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Abstract
Wood buildings currently account for 10–15% of the newly produced multi-family housings
in Sweden and their construction is increasing rapidly. Although modern wood buildings ful-
fil the requirements for sound insulation specified in building regulations, studies have shown
that residents in wood buildings are more disturbed by noise and vibrations than are resid-
ents in conventional concrete buildings. Especially problematic is the transmission of low-
frequency structure-borne sound between storeys and rooms. During the last few decades, the
vibroacoustic comfort of residents has improved as a result of the efforts to reduce noise and
vibration transmission. However, there are no reliable models for predicting the noise and vi-
bration transmission in the buildings. If accurate and efficient numerical models were available,
they would facilitate the optimisation of existing measures for noise and vibration reduction
and the development of novel types of measures. The objective of the research presented in
this thesis is to develop such models.

The thesis work focuses on the numerical modelling of low-frequency vibration transmission
from a source to a receiving room. Accurate models of the structural vibrations are valuable
for predicting structure-borne sound as well as floor vibrations. Two main topics are discussed
in the thesis: model validation to ensure accurate predictions and dynamic substructuring
to improve the computational efficiency. The studies were performed using example cases
representing parts of timber volume element buildings. Such buildings are constructed by
stacking pre-fabricated volume elements with elastomeric vibration isolators between storeys
to reduce vibration transmission. The timber volume element buildings account for a large
part of the construction of multi-storey wood buildings in Sweden.

An important step towards validating the numerical models is to perform model correlations
to unveil errors and update the models. In the thesis, a model correlation study for the low-
frequency vibration transmission in an experimental wooden building structure is presented.
It was found that deterministic methods are relevant for creating the models provided that
measurement data for calibration purposes is available. Based on the observations made in the
correlation studies, important modelling parameters are discussed andmodelling guidelines are
presented. The studies presented in the thesis also consider the modelling of air and insulation
in cavities of wood buildings, which were found to have appreciable effect on the vibration
transmission.

A strategy for dynamic substructuring of wood buildings is suggested in the thesis. It involves
methods for model order reduction and for interface reduction of substructure models, and
uses coupling elements to represent elastomeric vibration isolators between building elements.
It was shown that by performing the model reduction in the suggested manner, the compu-
tation times of numerical analyses can be reduced significantly without having an appreciable
effect on the accuracy of the model predictions.



Several uncertainties in the modelling remain, but the results and conclusions presented in the
thesis are important steps towards enabling the prediction of vibration transmission by use of
numerical models.

Keywords: vibration transmission, structure-borne sound, wood buildings, numerical model-
ling, finite element method, structure-acoustic coupling, model validation, model calibration,
dynamic substructuring, model order reduction



Populärvetenskaplig sammanfattning
Ljud från grannar är ett återkommande problem för boende i flerfamiljshus. Problemen är
generellt mer omfattande för de som bor i flervåningshus byggda i trä, en byggnadstyp som
blir allt vanligare i Sverige. Många av de boende i trähus upplever även att störande vibratio-
ner är vanligt förekommande i trähus. För att designa byggnader med förbättrad boendemiljö
avseende ljud och vibrationer behövs metoder för att prediktera spridningen mellan rum och
våningsplan. I avhandlingen presenteras forskning som bidrar till att utveckla datormodeller
för sådana prediktioner.

Fram till 1994 var det förbjudet att bygga flervåningshus i trä i Sverige. Sedan förbudet av-
skaffades har de blivit allt vanligare och står idag för 10–15% av den totala nybyggnationen
av flerfamiljshus i Sverige. En stor andel av trähusen tillverkas genom att prefabricera voly-
melement i fabriker. Volymelementen transporteras sedan till byggarbetsplatser där de staplas
för att bilda flervåningshus. Detta leder till en snabb och kostnadseffektiv byggprocess som är
möjlig tack vare trähusens låga vikt. Det finns flera miljömässiga fördelar med att bygga i trä,
exempelvis att den låga vikten leder till minskad bränsleförbrukning vid transporter och att
koldioxid lagras i byggnaderna. För att byggandet i trä ska öka på lång sikt är det viktigt att
boendemiljön i trähus anses vara tillfredsställande. En del i att uppnå det är att minska risken
för störande ljud och vibrationer.

I tidigare studier har det undersökt hur boende i olika typer av byggnader uppfattar ljud och
vibrationer som orsakas av olika typer av källor. Studierna har visat att boende i trähus ofta
störs av ljud som orsakas av stötar mot golv i grannlägenheter, exempelvis fotsteg. För boen-
de i konventionella betonghus är sådana problem inte lika vanligt förekommande. I nypro-
ducerade flervåningshus i trä används ofta gummikomponenter för att minska överföringen
av ljud och vibrationer mellan lägenheter. Dock saknas det kunskap om hur gummikompo-
nenterna bör designas för att verka optimalt. För att öka kunskapen är det till stor nytta att
datormodeller som kan generera korrekta prediktioner är tillgängliga. Med hjälp av datormo-
deller kan gummikomponenternas reducerande effekt optimeras och andra typer av ljud- och
vibrationsisolerande åtgärder kan utvecklas. Alternativet till datormodeller är att bygga experi-
mentella prototyper, vilket är såväl dyrt som tidskrävande. Genom att använda datormodeller
kan studier utföras både tids- och kostnadseffektivt. Tidsaspekten är viktig för att möjliggöra
simuleringar inom tidsramen för en konventionell designprocess.

Forskningen som presenteras i avhandlingen bidrar till att utveckla tidseffektiva datormodel-
ler som kan användas till att generera korrekta prediktioner. Noggrannheten i prediktioner
utvecklas genom att korrelera simulerade resultat mot mätningar på experimentella byggnads-
strukturer. Tidsåtgången för beräkningar minskas genom att använda metoder för att reducera
storleken på datormodeller. Målet med modellreduktion är att minska beräkningstiden utan
att göra avkall på noggrannheten i prediktioner.
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Part I

Introduction and overview





1 Introduction

Multi-storey wood buildings entered the construction market in Sweden following a revision
of the building regulations in the year of 1994. Until then, the construction of wood build-
ings more than two storeys in height was prohibited. Today, 10–15% of the newly built
multi-family housings in Sweden are made of wood, and their construction is increasing rap-
idly [1]. Although modern wood buildings fulfil the requirements for sound insulation spe-
cified in building regulations, studies have shown that residents in wood buildings are more
disturbed by noise and vibrations than are residents in conventional concrete buildings [2–4].
In other words, current requirements do not properly reflect the annoyance of residents in
wood buildings. Specific problems include the transmission of low-frequency structure-borne
sound between apartments, caused by sources such as footsteps, dropped objects and vibrating
machines.

During the last few decades, the vibroacoustic comfort of residents in wood buildings has
improved as a result of the efforts made to reduce noise and vibration transmission. An ex-
ample of a reduction measure is the use of elastomeric vibration isolators between building
elements. The isolators are used in, for example, timber volume element (TVE) buildings,
which represent the building system that dominates the Swedish market for multi-storey wood
buildings [1]. TVE buildings are constructed by stacking prefabricated volume elements with
elastomeric vibration isolators between them, as illustrated in Figure 1.1. However, as there
are no reliable prediction models, the performance of such isolators has not yet been optim-
ised. If accurate and efficient numerical models were available, parametric studies and design
optimisations could be performed in a time efficient manner and at a low cost. Numerical
simulations could increase the understanding of the physics involved in noise and vibration
transmission as the results from such models can be evaluated in detail. This would facilitate
the optimisation of existing measures for noise and vibration reduction and the development
of novel types of measures.

The prediction of structure-borne sound in buildings can be divided into three tasks: (1) pre-
dicting the input force caused by the source, (2) predicting the transmission of structural vi-
brations from the source to the receiving room, and (3) predicting the sound radiation caused
by the structural vibrations in the receiving room. Figure 1.2 illustrates the source, the vibra-
tion transmission and the sound radiation. The research presented in this thesis focuses on the
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Elastomeric vibration isolators 

Figure 1.1: Illustration of TVE building system with elastomeric vibration isolators separating the
volume elements [5].

numerical modelling of low-frequency vibration transmission, i.e., the second predictive task.
Accurate models of structural vibrations can be used to predict structure-borne sound as well
as floor vibrations.

Studies on human annoyance caused by noise and vibrations indicate that frequencies below
100 Hz are particularly problematic for residents in wood buildings [2]. Hence, it is import-
ant to enable predictions at those frequencies. Standardised prediction models for noise and
vibration transmission in buildings, which are described in [6], are based on statistical energy
analysis (SEA) methods; these methods consider the energy flow between subsystems and re-
quire high modal density of the subsystems to yield accurate results. This is not the case at
lower frequencies in which small sets of vibration modes govern the response. Low-frequency
vibrations can instead be analysed using deterministic methods such as the finite element (FE)
method. Compared to SEA methods, deterministic methods have the advantage of allowing
for a more detailed description of the structure under study and therefore facilitate studies on
design modifications. An issue in the modelling of wood buildings is that variations in both
the material parameters of wood and in the mechanical behaviour of joints are large. Such vari-
ations can be accounted for in FE models by using stochastic methods such as Monte Carlo
simulations. The effects of variations and uncertainties increase at higher frequencies, which
mean that deterministic models become less meaningful. Therefore, above a certain frequency,
a less detailed modelling strategy such as SEA must be accepted. The question then is at which
frequencies are the deterministic strategies relevant. The studies presented in this thesis are an
important step towards answering that question.

At present there are no reliable numerical models for predicting low-frequency vibration trans-
mission in wood buildings. There are, however, several publications that investigate different
aspects involved in such modelling, for example, the properties of elastomeric vibration isol-
ators and how to model joints between structural parts. Still, numerous uncertainties remain,
including how to deal with the effects of many details present in real buildings (for example,
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Figure 1.2: Illustration of (1) the sources, (2) the vibration transmission, and (3) the sound radi-
ation involved in structure-borne sound transmission in buildings.

windows, doors, interior walls and floor surfaces). Another uncertainty is how to deal with the
effects of variations in the material parameters of wood and in the mechanical behaviour of
joints, which cause variations in the dynamic behaviour among buildings with identical geo-
metry. To investigate these uncertainties, it is preferable to use a reference model that has been
correlated to measurements. Although several publications present model correlation studies,
they consider rather simple building structures such as a single floor. The results presented in
this thesis can be used to establish reference models representing larger parts of buildings.

Accurately assessing the dynamic behaviour of wood buildings requires the use of models rep-
resenting the building geometry in considerable detail. The resulting FE models contain many
degrees of freedom (DoFs) and can easily exceed the limits of computer capacity, at least if
computations are to be performed within a reasonable time in the context of a design process.
A widely used methodology to reduce the size of numerical models is dynamic substructur-
ing wherein models are divided into substructures that are reduced in size and assembled to
form reduced global models. The reduction of substructures can be performed using different
methods for model order reduction, and the division into substructures can be accomplished in
different manners. Suitable strategies for substructure division of wood buildings and methods
for model order reduction are discussed in the thesis.
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1.1 AIM AND OBJECTIVE

The aim of the research discussed in this thesis is to create numerical predictionmodels that can
be used for designing multi-storey wood buildings with improved vibroacoustic comfort for
residents. The thesis work focuses on the prediction of low-frequency vibration transmission
between storeys and rooms considering frequencies up to 100 Hz. The overall objective is to
develop models that are accurate and efficient. In relation to this objective, two main topics
are discussed in the thesis:

1. Model validation to ensure accurate model predictions

2. Dynamic substructuring to perform model reduction and thereby improve the compu-
tational efficiency of the models

The objective in Paper A is to investigate the effects of different design choices for elastomeric
vibration isolators on vibration transmission in wood buildings; the paper is not part of the
model development. The objective of Paper B is to investigate the effects of modelling air and
insulation in the cavities of multi-storey wood buildings on vibration transmission predictions.
Paper C presents methods for designing scaled-size experimental building structures through
the use of numerical analyses. The objective is to obtain scaled-size structures that preserve the
dynamic characteristics of full-scale structures. The objective of Paper D is to develop an FE
model of a scaled-size building structure by calibrating and correlating the model to measured
data. The FE model is intended for use as a reference model for investigations on the effects
of variations and uncertainties in the modelling of vibration transmission in wood buildings.

Papers E and F deal with dynamic substructuring of wood buildings; Paper E addresses the
coupling of substructure models, while Paper F discusses the model order reduction of sub-
structures. Paper E presents a procedure for creating reduced coupling elements that represent
elastomeric vibration isolators in dynamic substructuring. The purpose of developing the pro-
cedure is to enable coupling of substructures at a small number of interface DoFs, which is
important in achieving successful model order reductions. The objective of Paper F is to evalu-
ate the performance of a wide range of methods for model order reduction by comparing their
accuracy and computational cost when applied to FE models of wooden building structures.

1.2 PROCEDURE FOR MODEL DEVELOPMENT

Figure 1.3 shows the procedure adopted in this thesis to develop accurate and efficient numer-
ical prediction models for vibration transmission in wood buildings. The procedure involves
two main topics: model validation and dynamic substructuring. Model validation is the pro-
cess of assessing and developing the accuracy in model predictions, while dynamic substruc-
turing is employed to reduce the computation times without impairing the accuracy of model
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Accuracy: Model validation 

1.Initial model 

Paper B 

2.Calibrations, correlations 

& updating 

Papers C and D 

3.Validation test 

Efficiency: Dynamic substructuring

4.Interface reduction 

Paper E 

5.Model order reduction 

Paper F 

6.Final model 

Figure 1.3: The procedure adopted in the thesis to develop numerical prediction models.

predictions. For a general structural dynamics problem, the procedure can be summarised as
follows:

1. Initial model. Thefirst step in developing a numerical model is to create an initial model
based on previous research. The aspects to be considered in themodelling process are, for
example, assumptions about physical phenomena, analytical descriptions of mechanical
behaviour and numerical methods for calculating the response.

2. Calibrations, correlations & updating. The initial model is updated by performing cal-
ibrations and correlations to experimental results. In the context of model development,
calibration can be defined as the tuning of model parameters to match experimental
results. Correlation can be defined as the process of unveiling and reducing errors in
modelling. Calibrations and correlations are usually performed for subcomponents of
structures.

3. Validations test. The accuracy of model predictions is tested by comparing them with
results from validation experiments. If the model fails a validation test, it must be up-
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dated and tested again. Model validation can therefore involve iterations of calibrations,
correlations and validation tests.

4. Interface reduction. Once the numerical model has passed validation testing, it can be
reduced by employing dynamic substructuring in which the model is divided into a set
of substructure models. The number of interface DoFs for each substructure is reduced
by employing methods for interface reduction.

5. Model order reduction. The number of DoFs for each substructure is reduced further
by employing methods for model order reduction. The interface DoFs are preserved in
the reduction while the number of internal DoFs are reduced.

6. Final model. The reduced substructure models are assembled to form a reduced model
of the complete structure. The final model can be used in design processes to perform
accurate and efficient analyses of various design proposals.

In the appended publications, various aspects of the model development process are discussed;
Figure 1.3 shows the steps in the procedure to which the appended publications have con-
tributed. Paper A does not deal with model development and is therefore not included in
Figure 1.3. The paper presents a conceptual study that uses models that have not been valid-
ated by experimental data. Paper B is placed in the ”‘Initial model”’ step in Figure 1.3 as it
presents numerical studies on the effects of conceptual assumptions in the modelling process
and does not involve any calibrations or correlations to experimental data. Although Paper C
does not discuss calibrations or correlations either, it is placed in the second step as it is a
pre-study to the correlation study presented in Paper D.

1.3 OUTLINE

The thesis is divided into twomain parts. The first part presents an overview of the work, which
is divided into seven chapters, while the second part contains the six appended publications.

Chapter 2 presents an extensive background to and motivation for the research, including
discussions on vibroacoustic issues in wood buildings and different methods for creating nu-
merical prediction models. Chapter 3 gives a theoretical background to the numerical and
experimental methods used in the research. The two main topics in the thesis, model valida-
tion and dynamic substructuring, are discussed in Chapters 4 and 5, respectively. Chapter 6
contains a summary of each appended publication. Conclusions of the thesis work and its
contributions to the research field are presented in Chapter 7, along with proposals for future
work.



2 Noise and vibrations in wood build-
ings

This chapter contains an extensive background to and motivation for the research presented
in this thesis. An introduction to wood as a construction material for multi-storey buildings
is given first. Terminologies used to describe noise and vibrations in residential buildings are
then introduced, and the vibroacoustic issues that are of special concern for wood buildings
are highlighted. Following this, measures for reducing noise and vibrations and the need to
establish accurate and efficient numerical models to predict their effects are discussed. Finally,
differentmethods for creating numerical predictionmodels are discussed tomotivate the choice
of methods used in the research.

2.1 WOOD AS CONSTRUCTION MATERIAL

In reaction to a number of urban fires, a ban on the construction of wood buildings more
than two storeys in height was introduced in Sweden in 1874 [7]. The ban was maintained
for over a century before it was lifted following a revision of the building regulations in 1994,
leading to the reintroduction of such buildings. In a publication by the Swedish government
in 2004 [7], the use of wood as construction material is promoted; the study presented a vision
of wood as a natural choice of material for construction, not only in Sweden but also in the
rest of Europe. Wood is attractive as a construction material for a number of economic and
environmental reasons, many of which are related to its lightweight properties. For example,
the use of wood lowers the costs involved in transportation and assembly and can reduce the
loads on the foundations by up to 50% compared to conventional concrete buildings [8]. The
environmental advantages of using wood were demonstrated in [9] in which it was found that
the energy consumption during the complete lifecycle of wood buildings is lower than that of
concrete buildings of comparable size. Moreover, the lightweight properties of wood make it
suitable as a construction material for prefabrication of planar and volume elements. Prefab-
rication has a number of advantages, for example, more time- and cost-effective assembling,
better conditions for construction workers, less material wastage and lessened sensitivity to
weather conditions.
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Figure 2.1: Illustration of the annual ring pattern in wood and a cylindrical coordinate system
aligned with the pattern. L, R and T are the longitudinal, radial and tangential
directions, respectively.

The reintroduction of multi-storey wood buildings has led to a number of challenges for engin-
eers in the construction industry. One example is fire safety, which was the motivation behind
the historic restrictions on constructing multi-storey wood buildings. In [10], it is stated that
considerable research regarding fire safety is still needed, although such issues do not rule out
the use of wood in multi-storey buildings. Another challenge is the one considered in the
thesis: vibroacoustic comfort.

2.1.1 Mechanical properties of wood

The strength-to-density ratio of wood is high compared to other construction materials, for
example, concrete or steel [11]. Consequently, wood structures are generally lighter than con-
crete or steel structures that have the same load-bearing capacity. Hence, wood is referred to
as a lightweight construction material.

Wood is a natural material; its mechanical properties depend on the way trees grow. Every
season, the stem grows outwards, adding a new layer of fibres directed in the lengthwise direc-
tion of the stem. This results in the material structure seen in Figure 2.1, with layers of annual
rings. The cylindrical coordinate system in the figure indicates the longitudinal, radial and
tangential directions (L, R and T , respectively), which are often used to define the mechan-
ical properties of wood. The longitudinal axis is aligned with the fibres, while the radial and
tangential directions are defined with respect to the annual rings. The mechanical properties
display large variations in the size-scales of the fibres and annual rings. In engineering ap-
plications, however, wood is frequently regarded as a homogenous material with orthotropic
material behaviour [12]. If the strains are below the limit of proportionality, wood can be con-
sidered linear elastic. Since the strains are small for human-induced structural vibration, the
assumptions of linear elastic and homogenous material properties are employed in the thesis
for the numerical modelling of wood. The constitutive relation for a linear elastic orthotropic
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material with respect to cylindrical coordinates is given by (see, for example, [12])
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which can be written more compactly as

ε = Cσ, (2.2)

whereε is the elastic strain vector,σ is the stress vector andC is a constitutivematrix containing
twelvematerial parameters. As thematerial is assumed to be elastic,C is symmetric. This results
in

νRL
ER
=
νLR
EL

;
νT L
ET
=
νLT
EL

;
νT R
ET
=
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ER
, (2.3)

whichmeans that the number of independent elastic parameters is reduced to nine. In PaperD,
the material parameters of spruce were determined based on figures gathered from literature
and from the calibration of numerical models to experimental results. It was found that EL
for wood beams made of spruce is approximately 11,000 MPa, which is more than an order
of magnitude larger than the values for ER and ET (approximately 700 MPa each). The same
differences were found for the shear moduli, whereGLT andGLR are approximately 700 MPa
and GRT is about 70 MPa. As the distribution of the annual ring pattern in the cross-section
of a beam is random, it is impossible for many engineering applications to distinguish between
the radial and tangential directions. Therefore, it is often assumed that ET = ER,GLT = GLR
and νLT = νLR, which reduces the number of independent parameters to six. Furthermore,
the calibrations performed in Paper D reveal that the low-frequency dynamics of wood beams,
in terms of bending and torsional modes, are basically governed by EL and GLT = GLR.

There is a large variation in elastic parameters among wood beams. In Paper D, the parameters
of 90 wood beams (made of spruce and of type G4-2 according to the Swedish standard SS-EN
1611-1 [13]) were identified. The standard deviation of EL was found to be 18% of the mean
value, although the beams were tested in a controlled climate by the same person using the
same equipment. There are several reasons for these large variations; for example, the beams
were sawn from different parts of the stem, and the fibres were not perfectly aligned with the
axial direction of the beams. In addition to variations among wood beams, the parameters
depend to a great extent on the moisture content in the wood [14].
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(a) Glulam. (b) CLT. (c) Particleboard.

Figure 2.2: Examples of engineered wood products.

2.1.2 Engineered wood products

Raw sawn wood as a construction material have several drawbacks, for example, the high or-
thotropy, the variations in material properties and the limitations in dimensions caused by
the geometry of timber logs. Sawn wood is therefore often transformed into engineered wood
products, which include a wide range of products manufactured by bonding wood constituents
with adhesives [15]. Figure 2.2 shows examples of engineered wood products that are common
in the construction industry: glue-laminated (glulam) beams, cross-laminated timber (CLT)
panels and particleboards. Glulam beams consist of several layers of glued wood beams and
can be used to create large and curved structural members. CLT panels are made by gluing
layers of boards with each layer placed cross-wise to the adjacent layers. Particleboards are
created by pressing wood chips or saw dust together with glue under high heat and pressure.
Engineered wood products can be produced in sizes other than those possible from raw sawn
wood. Such products are also more homogeneous and thus have material properties that show
less variation. One disadvantage of engineered wood, compared to raw sawn wood, is that
products, in general, are more expensive per weight.

2.1.3 Construction of multi-storey wood buildings

Three main types of multi-storey wood building systems can be identified [8]:

• Column-beam systems: frameworks of massive timber components, for example, glulam
beams and columns.

• Plate systems: plate components made of massive wood laminates, for example, CLT
panels.

• Wood frame systems: panels, such as particleboards and plasterboards, mounted on frames
of wood beams.

The construction of buildings can be performed using different methods involving different
degrees of prefabrication. Three main categories can be identified [8]:
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Figure 2.3: A TVE ready for transportation to construction site.

• On-site construction: complete assembling procedure performed at the construction site.

• Prefabricated planar elements: industrially produced planar elements assembled at the
construction site.

• Prefabricated volume elements: industrially produced volume elements assembled at the
construction site.

Following the revision of the Swedish building regulations in 1994, multi-storey wood build-
ings were initially constructed on-site. However, a trend toward a high degree of prefabrication
has been observed in recent years [8]. Prefabricated planar and volume elements often consist
of wood-framed systems, owing to their light weight. In several of the appended publica-
tions, TVE buildings (which are described below) are used as example cases. In 2015, a total
of 25,000 apartments were constructed in Sweden [16], with TVE buildings accounting for
approximately 3,000 of these, and their construction is increasing rapidly [1].

Timber volume element buildings

The conceptual layout of a TVE building is illustrated in Figure 1.1. Each TVE contains a
small apartment or part of a larger apartment. The floor, ceiling and walls consist of wood-
frames covered with particleboards or plasterboards or both. As much of the construction work
as possible is performed at the factory, including electrical installations, flooring, wardrobes
etc. An example of a TVE is shown in Figure 2.3. At the construction site, the prefabricated
TVEs are stacked to form complete buildings. In between the TVEs, elastomeric vibration
isolators are placed to reduce the vibration transmission between storeys. The only additional
connection is through a number of steel tie plates, ensuring the global stability of the buildings.

2.2 NOISE AND VIBRATION TRANSMISSION IN BUILDINGS

The noise transmission between storeys and rooms in residential buildings can be caused by
many different types of sources, such as footsteps, vibrating machines and speakers. The noise
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(a) Airborne sound source. (b) Impact sound source.

Figure 2.4: Illustration of airborne and impact sound sources and examples of possible transmission
paths for the structural vibrations.

can be transmitted as airborne sound through leakages or as structure-borne sound, i.e. vibra-
tions that propagate through the structure and induce noise in adjacent rooms. While sound
leakages can be prevented through sealing, it is more complicated to reduce structure-borne
sound.

Based on the type of sound source, two types of sound insulation performance of buildings
is distinguished in standards and building regulations: airborne sound insulation and impact
sound insulation. Examples of airborne sound sources are speech and speakers, and examples
of impact sound sources are footsteps and dropped objects. Standardised procedures for meas-
uring airborne sound insulation and impact sound insulation involve speakers and tapping
machines, respectively, as sound sources. Standardised tapping machines contain five ham-
mers placed in a row and are used to generate series of impacts.

Figure 2.4 illustrates airborne and impact sound sources and possible paths for the transmission
of structural vibration between storeys and rooms. In the thesis, the term structure-borne
sound is used to describe noise induced by structural vibrations irrespective of the type of
sound source causing the vibrations. It should be noted that noise from airborne sound sources
can be transmitted as structure-borne sound, and that noise from impact sound sources can
be transmitted as airborne sound.

Both the structural vibrations and the noise they induce can cause annoyance for residents.
The extent of such issues is a consequence of the following factors:

• Load spectrum: sources excite buildings with different levels of energy at different fre-
quencies. For example, speakers induce vibrations at a wide range of frequencies while
vibrating machines typically generate vibrations at specific frequencies. The load spec-
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trum depends on the interaction between the source and structure.

• Sensitivity of buildings: the vibration amplitudes in a building resulting from a given load
spectrum depend on the building’s sensitivity to vibrations at different frequencies. If
the load spectrum contains high levels of energy at frequencies to which the building is
more sensitive, it will result in higher vibration amplitudes, which in turn cause higher
noise levels.

• Human perception: the extent to which noise and vibrations are problematic depends on
human perception. Building regulations and sound classifications provide limit values
and guidelines for noise and vibration levels that are intended to reflect the number of
satisfied residents.

To design residential buildings with adequate vibroacoustic performance, an understanding of
all the three aforementioned factors is important. Sources and human perception are inputs to
the design process, while the sensitivity of a building is a consequence of the design itself. In
residential buildings, it is normally the annoyance of residents that is of concern. In other types
of buildings, such as hospitals or research facilities, there are additional aspects to be considered;
such buildings may house vibration-sensitive equipment, for example, microscopes and eye-
lasers, associated with vibration requirements.

2.2.1 Building regulations

The regulations regarding airborne and impact sound insulation in residential buildings are
defined in terms of standardised single-value descriptors that can be determined through stand-
ardised measurement procedures. These single-value descriptors are intended to reflect the
sound insulation performance of the building elements in question over the entire frequency
range of interest. The current descriptors for airborne and impact sound insulation are defined
in the international standard ISO 717:2013 [17]. The measurement procedures for laborat-
ory and field measurements are defined in ISO 10140:2010 [18] and ISO 16283:2014 [19],
respectively. These standards provide details on, for example, sound sources, microphone posi-
tions and how to calculate the single-value descriptors. Building regulations in different coun-
tries state national limits for the measured descriptors, with large differences in limit values ex-
isting among the regulations in different European countries [20]. Such regulations differ not
only in the allowed sound pressure levels but also in the descriptors used. The ISO standards
define several descriptors and spectrum adaptation terms to account for low-frequency sound.
These regulations are normally defined for frequencies above 100 Hz, and the adaptation terms
can be used to extend the frequency range down to 50 Hz. In addition to regulations, several
European countries have introduced sound classification schemes [21] that describe different
quality classes for sound insulation.

The first regulations were introduced in the 1950s. Some of these were formulated in relation
to constructions that were considered to provide adequate sound insulation; for example “a
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sound insulation as good as a 1/1 stone brick wall” [22]. In several countries, requirements that
were specified by considering the performance of existing buildings have essentially remained
unchanged [20]. Ideally, the descriptors used in building regulations should correlate well
with subjective ratings by residents, and the limit values should reflect the number of satisfied
residents. There is, however, not much evidence that building regulations adequately reflect
the annoyance of residents. Several studies on the correlation between the measured values of
descriptors and subjective ratings from residents have been performed; a compilation of such
studies can be found in [21], in which it is concluded that the correlations between measured
values and subjective ratings are, in general, considerably low.

Standardised procedures for measuring and evaluating floor vibrations are presented in ISO
2631-1:1997 [23] and ISO 2631-2:2003 [24]. These standards do not specify any sources or
single-value descriptors but instead describe procedures for measuring ambient vibrations and
how to weight the measured spectra. Regulations on floor vibrations in wood buildings are
given in Eurocode 1995-1-1:2004 [25]. These regulations are based on the work presented
in [26] wherein the measured springiness and vibrations were compared to subjective ratings
and are applicable to floors with fundamental frequencies above 8 Hz. For floors with lower
fundamental frequencies, there is no guidance in the Eurocode except for limit values of static
deflection. Furthermore, it is stated in ISO 2631-2 that “at present it is not possible to give
guidance on acceptable magnitudes of vibration until more information has been collected”.
However, recent studies have investigated the validity of different indicators of human annoy-
ance to floor vibrations [27], which is an important step towards more comprehensive and
relevant regulations.

2.2.2 Vibroacoustic issues in residential wood buildings

Compared to buildings with heavier load-bearing systems, it is in general more difficult to con-
struct lightweight buildings in such a way that noise and vibrations do not become a common
source of annoyance among residents. This is related to the fact that a lightweight structure,
in general, responds with higher vibration amplitudes than a heavier structure does for a given
load. In some multi-storey wood buildings, many residents perceive impact sound as annoying
even though the building fulfils the regulations; see, for example, [2,3,28–32]. Residents often
describe the noise caused by impacts as low frequency “thumps” [28]. In [2], ten buildings were
investigated by measuring sound insulation parameters and collecting subjective ratings from
residents. The airborne and impact sound insulation between storeys was measured accord-
ing to ISO standards and evaluated in terms of single-value descriptors for frequencies above
50 Hz. Eight of the investigated buildings have load-bearing structures made out of either tra-
ditional wood frames or CLT plate systems. The ratings indicate that the degree of annoyance
with respect to impact sound is higher for those living in wood buildings than for the residents
in a concrete building included in the study. Moreover, the correlation between impact sound
insulation above 50 Hz and the annoyance of residents is weak for the wood buildings. The
correlation was improved from 32 to 85% in terms of the coefficient of determination, R2,
when the lower limit of the frequency range was changed to 20 Hz in the evaluation of the
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measurements. These observations emphasise the need for improved low-frequency impact
sound insulation in wood buildings.

The ratings in [2] indicate that the degree of annoyance with respect to noise from airborne
sound sources is substantially lower than the degree of annoyance with respect to impact sound.
This observation is supported by the study presented in [3] in which ratings from residents in
ten buildings (five wood and five concrete) were collected. The study shows that there is no
difference in ratings regarding noise from airborne sound sources between residents in wood
buildings and those in concrete buildings. In terms of impact sound, however, the ratings
are considerably worse among residents in wood buildings, with about 60% of the residents
considering impact sounds to be at least somewhat disturbing and 25–30% considering it to
be very disturbing. The corresponding figures for noise from airborne sound sources are 20
and 5–10%, respectively.

A study on the annoyance arising from floor vibrations in seven multi-storey wood buildings
is presented in [4]. It was found that, in general, residents in wood buildings are disturbed by
vibrations; a majority of the residents consider the vibrations to be at least somewhat disturb-
ing, with up to 25% of the residents in each building considering the vibrations to be very
disturbing.

2.2.3 Noise and vibration reduction measures

To reduce the amount of noise and vibrations transmitted in buildings, different measures
can be taken. In [33], different types of vibration reduction measures for floor structures are
discussed. One example is the tuned mass damper (TMD), which consists of a mass mounted
to the vibrating structure with an elastic material in-between. TMDs are tuned to have certain
natural frequencies, and are thus effective in reducing vibrations caused by single vibration
modes. Two other examples discussed in the paper are the semi-active absorber, which changes
its damping properties rapidly to adjust for changes in the excitation, and the active control
system, which drives the system using a shaker and feedback loops to control the input force.
Both these methods can potentially reduce the vibrations further than TMDs can, but are
in practice too expensive for standardised use in the building industry. TMDs are expensive
as well, as they need to be tuned for each installation, but can be used if severe vibration
problems are discovered in existing buildings. However, TMDs are less useful for dealing with
structure-borne sound transmission between storeys and rooms since such transmission, in
general, involves large frequency ranges containing many vibration modes.

In [5], measurements on full-scale buildings were carried out to investigate the effects of dif-
ferent measures for reducing impact sound in TVE buildings. The impact sound insulation
was measured according to ISO standards and evaluated in terms of single-value descriptors
for frequencies above 50 Hz. Measures that were found to be effective are, for example, ad-
ditional layers of plasterboards on floors and the use of floating floors, which are constructed
by placing layers of mineral wool between the load-bearing beams and the boards covering the
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beams. Measures that were found to be less effective are, for example, the use of heavier mineral
wools as insulation (compared to conventional types) or use of larger cavities between floors
and ceilings. The effect of using elastomeric vibration isolators between storeys was tested for a
two-storey experimental setup, comparing the cases with and without elastomers in the junc-
tions. It was found that the elastomers increase the noise transmission; a 1 dB difference was
observed in the descriptor used for evaluating the impact sound. The majority of the tested
measures were found to affect the impact sound descriptors with less than 2 dB when evalu-
ated according to ISO standards. This should be compared to the variance of 1.1 dB between
constructions with identical geometry, as reported in the paper.

In [34], an experimental investigation of the effect of elastomeric vibration isolators in junc-
tions of wood buildings is presented. A mock-up consisting of a floor structure supported
by three walls was used to study the vibration transmission from the floor to the walls of the
storey below. Marked differences in the behaviour were found for certain eigenmodes when
inserting elastomeric isolators, as compared to a setup with the floor mounted directly onto
the walls. For example, it was found that the damping is larger for mode shapes where large
deformations occur in the elastomer layers. It was also concluded that elastomers can worsen
the structure-borne sound insulation at low frequencies (20–70 Hz), possibly due to shear res-
onances in the elastomer layers. This conclusion is supported by the numerical investigation
in the appended Paper A, where the effects of varying the material parameters of elastomer
layers were investigated. The material parameters were varied within a range of realistic values,
and it was concluded that when stiff elastomers are used (to fulfil static requirements in the
buildings), the vibration transmission can be higher compared to a corresponding building
without elastomers. These conclusions point out the need for a careful design of the elasto-
meric vibration isolators, and that it can be preferable to develop other types of isolators for
wood buildings.

2.3 NUMERICAL PREDICTION MODELS

Numerical models are valuable in the development of novel measures for reducing noise and
vibrations and for the optimisation of existing measures. The alternative of using experimental
prototypes is both time-consuming and costly. Another benefit of using numerical simulations
is that they provide additional insight into the physics governing noise and vibration transmis-
sion; the results of simulations can be visualised in more detail than experimental results, and
parametric studies can demonstrate the effects of changes in design parameters.

The objective in developing numerical prediction models is to establish accurate and efficient
models with respect to their use. Because low-frequency structure-borne sound is a proven
cause of annoyance for residents in multi-storey wood buildings, it is of particular importance
to enable its prediction. The prediction of structure-borne sound can be divided into three
tasks: (1) predicting the input force caused by the source, (2) predicting the transmission
of structural vibrations from the source to the receiving room, and (3) predicting the sound
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pressure caused by the structural vibrations in the receiving room. In [35], numerical studies
employing a 2D FE model showed that the sound pressure in rooms of multi-storey wood
buildings has a negligible effect on transmitted vibrations. This means that the second pre-
dictive task can be carried out independent of the third task. This thesis focuses on the second
predictive task. The models discussed in the thesis are thus used for predicting the transmis-
sion of low-frequency structural vibrations from a source to a receiving room. Such models
are useful in predicting structure-borne sound as well as floor vibrations.

The accuracy required from model predictions depends on the specific use of the models. If
absolute vibration levels are sought, the requirements are likely to differ from those in com-
parative studies such as the investigation of the relative effects of vibration reduction measures.
Another concern when developing numerical models is computation time. If the computation
time for each simulation can be reduced, engineers can perform more extensive analyses, and
the overall design process can be faster. In developing numerical models, there is a trade-off
between accuracy and computation time; this trade-off must be considered when choosing
methods for creating the models and when performing the discretisations involved in numer-
ical modelling.

2.3.1 Modelling strategies

Thefirst step in developingmodels for predicting low-frequency vibrations in wood buildings is
to choose an adequate modelling strategy and suitable numerical methods. Methodologies and
methods for analysing the dynamics of structures have been developed in various engineering
disciplines. One such methodology is multibody system dynamics, which is often used in, for
example, aerospace engineering, vehicle design, biomechanics and robotics [36]. In its classical
form, multibody system dynamics considers systems as assemblies of rigid bodies connected
through, for example, springs, dampers and different types of joints. This methodology was
developed for systems undergoing large displacements and rotations compared to the elastic
deformations of the subcomponents. Consequently, multibody system dynamics is not well-
suited for analysing vibrations in buildings, which are characterised by small displacements and
elastic deformations of the structural components. Instead, a continuum mechanical formu-
lation resulting in partial differential equations (PDEs) describing the dynamics of the system
should be adopted for buildings.

Approximate solutions to PDEs can be sought using different methods, which are more or less
suitable depending on the frequency range of interest. Figure 2.5 illustrates a typical frequency
response function (FRF) for structural vibrations, divided into the low- and high frequency
ranges. In the low-frequency range, the modal density is low and the response is governed by a
small set of vibrationmodes. Detailed analyses of the low-frequency response can be performed
using deterministic methods such as the FE method [37, 38] and the boundary element (BE)
method [39, 40]. The FE and BE methods approximate the exact solutions of PDEs in both
space and time. In the high-frequency region illustrated in Figure 2.5, the modal density is
higher. Using deterministic methods to calculate high-frequency vibrations is computationally



18 2 Noise and vibrations in wood buildings

Low−frequency range High−frequency range

Frequency

F
R

F
 m

ag
ni

tu
de

Figure 2.5: Example of FRF for structural vibrations. The low- and high-frequency ranges are
illustrated.

expensive because it requires high resolution in both space and time. Furthermore, model
predictions at high frequencies are sensitive to variations and uncertainties in the structure
under study. Consequently, deterministic methods are less meaningful at higher frequencies,
and a less detailedmethodologymust be accepted. SEAmethods (see, for example, [41,42]) are
often used to analyse high-frequency vibrations. In SEA, the energy flow between subsystems
and their internal dissipation is considered; the energy flow is governed by the difference in
vibrational energy between subsystems and is averaged over frequency bands. The vibrational
energy in a subsystem depends on the modal density, which is often calculated using theoretical
formulas. The validity of SEA methods relies on several assumptions, for example, that the
modal density in the subsystems is high. This can result in large errors in the low-frequency
region, where the modal density is low.

It can be challenging to choose suitable numerical methods for the transition region between
the low- and high-frequency ranges. The choice of methods should be based on the extent to
which variations and uncertainties affect the model output. Variations can be considered in
deterministic models by using Monte Carlo simulations [43] in which probabilistic distribu-
tions of model parameters are propagated to the model output. If the variations in the model
output are small, deterministic methods are suitable. For a specific structure, the variations
can be reduced by performing calibrations of model parameters. However, it is common for
models to be used to predict the behaviour of several structures with identical geometry, in
which case the models must account for variations among the structures. This is the case when
designing wood buildings, whose dynamic behaviour is affected by large variations in, for ex-
ample, the material properties of wood and the mechanical behaviour of joints. The thesis
work considers the development of deterministic models and investigates the possibilities and
limitations of using them to model low-frequency vibrations in wood buildings.
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2.3.2 Deterministic methods

The FE and BE methods are essentially the two methods used in structural mechanics for
creating deterministic numerical models based on continuum mechanical formulations. The
BEmethod is based on discretisations of the domain boundaries and generates systemmatrices
that are fully populated and non-symmetric [39]. The FEmethod, in turn, discretises the entire
domain, resulting in models that contain larger numbers of DoFs than BE models do. The
system matrices of FE models are sparse and symmetric, which means that the number of
DoFs in BE models must be considerably smaller than that in FE models to achieve similar
computation times. The BE method is well-suited for infinite geometries because they can
be treated as exteriors to the domain boundaries. BE models for infinite problems, therefore,
contain fewer DoFs than FE models, which must discretise large parts of infinite geometries.
On the other hand, the BE method is not suitable for problems involving complex geometries,
material inhomogeneity and high surface-to-volume ratios [39], all of which are characteristic
of wood buildings. Correspondingly, the FE method is employed in this thesis for developing
numerical models for predicting low-frequency vibration transmission in wood buildings.

