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Abstract 

 

Label-free LC-MS methods are attractive for high-throughput quantitative 

proteomics, as the sample processing is straightforward and can be scaled to a 

large number of samples. Label-free methods therefore facilitate biomarker 

discovery in studies involving dozens of clinical samples. However, despite the 

increased popularity of label-free workflows, there is a hesitance in the research 

community to use it in clinical proteomics studies.  Therefore, we here discuss 

pros and cons of label free LC-MS/MS for biomarker discovery, and delineate the 

main prerequisites for its successful employment. Furthermore, we cite studies 

where label-free LC-MS/MS was successfully used to identify novel biomarkers, 

and foresee an increased acceptance of label-free techniques by the proteomics 

community in the near future. 
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There is no doubt that any proteomics study needs to make the most out of an 

often limited and sometimes painstakingly acquired sample cohort, requiring 

accurate determination of both identity and quantity of the analytes from 

discovery to validation. This requires a highly reproducible and stable analysis 

workflow, capable of achieving accurate quantification as well as deep coverage 

of the investigated proteome. Currently, LC-MS/MS is the most flexible technique 

available for multiplexed protein quantification, and is the go-to setup to 

maximize proteome coverage. Deep coverage can for example be achieved by 

sample prefractionation or through depletion of high-abundance proteins. While 

the qualitative characterization (identification) of the proteome is by no means a 

trivial task, scoring matches of MS/MS fragments to database sequences is a task 

which has reached relative maturity, even if there exists a large number of 

different algorithms for performing the task [1]. In comparison, the peptide and 

subsequently protein quantification strategies available for an LS-MS/MS setup 

show far larger diversity, resulting in larger differences in both accuracy and 

dynamic range. 

 

LC-MS/MS quantification strategies can be divided into workflows employing 

isotopic labels (predominantly metabolic [2] and isobaric [3, 4]) and label-free 

(spectral count and precursor-based) approaches.  Metabolic labels are isotopic 

labels that are introduced through metabolic assimilation by cultured cells, and 

have the advantage of minimizing variation introduced by sample processing, if 

samples are mixed before processing. The main drawback of metabolic labeling 

is that it is limited to samples undergoing active protein synthesis, which makes 

it effectively impossible to use in its original version for clinical samples. To this 
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end, super-SILAC [5] has been introduced where a mixture of SILAC labeled cells 

are used as spike-in standard to be able to interrogate human tumor tissue. The 

value of such a study depends heavily on the design of the cell mixture, as even a 

combination of different cell lines may not accurately reflect the complexity of 

human tissue, and could reduce the effective proteome coverage. A label-free 

approach in such cases could be beneficial, as it does not impose any 

requirements about a reference sample. Furthermore, in recent work [6], label-

free quantification was shown to outperform SILAC in terms of both proteome 

coverage and dynamic range. 

 

Isotopic labels introduced during sample processing are also popular, and in 

particular isobaric labels have gained widespread used due to excellent 

multiplexing capabilities. However, several studies have shown a limited 

dynamic range in isobaric label workflows in comparison to the label-free 

approaches [7-9]. This tendency could be partially attributed to the co-isolation 

of multiple precursors for MS/MS fragmentation, which can be alleviated by 

using MS3 for quantification [10]. 

 

From a theoretical perspective, as MS spectra on an Orbitrap is currently 

restricted in the number of ions that are measured in each spectra, it is evident 

that dynamic range will be sacrificed in all types of multiplexing scenarios. 

Furthermore, the more densely populated the LC-MS run is, the higher the risk of 

ion suppression effects.  
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In summary, label-free quantification can be considered to have both higher 

dynamic range as well as proteome coverage capabilities in comparison to 

labeling techniques. Furthermore, label-free strategies are scalable to any 

number of samples in a straightforward manner. While workflows employing 

labels are scalable as well, they typically rely on a pool to enable within LC-

MS/MS map comparison before scaling up to between-sample comparisons.   

 

Despite these advantages, label-free workflows are in many cases still not the 

primary choice. We believe this is attributed to two main reasons: Firstly, the 

insufficient resolving power of previous generations of spectrometers and 

secondly, label-free quantification has been used as a term combining two very 

different quantification strategies, namely precursor-based quantification and 

spectral counting (Figure 1). While the above discussion concerning labeling 

versus label-free strategies is valid for both types of label-free quantification, 

spectral counting cannot resolve small abundance differences. Although recent 

developments in spectral counting has incorporated the intensities of the MS/MS 

peaks as well as other standardizing factors into the quantitative measurement 

e.g. [11, 12], there is a risk of introducing bias into the analysis due to the 

dynamic exclusion settings of the instrument which could favor certain elution 

patterns if not optimized. Furthermore, spectral counting suffers from a 

drawback common to all MS/MS-based quantification, namely the coupling of 

identification and quantification. This prevents the analysis of yet unidentified 

peptide patterns, which may be interrogated through repeated analysis of the 

sample using directed proteomics [13] (Figure 2). We therefore advocate label-

free precursor-based quantification as the method of choice and is what we refer 
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to in the following text with the term label-free quantification unless stated 

otherwise.  

