
[1], [2]. While NCSs offers a lot in terms of flexibility,
the communication between devices over band-limited, often
wireless, shared networks can pose a constraint in several
applications. Examples of NCSs where communication is
severely limited include unmanned aerial vehicles (UAVs) with
stealth requirements, vehicles with tight power-budgets such as
planetary rovers, long endurance sensor networks with limited
energy supply and underwater vehicles [2]. Additionally, hav-
ing a large number of sensors sharing a network with limited
bandwidth may risk congestion [3]. Abandoning the traditional
approach of periodic sampling and communication in favor of
event-based schemes has the potential of substantially reducing
communication and computation rate while still preserving
good application performance.

A simple and intuitive idea is to let the sensor communicate
only when a significant change has occurred in the measured
variable. This is known as send-on-delta sampling [4], where
the collected measurement is commonly compared to the last
transmitted value. A variant is to instead compare with the
estimator’s prediction, see e.g. [5]. Since the sensor then knows
the exact prediction of the estimator, it is possible to achieve
very efficient communication. However, this kind of scheme
requires either a local copy of the estimator in the sensor,

or estimator-to-sensor feedback, which come with the cost of
more energy-consuming computations in the sensor or more
network usage respectively.

A fundamental challenge with deterministic send-on-delta
approaches is that they involve nonlinear measurements, which
implies that the design of an optimal state estimator becomes
intractable for higher-order systems [6], [7]. While approxi-
mative estimation methods such as particle filters exist, these
typically involve very heavy on-line computations and do not
easily lend themselves to analysis. A survey of various event-
based estimation methods is found in [8].

Recently, stochastic event-trigger conditions have been pro-
posed to alleviate the problem of intractable optimal estimator
design [9]–[11]. By using a stochastic sampler involving a
scaled Gaussian function in the event generator, the optimal
remote estimator for a linear system driven by white Gaussian
noise turns into a Kalman filter with case dependent mea-
surement update. In [9], two stochastic sampling schemes—
one open-loop (OL) and one closed-loop (CL)—are proposed
and analyzed. In the OL scheme, the probability of sampling
increases with the magnitude of the measured output. In the CL
scheme, the probability of sampling increases with the magni-
tude of the innovation generated by the measurement, requiring
sensor-to-estimator feedback. Bounds on the asymptotic error
covariance are presented as well as a closed-form formula
for the average communication rate under the OL scheme. In
[11], stochastic send-on-delta sampling (SSOD) is proposed
as a third possible scheme, where the probability of sampling
increases with the distance between the measured output and
the previously transmitted value. The SSOD scheme is however
to our knowledge not analyzed nor evaluated in any examples.

In this paper, we propose a modified SSOD scheme. By
introducing a very simple predictor in the sensor, the measured
variable is not compared with the last transmitted measurement
but rather with a scaled version of it. This allows for a
performance closer to that of the CL scheme while still running
in open loop (i.e., there is no feedback communication from
the estimator to the sensor).

The remainder of this paper is outlined as follows. In
Section II the remote estimation problem is formulated. The
basic framework of stochastic event-triggering, a brief review
of the schemes proposed in [9] and [11] and a derivation of
the modified stochastic send-on-delta scheme are presented
in Section III. The optimal estimator for the new scheme
and bounds on the resulting error covariance are presented
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Fig. 1. The remote state estimation problem. The event-based estimator
should produce optimal estimates of the process states based on irregularly
communicated measurements from the sensor.

in Section IV. The new scheme is evaluated in numerical ex-
amples, with comparisons to the earlier stochastic approaches
and a simulated case study, in Section V. Finally, the paper
is concluded in Section VI. The derivation of the MMSE
estimator presented in Section IV is given in the Appendix.