2.3.3 Model reduction

The FE models considered in this thesis contain large numbers of DoFs and require long com-
putation times for analysis. To employ the models in a design process, it is often necessary to
reduce the size of the models by using one of the many methods for model order reduction
available in the literature. Such methods require analyses of the full FE models to establish
reduced models. To avoid analyses of full FE models, which can be very time-consuming,
dynamic substructuring [44] can be used. In dynamic substructuring, models are divided into
substructures that are reduced in size and assembled to form reduced global models. An ad-
vantage of performing a reduction at the substructure level is that when details in the models
are modified, only the substructures affected by the changes have to be updated. Dynamic sub-
structuring is employed in the thesis for the reduction of models of low-frequency vibration
transmission in wood buildings.
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This chapter presents a theoretical background to the numerical and experimental methods
used in the appended publications. The first topic covered in the chapter is the mathematical
and numerical modelling of structure-acoustic systems. Structure-acoustic interaction is em-
ployed in the thesis to account for air and insulation in cavities of wood buildings. Section 3.1
presents the PDEs resulting from continuum mechanical formulations in the structural and
acoustic domains. By employing such formulations, the engineering problems are described
by PDEs supplemented with boundary conditions (BCs), and initial conditions if the transi-
ent response is sought. The PDEs are often too complex to be solved by analytical methods.
Instead, the solutions are approximated by using numerical methods such as the FE method.
In Section 3.2, the FE formulation of structure-acoustic systems is presented. The FE for-
mulation results in equation systems whose solutions approximate the solutions of the PDEs.
The equation systems can be used to analyse the responses of structures subjected to dynamic
loading. Such analyses are covered in Section 3.3. Free vibrations and responses to harmonic
loading are discussed, which leads to the formulation of eigenvalue problems and steady-state
dynamics. These are the two analysis methods used in the appended publications. Further-
more, a brief discussion on nonlinear effects in structural dynamics is included in the section to
introduce phenomena that cannot be explained by linear analysis. It can be important to recog-
nise symptoms of nonlinearities when analysing measurement data since many experimental
methods are based on assumptions of linearity. Experimental modal analysis (EMA) is covered
in Section 3.4, where methods used in the thesis work for frequency response measurements
and modal parameter estimation are discussed.

3.1 STRUCTURE-ACOUSTIC EQUATIONS

In this section, the governing equations for continuum mechanical formulations of the struc-
tural and acoustic domains and of the coupling between domains are derived. Continuum
mechanics is a branch of mechanics where the physical behaviour of solids and fluids is mod-
elled by considering the matter as continuously distributed, as opposed to modelling the mat-
ter as discrete particles. Further reading on continuum mechanics can be found in, for ex-
ample, [45, 46]. In the derivations below, quantities belonging to the structural and acoustic
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domains are denoted by subscripts s and f , respectively.

3.1.1 Structural domain

By considering Newton’s second law of motion for the continuum formulation of a solid, the
differential equation of motion for a body occupying the domain Ωs can be obtained as [46]

∇̃T
σs + bs = ρs
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σs is the vector representation of the stresses, ρs is the mass density, bs is the body force vector
and us is the displacement vector. σs , bs and us depend on spatial coordinates, x , y and z ,
and on time, t . Viscous forces are not considered here; methods for including such forces are
discussed in Section 3.3.3. By assuming small deformations, the vector representation of the
strains is given by

εs =
[
εxx εyy εzz γxy γxz γyz

]T
= ∇̃us . (3.2)

If linear elastic material behaviour is assumed, the stresses are given by

σs = Dsεs = Ds ∇̃us , (3.3)

where Ds is the constitutive matrix. An example of a constitutive relation is the one defined
in Equation (2.1) for the orthotropic behaviour of wood. At the domain boundary ∂Ωs , a
surface traction vector, ts , is defined. The surface tractions are related to the stresses according
to

ts =

tx
ty
tz

 =

σxxnx + σxyny + σxznz
σxynx + σyyny + σyznz
σxznx + σyzny + σzznz

 , (3.4)

where nx , ny and nz are the components of the boundary normal vector ns , pointing outwards
from ∂Ωs . BCs are defined at ∂Ωs by prescribing the displacements and surface tractions,

us = ubc on ∂Ωs,u,

ts = tbc on ∂Ωs,t ,
(3.5)

where ubc and tbc are known quantities and ∂Ωs,u and ∂Ωs,t are separated parts of the do-
main boundary which together constitute the complete boundary ∂Ωs . By supplementing
Equation (3.1) with the BCs in Equation (3.5), a fully defined problem in three-dimensional
structural mechanics is obtained. If the transient response to dynamic loading is sought, initial
conditions need to be defined.
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3.1.2 Acoustic domain

The equations that govern the acoustic fluid domain are derived by assuming the fluid to be
inviscid and irrotational, in addition to the assumption of small displacements. The motion
of an acoustic fluid can be described by using different primary variables, such as the fluid
displacement or a fluid displacement potential. In the equations presented here, the acoustic
pressure is used as primary variable. With the stated assumptions, the pressure field in an
acoustic fluid is governed by the equation of motion [47]

ρ0, f
∂2u f

∂t 2
+ ∇p f = 0 (3.6)

and the continuity equation

∂p f

∂t
+ ρ0, f c20, f ∇ ·

∂u f

∂t
= 0 , (3.7)

where ρ0, f is the static density, c0, f is the speed of sound, p f is the acoustic pressure and ∇
is the gradient operator. p f and u f depend on spatial coordinates, x , y and z , and on time
t . By differentiating Equation (3.7) with respect to time and inserting the resulting equation
into Equation (3.6), the wave equation in the acoustic fluid domain is obtained as

1
c20, f

∂2p f

∂t 2
− ∇2p f = 0. (3.8)

The BCs at ∂Ω f can be defined in terms of a pressure

p f = pbc on ∂Ω f ,p , (3.9)

where pbc is a known quantity and ∂Ω f ,p is the part of the domain boundary where the
pressure is prescribed. A pressure described to zero represents a free surface, while a non-zero
pressure represents a sound source. Another type of BC is to prescribe the pressure gradient
normal to the domain boundary

nTf ∇p f = 0 on ∂Ω f ,∇p , (3.10)

where ∂Ω f ,∇p is the part of the boundary where the pressure gradient is prescribed. Such
BC represents a rigid surface. A third type of BC is to define a surface impedance, imposed
through the equation

nTf Ûu f =
1
c1

Ûp f +
1
c2
p f on ∂Ω f ,i , (3.11)

where c1 and c2 are coefficients and ∂Ω f ,i is the part of the domain boundary where surface
impedance is modelled.

The above equations are suitable for modelling the acoustic pressure field in air. To accurately
represent the acoustic pressure in porous materials, the interaction between the porous struc-
tures and the air needs to be considered. There are several porous material models available
in the literature, both empirical and analytical. Such models are discussed in the appended
Paper B.



24 3 Governing theory

3.1.3 Coupling of domains

When structure-acoustic interaction is modelled, the boundary ∂Ωs f is introduced, which is
the part of the structural and acoustic domain boundaries where coupling occurs. At ∂Ωs f ,
there is a continuity in displacement,

nTf us = nTf u f , (3.12)

and in pressure,
nTf ts = −p f . (3.13)

3.2 FINITE ELEMENT METHOD

Problems encountered in many engineering fields are described by PDEs, originating from dif-
ferent types of balance laws. The PDEs derived in Section 3.1 for the structural and acoustic
domains are just two examples. In practice, it is not feasible to solve the PDEs analytically.
Therefore, numerical methods such as the FE method are employed to find approximate solu-
tions. In the FE method, the geometry is divided into elements that together form an FE
mesh. An example of an FE mesh for a structure-acoustic system is shown in Figure 3.1. Each
element contains a number of nodes, which are associated with discrete values of the sought
field variables – the nodal DoFs. Within the elements, the field variables are assumed to vary
according to selected shape functions. The shape functions are often chosen as polynomials
of various degree. If linear shape functions are used, the approximate solution varies linearly
within each element. The FE formulation results in an equation system in which the nodal
DoFs are the unknowns. The size of the FE mesh affects the size of the resulting equation
system. A very fine mesh, i.e. small elements, results in a good approximation of the field
variables at the expense of obtaining a large equation system. When using the FE method, the
practicing engineer has to make a trade-off between the accuracy of the approximations and
the computation time of the analyses.

In this section, the FE formulation for the structural and acoustic domains and for the coupling
between the domains is presented. For a more detailed description of the FE method, see for
example [37,38]. The FE formulation of structure-acoustic systems is discussed in more detail
in, for example, [47].

3.2.1 Weak formulation

The first step in deriving the FE formulation is to rephrase the problem from being described
by PDEs and BCs to the so-called weak formulation. For the structural domain, the weak
formulation is derived by first pre-multiplying Equation (3.1) with a vector of arbitrary weight
functions,

vTs
(
x, y, z

)
=

[
vx vy vz

]
, (3.14)



3.2 Finite element method 25

               

Structural domain 

Acoustic domain 

Figure 3.1: Example of an FE mesh for a structure-acoustic system.

and integrating over the region Ωs . This results in∫
Ωs

vTs

(
∇̃T

σs + bs−ρs
∂2us
∂t 2

)
dV = 0. (3.15)

By applying the Green-Gauss theorem, the first term in the integral can be re-written as∫
Ωs

vTs ∇̃
T
σsdV =

∫
∂Ωs

vTs tsdS −
∫
Ωs

(∇̃vs )TσsdV . (3.16)

Inserting the above expression into Equation (3.15) results in∫
Ωs

vTs ρs
∂2us
∂t 2

dV +
∫
Ωs

(∇̃vs )TσsdV =
∫
∂Ωs

vTs tsdS +
∫
Ωs

vTs bsdV , (3.17)

which together with the BCs in Equation (3.5) is the weak formulation in the structural do-
main. The prescribed surface tractions can be inserted in the integral equation.

The weak formulation in the acoustic domain is obtained similarly; Equation (3.8) is pre-
multiplied with the scalar-valued weight function v f

(
x, y, z

)
, integrated over the region Ω f

and re-written using the Green-Gauss theorem. The weak formulation can then be obtained
as ∫

Ω f

v f
1
c20, f

∂2p f

∂t 2
dV +

∫
Ω f

(∇v f )T∇p f dV =
∫
∂Ω f

v f n
T
f ∇p f dS (3.18)

together with the BCs in Equations (3.9–3.11). The prescribed pressure gradients can be
inserted in the integral equation.

3.2.2 Finite element formulation

So far, no approximations to the solutions of Equations (3.1) and (3.8) have been introduced;
the weak formulations are equivalent to the PDEs. In the structural domain, the following
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approximation of the displacements is introduced:

us = Nsas , (3.19)

where Ns (x, y, z) ∈ R3×ns contains the global shape functions, as (t ) ∈ Rns×1 contains the
nodal displacements and ns is the number of nodal displacements. By usingGalerkin’s method,
the arbitrary weight functions are selected as

vs = Nsc , (3.20)

where c is a vector containing arbitrary constants. Insertion of Equations (3.3), (3.19) and
(3.20) into Equation (3.17) (and using that as is independent of spatial coordinates and that
c is arbitrary) results in the FE formulation for a linear elastic solid,∫

Ωs

NT
s ρsNsdV Üas +

∫
Ωs

(∇̃Ns )TDs ∇̃NsdV as =
∫
Ωs

NT
s bsdV +

∫
∂Ωs

NT tsdS . (3.21)

The equation can be written more compactly as

Ms Üas + Ksas = fs,l + fs,b = fs , (3.22)

where

Ms =

∫
Ωs

NT
s ρsNs dV , Ks =

∫
Ω
(∇̃Ns )TDs ∇̃Ns dV ,

fs,l =
∫
Ωs

NT
s bs dV , fs,b =

∫
∂Ωs

NT
s ts dS .

(3.23)

Ms , Ks , fs,l and fs,b are referred to as the mass matrix, the stiffness matrix, the body force
vector and the boundary force vector, respectively. The BCs in Equation (3.5) are introduced
in Equation (3.22) by prescribing nodal values in as and fs,b .

The FE formulation for an acoustic fluid is obtained in a corresponding way. The approxima-
tion

p f = N f a f (3.24)

is introduced, where N f (x, y, z) ∈ R1×n f contains the global shape functions, a f (t ) ∈ Rn f ×1

contains the nodal pressures and n f is the number of nodal pressures. Through employing
Galerkin’s method, the FE formulation in the acoustic domain can be obtained as

M f Üa f + K f a f = f f ,b , (3.25)

where

M f =
1
c20, f

∫
Ω f

NT
f N f dV , K f =

∫
Ω f

(∇N f )T∇N f dV ,

f f ,b =
∫
∂Ω f

NT
f n

T
f ∇p f dS .

(3.26)
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To arrive at the FE formulation for a structure-acoustic system, the spatial coupling matrix

Hs f =

∫
∂Ωs f

NT
s n f N f dS (3.27)

is introduced. With use of Hs f and Equation (3.6), the boundary force vectors at ∂Ωs f can
be rewritten as

f f ,b = Hs f a f , (3.28)

and
fs,b = −ρ0, f HT

s f Üas . (3.29)

By inserting Equations (3.28) and (3.29) into Equations (3.22) and (3.25), the coupled structure-
acoustic FE formulation is obtained as[

Ms 0
ρ0, f H

T
s f M f

] [
Üas
Üa f

]
+

[
Ks −Hs f
0 K f

] [
as
a f

]
=

[
fs,l
0

]
+

[
fs,b
f f ,b

]
, (3.30)

where fs,b and f f ,b contain contributions from the parts of the domain boundaries ∂Ωs and
∂Ω f , respectively, that are separated from the interface boundary ∂Ωs f .

3.3 ANALYSIS OF STRUCTURAL DYNAMIC SYSTEMS

This section considers the analysis of structural dynamic systems of the form shown in Equa-
tion (3.22). Such systems have more than one unknown and are referred to as multi-DoF
(MDoF) systems. Free vibrations and responses to harmonic loading are discussed, which
leads to the introduction of two analysis methods: eigenvalue analysis and steady-state ana-
lysis. The latter is a frequency-domain method, but can be used to predict the time-domain
response of linear systems through Fourier transformations. Steady-state analysis is applicable
also to acoustic systems and coupled structure-acoustic systems. The eigenvalue analysis dis-
cussed here is, however, not directly applicable to coupled structure-acoustic systems of the
form in Equation (3.30) since their system matrices are asymmetric. Eigenvalue analysis of
such systems can be performed using the methods discussed in, for example, [48].

In Sections 3.3.1 and 3.3.2, undamped systems are considered. Damping is introduced in Sec-
tion 3.3.3. The theory presented is based on assumptions of linearity, which were introduced
already in the continuum mechanical formulation in Section 3.1. Typically, such assump-
tions are adequate for analysing vibrations in residential buildings. Nonlinear behaviour in
structural dynamics is discussed briefly in Section 3.3.4. Further reading about the analysis of
structural dynamic systems can be found in, for example, [49, 50]. In the derivations below,
the subscripts used in the previous section (to indicate structural and acoustic domains) are
dropped.
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(a) 1st eigenmode. (b) 2nd eigenmode. (c) 3rd eigenmode. (d) 4th eigenmode.

Figure 3.2: The first four eigenmodes of an FE model of a 2D cantilever beam.

3.3.1 Free vibrations

It is assumed here that no external loads are acting on the structure. This results in the motion
of the structure being determined by the initial conditions, i.e. the prescribed displacements
and velocities at t = 0. For free undamped vibrations, the MDoF system is reduced to the
homogeneous differential equation

MÜa(t ) + Ka(t ) = 0. (3.31)

This equation can be solved by assuming the harmonic solution

a(t ) = Âe iωtΦ , (3.32)

where Â is the complex amplitude, i is the complex number, ω is the angular frequency and
Φ is a constant vector. Differentiation of Equation (3.32) and insertion into Equation (3.31)
results in the eigenvalue problem

(K − ω2M)Φ = 0, (3.33)

which has non-trivial solutions given by

det(K − ω2M) = 0. (3.34)

For an MDoF system containing n DoFs, there are n solutions, ω j = ω1, ..., ωn, referred to
as the eigenfrequencies of the system. Each eigenfrequency has a corresponding eigenmode,
or mode shape, Φ j , which can be determined through Equation (3.33). As an example, Fig-
ure 3.2 shows the first four eigenmodes of an FE model of a 2D cantilever beam. The set of n
eigenmodes form an orthogonal basis. Consequently, the solution to Equation (3.31) can be
expressed as a sum of the eigenmodes:

a(t ) =
n∑
j=1

q j (t )Φ j , (3.35)

where
q j (t ) = q̂ j e iω j t . (3.36)



3.3 Analysis of structural dynamic systems 29

q̂ j is the complex amplitude of the jth eigenmode, determined by use of the initial conditions.
For a given set of initial conditions, the amplitudes of the eigenmodes are determined uniquely.
Equation (3.35) is referred to as the modal decomposition of a(t ).

3.3.2 Harmonic excitation

Harmonic excitation of the undamped MDoF system is assumed, i.e.

MÜa(t ) + Ka(t ) = f̂e iωt , (3.37)

where f̂ is a constant complex-valued vector describing the load distribution. The solution to
Equation (3.37) is a sum of the complimentary and particular solutions. The complimentary
solution is of the form given in Equation (3.35) and depends on the initial conditions. The
particular solution does not depend on the initial conditions, and is derived by assuming a
harmonic response

a(t ) = âe iωt , (3.38)

where â is a constant complex-valued vector. This results in the equation of motion in the
frequency domain for an undamped system

D(ω)â = f̂ , (3.39)

where the dynamic stiffness matrix D(ω) is given by

D(ω) = −ω2M + K . (3.40)

Equation (3.39) is often rewritten in terms of FRFs by inverting the dynamic stiffness matrix,
D−1(ω) = H(ω), which results in

â = H(ω)̂f . (3.41)

Each FRF inH(ω) describes the complex vibration amplitude in a certain DoF when applying
a harmonic load with unit amplitude in another (or the same) DoF. Deriving the response
amplitude â for harmonic loading is referred to as steady-state dynamic analysis.

By pre-multiplying Equation (3.39) with the eigenmodes ΦTk , where k = 1, ..., n, and em-
ploying the modal decomposition

â =
n∑
j=1

r̂ jΦ j , (3.42)

the following equation is obtained:

− ω2
n∑
j=1
Φ
T
k MΦ j r̂ j +

n∑
j=1
Φ
T
k KΦ j r̂ j = ΦTk f̂ , (3.43)
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The eigenmodes are orthogonal in the scalar products ΦTk MΦ j and ΦTk KΦ j . Consequently,
only for j = k are the terms in the summations non-zero. This results in n uncoupled single-
DoF (SDoF) systems, given by

− ω2m̄ j r̂ j + k̄ j r̂ j = f̄ j , (3.44)

where
m̄ j = Φ

T
j MΦ j , k̄ j = Φ

T
j KΦ j , f̄ j = ΦTj f̂ , (3.45)

for j = 1, ..., n. Each SDoF system describes the amplitude of an eigenmode. The SDoF
systems have the solution

r̂ j =
f̄ j
k̄ j

1

1 −
(
ω/ω j

)2 , (3.46)

where

ω j =

√
k̄ j

m̄ j
. (3.47)

The particular solution to Equation (3.37) can now be obtained through Equations (3.38),
(3.42) and (3.46) as

a(t ) = e iωt
n∑
j=1

f̄ j
k̄ j

1

1 −
(
ω/ω j

)2Φ j . (3.48)

Hence, the particular solution for the MDoF system is a sum of the responses for the modal
SDoF systems. The FRF for each SDoF system is given by

H (ω) = 1
k̄ j

1

1 −
(
ω/ω j

)2 . (3.49)

The magnitude of the FRF is infinite when the excitation frequency is equal to the eigenfre-
quency, ω = ω j . This is a phenomenon called resonance. Infinite vibration amplitudes can of
course not occur in real structures; damping and nonlinearities will prevent such behaviour.

3.3.3 Damped systems

Damping is included in numerical models to represent the energy dissipation occurring in
dynamical systems. The dissipation can be caused by, for example, friction in joints or internal
losses in materials. Damping is introduced in the equation of motion through the damping
matrix C,

MÜa(t ) + CÛa(t ) + Ka(t ) = f(t ). (3.50)

Constructing the damping matrix is not as straightforward as constructing the stiffness matrix,
which is built by considering the stiffness properties of individual structural components. The
damping properties of materials are not as well established, and the energy dissipation in joints
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is difficult to measure. Instead, the damping matrix is often constructed using modal damp-
ing ratios of the structure, which are obtained through measurements. Damping matrices can
be divided into two types: classical and non-classical. Classical damping matrices are, as op-
posed to non-classical matrices, diagonalised by a modal decomposition of the system. This
enables MDoF systems to be separated into n uncoupled SDoF equations, as was done in
Equation (3.43) for the undamped case. Hence, it is of interest to study the effect of damping
on the response of SDoF systems. The damped SDoF system is given by

m Üa(t ) + c Ûa(t ) + ka(t ) = f (t ) , (3.51)

wherem, c , k, a(t ) and f (t ) are scalar-valued coefficients and variables. The equation can be
rewritten as

Üa(t ) + 2ζωn Ûa(t ) + ω2
na(t ) = f (t ) , (3.52)

where ωn is the eigenfrequency for the undamped case and ζ is the damping ratio. These are
defined as

ωn =

√
k
m
, ζ =

c
cc r
=

c
2mωn

, (3.53)

where cc r is the critical damping. For c > cc r , a damped SDOF system returns to its static
equilibrium position without overshooting when external forces are removed. For c < cc r ,
vibrations around the equilibrium position occur instead. The free vibration response of a
damped SDoF system is of the form

a(t ) = Âe iωD t−ζωn t , (3.54)

where ωD is the eigenfrequency for the damped system, given by

ωD = ωn
√
1 − ζ 2. (3.55)

For relatively low damping ratios (for example ζ < 0.2, which is common in many structural
dynamic problems), ωD ≈ ωn, i.e. the eigenfrequencies are unaffected by the damping. The
term e−ζωn t in Equation (3.54) makes the oscillations decay exponentially at a rate governed
by the damping ratio.

Through derivations similar to those presented for the undamped case, it can be shown that
the FRF for the damped SDoF system is complex-valued and given by

H (ω) = 1

ω2
n

[(
1 − (ω/ωn)2

)
+ 2iζ (ω/ωn)

] . (3.56)

In Figure 3.3, the magnitude of the FRF is plotted for ωn = 1, and for different values of the
damping ratio. It can be observed that a lower value of the damping ratio results in a narrower
and higher resonance peak.

The FRFs for the MDoF system in Equation (3.50) are given by superposition of the FRFs
for the modal SDoF systems. An example is shown in Figure 3.4. The FRFs of a structural
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Figure 3.3: The magnitude of an FRF for a damped SDoF system with ωn = 1, and for different
values of the damping ratio, ζ .
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Figure 3.4: Example of an FRF magnitude for a damped MDoF system. The dashed lines illustrate
the contributions from three modal SDoF systems.

dynamic system, which can be determined through steady-state analyses, unveil the sensitivity
of the system at different frequencies and positions. The shape of the FRFs are in turn governed
by the eigenfrequencies and mode shapes of the system. This highlights that eigenvalue and
steady-state analyses are central in structural dynamic analysis.

Rayleigh damping

A frequently employed method for constructing damping matrices is Rayleigh damping [50],
which produces classical damping matrices. Rayleigh damping uses a linear combination of
the mass and stiffness matrices to construct the damping matrix,

C = a0M + a1K , (3.57)

where a0 and a1 are coefficients. With use of Equation (3.53), it can be shown that the
damping ratio of the nth mode is given by

ζn =
a0
2ωn

+
a1ωn

2
. (3.58)
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Figure 3.5: Themodal damping ratio ζn as function of natural frequencyωn for a Rayleigh damp-
ing model with ζi = ζ j = ζ . The two dashed curves show the mass and stiffness
proportional damping.

With known values of the modal damping ratios ζi and ζ j for eigenmodesΦi andΦ j , the coef-
ficients a0 an a1 can be determined through Equation (3.58). If ζi = ζ j = ζ , the coefficients
are given by

a0 = ζ
2ωiω j

ωi + ω j
, (3.59)

and
a1 = ζ

2
ωi + ω j

. (3.60)

Figure 3.5 shows the modal damping ratio ζn as function of natural frequency ωn when ζi =
ζ j = ζ . The two dashed curves illustrate the contributions from themass and stiffness matrices.
The mass matrix dominates at lower frequencies and the stiffness matrix provides the major
contribution at higher frequencies.

3.3.4 Nonlinear systems

Modal superposition is an important feature of linear systems since it makes it possible to
describe MDoF systems in terms of sets of SDoF systems. This is an advantage from a compu-
tational point-of-view and facilitates the understanding of dynamic systems. When analysing
nonlinear systems, however, modal superposition is no longer possible. Nonlinear systems can
exhibit complex phenomena which do not occur in linear systems. Examples are bifurcations,
superharmonics and internal resonances [51]. Typical sources of nonlinearities in structures
are: geometric nonlinearities due to large deformations, material nonlinearities in the stress-
strain laws and nonlinear BCs due to, for example, loose joints or clearances.

All structures in real life are inherently nonlinear; linear models are just approximations of the
nonlinear behaviour. For many problems, however, the nonlinear effects are negligible and
linear assumptions are valid. In general, the effects of nonlinearities increase as the vibration
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Figure 3.6: Frequency response amplitude of a nonlinear system with hardening behaviour. The
different curves show the response to excitations with different magnitude. Excitation 1
has the lowest input energy and Excitation 3 has the highest.

energy increases, although there are exceptions, such as dry friction, where nonlinearities are
important also at very low energy levels. When developing a linear model, it is important to
recognise symptoms of nonlinearities in experimental data. If nonlinear behaviour is detected,
the experiments can be re-designed to avoid triggering the nonlinearities. However, it may be
the case that nonlinearities are important in the system under study and that a linear model is
insufficient.

A fundamental difference between nonlinear and linear systems is that for single-harmonic
excitation, a nonlinear system generally responds with multi-harmonic vibrations. This means
that the concept of FRFs, which is defined for linear systems, is inapplicable to nonlinear
systems. Furthermore, the response of nonlinear systems depends on the vibration energy. An
example of the frequency response of a nonlinear system at different excitation levels is shown
in Figure 3.6. The system has a hardening behaviour; the resonance peak distorts towards
higher frequencies at higher energy levels. Such frequency response can affect the quality of
EMA (described in Section 3.4); for example, the modal parameter estimation can result in
the estimation of two linear eigenmodes from one nonlinear resonance peak.

Further reading on nonlinear structural dynamics can be found in, for example, [51, 52].

3.4 EXPERIMENTAL MODAL ANALYSIS

EMA can be used to determine the modal parameters of experimental structures. The modal
parameters include eigenfrequencies, mode shapes, modal damping ratios, modal stiffness and
modal mass. These are determined by fitting theoretical responses of linear systems tomeasured
data.
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(a) Shakers.

   

(b) Impact hammers.

 

(c) Accelerometers.

Figure 3.7: Examples of equipment that can be used for EMA.

3.4.1 Frequency response measurements

Let xm(t ) and yn(t ) be the measured discrete time signals of a force in measurement DoF m
and the vibration response in measurement DoF n, respectively. By using the fast Fourier
transform (FFT) [53], the frequency domain representations of the discrete signals, Xm(ω)
andYn(ω), can be obtained. The FRF between the input force and the vibration response can
be calculated as

Hmn(ω) =
Yn(ω)
Xm(ω)

. (3.61)

There are several methods for measuring FRFs of experimental structures, involving different
excitation sources. Two common types of sources are impact hammers and shakers, shown
in Figure 3.7. Both types of sources have integrated force sensors to measure the input to the
structures. Impact hammers generate short force pulses, whereas shakers can generate different
types of signals, such as single harmonics, burst chirp and burst random; the different force
signals are illustrated in Figure 3.8. Shakers are attached to the structures using thin rods to
transfer forces only in the axial direction. The input forces generated by hammers depend on
the stiffness of the hammer tip; stiffer tips generate input forces with more high-frequency
content.

Both Yn(ω) and Xm(ω) contain noise that deteriorates the quality of the measurements. It is
important to choose an excitation source that leads to high signal-to-noise ratios, so that well-
estimated FRFs can be obtained. This requires force inputs with sufficiently high energy levels
for all frequencies of interest. On the other hand, if the energy input is too high, nonlinear
behaviour of the experimental structure can be triggered. This leads to distorted frequency
responses, as discussed in Section 3.3.4. Such responses are not suitable as input to linear
modal parameter estimations.

Vibrations are usually measured in terms of accelerations using piezoelectric accelerometers,
shown in Figure 3.7. In testing with an impact hammer, it is typical that only a few acceler-
ometers are placed on the structure in question. The accelerometers are placed in a few fixed
positions while the structure is excited with the hammer in a large number of points. In shaker
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Figure 3.8: Examples of different types of force signals for EMA.

testing, the shakers are typically placed in one or a few points while a larger number of accel-
erometers are distributed over the structure. According to the reciprocity theorem [54], which
is valid for linear systems, Hmn(ω) = Hnm(ω). Hence, the same information about the sys-
tem can be retrieved using either method since using a shaker in DoF m and measuring the
accelerations in DoF n is equivalent to using an impact hammer in DoF n and measuring the
accelerations in DoF m.

There are, however, several practical differences between hammer and shaker testing. Impact
testing generally requires less instrumentation than shaker testing since only a few accelero-
meters are needed. In shaker testing, it has to be ensured that the main body of the shaker is
isolated from the structure to avoid that reaction forces are transmitted back to the structure
when it is excited. When using impact hammers, or generating burst signals with shakers, too
short time records can result in leakage. Leakage occurs when the transient response has not
decayed enough at the end of the record, which deteriorates the quality of the FFT (since FFT
assumes periodic signals). On the other hand, too long time records can result in low signal-to-
noise ratios. The effects of leakage can be reduced by windowing the time signals [55], which
is performed to reduce the amplitudes at the start and the end of the signals. Figure 3.9 illus-
trates the use of an exponential window for a transient acceleration signal. The errors stemming
from low-signal-to-noise ratio can be reduced by repeating the measurements and averaging
the resulting FRFs.
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Figure 3.9: Example of windowing for time signals; exponential window applied to transient ac-
celeration response.

The results of EMA are often used as input to calibrations and correlations of FE models. To
accurately model the experimental structure, it is important to have good knowledge of the
BCs during testing. Often, free or fixed BCs are approximated in experimental setups. Free
BCs are in theory obtained when the experimental structure is completely free floating, which
of course is impossible in practise. Instead, the structure can be suspended by soft rubber bands
or similar. If the frequencies of the rigid body modes due to the elastic suspension are much
lower than the eigenfrequencies of the structure, it can be assumed as free floating. Fixed BCs
can be difficult to achieve since the stiffness of the supports and of the connections between
supports and experimental structure must be much higher than the stiffness of the structure.
An alternative type of BC is to employ flexible supports with known properties, which can be
used as input to FE models when calibrating and correlating these to measured data.

More detailed information about frequency response measurements can be found in [56, 57]
and theoretical descriptions of the methods involved are presented in, for example, [58].

3.4.2 Modal parameter estimation

There are several methods for estimating modal parameters from measured data. A review
of different methods is presented in [59]. Essentially, the methods provide different ways
of fitting theoretical responses of linear systems to measured data. Most methods employ
measured FRFs as input, either directly in the frequency domain or in the time domain by using
impulse response functions that are obtained through inverse FFT of the FRFs. To illustrate
the concept of modal parameter estimation, an FRF of a linear system can be separated into
the contributions from modal responses as

H (ω) =
n∑

k=1

rk
iω − λk

+
r ∗k

iω − λ∗k
, (3.62)
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where
λk = ζk + iωk . (3.63)

n is the number of modes in the linear system, rk is the modal participation factor and, ζk and
ωk are the modal damping ratio and eigenfrequency, respectively. The superscript ‘∗’ denotes
the complex conjugate. The modal participation factors depend on the mode shapes of the
system. The separation of an FRF into modal responses is illustrated in Figure 3.4. The modal
parameters of an experimental structure can be estimated by adjusting the modal parameters in
Equation (3.62) to obtain an FRFs that is as close to the measured FRF as possible. Equations
of the form in Equation (3.62) are often solved by first estimating the damping ratios and
eigenfrequencies, and then solving for the mode shapes in a subsequent step. Usually, there is
more data available than required to determine the modal parameters. The parameters can in
such cases be estimated by formulating an over-determined system and minimising the errors
between synthesised and measured FRFs by, for example, using least squares methods.

The methods for modal parameter estimation found in the literature employ different expres-
sions for the FRFs, or for impulse response functions, but are based on the same principles. The
methods are discussed in terms of a unified framework in [59], highlighting their similarities.
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Model validation is defined by the American Society for Mechanical Engineers (ASME) as “the
process of determining the degree to which a model is an accurate representation of the real world
from the perspective of the intended uses of the model” [60]. No model is an exact representation
of the real world; instead, the question is how accurate the model predictions are required to
be and if that accuracy can be achieved.

The numerical models considered in this thesis are used for predicting low-frequency vibra-
tion transmission between storeys and rooms in wood building. The FE method was used for
creating the numerical models; the choice of method is motivated in Section 2.3. This chapter
discusses the validation of FE models to experimental results, which involves calibrations and
correlations of the models. First, a general procedure for model validation in structural dy-
namics is presented to provide a framework for the research discussed in the chapter and to
define different terms used in the context of model validation. Second, a review of published
research on the numerical modelling of low-frequency vibrations in wood buildings is presen-
ted. Finally, the conclusions drawn in the appended publications are discussed. The studies
discussed in the chapter have in common that they aim at developing the accuracy of the
numerical models.

4.1 GENERAL PROCEDURE IN STRUCTURAL DYNAMICS

In published research discussing comparisons of numerical and experimental results, terms
such as validation, calibration, correlation and updating are sometimes used interchangeably
and different authors use different definitions. This section is included in the chapter to define
the terms according to how they used in the thesis and to introduce a framework for the
research discussed in Sections 4.2 and 4.3. The suggested procedure is discussed with respect
to a single model validation study, but can be projected on the whole research field of numerical
modelling of low-frequency vibration transmission in wood buildings.

Before performing the simulations and experiments involved in a validation procedure, a num-
ber of decisions need to be made. The following steps should be considered in the planning of
a model validation [61]:
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1. Specify the model use. A clear definition of the model use is important, and it affects
all of the subsequent steps.

2. Specify the physical system response measures. These are quantities that are functions
of the system response and are used for comparing model predictions to results of val-
idation experiments. Examples include maximum vibration amplitudes and root mean
square (RMS) values.

3. Specify the validation metrics, which are the mathematical methods for comparing
simulated response measures to measured response measures. The validation metrics
often involve probabilistic and statistical data. Further information on methods for
evaluating such data can be found in, for example, [62, 63].

4. Specify the domain of comparison, i.e., the ranges of physical and model parameters.
In structural dynamic analysis, it is important to define the frequency range of interest
and the maximum vibration amplitudes. Extrapolation of the model predictions out-
side the domain of comparison should be done with caution. For example, if maximum
vibration amplitudes are specified such that no nonlinear behaviour is triggered, predic-
tions at higher vibration amplitudes should not be performed unless it can be ensured
that the nonlinear effects remain negligible.

5. Specify the validation experiments. These experiments are used for performing valida-
tion tests in which model predictions are compared to experimental results. The results
of validation experiments should not be used for calibrations or correlations.

6. Specify the adequacy criteria, i.e., the tolerance for discrepancies between model pre-
dictions and results from validation experiments. If the adequacy criteria are fulfilled,
the model is deemed valid.

7. Specify the conceptual model, which consists of the physical phenomena considered
in the model and the set of assumptions made. For example, the assumptions of linear
behaviour and structure-acoustic coupling made in the continuum mechanical formu-
lation in Section 3.1 are part of the conceptual model.

8. Specify the mathematical model. The PDEs derived in Section 3.1 are examples of
mathematical descriptions of conceptual models. In addition, other modelling data
such as initial conditions and loads must be described mathematically.

9. Specify the computational model. This involves the discretisations and solution al-
gorithms, for example, those discussed in Sections 3.2 and 3.3, used for computing
approximate solutions to the mathematical model. It should be ensured that the errors
in the approximate solutions are small compared to the adequacy criteria.

10. Specify the calibration and correlation experiments, discussed further in Sections 4.1.1
and 4.1.2, respectively.
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Once a validation procedure is planned, measurements and simulations can be performed. An
initial computational model is created, and measurements needed for calibrations, correlations
and validations are carried out. Then, calibration and correlation studies are performed to up-
date the model. Finally, the calibrated and correlated model is used for performing validation
tests in which model predictions are compared to results from validation experiments. If the
model validation fails, the conceptual, mathematical and computational models must be re-
vised to identify potential sources of error. The model is then updated to reduce the errors,
and new validation tests are performed. Hence, validation procedures involve iterations of
calibrations, correlations and validations.

4.1.1 Calibrations

Calibration is the procedure of improving estimates of uncertain model parameters [64]. It is
usually performed for subsystems of the model to isolate errors in specific parameters. The first
step in calibration is to perform sensitivity analyses to study the effects of uncertain parameters
on the model output. Only the parameters that show a notable effect on the model output are
optimised further. These parameters are optimised by minimising the difference between the
model output and the corresponding experimental results. The objective function in the op-
timisations can, for example, be the frequency difference for an eigenmode. The optimisations
are often subjected to constraints such as minimum and maximum values for the paramet-
ers, and it must be ensured that the optimisations result in global minima of the objective
function so that local minima are avoided. For this purpose, interval searches in which the
objective function is evaluated for a set of parameter values within the allowed intervals can be
employed. Interval searches provide approximate solutions to the global minima. If a more
accurate solution is desired, iterative methods such as Newton’s method [65] can be used.

4.1.2 Correlations

According to [64], the term correlation in structural dynamics originates from the one-to-one
correlation of eigenmodes from simulations and experiments. However, correlation can be
defined in a much broader sense; here it is considered to be any type of comparison between
simulated and experimental results with the goal of unveiling and reducing modelling errors.
This differs from calibration, which involves optimising model parameters, and validation, in
which the quality of the final model predictions are tested. Correlations are generally per-
formed for subsystems of a model as performing correlations for a complete model can cause
difficulties in identifying different sources of errors and distinguishing their effects.

Correlations can be carried out in many different ways, for example, by comparing simulated
and measured mode shapes of subsystems to identify the least correlated modes. Differences in
eigenfrequencies and mode shapes can guide the engineer towards the sources of error. Typ-
ically, correlation studies can unveil deficient modelling of joints, improper BCs or invalid
assumptions regarding the physical phenomena governing the dynamic response of structures.
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Examples of invalid assumptions are the use of incorrect material models and the exclusion of
structure-acoustic interaction when it has a significant effect on the response.

4.1.3 Applying the procedure to low-frequency vibration transmission
in wood buildings

Existing methods and guidelines for modelling low-frequency vibration transmission in wood
buildings are insufficient for creating accurate numerical models. The focus of the research
presented in the thesis is therefore not on performing pure validation tests of models but rather
on investigating the effects of different uncertainties in the modelling. Nevertheless, it is im-
portant to keep in mind the ultimate use of the models so that the investigations are relevant
to the development of models that can eventually be validated against measurements on real
buildings.

Based on the discussion in Section 2.3, several of the steps in planning a model validation
study can be specified for the models considered in the thesis. As the model use is defined as
predicting the transmission of low-frequency structural vibrations from a source to a receiving
room, it is natural to define the response measures as the FRFs between the input force at the
source and the vibration response in the receiving room. The domain of comparison in the
thesis is frequencies below 100 Hz (except in Paper B, in which frequencies up to 200 Hz are
considered). A conceptual assumptionmade in the thesis as well as the publications referenced
in Section 4.2 is that the vibrations are of small amplitude. This implies that nonlinearities
can be neglected, and linear models can be used. This assumption is made because vibration
sources in residential buildings, such as footfalls and vibrating machines, generate vibrations
of relatively low amplitude. The mathematical models are based on the PDEs derived in
Section 3.1 and the computational models are obtained using the FE method and dynamic
substructuring. The calibrations and correlations performed in Paper D as well as in several
of the publications discussed in Section 4.2 are mostly based on comparisons of simulated and
measured eigenfrequencies and mode shapes.

4.2 LITERATURE REVIEW ON NUMERICAL MODELLING OF
LOW-FREQUENCY VIBRATIONS IN WOOD BUILDINGS

In this section, the state-of-the-art in terms of numerical modelling of low-frequency structure-
borne sound and vibration transmission in wood buildings is reviewed. The referenced public-
ations can be seen in the context of the model validation procedure presented in Section 4.1;
they present calibrations, correlations and validation tests that contribute to the validation of
numerical models of wood buildings. Of the studies discussed in the section, those in [66–69]
consider all three tasks in the prediction of structure-borne sound: predicting the input force,
predicting the vibration transmission and predicting the resulting sound pressure in the re-
ceiving room. These publications aim at developing models that describe standardised tests
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for impact sound insulation in which tapping machines are used as vibration sources, and they
present comparisons between predicted and measured sound levels that can be regarded as val-
idation tests. In the remaining studies discussed in this section, namely those in [70–77], the
focus is on the modelling of structural vibrations. These publications present calibration and
correlation studies where the modelling of different details in wood buildings are investigated.