 

Label-free workflows seem to not be used extensively due to the perceived risk 

of introducing spurious variation into the workflow due to the high demand of 

reproducible experimental procedures as well as relatively extensive data 

processing. It should however be noted that reproducible sample and data 

processing is key to any successful biomarker study, and while using labels will 

decrease some of the technical variation, it does not automatically reduce 

systematic differences, i.e. bias. Furthermore, if a study comprises more samples 

than the possible multiplexing capabilities of current labels, the same general 

considerations need to be taken. Also, irreproducible fractionation poses large 

challenges for any data processing strategy, as it is non-trivial to combine 

quantities from different fractions. For label-free quantification, the newly 

introduced MaxLFQ algorithm [14] proposes a solution for this by matching 

adjacent fractions between samples, and a new normalization approach. 

However, with MS in data-dependent mode, in combination with recent 

advances in sample preparation, it is now possible to identify 4000-6000 

proteins in cell lines without pre-fractionation [15-17], considerably simplifying 

the experimental process and minimizing the introduction of technical variation.  

 

As LC-MS/MS runs inevitably will be compared in label-free workflows, another 

key requirement is to keep system performance as constant as possible. One 

should thus have a system in place to monitor the performance of the LC-MS/MS 

setup. Typically this would involve repeated injections of a standard sample, and 
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preferably an automated readout. Several such quality control systems are 

becoming available and were recently reviewed [18, 19]. Preferably, monitoring 

should involve both MS and MS/MS level readouts, and retention time, number 

of identified MS/MS, number of detectable MS peptide peaks in order to track 

possible fluctuations. Nevertheless, some instrument fluctuations can be 

compensated for by using data normalization, as is discussed below. 

 

Proper data processing is another key to successful protein quantification using 

LC-MS/MS [20]. There are multiple platforms for processing of label-free LC-

MS/MS data, reviewed in recent publications [21, 22]. Precursor-based label-free 

quantification consists of two main steps: feature detection and alignment, 

where the former concerns extracting the peptide quantities from the LC-MS 

maps and the latter the process of correcting for elution time drifts between the 

maps and so facilitating the comparison of peptide and subsequently protein 

abundance. Whereas the feature detection step shares many elements with 

especially SILAC peak picking, alignment is a process unique to precursor-based 

label-free quantification. Although alignment adds to the complexity of the data 

processing, the step propagates identifications between peptides, contributing to 

the relatively high proteome coverage displayed by label-free quantification. For 

the example dataset described below, we found a sequence increase of on 

average 20% per LC-MS map. With the advent of spectrometers with 

considerably higher sequencing speed, capable of identifying almost all peaks in 

a spectrum, alignment will become obsolete or at the very least trivial. The label-

free data processing will therefore be reduced to a feature detection stage not 

dissimilar to what is already performed for SILAC, but with the advantage of no 
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limitation in sample type and numbers. Naturally, given this type of high-speed 

spectrometer, the workflow presented in Figure 2 will also become superfluous 

and it could be argued that MS/MS-based quantification should in this case be 

utilized, as the proteome coverage differences will be more or less eliminated 

between the different quantification strategies. The problem of co-isolation as 

discussed previously however still remains to be fully resolved and we maintain 

that the utility of label-free quantification will only increase as resolution and 

sequencing speed increases.     

 

Normalization of abundance data is a post-processing step, which to some extent 

can compensate for variations in instrument performance and differences in 

sample amounts, which are major issues for label-free quantification. As 

biomarker discovery studies in some cases inevitably will involve data 

acquisition over long time periods, it may be impossible to keep instrument 

performance stable. To illustrate this, we re-analyzed two samples consisting of 

spike-in peptides in cell-lysate background from a recent study [20]. New data 

acquisition was performed 22 months after the original analysis, and the LC-

MS/MS system had undergone major maintenance in between these runs. To 

simulate further complications in the form of differing sample amounts, we 

halved the injection volumes for some of the new runs. The old and newly 

acquired data were then processed through a workflow named MSIP in the 

original publication, which includes msInspect for feature detection [23], peptide 

identification using Mascot (http://www.matrixscience.com), alignment [24] and 

further data processing in the Proteios Software Environment [25], with settings 

as in the original publication, except that X!Tandem searches were omitted for 
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simplicity. As illustrated in Figure 3a, the total intensity of the identified peptide 

features varied greatly between the different sample injections. The difference 

between the two samples (named dil8 and dil9 in the original study) is in the 

amount of spike-in peptides, with an approximately threefold difference, which 

one would expect to be readily detectable by student's t-test, considering the 

number of replicate injections for the two samples. However, due to the large 

coefficient of variation (CV), no significant differences could be detected between 

the samples with a 5% FDR threshold. We then normalized the data in a newly 

developed tool [26], to analyze if normalization could improve the data 

characteristics.  As seen in Figure 3b, all normalization methods tested decreased 

the intra-sample CVs drastically. Furthermore, we looked at the batch effect 

between old and new acquisitions, and there was a clear batch effect seen before 

normalization (Figure 3c). However, normalization improved the situation 

considerably, and removed much of the batch effect, although some still 

remained (Figure 3d). The normalization effect was also evident on the results of 

the statistical test for significance, as LOESS [27] normalization allowed for 

detection of 66 spike-in peptides as significantly differentially expressed 

between the samples, albeit with another 3 background peptides detected as 

false positives. It is still thus clear that normalization to some extent can improve 

these types of datasets.  