II. THE REMOTE ESTIMATION PROBLEM

A. Problem Formulation

We study a prototypical remote state estimation problem
involving a process subject to disturbances, a sensor with an
event generator, and a remote event-based state estimator, see
Figure 1. Assume that the process is described by a discrete-
time linear system

xk+1 = Axk + wk

yk = Cxk + vk
(1)

where xk ∈ R
n is the state vector, yk ∈ R

m is the mea-
surement vector collected by the sensor and wk ∈ R

n and
vk ∈ R

m are mutually uncorrelated white Gaussian noises with
covariance matrices Q > 0 and R > 0. The initial state vector
x0 is assumed to be zero-mean and Gaussian with covariance
matrix Σ0 > 0. The initial state is uncorrelated with wk and
vk for all k ≥ 0. The system is assumed to be observable.

The goal of the remote estimator is to produce the optimal
estimate of the state vector xk in the minimum mean-square
error (MMSE) sense based on the history of transmitted
measurements. In the case when the sensor transmits yk at
every time instant k, the MMSE state estimator for (1) is the
standard Kalman filter [12]. In the case when the sensor trans-
mits measurements based on some triggering condition the
problem instead becomes event-based, where each transmitted
measurement marks an event.

Adopting the notation of [9]–[11], let the variable γk
signal events, such that γk = 1 means that the measurement
was transmitted from the sensor, and γk = 0 that it was
not. Assuming that no data is lost in the transmission, the
information set Ik available to the remote estimator at time k
is

Ik , {γ0, . . . , γk, y
r
0 , . . . , y

r
k}

where yrk is the received measurement at time k given as

yrk =

{

yk if γk = 1

∅ if γk = 0

Furthermore, we define I−1 , ∅. Conditioned on the informa-
tion set, the MMSE predictions of the state and measurement

vectors, x̂−

k , ŷ−k , and the MMSE estimate of the state vector,
x̂k, are

x̂−

k , E{xk | Ik−1}, ŷ
−

k , E{yk | Ik−1}, x̂k , E{xk | Ik}

and the covariance matrices for the corresponding prediction
and estimation errors of the state vector are

P−

k , E{(xk − x̂−

k )(xk − x̂−

k )
T | Ik−1}

Pk , E{(xk − x̂k)(xk − x̂k)
T | Ik}

In the standard Kalman filter the MMSE estimates and covari-
ances above are easily computed through closed-form recursive
equations. It is desirable to preserve that property also in
the event-based case. Following [9]–[11], we will consider
stochastic triggering conditions for the event generator. Below
we describe the basic framework of stochastic triggering, make
a brief review of the previously proposed schemes and then
propose an new stochastic triggering condition based on the
SSOD scheme.

III. STOCHASTIC TRIGGERING CONDITIONS

A. Basic Framework

The principle of stochastic triggering is as follows. At each
time instant k, the event generator generates an independent
and identically distributed random variable ζk, which is uni-
formly distributed over [0, 1]. The random variable ζk is com-
pared to the value of a decision function ϕ(yk − µk) : R

m →
[0, 1] that depends on the difference between the collected
measurement yk and a prediction µk of the measurement. The
prediction is based on information available to both the sensor
and the remote estimator. The event generator then decides if
the sensor should transmit or not according to

γk =

{

1, if ζk > ϕ(yk − µk)

0, if ζk ≤ ϕ(yk − µk)

Since ζk is uniformly distributed, this rule has the property

Pr(γk = 0) = ϕ(yk − µk)

Pr(γk = 1) = 1− ϕ(yk − µk)

i.e., the probability of not transmitting yk is equal to the value
of the decision function. Intuitively, ϕ(yk − µk) should be
chosen such that it attains a value close to 1 when yk does not
deviate much from the prediction µk, and close to 0 when the
deviation is large. In [9], the authors propose ϕ(yk −µk) as a
scaled Gaussian function, which leads to closed-form recursive
equations for the corresponding MMSE estimator.

B. Previously Suggested Schemes

We now make a brief review of the versions of ϕ(yk−µk)
proposed in [9] and [11]. These are:

Open-Loop (OL):

ϕOL(yk) , exp(−
1

2
yTk Y yk) (2)

Closed-Loop (CL):

ϕCL(yk − ŷ−k ) , exp(−
1

2
(yk − ŷ−k )

TY (yk − ŷ−k )) (3)
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Fig. 2. The decision function ϕ(yk − µk) in the scalar case for different
values of Y .