In [66], FE models for predicting the impact sound generated by standardised tapping ma-
chines were developed and compared with results from laboratory measurements. The struc-
tures that were studied consisted of wood-framed floors with particleboard surfaces and inner
ceilings of plasterboards attached to the wood frames of the floors. The FE models include
air and insulation inside cavities between floors and underlying ceilings, and they account for
the interaction between tapping machine and floor structure. Calibrations were performed to
optimise material parameters and stiffness parameters of joints. The objective function for the
optimisations was based on the difference between the FRFs from simulations and measure-
ments. Probabilistic models were established for the optimised parameters and included in
stochastic models of the building structures. Monte Carlo simulations were used to determine
variations in the output of the stochastic models. The sound pressure in the receiving roomwas
predicted by applying the vibration field in the ceiling surface as BCs on the fluid boundary,
i.e., by assuming a one-way coupling. The model predictions were compared with laborat-
ory impact sound measurements following ISO standards [18] for frequencies up to 200 Hz.
Simulations were performed for a deterministic model and a stochastic model, with the results
from the latter model presented in terms of confidence intervals. Although the predictions
displayed trends similar to the measured trends, they were not convincing around the first res-
onance frequency. It is difficult to point out any dominating source of error as no eigenvalue
analyses were performed, and the third-octave bands can comprise several resonances. An im-
portant conclusion from these studies is that the force spectrum of the tapping machine can
be regarded as deterministic, i.e. the force spectrum can be calculated using a deterministic
model of the floor.

A study similar to the one in [66] is presented in [67] in which three topics are discussed inmore
detail: prediction of the force spectrum, modelling of damping and calculation of the sound
pressure in the receiving room. The FE modelling of the structure is, however, not explained
in great detail. As in [66], the pressure field in the receiving room was calculated using the
vibrations on the ceiling surface as BCs. Predicted impact sound levels are presented in third-
octave bands between 50–2000 Hz and compared to results from several measurements on
similar (but not identical) floors tested in different laboratories. In the paper, the measured
impact sound levels are presented in intervals calculated as themean value of the sound pressure
±2 standard deviations, which result in ranges of up to 15 dB per third-octave band. Therefore,
it is difficult to draw any conclusions regarding the accuracy of the predictions.

In [68], a CLT floor with a suspended ceiling was investigated. The study focused on the FE
modelling of the structure and on the prediction of radiated sound power into the receiving
room. The floor consisted of four CLT plates with joints between them modelled using linear
springs. Calibrations were performed to optimise the spring stiffness of the joints and the
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material parameters of wood. The errors between simulated and measured eigenfrequencies
were used as objective function in the optimisations. Comparisons of predicted and measured
sound power in the receiving room for frequencies up to 150 Hz revealed that the trends were
similar. However, the measured data displayed a more resonant behaviour, and a number
of the measured resonance peaks were not captured in the simulations. Furthermore, the
measured velocities were used as inputs to the prediction of radiated sound power, yielding
a good correlation with the measured sound power and thereby validating the modelling of
sound radiation employed in the paper. All results in the paper are presented in terms of FRFs,
but the spatial distribution of the load is not stated. The results of the parameter optimisations
in [68] are presented in [69], along with an investigation regarding the effects of air in the
cavity between the floor and the suspended ceiling. The authors concluded that it is necessary
to model the air using acoustic finite elements as the use of simpler spring representations is
insufficient to capture the resonant behaviour of the air cavity.

In [70], modelling of low-frequency vibrations in wooden T-junctions (joints between wood
beams and particleboards) was investigated by comparing FE models with each other and with
measurements on four mock-ups. All comparisons were made in terms of eigenfrequencies and
mode shapes. The effects of using different models for the screws and glue between plates and
beams were studied. It was concluded, for example, that when glue is used in the joints between
beams and boards it is valid to assume full interaction in FE models by constraining their re-
spective DoFs to each other. This conclusion is supported by the results in [71], in which
experimental and numerical modal analyses were carried out for a wooden floor-wall struc-
ture. The structure in [71] had screwed and glued joints between particleboards and beams,
and a good correlation in terms of eigenfrequencies and mode shapes was observed for the
first eigenmodes of the structure. No alternative methods for modelling the joints were tested,
although doing so could possibly have improved the results. An alternative model of joints
between wood beams and plate materials was introduced in [72] and employed in [73,74] for
floors without glue in the joints. The model is based on the use of withdrawal modulus and
slip modulus that represent the linear elasticity of joints in the axial and in-plane directions,
respectively. Such models can also be used for joints between wood beams and plasterboards
in ceilings and walls as the plasterboards are typically screwed to the beams without any glue
in between. In [73], FE models were developed for predicting the fundamental frequency of
wood floors. Models were created for 22 experimentally tested floors consisting of wood frames
covered with plywood or oriented strand board (OSB), some of which had lateral reinforce-
ment between the wood beams. Material properties of the wood beams were determined from
measurements on each beam. Values of the slip modulus were taken from literature, whereas
the values for the withdrawal modulus were determined from static measurements on several
types of joints. Sensitivity analyses showed that the fundamental frequency is insensitive to
changes in the withdrawal modulus. The slip modulus, however, has a larger effect on the
fundamental frequency. Similar models were developed in [74], although without measuring
the material properties of each beam. The correlation in eigenfrequencies and mode shapes was
studied for the first five modes of six experimentally investigated floors, and it was concluded
that modelling the elasticity in joints and supports is important for improving model accur-
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acy. The correlation between simulations and measurements was, however, relatively poor also
when elastic joints and supports were modelled.

In [75], an FE model was created for an experimental wooden assembly consisting of a floor
connected to three underlying walls through elastomeric vibration isolators. The elastomeric
isolators resembled those found in TVE buildings, as shown in Figure 1.1. The simulatedmode
shapes were compared to results from EMA, and discrepancies between the two mode sets were
identified. For example, the building parts interacted more in the measured mode shapes. The
authors pointed out the modelling of elastomers as a likely source of error; the elastomers were
modelled using spring-dashpots in three directions without taking the rotational stiffness into
account and neglecting any frequency-dependence of the elastomer properties. In [76], an
elastomer connection similar to those found in many wood buildings was studied experiment-
ally and numerically for frequencies below 100 Hz. The experimental structure consisted of an
elastomer strip connected to steel parts on two sides. The steel parts are rigid in the frequency
range of interest. Numerical modal analyses of the setup showed that using the elastomers’
static stiffness in the model resulted in large errors, which led to the conclusion that it is ne-
cessary to model the dynamic properties of elastomers. In [77], a procedure for determining
the frequency-dependent viscoelastic properties of elastomers was presented. The procedure
combines results from FE analyses with experimental data provided by manufacturers valid for
the specific geometry of the tested elastomers and for the BCs applied during the tests. The
procedure in [77] can be employed to extract material properties from such data, enabling the
creation of three-dimensional and frequency-dependent models of elastomers without the need
to perform calibrations for each specific shape and set of BCs. The use of three-dimensional
models naturally accounts for the rotational stiffness of the elastomer connections.

4.2.1 Summary

The results and conclusions in the publications discussed in Section 4.2 can be summarised as
follows:

• None of the developed models for predicting structure-borne sound generated accur-
ate predictions, although comparisons have been performed for simplified laboratory
setups.

• The radiated sound power in the receiving room caused by structure-borne sound sources
can be predicted with high accuracy using measured vibrations in the receiving room
as input. Considering the previous bullet, this highlights that the uncertainty in the
predictions of structure-borne sound lies within the modelling of the vibration trans-
mission.

• The force spectrum generated by a standardised tapping machine can be predicted us-
ing a deterministic FE model of the structure. Variations in model parameters have a
negligible effect on the force spectrum.
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• When glue is used in the joints between wood beams and particleboards, full interaction
can be assumed in the models.

• For joints without glue between beams and plates, it may be necessary to model the
elasticity between these parts.

• Elastomeric vibration isolators in wood buildings must be modelled in detail by consid-
ering dynamic material parameters and rotational stiffness. Linear translational spring-
dampers systems are insufficient for obtaining accurate results.

• Air-filled cavities in wood buildings affect the vibration transmission and should be
considered in models. This conclusion is based on correlation studies for a structure
without insulation in the cavity between the floor and ceiling.

It should be noted that some of the aforementioned conclusions are based on single publica-
tions in which simplified laboratory setups representing specific types of wood buildings were
studied. Therefore, the conclusions are not necessarily applicable to all types of wood buildings;
it may be necessary to test their validity in future correlation and validation studies.

4.3 CONCLUSIONS IN APPENDED PUBLICATIONS

In this section, the results and conclusions presented in Papers B, C and D are discussed. A
summary of each paper is found in Chapter 6. The conclusions are based on example cases
representing parts of TVE buildings.

There are several uncertainties that must be investigated before reliable models for predicting
vibration transmission in multi-storey wood buildings can be established. One example is the
effect of variations between structures with identical geometry, caused by, for example, the
material properties of wood and the mechanical properties of joints. Another uncertainty that
needs to be addressed is the effect of details and irregularities such as windows, floors, inner
walls and surface layers. To investigate the effects of different variations and uncertainties, it
is necessary to first develop a deterministic numerical model that has been correlated to meas-
urements for use as a reference model. This was one of the objectives of the studies presented
in the appended Papers C and D in which a wooden building structure representing part of a
two-storey TVE building was investigated numerically and experimentally.

Paper C presents a procedure for determining the dimensions of scaled-size experimental struc-
tures. The procedure is based on analytical calculations and FE simulations. The simulated
results for scaled-size structures were correlated to results for corresponding full-size structures
to ensure accurate scaling. The procedure was applied to a wooden building structure repres-
enting part of a two-storey TVE building. The structure was scaled down from a volume of
4.0×3.6×2.8 m3 to 2.6×2.4×1.9 m3, which is a reduction of 70%. The eigenfrequencies and
mode shapes of the structure were preserved with high accuracy in the scaling, and a reasonable
accuracy was obtained for the FRFs between storeys.
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In Paper D, model correlations were performed for the scaled-size wooden building structure
developed in Paper C. Calibrations and correlations between simulated and measured results
were performed using a multi-level approach. In the paper, important model parameters are
discussed and modelling guidelines are suggested. These can be summarised as follows:

• It is important to use optimised material parameters for each individual wood beam to
accurately simulate the mode shapes of floors, ceilings, walls and room structures for
frequencies up to 100 Hz. Consequently, if Monte Carlo simulations are performed for
the variations in material parameters of wood, random parameters should be generated
for each individual beam.

• Joints between wood beams and particleboards can bemodelled as fully interacting when
they are both screwed and glued, as they were in the experimental structure. This ob-
servation agrees with the conclusions from previous research (see Section 4.2.1).

• It is erroneous to model the joints between wood beams and plasterboards as fully inter-
acting when they are screwed and not glued, as they were in the experimental structure.
The joints should instead be modelled by using elasticity for the rotational coupling.

• Elasticity in rotational coupling should also be used for modelling the joints between
floors and walls, ceilings and walls, and different walls.

• It is important to model acoustic media in the cavities between floors and ceilings, par-
ticularly at higher frequencies. The floor-ceiling cavity in the experimental structure
contained only air, with no insulation.

It was concluded that the dynamic behaviour of the experimental structure is to a great extent
captured by the developed model. The simulated and measured results display similar amp-
litudes and resonance peaks, although appreciable discrepancies were found for transmission
between storeys for frequencies above 50 Hz. Potential error sources are discussed in the pa-
per. It was concluded that it is relevant to employ deterministic models to predict the vibration
transmission provided that measurement data for calibration purposes is available.

The effect of modelling acoustic media in the cavities of wood buildings was investigated in
more detail in Paper B wherein air and insulation were included in the numerical models. Air
in the cavities alone was first modelled, resulting in significantly increased vibration transmis-
sion from a floor to the underlying room (in agreement with the studies in Paper D). The floor
vibrations were, however, not affected to any appreciable extent when including air alone.
Next, both air and insulation were modelled, with the latter modelled using a porous material
model. The insulation had a dampening affect compared to the model with only air, both for
the floor vibrations and for the transmission to the lower room. Comparing the model with
both air and insulation in cavities to the model without acoustic media revealed that floor
vibrations were reduced by about 15%, and the transmission to the underlying room was in-
creased by a factor of up to 100 for frequencies below 100Hz. Themain conclusion from these
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studies is that it is important to consider air and insulation in the cavities of wood buildings
when modelling low-frequency vibration transmission between storeys and rooms. The effect
of acoustic media is already distinct at very low frequencies, around the first resonances of the
buildings.
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The FE models discussed in Chapter 4 contain a large number of DoFs, which results in long
computation times. For example, the FE model developed in Paper D representing a part of
a two-storey TVE building contained 2.3 million DoFs. Steady-state analysis of the model
at one frequency took 260 s when using the solver implemented in Abaqus/Standard 6.13 on
an Intel Xeon E5-2650 eight-core processor of 2.0 GHz with 62 GB of RAM available. This
means that a sweep of steady-state analyses of the model up to 100 Hz in steps of 1 Hz would
take 7 hours. Such computation times are often problematic in the context of a design process.
A parametric study can involve tens or hundreds of analyses and if each analysis takes 7 hours,
the total computation time is several days or weeks. Consequently, there is a need to reduce
the computation times for FE models of wood buildings. Dynamic substructuring is used in
the thesis to perform the reduction.

Dynamic substructuring is a methodology frequently used for reducing large numerical mod-
els of structural dynamic systems. The methodology is illustrated in Figure 5.1. It is based
on the division of structures into substructures that are reduced in size and assembled to form
reduced global models. Dynamic substructuring provides a flexible and practical framework.
It enables the combination of full numerical models and reduced order models of the substruc-
tures. The framework also allows for integration of experimental substructures represented by
measured data into assemblies of numerical models. A description of the historic development
of substructuring and a classification of methods is presented in [44].

In Sections 5.1.1 and 5.1.2, the theoretical background to model reduction through dynamic
substructuring is presented. Section 5.2 describes how the framework for dynamic substruc-
turing is applied to FEmodels of wood buildings. Conclusions of the studies on substructuring
presented in the appended Papers E and F are discussed in Section 5.3.
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Figure 5.1: Illustration of model order reduction through dynamic substructuring when applied to
a simple frame structure.

5.1 THEORETICAL BACKGROUND

5.1.1 Model order reduction

If a linear FE model is divided into substructures, each substructure is represented by the
equation of motion in Equation (3.50). In this section, the reduction of one substructure
containing n DoFs is considered. The objective of model order reduction is to obtain a system
of m DoFs (where m << n) that preserves the dynamic characteristics of the full equation
system. The general approach is to approximate the state vector using the transformation
a(t ) = TaR(t ), where T ∈ Rn×m is the transformation matrix and aR(t ) ∈ Rm×1 is the
reduced state vector. This is a Ritz approximation [78] and the columns of the transformation
matrix is the basis vectors. Applying the transformation to Equation (3.50) results in

MRÜaR(t ) + CR ÛaR(t ) + KRaR(t ) = fR(t ), (5.1)

where the reduced mass, damping and stiffness matrices, MR,CR,KR ∈ Rm×m , respectively,
and the reduced load vector fR(t ) ∈ Rm×1 are given by

MR = TTMT, CR = TTCT, KR = TTKT, fR(t ) = TT f(t ). (5.2)
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In the recent decades, many different methods for model order reduction have been proposed
in the literature. The methods offer different ways of constructing the reduced basis in the
transformation matrix. The theoretical background to a wide range of methods is presented
in Paper F. The DoFs in the reduced state vector can be divided into two categories: interface
DoFs and generalised coordinates. Interface DoFs can be, for example, displacements or forces
in the nodes of the substructure interfaces. Generalised coordinates generally have no physical
interpretation other than being amplitudes of basis vectors contained in the transformation
matrix. The coupling of substructures is normally realised by tying the interface DoFs of
neighbouring substructures to each other using Lagrange multipliers [37]. This enforces the
compatibility requirements and force equilibrium. Such a coupling procedure requires that
the interface DoFs are preserved in the model order reduction. Reduction methods preserving
the interface DoFs are referred to as structure-preserving. The research presented in Papers E
and F considers only structure-preserving methods.

5.1.2 Interface reduction

The reduced system matrices resulting from a model order reduction are, in general, densely
populated. This means that the computation time increases faster compared to full FE models
(which have sparse system matrices) as the number of DoFs increases. If substructure models
have large numbers of interface DoFs, it is necessary to perform interface reduction before
model order reductions are carried out. There are essentially two methodologies for reducing
the number of interface DoFs of substructures. The first is based on the concept of inter-
face modes; deformation shapes of the interfaces that are extracted from eigenmodes of the
substructure assembly [79]. The coupling of adjacent substructures is then realised by coup-
ling the sets of generalised coordinates through Lagrange multipliers. Two drawbacks of this
methodology are that it is not structure preserving and that the substructures cannot be re-
duced separately. In the second methodology, an additional node referred to as condensation
node [80] is introduced for each interface surface. A condensation node represents the motion
of its interface surface and has both translational and rotational DoFs, resulting in six DoFs per
interface. The coupling of adjacent substructures is then realised by coupling the condensation
nodes through Lagrange multipliers. The condensation nodes can be coupled to the DoFs of
their respective interface surfaces using different methods. The theoretical background to such
coupling methods is presented in Paper E.

5.2 STRATEGY USED IN THESIS

Dynamic substructuring of wood buildings is considered in Papers E and F. A summary of each
paper is found in Chapter 6. Paper E considers interface reduction and coupling of substruc-
ture models, while Paper F discusses methods for model order reduction of the substructures.

The division into substructures can be accomplished in different manners and affects both the
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accuracy and the computational efficiency of the reduced models. Since the reduced system
matrices generally are densely populated, it is important to ensure that the substructures have
a small number of DoFs to avoid long computation times. In the thesis, wood buildings are
divided into substructures at the interfaces between elastomeric vibration isolators and wood
components. For TVE buildings, illustrated in Figure 1.1, this approach means that each
volume element is considered as a substructure. There are several benefits from performing the
substructure division in such manner. First of all, those interfaces are often small compared to
the complete geometry, which is an advantage when striving for a small number of interface
DoFs. Second, the large difference in stiffness between elastomers and wood components is
beneficial for the interface reduction described in Paper E; this is explained in more detail in
the paper. Third, by performing the division at the interfaces between elastomers and wood
components, the elastomers are excluded from the substructures. Instead, the elastomers can
be treated as coupling elements, which is discussed in Paper E. This is necessary when mod-
elling frequency-dependent material properties of elastomers since most methods for model
order reduction require constant system matrices. In summary, the strategy for dividing wood
buildings into substructures employed in the thesis results in substructure models with a small
number of interface DoFs and enables the modelling of frequency-dependent properties of
elastomers.

5.3 CONCLUSIONS IN APPENDED PUBLICATIONS

In Paper E, a procedure for creating reduced coupling elements representing elastomeric vibra-
tion isolators is presented. Figure 5.2 illustrates the coupling elements and how they are used
to couple substructures models. The coupling elements replace 3D FE models of elastomers
and are able to represent frequency-dependent material properties and the rotational stiffness
in elastomeric connections. The developed procedure involves methods for interface reduction
and for reduction of the number of internal DoFs of elastomers. The methods for interface
reduction are based on the use of condensation nodes, which results in six DoFs representing
each interface surface. The interface reduction is performed both for elastomers and for the
substructures they are connected to. The coupling of substructures is then realised by tying the
condensation nodes at the coupling elements to the condensation nodes at the substructures
using Lagrange multipliers. In the paper, an FE model comprising a wood floor and a wood
ceiling with elastomeric vibration isolators between them was used as an example case. Based
on the studies of the example case, several conclusions were drawn regarding the accuracy of
different methods for interface reduction and for reduction of internal DoFs of elastomers.
For example, it was concluded that the optimal method for interface reduction of elastomers
is another method than the optimal method for wood components.

In Paper F, a wide range of methods for model order reduction were compared in terms of
their effects on the accuracy and computational time of analyses. Two FE models of wood
floors were used as example cases. The comparative studies provide guidance in the selection
of suitable methods for reducing FE models of wooden building structures. For example,
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Figure 5.2: Illustration of coupling elements representing elastomeric vibration isolators in dynamic
substructuring.

the component mode synthesis (CMS) method by Craig-Bampton and the Krylov subspace
version of CMSwere found to produce reducedmodels with similar accuracy and computation
time. The former method is widely used in structural dynamics, while the latter has emerged
as an alternative in recent years.

In Paper E, the example model studied was reduced by combining the reduction methods
suggested in Papers E and F. By performing the reduction, the computation time for steady-
state analyses of the full model was reduced by 99.8% while only introducing errors of about
1% in the simulated vibration transmission for frequencies up to 100 Hz. This demonstrates
the potential of using the strategy suggested in the thesis for dynamic substructuring of FE
models of wood buildings.





6 Summary of appended publications

6.1 PAPER A

Numerical investigation of vibration reduction in multi-storey lightweight buildings.
Ola Flodén, Kent Persson, Göran Sandberg.

In: Dynamics of Civil Structures, Vol 2: 443–453. Springer International Publishing, 2015.

Summary

A numerical study on the effects of different design choices for elastomeric vibration isolators
in wood buildings is presented. The vibration transmission in a two-storey TVE building was
simulated using an FE model. Only the structural transmission was considered, i.e. acoustic
media in the cavity between floor and ceiling was not modelled. The amount of transmitted
vibrations was compared for different designs of the elastomeric isolators, which were in the
shape of blocks and placed along the walls between the storeys. Two design choices were stud-
ied: the placement of the elastomers and their material properties. The properties were varied
within realistic ranges and the placement was varied while keeping constant distances between
the blocks. It was found that the transmission from a floor to the ceiling of the storey below, in
general, increases with the stiffness of the elastomers. It was observed that the use of relatively
stiff elastomers can cause increased vibration transmission at frequencies between 50–100 Hz
compared to a setup without elastomeric isolators. The placement of the elastomers was found
to have negligible effect on the vibration transmission. The floor vibrations were not affected
by the design of the elastomeric isolators.

Contributions by Ola Flodén

Ola Flodén was the main author of the paper, planned research tasks, performed the FE mod-
elling and analyses, and drew conclusions that were presented.
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6.2 PAPER B

The effect of modelling acoustic media in cavities of lightweight building structures on the
transmission of structural vibrations.

Ola Flodén, Juan Negreira, Kent Persson, Göran Sandberg.
Engineering Structures 83: 7–16, 2015.

Summary

A numerical investigation regarding the effects of air and insulation in cavities of multi-storey
wood buildings on the vibration transmission is presented. TVE buildings were used as ex-
ample case for studying the vibration transmission from a floor structure to the storey below for
frequencies up to 100 Hz. An FE model without acoustic media was compared to two other
models: one model including air and insulation and one model including air alone. It was
found that the modelling of air alone results in a more resonant system and higher vibration
amplitudes. Compared to the model without acoustic media, the model with both air and
insulation introduces a dampening effect for the floor vibrations, while the transmission to
the lower room is increased significantly. The main conclusion in the paper is that the air and
insulation inside cavities should be considered in numerical analysis of vibration transmission
in multi-storey wood buildings.

Contributions by Ola Flodén

Ola Flodén contributed was the main author of the paper, planned research tasks, performed
the main part of the FE modelling and analyses, and drew conclusions that were presented.

6.3 PAPER C

Numerical and experimental studies on scale models of lightweight building structures.
Ola Flodén, Kent Persson, Göran Sandberg.

In: Dynamics of Coupled Structures, Vol 4: 173–180. Springer International Publishing,
2016.

Summary

A procedure for scaling the size of experimental building structures for vibration measurements
is presented. The objective of developing the scaling procedure is to enable the design of scaled-
size structures which preserve the dynamic behaviour of full-size structures. The procedure is
based on analytical expressions for the dynamic bending of beams and involves FE modelling
of the scaled-size and full-size structures to correlate their eigenfrequencies, mode shapes and
vibration transmission. As an example case, a wooden building structure representing part
of a two-storey TVE building was used. The volume of the structure was scaled down from
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4.0×3.6×2.8 m3 to 2.6×2.4×1.9 m3, i.e. by 70%, through employing the scaling procedure.
It was found that the eigenfrequencies and mode shapes below 100 Hz were well-preserved in
the scaling. The vibration transmission in the scaled-size and full-size structures were found to
be well-correlated for frequencies up to 50 Hz.

Contributions by Ola Flodén

Ola Flodén was the main author of the paper, planned research tasks, performed the analytical
and FE calculations, and drew conclusions that were presented.

6.4 PAPER D

A multi-level model correlation approach for low-frequency vibration transmission in wood
structures.

Ola Flodén, Kent Persson, Göran Sandberg.
Submitted for publication.

Summary

A multi-level model correlation approach for low-frequency vibration transmission in wood
buildings is presented. The approach is based on calibrations and correlations between simula-
tions and measurements at four levels: structural components (viz. beams and boards), planar
structures (viz. floors, ceilings and walls), room structures and the complete structure. As an
example case, the scaled-size experimental structure designed in Paper C was used. Based on
observations made in the studies, important model parameters are discussed and modelling
guidelines are suggested. The results were used to discuss the accuracy of deterministic mod-
els in the special case that detailed information regarding material parameters and mechanical
behaviour of joints is available. The results indicate that the dynamic behaviour of the ex-
perimental structure is to a great extent captured by the developed model. Therefore, it was
concluded that it is relevant to employ deterministic models to predict the vibration trans-
mission provided that measurement data for calibration purposes is available. The developed
model can be used as a reference model for investigations on the effects of variations and un-
certainties in the modelling, and on the possibilities and limitations of using deterministic
methods.

Contributions by Ola Flodén

Ola Flodén was the main author of the paper, planned research tasks, performed the experi-
mental and numerical analyses, and drew conclusions that were presented.
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6.5 PAPER E

Modelling of elastomeric vibration isolators in dynamic substructuring.
Ola Flodén, Kent Persson, Göran Sandberg.

Submitted for publication.

Summary

A procedure for creating coupling elements that represent elastomeric vibration isolators in
dynamic substructuring is presented. The coupling elements are constructed on the basis of
3D FE models of elastomers, and are intended for use in assembling reduced substructure
models. The developed procedure involves methods for interface reduction and for reduction
of the number of internal DoFs of elastomers. The interface reduction is performed both for
elastomers and for the substructures they are connected to. An FE model comprising a floor
and a ceiling with elastomeric isolators between them was used as example case. The effects of
using different reduction methods to create the coupling elements were investigated. Also, the
effects of including different modelling features, such as rotational coupling and frequency-
dependent material properties, in the coupling elements were investigated. It was found that
the procedure for creating coupling elements can be used for establishing accurate and effi-
cient assemblies of reduced substructure models provided that suitable reduction methods are
employed.

Contributions by Ola Flodén

Ola Flodén was the main author of the paper, planned research tasks, performed the FE mod-
elling and analyses, and drew conclusions that were presented.

6.6 PAPER F

Reduction methods for the dynamic analysis of substructure models of lightweight building
structures.

Ola Flodén, Kent Persson, Göran Sandberg.
Computers & Structures 138: 49–61, 2014.

Summary

A comparative study of different methods for model order reduction when applied to sub-
structure models of wood buildings is presented. A wide range of methods in the literature
were compared for two example cases, both being FE models of wooden floor structures. The
comparisons were made by studying the errors in eigenfrequencies, mode shapes and predicted
vibration transmission through the floors. The latter was performed when applying realistic
BCs, imposed by coupling the reduced models to FE models of wood-framed walls. Conclu-
sions were drawn regarding the relative accuracy and computation time of the reduced models.



6.6 Paper F 59

For example, the CMS method by Craig-Bampton and the Krylov subspace version of CMS
were found to result in similar accuracy and computation time. The former method is widely
used in structural dynamics, while the latter has emerged as an alternative in recent years.

Contributions by Ola Flodén

Ola Flodén was the main author of the paper, planned research tasks, implemented the meth-
ods for model order reduction, performed the FE modelling and analyses, and drew conclu-
sions that were presented.





7 Concluding remarks

The aim of the research discussed in the thesis is to create accurate and efficient prediction
models that can be used for designing multi-storey wood buildings with improved vibroacous-
tic comfort for residents. The thesis work focused on the prediction of low-frequency vibration
transmission between storeys and rooms. Such models can be used to predict structure-borne
sound as well as floor vibrations. The presented research is a part of the development of accurate
and efficient numerical models. Several uncertainties in the modelling remain, but the results
and conclusions presented in the thesis are important steps towards enabling the prediction
of vibration transmission by use of numerical models. Two main conclusions of the studies
are: (1) that deterministic models are relevant for predicting the vibration transmission below
100 Hz, provided that measurement data for calibration purposes is available, and (2) that the
suggested strategy for dynamic substructuring can be used to reduce the computation times
significantly without having an appreciable effect on the accuracy of the model predictions.

The conclusions of the studies presented in the appended publications and their contributions
to the research field are discussed in more detail in this chapter, along with proposals for future
work.

7.1 CONCLUSIONS AND CONTRIBUTIONS

The studies in Paper A contribute to the research field by increasing knowledge regarding the
effects of design choices for elastomeric vibration isolators in wood buildings. Elastomeric
isolators are widely used in the construction industry, but knowledge of their effect on the
dynamic behaviour of wood buildings and how they should be designed to optimise the vibra-
tion reduction is limited. In the paper, results from numerical parametric studies were used to
show that overly stiff elastomers can result in amplifications of vibration transmission between
storeys at frequencies between 50–100 Hz. This highlights the need for a careful design of
elastomeric isolators and that it can be preferable to develop other types of vibration isolators
for wood buildings.

The contributions of the research presented in Papers B–D are related to the development
of accurate numerical models, while the research presented in Papers E and F considers the
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computational efficiency of the models. The conclusions were based on studies of example
cases representing parts of TVE buildings.

7.1.1 Model validation

Paper C presents a procedure for determining the dimensions of scaled-size experimental build-
ing structures. For the example case studied, it was found that the procedure can be used to
establish scaled-size structures with well-preserved dynamic characteristics and significantly re-
duced dimensions compared to full-scale structures. The procedure is well-suited for model
correlation studies, such as the one presented in Paper D, in which it is important that the
dynamic characteristics are well-preserved in the scaling but absolute vibration levels are of less
importance. By employing the procedure for future model correlation studies, these can be
performed at a lower cost and with greater time-efficiency. For model validation tests, however,
measurements on real buildings should be used instead.

The correlation study presented in Paper D is an important step towards establishing accurate
models for analysing low-frequency vibration transmission in wood buildings. It was found
that the developed deterministic model could reproduce the vibration transmission in the ex-
perimental structure to a great extent. In the paper, discussions on importantmodel parameters
and modelling guidelines are presented that provide valuable input to future studies. The de-
veloped numerical model can be used as a reference model for investigations on the effects of
variations and uncertainties in the modelling of low-frequency vibrations in wood buildings.

One of the findings in Paper D was that the correlation between simulated and measured
vibrations is improved by modelling the air in the cavity between the floor and the ceiling as
an acoustic medium. The effects of modelling acoustic media in the cavities of wood buildings
was investigated in more detail in Paper B in which both air and insulation were considered in
numerical models. It was concluded that the predicted vibration transmission from a floor to
the underlying storey is increased substantially by including air and insulation in the model.
The effects were found to be less significant for floor vibrations, which were slightly damped.
The results presented in Papers B and D show that the inclusion of acoustic media in models
has a considerable effect on the vibration transmission and that the effect is distinct already at
very low frequencies, around the first resonances of the buildings.

7.1.2 Dynamic substructuring

The conclusions in Papers E and F contribute to a framework for establishing computationally
efficient reduced substructure models of wood buildings. The procedure presented in Paper E
can be employed to create coupling elements representing elastomeric vibration isolators. The
use of the coupling elements results in substructure models with a small number of interface
DoFs, which is crucial for obtaining reduced substructure models that are computationally
efficient. In the paper, an example case consisting of a floor and a ceiling with elastomeric
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isolators between themwas studied. It was found that using the procedure for creating coupling
elements allowed substantial reduction of the number of interface DoFs of the substructure
models without introducing errors of any appreciable size. Furthermore, the procedure allows
for the modelling of frequency-dependent properties of elastomers, which is not possible using
conventional substructuring techniques. Paper F provides guidelines for selecting methods for
model order reduction of substructure models of wooden building structures. The guidelines
are based on comparisons of a wide range of methods in terms of their effects on the accuracy
and efficiency of the reduced models.

The potential of combining the reduction methods suggested in Papers E and F was demon-
strated for the example case in Paper E. The computation time for steady-state analyses of the
full model was reduced by 99.8% while only introducing errors of about 1% in the simulated
vibration transmission for frequencies below 100 Hz.

7.2 PROPOSALS FOR FUTURE WORK

The proposals presented here are related to the further development of the numerical models
discussed in the thesis. However, the model developed in Paper D is accurate enough to study
the physics involved in low-frequency vibration transmission in wood buildings. The model
can be used in studies on novel types of vibration isolators for wood buildings.

An important continuation of the research presented in the thesis is to investigate the effects
that variations and uncertainties in the modelling have on the predicted vibrations. The correl-
ated model developed in Paper D is suitable for use as a reference model for such investigations.
Examples of variations and uncertainties that are relevant to study are:

• The variations in material parameters of wood. It was concluded in Paper D that it
is important to use optimised material parameters for each individual wood beam to
accurately simulate the mode shapes of floors, ceilings, walls and room structures below
100Hz. Therefore, variations should be considered for each individual beam as opposed
to varying the parameters simultaneously for all beams.

• The variations in the mechanical behaviour of joints between beams and plates and
between floor, walls and ceiling in each room.

• The level of detail in the models. It can, for example, be investigated how modelling of
windows, doors, interior walls and surface layers affect the model predictions.

• The BCs applied to the models. The model developed in Paper D represents part of a
two-storey building and was developed for free BCs because the experimental structure
was suspended from soft rubber bands. It should be investigated how the modelling of
larger parts of buildings and the use of different BCs affect predictions.
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Whereas variations in the material parameters of wood are well-known, the understanding of
variations in the mechanical behaviour of joints is not as extensive. To determine statistical
distributions for model parameters for joints, model calibrations can be performed for a series
of simplified experimental setups. Once statistical distributions have been established, their
effects can be considered through Monte Carlo simulations in which variations are propagated
from the model input to the model output. Monte Carlo simulations can be performed by
considering the stochastic parameters both individually and simultaneously. By considering
the parameters one at a time, the necessity for modelling them stochastically can be assessed;
by considering the parameters simultaneously, the total variation in the model predictions can
be determined.

The modelling of air and insulation in cavities should be investigated further. In the invest-
igations presented in Paper B, no correlations between simulations and measurements were
carried out. Correlations should be performed for experimental setups containing insulation
to identify porous material models that are suitable for modelling low-frequency vibration
transmission. Furthermore, it would be interesting to investigate if air and insulation in cav-
ities can be modelled in a simpler fashion than by using acoustic finite elements. An example
of a simpler approach would be to use spring-dashpot systems.

Through further model correlation studies and investigations on the effects of variations and
uncertainties, the accuracy of model prediction will be improved. Eventually, model valida-
tion tests should be performed by comparing predictions to a series of measurements on real
buildings. Through such testing, it can be determined if the developed models are able to
predict the variations in dynamic behaviour among buildings with identical geometry.

The dynamic substructuring methods discussed in Papers E and F provide a framework for
creating reduced models that are computationally efficient. As these studies were performed
without considering air and insulation in cavities, the integration of air and insulation into
the framework should be further investigated. However, before performing these investiga-
tions, the modelling of air and insulation in cavities should be further investigated. If such
investigations reveal that the effects of air and insulation can be modelled accurately using
spring-dashpot systems, these can be integrated with the substructure division employed in
Papers E and F; the spring-dashpots can be considered as coupling elements in the same way
as the elastomeric vibration isolators. If it is found that acoustic finite elements are required
to obtain accurate predictions, it will be necessary to modify the strategy for performing sub-
structure division.
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Chapter 45
Numerical Investigation of Vibration Reduction in Multi-storey
Lightweight Buildings

Ola Flodén, Kent Persson, and Göran Sandberg

Abstract In order to reduce the vibration transmission in multi-storey wood buildings, it is common to insert viscoelastic
elastomer materials between parts of the buildings. The studies presented here investigate to which extent different design
choices for the elastomer layers affect the isolation of low-frequency vibrations (0–100 Hz). A finite element model of two
storeys of a multi-storey wood building, involving blocks of elastomer material in between the storeys, was used to perform
numerical investigations. Parametric studies were carried out, considering different properties of the elastomer material
and different placements of the elastomer blocks. Considering the transmission from the floor of the upper storey to the
underlying ceiling, the material properties of the elastomer material were found to affect the vibration levels appreciably.
A too stiff elastomer material can result in an amplification of the vibration levels in the ceiling for certain frequencies,
whilst a less stiff material, in general, reduces the vibration transmission. The placement of the elastomer blocks was varied
by shifting the position of the blocks while maintaining their centre-to-centre distance, resulting in a small effect on the
vibration levels.

Keywords Wooden buildings • Impact sound • Vibration reduction • Elastomer materials • Finite element method

45.1 Introduction

In 1994, a century-old ban on the construction of wooden buildings more than two storeys in height in Sweden was lifted,
leading to the reintroduction of such buildings. The use of wood as a construction material has many advantages. The
lightweight properties of wood, for example, lower the transportation costs involved and reduce the size of the foundations
needed [1]. In addition, the energy consumption during the construction and the lifecycle of wooden buildings is lower
than that of concrete buildings of comparable size [2]. At the same time, however, it is more difficult to build lightweight
structures of wood such that noise and disturbing vibrations in the different storeys and rooms are avoided, especially at low
frequencies [3]. The vibrations can be caused by, for example, footsteps, airborne sound, vibrating machines and external
sources such as railway and road traffic.

Despite newly constructed multi-storey wood buildings fulfilling the requirements for sound insulation, many of the
occupants perceive the impact sound as annoying [4]. In [5], an investigation is reported where vibrational and acoustical
parameters were measured and the subjective ratings of occupants were evaluated, including a total of ten lightweight
buildings of different construction types. The correlation between the impact sound insulation, evaluated according to ISO
717-2:2013 [6], and the perceived annoyance of the occupants was found to be weak. The ISO standard only considers
frequencies above 50 Hz; the correlation was improved considerably by extending the range to include frequencies down
to 20 Hz. This emphasises the need for updated regulations as well as improved low-frequency impact sound insulation in
lightweight buildings.

45.1.1 Vibration Reduction Measures

In order to reduce the vibrations transmitted throughout the buildings, different measures can be taken. In [7], different types
of vibration reduction measures are discussed, for example the tuned mass damper (TMD), consisting of a mass mounted to
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the vibrating structure by some elastic material acting as a spring. The TMD is tuned to have a certain natural frequency and
provides an effective way of cancelling the vibrations caused by a single vibration mode. Another example is the semi-active
absorber, which can change its damping properties rapidly to adjust for changes in the excitation. An even more sophisticated
measure is the active control system, which drives the system through feedback loops, an effective but costly procedure due
to the energy required to drive the system. Moreover, an experimental investigation is presented in [7], studying the use
of viscoelastic materials as vibration isolators in the junctions of a floor-ceiling structure in steel. It was found to be an
effective method for reducing the vibrations caused by modes in which the floor and the ceiling move out of phase, and it
was concluded that viscoelastic materials function well for wider frequency ranges, as compared to TMDs.

Many of the newly constructed multi-storey wood buildings in Sweden are composed of timber volume elements (TVEs),
such buildings being described in more detail in Sect. 45.1.2. TVE buildings are constructed by stacking volume modules
which are separated by layers of viscoelastic elastomer materials. In the studies presented here, the TVE buildings will serve
as example case for studying the effect of different design choices for the elastomer layers. The use of elastomer materials
in junctions is common in different types of lightweight buildings.

In [8], measurements on full-scale structures were carried out in order to investigate the effect of a number of measures
for reducing the impact sound in TVE buildings. Measures that were found to be effective in reducing the vibrations were,
for example, an extra layer of plaster board on the floor structure and the use of a floating floor, in which mineral wool is
placed between the beams and the boards of a floor structure. The use of a heavier mineral wool as insulation, or a larger
cavity between floors and ceilings, were found to be less effective measures for reducing the vibrations. Elastomer layers in
the junctions were also tested, leading to ambiguous results from two different measurement setups; one resulting in reduced
sound pressure levels, compared to having no elastomer material in the junctions, the other in increased sound pressure levels.
The majority of the tested measures were found to change the impact sound less than 2 dB when evaluated according to the
ISO standards. This should be compared with the measured variance of 1.1 dB between theoretically identical constructions
due to the varying quality of the workmanship.

An experimental investigation of the effect of using elastomer layers in junctions of wooden constructions is reported
in [9]. A mock-up consisting of a floor structure, supported by three walls, was used to study the vibration transmission
from the floor to the walls of the storey below. Marked differences in the behaviour was found for certain vibration modes
when inserting elastomer materials in the junctions, as compared to a setup with the floor mounted directly on the walls.
For example, the damping is larger for mode shapes where large deformations occur in the elastomer layers. It was also
concluded that the step sound insulation can decrease for low frequencies (20–70 Hz), possibly due to shear resonances in
the elastomer layers. This points out the need for a careful design of the elastomer layers with respect to the structure, the
vibration sources and the requirements in question.

45.1.2 Timber Volume Element Buildings

The lightweight properties of wood simplify the use of prefabrication in the construction process compared to conventional
concrete buildings. The TVE buildings are prefabricated multi-storey buildings, increasing in popularity in Sweden. A TVE is
a module consisting of floor-, roof- and wall elements completed with, for example, electrical installations, flooring, cabinets
and wardrobes. Each TVE typically constitutes a small apartment, one room or part of a larger room. Prefabricated TVEs are
transported to a construction site where they are stacked to form the complete building. In Fig. 45.1, the conceptual layout
of a TVE building is illustrated, and in Fig. 45.2, drawings of junctions between a floor-ceiling structure and an apartment
separating wall (to the left) and a facade wall (to the right) are shown. An advantage regarding vibrations and acoustic
performance is that a floor is structurally separated from the ceiling of the storey below; the upper volume contains the floor
whereas the lower volume comprises the ceiling. Elastomer blocks are placed on the flanks in between the TVEs in order
to reduce the vibration transmission through the junctions. The major structural connection between adjacent volumes is by
means of the elastomers, the only additional connection being through a few studs and tie plates, used to position and fixate
the TVEs.