 

An important factor, which cannot be compensated for by normalization, is that 

low sample volumes or decreased MS efficiency may hinder detection of low-

abundance peptides when signal goes below the noise level.  In our test data, the 

number of missing values was highest in the samples with halved injection 
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volume (approximately 10% more missing values than in any other sample in 

the batch). Thus, despite advantages gained by normalization, keeping system 

performance constant with high sensitivity, and reproducible sample processing 

are still major considerations to fully succeed with label-free quantification. As 

mentioned above, this is also the case for workflows employing labels.  

 

An interesting question is whether it is better to restrict studies to a lower 

number of samples, which could be analyzed over a short time, or to extend 

studies over an extended period of time if samples are available. Of course 

biological variation is best compensated for by analyzing many samples, but if 

system variation increases, it may become difficult to detect more subtle 

biological differences. In the tested dataset, upon normalization, we found 57 

differentially expressed true positive (TP) and zero false positive (FP) peptides 

when only processing the four replicates in the old batch, as compared to 69 (66 

TP and 3 FP) in the full batch (both old and new samples). In this case it was thus 

still better to extend the sample numbers, even if system performance and 

sample volumes varied over time. Although these numbers may not be readily 

transferable to other projects, they serve as an indication of the feasibility of 

longitudinal label-free experiments. 

 

As there are several requirements, which can be difficult to evaluate individually, 

we recommend performing a pilot experiment, before starting any study. Ideally 

two samples from different phenotypic groups should be selected, and these 

should be mixed in different proportions as previously described [28]. Replicate 

injections will help to give an idea about expected CVs, and linearity checks (F-
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test) to evaluate quantitative performance. The proteome coverage can also be 

evaluated, and would further help in deciding about further sample separation or 

LC gradient length. 

 

In recent years, an increasing number of publications show that label-free 

quantification is viable for large-scale biomarker studies; a table of publications 

where the findings from label-free quantification has been validated by 

orthogonal methods can be found in [29]. Two examples of where sound 

experimental design in combination with label-free quantification have resulted 

in successful biomarker discovery have been presented by the groups of Banks 

[30] and Umar [31]. In [30], Smith et al. did a comprehensive study on improving 

the outcome of renal transplantation, starting with a smaller scale pilot study for 

biomarker candidate selection and validating results on a larger study where the 

number of samples utilized was determined by statistical power analysis. 

Further follow-up was performed long-term, clearly displaying the viability of 

label-free quantification in a large-scale study in combination with sound 

statistical analysis. Liu et al [6, 31, 32] describe a robust label-free quantification 

pipeline for investigating laser capture microdissected tissue, with a focus on 

breast cancer. The pipeline was first presented in [32], showing high 

reproducibility both on quantification and identification level. In [31] a large-

scale label-free study is performed on aggressive triple-negative breast cancer, 

developing a protein signature which could possibly spare 60% of patients 

unnecessary chemotherapy treatment. Independent samples were used for 

validation. Common to the above mentioned studies was the utilization of the 

MaxQuant [14, 33] software, which on our benchmarking dataset was shown to 
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produce good results [20]. An example of a recently published study [34] using 

super-SILAC for finding prognostic markers for breast cancer and using both 

targeted mass spectrometry and immunohistochemistry as validation. While the 

study is well executed with a large sample cohort, it is clearly stated that out of 

the 8750 identified proteins, 7800 of them were quantified, a ratio of 90% of 

quantification to identification. The question naturally arises whether these 

results would look different had a label-free quantification strategy been 

applied? 

 

Given the examples above, we believe that label-free should now be the first 

hand choice for discovery biomarker studies, as long as the basic requirements 

can be fulfilled. 
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Figure Legends 

 

Figure 1  

Overview of the two conceptually different label-free quantification techniques, 

based on either the number of times a peptide is subjected to a fragmentation 

even (spectral counting) or the summation of the peptide peaks along both mass-

to-charge and retention time dimensions (precursor-based quantification), 

example only shown for one scan. Reprinted, with permission, from [35].  

 

Figure 2 

An overview of the label-free precursor-based workflow, showing both the 

possibility of further investigating interesting protein profiles as well as the 

different data processing steps and whether they are performed within single 

runs (intra-map) or between runs (inter-map). 

 

Figure 3 

Effect of normalization on samples analyzed at different time points and with 

different injection volumes. a) Total intensity of identified peptide features of the 

different runs. Samples 'Old' and 'New' were analyzed 22 months apart. Injection 

volumes as indicated. b) CV within samples dil8 and dil9 before (log2) and after 

normalization by different methods, performed in Normalyzer. c) and d) Fold 

change compared to mean value of each variable for old and new sample groups 

of dil8. c) log2 transformed data. d) LOESS-normalized data.   
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different injection volumes. a) Total intensity of identified peptide features of the 
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