Stochastic Send-on-Delta (SSOD):

ϕSSOD(yk − yk−l) , exp(−
1

2
(yk − yk−l)

TY (yk − yk−l))

(4)

In these expressions, the matrix Y > 0 is a design parameter
that influences the shape of the decision function, and l ≥ 1
is the number of time steps since the latest transmission made
by the sensor. Figure 2 illustrates the shape of the decision
function for different values of Y in the scalar case. By
varying the value of Y the probability of transmitting and
hence the expected communication rate can be varied. From
the expressions above, we see that the schemes only differ in
the choice of prediction, where OL uses µk = 0, CL uses
µk = ŷ−k and SSOD uses µk = yk−l.

The OL scheme compares the collected measurement to
the prediction zero in each time instant, resulting in high
probability of transmission when the magnitude of yk is great.
The prediction is based on the fact that when the system (1)
is stable, then yk will be zero-mean in stationarity. The main
strength of the OL scheme is that the prediction requires no
computations from the sensor. However, it is only suitable for
stable systems, since for unstable systems the scheme will
trivially result in γk = 1 almost always after a sufficiently
long time.

The CL scheme works in both the stable and the unstable
case, since ŷ−k will follow the dynamics of the system. How-
ever, a major drawback of the CL scheme is that it requires
transmission of ŷ−k to the sensor at every time-instant k,
counter-acting the objective of reducing communication rate
in the network. It is however still interesting as an indicator
of the achievable performance with stochastic triggering.

The need for a simple prediction makes the SSOD scheme
interesting. With µk = yk−l, there are no computations
required like in the OL scheme, but intuitively it should offer
a reasonable prediction of yk for small values of l and slow-
varying processes. However, yk−l will generally be a poor
prediction as l grows due to the dynamics in the system. This

motivates us to improve the SSOD scheme by introducing a
simple predictor for yk in the sensor, while still not requiring
any estimator-to-sensor communication.

C. Stochastic Send-on-Delta with Simple Prediction

To derive a simple prediction of yk for the stochastic send-
on-delta scheme, we start by computing E{yk | yk−l} using
the following theorem:

Theorem 1: (Theorem 3.2 in [13], Ch. 7)
Let x and y be two vectors which are jointly Gaussian. The

conditional distribution of x given y is Gaussian with mean

E{x | y} = E{x} +RxyR
−1
y (y − E{y})

where

Rxy = E{(x− E{x})(y − E{y})T }

Ry = E{(y − E{y})(y − E{y})T}

The covariance of x conditioned on y is

E{(x− E{x|y})(x− E{x|y})T |y} = Rx −RxyR
−1
y RT

xy

where

Rx = E{(x− E{x})(x− E{x})T }

Furthermore, the stochastic variables y and x − E{x | y} are
independent.

The proof is stated in [13]. Since yk and yk−l are jointly
Gaussian, we thus have

E{yk | yk−l} = E{yk}+Rykyk−l
R−1

yk−l
(yk−l − E{yk−l})

Assuming (1) is stable and has converged to its stationary
distribution, we have E{yk} = E{yk−l} = 0 which leads to

E{yk | yk−l} = Rykyk−l
R−1

yk−l
yk−l (5)

Next we compute the matrices Rykyk−l
and Ryk−l

under the
same assumption:

Rykyk−l
= E{yky

T
k−l} = E{(Cxk + vk)(Cxk−l + vk−l)

T }

= CE{xkx
T
k−l}C

T

= CE{(
l

∑

j=1

Aj−1wk−j +Alxk−l)x
T
k−l}C

T

= CAl
E{xk−lx

T
k−l}C

T = CAlΣCT

Here Σ > 0 is the steady-state covariance of the state vector,
which, when (1) is stable, can be obtained as the solution to
the discrete-time Lyapunov equation

Σ = AΣAT +Q (6)