45.1.3 Objective

In this paper, a numerical investigation is presented, aiming at an increased understanding of how the design of
elastomer layers in junctions of multi-storey wood buildings affects the vibration transmission between storeys and rooms.
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Fig. 45.1 Sketch of a TVE building [8]. The path of structural vibrations between storeys is illustrated in the figure to the left and an elastomer
block is illustrated in the figure to the right

Fig. 45.2 Drawings of the TVE building system, showing sections of a floor-ceiling structure and junctions with an apartment separating wall
(left) and a facade wall (right)

More specifically, parametric studies were carried out, considering different properties of the elastomer material and different
placements of the elastomer blocks. The aim is to gain an understanding of the extent to which this type of design choices
affect the vibration isolation. The result of the numerical investigation may then serve as input for designing experimental
studies. A precise prediction of the sound insulation levels is outside the scope of the paper. The studies are limited to the
low-frequency range, defined here as frequencies below 100 Hz.

In Sect. 45.2, the dynamic properties of the elastomer materials are discussed and investigated in order to provide input
for the parametric studies. The numerical model employed is discussed in Sect. 45.3 and the parametric studies are presented
in Sect. 45.4.

45.2 Properties of Elastomer Materials

In order to determine a realistic range for the properties of the elastomer materials, a type of elastomer often used in
TVE buildings, Sylodyn, was studied. Sylodyn is a mixed cellular polyurethane dampening material developed by Getzner
Werkstoffe GmbH, manufactured in five different types: NB, NC, ND, NE and NF. The stiffness of the materials are
increasing from NB to NF, stiffer materials being used when the static loads are of higher magnitude. The elastomers are

ola.floden@construction.lth.se



446 O. Flodén et al.

normally exposed to static loads of such magnitude that the materials behave nonlinearly from a static point of view. The
dynamic loads the buildings are exposed to are in most situations, however, of such magnitude that the nonlinear behaviour
can be neglected. The dynamic response may then be regarded as a small perturbation of the static equilibrium. Linear
and frequency-dependent viscoelastic material properties were determined for Sylodyn NE in [10]. The properties were
calculated by finite element (FE) simulations, matching the results to experimental data found in data sheets provided by the
manufacturer. The same procedure was employed here for Sylodyn NB and NF, respectively, in order to obtain the extreme
values of the material parameters for the manufactured materials.

A linear viscoelastic material can be described by its bulk modulus K and shear modulus G, both being complex and
frequency-dependent properties. The material is then described by four frequency-dependent parameters; KR.f /, KI.f /,
GR.f / and GI.f /, the subscripts R and I denoting the real and imaginary parts, respectively. Varying four different
parameters in a parametric study is a time consuming procedure. Therefore, the possibility of using a single parameter
to describe the variance in properties between the different materials was investigated. The idea was to scale the properties of
Sylodyn NB to match the properties of both Sylodyn NE and NF. The following expressions were assumed for the scaling:

GR.x; f / D .1C x/GNB
R .f /;

GI.x; f / D �
1C ˛1x C ˛2x2

�
GNB

I .f /;

KR.x; f / D �
1C ˛3x C ˛4x2

�
KNB

R .f /;

KI.x; f / D �
1C ˛5x C ˛6x2

�
KNB

I .f /;

(45.1)

where x is the scaling parameter and ˛i are coefficients. The coefficients were determined by comparing the four parameters
of Sylodyn NE and NF, respectively, to parameters obtained through Eq. (45.1), while adjusting the coefficients until the
average difference between the spectra for each material parameter was minimised. During the minimisation process, the
scaling parameters, xNE and xNF for Sylodyn NE and NF, respectively, were set to values obtained through normalisations
of GR.x; f / to GNB

R .f / at f D 50Hz (the mid-point of the studied frequency range) for both materials, such that

xNE D GNE
R .50 Hz/

GNB
R .50 Hz/

� 1 D 4:53;

xNF D GNF
R .50 Hz/

GNB
R .50 Hz/

� 1 D 9:63:

(45.2)

The coefficients resulting from the minimisation process are given in Table 45.1. The frequency spectra for the shear modulus
of Sylodyn NB, NE and NF and the scaled spectra of Sylodyn NB are shown in Fig. 45.3, and the corresponding plots for the
bulk modulus are shown in Fig. 45.4. When comparing the scaled spectra to the original spectra for the material parameters
of Sylodyn NE and NF, it was found that the error is below 6% for the real parts of the bulk and shear moduli, and below
30% for the imaginary parts. This shows that it is a relatively accurate approximation to use x as a single parameter for
describing the variance in material properties between the different elastomer materials.

Moreover, the long-term bulk and shear moduli, K1 D KR.0 Hz/ and G1 D GR.0 Hz/, are required as input to the
analyses. It was, for the scaled properties, assumed that K1 D KR.x; 1 Hz/ and G1 D GR.x; 1 Hz/ in the investigation of
the material properties presented in Sect. 45.4.1.

Table 45.1 The values obtained
for the coefficients of the scaling
in Eq. (45.1)

˛1 ˛2 ˛3 ˛4 ˛5 ˛6

1.57 0.005 1.14 0.011 1.80 0.019
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Fig. 45.3 The real and imaginary parts of the shear modulus for Sylodyn NB, NE and NF, together with the scaled spectra of Sylodyn NB.
The legend is valid for both plots
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Fig. 45.4 The real and imaginary parts of the bulk modulus for Sylodyn NB, NE and NF, together with the scaled spectra of Sylodyn NB.
The legend is valid for both plots
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45.3 Numerical Modelling

The FE model, a quarter of it being shown in Fig. 45.5, was modelled in the commercial software Abaqus [11]. It includes
two stacked TVEs, modelled according to the drawings in Fig. 45.2, separated by a number of elastomer blocks.

Each TVE is 9:0 � 3:9 � 3:4m3 in size, the long side walls being apartment separating and the short side walls being
facades. The facade walls are constructed in the same manner as the apartment separating walls, shown in Fig. 45.2, but with
95 � 220mm3 studs and a weatherboard covering the outside. The centre-to-centre distance for the beams in the floors and
in the walls is 600 mm, whilst the distance is 400 mm for the beams in the ceiling. All the structural components listed in
Fig. 45.2, except the mineral wools, were included in the model. All the interfaces between floors, walls and ceilings were
modelled as fully fixed to each other, connecting the degrees of freedom at the interface surfaces by Lagrange multipliers.
The exception is the connections between the walls and the floors, and between the walls and the ceilings, where only the
beams in the floors and the ceilings were coupled to the walls; the particle and plaster boards being free at their ends.

The effect of modelling the air and the insulation in the cavity between the floor and the ceiling, in terms of acoustic
media, was investigated in [12]. It was found to affect the vibration transmission appreciably, especially at low frequencies.
The acoustic media is, however, neglected in the studies presented here as the objective is to investigate to which extent the
structural transmission of vibrations can be affected by modifying the elastomer layers, assuming the acoustic media to have
a negligible effect on the relative difference in structural transmission.

The particle board, the plaster board and the plywood were modelled as isotropic materials with properties according to
Table 45.2, whereas the wood beams were modelled as orthotropic with properties according to Table 45.3. The weatherboard
was assigned the same properties as the plaster board. The elastomer blocks modelled in this study were of dimensions
100 � 95 � 25mm3 and placed along the walls between the two stacked TVEs with a centre-to-centre distance from one
another of 600 mm.

The structure was meshed with 20-node solid hexahedral elements, employing quadratic interpolation and reduced
integration, except for the elastomer blocks which were meshed with elements using a hybrid formulation in order to avoid
volumetric locking. The mesh sizes were decided based on the wavelengths expected to occur at the highest frequency of
interest, namely 100 Hz.

Due to the complexity when assessing damping in building structures, a global damping ratio of 6 % was assigned to all
materials, as opposed to considering damping for each material and for the different connections, the exception being the
viscoelastic properties of the elastomers. The damping ratio was determined in [13], with use of experimental data obtained
from measurements in a TVE building [14], by fitting an exponential function to the transient response of a floor structure.
The damping ratio was used to establish a damping matrix by means of Rayleigh damping, see e.g. [15]. The damping matrix
was, hence, constructed as a linear combination of the mass and the stiffness matrices, selecting the proportionality constants
to be 17:37 and 9:77 � 10�5, respectively.

Fig. 45.5 A quarter of the FE
model of two stacked TVEs. The
apartment separating walls are
shown in yellow, the facade walls
in red, the ceiling in green, the
floor in blue and the elastomer
blocks in grey
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Table 45.2 Material parameters
used for the isotropic materials

Material E (MPa) � (�) � (kgm�3)

Particle board 3; 000 0:3 767

Plaster board 2; 000 0:2 692:3

Plywood 12; 400 0:3 710

E is the Young’s modulus, � is the Poisson’s ratio
and � is the density

Table 45.3 Material parameters
used for the wood beams

E1 (MPa) E2 E3 G12 (MPa) G13 G23 �12 (�) �13 �23 � (kgm�3)

8,500 350 350 700 700 50 0.2 0.2 0.3 432

G is the shear modulus

The model was analysed in terms of steady-state frequency sweeps in order to study the vibration transmission from the
floor in the upper TVE to the ceiling in the lower TVE at various frequencies. The surfaces at the four corners on the bottom
of the lower TVE and on the top of the upper TVE, where elastomer blocks would be placed if further storeys were included,
were modelled as clamped. A harmonic unit point load was applied in the vertical direction at the floor structure of the upper
TVE, located in a point 300 mm in the x-direction (see Fig. 45.5) from the mid-point of the floor in order to be placed in the
span between two beams.

The steady-state response was calculated for frequencies up to 100 Hz, the resulting acceleration amplitudes being
evaluated at the surfaces of the floor in the upper TVE and the ceiling in the lower TVE. The magnitude of the complex
acceleration amplitudes were calculated for the nodes at the surfaces. The accelerations were evaluated in a quarter of each
surface due to conditions close to symmetry, the exception being the 300 mm shift of the position of the load. An RMS value
was calculated for each frequency step in the analyses, and for each of the two surfaces, as

aRMS.f / D
vuut1

n

nX
iD1
a2i .f /; (45.3)

where f is the frequency, ai is the magnitude of the complex accelerations in each node and n is the number of nodes at a
quarter of the floor surface or a quarter of the ceiling surface. All the RMS values presented in the paper are given in decibel
with 1�m/s2 as reference value.

45.3.1 Model Reduction

In order to improve the computational efficiency of the FE model, substructuring [16] was applied by considering each TVE
as a substructure. Both interface reduction and model order reduction were employed to establish an efficient reduced order
system. The number of degrees of freedom at the interfaces between the TVEs and the elastomer blocks were reduced by
employing the concept of using a condensation node [17] for each interface surface. The coupling between a condensation
node and its interface surface can be realised in different ways, a number of alternatives being compared in [18] for a model
of a wooden floor-ceiling structure involving an elastomer layer. It was concluded that a rigid coupling should be employed
for the interface surfaces of the elastomer parts and that a uniformly distributed coupling should be employed for the interface
surfaces of the wooden parts. The latter type of coupling distributes the forces acting on the condensation node uniformly
to the nodes of its interface surface. The findings in [18] were employed for the interface surfaces in the model investigated
here.

A number of methods for model order reduction, applied to wooden building structures, were compared in [19]. It
was found that the Craig-Bampton method [20] provides reduced order models with adequate accuracy compared to other
available methods, and this method was, hence, used in the present study to create reduce order models of the TVEs. The
Craig-Bampton method generates reduced models containing the interface degrees of freedom of the full model together
with generalised coordinates representing some of the fixed-interface eigenmodes of the model. Reduced models of the two
stacked TVEs, involving different numbers of retained eigenmodes in the Craig-Bampton reduction, were investigated in
order to find a reduced model with acceptable accuracy and reasonable computation time. In the comparison of the reduced
models, the elastomer blocks were modelled with the viscoelastic properties determined in [10], i.e the material properties
of Sylodyn NE. When employing a reduced model with 400 retained eigenmodes in each of the two TVEs, the error in RMS
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values at the ceiling surface, compared to the full model, was found to be below 50 % up to 100 Hz. At the floor surface, the
error in RMS values was found to be less than 20 % up to 100 Hz. These levels of error were considered acceptable, bearing
in mind that the parametric studies carried out in this investigation aim at establishing the relative differences in vibrations
for the different models under study, and not at a quantification of the vibration levels.

45.4 Parametric Studies

The numerical model described in Sect. 45.3 was used as a reference model for investigating the effects of varying the
properties of the elastomer material and the positioning of the elastomer blocks.

45.4.1 Material Properties

The properties of the elastomer material were varied by using different values of the scaling parameter x, described in
Sect. 45.2. Setting x D 0 and x D 9:63 results in the parameters for the softest and the stiffest of the investigated elastomer
materials, Sylodyn NB and NF, respectively. In the parametric study, x was varied from �0:5 to 20, these values resulting in
a span of GR from half the value for Sylodyn NB to twice the value for Sylodyn NF. The material properties obtained when
x is set to �0:5, 0.0, 10 and 20 are shown in Fig. 45.6. The RMS values of the acceleration amplitudes in the floor and in
the ceiling, obtained for different values of x, are shown in Fig. 45.7 and Fig. 45.8, respectively. In the figures, the frequency
spectra of the RMS values obtained for different values of x are plotted, as well as the mean value of the frequency spectra
as function of x. Moreover, the RMS values obtained from a model with the two TVEs stacked directly on top of each other,
without any elastomer layer in between, are also presented in the results.

It can be observed in Fig. 45.7 that the effect of the properties of the elastomer material, on the acceleration amplitudes in
the floor, is weak. Varying the parameters of the elastomer material results in a negligible difference in RMS values; 0.01 dB
when studying the mean value of the frequency spectra. Compared to having no elastomer layer in between the TVEs, the
RMS values in the floor are reduced by about 1 dB for frequencies above 30 Hz.
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Fig. 45.6 The shear and bulk moduli obtained for x D �0:5 (dashed line), x D 0:0 (solid line), x D 10 (dash-dot line) and x D 20 (dotted line)
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Fig. 45.7 The RMS values of the acceleration amplitudes at the floor surface presented as (a) function of frequency and (b) in terms of the mean
value of each frequency spectrum, plotted versus the scaling parameter

The properties of the elastomer material have a larger effect on the RMS values in the ceiling, as can be observed in
Fig. 45.7. The difference in mean value of the RMS values, when comparing the softest and the stiffest of the investigated
material properties (x D �0:5 and x D 20, respectively), is about 9 dB. For frequencies below 50 Hz, there is a marked
reduction in vibration levels compared to having no elastomer material in between the TVEs. Above 50 Hz, however, the
use of elastomers in the junctions can lead to increasing acceleration amplitudes in the ceiling for certain frequencies. This
observation is in agreement with the experimental results presented in [9]. Moreover, decreasing the stiffness of the elastomer
material can lead to an amplification of the vibrations for certain, higher, frequencies and for certain degrees of stiffness of
the material.

45.4.2 Placement

The placement of the elastomer blocks was varied by shifting all the blocks, except the blocks at the four corners, a certain
distance along the gap between the walls of the two stacked TVEs, retaining the centre-to-centre distance of 600 mm. Three
models were studied, in which the blocks were shifted 100, 200 and 300 mm, respectively. No model reduction was performed
for the models compared in this study.

The RMS values of the acceleration amplitudes in the ceiling surface, obtained from the analyses of the different models,
are shown in Fig. 45.9. It can be observed that the shifted placement of the elastomer blocks has a small effect on the
vibration levels in the ceiling, resulting in acceleration amplitudes differing less than 0:5 dB from the reference model for
all the investigated models and in the whole frequency range. This could be explained by the deformation pattern along the
walls connecting to the elastomer blocks; the dominating wavelengths were larger than the centre-to-centre distance of the
blocks. The effect of the placement is, therefore, low as long as the centre-to-centre distance of the blocks is retained.
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Fig. 45.8 The RMS values of the acceleration amplitudes at the ceiling surface presented as (a) function of frequency and (b) in terms of the
mean value of each frequency spectrum, plotted versus the scaling parameter
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Fig. 45.9 The RMS values of the acceleration amplitudes in the ceiling for different placements of the elastomer blocks

45.5 Conclusions

The objective of the studies presented here was to investigate the extent to which the design of the elastomer layers involved in
multi-storey wood buildings affects the vibration transmission between different storeys. This was carried out by performing
parametric studies on numerical models of two storeys of a building, varying the material properties of the elastomer material
within realistic ranges and modifying the placement of elastomer blocks, while studying the vibrations caused by a load
acting on the floor of the upper storey.

The properties of the elastomer material were found to have a negligible effect on the acceleration amplitudes of the floor
where the load is acting. For the transmission to the underlying ceiling, however, the properties of the elastomer material were
found to affect the acceleration amplitudes appreciably. In general, softer elastomer materials result in decreased vibration
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transmission to the ceiling, exceptions being found for certain frequencies. This indicates the importance of using elastomer
materials which are no stiffer than what is required to withstand the static loads, in order to achieve the best possible
vibration isolation in the buildings. In case a very stiff material is required, the elastomer layer can lead to an amplification
of the vibration levels for some frequencies. For such situations, it could be preferable to develop other types of joints with
better vibration isolation performance.

The placement of the elastomer blocks was found to have a small effect on the acceleration amplitudes both in the floor
and in the ceiling, when assuming constant centre-to-centre distance between the blocks. This could be explained by the fact
that the dominating wavelengths at the walls connecting to the blocks were larger than the centre-to-centre distance of the
blocks. In order to affect the vibration transmission to a larger extent, through changes in the placement of the blocks, it
is, hence, necessary to abandon the regular centre-to-centre distance between the blocks. The effect of adding or removing
blocks at certain positions could be investigated for this purpose.
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a b s t r a c t

Determining the dynamic behaviour of lightweight buildings by means of finite element analyses
requires models representing the geometry involved in great detail, resulting in systems having many
millions of degrees of freedom. It is, therefore, important to avoid unnecessarily detailed models by care-
fully considering what is essential to include in the models and the level of details required for describing
the phenomena of interest accurately. In the study presented here, it was investigated whether or not air
and insulation in cavities of multi-storey wood buildings affect the transmission of low-frequency
structural vibrations. It was concluded, by means of numerical studies, that including air and insulation
in cavities, modelled as acoustic media, affects the transmission from a floor to the underlying ceiling and
surrounding walls.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In 1994, a century-old ban on the construction of wooden build-
ings more than two storeys in height in Sweden was lifted, leading
to the reintroduction of such structures. Compared to heavier
structures, the lightweight buildings are more sensitive to vibra-
tions, making it difficult to construct multi-storey wood buildings
in such a way that noise and disturbing vibrations in the different
storeys and rooms are avoided. Specifically problematic is the issue
of low-frequency vibrations [1]. Wooden constructions involving
long spans have low resonance frequencies that, in combination
with low damping, are easily excited by loads with low-frequency
content. The vibrations can be caused by, for example, footsteps,
airborne sound, vibrating machines and external sources such as
railway and road traffic. To design buildings of adequate perfor-
mance regarding sound and vibrations, it is desirable to have tools
for predicting the effects of structural modifications prior to con-
struction. Testing prototypes and performing experiments are both
time-consuming and expensive, the long-term aim therefore being
to develop prediction tools that are valid for general load-cases by
making use of finite element (FE) models.

Accurately assessing the dynamic behaviour of multi-storey
lightweight buildings, even at lower frequencies, requires FE mod-
els representing the geometry in considerable detail, resulting in
the models being very large. The number of degrees of freedom

of such models easily exceeds the limits of computer capacity, at
least for computations to be performed within reasonable time. It
is, therefore, important to avoid unnecessarily detailed models by
carefully considering what is essential to include in the models
and the level of details required for describing the phenomena of
interest accurately. The issue considered here is whether or not
air and insulation in cavities of multi-storey wood buildings affect
the transmission of structural vibrations.

The acoustic pressure field in a room can interact with the
vibrations in the floor, ceiling and walls. For heavier structures,
the acoustic pressure waves usually have a negligible effect on
the structural vibrations. It is, therefore, possible to analyse the
acoustic pressure field by applying the structural displacements,
obtained from a precedent analysis of the structural domain, as
boundary conditions. Moreover, the effect of the acoustic media
in a structure, on the transmission of structural vibrations, depends
on the flexibility of the structure, a more flexible structure tending
to interact more with the acoustic media. It was concluded in [2]
that the acoustic pressure field in the rooms is negligible also for
lightweight buildings; studies on a 2D FE model of a two-storey
wood building showing that the effect of including air in the
rooms, on the displacements of the building, is small for frequen-
cies below 250 Hz. The air was modelled to have a realistic acoustic
damping, which is present in buildings due to objects and porous
materials such as curtains and carpets.

In multi-storey wood buildings, there are acoustic media not only
in the rooms, but also in the many cavities containing both air and
insulation. The effect of modelling air in cavities of lightweight
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double-plate wall panels was investigated in [3,4]. In [3], the vibra-
tion transmission was investigated for a model including two dou-
ble-plate wall panels connected in an L-shape, with and without air
in the cavities. Both eigenvalue and steady-state analyses showed
that the inclusion of air in the cavities of the structure has a large
effect on its dynamic characteristics at high frequencies and a
noticeable effect already at the first eigenfrequency. In [4], the
response of a double-plate wall panel, with and without air in
the cavities, exposed to diffuse field excitation was investigated.
Simulations in terms of eigenvalue and steady-state analyses
showed that the air has a negligible effect on the dynamic charac-
teristics of the structure, contradicting the results in [3].

The studies presented here aim at determining whether or
not air and insulation in cavities have to be considered when
performing numerical analyses of the low-frequency vibration
transmission in multi-storey lightweight buildings. The low-fre-
quency range is defined here as frequencies below 200 Hz. As
a first step, different porous material models for modelling of
the insulation were compared, a frame of a double-plate wall
panel being employed as a test model. Subsequently, numerical
studies were carried out for a section of a multi-storey wood
building constructed with timber volume elements (TVEs), such
buildings being described in Section 1.1. The response of a floor,
exposed to a harmonic point load, and the vibration transmis-
sion from the floor to the underlying ceiling and the surrounding
walls were investigated, comparing FE models including air and
insulation as acoustic media in cavities to models without acous-
tic media.

The models employed in the numerical studies are representa-
tive for a wide range of residential wood buildings of the type stud-
ied here, in terms of both dimensions and material properties. It is,
therefore, believed that the conclusions presented in the paper are
valid for such structures. Moreover, a wide range of frequencies are
considered, resulting in the same phenomena being captured also
for models having slightly different dimensions, as the shift in
eigenfrequencies in such cases is small compared to the width of
the frequency range.

1.1. Timber volume element buildings

The conceptual layout of a TVE building is illustrated in Fig. 1. A
TVE is a prefabricated volume module consisting of wood framed
floor-, roof- and wall-elements, each TVE typically constituting a
small apartment, one room or part of a larger room. As much of
the construction work as possible is performed indoors at a factory,

including electrical installations, flooring, cabinets, wardrobes etc.
The prefabricated modules are transported to the construction site
where they are stacked to form a complete building. In between
the TVEs, several elastomer blocks are introduced to reduce the
flanking transmission of vibrations. Each elastomer block has an
interface area of approximately 0:1� 0:1 m2 and is placed between
the walls of two stacked modules. The only additional connection
between modules is through a number of tie plates, ensuring the
global stability of the building. Vibrations transmitted in TVE
buildings are, therefore, mainly passing through the elastomer lay-
ers or through the air and the insulation in the cavities of the build-
ings. The FE models employed in the numerical studies presented
here were constructed according to the drawings shown in Fig. 2.

2. Governing theory

2.1. Structure–acoustic analysis

Structure–acoustic systems can be analysed by deriving FE for-
mulations for both the structural domain and the acoustic fluid
domain. By imposing continuity conditions for displacements and
pressures at domain-separating boundaries, the domains form a
coupled FE equation system. Vibrations in lightweight buildings
are usually of such amplitudes that any non-linear behaviour can
be neglected and, therefore, linear behaviour is assumed here for
both domains. In the following derivations, a subscript S denotes
a quantity in the structural domain, whereas a subscript F indicates
a quantity in the acoustic fluid domain.

2.1.1. Structural domain
The equations describing the structural domain follow the nota-

tion in [6]. For a detailed derivation of the FE formulation of a solid,
see e.g. [6,7]. The differential equation of motion for the continuum
formulation of a three-dimensional solid, occupying the domain
XS, is given by

e$TrS þ bS ¼ qS
@2uS

@t2 ; ð1Þ

where rS is the matrix representation of the stress tensor, bS is the
body force vector, qS is the mass density, uS is the displacement vec-
tor, e$ is a differential operator matrix and t is the time [8]. A FE dis-
cretisation and use of Galerkin’s method results in a FE formulation
in the structural domain, given by

MS€aS þ KSaS ¼ f l;S þ fb;S; ð2Þ

Fig. 1. Sketch of a TVE building [5]. The path of structural vibrations between storeys is illustrated in the figure to the left and an elastomer block is illustrated in the figure to
the right.
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MS ¼
R

XS
NT

SqSNS dV ; KS ¼
R

XS
ðe$NSÞ

T
DS
e$NS dV ;

f l;S ¼
R

XS
NT

S bS dV ; fb;S ¼
R
@XS

NT
S tS dS:

ð3Þ

where MS is the mass matrix, KS is the stiffness matrix, aS is the
nodal displacement vector, f l;S is the body load vector, fb;S is the
boundary load vector, NS contains the FE interpolation functions,
DS is the constitutive stress-strain matrix and tS is the surface trac-
tion vector. Normally, a term CS _as, where CS is the damping matrix,
is added to the left-hand side of Eq. (2) to account for viscous forces
present in the structure.

2.1.2. Acoustic fluid domain
In addition to the assumption of small displacements, the

governing equations of the acoustic fluid are derived supposing
the fluid to be irrotational. The motion of an acoustic fluid can be
described using different primary variables, such as the fluid dis-
placement or a fluid displacement potential. In the FE formulation
presented here, the acoustic pressure is used as primary variable. A
detailed description of the FE formulation of an acoustic fluid, and
the structure-acoustic coupling, can be found in [9], for example.
The motion of the fluid in the acoustic fluid domain XF is governed
by the equation of motion and the continuity equation

q0
@2uF

@t2 þ R
@uF

@t
þ $pF ¼ 0; ð4Þ

@pF

@t
þ q0c2

0$ �
@uF

@t
¼ 0; ð5Þ

where pF is the acoustic pressure, q0 is the static density, R is the
flow resistivity, c0 is the speed of sound and $ is the gradient oper-
ator. By differentiating Eq. (5) with respect to time and inserting Eq.
(4), the wave equation in the acoustic fluid domain is obtained as

1
c2

0

@2pF

@t2 þ
R

q0c2
0

@pF

@t
� $2pF ¼ 0: ð6Þ

An FE discretisation and use of Galerkin’s method results in an
FE formulation in the acoustic fluid domain, given by

MF €pF þ CF _pF þ KFpF ¼ fb;F ; ð7Þ

MF ¼ 1
c2

0

R
XF

NT
F NF dV ; CF ¼ R

q0c2
0

R
XF

NT
F NF dV ;

KF ¼
R

XF
ð$NFÞT$NF dV ; fb;F ¼

R
@XF

NT
F nT

F $pF dS;
ð8Þ

where pF is the nodal pressure vector, fb;F is the boundary load vec-
tor and nT

F is the boundary normal vector, pointing outwards from
the acoustic fluid domain.

2.1.3. Coupling of domains
At interfaces connecting a structural domain to an acoustic fluid

domain, denoted @XSF , there will naturally be a continuity in terms
of both displacements and pressures. By imposing conditions of
continuity as boundary conditions at the interfaces, the two
equation systems describing the separate domains are coupled into
a single system, including the interaction of the domains. The con-
tinuity in displacements and pressures at @XSF can be expressed as

uSnF ¼ uF nF ; ð9Þ

rSjnF
¼ �pF ; ð10Þ

where rSjnF
is the stress normal to @XSF . By introducing the spatial

coupling matrix

HSF ¼
Z
@XSF

NT
S nFNF dS; ð11Þ

the boundary load vectors at @XSF can be rewritten as

fb;S ¼ HSFpF ; ð12Þ

fb;F ¼ �q0HT
SF

€aS � RHT
SF

_aS: ð13Þ

Using Eqs. (12) and (13) in combination with Eqs. (2) and (7) results
in the structure-acoustic system of equations

MS 0
q0HT

SF MF

� �
€aS

€pF

� �
þ

CS 0
RHT

SF CF

� �
_aS

_pF

� �
þ

KS �HSF

0 KF

� �
aS

pF

� �
¼

f l;S

0

� �
þ

fb;S

fb;F

� �
;

ð14Þ

where fb;S and fb;F contain contributions from the parts of the
domain boundaries @XS and @XF , respectively, that are separated
from the interface boundary @XSF .

2.2. Porous material models

The use of different types of mineral wool in facades and inte-
rior walls of lightweight buildings is common in order to improve
both thermal and acoustic insulation. The interaction between air
and fibres of the wool affects the propagation of pressure waves
in the air, the porous structure forcing the waves to travel a longer
distance and a dampening effect occurring due to friction at the
surface of the fibres. Moreover, the pressure waves in the air inter-
act with any potential motion of the fibres. Different approaches
for modelling porous materials have been proposed in the litera-
ture, some being based on empirical studies, suggesting prediction
formulae of acoustic properties based on parameter fitting to
experimental data. Others are analytical and based on certain
assumptions regarding the geometry and behaviour of the struc-
tural frame and the interaction with the air.

Fig. 2. Drawings of the TVE building system, showing sections of the floor and ceiling structures and the junctions with apartment separating wall (left) and façade wall
(right).
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This section presents three porous material models, two of
them empirical and one analytical, as well as brief literature
reviews concerning other models within the two categories. The
three models presented here consider the porous materials as
equivalent acoustic fluids. They can, therefore, be analysed with
the numerical methods employed for acoustic fluids and are inte-
grated in a structure-acoustic model in a straightforward manner
by modifying the, possibly complex, coefficients in Eq. (5).

In Eqs. (4) and (5), two material parameters describing an
acoustic fluid were introduced, namely the speed of sound c0 and
the static density q0. A common, alternative, way of describing
an acoustic fluid is by its static density together with the bulk mod-
ulus K0, related to the speed of sound according to

K0 ¼ q0c2
0: ð15Þ

Another pair of material parameters that are frequently
employed to describe an acoustic fluid are the characteristic
impedance Z0 and the wavenumber k0. The two latter alternatives
of material parameters are related according to

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
q0K0

p
; ð16Þ

k0 ¼ x
ffiffiffiffiffiffi
q0

K0

r
; ð17Þ

where x is the angular frequency.

2.2.1. Empirical models
2.2.1.1. Delany–Bazley. Empirical models relating the real and
imaginary parts of the complex characteristic impedance Z and
the complex wavenumber k to the quotient ðf=RÞ, where f is
frequency, were developed in [10]. Measurements of the character-
istic impedance, the wavenumber and the flow resistivity were
carried out for a range of mineral wools and the following power
law relations were obtained by fitting the coefficients to experi-
mental data:

Z ¼ Z0 1þ a1 f=Rð Þ�b1 � i a2 f=Rð Þ�b2
� �

; ð18Þ

k ¼ k0 1þ a3 f=Rð Þ�b3 � i a4 f=Rð Þ�b4
� �

; ð19Þ

where the coefficients are given in Table 1. Data in the range
0:01 6 f=R 6 1:0 (N�1 m4 s�2) were used and it is advised not to
extrapolate the power law relations outside this range.

2.2.1.2. Miki. The real part of the surface impedance when
calculated according to the Delany–Bazley formulae sometimes
becomes negative at low frequencies. To avoid this unphysical
phenomenon, new power law relations were developed in [11],
making use of the experimental data utilised in [10] and imposing
constraints for the real part of the characteristic impedance to be
positive, resulting in empirical formulae of the form in Eqs. (18)
and (19) with the coefficients given in Table 2.

These empirical formulae are physically realisable at lower fre-
quencies compared to the formulae by Delany and Bazley. Unphys-
ical properties will, however, occur also in this case, the real part of
the density becoming negative at low frequencies. As the power
law relations were fitted to the experimental data used in [10],

no conclusions can be made regarding the validity of the model
outside the range 0:01 6 f=R 6 1:0 (N�1 m4 s�2).

2.2.1.3. Other empirical models. In addition to the formulae by
Delany & Bazley and Miki, a number of empirical relations for Z
and k have been suggested in the literature. The same procedure
as in [10] was applied to measurement data for foam materials
in [12]. In [13], measurements were performed for a wide range
of glass and rock wools, concluding that prediction formulae
involving logarithmic terms resulted in better correlation to the
measurement data in comparison with power law relations devel-
oped in the same manner as in [10]. In [14,15], porous material
models combining the empirical formulae by Delany and Bazley
with analytical microstructure models, assuming parallel fibres,
were presented, resulting in physically meaningful predictions also
at lower frequencies.

2.2.2. Analytical models
Already in 1868, a theory for sound propagation in cylindrical

tubes, including both viscous and thermal effects, was presented
in [16], a simplified model later being presented in [17]. Porous
materials generally have complex geometries, making it practically
impossible to analyse the exact microstructure. This is why most
porous material models are phenomenological, an approach being
valid in case the wave lengths are much larger than the character-
istic dimensions of the microstructure. Several analytical models
for porous materials, involving different assumptions regarding
the geometry and behaviour of the structural frame as well as
the interaction between the frame and the acoustic fluid, have
been proposed.

2.2.2.1. Equivalent acoustic fluid model – rigid structural frame.
Phenomenological equivalent acoustic fluid models assuming the
structural frame to be rigid have been presented in [17,18]. These
models involve two properties of the structural frame, namely the
porosity / and the structure factor KS, also known as the tortuosity.
/ is the ratio of fluid volume to total volume, while KS is defined as
qe ¼ KSq0, relating the density of the acoustic fluid in the pores to
an effective density qe of the equivalent acoustic fluid. With a rigid
structural frame, the equation of motion and the continuity equa-
tion in Eqs. (4) and (5), respectively, become

KSq0
@2uF

@t2 þ R
@uF

@t
þ $pF ¼ 0; ð20Þ

/
@pF

@t
þ q0c2

0$ �
@uF

@t
¼ 0: ð21Þ

By differentiating Eq. (21) with respect to time and inserting Eq.
(20), the wave equation for the equivalent acoustic fluid is
obtained as

KS/

c2
0

@2pF

@t2 þ
R/

q0c2
0

@pF

@t
� $2pF ¼ 0; ð22Þ

which is similar to the wave equation for an acoustic fluid given in
Eq. (6), the coefficients being modified by the properties of the
structural frame. In Eq. (6), R accounts for the dissipation of energy
in an acoustic fluid domain in a smeared approach while it is a
property of the structural frame in Eq. (22).

Table 1
Coefficients for the Delany–Bazley model.

a1 a2 a3 a4 b1 b2 b3 b4

0.0511 0.0768 0.0858 0.175 0.750 0.730 0.700 0.590

Table 2
Coefficients for the Miki model.

a1 a2 a3 a4 b1 b2 b3 b4

0.0699 0.107 0.109 0.160 0.632 0.632 0.618 0.618
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2.2.2.2. Other analytical models. Most of the porous material models
available in the literature assume the structural frame to be rigid, a
thorough review of such models developed before and after 1980
being found in [19,20], respectively. A model assuming the
structural frame to be limp is presented in [21]. In [22], a model
assuming a rigid frame and one assuming a limp frame were
compared to measurements, studying the high and low frequency
limits of the resulting effective densities. Biot’s theory [23]
includes the flexibility of the structural frame at the cost of intro-
ducing displacement degrees of freedom, the porous material no
longer being modelled as an equivalent acoustic fluid. The theory
combines an elastic continuum formulation for the structural
frame with the theory for sound propagation in a rigid structural
frame by considering a coupling of the stress-strain relationships
and the inertial and viscous forces.

3. Numerical studies

In the numerical studies presented here, the effect of modelling
the air and the insulation in cavities of TVE buildings on the vibra-
tion transmission was investigated. First, a comparative study was
carried out for the three porous material models introduced in
Section 2.2, a section of a wooden double-plate wall panel being
employed as test model. Furthermore, the vibrations induced by
a load acting on a floor structure in a TVE-based building were
analysed, comparing models including acoustic media in different
ways. All models were created in the commercial FE software
Abaqus [24].

Point loads were used as excitations in all the models, as the
transmission of low-frequency vibrations in residential buildings
mainly originate from structural excitations and not the acoustic
pressure fields in the rooms, these being more dominant at higher
frequencies. Structural loads, for example footsteps or rotating
machines, are often distributed over small surfaces compared to
the wavelengths of the structural vibrations, a point load therefore
providing a good approximation.

In the models including air as an acoustic medium, it is assumed
to be non-absorbing, i.e. the flow resistivity is zero (R ¼ 0 in Eq.
(4)). Hence, the energy dissipation in the acoustic media only takes
place in the insulation.

The result plots presented below show the root mean square
(RMS) values of the acceleration amplitudes, as a function of fre-
quency, for a certain set of FE nodes. The RMS values are presented
in decibel (dB) with 1 lm s�2 as reference value.

3.1. Comparative study – porous material models

The empirical models by Delany & Bazley and Miki as well as the
equivalent acoustic fluid model with rigid structural frame were
compared for a FE model of a section in a wooden double-plate wall
panel, shown in Fig. 3. The three methods were compared in order
to study if the selection of method affects the vibration transmis-
sion over cavities of lightweight buildings. The methods are fairly
simple, but the objective here is not to create an accurate and val-
idated model of the acoustic media, but rather to investigate
whether it has to be considered in the models. If so, the models of
the buildings, including acoustic media in the cavities, will have
to be validated to measurement data, possibly resulting in the need
for a more sophisticated porous material model.

The wall panel consisted of a 2500� 650� 120 mm3 wood
frame covered with gypsum plates on both sides, creating a low-
stiffness model with a cavity between the plates. The cavity was
modelled in five different ways: (1) with no acoustic media, (2)
filled with air and (3–5) filled with insulation, employing the three
different porous material models. The coefficients in Eqs. (18) and

(19) for the Delany & Bazley and Miki models are slightly modified
in the implementation of the models in Abaqus, employed in the
numerical calculations presented here. The coefficients used in
Abaqus are shown in Table 3.

Measured values for the porous material properties of glass-
and mineral wools can be found in, for example, [13,25–28]. The
measured values fall within the ranges 0:95 6 h 6 0:99;1:01 6
a 6 1:08 and 6000 6 R 6 90;000. The properties used in the com-
parative study are presented in Table 4. A relatively low value for
the flow resistivity is selected in order for the empirical models
to be physically valid in a major part of the frequency range of
interest. Consequently, the energy dissipation in the insulation is
relatively low compared to most glass- and mineral wools. For
the selected flow resistivity, the models by Delany & Bazley and
Miki are feasible for analysis above 70 Hz and 40 Hz respectively.
Below those frequencies, unphysical values of the complex bulk
modulus and complex density for the Delany & Bazley and Miki
models, respectively, are obtained.

Steady-state analyses were performed up to 200 Hz, locking the
displacements at the four corners of the panel. The wall panel was
excited by a harmonic unit point load in the middle of one of the
gypsum plates, the source plate, and the accelerations were evalu-
ated at the opposite side of the other plate, the receiver plate. The
acceleration amplitudes were evaluated in terms of an RMS value
of the magnitude in all nodes of the receiver plate’s outer surface,
given by

aRMSðf Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
a2

i ðf Þ
r

; ð23Þ

where ai is the magnitude of the complex acceleration in node i and
n is the number of nodes in the outer surface of the receiver plate.

Fig. 3. FE model of a section in a wood-framed wall panel, employed for comparing
different porous material models. The arrow illustrates the applied load.
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An RMS value was calculated for each excitation frequency in the
steady-state analysis.

In Fig. 4, the acceleration amplitudes for the different models of
the wall cavity, in the frequency range 20–200 Hz, are shown. For
frequencies below the first resonance frequency, located at 30 Hz,
the acoustic media has a negligible effect on the acceleration
amplitudes, whereas for frequencies in the range 30–90 Hz, there
is a small effect of including air in the cavity. Including a porous
material, however, lowers the acceleration amplitudes due to its
viscous effects. Above 90 Hz, it is evident that a large part of the
energy is transmitted through the acoustic media, since its inclu-
sion increases the acceleration amplitudes significantly. Generally,
using the porous material models results in lower acceleration
amplitudes compared to the model with only air in the cavity. In
their valid frequency ranges, the different methods for modelling
the porous material yield very similar results. It is, hence, sufficient
to include only one of the three models in the subsequent analyses
and the model with rigid structural frame was selected due to the
unphysical behaviour of the empirical models at lower frequencies.

3.2. Acoustic media in cavities of TVE buildings

A section of a TVE-based building was analysed in order to
investigate the effect of modelling air and insulation, as acoustic
media, in the cavities on the vibrations caused by a harmonic point
load acting on a floor structure. Specifically, the response of the
floor, as well as the transmission to the underlying ceiling and sur-
rounding walls, was investigated for a model containing two
stacked TVEs, a quarter of the model being shown in Fig. 5. Each
TVE was 9000 x 3900 x 3400 mm3 large (the long side walls being
apartment separating and the short side walls being facades) and
modelled according to the drawings in Fig. 2. Moreover, the walls
of the neighbouring TVEs were included at the apartment separat-

ing walls, meaning that the cavities in those walls were included in
the model as well. No structural connection to the walls of the
neighbouring TVEs was, however, included.

The materials of the structural components are listed in Fig. 2;
the particle board, plaster board and plywood being modelled as
isotropic materials with properties according to Table 5, whereas
the wood beams were modelled as orthotropic materials with
properties according to Table 6. A type of elastomer often used in
TVE buildings is Sylodyn, a mixed cellular polyurethane dampen-
ing material developed by Getzner Werkstoffe GmbH. The blocks
modelled in this study were 100 � 95 � 25 mm3 large, of type Syl-
odyn NE, and placed along the walls between the two stacked TVEs
with a centre-to-centre distance from one another of 600 mm.
Frequency-dependent viscoelastic material properties for the elas-
tomers were determined in [29] by performing laboratory testing
and FE simulations to match experimental data. The porous mate-
rial properties used for modelling the insulation were selected
according to Table 7. The analytical porous material model assum-
ing a rigid structural frame was employed for the insulation. In
contrast to the comparative study in Section 3.1, a higher flow
resistivity was used here, namely 40,000 Nm�4 s. The selected
value falls within the mid-range of values for glass- and mineral
wools found in the literature ð6000 6 R 6 90;000Þ. Hence, the
damping in the porous material is higher compared to the FE
model employed in the comparative study presented in Section 3.1.
As the objective here is not to study a specific porous material, but
rather to investigate whether this type of materials need to be con-
sidered in the models, it is sufficient to employ parameters that are
realistic compared to the measured values found in the literature.

The structural parts were meshed with 20-node solid hexahe-
dral elements, employing quadratic interpolation and reduced
integration. For the elastomer blocks, elements with a hybrid
formulation were used in order to avoid locking. The air and the
insulation, in turn, were meshed with 20-node acoustic hexahedral
elements, employing quadratic interpolation. The mesh sizes both
for the structural and the acoustic parts were decided based on the
wavelengths expected to occur at the highest frequency of interest,
namely 200 Hz.

Due to the complexity when assessing damping in building
structures, a global damping ratio of 6% was assigned to all materi-
als, as opposed to considering damping for each material and in the
different junctions. The damping ratio was determined in [30], with
the use of experimental data obtained from measurements in a TVE
building [31], by fitting an exponential function to the transient
response of a floor structure. The damping ratio was used to estab-
lish a damping matrix by means of the Rayleigh method, see e.g.
[32]. The CS-matrix in Eq. (14) was, hence, constructed as a linear
combination of the mass- and stiffness matrices, selecting the
proportionality constants to be 17.37 and 9:77 � 10�5, respectively.
Since the damping ratio was calculated from measurements on a
real building, involving insulation in the cavities, the damping in
the structure may be overestimated as the insulation is modelled
explicitly. The possible overestimation is, however, believed to
have a negligible effect on the conclusions of the studies presented
here.

In the analyses, the surfaces of the two TVEs, where elastomer
blocks would be placed if further storeys were included, were
modelled as clamped. Moreover, the walls of the neighbouring

Table 3
Coefficients used in Abaqus for the Delany & Bazley and Miki models.

a1 a2 a3 a4 b1 b2 b3 b4

Delany–Bazley 0.0571 0.0870 0.0978 0.189 0.754 0.732 0.700 0.595
Miki 0.0786 0.121 0.123 0.179 0.632 0.632 0.618 0.618

Table 4
The porous material properties employed in the comparative
study.

R (Nm�4 s) / ð�Þ a ð�Þ

6000 0.96 1.1
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Fig. 4. RMS values of the acceleration amplitudes at the receiver plate of the wall
panel model employed for comparing different porous material models.
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modules were clamped at the vertical edges. A vertical unit point
load, acting on the middle of the floor in the upper TVE, was
applied, and steady-state analyses were performed for frequencies
up to 200 Hz in steps of 5 Hz.

3.2.1. Vibrations in the floor and the underlying ceiling
First, the vibrations in the floor of the upper TVE and the under-

lying ceiling were investigated for different ways of modelling air
and insulation in the cavity between the floor and the ceiling. A
model without acoustic media was compared to models with air
alone and air together with insulation in the cavity, the insulation
being placed according to the drawings in Fig. 2. All analyses were
performed applying two different boundary conditions, p ¼ 0 and
rp ¼ 0, at the interfaces of the acoustic media bordering to
surrounding cavities, in order to investigate their effect on the
vibrations transmitted over the cavity. These interfaces are illus-
trated in Fig. 6, where the full TVEs are shown. At all boundaries

of the acoustic media in contact with structural components, struc-
ture-acoustic coupling was considered.

The acceleration amplitudes obtained in the analyses of the dif-
ferent models were extracted from half of the nodes (due to the
symmetry) at the floor surface and the ceiling surface, respectively,
and RMS values of the complex acceleration magnitudes were cal-
culated according to Eq. (23).

In Fig. 7, the RMS values of the acceleration amplitudes at the
floor are shown. Including air alone in the cavity has a small effect
on the levels of vibration in the floor, the RMS values being changed
by just over 1% in average. An exception is found at 30 Hz, where the
inclusion of air lowers the vibration amplitudes. Considering both
air and insulation in the cavity leads to a dampening effect, lowering
the levels of vibration by approximately 15% while the frequency
response function is similar in shape to that obtained when includ-
ing no acoustic media in the cavity. Moreover, it can be observed that
the choice of boundary conditions for the acoustic media has a neg-
ligible effect on the acceleration amplitudes at the floor.

In Fig. 8, the RMS values of the acceleration amplitudes at the
ceiling are shown. It can be observed that including air alone
results in higher acceleration amplitudes, especially at lower fre-
quencies. For low frequencies, the modelling of both air and insu-
lation results in acceleration amplitudes in-between the case with
air alone and the case with no acoustic media in the floor-ceiling
cavity. At higher frequencies, the acceleration amplitudes obtained
for the case with air and insulation are similar to those obtained for
the case without acoustic media, deviating with less than a factor
of 2. At some frequencies, the dampening effect of the insulation
results in reduced vibration amplitudes when including both air
and insulation, as compared to having no acoustic media. When
air alone is considered, the levels of vibration are affected by the
choice of boundary conditions for the acoustic medium, the effect,
however, being relatively small when both air and insulation are
included in the model.

3.2.2. Vibrations in the surrounding walls
Next, the vibrations in the walls of the lower TVE were investi-

gated for different ways of modelling the air and insulation in the

Fig. 5. A quarter of the model of two TVEs. The acoustic media are shown in blue. The junction between floor, ceiling and apartment separating walls is shown to the right,
with and without acoustic media in the cavities.

Table 5
Material parameters used for the isotropic materials.

Material E (MPa) m ð�Þ q (kg m�3)

Particle board 3000 0.3 767
Plaster board 2000 0.2 692.3
Plywood 12,400 0.3 710

Table 6
Material parameters used for the wood beams.

E1 (MPa) E2 E3 G12 ðMPaÞ G13 G23 m12 ð�Þ m13 m23 q (kg m�3)

8500 350 350 700 700 50 0.2 0.2 0.3 432

Table 7
Porous material properties used in the numerical studies.

R (N/m�4 s) / ð�Þ a ð�Þ

40,000 0.96 1.1
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cavity between the floor and the ceiling as well as the cavities in
the apartment separating walls. Models including acoustic media
either in the floor-ceiling cavity alone or in both the floor-ceiling
cavity and the wall cavities were compared to a model without
acoustic media. In the models including acoustic media, it was
included as air alone or air together with insulation. The insulation
in the walls was placed according to the drawings in Fig. 2, i.e.
between the beams of each wall, having a small air gap between
the walls of two neighbouring TVEs. Moreover, models having
the floor-ceiling cavity and the wall cavities separated were
created by introducing a separating wall in the junction between
the cavities, the junction being shown in Fig. 5. These models were
compared to the models with connected cavities in order to inves-

tigate if the acoustic pressure waves travelling between the cavi-
ties affect the vibration amplitudes in the walls.

At the boundaries to the acoustic media in surrounding cavities,
onlyrp ¼ 0 was applied as it was observed in the evaluation of the
ceiling vibrations that the boundary conditions have a small effect
on the vibration transmission. The acceleration amplitudes
obtained in the analyses of the different models were extracted
in all nodes at the surface of an apartment separating wall of the
lower TVE. RMS values of the complex acceleration magnitudes
were calculated according to Eq. (23).

In Fig. 9, the RMS values of the acceleration amplitudes at the
wall of the lower TVE are shown for the models where air alone
was used as acoustic medium in the cavities. In Fig. 10, the RMS
values are shown for the models where both air and insulation
were included as acoustic media. The frequency range is divided
into two parts, including frequencies in the ranges 0–100 Hz and
100–200 Hz, respectively. Observe that different scales are
employed for the y-axes in the two frequency ranges.

It can be observed in Fig. 9 that including acoustic medium in
terms of air alone in the cavities has a large effect on the vibration
transmission from the floor to the walls of the TVE below. The sys-
tem becomes more resonant when air is included and the acceler-
ation amplitudes at the wall panel are generally higher, except at
some frequencies between resonance peaks, where the amplitudes
are reduced compared to the model with no acoustic media. At
most frequencies, the acceleration amplitudes are higher when
the floor-ceiling cavity is connected to the wall cavities compared
to having the cavities separated. At low and high frequencies
(below 15 Hz and above 155 Hz), the model with air in all cavities,
having the cavities separated, results in acceleration amplitudes
similar to the model with air only in the floor-ceiling cavity. Hence,
if the cavities are separated, the inclusion of air in the wall panels
has a negligible effect at those frequencies.

In Fig. 10, it can be observed that considering both air and insu-
lation as acoustic media in the cavities results in smoother spec-
trums compared to including air alone. For most frequencies,
with the exception being frequencies below 40 Hz, the acceleration
amplitudes are decreased when including air and insulation in the
cavities compared to having no acoustic media. A resonance fre-
quency is observed at 20 Hz for the model with acoustic media
only in the floor-ceiling cavity which is not present for any of the
other models. Hence, a resonance occurs due to the inclusion of

Fig. 6. The model of the two TVEs. The acoustic media in contact with the surrounding cavities, where different boundary conditions were applied, are shown to the left. The
acoustic media are shown in blue.
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Fig. 7. RMS values of the acceleration amplitudes at the floor for the different
models of the acoustic media in the floor-ceiling cavity.
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models of the acoustic media in the floor-ceiling cavity.
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air and insulation in the floor-ceiling cavity which is cancelled
when considering the acoustic media also in the wall cavities. In
general, the acceleration amplitudes when considering both air
and insulation, as compared to including air alone in the cavities,
are closer to the case with no acoustic media. Above 60 Hz, the
inclusion of air and insulation as acoustic media results in acceler-
ation amplitudes deviating with a factor of less than 2 compared to
having no acoustic media. Above 100 Hz, all three models with air
and insulation in the cavities result in very similar acceleration
amplitudes. This shows that at higher frequencies, the effect of
including acoustic media in the wall cavities, on the vibration
transmission to the wall panels, is small in case both air and
insulation are considered.

4. Conclusions

The main conclusion from the numerical studies is that acoustic
media in the cavities of wooden buildings affect the vibration
transmission. It was observed that the vibrations transmitted from
a load acting on a floor structure affected the acceleration ampli-
tudes in both the underlying ceiling, structurally separated from
the floor, and the walls of the storey below. The effect is especially
distinct when air alone is considered as acoustic medium.
Generally, including air alone results in a more resonant system
with higher acceleration amplitudes while including both air and
insulation introduces a dampening effect, especially at higher
frequencies. The dampening effect of the insulation results in
decreased acceleration amplitudes at higher frequencies as
compared to including no acoustic media. In reality, the cavities
normally contain insulation, the modelling of air alone, thus, lead-
ing to an overestimation of the transmitted vibrations.

The level of vibrations in the floor was only marginally affected
by the inclusion of air alone as acoustic medium in the floor-ceiling
cavity. When considering both air and insulation as acoustic media,
the shape of the frequency response function did not change to any
appreciable extent, while a dampening effect was observed in the
floor vibrations.

In the analyses of the vibrations in the floor and in the ceiling, it
was concluded that the choice of boundary conditions for the
acoustic media bordering to surrounding cavities has a small effect
in terms of vibration transmission from the floor to the ceiling
below. This implies that the acoustic media in surrounding cavities
has a weak effect on the vibrations transmitted locally over the
floor-ceiling cavity.

In the analyses of the vibrations in the walls of the lower TVE, it
was observed that including air and insulation in the wall cavities
had no effect on the transmission to the wall panels above 100 Hz.
If the vibrations transmitted from the floor to surrounding walls
are studied for frequencies over 100 Hz, it is, hence, sufficient to
include the air and insulation only in the floor-ceiling cavity. This
result indicates that the effect of including acoustic media in
cavities is decreasing with the distance from the load. It should
be investigated further how far from the load the acoustic media
has to be considered.

The porous material models investigated in this paper are only a
few of many available in the literature. Specifically, no models
assuming limp or elastic structural frame have been evaluated
here. As it was concluded that acoustic media in cavities of
multi-storey wood buildings have to be considered when perform-
ing low-frequency vibration analyses, the material model for the
insulation should be validated.
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Chapter 18
Numerical and Experimental Studies on Scale Models
of Lightweight Building Structures

Ola Flodén, Kent Persson, and Göran Sandberg

Abstract Lightweight buildings are sensitive to low-frequency vibrations, making it difficult to construct them in such a
way that noise and disturbing vibrations are kept at an acceptable level. In the design of vibration reduction measures, it is
desirable to have computational models for predicting the effects of structural modifications. Validations of the models to
experimental data have to be performed to ensure reliable predictions. The experimental studies are simplified if full-scale
models can be scaled down in size. In the paper, methods for designing scaled experimental models of building structures
are discussed. An example, the scaling of a wooden building structure, is presented.

Keywords Lightweight buildings • Impact sound • Vibration transmission • Model validation • Scale models

18.1 Introduction

Noisy neighbours are a common cause of annoyance for residents in multi-family houses. Compared to heavier structures,
lightweight buildings are more sensitive to vibrations, making it difficult to construct them in such a way that noise and
disturbing vibrations are kept at an acceptable level. Despite newly constructed lightweight buildings complying with
regulations for sound insulation, many of the residents perceive the impact sound as annoying [1]. Building regulations
in most European countries take frequencies in the range 100–3150 Hz into account, whilst the lower limit in Sweden is
50 Hz. The measured sound insulation correlates much better to residents annoyance when extending the frequency range in
the evaluations down to 20 Hz [1], pointing out the importance of improved sound insulation at lower frequencies. In wood
buildings, for example, a common measure for reducing vibration transmission is to insert elastomers in-between building
parts [2]. The design of such measures is based primarily on experience. To optimise the design, it is desirable to have
computational models for predicting the effects of structural modifications. The models have to be calibrated, correlated
and validated to measurement results for the predictions to be reliable. An alternative to employing full-scale experimental
structures for performing the measurements is to design scaled experimental models that behave in a similar way.

In the paper, methods for designing scaled experimental models of building structures are discussed. The objective of the
scaling procedure is to arrive at scaled experimental models that preserve the dynamic behaviour of the full structures. An
example regarding the scaling of a wooden building structure is presented here.

18.2 Governing Theory

The equations of motion for a structure can be derived through its Lagrangian, which for an undamped system is given by

L .q1, : : : , qn, t/ D T .q1, : : : , qn, t/ � V .q1, : : : , qn, t/ , (18.1)

O. Flodén (�) • K. Persson • G. Sandberg
Faculty of Engineering, Department of Construction Sciences, Lund University, John Ericssons väg 1, SE-223 63 Lund, Sweden
e-mail: ola.floden@construction.lth.se

© The Society for Experimental Mechanics, Inc. 2016
M. Allen et al. (eds.), Dynamics of Coupled Structures, Volume 4, Conference Proceedings of the Society
for Experimental Mechanics Series, DOI 10.1007/978-3-319-29763-7_18

173

ola.floden@construction.lth.se



174 O. Flodén et al.

where T is kinetic energy, V is potential energy, q1, : : : , qn is a set of n generalised coordinates and t is time. The equations
of motion of the system is given by the Lagrange’s equations

d

dt

�
@L

@Pqj

�
D @L

@qj
. (18.2)

Scaling the size of a model affects its Lagrangian. The Lagrangian of a scale model, can be expressed as

Ls D Ts � Vs D a
�
Tf � bVf

�
, (18.3)

where subscripts s and f denote quantities belonging to the scale model and to the full model, respectively, and a and b are
constants. The resulting equations of motion are not affected by a, whilst b D 1 is required in order to preserve the equations
of motion. A scale model should, hence, be constructed in such a way that b is as close to unity as possible. This approach
for determining parameters of scale models is possible when expressions for the energies can be derived. For more complex
structures, numerical models of the full and the scaled experimental models have to be analysed and compared in order to
ensure accurate scaling.

18.3 Scale Models of Building Structures

The Lagrangians used in scaling procedures are constructed based on the physical phenomena expected to occur. Residential
buildings are normally constructed using different types of beam-, column- and plate-like structures which are exposed
to different types of deformations. To illustrate the scaling procedure, the scaling of a beam is derived by considering its
bending, an important type of deformation in the dynamics of building structures. In the derivations presented here, the
coordinate system in Fig. 18.1 is used. The beam is assumed to have rectangular cross-section; the width b, the height h and
the length l of the beam is defined in Fig. 18.1. The kinetic energy of an Euler-Bernoulli beam in bending is given by

T D 1

2

Z l

0

�APu2dx, (18.4)

where A D bh is the cross-sectional area, � is the density and u is the deflection in the z-direction. The potential energy is
given by

V D 1

2

Z l

0

EI

�
@2u

@x2

�2

dx, (18.5)

where E is the Young’s modulus and I is the moment of inertia of the cross-section,

I D bh3

12
. (18.6)

Fig. 18.1 Coordinate system and
dimensions used in the
derivations of the scaling of a
beam
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The scaling is introduced by defining the following dimensionless parameters:

� D As

Af
, � D Is

If
, � D xs

xf
D ls

lf
. (18.7)

By inserting the dimensionless parameters in the energy expressions for the scaled and the full models, it can be shown that

Ts D ��Tf (18.8)

and

Vs D �

�3
Vf . (18.9)

Scaling parameters could be introduced also for the material properties (E and �) and the time. It is, however, assumed here
that the same material is used for both models. Not scaling the time results in the eigenfrequencies being preserved. Inserting
Eqs. (18.8) and (18.9) in the first equation in Eq. (18.3) results in

Ls D ��Tf � �

�3
Vf D ��

�
Tf � �

��4
Vf

�
. (18.10)

By comparing the result to the second equation in Eq. (18.3), it is found that the scaling condition b D 1 results in

�

��4
D 1 ,

�
ls
lf

�2

D hs

hf
. (18.11)

When using this condition for creating a scale model of a beam, the eigenfrequency of the bending modes are preserved.
It can be seen that bending in the z-direction is unaffected by the width. Hence, if a length scaling is assumed, the scaled
height can be determined or vice versa. A corresponding expression can be determined for the width by considering bending
in the y-direction.

The procedure presented above can be employed for other types of deformations, such as the torsion of beams or the
bending of plates. The type of deformation to consider in the scaling depends on the type that is expected to dominate the
dynamics of the structure.

18.3.1 Example: Wooden Building Structure

The structure studied here was designed to represent the physics involved in low-frequency (below 100 Hz) vibration
transmission in multi-storey wood buildings. Specifically, a type of construction called timber volume element (TVE)
buildings was used as reference for designing the experimental model. A main feature of such buildings, from a dynamical
point-of-view, is the use of elastomer layers for vibration isolation. The load-bearing structure in TVE buildings consists
of wood frames covered by plasterboards and particleboards. The buildings are constructed by stacking box-like volume
elements (the TVEs) with layers of elastomers in-between. The experimental model considered here, illustrated in Fig. 18.2,
consists of parts of two TVEs, one comprising a floor with walls on top and the other comprising a ceiling with walls below.
Only half the height of the walls, compared to complete TVEs, is included in the model. The floor and the ceiling consist
of a number of primary beams (seven and ten, respectively) attached to edge beams and have surfaces of particleboard and
plasterboard, respectively. The walls consist of seven primary beams each, attached to edge beams on one side, and have
surfaces of plasterboard. Two sides of the model have one type of walls, apartment separating walls, and the other two sides
have another type of walls, facade walls. In Table 18.1, the dimensions are shown for the floor, the ceiling and the two types
of walls. Elastomer blocks of the material Sylodyn NB [3] are placed in-between the two TVE structures. A total of 28
elastomer blocks, each being 100 � 95 � 25 mm3 large, are placed with a centre-to-centre distance (cc) of 600 mm along the
walls. The outer dimensions of the full experimental model are 4000 � 3600 � 2800 mm3.

The scaling of the beams was made using Eq. (18.11) for bending in the two directions, resulting in relations between the
length and the height, and between the length and the width,
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Fig. 18.2 The full-scale wooden
building structure studied here.
The floor is shown in grey, the
apartment separating walls in red,
the facade walls in blue and the
elastomer blocks in yellow. The
ceiling, placed under the floor,
cannot be seen in the figure

Table 18.1 Length (l), centre-to-centre distance (cc) and cross-sectional dimensions
(b� h) of the primary beams, and thickness (t) of the plates in the full model and in the
scale model. The unit is mm

Full model Scale model

lf ccf hf bf tf ls ccs hs bs ts
Floor 3430 600 220 45 22 2330 408 95 21 10

Ceiling 3430 400 120 45 13 2330 272 55 21 6

Apartm sep wall 1390 600 95 45 13 950 408 45 21 6

Facade wall 1390 600 145 45 13 950 401 70 21 6

�
ls
lf

�2

D hs

hf
,

�
ls
lf

�2

D bs

bf
. (18.12)

The thickness of the plates (particleboards and plasterboards) were scaled by regarding them as beams spanning the cc
between the primary beams, i.e. assuming one-dimensional deformations for the plates. By considering bending of the
plates, Eq. (18.12) can be used to obtain the relation between cc and plate thickness t,

�
ccs

ccf

�2

D ts
tf

. (18.13)

The scaling ratio for the cc is employed also for the length of the beams, i.e.

ccs

ccf
D ls

lf
. (18.14)

Moreover, the floor, the ceiling and the walls have to be scaled so that their sizes match, i.e. using the same four scaling ratios
(scaling of height, width, length and cc) for all structures. First, the scaling ratio for the thickness of the plates was chosen
since particleboard and plasterboard are manufactured in only a few different thicknesses. Thereafter, Eqs. (18.12)–(18.14)
were used to determine the remaining scaling ratios. The dimensions of the beams and of the plates in the scale model are
shown in Table 18.1.

The final step in determining the dimensions of the scale model is to scale the elastomer blocks. The dimensions of
the blocks were determined by regarding the two TVE structures as rigid masses and the elastomer layer as a spring. The
eigenfrequency of a system with two masses, m1 and m2, connected by a spring with stiffness k is given by

f D
r

k
m1 C m2

m1m2

D
r

k

meff
, meff D m1m2

m1 C m2

, (18.15)
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where meff is the effective mass. The ratio between the eigenfrequencies of the full model and of the scale model is,
consequently,

ff
fs

D
vuutkf

ks

meff
s

meff
f

. (18.16)

The effective masses of the full and the scaled models, calculated using the densities found in [2], are 281 kg and 53 kg,
respectively. It is assumed that the eigenfrequency of the two-mass-system is preserved, fs D ff . The ratio between the spring
stiffness of the two models can then be calculated as

kf

ks
D
�

ff
fs

�2 meff
f

meff
s

D 5.30. (18.17)

Assuming the elastomer blocks to be linear elastic, their combined stiffness is given by

k D EA

d
, (18.18)

where A is the total contact area of the blocks and d is the thickness of the blocks. The same type of elastomer was used for
the scale model as for the full model, so that Es D Ef . Consequently,

ks

kf
D df

ds

As

Af
. (18.19)

Combining Eqs. (18.17) and (18.19) results in

ds

df
D 5.30

As

Af
. (18.20)

Hence, if a thickness scaling is specified, an area scaling can be determined and vice versa. The thickness of the scaled
elastomer blocks was chosen to be the same as for the full blocks, ds D df . This results in the scaled area being
As D Af =5.30 D 1800 mm2. Assuming a squared shape for the blocks, their dimensions can be determined as 42 � 42 �
25 mm3. In order to match the width of the beams in the apartment separating walls, the blocks were chosen to be 45 � 45
� 25 mm3 large. The outer dimensions of the scale model are 2600 � 2400 � 1900 mm3. The volume of the full model is,
hence, reduced by 70 % in the scaling.

Finite element (FE) models of the full and the scaled experimental models were created to investigate how well the scaling
procedure works when the scaled plates and beams are assembled to larger structures. The material properties found in [2]
were used in the FE models. The element sizes were decided based on the accuracy in eigenfrequencies below 100 Hz, the
highest frequency of interest. All connections in the FE models were modelled as fully tied. The comparison of the scale
models to the full models was carried out in terms of free-free eigenfrequencies, i.e. eigenfrequencies calculated with no
boundary conditions applied. The difference in eigenfrequencies was evaluated in terms of the normalised relative frequency
difference (NRFD), defined as

NRFD D
ˇ̌̌
f s
i � f f

i

ˇ̌̌

f f
i

, (18.21)

where f s
i and f f

i are the ith eigenfrequencies of the scale model and of the full model, respectively. First, FE models of the
floor, the ceiling and the walls were investigated. Eigenfrequencies below 100 Hz and the resulting NRFD values are shown
in Figs. 18.3 and 18.4, respectively. The curves have different lengths along the horizontal axis since the structures have
different numbers of eigenfrequencies below 100 Hz. The NRFD values are, with a few exceptions, below 10 %. The mean
NRFD value is between 2 and 6 % for the different structures. The mode shapes were compared visually, most modes of the
scale models being similar to those of the full models. Some of the higher frequency modes were found to be shifted in order.
At higher frequencies, the mode shapes are more localised, for example due to resonances in each cc-section of the plates.
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Fig. 18.3 Eigenfrequencies for the full and the scaled models of the floor, the ceiling and the walls
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Fig. 18.4 NRFD values for the floor, the ceiling and the walls

Therefore, discrepancies between eigenfrequencies of the beams and of the plates can have larger impact on the resulting
mode shapes. The global mode shapes at low frequencies are, however, well preserved in the scale models.

Second, FE models (full and scaled) of the complete structure were created. The elastomer blocks were modelled as linear
viscoelastic with properties determined by employing the procedure developed in [4]. The free-free eigenfrequencies of the
full and the scaled models are shown in Fig. 18.5, and the resulting NRFD values are shown in Fig. 18.6. The modal density
is high, especially around 80 Hz, because of local resonances occurring primarily in the plates of the walls. It is therefore
difficult to distinguish the mode shapes from each other. It can, however, be seen that similar trends in modal density are
found for the full and the scaled models.

In addition to comparing eigenfrequencies, the vibration transmission from the floor to the TVE below was studied.
A harmonic point load was applied in the vertical direction at the middle of the floor, free-free boundary conditions being
used. A unit load was used for the scale model, whilst a load of 5.28 N was used for the full model since the ratio of
total masses between the models is 5.28. The resulting complex acceleration amplitudes, Oai (i denoting node number), were
evaluated at the surface of the ceiling and at the surface of one of the facade walls. Root-mean-square (RMS) values of the
accelerations in all nodes of each surface were calculated as

aRMS.f / D
vuut1

n

nX
iD1

jOai .f / j2, (18.22)
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Fig. 18.5 Eigenfrequencies for the full and scaled models of the complete structure
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Fig. 18.6 NRFD values for the complete structure

where n is the number of FE nodes at the surface in question. The RMS values at the ceiling surface and at the wall surface are
shown in Figs. 18.7 and 18.8, respectively. For frequencies below 50 Hz, the scaled and the full FE models produce similar
results, the differences being larger at higher frequencies. Consequently, the scale model performs well below 50 Hz. Above
that frequency, the effect of physical phenomena which were not considered in the scaling becomes larger.

18.4 Concluding Remarks

In the paper, the designing of scaled experimental models of building structures was discussed. The scaling is based on
assumptions of basic physical phenomena, such as bending of beams, governing the dynamic behaviour. As an example,
a wooden building structure representing parts of two storeys in a multi-storey building was considered. The vibration
transmission from a floor to the storey below was studied, finding that the scale model produced results similar to the full
model for frequencies below 50 Hz. The scale model needs to be developed if better correlation to the full model is desired
for higher frequencies. The results may be improved by not using the same scaling ratios for the cc as for the length of
the beams. Moreover, other phenomena such as shear deformations of the elastomer layers could be considered in order to
improve the scaling.

The degree to which the full and the scaled models need to correlate depends on the aim of the experimental studies.
If the scaled experimental structure is used for predicting absolute values of some sort, a high degree of correlation is
required. The example structure studied here will be used for developing FE models by comparisons between simulations
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Fig. 18.7 RMS values of the acceleration amplitudes at the ceiling surface for the full and the scaled models of the complete structure
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Fig. 18.8 RMS values of the acceleration amplitudes at the facade wall surface for the full and the scaled models of the complete structure

and measurements. In such situations, it is less important to have very good correlation between the full and the scaled
models in terms of, for example, eigenfrequencies and amplitudes. It is instead sufficient to represent the physical phenomena
governing the dynamic behaviour of the full experimental model, so that the FE models developed (with help of the scaled
experimental model) are able to represent these phenomena.

A restriction in the methods discussed here for deriving scaled experimental models is that numerical modelling is
employed for investigating their correlation to full-scale models. In the example, the joints were modelled in the same
manner in the FE models of the full models and of the scale models. Hence, any difference in joint behaviour, which may be
the case in reality, is neglected here.
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A multi-level model correlation approach for low-frequency vibration
transmission in wood structures

O. Flodén, K. Persson, G. Sandberg

Department of Construction Sciences, Lund University, P.O. Box 118, SE-22100 Lund, Sweden

Abstract

The main challenge in predicting structure-borne sound in wood buildings is to accurately model
the vibration transmission between the source and the receiving room. A step towards establishing
such models is to investigate the possibilities and limitations of using deterministic methods, which
requires correlations between simulations and measurements. In the paper, we present a multi-level
model correlation approach for low-frequency vibration transmission in wood buildings. The approach
was applied to a scaled-size experimental structure representing a part of a two-storey wood building,
considering frequencies up to 100 Hz. Correlations between simulations and measurements were
performed at four different levels: structural components (viz. beams and boards), planar structures
(viz. floor, ceiling and walls), room structures and the complete structure. The results indicate that
the dynamic behaviour of the experimental structure was to a great extent captured by the developed
model. Based on the observations made in the multi-level correlations, important model parameters
are discussed and modelling guidelines are suggested. We conclude that it is relevant to employ
deterministic methods in order to model the low-frequency vibration transmission in wood buildings
provided that measurement data for calibration purposes is available. The developed numerical model
can be used as a reference model for investigations on the effects of variations and uncertainties in the
modelling.

Keywords: structure-borne sound, vibration transmission, wood buildings, finite element method,
model correlation

1. Introduction

1.1 Background

Many of the residents in multi-storey wood buildings perceive the structure-borne sound as annoy-
ing even though the buildings fulfil regulations regarding sound insulation [1–7]. In [7], the impact
sound insulation in eight wood buildings was measured according to standardised procedures. The
measured impact sound insulation was compared to subjective ratings from residents. It was found that
it is of essential importance to evaluate sound at frequencies below 100 Hz in order to correlate mea-
surements to subjective ratings. These observations emphasise the need for improved low-frequency
structure-borne sound insulation in wood buildings. To improve the sound insulation, and thus the



acoustic comfort for residents, it is valuable that accurate numerical models to predict the effects of
noise reduction measures are available. Through numerical simulations, the performance of reduction
measures can be optimised. Another benefit of using numerical simulations is that they provide addi-
tional insight into the physics governing noise and vibration transmission; the results of simulations
can be visualised in more detail than experimental results, and parametric studies can demonstrate the
effects of changes in design parameters.

Prediction of structure-borne sound in buildings can be divided into three tasks: (1) predicting
the input force caused by the source, (2) predicting the transmission of structural vibrations from the
source to the receiving room, and (3) predicting the sound pressure caused by the vibrations in the
receiving room. Attempts to predict all three steps for low-frequency sound transmission in wood
buildings, excited using an ISO tapping machine [8], are presented in [9–12]. Comparisons between
results from finite element (FE) analyses and measurements unveil poor accuracy in all of the studies.
In [11], the structure-borne sound transmission through a cross-laminated timber structure was tested
in a laboratory and compared to simulated results. It was concluded that the radiated sound power in
the receiving room can be predicted with good accuracy when measured vibrations in the ceiling of
the receiving room are used as input. Hence, the main challenge in predicting structure-borne sound
in wood buildings is to accurately model the structural vibration transmission between the source and
the receiving room.

The model correlation studies we present in the paper were performed for an example case repre-
senting a part of a timber volume element (TVE) building. Such buildings are constructed by stacking
pre-fabricated volume elements with elastomeric isolators between storeys to reduce vibration trans-
mission. The volume elements are composed of frames of wood beams covered with plates, usually
particleboards and plasterboards. TVE buildings account for about 10% of the newly produced multi-
family housings in Sweden and their construction is increasing rapidly [13].

There are several publications presenting model correlation studies for finite element (FE) models
of low-frequency vibrations in wood buildings. Those publications focus on, for example, joints be-
tween beams and boards [14, 15] and elastomeric vibration isolators used in wood buildings [16–18].
However, there is a lack of studies on model correlation for the vibration transmission between differ-
ent storeys, which is the topic we discuss in the paper. It is a challenging task to develop deterministic
models of wood buildings because of several uncertainties, for example, how to model the many joints
between various structural components. Another uncertainty is how to account for the variations in
material properties of wood and in mechanical behaviour of joints, which cause variations in vibration
transmission among buildings with identical geometry. Variations can be considered in deterministic
models by using, for example, Monte Carlo simulations. However, it is inevitable that the determin-
istic strategy fails outside a certain frequency range because of the increasing effects of small details
at higher frequencies. The question is to what extent the deterministic strategy is relevant for the
frequency range of interest, and when to accept a less detailed modelling strategy, such as statistical
energy analysis (SEA). SEA methods are widely used for analysing high-frequency noise transmission
in residential buildings. Such methods consider the energy flow between subsystems and require high
modal density of the subsystems to yield accurate results. This is not the case at lower frequencies in
which small sets of vibration modes govern the response. Compared to SEA methods, deterministic

2



methods have the advantage of allowing for a more detailed description of the structure under study
and therefore facilitate studies on design modifications.

1.2 Aim and objective

The aim of the research presented in the paper is to develop numerical models and strategies for
predicting low-frequency (0–100 Hz) vibration transmission in wood buildings. A step towards estab-
lishing such models is to investigate the possibilities and limitations of using deterministic methods,
which requires correlations between model output and measurement data. In this paper, we present a
multi-level model correlation approach for low-frequency vibration transmission in wood buildings.
The multi-level approach is applied to an experimental wooden building structure representing a part
of a two-storey building. The objective is to establish a correlated deterministic numerical model that
can be used as a reference model for investigations on the effects of variations and uncertainties in the
modelling. The accuracy of the model developed in the paper is evaluated to determine its capability of
predicting vibration transmission when measurement data for calibration purposes is available. Based
on the observations made in the multi-level correlations, important model parameters are discussed
and modelling guidelines are suggested.

1.3 Outline of the multi-level approach

Model correlations were performed for the experimental wooden building structure shown in Fig-
ure 1. An FE model of the structure was calibrated and correlated to measurements by employing the
multi-level approach illustrated in Figure 2. The term ’model correlation’ is defined here as the process
of comparing simulated and measured results to unveil and reduce errors in the modelling. The com-
parisons presented in the paper are based on the normalised relative frequency difference (NRFD) and
the modal assurance criterion (MAC), which are objective measures of the errors in eigenfrequencies
and mode shapes. Calibration, on the other hand, is defined as the procedure of improving estimates
of uncertain model parameters. The steps in the multi-level approach can be summarised as follows:

1. Initial numerical model. An initial FE model was created by using material parameters from
the literature and by connecting parts using simple joint models. The model was used as a start-
ing point for the model correlation studies and to perform pre-test analyses of the experimental
setups.

2. Correlation of structural components. FE models of the wood beams, particleboards and
plasterboards were calibrated to obtain the material parameters that result in the best correlation
between simulated and measured eigenfrequencies.

3. Correlation of planar structures. Simulated eigenfrequencies and mode shapes of the floor,
ceiling and walls were correlated to measurement results. The effects of using the optimised
material parameters obtained in step 2 were investigated and errors in the modelling of the
joints between beams and boards were identified. The FE models were updated to improve the
correlation.
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(a) Rendering of the structure cut perpendicular to the pri-
mary beams in the floor and in the ceiling. Wood beams are
shown in beige, particleboards in brown, plasterboards in
grey and elastomer blocks in black.

(b) Photograph of the experimental setup for the structure.

Figure 1. The experimental wooden building structure studied in the paper. The structure represents part of a
two-storey TVE building.

4. Correlation of room structures. Simulated eigenfrequencies and mode shapes of the two room
structures were correlated to measurement results to identify errors in the modelling of the joints
between planar structures. The FE models were updated to improve the correlation.

5. Correlation of vibration transmission in the complete structure. A damping model based on
measured modal damping ratios was assigned to the materials in the two room structures. The
elastomers placed between the rooms were modelled using frequency-dependent viscoelastic
material properties. Frequency response functions (FRFs) for the experimental structure were
simulated and compared to measured FRFs. The FE model was updated by including acoustic
media in the cavity between floor and ceiling to improve the correlation.

More detailed descriptions of both the experimental structure, the measurements and the calibra-
tions of structural components than are presented in the paper can be found in [19] (which is written
by the corresponding author of this paper).

1.4 Numerical analysis methods and error metrics

The calibrations and correlations performed for the FE models of the structural components, planar
structures and room structures were based on eigenfrequencies and mode shapes. The eigenfrequen-
cies from simulations and measurements were compared by using NRFD values, defined as

NRFD =
f sim
i − f exp

j

f exp
j

, (1)
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Figure 2. Illustration of the multi-level approach used for developing a numerical model of the experimental
structure.

where f sim
i is the ith simulated eigenfrequency and f exp

j is the jth measured eigenfrequency. The
NRFD value is relevant only if the simulated and measured eigenfrequencies belong to corresponding
mode shapes. MAC values were employed to quantify the similarity in mode shapes. The MAC value
is defined as

MAC =

∣∣(Φsim
i )T (Φexp

j )
∣∣2

(Φsim
i )T (Φsim

i )(Φexp
j )T (Φexp

j )
, (2)

where Φsim
i is the ith simulated mode shape and Φexp

j is the jth measured mode shape. The MAC
value falls between 0 and 1, where 1 implies perfect correlation between the two mode shapes. By
calculating the MAC values for all possible combinations of modes between two sets, the so-called
cross-MAC matrix is obtained. If a mode set is compared to itself, the resulting matrix is referred to
as the auto-MAC matrix.

To obtain FRFs for the vibration transmission in the complete structure, steady-state analyses were
performed between 0–100 Hz in steps of 0.25 Hz when applying unit amplitude loads. No objec-
tive measure was used to quantify the errors between simulated and measured FRFs. Instead, visual
comparisons were made to identify similarities and discrepancies.

2. Experimental structure

The experimental structure, shown in Figure 1, represents a part of a two-storey TVE building.
It was a scaled-size structure consisting of two stacked room. The upper room comprised a floor
and four walls whereas the lower room comprised a ceiling and four walls. The two rooms were
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Figure 3. Photograph of the elastomer blocks placed
between the walls of the two stacked rooms.

Figure 4. Photograph of the floor during attach-
ment of the particleboards. The seven primary
wood beams are shown.

connected via 28 elastomer blocks placed between the walls of the rooms, as shown in Figure 3. The
planar structures (viz. floor, ceiling and walls) consisted of wood frames with seven primary beams
attached to edge beams placed perpendicular to their ends. The floor was covered by particleboards,
while the ceiling and walls were covered by plasterboards. Figure 4 shows the floor during attachment
of the particleboards. The walls were of two different types, which differed in the dimensions of the
wood beams: apartment separating walls and facade walls. The two rooms contained two walls of
each type. The apartment separating walls were placed along the edge beams of the floor and the
ceiling, whereas the facade walls were placed along the outermost primary beams.

2.1 Idealisations and scaling of the structure

The structure was designed based on drawings of a TVE building. Compared to the real building, a
number of idealisations were made and the structure was scaled-down in size. The idealisations were
made to facilitate the model correlations, whereas the scaling was necessary to obtain a structure that
fitted within available laboratory facilities.

There were seven primary wood beams in the experimental floor structure; floors in real TVE build-
ings normally contain 2–3 times as many beams. Each room in the experimental structure included
half the height of a TVE, i.e. the walls were of half height. No details or irregularities in the geometry,
such as windows, doors, interior walls or floor surfaces, were included in the structure. Hence, only
the load-bearing structures of the TVEs were represented in the experimental structure. Mineral wool
for thermal and sound insulation purposes was not included in the structure.

The scaling of the structure was performed using the procedure presented in [20], written by the
authors of this paper. The objective of the procedure is to reduce the size of experimental building
structures while preserving their dynamic behaviour. By adopting the procedure, the reduced dimen-
sions are calculated analytically by considering the bending modes of beams and boards in the building
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structures. In [20], the scaling procedure was applied to a structure similar to the structure studied in
this paper; both representing parts of two-storey TVE buildings. The accuracy of the scaling was
investigated by comparing FE analyses of the full- and scaled-size structures. It was found that the
eigenfrequencies and mode shapes between the full- and scaled-size structures were well-correlated
for frequencies up to 100 Hz. Steady-state analyses showed that the vibration transmission between
storeys was well-correlated up to 50 Hz, while discrepancies in resonance frequencies were found at
higher frequencies.