Using similar calculations, the matrix Ryk−l
is

Ryk−l
= E{yk−ly

T
k−l} = E{(Cxk−l + vk−l)(Cxk−l + vk−l)

T }

= CΣCT +R

We thus see that with the assumption on stationarity the
matrix Rykyk−l

R−1
yk−l

only depends on l. Motivated by (5) we
propose a new stochastic send-on-delta scheme, which uses a
simple prediction dependent on the number of samples since
the last transmission:
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Stochastic Send-on-Delta with Simple Prediction (SSOD-
P):

ϕSSOD−P (zk,l) , exp(−
1

2
zTk,lY zk,l) (7)

where

zk,l , yk − Slyk−l

Sl , CAlΣCT (CΣCT +R)−1

The proposed scheme is useful for stable systems and takes
into account the cross-covariance between the last transmitted
and the current measurement. As the matrix Sl is known
beforehand, a look-up table can be computed offline and stored
in the sensor for improved efficiency. In practice, Sl can for
sufficiently large l be approximated with its limit

lim
l→∞

Sl = 0

We observe that the limit case of the proposed scheme is
identical to the OL scheme, i.e., when yk−l no longer offers
any information on predicting the value of yk. Depending
on the A matrix, the convergence speed to the limit differs
and hence also the required memory storage. As an example,
consider the scalar system with slow dynamics [11]:

A = 0.95, C = 1, Q = 0.8, R = 1 (8)

In Figure 3 the values of Sl are computed for the system
(8) and compared to the limit value. The decreasing value
of Sl reflects the loss of correlation between yk and yk−l as l
increases. In this example, Sl has essentially converged to zero
after 100 steps, which for single-precision (32 bit) arithmetics
would require a look-up table of size of 400 bytes.

IV. THE MMSE ESTIMATOR

In this section we present the recursive closed-form equa-
tions for the MMSE estimator when using the SSOD-P scheme
(7). We also present bounds on the covariance P−

k .

A. Estimator

The MMSE estimator for the SSOD-P is given by the
following theorem:

Theorem 2: Consider the system (1) where the
measurement vector yk is transmitted to a remote estimator
based on a stochastic decision according to the SSOD-
P scheme in (7). Then xk conditioned on Ik−1 and Ik
respectively are Gaussian distributed, and their mean and
covariance satisfy to following recursive equations:

Initial Conditions:

x̂−

0 = 0

P−

0 = Σ0

Time Update:

x̂−

k = Ax̂k−1 (9)

ŷ−k = Cx̂−

k (10)

P−

k = APk−1A
T +Q (11)

Measurement Update:

x̂k = x̂−

k +Kk(γkzk,l − ẑ−k,l) (12)

ẑ−k,l , E{zk,l | Ik−1} = ŷ−k − Slyk−l (13)

Pk = P−

k −KkCP−

k (14)

Kk = P−

k CT [CP−

k CT +R+ (1− γk)Y
−1]−1 (15)

Remark 1: The MMSE estimator for a sensor using the
regular SSOD scheme in (4) can be shown to be identical to
the equations in Theorem 2 with Sl = 1.

The proof of Theorem 2 is stated in the Appendix. The
resulting MMSE estimator resembles the standard Kalman
filter, with recursive equations for time and measurement
update. In fact, the measurement update in the case when
γk = 1 and the time update are identical to the standard
Kalman filter. When γk = 0, the predicted measurement ŷ−k is
compared to the scaled previous measurement Slyk−l instead
of yk, and the added uncertainty is reflected in the addition of
Y −1 in the expression for Kk. The case when γk = 0 can be
interpreted as a measurement update with additional Gaussian
noise with covariance Y −1. This simple representation of
the added uncertainty in the MMSE estimator is due to the
Gaussian shape of the decision function in the event generator.