2.2 Dimensions and materials

The outer dimensions of the structure were 2600×2400×1900 mm3. Table 1 presents the dimen-
sions of the floor, ceiling and walls in terms of the cross-sectional dimensions of the beams (h×b), the
length and centre-to-centre distance of the primary beams (l and c/c, respectively), and the thickness of
the boards (t). The elastomer blocks were 45×44×24 mm3 in size and of the type Sylodyn NB [21].
The wood beams were made of spruce and of type G4-2 according to SS-EN 1611-1 [22]. The particle-
boards were of type P1 according to SS-EN 312 [23] and the plasterboards were of type A according
to SS-EN 520 [24].

Table 1. Dimensions of the beams and boards in the floor, ceiling and walls. l and c/c are the length and
centre-to-centre distance of the primary beams, h × b is the cross-sectional dimensions of the beams, and t is
the thickness of the boards. Dimensions are in the unit of mm.

l c/c h b t

Floor 2280 408 93 21 10
Ceiling 2280 272 54 21 6.5
Apartment separating walls 860 408 44 22 6.5
Facade walls 860 401 69 21 6.5

2.3 Construction

The wood frames in the floor, ceiling and walls were assembled by screwing the edge beams into
the ends of the primary beams. The wood frames were covered with one layer of particleboards or
plasterboards. The particleboards on the floor were glued to each other at their grooved-and-tongued
edges and attached to the beams using both screws and glue. The plasterboards on the ceiling and
walls were attached to the wood frames using only screws, i.e. no glue. The walls contained one
plasterboard each, whereas the ceiling contained three plasterboards placed next to each other. The
joints between them were located on top of wood beams.

The upper room was assembled by first screwing the apartment separating walls into the sides of the
edge beams of the floor. The facade walls were then screwed into the sides of the outermost primary
beams of the floor and of the apartment separating walls. The lower room was constructed in the same
manner. The elastomer blocks placed between the rooms were kept in place solely by frictional forces.
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Figure 5. Photograph of the measurement setup used for the upper room structure.

3. Experimental procedure

Experimental modal analysis (EMA) was performed for the structural components, the planar struc-
tures and the room structures to extract eigenfrequencies, mode shapes and modal damping ratios. The
vibration transmission in the complete structure was measured in terms of FRFs. All tests were per-
formed with impact hammers (Brüel & Kjær 8206 and 8208) as excitation sources and piezoelectric
accelerometers (Brüel & Kjær 4507-001 and 4524) to measure the vibrations. The data acquisition
was performed using Brüel & Kjær LAN-XI 3050 A-060/A-042 frontends and the signal processing
was carried out in PULSE Labshop/Reflex 19.0 [25]. The measurements were performed in a labora-
tory where the relative humidity was 50±5% and the temperature was 18±3°C for at least 48 h prior
to measurements.

The structures were suspended from the laboratory ceiling using elastic bands to mimic free bound-
ary conditions; Figure 5 shows the setup used for the upper room structure. The rigid body modes,
which had frequencies between 0–1.5 Hz, were significantly lower than the elastic modes, except for
the first elastic mode of the floor and of the ceiling (which were global torsion modes).

Pre-test analyses were performed to determine suitable excitation points and measurement points
for the EMA. The pre-test analyses were performed by studying simulated mode shapes. These were
obtained by using the initial FE model described in Section 4. Uniform grids of excitation points were
used. The resolution of these grids were selected by studying the auto-MAC values of the simulated
mode sets to ensure that the mode shapes could be separated from each other. Up to six accelerometers
were used in each measurement and these were placed in a subset of the excitation points. Their
positions were determined by finding the set of measurement points for which the minimum amplitude
of the simulated mode shapes was maximised.
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The measured acceleration time signals were windowed with exponential functions, while the force
signals were windowed with cosine tapered functions. The modal parameters were estimated by em-
ploying methods implemented in PULSE Reflex 19.0 (rational fraction polynomial and polyreference
methods). The resulting mode shapes were normalised to obtain real-valued vectors.

More details on the measurement procedure and a comprehensive presentation of the measurement
results can be found in [19].

4. Initial numerical model

The first step in the multi-level approach is to create an initial FE model. This FE model was used
for pre-test analyses of the experimental setups and as a starting point for the model correlations. All
modelling and analyses presented in the paper were performed using Abaqus/Standard 6.13 [26].

4.1 Material models

The materials were assumed to be linear elastic, homogeneous and orthotropic. Elastic parameters
were collected from a wide range of publications to identify a feasible interval for each parameter.
In some publications, the parameters are presented as normal distributions; the 95% confidence limits
were taken from those publications. The parameters in the initial model were chosen as the mid-points
in the feasible intervals. However, the densities of the different materials were determined by weighing
and measuring the dimensions of the structural components used in the experimental structure.

Parameters of spruce were collected from [27–30]. The intervals and the values used in the initial
model are shown in Table 2. The parameters are given in terms of cylindrical coordinates (the longitu-
dinal direction, L, the tangential direction, T , and the radial direction, R). E is the Young’s modulus,
G is the shear modulus, ν is the Poisson’s ratio and ρ is the density. The parameters in the radial and
tangential directions were assumed to be equal, i.e. ET = ER, GLT = GLR and νLT = νLR.

Table 2. Material parameters of spruce in terms of the intervals identified from literature and the values used in
the initial model. Stiffness parameters are in the unit of MPa and density in kg/m3.

EL ET , ER GLT , GLR GRT νLT , νLR νTR ρ

Lower limit 5600 230 440 21 0.34 0.20 -
Upper limit 17000 1200 1600 125 0.72 0.60 -
Initial model 11000 700 1000 73 0.53 0.40 460

Parameters of particleboard were collected from [31–33]. In [33], the parameters are distinguished
between the surface layers and the core layer of the boards. In [31, 32], however, the presented
parameters are independent of the thickness direction. The intervals presented here are based on
all types of values. In the FE model of the experimental structure, the parameters were assumed
to be independent of the thickness direction. The intervals and the values used in the initial model
are presented in Table 3. Directions 1 and 2 are the in-plane directions, while 3 is the out-of-plane
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direction. Direction 1 is the stiffer of the in-plane directions and was assigned to the lengthwise
direction of the boards in the FE model of the experimental structure.

Table 3. Material parameters of particleboard in terms of the intervals identified from literature and the values
used in the initial model. Stiffness parameters are in the unit of MPa and density in kg/m3.

E1 E2 E3 G12 G13 G23 ν12 ν13 ν23 ρ

Lower limit 1300 1200 200 570 170 150 -0.06 0.23 0.20 -
Upper limit 5500 4800 570 1800 400 370 0.44 1.32 1.27 -
Initial model 3400 3000 390 1200 290 260 0.19 0.78 0.74 750

Parameters of plasterboard were collected from two manufacturers [34, 35] and two research papers
[36, 37]. Only the Young’s moduli are presented in the references; [34–36] present orthotropic param-
eters for the in-plane directions of the boards, while [37] presents isotropic parameters. The intervals
for the remaining parameters were chosen without any a priori knowledge. The out-of-plane Young’s
modulus, E3, is likely to be lower than the in-plane moduli, E1 and E2, because of the paper-coating
of the boards, which contributes to the bending stiffness. The lower limit was therefore set to 10% of
the limit for the in-plane parameters. The interval for E3 was used also for the three shear moduli. The
intervals and the values used in the initial model are presented in Table 4. Direction 1 was assigned to
the length-direction of the boards in the FE model of the experimental structure.

Table 4. Material parameters of plasterboard in terms of the intervals identified from literature and the values
used in the initial model. Stiffness parameters are in the unit of MPa and density in kg/m3.

E1 E2 E3 G12 G13 G23 ν12 ν13 ν23 ρ

Lower limit 1600 1600 150 150 150 150 0.0 0.0 0.0 -
Upper limit 2500 2000 2500 2500 2500 2500 0.5 0.5 0.5 -
Initial model 2000 1800 1000 1000 1000 1000 0.25 0.25 0.25 760

The elastomers were assigned frequency-dependent viscoelastic material properties. The parame-
ters of the material model were determined by applying the procedure presented in [18] to Sylodyn NB.
In the procedure, results from FE analyses are combined with experimental data provided by manufac-
turers valid for the geometry of the tested elastomers and for the boundary conditions applied during
the tests. The material parameters of Sylodyn NB, obtained by using the procedure, are shown in
Figure 6 in terms of the real and imaginary parts of the bulk modulus, K, and the shear modulus, G.

4.2 Joints

The joints in the structure were modelled as fully coupled in the initial FE model. For the joints
between beams and boards, full coupling was implemented by using one single mesh for each planar
structure, so that the beams and boards shared mesh nodes. For the joints between planar structures,
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Figure 6. Real and imaginary parts of the shear modulus, G, and of the bulk modulus, K, employed for the
elastomers in the FE model. The parameters are in the unit of MPa.

full coupling was implemented by using constraint equations tying the nodes on one part to the sur-
face at the other part. The same approach was used for the interfaces between elastomers and room
structures. The three plasterboards in the ceiling were modelled as a single continuous board in the
initial model.

4.3 Finite element discretisations

The experimental structure was meshed with 20-node solid hexahedral elements with quadratic
interpolation and reduced integration. The elastomer elements were, however, fully integrated to avoid
spurious modes. Mesh convergence analyses were performed for the FE models of the structural
components (viz. wood beams, particleboards and plasterboards) by ensuring that the errors in the
eigenfrequencies in Section 5, relative to densely meshed models, were less than 0.1%. The element
size for the elastomers was determined by analysing the complete structure and ensuring that the errors
in the eigenfrequencies below 100 Hz were less than 0.1%. In total, the initial model was meshed with
about 50,000 elements and contained approximately 830,000 DoFs.

5. Correlation of structural components

The second step in the multi-level approach is to calibrate the FE models of the structural com-
ponents to obtain the material parameters that result in the best correlation between simulated and
measured eigenfrequencies. Calibrations were performed for each wood beam in the structure and
for two specimen each of particleboard and plasterboard. For the wood beams, the two first bend-
ing modes in each direction and the two first torsional modes were used in the calibrations. For the
particleboards and plasterboards, the six lowest eigenmodes were used in the calibrations.
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5.1 Calibration procedure

The calibrations were performed using the sum of the squared NRFD values as the objective func-
tion. It was ensured that the NRFD values were based on well-correlated mode shapes between sim-
ulations and measurements. For the particleboards and plasterboards, the MAC values were higher
than 0.9. For the wood beams, the MAC values were higher than 0.7 and about 0.9 in average. The
calibrations did not have any appreciable effect on the MAC values.

The material parameters were optimised in three steps:

1. Sensitivity analysis. The parameters were varied one at a time within the interval limits pre-
sented in Section 4.1, and the effects on the simulated eigenfrequencies were studied. Only the
parameters with appreciable effect on the NRFD values were optimised in steps 2 and 3. For the
remaining parameters, the initial values were used.

2. Grid search. The intervals for the material parameters given in Section 4.1 were divided into
ten steps each and the objective function was evaluated for all combinations of parameter values.
The results provided an estimate of the optimal parameters.

3. Newton optimisation. The parameters from step 2 were used as initial values for a multi-
dimensional Newton optimisation. Iterations were performed until each of the parameters were
updated with a maximum of 0.1% of its value.

5.2 Results

The NRFD values obtained using the calibrated models were below 4% for each measured eigen-
frequency and about 1% in average. The sensitivity analyses for the wood beams unveiled that two
parameters have appreciable effect on the eigenfrequencies of the wood beams, EL and GLR = GLT .
The remaining parameters affect the NRFD values with less than 0.5%. Calibrations were performed
for all 90 wood beams in the experimental structure. Figure 7 shows the normal distributions of the
optimised parameters; each dot along the curve represents an optimised value. For the particleboards
and plasterboards, three parameters were found to have an appreciable effect on the eigenfrequencies:

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
4

0

1

2

x 10
−4

  µ: 11162 MPa
  σ:  1980 MPa

E
L
 (MPa)

(a) Young’s modulus EL.

300 400 500 600 700 800 900 1000 1100 1200
0

1

2

3

x 10
−3

  µ: 762 MPa
  σ: 120 MPa

G
LR

=G
LT

 (MPa)

(b) Shear modulus GLR = GLT .

Figure 7. Normal distributions for the optimised material parameters of the wood beams. The circles represent
optimised values. µ is the mean value and σ is the standard deviation.
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E1, E2 and G12. The remaining parameters affected the NRFD values with less than 1%, except for
ν12, which affected the NRFD values with up to 8%. This is, however, low compared to E1, E2 and
G12, which affected the NRFD values with up to 130%. Table 5 presents mean values of the optimised
parameters for the two measured specimens of particleboard and of plasterboard.

Table 5. Optimised Young’s and shear moduli for the particleboards and plasterboards. The parameters are in
the unit of MPa.

E1 E2 G12

Particleboard 4600 4400 1900
Plasterboard 4000 3100 1300

6. Correlation of planar structures

The third step in the multi-level approach is to correlate the FE models of the floor, ceiling and walls
to measurements. The initial models were updated by involving optimised material parameters and,
for some structures, the modelling of joints between beams and boards was modified. The objective
of the correlations was to maximise the average of the MAC values for the measured mode shapes.

6.1 Floor

First, the effect of involving optimised material parameters were investigated by comparing three
different models: (1) the initial model, denoted ‘Initial’, (2) a model with optimised parameters for
each individual floor beam, denoted ‘Individual’ and (3) a model with the mean value of the optimised
parameters for all floor beams, denoted ‘Mean’. In the two latter models, the optimised parameters
of particleboard were used. Cross-MAC matrices for the three models are shown in Figure 8. Only
the ‘Individual’ model was able to accurately represent the mode shapes at higher frequencies; the
MAC values for that model were above 0.79 for all measured eigenmodes and 0.94 in average. In
comparison, the MAC values for the ‘Mean’ model were 0.87 in average while the lowest value was
0.41. The reason for the large difference in correlation is that the variation in material parameters
among beams causes mode shapes that are neither symmetric nor asymmetric. As an example, the 12th

measured mode shape of the floor is shown in Figure 9 along with the corresponding simulated mode
shape of the ‘Individual’ model. In all subsequent analyses presented in the paper, individual material
parameters were used for the wood beams. Because of the high correlation obtained for the mode
shapes, the joints in the floor model were not modified. Simulated and measured eigenfrequencies,
and the resulting NRFD values, are shown in Figure 10. The results shown in the figure are those
obtained for the ‘Individual’ model.
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(b) Model: Individual.
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Figure 8. Cross-MAC for the FE models of the floor.

(a) Measured mode shape at 80.0 Hz. (b) Simulated mode shape at 83.6 Hz, obtained using
the ‘Individual’ model.

Figure 9. The 12th mode shape of the floor.

2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

Eigenmode number, Measurements

F
re

qu
en

cy
 (

H
z)

 

 

Simulations
Measurements

(a) Eigenfrequencies.

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

Eigenmode number, Measurements

N
R

F
D

 (
%

)

(b) NRFD values. Positive values in black and negative
values in grey.

Figure 10. Simulated and measured eigenfrequencies, and the resulting NRFD values, for the floor. The average
of the NRFD values is 4.6%.
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Figure 11. Fictitious materials used for the modelling of joints between plasterboards and wood beams. The
fictitious materials are shown in blue.

6.2 Ceiling

The FE model of the ceiling was updated with the optimised material parameters for each indi-
vidual wood beam. The resulting correlations were, however, not as good as for the floor. To obtain
higher MAC values at higher frequencies, the modelling of the joints had to be modified. In the up-
dated model, the gaps between the three plasterboards in the experimental structure were included
by modelling them as 2 mm wide. Moreover, as illustrated in Figure 11, the joints between beams
and plasterboards were modelled with interlayers of fictitious materials to obtain couplings with lower
rotational stiffness. Three different fictitious materials were used, one for each type of joint shown
in the figure; namely, end joints, gap joints and midspan joints. It should be noted that the end and
midspan joints provide non-zero rotational stiffness for a fictitious materials with zero stiffness. The
material parameters of wood were assigned to the fictitious materials, except the Young’s modulus in
the transversal direction, which was optimised to improve the MAC values. The Young’s modulus of
the three materials were optimised one at a time by maximising the average of the MAC values for
the measured mode shapes. The optimisation process was re-iterated until no further improvement in
the average of the MAC values was found. The Young’s modulus of the fictitious materials ended up
lying between 0.3–1.3% of the value for wood (ET = ER =700 MPa).

Cross-MAC matrices for the ceiling, before and after updating the modelling of the joints, are
shown in Figure 12. It can be seen that the MAC values for the higher modes were improved substan-
tially by updating the modelling of the joints. The MAC values for the updated model were 0.90 in
average and 0.59 for the least correlated mode shape; a substantial improvement when compared to
0.81 and 0.42 for the model with initial joints. Eigenfrequencies from simulations and measurements,
and the resulting NRFD values, are shown in Figure 13. The results shown in the figure are those
obtained after updating the modelling of the joints.

In addition to updating the rotational coupling, it was investigated if any possible slip between plas-
terboards and wood beams affected the correlation. The slip was represented in the ceiling model by
lowering the shear modulus of a thin layer introduced between the wood beams and the plasterboards.
It was found that the average of the MAC values was decreased when modelling the slip. Therefore,
slip was not considered in the models discussed in the remaining part of the paper. It should be noted
that the correlations were performed by considering the average of the MAC values, and that slip may
improve the correlation for certain mode shapes.
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(a) Model: Initial joints between beams and plasterboards.
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(b) Model: Updated joints between beams and plaster-
boards.

Figure 12. Cross-MAC for the FE models of the ceiling.
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Figure 13. Simulated and measured eigenfrequencies, and the resulting NRFD values, for the ceiling. The
average of the NRFD values is 5.0%.

6.3 Walls

The initial FE models of the eight walls were updated with the optimised material parameters for
each individual wood beam. The joints between the wood beams and the plasterboards were modelled
in the same way as for the ceiling. The walls in the experimental structure contained one plasterboard
each and, therefore, no gaps between plasterboards were present. Consequently, only two fictitious
material configurations were used for each wall; one for midspan joints and one for end joints (see
Figure 11). The parameters of the fictitious materials were optimised for each wall. The resulting
Young’s modulus of the fictitious materials varied significantly among the different walls; the obtained
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values were between 0.007–100% of the value for wood (ET = ER =700 MPa). A reason for the
large variations is that the measured mode shapes at higher frequencies differ substantially among the
eight walls. It should be pouinted out again that the models of the joints provide rotational stiffness
also in the extreme case when the stiffness of the fictitious materials is zero. However, the variations
in optimised values indicate that there were large variations in mechanical behaviour of the joints in
the different walls.

The correlation between simulations and measurements, in terms of average and extreme values of
the MAC and NRFD values, for the eight walls are presented in Table 6. The results presented in the
table are those obtained after updating the modelling of the joints.

Table 6. MAC values and NRFD values for the eight walls, presented in terms of average and extreme values
for the sets of measured eigenmodes. Among the eight walls, the MAC and NRFD values are in average 0.94
and 8.5%, respectively. *Number of measured eigenmodes.

Apartment separating walls Facade walls
1 2 3 4 1 2 3 4

No. of modes* 14 13 12 12 10 11 11 8
Model: Initial joints

MAC, avg 0.92 0.92 0.93 0.96 0.85 0.81 0.94 0.93
MAC, min 0.73 0.52 0.62 0.77 0.50 0.43 0.71 0.81
NRFD, avg 10 10 10 11 10 11 9.6 12
NRFD, max 19 17 20 18 17 18 16 20

Model: Updated joints
MAC, avg 0.94 0.97 0.98 0.96 0.88 0.87 0.94 0.94
MAC, min 0.72 0.85 0.85 0.78 0.67 0.52 0.73 0.85
NRFD, avg 8.7 7.6 8.8 11 4.4 7.1 9.2 11
NRFD, max 15 16 20 17 12 14 15 15

7. Correlation of room structures

In the fourth step of the multi-level approach, the simulated eigenfrequencies and mode shapes of
the two room structures were correlated to measurements. The correlations were performed for fre-
quencies below 50 Hz because the measured mode shapes at higher frequencies had high complexity,
i.e. they could not be approximated as real-valued. The initial FE models of the two room structures
were updated by replacing the initial FE models of the floor, ceiling and walls with the correlated mod-
els described in Section 6. When modelling full interaction of the joints between the planar structures,
the correlation between simulations and measurements was poor for several mode shapes. Visual
comparison of the mode shapes unveiled that the joints between planar structures were too stiff in the
models of the room structures. Therefore, elastic rotational coupling was introduced between the pla-
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Figure 14. Cross section of the models used for the joints between planar structures.

nar structures by using the approach illustrated in Figure 14; the translations were constrained along a
line in the joints, and an elastic membrane was inserted along the other end of the joints. By changing
the stiffness of the membranes, the rotational stiffness of the joints can be modified. This modelling
approach was used for the floor-to-wall, ceiling-to-wall and wall-to-wall joints. In the model of each
room structure, two membrane materials were used; one for the wall-to-wall joints and one for the
floor/ceiling-to-wall joints. The stiffness of the two membranes were optimised one at a time, and the
optimisation process was re-iterated until no further improvement in the average of the MAC values
was found. The resulting rotational stiffness was 20 kNm/rad per meter for the floor-to-wall joints,
10 kNm/rad per meter for the ceiling-to-wall joints and 15 kNm/rad per meter for the wall-to-wall
joints in the upper room structure. For the wall-to-wall joints in the lower room structure, it was
optimal to have no rotational stiffness.

Cross-MAC matrices for the two room structures, before and after the modelling of the joints were
updated, are shown in Figure 15 (for the upper room structure) and Figure 16 (for the lower room
structure). For the upper room structure, the average of the MAC values was increased from 0.77 to
0.88 when updating the models of the joints. For the lower room structure, it was increased from 0.68
to 0.85. Eigenfrequencies from the simulations and measurements, and the resulting NRFD values,
are shown in Figure 17 (for the upper room structure) and in Figure 18 (for the lower room structure).
The results shown in the figures are those obtained after updating the models of the joints.

8. Correlation of vibration transmission in the complete structure

In the fifth and final step of the multi-level approach, the accuracy of the predicted vibration trans-
mission in the experimental structure was investigated by comparing simulated and measured FRFs.
The transmission from three excitation points at the floor in the upper room to four measurement points
in the lower room was investigated. Also, the driving point FRFs were determined by measuring the
accelerations in the excitation points. The locations of the excitation points and the measurement
points are shown in Figure 19. Point 3 was placed on a facade wall and point 4 was placed on an
apartment separating wall.
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Figure 15. Cross-MAC for the FE models of the upper room structure.
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Figure 16. Cross-MAC for the FE models of the lower room structure.

The correlated models of the room structures were used in the model of the complete structure. A
Rayleigh damping model [38] was established based on the measured modal damping ratios of the
two room structures. In Rayleigh damping, the damping matrix is constructed as a linear combination
of the mass matrix, M, and stiffness matrix, K,

C = a0M + a1K, (3)
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Figure 17. Simulated and measured eigenfrequencies, and the resulting NRFD values, for the upper room
structure. The average of the NRFD values is 6.9%.
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Figure 18. Simulated and measured eigenfrequencies, and the resulting NRFD values, for the lower room
structure. The average of the NRFD values is 4.4%.

where a0 and a1 are coefficients. It can be shown that the damping ratio of the nth mode, when using
Rayleigh damping, is given by

ζn =
a0

2ωn

+
a1ωn

2
, (4)

where ωn is the angular frequency of the nth mode. The damping model for the experimental structure
was established by adjusting a0 and a1 to obtain a function ζn(ωn) that fits well to the measured modal
damping ratios of the room structures. The resulting Rayleigh damping model, obtained for a0 = 3.06
and a1 = 3.22 · 10−5, is plotted in Figure 20 along with the modal damping ratios. The damping
model was assigned to the materials in the two room structures, while the damping of the elastomers
was modelled through the viscoelastic material parameters shown in Figure 6.

In [39], it was shown through structure-acoustic FE simulations that the air and insulation in cavi-
ties of wood buildings affect the transmission of structural vibrations. Therefore, we investigated if the
modelling of air in the cavity between the floor and the ceiling in the experimental structure affected
the vibration transmission. The air cavity was discretised into 3000 acoustic finite elements with 20
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Figure 19. Excitation and measurement points employed in the measurements of FRFs in the experimental
structure. The grey dashed lines indicate wood beams. The black dashed lines indicate the walls in the upper
room.
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Figure 20. Rayleigh damping model fitted to the measured modal damping ratios of the two room structures.

nodes each and pressure as primary variable. At the boundary between the cavity and the surrounding
air, atmospheric pressure was applied. Figure 21 shows simulated FRFs, obtained with and without
the acoustic medium in the model, and the corresponding measured FRF. It can be observed that by
modelling the air in the cavity, the simulated transmission to the lower room was increased substan-
tially at higher frequencies. Therefore, acoustic elements were included in the model for the final
comparisons between simulated and measured FRFs.

The driving point FRFs are shown in Figure 22, whereas the FRFs between floor and lower room
are shown in Figure 23. It can be observed that the driving point FRFs, in general, are well corre-
lated; the simulated and measured results display similar amplitudes and resonance peaks, although
frequency shifts occur. The simulated resonance peaks are shifted about 5% towards higher frequen-
cies compared to the measurements. Similar observations can be made for the FRFs to the lower room.
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Figure 21. Simulated FRFs with and without acoustic medium in the cavity between floor and ceiling, along
with the corresponding measured FRF. The FRFs shown are for the transmission between excitation point A
and measurement point 2.

However, the simulated transmission is less accurate for frequencies above 50 Hz, where the simulated
FRFs are generally of lower amplitude than the measured ones. The discrepancies are especially large
for the measurement points on the walls (points 3 and 4).

The effect of the frequency shift is illustrated in Figure 24, where the frequency axis of the sim-
ulated results is scaled. The scaling was performed by multiplying the frequency axis with a linear
function increasing from 0.92 to 0.97 between 0–100 Hz. Consequently, the frequencies of the simu-
lated FRFs are decreased by 3–8%. The figure shows the simulated and measured driving point FRFs
for excitation point C and the FRFs for the transmission from excitation point C to measurement
point 2. It can be seen that after scaling the frequency axis, the simulated FRFs capture most of the
resonance peaks in the measured data. An interpretation of the results is that the dynamic behaviour
of the experimental structure was to a great extent captured by the model, but that the model had a
higher stiffness. This is in line with the results of the correlations for the planar structures and the
room structures, where it was found that the mode shapes were well-correlated while the simulated
eigenfrequencies were about 5% higher than the measured ones.

9. Discussion

9.1 Accuracy of deterministic approach

One of the objectives in the paper is to investigate the possibilities and limitations of using deter-
ministic methods to model low-frequency vibration transmission in wood buildings. The results pre-
sented show that the dynamic behaviour of the experimental structure was to a great extent captured
by the developed model, although appreciable discrepancies were found for the vibration transmission
between rooms at frequencies above 50 Hz. The errors can most likely be reduced by considering
the possible sources of error discussed below. Based on the promising results, we conclude that it is
relevant to employ deterministic methods provided that measurement data for calibration purposes is
available. Since the correlated model captures the dynamic behaviour of the experimental structure,
the simulation results can be used to understand the physics governing the vibration transmission. This
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Figure 22. Simulated and measured FRFs for the response in the excitation points on the floor. Simulated FRFs
are shown in red and measured FRFs in black.

is valuable when designing and studying measures for noise and vibration reduction. However, to ob-
tain reliable deterministic models that can be used for predicting the relative efficiency of different
designs, it should be investigated how variations in material properties and mechanical behaviour of
joints affect the model output. Also, it should be investigated to what extent the many details present in
real buildings, but not included in the idealised experimental structure, (for example, windows, doors,
interior walls and floor surfaces) affect the results.

The effects of variations and uncertainties on the model output depend on the frequency content
of the load. If, for example, the experimental structure would be subjected to single-frequency har-
monic excitation, the simulated vibration levels could be several orders of magnitude wrong because
of shifted resonance peaks. The errors are, in general, smaller for broadband excitations since the re-
sponse is a sum of the responses at multiple frequencies, which reduces the errors caused by frequency
shifts. The lightly damped properties of the experimental structure makes the errors in the simulated
results especially sensitive to frequency shifts, as the resonance peaks are narrow. It should be noted
that the damping in real buildings can be expected to be higher than in the experimental structure
because of, for example, the mineral wool insulation and interfaces between subfloor and parquet.

9.1.1. Sources of error

A possible source of error is the assumption of atmospheric pressure for the acoustic medium at
interfaces to surrounding air. The numerical investigations in [39] do, however, imply that the effect of
the boundary conditions is relatively small. Another source of error related to the transmission through
acoustic medium is the reflection of sound waves at the walls of the laboratory; the measurements were
performed in a small laboratory (6×6×3 m3 in size) with tiled walls.

Two possible transmission paths between the rooms in the structure exist: through the air and
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through the elastomers. The dynamic properties of the elastomers were determined by using the
procedure in [18], which was validated through an example case with a significantly stiffer type of
elastomer than the one used in the experimental structure. Both types of elastomers are closed-cell
polyurethane materials from the same manufacturer; the main difference between them is the size
of the air cells, which are much larger in the elastomers used in the experimental structure. It is
not verified that the procedure in [18] is equally well-suited for the elastomers in the experimental
structure and this can affect the simulated vibration transmission between the rooms.

We suspect that a major source of error for the vibration transmission between rooms is that the
simulated eigenfrequencies of the room structures were shifted as compared to the measured eigen-
frequencies. If the two room structures have coinciding eigenfrequencies, the transmission is likely
to be higher at that frequency. Consequently, if eigenfrequencies coincide in the experimental struc-
ture but not in the FE model, or the other way around, it may cause large errors. This would explain
why the resonance peaks in the driving point FRFs were well represented in the simulations while
discrepancies were found for the vibration transmission between the rooms.

The frequency shifts are likely to be caused mainly by the type of model used for the joints between
beams and boards and between planar structures. For example, only the rotational stiffness of the joints
were optimised and those optimisations were performed by studying errors in mode shapes, but not in
eigenfrequencies.

9.2 Modelling guidelines and suggestions for further work

It was shown that it is important to use optimised material parameters of each individual beam
to accurately simulate the mode shapes up to 100 Hz. The reason is that the variation in material
parameters among beams causes mode shapes that are neither symmetric nor asymmetric. When
employing statistical methods such as Monte Carlo simulations for analysing the effects of variations
in material parameters, random parameters should be generated for each individual wood beam instead
of using equal parameters for all beams.

The correlation studies for the floor showed that the mode shapes can be simulated with high
accuracy by employing full interaction for the screwed and glued joints between wood beams and
particleboards. This supports the conclusions in [15], where experimental setups of joints between
wood beams and particleboards were investigated numerically and experimentally. The correlation
studies for the ceiling and walls showed that modelling full interaction is erroneous for the joints
between wood beams and plasterboards, which were screwed and not glued. Instead, elastic joints
should be considered for the rotational coupling. This was found also for the joints between planar
structures. To implement the rotational coupling in models of wood buildings, a possible approach is to
optimise the parameters of different types of joints for simplified experimental setups. By performing
such optimisations for a series of theoretically identical structures, statistical distributions for model
parameters of joints can be obtained.

The correlation of simulated and measured vibration transmission between rooms showed that it
is important to model acoustic media in cavities between floor and ceiling, especially at higher fre-
quencies. This supports the conclusions of the numerical investigation in [39], where models with and
without air and insulation in cavities of wood buildings were compared. The experimental structure
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studied in the paper did not contain insulation, which is used in real buildings for thermal and sound
insulation purposes. To determine suitable methods for modelling insulation in cavities, correlations
between simulations and measurements could be performed for simplified setups.

An important step in the development of deterministic models for vibration transmission in wood
buildings is to propagate the variations in material parameters of wood and in mechanical behaviour
of joints to the model output. When statistical distributions for the stochastic parameters have been
established, statistical analyses should be performed by considering the variations simultaneously.
The variations in vibration transmission can thereby be estimated. The extent of the variations govern
the possibilities and limitations of using deterministic methods. Large variations make it difficult to
predict absolute vibration levels and to draw conclusions regarding relative effects of different designs.
The models can, however, still be useful for understanding the governing physics, which is important
when designing measures for noise and vibration reduction. The stochastic parameters should not only
be investigated simultaneously, but also one at a time to determine the necessity of modelling them as
stochastic.

10. Concluding remarks

In the paper, we present a multi-level model correlation approach for low-frequency vibration trans-
mission in wood buildings. The approach was applied to an experimental building structure that
represents a part of a two-storey building. Calibrations and correlations between simulations and mea-
surements were performed at four levels: structural components, planar structures, room structures
and the complete structure. Simulated and measured FRFs were compared for the experimental build-
ing structure and it was found that the driving point FRFs for excitations points on the floor of the
experimental structure were well correlated; the simulated and measured results displayed similar am-
plitudes and resonance peaks, although frequency shifts were found. Similar observations were made
for the vibration transmission from the floor to the ceiling and walls of the lower room, except that
larger errors were found at frequencies above 50 Hz. The results indicate that the dynamic behaviour
of the experimental structure was to a great extent captured by the developed model, but that the model
had a higher stiffness. Based on the promising results, we conclude that it is relevant to employ de-
terministic methods in order to model the vibration transmission provided that measurement data for
calibration purposes is available. The developed numerical model can be used as a reference model for
investigations on the effects of variations and uncertainties in the modelling, and on the possibilities
and limitations of using deterministic methods.
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[16] Bolmsvik Å., Linderholt A., Brandt A., Ekevid T. FE modelling of light weight wooden as-
semblies – Parameter study and comparison between analyses and experiments. Eng Struct,
2014;73:125–142.
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Figure 23. Simulated and measured FRFs for the vibration transmission from the floor to the lower room.
Simulated FRFs are shown in red and measured FRFs in black.
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Figure 24. Illustration of the frequency shift between simulated and measured FRFs; the frequency axis of the
simulated results is scaled. Simulated FRFs are shown in red and measured FRFs in black.
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Modelling of elastomeric vibration isolators in dynamic substructuring

O. Flodén, K. Persson, G. Sandberg

Department of Construction Sciences, Lund University, P.O. Box 118, SE-22100 Lund, Sweden

Abstract

Elastomers are used for vibration isolation in many types of structures. When performing vibration
analyses of such structures, there is a need to model the elastomers in an accurate and computationally
efficient manner. In this paper, we present a procedure for creating coupling elements that represent
elastomers in dynamic substructuring. The coupling elements are constructed on the basis of 3D
finite element models of elastomers, and they are intended for use in assembling reduced substructure
models. The developed procedure involves methods for interface reduction and for a reduction of the
number of internal degrees of freedom of the finite element models. A model of a wooden building
structure with elastomeric vibration isolators is used as an example case to investigate the effects of
using the different methods to create coupling elements. In addition, the effects of modelling features
such as rotational coupling and frequency-dependent material properties in the coupling elements
were investigated. It was found that the procedure for creating coupling elements can be used for
establishing accurate and efficient assemblies of reduced substructure models provided that suitable
methods are employed.

Keywords: elastomers, vibration isolation, dynamic substructuring, finite element method,
model order reduction, interface reduction

1. Introduction

Elastomers are used for vibration isolation between structures because of their low stiffness and high
strain capacity. The low stiffness is beneficial for reducing the transmission of high-frequency vibra-
tions from a source to surrounding structures. The size of the elastomers is often small compared to
the structural components between which they are placed. This is illustrated in Figure 1, and examples
of such structures are machines that are placed on elastomer foundations and multi-storey buildings
with elastomers between storeys. In this paper, we present research that focuses on structures where
the elastomeric isolators are small compared to the structure itself.

To design structures having adequate performance in terms of vibrations and structure-borne sound,
it is desirable to have tools that predict the effects of structural modifications prior to construction. The
finite element (FE) method is used to create prediction models in many engineering disciplines as it
allows for detailed analyses of complex problems. To accurately assess the dynamic behaviour of
structures, FE models that represent the geometry in considerable detail are required. However, the
models are often too large for simulations to be performed within a reasonable time, implying the



Substructure

Elastomeric isolators

Substructure

Figure 1. Illustration of a structure involving elastomeric vibration isolators that are small compared to the
structure itself.

need for model order reduction. A methodology that is frequently used to reduce the size of the FE
models is dynamic substructuring [1], which is based on a division of structures into substructures
that are reduced in size and assembled to form reduced global models. The reduced system matrices
are in general densely populated, especially if there is a large number of interface degrees of freedom
(DOFs). Consequently, more than a few thousand DOFs per substructure can make analyses unfeasi-
ble. The structure shown in Figure 1 is preferably partitioned into substructures by making divisions
at the elastomer interfaces. The resulting substructures have interface surfaces that are small relative
to the complete geometry, which is an advantage when striving for a small number of interface DOFs.
Furthermore, if experimental structures are available, it is often possible to divide them in the same
manner. Each substructure can then be analysed both numerically and experimentally, enabling model
correlation to be performed at the substructure level.

Elastomeric vibration isolators are often modelled using linear springs and dashpots. Such work
can be found in, for example, [2–5]. Spring-dashpot systems are suitable for coupling substructure
models as this type of system results in a small number of interface DOFs for the substructures.
However, it is difficult to determine appropriate constants for the springs and dashpots; it is common
that material data provided by manufacturers are valid for certain elastomer geometries and for the
boundary conditions applied during specific tests. The material data obtained from manufacturers can
be used to determine viscoelastic material models by employing a procedure such as the one presented
in [6]. Such material models can be used in 3D FE models of elastomeric isolators with arbitrary
geometries. FE models of the elastomers account for features such as rotational coupling, frequency-
dependent material properties and the mass of the elastomers. However, modelling the elastomers
using FE models can result in a large number of interface DOFs for the substructures, which in turn
can have significant negative effects on the computational efficiency of the analyses.

In this paper, we present a procedure for creating reduced coupling elements that replace 3D FE
models of elastomeric vibration isolators in dynamic substructuring. The aim of the procedure is to
improve the computational efficiency of FE analyses with elastomers without impairing the accuracy
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Figure 2. Illustration of coupling elements representing elastomeric vibration isolators in dynamic substructur-
ing.

of the analyses. A coupling element replaces the FE model of an elastomer with a set of coupling nodes
and a reduced description of its internal structure, as illustrated in Figure 2. The coupling element has
one coupling node for each substructure to which the elastomer is connected. The coupling nodes
have both translational and rotational DOFs, thus containing six DOFs per node. The assembling
of the substructures is realised by tying the nodes of the coupling elements to adjacent substructures
using Lagrange multipliers [7]. The procedure for creating coupling elements involves two steps: 1) a
reduction of the number of interface DOFs and 2) a reduction of the number of internal DOFs of the
elastomer models.

1.1 Outline of paper

In Section 2, we discuss the dynamic properties of elastomers and how these are accounted for in the
coupling elements. In Section 3, we provide a brief introduction to dynamic substructuring, and we
present the theory for the methods discussed in Section 4. In Section 4, we explain the procedure for
creating coupling elements, and we discuss different methods for reducing the number of DOFs of
elastomer models. In Section 5, we analyse an example case to demonstrate the effects of replacing
full FE models of elastomers with coupling elements in dynamic substructuring. The example case is
an FE model of a wooden building structure with elastomeric vibration isolators. The analyses were
performed in the frequency domain to better account for the frequency-dependent properties of the
elastomers. In Section 6, we present a general discussion of the effects of using coupling elements on
the accuracy and efficiency of dynamic substructure analysis.

2. Dynamic properties of elastomers

Elastomers are a class of polymers that have high strain capacity. The long and tangled molecular
chains of elastomers can stretch and align with the direction of straining, resulting in yield strains of
up to several hundred percent. Examples of other characteristic properties are high vibration damping
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due to energy loss from hysteresis and low stiffness compared to common construction materials
such as steel, concrete and wood. Therefore, elastomers are suitable for vibration isolation. The
low stiffness implies a large difference in the impedance at the interfaces to surrounding structures,
thus increasing the amount of reflected vibration energy. Furthermore, the damping properties result in
energy dissipation in the elastomeric vibration isolators. The dynamic properties of elastomers depend
on various parameters such as temperature, frequency and the strain level. This complicates analyses
where large variations of those conditions occur. For further information about the dynamic properties
of elastomers, see for example [8, 9].

In the studies presented here, the elastomer properties are assumed to be frequency dependent, but
independent of strain level and temperature. In other words, it is assumed that variations in strain
level and temperature during steady-state dynamics have no significant effect on the response. For
the example case studied here, which is a wooden building structure representing part of a residential
building, such assumptions do not imply any significant limitations; vibrations are of low amplitude
during serviceability conditions and the temperature is fairly constant within a building envelope. In
problems where the temperature varies slowly compared to the vibration frequencies, the variations
can be accounted for by creating coupling elements for each temperature of interest. The same applies
for variations in the static load. The procedure presented in this paper for creating coupling elements
allows for an arbitrary frequency dependence of the elastomer properties. In the example case, the fre-
quency dependence is considered by adopting a linear viscoelastic material model for the elastomers.
The material parameters employed were established in [6] for a type of elastomer that is commonly
used for vibration isolation in residential buildings. The parameters, which are the complex shear
modulus, G, and complex bulk modulus, K, are shown in Figure 3. The frequency dependence is
the same for the two real parts and the two imaginary parts, respectively. This is a consequence of
assuming Poisson’s ratio to be independent of frequency. For the specific elastomer, the frequency
dependence of the real parts is relatively weak, varying with 5% in the frequency range of interest.
The frequency dependence of the imaginary parts is stronger, varying with 600%.

3. Governing theory

3.1 Dynamic substructuring

Substructuring is a methodology that is employed to perform analyses of structures by regarding them
as assemblies of substructures. In the analysis, each substructure can be represented by a numerical
model or experimentally determined functions. A historical review on dynamic substructuring and a
classification of different methods can be found in [1]. In many applications, substructuring is suitable
for reducing the size of numerical models. The theory presented here describes how such a reduction
is performed.

In an assembly of substructure models, each substructure is described by the equation of motion as
follows.

Mü + Cu̇ + Ku = f, (1)

where M, C and K ∈ Rn×n are the mass, damping and stiffness matrices, respectively, f = f (t) ∈
Rn×1 is the load vector and u = u (t) ∈ Rn×1 is the state vector. The objective of model order re-
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Figure 3. Real and imaginary parts of the shear modulus, G, and of the bulk modulus, K, for the elastomer
used in the example case. The parameters are in the unit of MPa.

duction is to obtain a system of m DOFs (where m << n) that preserves the dynamic characteristics
of the full equation system. The general approach is to approximate the state vector using the trans-
formation u = TuR, where T ∈ Rn×m is the transformation matrix and uR ∈ Rm×1 is the reduced
state vector. This is a Ritz approximation [10] with the columns of the transformation matrix being
the basis vectors. Applying the transformation to Eq. (1) results in

MRüR + CRu̇R + KRuR = fR, (2)

where the reduced mass, damping and stiffness matrices MR,CR,KR ∈ Rm×m and the reduced load
vector fR ∈ Rm×1 are given by

MR = TTMT, CR = TTCT, KR = TTKT, fR = TT f. (3)

In recent decades, many different methods for model order reduction have been proposed in the liter-
ature. Guyan reduction [11], improved reduction system (IRS) [12] and component mode synthesis
(CMS) by Craig and Bampton [13] and by MacNeal [14] are examples of methods that were devel-
oped specifically for problems in structural dynamics. These methods generate reduced models that
preserve the displacement DOFs at the interface surfaces, and they are therefore referred to as structure
preserving. Moreover, reduction methods which originate from control theory, making use of Krylov
subspace iterations [15] or balanced truncation [16], have gained in popularity among structural dy-
namic engineers in recent years. However, such methods are not structure preserving in their original
form. A wide range of methods was investigated in [17] by comparing the accuracy and computation
time of reduced FE models.

The DOFs in the reduced-state vector can be divided into two categories: interface DOFs and gen-
eralised coordinates. Interface DOFs can be, for example, displacements or forces in the nodes of
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the substructure interfaces. Generalised coordinates generally have no physical interpretation other
than being amplitudes of basis vectors contained in the transformation matrix. The coupling of sub-
structures is normally realised by using Lagrange multipliers [7] in order to tie the interface DOFs of
neighbouring substructures to each other, and thereby enforcing compatibility requirements and force
equilibrium. The procedure presented in this paper for creating coupling elements assumes the reduc-
tion methods to be structure preserving. The coupling of substructures is then realised by tying the
nodal displacements of neighbouring substructures to each other.

3.2 Guyan reduction

In Guyan reduction, the internal DOFs of the model are eliminated, resulting in a reduced-state
vector containing only the interface DOFs. In the following derivations of the transformation matrix,
the damping matrix is neglected. Partitioning the state vector in terms of the interface DOFs (also
known as boundary DOFs, denoted here by subscript b) and the DOFs to be eliminated, the internal
DOFs (denoted by subscript e), enables the system matrices in Eq. (1) to be partitioned into sub-blocks
as [

Mbb Mbe

Meb Mee

] [
üb

üe

]
+

[
Kbb Kbe

Keb Kee

] [
ub

ue

]
=

[
fb
fe

]
. (4)

Solving the equation in the second row for ue with the assumption that no loads are applied to the
internal DOFs, fe = 0, results in

ue = −K−1
ee (Mebüb + Meeüe + Kebub) . (5)

The inertia terms in Eq. (5) are neglected, resulting in the transformation of the state vector for Guyan
reduction [

ub

ue

]
=

[
I

−K−1
ee Keb

]
ub = TGuyanub. (6)

Models reduced by Guyan reduction do not introduce errors in static analysis. However, for dynamic
analysis, large errors can be expected at frequencies that are close to and above the first fundamental
frequency of the structure.

3.3 Component mode synthesis by Craig and Bampton

Component mode synthesis (CMS) by Craig and Bampton, which is referred to in this paper as CMS, is
believed to be the most popular method for model order reduction among structural dynamic engineers.
In CMS, a set of generalised coordinates, ξ, is included to compensate for the inertia terms that are
neglected in Guyan reduction. The generalised coordinates represent the amplitudes of eigenmodes
calculated with the boundary DOFs constrained. Setting ub = 0 and fe = 0 in Eq. (4) and assuming a
harmonic solution results in the eigenvalue problem

KeeΦ = λMeeΦ, (7)

which can be solved for the eigenmodes Φ and the eigenvalues λ. A subset of the eigenmodes, referred
to as retained eigenmodes, are selected as additional basis vectors to the approximation of the internal
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DOFs in Eq. (6), resulting in

ue = −K−1
ee Kebub +

∑
i

Φiξi = Ψub + Φξ. (8)

The transformation of the state vector is then given by[
ub

ue

]
=

[
I 0
Ψ Φ

] [
ub

ξ

]
= TCMS

[
ub

ξ

]
. (9)

The reduced system matrices are generally densely populated. This is caused by the basis vectors that
belong to the interface DOFs. The eigenmodes, on the other hand, diagonalise the mass and stiffness
matrices. Therefore, the main issue regarding computational efficiency is often the number of interface
DOFs.

3.4 Interface reduction

For substructure models that have a large number of interface DOFs, it is necessary to perform an
interface reduction before using one of the methods for model order reduction described above. There
are essentially two methodologies for reducing the number of interface DOFs of substructures. The
first is based on the concept of interface modes; deformation shapes of the interfaces that are extracted
from eigenmodes of the substructure assembly [18]. The coupling of adjacent substructures is then
realised by coupling the sets of generalised coordinates through Lagrange multipliers. However, the
methodology is not structure preserving and the reduced substructures are not created independent of
each other. Therefore, it is not investigated further here.

In the second methodology, an additional node, which is referred to as the condensation node [19],
is introduced for each interface surface. A condensation node represents the motion of its interface
surface, and has both translational and rotational DOFs, resulting in six DOFs per interface. The
coupling of adjacent substructures is realised by coupling the condensation nodes through Lagrange
multipliers. The condensation nodes can be coupled to the DOFs of their respective interface surfaces
in different ways. The simplest approach is to use rigid-body constraints for the interface surface,
and this is referred to as rigid coupling in this paper. Alternatively, the forces and moments acting
on the condensation node can be distributed to the nodes of the interface surface by certain weight
factors, and this is referred to as distributed coupling in this paper. This results in the motion of the
condensation node being a weighted average of the motion of the interface nodes. The governing
equations of the coupling methods are outlined below.

3.4.1. Rigid coupling

When rigid-body constraints are imposed for the interface surface and small deformations are as-
sumed, the displacements of node j at the interface surface can be described by

uj = uc + Θc × rcj, (10)
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where uc and Θc are the displacements and rotations, respectively, of the condensation node, and rcj
is the vector from the condensation node to node j at the interface surface.

3.4.2. Distributed coupling

In distributed coupling, the forces and moments acting on the condensation node, fc and mc, respec-
tively, are distributed to the nodes of the interface surface according to

fj = v̂j
(
fc +

(
P−1 (mc + rc × fc)

)
× rj

)
, (11)

where fj is the force acting on node j of the interface surface [20]. v̂j represents the normalised value
of the weight vj in the node and is given by

v̂j =
vj∑
j vj

, (12)

while P is given by
P =

∑
j

v̂j
((

rTj rj
)

I−
(
rjrTj

))
. (13)

The spatial vectors rc and rj point from the weighted centre of the interface, x̄, to the condensation
node and node j, respectively. They are consequently given by

rc = xc − x̄ (14)

and
rj = xj − x̄, (15)

where
x̄ =

∑
i

v̂jxj. (16)

xc and xj are the coordinates of the nodes. By distributing the forces and moments according to
Eq. (11), the motion of the condensation node becomes a weighted average of the displacements of
the nodes at the interface, according to

uc =
∑
j

v̂juj (17)

and
Θc =

∑
j

v̂j
rcj
|rcj|2

× uj, (18)

where rcj is the vector from the condensation node to node j at the interface surface.
The weight factors can be defined arbitrarily. Four different methods that can be used to determine

the weight factors are presented below. The most straightforward method of distributed coupling is
uniform weighting, which involves distributing the load equally to all nodes at the interface surface.
The remaining methods employ weight factors which decrease with the distance to the condensation
node by using polynomials of different degrees.
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Uniform weighting
vj = 1. (19)

Linearly decreasing weighting

vj = 1− |rcj|
|rc0|

, (20)

where rc0 is the vector from the condensation node to the furthest node at the interface surface.

Quadratically decreasing weighting

vj = 1−
(
|rcj|
|rc0|

)2

. (21)

Cubically decreasing weighting

vj = 1− 3

(
|rcj|
|rc0|

)2

+ 2

(
|rcj|
|rc0|

)3

. (22)

3.5 Steady-state analysis

The steady-state response of dynamic systems is obtained by assuming harmonic loading f = f̂eiωt

and a harmonic response u = ûeiωt in the equation of motion defined in Eq. (1). f̂ and û are complex
frequency-dependent amplitudes, i is the imaginary unit and ω is the angular frequency. Introducing
this assumption results in the equation of motion in the frequency domain

D (ω) û = f̂, (23)

where the dynamic stiffness matrix D (ω) is given by

D (ω) = −ω2M + iωC + K. (24)

4. Procedure for creating coupling elements

In this section, we present a procedure for creating coupling elements which represent elastomeric
vibration isolators in dynamic substructuring. The procedure uses 3D FE models as the input, and
consists of two steps, as illustrated in Figure 4 for an elastomer in the shape of a block. The elastomer
in the figure has two interface surfaces, one on its top and one on its bottom. In the first step of the
procedure, interface reduction is performed by introducing condensation nodes (marked by black dots
in the figure). The second step consists of a reduction of the number of internal DOFs by replacing
the nodal DOFs of the FE model with a reduced description of the interaction between the conden-
sation nodes. The methods listed in Figure 4 are discussed in Sections 4.1 and 4.2, and are used for
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Figure 4. Illustration of the procedure for creating coupling elements representing elastomers.

an example case in Section 5. In the derivations of the methods presented here, the elastomers are
each assumed to have two interface surfaces. However, the methods can be employed for elastomers
with more than two interface surfaces. The methods can be used in several commercial FE software
packages, e.g. Abaqus [20] and Nastran [21]; some methods are implemented and others require user-
implemented functionality to be used in the software. Methods other than those which are discussed
here can, if necessary, be used in the procedure.

4.1 Interface reduction

The reduction of the number of DOFs at interfaces between elastomers and adjacent substructures is
performed by introducing one condensation node for each interface surface of the elastomers and of
the substructures. The coupling of substructures is then realised by connecting the condensation nodes
of the coupling elements to those of the substructures through Lagrange multipliers, as illustrated
in Figure 2. The coupling between a condensation node and the DOFs at its interface surface, as
illustrated in Figure 4, can be performed by using one of the coupling methods described in Section 3.4.
Other types of distributed coupling, which are obtained by selecting the weights in alternative ways,
could also be used. The constraints between the condensation node and the DOFs at the interface
surface are enforced through Lagrange multipliers. The number of constraint equations resulting from
rigid coupling depends on the number of DOFs at the interface surface, whereas distributed coupling
requires only six equations per condensation node. Each constraint equation requires a Lagrange
multiplier and, consequently, rigid coupling requires a larger number of DOFs to be realised.

4.2 Reduction of internal DOFs

Here, we discuss three methods which are employed to reduce the number of internal DOFs of elas-
tomers. The equation of motion in the frequency domain for an interface-reduced FE model can be
partitioned in terms of interface DOFs and internal DOFs, resulting in[

Dbb (ω) Dbe (ω)
Deb (ω) Dee (ω)

] [
ûb

ûe

]
=

[
f̂b
f̂e

]
, (25)

where
ûb =

[
û1
x û2

x û1
y û2

y û1
z û2

z Θ̂1
x Θ̂2

x Θ̂1
y Θ̂2

y Θ̂1
z Θ̂2

z

]T
(26)
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and
f̂b =

[
f̂ 1
x f̂ 2

x f̂ 1
y f̂ 2

y f̂ 1
z f̂ 2

z m̂1
x m̂2

x m̂1
y m̂2

y m̂1
z m̂2

z

]T
. (27)

ukl and Θk
l are the displacements and rotations, respectively, in the condensation nodes, and fk

l and
mk

l are the corresponding forces and moments, respectively. k specifies the direction (x, y or z) and l
denotes the node number (1 or 2). The methods discussed below are structure preserving, i.e they can
be used to construct reduced systems where ub is preserved.

4.2.1. Modified dynamic reduction

The use of Guyan reduction on the dynamic stiffness matrix is known as dynamic reduction [22].
When performing dynamic reduction, the dynamic stiffness matrix is evaluated at a chosen frequency.
The resulting reduced system yields fully accurate results for steady-state analysis at that specific
frequency. The idea of the method proposed here is to perform such a reduction for all frequencies of
interest, resulting in the internal DOFs of the elastomers being eliminated without introducing errors.
The dynamically reduced system of an elastomer is given by

Dred (ω) ûb = f̂b, (28)

where the reduced dynamic stiffness matrix, Dred (ω), contains the inverse of the transfer functions
between forces and displacements, and between moments and rotations. Because of the frequency-
dependent stiffness and damping properties of elastomers, the dynamic stiffness matrix takes the form

Dred (ω) = −ω2Mred + iωCred (ω) + Kred (ω) . (29)

In practice, Dred (ω) is obtained by performing steady-state analyses for the interface-reduced elas-
tomer models, i.e. solving Eq. (25) for a range of frequencies. The analyses are performed when
applying a unit amplitude in each DOF in ub, whilst constraining its remaining DOFs, such that

ûb = Ij = [0 . . . 0 1
j

0 . . . 0]T (30)

for j = 1, . . . 12. Moreover, no loads are applied to the internal DOFs, f̂e = 0. Consequently, Eq. (25)
can be written as [

Dbb (ω) Dbe (ω)
Deb (ω) Dee (ω)

] [
Ij
ûe

]
=

[
f̂b
0

]
, (31)

from which f̂b can be determined. Using Eq. (28), the jth column of Dred (ω) is given by

Dred
:,j (ω) = Dred (ω) Ij = f̂b. (32)

Therefore, the reduced dynamic stiffness matrix is determined by evaluating forces and moments in
the condensation nodes. To resolve the frequency dependence of Dred (ω), the analyses should be
performed for a sufficiently large number of frequencies.

To employ dynamic reduction for models developed in commercial FE software, user-defined ele-

11



ments can be implemented so that the dynamic stiffness matrix is read from a file for each frequency
in steady-state analysis. In Abaqus/Standard 6.13, which is used in the numerical studies presented
here, damping cannot be implemented in user-defined elements for analyses in the frequency domain.
Consequently, only the stiffness and mass matrices in Eq. (29) were implemented in the user-defined
elements. Damping was accounted for by using six dashpot elements, as described for the spring-
dashpot system in Section 4.2.2. Errors are thus introduced in the reduced representation of the elas-
tomers. In this study, dynamic reduction, which accounts for damping by using dashpots, is referred
to as modified dynamic reduction.

4.2.2. Spring-dashpot system

This method is based on the one employed in [2], where elastomeric vibration isolators were modelled
using three spring-dashpot elements which couple the displacements in the three axial directions. The
couplings are modified here to include rotational DOFs and frequency-dependent properties. Hence,
the internal DOFs of an elastomer model are replaced by six frequency-dependent spring-dashpot
elements which couple the displacements and rotations of the two condensation nodes. The equation
of motion in Eq. (25) is then reduced to

Dsd (ω) ûb = f̂b, (33)

where
Dsd (ω) = iωCsd (ω) + Ksd (ω) (34)

and the superscript sd denotes matrices belonging to the spring-dashpot system. The damping and
stiffness matrices are given by

Csd (ω) =



Cux (ω) 0 · · · · · · 0
0 Cuy (ω)
... Cuz (ω)

CΘx (ω)
...

... CΘy (ω) 0
0 · · · · · · 0 CΘz (ω)


(35)

and

Ksd (ω) =



Kux (ω) 0 · · · · · · 0
0 Kuy (ω)
... Kuz (ω)

KΘx (ω)
...

... KΘy (ω) 0
0 · · · · · · 0 KΘz (ω)


. (36)
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The six subsystems, one for each spring-dashpot element, have the same form. The one describing ux
is given by

iωCux (ω)

[
û1
x

û2
x

]
+ Kux (ω)

[
û1
x

û2
x

]
=

[
f̂ 1
x

f̂ 2
x

]
, (37)

where

Cux (ω) = cux (ω)

[
1 −1
−1 1

]
, Kux (ω) = kux (ω)

[
1 −1
−1 1

]
. (38)

cux (ω) and kux (ω) are the frequency-dependent damping and stiffness coefficients, respectively. To
determine the coefficients, it is assumed that û1

x = 1 and û2
x = 0, resulting in

iωcux (ω) + kux (ω) = f̂ 1
x (ω) . (39)

f̂ 1
x (ω) is obtained by adopting the procedure for determining the reduced dynamic stiffness matrix,

see Section 4.2.1. The coefficients can then be calculated as

cux (ω) =
1

ω
Im
(
f̂ 1
x (ω)

)
, kux (ω) = Re

(
f̂ 1
x (ω)

)
. (40)

The coefficients for the remaining five subsystems can be determined in the same manner. From
Eq. (29) and Eq. (32), it is found that

f̂ 1
x (ω) = −ω2Mred

11 + iωCred
11 (ω) + Kred

11 (ω) , (41)

which results in

Im
(
f̂ 1
x (ω)

)
= ωCred

11 (ω) , Re
(
f̂ 1
x (ω)

)
= −ω2Mred

11 + Kred
11 (ω) . (42)

By comparing Eq. (40) with Eq. (42), it can be seen that the spring coefficients contain contributions
from both the stiffness and the mass of the full elastomer model.

4.2.3. Guyan reduction and component-mode synthesis

The elastomers can be treated in the same way as the substructures to which they are connected by
using one of the reduction methods developed for constant system matrices, e.g. Guyan reduction or
CMS. The material properties then have to be evaluated at a discrete frequency so that the frequency
dependence of the damping and stiffness matrices in Eq. (34) is eliminated.

5. Example case

As an example case, we used an FE model of a wooden building structure. It was used for studying the
effects of replacing FE models of elastomeric vibration isolators with reduced coupling elements in
dynamic substructuring. The example model represents a cut-out from a common type of multi-storey
wood building, timber volume element building (for more details, see [23]). The model consists of
a floor and a ceiling with elastomeric isolators in-between. We investigated the effects of using the
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Figure 5. FE mesh for the model of the floor–ceiling structure. The floor and the ceiling are shown in grey and
the elastomer blocks in white.

reduced models on the accuracy and efficiency of analyses of the vibration transmission from the floor
to the ceiling.

In Sections 5.2 and 5.3, we present results regarding the use of different methods for interface
reduction and for the reduction of internal DOFs of the elastomer models. In Section 5.4, we present
the results obtained when using the coupling elements together with reduced substructure models of
the floor and of the ceiling. Moreover, we investigated the effects of considering different modelling
features for the elastomers (mass, damping, frequency-dependence and rotational coupling) in the
coupling elements; the results are presented in Section 5.5. We employed Abaqus/Standard 6.13 to
create the model and perform the analyses.

5.1 FE model

The FE model is shown in Figure 5 and consists of two wood-framed structures: a floor and an un-
derlying ceiling. The two structures are coupled through 28 elastomer blocks. The floor and the
ceiling each consist of five load-bearing wood beams (having cross-sections of 95×220 mm2 and
95×120 mm2, respectively), separated by centre-to-centre distances of 600 mm. A 22 mm thick parti-
cleboard covers the floor beams, while a 13 mm thick plasterboard is attached to the underside of the
ceiling beams. Furthermore, wood beams are placed at the ends of the load-bearing beams, perpendic-
ular to these, creating box-like structures. The elastomer blocks, which are 95×100×25 mm3 large,
provide the only connection between the floor and the ceiling, and are placed with a centre-to-centre
distance of 600 mm along the outermost beams. The outer dimensions of the complete model are
3700×3000×510 mm3.

The orthotropic material properties listed in Table 1 were used for the wood beams, and the isotropic
properties listed in Table 2 were used for the particleboard and the plasterboard. The frequency-
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dependent viscoelastic material properties shown in Figure 3 were used for the elastomers. The FE
mesh consists of 20-node solid hexahedral elements with quadratic interpolation. Reduced integration
was used for the elements of the wood structures, while full integration and independent interpolation
of the hydrostatic pressure was used for the elastomer elements. The model contains 630,000 DOFs,
of which 300,000 belong to the elastomer blocks. The beams and the plates were fully fixed to each
other by having common interface DOFs. Before introducing the coupling elements in the model, the
interfaces between elastomers and wood structures were modelled by tying the DOFs of the elastomer
interfaces to the wood interfaces using Lagrange multipliers. The elastomers have 1000 DOFs per
interface surface, and the wood structures have 200 DOFs per interface surface. A global damping
ratio of 6% was determined from the measurement data presented in [24], and this was assigned to all
materials except for the elastomers. A damping matrix was constructed using the Rayleigh method,
see for example [25], selecting the constants for the mass- and stiffness proportionality to be 17 and
9.8 · 10−5, respectively.

Table 1. Material parameters used for wood beams. Stiffness parameters in MPa and density in kg/m3.

E1 E2 E3 G12 G13 G23 ν12 ν13 ν23 ρ

8500 350 350 700 700 50 0.2 0.2 0.3 430

Table 2. Material parameters used for particleboard and plasterboard. Stiffness parameters in MPa and density
in kg/m3.

E ν ρ

Particleboard 3000 0.3 770
Plasterboard 2000 0.2 690

The properties of the elastomers result in frequency-dependent system matrices. Therefore, eigen-
value analyses are not applicable for comparing the performance of the coupling elements. Instead,
steady-state analyses were performed for frequencies up to 200 Hz in steps of 1 Hz. Vertical point
loads with unit amplitude were applied at four different positions on the floor surface, as shown in
Figure 5, while the displacements at the four corners of the ceiling surface were clamped. The four
loads are referred to here as loads A–D. Three of the loads, A–C, were in-between beams, while load
D was on top of a beam. Accelerations were evaluated in the nodes at the ceiling surface. Root-mean-
square (RMS) values of the accelerations in all nodes at the surface were calculated as

aRMS(f) =

√√√√ 1

n

n∑
i=1

|âi (f) |2, (43)

where f is the frequency, âi is the complex acceleration amplitude in node i and n is the number of
nodes. The accuracy when using the coupling elements was evaluated by studying errors in RMS
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Figure 6. Error spectra obtained when applying load A and using different combinations of rigid coupling and
uniformly distributed coupling for the interfaces of the elastomers and of the wood structures. The full model
was used as reference.

values compared to a reference model. In Sections 5.2–5.4, the reference models are specified. Error
spectra were calculated as

aError
RMS (f) =

∣∣∣aRMS(f)− aRef
RMS(f)

∣∣∣
aRef
RMS(f)

, (44)

where aRef
RMS(f) is the spectrum of RMS values of the reference model. To simplify the interpretation

of the result plots presented here, the error spectra were averaged by sweeping a 10 Hz window over
the frequency range and calculating the average value within the window for each frequency step.
Below 6 Hz and above 195 Hz, smaller windows were used to fit within the analysed frequency range,
1–200 Hz.

5.2 Interface reduction

The various methods presented in Section 3.4 for coupling a condensation node to an interface surface
were investigated for the floor-ceiling model with full FE models of the elastomers. Different combi-
nations of rigid coupling and distributed coupling were employed for the interfaces of the elastomers
and of the wood structures. The same coupling type was applied for all interface surfaces of each ma-
terial. Figure 6 shows the error spectra obtained when using the full model as reference and applying
load A. Only one type of distributed coupling, uniform weighting, is included in the figure. It can be
seen that distributed coupling for the elastomer interfaces resulted in large errors as compared to rigid
coupling, irrespective of the coupling method used for the wood interfaces.

Figure 7 shows the error spectra obtained when applying load A and using the different coupling
methods for the wood structures. Rigid coupling was used for the elastomers. It can be observed
that rigid coupling for the wood structures resulted in the largest errors at lower frequencies. For
frequencies above 120 Hz, the error levels are similar among the different types of coupling. Of
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Figure 7. Error spectra obtained when applying load A and using different coupling methods for the wood
structures and rigid coupling for the elastomers. The full model was used as reference.

the distributed coupling types, uniform weighting was the most accurate. The error spectra for the
responses to loads B–D show the same trends. Table 3 shows the mean and maximum values of the
error spectra for the responses to the different loads. For all loads, uniformly distributed coupling
resulted in the lowest error levels in terms of both mean and maximum values. The maximum error
was then below 2% for all the investigated loads.

Table 3. Mean and maximum values of the error spectra obtained when employing different coupling methods
for the wood structures and rigid coupling for the elastomers.

Mean error (%) Maximum error (%)
Coupling method Load A Load B Load C Load D Load A Load B Load C Load D
Rigid 1.7 1.5 1.4 1.4 5.4 6.4 4.9 6.3
Uniform 0.4 0.5 0.4 0.2 1.1 1.3 1.1 0.5
Linear 0.6 0.7 0.6 0.3 1.5 1.8 1.4 0.9
Quadratic 0.5 0.5 0.5 0.2 1.2 1.4 1.1 0.7
Cubic 0.9 1.0 1.0 0.4 2.3 2.7 2.0 1.6

5.3 Reduction of internal DOFs of elastomers

The methods for reducing the number of internal DOFs discussed in Section 3.4 were employed for the
floor–ceiling model with reduced interfaces. For Guyan reduction and CMS, the material properties
were evaluated at 100 Hz. The CMS model contained 10 retained eigenmodes. Figure 8 shows the
error spectra when applying load A. The errors were calculated using the interface-reduced model as
reference. It can be observed that modified dynamic reduction resulted in the lowest error levels for
all frequencies. Guyan reduction and CMS resulted in error spectra that are nearly identical to each
other. The spring-dashpot system resulted in error levels that are similar to those for Guyan reduction,
except at low frequencies where the errors are smaller.
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Figure 8. Error spectra obtained when applying load 1 and using different methods to reduce the internal DOFs
of the elastomers. The interface-reduced model was used as reference.

The mean and maximum values of the error spectra for the responses to the different loads are
shown in Table 4. The errors introduced by modified dynamic reduction are small compared to those
from the interface reduction. However, the errors introduced by the remaining three methods are
relatively dominant.

Table 4. Mean and maximum values of the error spectra obtained when employing different methods to reduce
the internal DOFs of the elastomers.

Mean error (%) Maximum error (%)
Method Load A Load B Load C Load D Load A Load B Load C Load D
Modif dyn reduct 0.04 0.03 0.03 0.02 0.3 0.1 0.2 0.1
Spring-dashpot syst 1.8 1.4 1.8 1.6 6.5 4.1 7.0 7.0
Guyan reduct 2.3 2.4 2.3 2.5 7.4 7.9 8.5 7.9
CMS 2.3 2.4 2.3 2.5 7.4 7.9 8.5 7.9

5.4 Assembly of reduced substructures

Reduced substructure models of the floor and of the ceiling were created by employing CMS. The
objective is to demonstrate the accuracy and efficiency of substructure models in which the elastomers
are regarded as coupling elements. Reduced substructures with 150 and 390 retained eigenmodes were
created, both for the floor and the ceiling. For both structures, the eigenfrequencies of the 150th and
the 390th eigenmodes are approximately 400 Hz and 800 Hz, respectively. Using 150 eigenmodes
follows the common rule of thumb of including eigenmodes up to twice the highest frequency of
interest. The reduction methods employed to create the coupling elements were the ones found to
be the most accurate in Sections 5.2 and 5.3: rigid coupling for the elastomers interfaces, uniformly
distributed coupling for the wood interfaces and modified dynamic reduction for the internal DOFs.
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Figure 9. Error spectra obtained when applying load A and using reduced substructure models of the floor and
the ceiling. The full model was used as reference.

Figure 9 shows the error spectra calculated for load A. The full model, i.e. the model with full FE
models of the elastomers and of the substructures, was used as reference. The errors for a model with
full FE models of the substructures, and with coupling elements for the elastomers, are included in
the figure. Below 100 Hz, the models resulted in small errors. However, for higher frequencies, the
error spectrum for the model with 150 retained eigenmodes in the substructures peaks at 20%. The
model with 390 retained eigenmodes in the substructures is more accurate, with the error spectrum
being virtually equal to the spectrum obtained when using full substructure models.

In Tables 5 and 6, the mean and maximum values, respectively, of the error spectra are presented.
Table 5 also shows the number of DOFs of the models and the computation times of the analyses.
Direct-solution steady-state analyses were ran using Abaqus/Standard 6.13 on a quad-core 2.80 GHz
Intel Xeon W3530 CPU having 10 GB of RAM available. The computation times for the models with
150 and 390 retained eigenmodes in the reduced substructure models are 0.1% and 0.2%, respectively,
of the time for the full model. Hence, by employing the coupling elements in substructure modelling
of the example case, the computation time can be reduced by 99.8% at the cost of introducing errors
of approximately 1%.

Table 5. Mean values of the error spectra obtained when using reduced substructure models of the floor and the
ceiling. The number of DOFs in the models and the CPU time of the analyses are shown.

Number Mean error (%)
Model of DOFs CPU time (s) Load A Load B Load C Load D
Full model 630,000 260,000 - - - -
Full substructures 290,000 38,000 0.4 0.5 0.4 0.2
150 retained eigenmodes 1100 320 3.0 2.1 1.8 0.6
390 retained eigenmodes 1600 480 0.4 0.4 0.4 0.2
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Table 6. Maximum values of the error spectra obtained when using reduced substructure models of the floor
and the ceiling.

Maximum error (%)
Model Load A Load B Load C Load D
Full substructures 1.1 1.3 1.1 0.6
150 retained eigenmodes 20.4 9.1 7.6 3.7
390 retained eigenmodes 1.0 1.3 1.1 0.6

5.5 Modelling features in coupling elements

The effect of considering different modelling features for the coupling elements (mass, damping,
frequency-dependent material properties and rotational coupling) was investigated by excluding them
from the elastomer models one at a time. Interface reduction was employed during the investigations;
rigid coupling for the elastomer interfaces and uniformly distributed coupling for the wood interfaces.
Damping was excluded by removing the imaginary part of the viscoelastic material properties. The
frequency dependence was omitted by evaluating the material properties at 100 Hz. Rotational cou-
pling was excluded by locking the rotational DOFs at the elastomer interfaces and not connecting them
to the rotational DOFs at the wood interfaces.

The error spectra that were obtained when applying load A are shown in Figure 10. It can be seen
that different modelling features are important at different frequencies. As expected, the exclusion of
the mass or the damping had a relatively small effect at low frequencies, while resulting in larger errors
at higher frequencies. When excluding rotational coupling, the largest errors were produced at low
frequencies. The exclusion of frequency dependence yielded accurate results around 100 Hz, which
is the frequency at which the material properties were evaluated. The mean and maximum values of
the error spectra for the responses to the different loads are shown in Table 3. It can be seen that by
excluding each of the features, maximum errors of at least 7–8% were produced.

Table 7. Mean and maximum values of the error spectra obtained when excluding different modelling features
from the coupling elements.

Mean error (%) Maximum error (%)
Excluded feature Load A Load B Load C Load D Load A Load B Load C Load D
Mass 1.4 1.0 1.3 1.4 6.5 3.4 6.7 7.2
Damping 16.6 16.2 17.1 17.5 48.5 36.7 38.0 41.4
Freq depend 2.4 2.4 2.3 2.6 7.3 7.7 8.4 7.8
Rotat coupling 2.4 1.3 2.5 2.0 23.0 13.5 18.9 13.4
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Figure 10. Error spectra obtained when applying load A and excluding different modelling features from the
coupling elements. The interface-reduced model was used as reference.

5.6 Summary and conclusions

In this section, we summarise the results from the studies of the example case and present the conclu-
sions.
Interface reduction
The use of distributed coupling for the elastomers resulted in large errors, while rigid coupling pro-
vided far more accurate results. The interface reduction of the wood structures was less sensitive to the
choice of coupling method. Rigid coupling was the least accurate method for the wood structures, with
the maximum errors being approximately five times higher than those obtained by using distributed
coupling. With the use of rigid coupling for the elastomers and uniformly distributed coupling for
the wood structures, maximum errors of approximately 1% were obtained in the frequency range of
interest. Therefore, we can conclude that the methodology involving the use of condensation nodes is
adequate for the model under study.
Reduction of internal DOFs of elastomers
Modified dynamic reduction resulted in errors of negligible magnitude compared to those stemming
from the interface reduction. Guyan reduction and CMS resulted in error spectra that are nearly
identical to each other. Hence, it can be concluded that the eigenmodes retained in the CMS reduction
did not improve the accuracy of the coupling elements. The error spectra obtained when employing
Guyan reduction and CMS are similar to that obtained when excluding the frequency dependence of
the material properties. This shows that the omitted frequency dependence is the main source of error
for those methods. The spring-dashpot system resulted in errors that have the same magnitude as those
obtained with Guyan reduction and CMS, but with higher accuracy at low frequencies.
Assembly of reduced substructures
When the coupling elements were used along with reduced substructure models of the floor and ceil-
ing, the computation time of the example model was reduced by 99.8% at the cost of introducing errors
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of approximately 1% in the frequency range of interest. This shows the potential of using coupling
elements for the elastomers. Such a reduction in computation time would not be possible if the full
interfaces of the reduced substructure models were retained, as they would result in several thousand
interface DOFs per substructure.
Modelling features in coupling elements
It was important to include damping and rotational coupling in the coupling elements, as their ex-
clusions resulted in errors of up to 50% and 20%, respectively. The exclusion of the mass or the
frequency dependence of the material properties resulted in errors of up to 7–8% and mean errors of a
few percent.

6. General discussion

The effect of using coupling elements on the accuracy and efficiency of dynamic substructure analyses
depends on the application being considered. For example, the accuracy is affected by the geometry
and material properties of the structure and of the elastomers, and the loads to which the structure
is subjected. The relative difference in accuracy and efficiency when using different methods for
interface reduction and for a reduction of the number of internal DOFs is not necessarily the same in
different applications. Consequently, it is preferable to perform comparative studies such as the one
presented in Section 5 for each type of application for which the coupling elements are used.

For many problems, the interface reduction is the most important step in the procedure for creating
coupling elements. It reduces the number of interface DOFs to six per interface surface, both for
the elastomers and for the substructure models. A large number of interface dofs leads to densely
populated matrices in the reduced system. The second step in the procedure, reducing the number of
internal DOFs of the elastomers, is important when a large proportion of the DOFs in the substructure
assembly belongs to the elastomers.

6.1 Interface reduction

In general, distributed coupling underestimates the stiffness of an interface surface, whereas rigid
coupling overestimates the stiffness. The error levels introduced by the coupling methods depend on
the extent to which the interfaces deform relative to the deformations of the internal structure. If the
stiffness of two connecting structures differs substantially, rigid coupling can be expected to perform
well for the interface of the softer structure because the deformations of its interface are relatively
small. Distributed coupling, on the other hand, is likely to be more accurate for the interface of the
stiffer structure. This is demonstrated in the analyses of the example model. In the limiting case,
where one of the structures is infinitely stiff, rigid coupling does not introduce any errors if the two
connecting structures are fully tied to each other. For two structures with similar stiffness values, it is
a more difficult task to predict suitable coupling methods.

In rigid coupling, a larger number of Lagrange multipliers is required than in distributed coupling.
However, the number of Lagrange multipliers is not important for the computational efficiency if a
reduction of the number of internal DOFs succeeds the interface reduction because the multipliers are
treated as internal DOFs.
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6.2 Reduction of internal DOFs of elastomers

Of the methods investigated, modified dynamic reduction is generally the most accurate method. Un-
like original dynamic reduction, which yields exact results, the use of modified dynamic reduction
introduces errors through the dashpot model of the damping in the elastomers. The errors introduced
are generally smaller than those obtained when using the spring-dashpot system because the stiffness
and mass of the elastomer models are preserved in modified dynamic reduction. The size of the errors
introduced by the spring-dashpot system depends on the validity of assuming block-diagonal system
matrices. The assumption implies that there exists no coupling between different DOFs of the con-
densation nodes; e.g. forces do not cause reaction moments. Employing Guyan reduction or CMS is
likely to result in larger errors owing to the neglected frequency dependence of the material properties.
The size of the errors depends on the extent of the frequency dependence.

The effect on the computation time of analyses of substructure models is similar among the different
methods for the reduction of internal DOFs. All of the methods eliminate the internal DOFs of the
elastomer models, resulting in only the interface DOFs being preserved in the coupling elements. The
exception is CMS, which includes additional DOFs which represent eigenmodes of the elastomers.

7. Concluding remarks

In this paper, we present a procedure for creating coupling elements that represent elastomeric vibra-
tion isolators in dynamic substructuring. We discussed several methods for interface reduction and
to reduce the number of internal DOFs of the elastomers in terms of their effect on the accuracy and
efficiency of the analyses. To investigate the effects of using the coupling elements, we used an ex-
ample case consisting of an FE model of a wooden building structure. The results showed that the use
of coupling elements can reduce the computation time significantly without impairing the accuracy
of the analysis. The conclusion holds if suitable reduction methods are employed when creating the
coupling elements. If the procedure for creating coupling elements is to be used for applications other
than the one studied in the example case, it is preferable to perform comparative studies to determine
suitable reduction methods for creating the coupling elements and to ensure that the resulting errors
are sufficiently small.

The proposed procedure for creating coupling elements is well suited for elastomeric isolators that
have small-size interface surfaces relative to the size of the full structure. For elastomers with larger
interface surfaces, such as strips or mats, or with more complex geometries, the coupling elements are
likely to introduce larger errors in the analyses. A possible solution is to divide each interface into
multiple surfaces. Such an approach requires further investigations to ensure accurate and efficient
analyses.

Acknowledgements

This work was supported by the Urban Tranquility project, a part of the EU program Interreg V.

23



References

[1] de Klerk D, Rixen DJ, Voormeeren SN. General framework for dynamic substructuring: history,
review and classification of techniques. AIAA J 2008;46(5):1169–1181.
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a b s t r a c t

In the present study, different model order reduction methods were compared in terms of their effects on
the dynamic characteristics of individual building components. A wide variety of methods were
employed in two numerical examples, both being models of wooden floor structures, in order to draw
conclusions regarding their relative efficiency when applied to models of such structures. It was observed
that a comparison of the methods requires the reduced models to be exposed to realistic boundary con-
ditions, free–free eigenvalue analyses being insufficient for evaluating the accuracy of the reduced mod-
els when employed in an assembly of substructures.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Lightweight buildings are often constructed using prefabricated
planar or volume elements, often with use of low-stiffness panels
mounted on high-stiffness beams. Accurately assessing the dy-
namic behaviour of these elements when rather high vibration fre-
quencies are involved requires use of finite element (FE) models
representing the geometry in considerable detail. Assembling the
individual elements of multi-storey lightweight buildings within
the framework of global FE models of entire buildings results in
very large models, the number of degrees of freedom (dofs) of
which easily exceeds the limits of computer capacity, at least for
computations to be performed within reasonable lengths of time.
The question arises then of how such FE models can be reduced
in size while at the same time being able to represent the dynamic
characteristics of the building or buildings in question with suffi-
cient accuracy. The method of dividing a large model into compo-
nents and creating a global model through coupling models of
reduced size of each component is referred to as substructuring.
In the present study, low-frequency vibrations in multi-storey
lightweight buildings are modelled by adopting a substructuring
approach.

In recent decades, a number of methods for model order reduc-
tion of dynamic problems have been developed within the area of
structural mechanics, mode-based methods being the methods
most frequently used. Fairly recently, methods originating from

control theory, designated here as modern reduction methods,
have been employed within structural mechanics. In contrast to
mode-based methods which have an explicit physical interpreta-
tion, the modern reduction methods are developed from a purely
mathematical point of view. Some mode-based methods are imple-
mented in commercial FE software which enables them to be ap-
plied to large-scale problems directly. In order to apply other
methods to models created in commercial FE software, the system
matrices involved need to be exported from the software and be
reduced in another environment.

A number of comparative studies have been published in which
the performance of different reduction methods has been evalu-
ated, in connection with mechanical engineering problems. In
[1,2], modern reduction methods were compared with mode-
based methods. In [1], a rack consisting of steel beams was used
as a numerical example, the reduction methods involved being
compared by studying the structural response within the time do-
main and the Frobenius norm of the transfer function matrix for
different load cases. It was concluded that the modern reduction
methods produce excellent reduction results and are more effec-
tive than mode-based methods are. In [2], a crankshaft of a piston
served as a numerical example, the Frobenius norm of the transfer
function matrix being used to compare the reduction methods in
question. It was concluded that substantial benefits can be
achieved by use of the modern reduction methods. In [3], a wide
range of methods was compared by studying the eigenfrequencies
and eigenmodes of an elastic rod. The modern reduction methods
were found to perform better for mechanical problems than sev-
eral of the classic methods. In [4], however, in which a clamped
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beam structure served as a numerical example, it was concluded
that mode-based methods are better suited for the analysis of mul-
tibody systems than modern reduction methods are. The eigenfre-
quencies and eigenmodes were analysed with different boundary
conditions applied at the interface of the reduced models. It was
concluded that mode-based methods are less dependent than the
modern reduction methods are on variations in the boundary con-
ditions, something which would clearly be an important advantage
in multibody dynamics.