B. Covariance Bounds

The bounds on the covariance matrix P−

k for the OL
scheme derived in [11] can also be used to derive the same
bounds for the proposed SSOD-P scheme since the MMSE
estimators in both cases have the same equations for updating
the error covariance. Thus we have the following bounds on
the covariance matrix P−

k :

Theorem 3: (See Theorem 6.3.3 in [11], Ch. 6)
Assume the SSOD-P scheme in (7) is applied to the system
(1) and the states are estimated with the MMSE estimator in
Theorem 2. If the system is stable, then for any ǫ > 0 there
exists an N ∈ N such that for all k ≥ N the following limits
on P−

k hold:

X − ǫI ≤ P−

k ≤ X̄ + ǫI



Here, X and X̄ are the unique solutions to the discrete-time
algebraic Riccati equations

X = AXAT +Q−AXCT (CXCT +R)−1CXAT

and

X̄ = AX̄AT +Q−AX̄CT (CX̄CT +R+ Y −1)−1CX̄AT

The proof is identical to the proof of Theorem 6.3.3 in
[11] and is hence omitted. Note that the matrices X̄ and X
correspond to the stationary value of P−

k in the extreme cases
when γk = 0 and γk = 1 for all k respectively.

V. NUMERICAL EXAMPLES

To demonstrate the advantage of using the SSOD-P scheme
in (7) compared to the previously proposed schemes in (2)–(4),
and to showcase the potential of reducing the communication
rate, we here present some numerical examples. In Section V-A
the asymptotic mean trace of the prediction error covariance,
limk→∞ E{tr(P−

k )}, is compared between the schemes for
different communication rates 0 ≤ γ ≤ 1, here defined as the
mean number of transmissions per time unit. The examples
in this section show that the proposed scheme give compa-
rable performance to the CL scheme without any estimator-
to-sensor communication, and outperforms both the regular
SSOD and the OL schemes. In Section V-B we simulate the
SSOD-P scheme with different communication rates in a state
feedback position control case study. The example shows that
large reductions in communication rate can be achieved while
maintaining good control and estimation performance.

A. Error Covariance versus Communication Rate

Consider the first order stable case of (1) with A = 0.95,
C = 1, Q = 0.8 and R = 1 which was evaluated for the
OL and CL schemes in [11]. In this example we also compare
the performance of the MMSE estimators using the regular
SSOD and the proposed SSOD-P schemes. The Y parameter is
varied between 0.05 and 20 to obtain different communication
rates. The asymptotic mean error variance is computed for a
simulation of 50,000 time steps at each Y value, and the results
are presented in Figure 4. We observe that both the SSOD and
the SSOD-P schemes has a performance comparable to the
CL scheme without any estimator-to-sensor feedback, and they
clearly outperform the OL scheme. To illustrate the advantage
of featuring the scaling Sl in the SSOD-P scheme, we consider
another example of a highly oscillatory second order system:

A =

[

−0.85 −0.35
0.35 −0.85

]

, C = [1 0]

Q =

[

10−3 0
0 1

]

, R = 0.1

The trace of the asymptotic mean error covariance matrix
is computed for a simulation of 50,000 time steps at each
communication rate, and the results are presented in Figure 5.
In this example the SSOD-P scheme outperforms the SSOD,
which performs worse than also the OL scheme. The reason
is that the fast oscillatory dynamics make yk deviate strongly
from yk−l even for small l, which forces the sensor to transmit
more often in the SSOD case than in the SSOD-P case. Still in
this highly oscillatory example the proposed SSOD-P scheme
performs comparably well to the CL scheme.
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B. Illustrative Case Study

To showcase the potential of reducing the communication
rate using the SSOD-P scheme, we here present a simulated
case study of position control of elastic connected masses using
a linear servo. The process consists of two masses on carts,
connected together with a spring, which both can move in one
dimension. A linear servo is used to apply a force to the first
cart, while the available sensor measurement from the process
is the position of the second cart. Using state feedback, the
control objective is to reject disturbances and bring both cart
positions and velocities to zero.



The process is described by the differential equations

mp̈1(t) = −d1ṗ1(t)− k(p1(t)− p2(t)) + kmu(t)

mp̈2(t) = −d2ṗ2(t) + k(p1(t)− p2(t))

where the positions of the carts are p1 and p2 respectively, and
u is the voltage input to the linear servo. The mass of each cart
is m = 2 kg, the damping acting on the carts are d1 = 3 and
d2 = 4 Nm−1s respectively, the spring constant is k = 400
Nm−1 and the linear servo gain is km = 3 NV−1. We use a
sampling period of 0.01 s to represent the process in discrete
time. Adding Gaussian process- and measurement noise, the
resulting state space model is given as

xk+1 = Axk +Buk + wk

yk+1 = Cxk + vk

wk ∼ N(0, Q), vk ∼ N(0, R)

where

A =







0.99 0.01 0.01 0
−1.97 0.98 1.97 0.01
0.01 0 0.99 0.01
1.97 0.01 −1.97 0.97







B =







0
0.01
0
0






, C = [0 0 1 0]

Q = 5 · 10−7 · I4×4, R = 10−4

The state vector is xk = [x1,k x2,k x3,k x4,k]
T where the

states x1,k, x2,k represent the first cart’s position and velocity
respectively, and x3,k, x4,k are the corresponding states for
the second cart. To make the system asymptotically stable a
state feedback law, uk = −Lxk, obtained through LQR-design
is used, where L = [108.14, 14.39, −14.85, 5.33]. Since the
true process state vector is not available, the estimates of the
SSOD-P, x̂k, are used in the state feeback control law.

The controlled process using the SSOD-P scheme for
state estimation was simulated in stationarity for 106 time
steps for three different values of Y corresponding to the
communication rates γ = 0.7, 0.3 and 0.1. The nominal case of
γ = 1, i.e., estimation using the standard Kalman filter, was
also simulated for reference. The standard deviations of the
control error and estimation error for each state are presented
in Table I and II respectively.

TABLE I. STANDARD DEVIATION OF CONTROL ERROR

Y γ x1 [mm] x2 [mms−1] x3 [mm] x4 [mms−1]

- 1.0 3.71 42.59 3.93 45.66

8.90 · 10
4 0.7 3.73 42.77 3.95 45.78

9.05 · 10
3 0.3 4.11 44.89 4.27 47.14

1.86 · 10
3 0.1 5.46 49.04 5.53 50.04

TABLE II. STANDARD DEVIATION OF ESTIMATION ERROR

Y γ x1 [mm] x2 [mms−1] x3 [mm] x4 [mms−1]

- 1.0 3.18 39.69 3.14 39.56

8.90 · 10
4 0.7 3.20 39.90 3.17 39.76

9.05 · 10
3 0.3 3.55 42.52 3.55 42.35

1.86 · 10
3 0.1 4.88 47.77 4.92 47.60

From Tables I and II we see that the impact on control
and estimation performance is small in relation to the reduc-
tion in communication rate. When transmitting 70% of the
measurements, the performance degradation is minimal. The
relative increase in standard deviation of the control error is
then in the approximate range 0.3–0.5%. The performance
degradation in the estimation is of similar magnitude, with
an increase of 0.5–1.0%. Even when transmitting only 30% of
the measurements, the increase relative to the nominal case is
only 3.2–10.8% for the control error and 7.1–13.1% for the
estimation error. However, in the extreme case of transmitting
only 10% of the collected measurements the performance starts
to be significantly degraded. The relative increase in standard
deviation is then 9.6–47.2% for the control error and 20.3–
56.7% for the estimation error.

To see the impact of reduced communication rate in
presence of a large disturbance, an impulse force on the second
cart was simulated, where the cart velocity jumps to 1 ms−1.
Using the same values of Y , the resulting trajectories of the
cart positions are presented in Figure 6. Also in this example it
becomes apparent that the degradation of control performance
is small in relation to the reduction in communication rate.
In Figure 6, the simulation lasts for 5 seconds, corresponding
to 500 discrete time steps, with the impulse occurring after
1 second. The response with Y = 8.90 · 104, resulting
in 400 transmissions, is practically identical to the nominal
case where all 500 measurements are transmitted. Even with
Y = 9.05 · 103 and 274 transmissions the degradation is
minimal. Only with Y = 1.86 · 103 and 191 transmissions
is there a clearly visible deviations from the nominal case,
where the disturbance is somewhat slower rejected.

VI. CONCLUSION

We have proposed a new stochastic send-on-delta sampling
scheme with a simple predictor in the event generator, which
can reduce the communication rate in remote state estimation
applications while still yielding a simple estimator design. The
event generator in the sensor must store a look-up table of a
scaling factor in order to correctly predict the measurement
vector at each time step, before stochastically deciding whether
to communicate the measurement or not to the remote state
estimator. The solution is hence slightly more complex than the
previously proposed open-loop and stochastic send-on-delta
schemes, but offers better estimation performance.

The corresponding MMSE remote estimator has been de-
rived for the scheme, and we have also presented bounds
on the resulting error covariance matrix. However, there is
room for further analysis, including derivations of expected
communication rate and asymptotic error covariances, similar
to what is done for the open-loop and closed-loop schemes in
[9] and [11].

The performance of the proposed modified stochastic send-
on-delta scheme has been compared to the other stochastic
triggering schemes proposed in [9] and [11] in numerical
examples. Considering the case of no estimator-to-sensor feed-
back, the proposed scheme outperforms the other schemes.
The proposed scheme also show a comparable performance
to the closed-loop scheme which utilizes estimator-to-sensor
feedback. Also, a simulated case study using the proposed
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Fig. 6. Comparison of impulse disturbance rejection using state feedback
and state estimation with the SSOD-P scheme for different communication
rates. The impulse occurs at time 1 s.

scheme showcases the potential of reducing the communication
rate significantly in relation to the price paid in estimation
performance.
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APPENDIX

The following lemma will be used in the proof of Theo-
rem 2:

Lemma 1: (Lemma 6.1 in [11], Ch 6)
Let Φ > 0 be partitioned as

Φ =

[

Φxx Φxz

ΦT
xz Φzz

]

where Φxx ∈ R
n×n, Φxz ∈ R

n×m and Φzz ∈ R
m×m. Then it

holds that

Φ−1 +

[

0 0
0 Y

]

= Θ−1

where

Θ =

[

Θxx Θxz

ΘT
xz Θzz

]

and

Θxx = Φxx − Φxz(Φzz + Y −1)−1ΦT
xz

Θxz = Φxz(I + Y Φzz)
−1

Θzz = (Φ−1
zz + Y )−1

The proof of Lemma 1 is stated in [11]. We now continue with
the proof of Theorem 2:

Proof of Theorem 2: The theorem is proved by induction
in the same manner as how the OL and CL MMSE estimators
are derived in [11]. In (1) x0 was assumed zero-mean Gaussian
with covariance Σ0, and since I−1 = ∅ we have the initial
conditions

x̂−

0 = E{x0 | I−1} = E{x0} = 0

P−

0 = E{(x0 − x̂−

0 )(x0 − x̂−

0 )
T } = Σ0

Assume that xk conditioned on Ik−1 is Gaussian with mean
x̂−

k and covariance P−

k . For the measurement update there are
two possibilities. We start with the case when γk = 0:

Measurement Update, γk = 0: Consider the joint condi-
tional probability density function of xk and zk,l,

f(xk, zk,l | Ik) = f(xk, zk,l | γk = 0, Ik−1)

=
Pr(γk = 0 | xk, zk,l, Ik−1)f(xk, zk,l | Ik−1)

Pr(γk = 0 | Ik−1)

=
Pr(γk = 0 | zk,l)f(xk, zk,l | Ik−1)

Pr(γk = 0 | Ik−1)
(16)

where Bayes’ theorem was used in the second equality, and
the fact that the outcome of γk only depends on zk,l in the
third equality. We now continue by evaluating (16). From (7)
we have

Pr(γk = 0 | zk,l) = Pr(ζk ≤ ϕSSOD−P (zk,l) | zk,l)

= exp(−
1

2
zTk,lY zk,l) (17)

To evaluate f(xk, zk,l | Ik−1) we require the covariance matrix
Φk of the joint probability vector [xT

k , z
T
k,l]

T conditioned on

Ik−1. Observing the fact that zk,l − ẑ−k,l = yk − ŷ−k , Φk is

Φk =

[

P−

k P−

k CT

CP−

k CP−

k CT +R

]

(18)

From (16)–(18) we get

f(xk, zk,l | Ik) = αk exp(−
1

2
θk)

where

αk =
1

Pr(γk = 0 | Ik−1)
√

det(Φk)(2π)m+n



and

θk =

[

xk − x̂−

k

zk,l − ẑ−k,l

]T

Φ−1

k

[

xk − x̂−

k

zk,l − ẑ−k,l

]

+ zTk,lY zk,l

By using Lemma 1 and completing the square we get

θk =

[

xk − x̂k

zk,l − ẑk,l

]T

Θ−1

k

[

xk − x̂k

zk,l − ẑk,l

]

+ ck

where

x̂k = x̂−

k − P−

k CT (CP−

k CT +R+ Y −1)−1ẑ−k,l

ẑk,l = ẑ−k,l − [(CP−

k CT +R)−1 + Y ]−1Y ẑ−k,l

ck = ẑ−T
k,l Y [I − ((CP−

k CT +R)−1 + Y )−1Y ]ẑ−k,l

and

Θk =

[

Θxx,k Θxz,k

ΘT
xz,k Θzz,k

]

where

Θxx,k = P−

k − P−

k CT (CP−

k CT +R+ Y −1)−1CP−

k

Θxz,k = P−

k CT [I + Y (CP−

k CT +R)]−1

Θzz,k = [(CP−

k CT +R)−1 + Y ]−1

The joint conditional probability density is thus

f(xk, zk,l | Ik) = βk exp(−
1

2

[

xk − x̂k

zk,l − ẑk,l

]T

Θ−1

k

[

xk − x̂k

zk,l − ẑk,l

]

)

(19)

βk = αk exp(−
1

2
ck)

where the fact that (19) integrates to 1 implies that

βk =
1

√

det(Θk)(2π)n+m

Thus xk and zk,l conditioned on Ik are jointly Gaussian, where
in particular xk has the mean x̂k and covariance Θxx,k. This
proves (12)–(15) when γk = 0.

Measurement Update, γk = 1: When γk = 1 the measure-
ment yk is transmitted. Thus

f(xk | Ik) = f(xk | yk, Ik−1) (20)

Computing (20) corresponds to the measurement update of the
standard Kalman filter [12]. Thus, xk conditioned on Ik when
γk = 1 is Gaussian with mean

x̂k = x̂−

k +Kk(yk − ŷ−k )

and covariance

Pk = P−

k −KkCP−

k

which proves (12)-(15) when γk = 1.

Time Update: We now consider the time update. Assume
xk−1 conditioned on Ik−1 is Gaussian with mean x̂k−1 and
covariance Pk−1. Then from (1) xk conditioned on Ik−1 will

also be Gaussian since it is formed by a linear combination of
Gaussian variables. We have

x̂−

k = E{xk | Ik−1} = E{Axk−1 + wk−1 | Ik−1}

= AE{xk−1 | Ik−1} = Ax̂k−1

and the covariance

P−

k = E{(xk −Ax̂k−1)(xk −Ax̂k−1)
T | Ik−1}

= APkA
T +Q

Finally, the measurement vector yk conditioned on Ik−1 is

ŷ−k = E{yk | Ik−1} = E{Cxk + vk | Ik−1}

= CE{xk | Ik−1} = Cx̂−

k

This proves (9)–(11). Since x0 conditioned on I−1 is Gaussian,
we have by induction that xk conditioned on Ik and Ik−1

respectively will be Gaussian for all k. Thus the proof of
Theorem 2 is concluded. By setting Sl = 1, the same proof
can be used to derive the MMSE estimator for the regular
stochastic send-on-delta scheme in (4).
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