In the comparative studies just referred to, conclusions were
drawn on the basis of numerical examples involving relatively sim-
ple structures. Lightweight floor and wall structures, however, gen-
erally have a much more complex geometry, making it difficult to
extrapolate the conclusions in question. Also, in the comparative
studies referred to, different types of analyses were used for eval-
uating the performance of the reduction methods employed, this
providing diverse information that can be evaluated in a variety
of ways. By applying analyses of multiple types to a given numer-
ical example it should be possible to obtain a broader understand-
ing of the behaviour of different reduction methods than a single
type of analysis would provide. Moreover, analysing the reduced
models with realistic boundary conditions is necessary since the
boundary conditions employed can have a strong influence on
the performance of different reduction methods, as demonstrated
in [4].

The objective of the analyses carried out in the present investi-
gation was to evaluate the performance of a rather wide range of
model order reduction methods by comparing their accuracy and
computational cost when applied to detailed FE models of floor
and wall structures. The conclusions will be of value in the process
of constructing efficient substructure models for vibration analysis
of multi-storey lightweight buildings. The reduced models em-
ployed are in this paper evaluated in terms of eigenfrequencies
and eigenmodes in a free-free state, as well as in terms of vibration
transmission behaviour when the structures in question are ex-
posed to realistic boundary conditions, obtained by connecting
them with other building components. New insight is offered
regarding both the efficiency of the reduction methods when em-
ployed in the analysis of complex structures and the effect of
applying realistic boundary conditions to the reduced models.

Commercial FE software of different kinds represent convenient
tools for both pre- and post-processing, such as in the coupling of
substructures and in the visualisation of results. Since some reduc-
tion methods reported on in the literature are incompatible with
such software, methods of this sort are either excluded from the
analyses here or are used in a modified fashion. A broad range of
model order reduction methods presented in the literature will
be discussed and the theories behind them taken up. The perfor-
mance of the reduction methods, applied to lightweight building
structures, was evaluated for frequencies of less than 100 Hz by
studying two numerical examples. The first example is a model
of moderate size of a wooden floor structure, a model created in
the commercial FE software Abaqus, from which the system matri-
ces were exported to Matlab, in which various of the reduction
methods described in Section 2 were employed. The second exam-
ple is a large and detailed model of an experimental wooden floor
structure, analysed with use of model order reduction methods
implemented in Abaqus as well as by use of an alternative ap-
proach employing structural elements. Although the conclusions
presented in this paper are based in principle on the results of
the two numerical examples, many wooden floor and wall struc-
tures have geometries and materials similar to those of the struc-
tures studied in the two examples. Accordingly, the main
conclusions arrived at would appear to be applicable to a wide
variety of wooden floor and wall structures similar in topology to
these two floors.

2. Model order reduction

An FE formulation of a structural dynamics problem results in a
linear equation of motion of the following form [5]:

M€uþ C _uþ Ku ¼ F; ð1Þ

where M;C;K 2 Rn�n are the mass, damping and stiffness matrices
respectively, F ¼ FðtÞ 2 Rn�1 is the load vector and u ¼ uðtÞ 2 Rn�1

is the state vector which is sought. A dot denotes differentiation
with respect to time, t. The objective of model reduction here is
to find a system of m dofs in which m� n, one which preserves
the dynamic characteristics of the full model. The general approach
is to approximate the state vector by use of the transformation
u ¼ TuR, where T 2 Rn�m is a transformation matrix and uR 2 Rm�1

is a reduced state vector. Applying the transformation in question
to Eq. (1) results in

MR €uR þ CR _uR þ KRuR ¼ FR; ð2Þ

MR ¼ TT MT; CR ¼ TT CT; KR ¼ TT KT; FR ¼ TT F; ð3Þ

where MR;KR;CR 2 Rm�m are the reduced mass, damping and stiff-
ness matrices, respectively, and FR 2 Rm�1 is the reduced load vec-
tor. In recent decades, many different methods for model order
reduction, involving procedures of varying types for establishing
the transformation matrix and the reduced state vector involved,
have been proposed in the literature. The dofs in the reduced state
vector can be divided into two categories: physical dofs and gener-
alised coordinates. Physical dofs are the dofs of the full system that
are retained in the reduction process, whereas the generalised coor-
dinates represent the amplitudes of various Ritz basis vectors [6]
that describe the deflection shapes that are allowed in the reduced
system. The reduction methods can be categorised according to the
type of dofs generated in the reduction process, where condensation
methods involve only physical dofs, generalised coordinate methods
are based solely on generalised coordinates, and hybrid reduction
methods employ a combination of dofs of both types. A number of
important methods within each category are listed below:

� Condensation methods
– Guyan reduction [7]
– Dynamic reduction [8]
– Improved reduction system (IRS) [9,10]
– System equivalent expansion reduction process (SEREP) [11]
� Generalised coordinate methods

– Modal truncation [5,12]
– Component mode synthesis by Craig–Chang [12,13]
– Krylov subspace methods [14,15]
– Balanced truncation [16,17]
� Hybrid methods

– Component mode synthesis by Craig–Bampton [12,18]
– Component mode synthesis by MacNeal [19]
– Component mode synthesis by Rubin [20]

The methods just referred to, except for the Krylov subspace
methods and balanced truncation, which have their origin in con-
trol theory and are considered to be modern reduction methods,
were developed specifically for structural mechanics. Modal trun-
cation and component mode synthesis by Craig–Chang, Craig–
Bampton, Rubin or MacNeal are all mode-based methods, which
means that structural eigenmodes of some sort are employed as
Ritz basis vectors. In commercial FE software, generalised coordi-
nates are treated as internal dofs and the coupling of substructures
is usually realised at the physical dofs by use of Lagrange multipli-
ers [5]. Consequently, if the global model involved is to be analysed
and post-processed in commercial FE software, any methods for
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model order reduction based solely on generalised coordinates are
excluded. However, such methods can be combined with conden-
sation methods to obtain hybrid versions of the methods. Compo-
nent mode synthesis by Craig–Bampton, for example, is modal
truncation combined with Guyan reduction. Moreover, variants
of component mode synthesis in which Krylov subspace methods
instead of modal truncation are combined with Guyan reduction
have been described in [21,22]. Model order reduction methods
that result in reduced models in which the physical dofs at the
interfaces are preserved are often referred to as structure-preserv-
ing methods.

In the present study, five of the above-listed reduction methods
are investigated: Guyan reduction, dynamic reduction, IRS and
component mode synthesis, the latter both in the mode-based
Craig–Bampton form and in the Krylov subspace version. Out of
the mode-based component mode synthesis methods, the Craig–
Bampton version, the most commonly employed method among
structural engineers, is selected. The Krylov subspace version is in-
cluded in the studies to investigate the potential improvement in
efficiency offered by the increasingly popular methods from con-
trol theory when employed for the type of problems studied here.
Moreover, modified versions of the component mode synthesis
methods are investigated using IRS instead of Guyan reduction as
the condensation method, these being referred to as improved
component mode synthesis methods [21]. In addition, a set of
alternative methods termed generalised methods [23], obtained
by deriving the above mentioned methods in a slightly different
manner, are investigated.

In the derivations of the reduction methods presented below,
the case considered is an undamped one. Since the damping ratio
of the structures analysed in the study is relatively low, it has a
negligible effect on the eigenfrequencies and the eigenmodes. Also,
the damping matrix employed provides only a rough approxima-
tion of all the damping phenomena occurring in the structures as
a whole. Accordingly, as an alternative to its being reduced in the
same way as the mass and stiffness matrices, the damping matrix
can be constructed in the reduced system directly.

2.1. Original methods

As mentioned above, the model order reduction methods can be
derived in a slightly different manner than in their original ver-
sions, this resulting in methods referred to as generalised methods,
as presented in Section 2.2. Below, the original versions of the
methods investigated here are presented.

2.1.1. Guyan reduction
In the condensation methods, the dofs are separated into mas-

ters (m) and slaves (s), the slave dofs being condensed in the reduc-
tion process, resulting in a reduced state vector containing only the
master dofs. Partitioning the state vector in terms of the master
and slave categories enables the system matrices in Eq. (1) to be
partitioned into sub-blocks as follows:

Mmm Mms

Msm Mss

� �
€um

€us

� �
þ

Kmm Kms

Ksm Kss

� �
um

us

� �
¼

Fm

Fs

� �
: ð4Þ

Solving the equation in the second row in Eq. (4) for us results in

us ¼ �K�1
ss Msm €um þMss €us þ Ksmumð Þ; ð5Þ

where it has been assumed that there are no loads acting on the
slave dofs, so that Fs ¼ 0. Neglecting the inertia terms in Eq. (5) re-
sults in the transformation of the state vector for Guyan reduction

um

us

� �
¼

I
�K�1

ss Ksm

� �
um ¼ TGuyanum; ð6Þ

where the transformation matrix TGuyan can be used in Eq. (3) to ob-
tain the reduced system matrices and the reduced load vector.
Guyan reduction is often referred to as static condensation, since
models reduced with Guyan reduction do not result in any errors
in static analysis. Due to its static nature, Guyan reduction can be
expected to only produce acceptable results for frequencies close
to the lowest eigenfrequencies of the system. At higher frequencies,
the neglected inertia terms have a stronger influence, resulting in
errors of larger size. The performance of this method is highly
dependent upon the approach for selecting master dofs. In the
numerical examples studied here, only the dofs needed to connect
the substructures to the surroundings serve as masters, although
additional dofs can be employed as master dofs as well, various
methods for selecting such dofs having been proposed [24,25].

2.1.2. Dynamic reduction
If a harmonic time-dependent load, F ¼ F̂expðixtÞ, is assumed,

this results in a harmonic response, u ¼ ûexpðixtÞ, where
i ¼

ffiffiffiffiffiffiffi
�1
p

is the imaginary unit, x is the angular frequency and F̂
and û are the complex load and displacement amplitudes, respec-
tively. Introducing this assumption into Eq. (4) results in the equa-
tion of motion applying to the frequency domain

DmmðxÞ DmsðxÞ
DsmðxÞ DssðxÞ

� �
ûm

ûs

� �
¼ F̂m

F̂s

" #
; ð7Þ

DðxÞ ¼ �x2Mþ K: ð8Þ

Solving the equation in the lower row in Eq. (7) for ûs, assuming
F̂s ¼ 0, results in

ûs ¼ �D�1
ss ðxÞDsmðxÞûm ð9Þ

and, consequently, the transformation of the state vector for dy-
namic reduction is given by

ûm

ûs

� �
¼

I
�D�1

ss ðxÞDsmðxÞ

� �
ûm ¼ TDynamicûm; ð10Þ

where the transformation matrix TDynamic requires a selection of x in
order to be established. The special case of dynamic reduction in
which x ¼ 0 results in the transformation of Guyan reduction
shown in Eq. (6). For harmonic load cases in which the excitation
frequency has the same value as x, dynamic reduction provides ex-
act results. This suggests dynamic reduction to be an effective
scheme for analysing a structure subjected to load cases having nar-
row frequency content. For steady-state analyses, fully accurate re-
duced models can be obtained by reducing the system matrices at
each discrete frequency, yet this is a costly procedure that requires
the availability of large memory resources for storing the resulting
matrices.

2.1.3. Improved reduction system (IRS)
The term improved in the name improved reduction system re-

fers to a perturbation of the transformation taking place in Guyan
reduction, Eq. (6). The previously neglected inertia terms are then
included as pseudo-static forces. The occurrence of free undamped
vibrations of a system reduced by means of a Guyan reduction re-
sults in the following expression for the acceleration of the master
dofs:

€um ¼ �M�1
GuyanKGuyanum; ð11Þ

where MGuyan and KGuyan are the reduced stiffness- and mass matri-
ces obtained by employing Guyan reduction. Differentiating Eq. (6)
and making use of the relationship expressed in Eq. (11) results in
the following expression for acceleration of the slave dofs:
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€us ¼ �K�1
ss Ksm €um ¼ K�1

ss KsmM�1
GuyanKGuyanum: ð12Þ

Inserting Eqs. (11) and (12) into Eq. (5) results in the approxi-
mation of the slave dofs

us ¼ K�1
ss MsmM�1

GuyanKGuyan �MssK
�1
ss KsmM�1

GuyanKGuyan � Ksm

� �
um:

ð13Þ

This rather complicated expression can be written in more com-
pact form so as to obtain the transformation matrix for IRS

TIRS ¼ TGuyan þ SMTGuyanM�1
GuyanKGuyan; ð14Þ

S ¼
0 0
0 K�1

ss

� �
: ð15Þ

In the IRS transformation, the reduced system matrices that Gu-
yan reduction provides are utilised so as to produce updated re-
duced matrices. As a further extension of this, the updated
matrices can be used to create an iterative scheme where the
transformation for the ith iteration is given by

TIRS;i ¼ TGuyan þ SMTIRS;i�1M�1
IRS;i�1KIRS;i�1 ð16Þ

and the iterations are started by calculating TIRS;1 according to Eq.
(14). KIRS;i�1 and MIRS;i�1 are the reduced stiffness- and mass matri-
ces of iteration i� 1, obtained by using TIRS;i�1 in Eq. (3). The itera-
tive scheme converges to form the transformation matrix of SEREP
[11], creating a reduced system that reproduces exactly the lowest
eigenfrequencies and eigenmodes of the full system. The rate of
convergence depends upon the selection of master dofs. In contrast
to Guyan reduction, however, IRS does not reproduce the static
behaviour of the full system exactly.

2.1.4. Component mode synthesis by Craig–Bampton (CMS)
Use of component mode synthesis by Craig–Bampton, here de-

noted CMS, compensates for the neglected inertia terms in Guyan
reduction through its including a set of generalised coordinates n.
These generalised coordinates represent the amplitudes of a set
of eigenmodes for the slave structure, calculated with the master
dofs being fixed. Setting um ¼ 0 and Fs ¼ 0 in Eq. (4) and assuming
a harmonic solution results in the following eigenvalue problem:

KssU ¼ kMssU; ð17Þ

which can be solved for the eigenvalues k ¼ x2 and the eigenmodes
U. A number of eigenmodes obtained from Eq. (17), referred to as
retained eigenmodes, are selected as additional basis vectors to
the approximation of the slave dofs in Eq. (6), resulting in

us ¼ �K�1
ss Ksmum þ

X
Uini ¼ Wum þUn: ð18Þ

This gives the following transformation of the state vector for
CMS:

um

us

� �
¼

I 0
W U

� �
um

n

� �
¼ TCMS

um

n

� �
; ð19Þ

which defines the transformation matrix TCMS. As for Guyan reduc-
tion, the accuracy of CMS depends upon the selection of master
dofs, this affecting both the static modes and the eigenmodes of
the slave structure. Also, the accuracy depends upon the selection
of retained eigenmodes, certain eigenmodes having a larger influ-
ence than others on the solution of a specific problem. To obtain a
reduced model with as great an accuracy for general load distribu-
tions as possible, however, all the eigenmodes up to some given
limit that is chosen should be included.

2.1.5. Krylov subspace component mode synthesis (KCMS)
The Krylov subspace is defined as

Kq A;bð Þ ¼ span b;Ab; . . . ;Aq�1b
n o

; ð20Þ

where A 2 Rn�n; b 2 Rn�1 is called the starting vector and q is a po-
sitive integer. b can also be a block of vectors, in which case each
Krylov projection generates a new block of vectors. Since methods
originating from control theory are ones developed for systems of
an input–output form, the equation of motion is rewritten here as
a system of this sort of the following form:

M€uþ Ku ¼ Bx; ð21Þ

y ¼ NT u; ð22Þ

where x ¼ xðtÞ 2 Rx�1 is the input vector, y ¼ yðtÞ 2 Ry�1 the output
vector, B 2 Rn�x a matrix describing the spatial load distributions
and N 2 Rn�y a matrix relating the state vector to the output vector.
A Laplace transformation of the input–output system yields the
transfer function GðsÞ:

GðsÞ ¼ NTðs2Mþ KÞ�1
B: ð23Þ

Krylov subspace methods, which have their origin in the area of
control theory, are based on so-called moment matching. The mo-
ments involved are defined as the coefficients of a Taylor series
expansion of GðsÞ around s ¼ 0. It can be shown that the first q mo-
ments of the full system and of a reduced system match if the re-
duced basis is selected as the Krylov subspace generated by
A ¼ K�1M and b ¼ K�1B [15]. In the present study it is required
that the reduction methods employed are structure-preserving,
i.e. retains the physical dofs at the interfaces. Accordingly, the ap-
proach of using Krylov subspace vectors in a component mode syn-
thesis manner, as described in [21,22], here denoted KCMS, is
adopted. Inserting um ¼ 0 and Fs ¼ Bsxs into Eq. (4) results in the
following equation of motion for the slave structure:

Mss €us þ Kssus ¼ Bsxs: ð24Þ

A Krylov subspace is generated for the slave structure by select-
ing A ¼ K�1

ss Mss and b ¼ K�1
ss Bs:

Kq K�1
ss Mss;K

�1
ss Bs

� �
¼ span K�1

ss Bs|fflffl{zfflffl}
V1

k

; K�1
ss Mss

� �
K�1

ss Bs|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
V2

k

; . . . ; K�1
ss Mss

� �q�1
K�1

ss Bs|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Vq

k

8>>><
>>>:

9>>>=
>>>;
ð25Þ

and the approximation of the slave dofs in KCMS is given by

us ¼ �K�1
ss Ksmum þ

X
Vi

kni ¼ Wum þ Vkn; ð26Þ

one which is similar to that of component mode synthesis by Craig–
Bampton shown in Eq. (18), but with the eigenmodes of the slave
structure exchanged for the Krylov subspace vectors as defined in
Eq. (25). This results in the transformation of the state vector for
KCMS

um

us

� �
¼

I 0
W Vk

� �
um

n

� �
¼ TKCMS

um

n

� �
ð27Þ

defining the transformation matrix TKCMS. In order to avoid numer-
ical issues, the Krylov subspace is generated by using the Arnoldi
algorithm with modified Gram-Schmidt orthogonalization [14],
which creates a set of linearly independent vectors. Calculating
the starting vector b requires that Bs, which describes the spatial
load distribution on the slave structure, be selected. In the present
study, a substructuring approach for the modelling of multi-storey
buildings is adopted. Smaller parts of such buildings are considered
as being substructures of these, most of these substructures having
no loads that act upon the slave structure. Accordingly, a fictitious
load needs to be selected, in the present study a random distribu-
tion being used for this.
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In contrast to CMS, which includes eigenmodes of the full model
as Ritz basis vectors, no eigenvalue extraction is required for creat-
ing reduced models by means of the KCMS method. Consequently,
it is less costly to create the reduced models employing KCMS and
in application where the computation time of this process is of
importance, this gives KCMS an advantage over CMS.

2.1.6. Improved component mode synthesis
The two component mode synthesis methods described above

are obtained by complementing Guyan reduction by a set of Ritz
basis vectors for the slave structure, these being either eigenmodes
or Krylov subspace vectors. IRS can be seen as representing an
improvement as compared to Guyan reduction, an improvement
that can also be applied to the component mode synthesis methods
employed here. The transformation matrices of the improved com-
ponent mode synthesis methods, improved CMS and improved
KCMS (ICMS and IKCMS, respectively), can be obtained by simply
replacing the basis vectors of Guyan reduction by the basis vectors
of IRS:

TICMS ¼ TIRS Û
� 	

; Û ¼
0
U

� �
; ð28Þ

TIKCMS ¼ TIRS V̂k

� 	
; V̂k ¼

0
Vk

� �
; ð29Þ

where TIRS can be given either by the original form of IRS, Eq. (14), or
its iterated version, Eq. (16). The use of IRS instead of Guyan reduc-
tion can be expected to improve the dynamic behaviour of the re-
duced models, at the expense of introducing errors in static
analyses.

2.2. Generalised methods

The generalised versions of the reduction methods (denoted
here by a ‘‘g-’’ in the method names) are obtained by re-formulat-
ing the equation of motion. Instead of using the block-partitioning
of the system matrices in Eq. (4), the following partitioning is
employed:

Mm Ms½ �
€um

€us

� �
þ Km Ks½ �

um

us

� �
¼

Fm

Fs

� �
; ð30Þ

with the non-square submatrices Km;Mm 2 Rn�m and Ks;Ms 2 Rn�s.
A drawback of the generalised versions of the methods, in compar-
ison to the original versions, is the increased computational re-
sources needed to construct the reduced models, since this
requires the generalised inverses of matrices that are very large.

2.2.1. Generalised Guyan reduction
In the same manner as in Eqs. (5) and (6), the inertia terms in

Eq. (30) are neglected when solving for the slave dofs, resulting
in the following transformation of the state vector for generalised
Guyan (g-Guyan) reduction:

um

us

� �
¼

I
�Kþs Km

� �
um ¼ Tg-Guyanum; ð31Þ

where Kþs ¼ KT
s Ks

� ��1
KT

s is the generalised left-inverse of Ks and
Tg-Guyan is the transformation matrix. Note that in the approximation
of the slave dofs it is assumed that there are no loads that act on
either the master dofs or the slave dofs, Fm ¼ 0 and Fs ¼ 0, respec-
tively, in contrast to the original Guyan reduction, in which only
Fs ¼ 0 needs to be assumed.

2.2.2. Generalised dynamic reduction
Through use of an approach corresponding to the derivation of

g-Guyan reduction, the transformation matrix of generalised dy-
namic (g-dynamic) reduction, Tg-Dynamic, can be defined as

ûm

ûs

� �
¼

I
�Dþs ðxÞDmðxÞ

� �
ûm ¼ Tg-Dynamicûm; ð32Þ

where DsðxÞ ¼ �x2Ms þ Ks and DmðxÞ ¼ �x2Mm þ Km.

2.2.3. Generalised improved reduction system (g-IRS)
The transformation matrix of generalised IRS is obtained by

including the inertia terms found in Eq. (30) as pseudo-static
forces, using approximations corresponding to those employed in
Eqs. (11) and (12), resulting in

Tg-IRS ¼ Tg-Guyan þ ŜMTg-GuyanM�1
g-GuyanKg-Guyan; ð33Þ

Ŝ ¼
0

Kþs

� �
; ð34Þ

where MGuyan and KGuyan are the reduced stiffness- and mass matri-
ces obtained by employing g-Guyan reduction. g-IRS can also be ex-
tended to produce an iterative scheme in the same manner as in the
original IRS, where the transformation matrix for the ith iteration is
given by

Tg-IRS;iþ1 ¼ Tg-Guyan þ ŜMTg-IRS;iM
�1
g-IRS;iKg-IRS;i ð35Þ

and the iterations are started by calculating Tg-IRS;1 according to
Eq. (33).

2.2.4. Generalised component mode synthesis
The generalised versions of Guyan reduction and IRS can be

used to obtain the transformation matrices for the generalised
versions of CMS, KCMS, ICMS and IKCMS (g-CMS, g-KCMS, g-ICMS
and g-IKCMS, respectively)

Tg-CMS ¼ Tg-Guyan Û
� 	

; ð36Þ

Tg-KCMS ¼ Tg-Guyan V̂k

h i
; ð37Þ

Tg-ICMS ¼ Tg-IRS Û
� 	

; ð38Þ

Tg-IKCMS ¼ Tg-IRS V̂k

h i
; ð39Þ

where Û and V̂k are defined in Eqs. (28) and (29), respectively.

2.3. Summary of methods

Table 1 summarises the methods for model order reduction
which are presented above and investigated in the numerical
examples.

3. Numerical examples

This section considers two numerical examples in which differ-
ent model order reduction methods are applied to FE models of
wooden floor structures. In the first example, a model of moderate
size created in Abaqus is studied. The system matrices were ex-
ported to Matlab, where the reduction methods described in Sec-
tion 2 were employed, the reduced models that resulted being
analysed. The second example concerns a large and detailed model
that was both created and analysed in Abaqus, using reduction
methods implemented in the software together with an alternative
approach involving use of structural elements. In both examples,
two types of analyses were performed: eigenvalue analysis and
steady-state analysis. The eigenvalue analysis was performed in a
free-free state, i.e. without any displacements of the physical dofs
being prescribed. The rigid body eigenmodes that occur in a
free-free state are disregarded in the results that are presented. A
steady-state analysis was performed to investigate the vibration
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transmission found in the reduced floor models when realistic
boundary conditions were involved, these being accomplished by
connecting the reduced models to the top of a pair of wall panel
models. The displacement spectrum for one of the wall panels
was analysed when a unit load was applied to the other panel.

3.1. Error quantities

Both the eigenfrequencies and the eigenmodes of the reduced
models were studied in the eigenvalue analysis carried out. The
eigenfrequencies were compared with those of the full (non-
reduced) model in terms of the normalised relative frequency
difference (NRFD) and the eigenmodes with those of the full model
in terms of the modal assurance criterion (MAC). To obtain a
measure for the displacement spectrum of the whole receiver wall
panel in the steady-state analysis, a root mean square (RMS) value
for the displacement magnitudes in all the nodes of the panel was
calculated for each of the frequency steps.

3.1.1. Normalised relative frequency difference (NRFD)
The NRFD of the ith eigenfrequency is defined as

NRFD ¼
f red
i � f full

i




 



f full
i

� 100; ð40Þ

where f full
i is the eigenfrequency of the full model and f red

i is the
eigenfrequency of the reduced model. This quotient is multiplied
by 100 to obtain the NRFD value as a percentage.

3.1.2. Modal assurance criterion (MAC)
The MAC value for the jth eigenmode of the reduced model, Ured

j ,
as compared with the ith eigenmode of the full model, Ufull

i , is
defined as

MAC ¼
ðUred

j Þ
T
ðUfull

i Þ



 


2

ðUred
j Þ

T
ðUred

j ÞðU
full
i Þ

T
ðUfull

i Þ
: ð41Þ

The eigenmodes of a reduced model often appear in shifted
order as compared with the full model. Accordingly, each of the
eigenmodes of a reduced model is compared with each of eigen-
modes of the full model, within the frequency range which is
specified.

3.1.3. Root mean square (RMS)
For any given excitation frequency f in the steady-state analysis,

the RMS value is defined here as

URMSðf Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ndof

Xndof

i¼1

Uiðf Þ2
vuut ; ð42Þ

where Uiðf Þ is the magnitude of the complex amplitude for the ith
displacement dof and ndof is the number of displacement dofs of
the receiver wall panel. A normalised error of the RMS value for a
reduced model, Ured

RMS, as compared with the RMS value for the full
model, Ufull

RMS, can be calculated as

Uerror
RMS ðf Þ ¼

Ured
RMSðf Þ � Ufull

RMSðf Þ



 




Ufull
RMSðf Þ

� 100: ð43Þ

Calculating the error for each excitation frequency enables an
error spectrum to be obtained. Since the error spectra typically
fluctuate to a marked degree, the result plots used for comparing
the different reduction methods make use of averaged error spec-
tra. The errors are averaged by sweeping a 20 Hz wide window
over the frequency range and calculating the mean value of the
spectrum inside the window for each frequency. Accordingly, the
frequency range of the plots is one of 10–90 Hz.

3.2. Numerical example 1: a moderate-sized floor structure

In the first numerical example, a model of a 2445 � 4090 mm2

large floor structure was studied. The structure consisted primarily
of five load-bearing wooden beams, using a centre-to-centre dis-
tance of the successive beams from one another of 600 mm, sup-
porting a particle board surface. At the two shorter sides of the
floor, wooden beams were placed perpendicular to the five beams
just referred to, creating a box-like structure. Each of these wood
beams had a cross-section of 45 � 220 mm2 and was modelled
using an orthotropic material model possessing the properties
shown in Table 2. The particle board had a thickness of 22 mm
and was modelled using an isotropic material model having the
properties shown in Table 3. The structure was meshed using 20-
node brick elements with quadratic interpolation, resulting in
30,807 dofs. The mesh, viewed from below, is shown in Fig. 1.
The structural components shared mesh nodes at the intersections,
the connections thus being modelled as fully interactive.

All the dofs along the centre line on the underside of the outer-
most beams were selected as master dofs, resulting in there being
576 master dofs altogether, this representing the minimum num-
ber of dofs in the reduced models. Reduced models of the full
floor-structure model were created by employing the 14 methods
for model order reduction listed in Table 1. The dynamic reduction
involved a frequency shift of 53.1 Hz, this being the eigenfrequency
of the full model closest to 50 Hz, located at the centre of the fre-
quency range. IRS, ICMS and IKCMS were employed in their iter-
ated versions, using three iterations. A total of 50 generalised
coordinates were made use of in the hybrid reduction methods
employed. Accordingly, 50 eigenmodes were included in the
mode-based methods and 50 Krylov vectors in the Krylov-based
methods, resulting in reduced models having 626 dofs.

The reduced models established by employing all of the reduc-
tion methods listed in Table 1 resulted in very similar computation
times, the condensation methods resulting in marginally shorter
times compared to the component mode synthesis methods. The
similarity can be explained by the size of the reduced models being

Table 1
The model order reduction methods presented in Section 2 and investigated in
Section 3.

Method name Abbrevation

Condensation methods
Guyan reduction –
Dynamic reduction –
Improved reduction system IRS
Generalised Guyan reduction g-Guyan reduction
Generalised dynamic reduction g-dynamic reduction
Generalised IRS g-IRS

Hybrid methods
Component mode synthesis by Craig–Bampton CMS
Improved CMS ICMS
Krylov subspace component mode synthesis KCMS
Improved KCMS IKCMS
Generalised CMS g-CMS
Generalised ICMS g-ICMS
Generalised KCMS g-KCMS
Generalised IKCMS g-IKCMS

Table 2
The material parameters used for the wooden beams [26], the stiffness parameters
being given in terms of MPa and the density in kg/m3.

E1 E2 E3 G12 G13 G23 m12 m13 m23 q

8500 350 350 700 700 50 0.2 0.2 0.3 432
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similar and the band width of the matrices being very large for all
methods. The computation time for the eigenvalue analysis of each
of the reduced models was approximately 3% of the computation
time for the full model.

3.2.1. Eigenvalue analysis
The NRFD values for the original methods are shown in Fig. 2,

19 eigenfrequencies being included there, this being the number
of eigenfrequencies of less than 100 Hz contained in the full model.
The red, yellow and green dashed lines in the figure represent the
error levels 10%, 1% and 0.1%, respectively. Guyan reduction pro-
vides an acceptable accuracy only for the first eigenfrequency of
the full model, whereas dynamic reduction yields high NRFD val-
ues for each of the eigenfrequencies. CMS and KCMS provide rela-
tively good and very similar results, the improved variants of both
methods increasing the performance appreciably due to the high
degree of accuracy of iterated IRS, quite to be expected since the
eigenfrequencies iterated IRS provides converge in such a way as
to reproduce the eigenfrequencies of the full model exactly.

The NRFD values for the generalised methods are shown in
Fig. 3. As is evident there, the generalised versions of Guyan reduc-
tion and dynamic reduction improve the accuracy as compared
with the original versions. The accuracy of IRS decreases for the
lower frequencies when its generalised version is employed and,
consequently, the accuracy of ICMS and IKCMS decreases as well.
The results obtained when employing CMS and KCMS are slightly

improved, however, when use is made of the generalised versions
of the two.

In Fig. 4, the MAC values for the seven original methods and for
the generalised versions of Guyan reduction, dynamic reduction,
CMS and KCMS are shown. A plot comparing the full model with
itself is included in order to demonstrate the orthogonality proper-
ties of the eigenmodes. Since the eigenmodes are non-orthogonal
in the dot product, the off-diagonal terms are not generally zero
in value, although this is the case in the example given here (with-
in the discretization of the MAC plots, the off-diagonal terms being
less than 0.1). In agreement with the NRFD results, the MAC values
for the original versions of the Guyan reduction and the dynamic
reduction correlate poorly with the full model, whereas the gener-
alised versions show a relatively high degree of accuracy. All of the
other original reduction methods, except for CMS, show a high de-
gree of correlation with the full model for each of the eigenmodes.

3.2.2. Steady-state analysis
The setup for the steady-state analysis is shown in Fig. 5. The

floor models were connected to the top of two wall panels, the
one a source panel and the other a receiver panel, supporting each
end of the load-bearing beams. The wall panels were modelled as
shells provided with beam stiffeners at successive spacings from
one another of 600 mm each, representing a 2500 mm high
wood-framed wall having a plaster board surface. The floor models
were tied to the displacement dofs of the wall panels by use of La-
grange multipliers, the bottom edge of the wall panels being fixed.
A unit point load in all three directions, shown by the yellow ar-
rows in the figure, was applied to the source panel. The displace-
ments of the receiver wall panel were evaluated in accordance
with Eq. (42) for excitation frequencies of up to 100 Hz.

The averaged error of the RMS values obtained using the origi-
nal methods and the generalised methods is shown in Figs. 6 and 7,
respectively. The dashed black line in both figures indicates the
10% error level. In studying Fig. 6, one can note that the frequency
shift in dynamic reduction strongly affect the performance.
Whereas Guyan reduction (corresponding to a 0 Hz shift) generates
lower errors when the frequencies involved are lower, dynamic
reduction results in the degree of errors being lowest at around
50 Hz, close to the frequency shift selected. CMS and KCMS can
be seen to behave very similarly at the higher frequencies, whereas
at the lower frequencies the latter is more accurate. In contrast to
the results of the eigenvalue analysis, ICMS and IKCMS lower the
level of performance for most frequencies as compared with con-
ventional CMS and KCMS. In Fig. 7, one can note that the accuracy
of Guyan reduction and of dynamic reduction is appreciably

Table 3
The material parameters used for the particle board [26], the modulus of elasticity
being given in terms of MPa and the density in kg/m3.

E m q

3000 0.3 767

Fig. 1. The mesh of the floor structure in numerical example 1.
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Fig. 2. NRFD values for the original model order reduction methods applied to numerical example 1.
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greater with use of the generalised versions of these. The accuracy
of KCMS decreases markedly at lower frequencies and increases at
the higher frequencies when the generalised version of it is
employed. As can be seen by comparing the results in Figs. 6 and
7, there is, generally speaking, a lesser degree of spread among
the results for the different reduction methods when their general-
ised versions are employed.

In Table 4, the maximum and the mean errors for the frequency
range as a whole (without averaging) are shown for both the origi-
nal and the generalised methods. As is evident, using the general-
ised versions only has a strong positive effect in the case of Guyan
reduction and of dynamic reduction. For most of the hybrid meth-
ods, use of the generalised versions leads to a reduction in perfor-
mance. Of all the reduction methods, it is KCMS that provides the
most accurate results in terms both of average and of maximum er-
ror levels.

3.3. Numerical example 2: a large two-span floor structure

In the second numerical example, a model of an experimental
floor structure that was compared with measurements in [26]
was studied. The 3645 � 9045 mm2 large floor structure consists
of seven load-bearing wooden beams, at a centre-to-centre dis-
tance of the successive beams from one another of 600 mm, sup-
porting a particle board surface, secondary spaced boarding being
attached to the underside of the beams. In the FE model, the woo-
den beams were placed perpendicular to the load-bearing beams at
the two short sides of the floor, creating a box-like structure, in
contrast to the experimental structure in which the ends of the
beams were free. Each of the wooden beams had a cross-section
of 45 � 220 mm2 and was modelled using an orthotropic material
model having the properties shown in Table 2. The secondary
spaced boarding had a cross-section of 28 � 70 mm2 and was mod-
elled as having the same material properties as the wooden beams.
The particle board had a thickness of 22 mm and was modelled
using an isotropic material model possessing the properties shown
in Table 3. The structure was meshed using 20-node brick elements
with quadratic interpolation, resulting in 632,820 dofs. The mesh,
as viewed from below, is shown in Fig. 8. The structural compo-
nents shared mesh nodes at the intersections, the connections thus
being modelled as fully interactive.

For reasons of efficiency, it is desirable to connect the floor
structure to other structures at discrete points so as to minimise
the number of physical dofs retained in the reduced models. Dis-
crete point connections require that rotational dofs fulfil condi-
tions of compatibility. To create rotational coupling in the case of

the solid elements, 173 additional nodes, indicated by the yellow
crosses in Fig. 8, having both displacement dofs and rotational dofs,
were created. These nodes were connected to the neighbouring
mesh nodes under conditions of rigid beam constraints, the rota-
tional dofs thus being connected to the rotations of the structure
as a whole. The experimental structure has both a mid-span sup-
port and end supports. To provide for a modelling of all of the sup-
ports, the model has additional nodes possessing rotational dofs
both along the underside of the outermost beams and at the mid-
dle of the load-bearing beams. The dofs at the 173 additional nodes
served as master dofs in the model order reduction, resulting in
1038 master dofs. The model was reduced by use of the two model
order reduction methods implemented in Abaqus: Guyan reduc-
tion and CMS. The number of eigenmodes retained in the CMS
reduction was varied so as to study the convergence of errors.

When employing the model order reduction methods, compu-
tationally effective models are obtained by reducing the size of
the large system matrices obtained by use of detailed FE models.
As an alternative, smaller systems can be constructed directly by
use of structural finite elements, beam or shell elements, for exam-
ple, assumptions being made regarding the kinematic relations and
the equilibrium equations involved. These assumptions can turn
out to have no more than a negligible effect in static analysis if
one or two dimensions of the structure are significantly smaller
than the other or others. In dynamic analysis, however, the con-
straints implied by beam and shell theory can have a strong effect
on the structural behaviour in the case of higher frequencies. A
structural FE model of the floor structure was created by modelling
the panels and the wooden beams in terms of Reissner–Mindlin
shell elements, and the secondary spaced boarding in terms of
Timoshenko beam elements. The two theories involved allow for
shear deformation of the normal to the shell plane and of the beam
axis, respectively. Further discussion of the beam and the shell the-
ory can be found in e.g. [5,27]. The structural-element model was
meshed with 720 beam elements and 3312 shell elements, result-
ing in 24,762 dofs.

Table 5 shows the size (number of dofs) of the reduced models
as well as the computation times obtained for a Lanczos eigenvalue
analysis of the 55 first eigenmodes and a steady-state analysis
involving 200 steps. The analyses were carried out employing Aba-
qus/Standard. It can be observed that the computation times are
affected by increasing the number of eigenmodes retained in the
CMS reduction, the retaining of 1000 eigenmodes (a duplication
of the number of dofs compared to Guyan reduction) resulting in
the computation times being increased significantly. The number
of eigenmodes retained is, of course, a trade-off between accuracy
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Fig. 3. NRFD values for the generalised model order reduction methods applied to numerical example 1.
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and computational cost, the gain in accuracy being illustrated in
the analysis results presented below. It is, however, not possible
to estimate the number of eigenmodes required for obtaining a
certain accuracy without analysing the full model. Moreover, it
can be observed that the computation times for both types of anal-
yses of the structural elements model is similar to those for a mod-
el reduced with CMS where 500–1000 eigenmodes are retained, in
spite of the former model being over 10 times larger. This is a con-
sequence of the transformation of the system matrices involved in
model order reduction, destroying the narrow bandwidth of matri-
ces constructed with the FE method.

3.3.1. Eigenvalue analysis
Fig. 9 shows the NRFD values for the reduced models, including

CMS when 10, 100 and 1000 eigenmodes are retained. The red, yel-
low and green dashed lines in the figure show the error levels of
10%, 1% and 0.1%, respectively. The results included 55 eigenfre-
quencies, which is the number of eigenfrequencies of the full mod-
el up to 100 Hz. Guyan reduction assesses only the lowest
eigenfrequencies of the full model with an acceptable level of accu-
racy. Use of CMS in which 10 eigenmodes are retained improves
the accuracy obtained for the first 20 eigenmodes, but is inaccurate
for the remaining eigenmodes. When 100 eigenmodes are retained,

5 10 15 20

5

10

15

20
Full model

Eigenm num, Full model

Ei
ge

nm
 n

um
, F

ul
l m

od
el

0.2

0.4

0.6

0.8

1

5 10 15 20

5

10

15

20
Guyan reduction

Eigenm num, Full model
Ei

ge
nm

 n
um

, R
ed

uc
ed

 m
od

el

0.2

0.4

0.6

0.8

1

5 10 15 20

5

10

15

20
Dynamic reduction

Eigenm num, Full model

Ei
ge

nm
 n

um
, R

ed
uc

ed
 m

od
el

0.2

0.4

0.6

0.8

1

5 10 15 20

5

10

15

20
IRS

Eigenm num, Full model

Ei
ge

nm
 n

um
, R

ed
uc

ed
 m

od
el

0.2

0.4

0.6

0.8

1

5 10 15 20

5

10

15

20
CMS

Eigenm num, Full model

Ei
ge

nm
 n

um
, R

ed
uc

ed
 m

od
el

0.2

0.4

0.6

0.8

1

5 10 15 20

5

10

15

20
ICMS

Eigenm num, Full model

Ei
ge

nm
 n

um
, R

ed
uc

ed
 m

od
el

0.2

0.4

0.6

0.8

1

5 10 15 20

5

10

15

20
KCMS

Eigenm num, Full model

Ei
ge

nm
 n

um
, R

ed
uc

ed
 m

od
el

0.2

0.4

0.6

0.8

1

5 10 15 20

5

10

15

20
IKCMS

Eigenm num, Full model

Ei
ge

nm
 n

um
, R

ed
uc

ed
 m

od
el

0.2

0.4

0.6

0.8

1

5 10 15 20

5

10

15

20
g−Guyan reduction

Eigenm num, Full model

Ei
ge

nm
 n

um
, R

ed
uc

ed
 m

od
el

0.2

0.4

0.6

0.8

1

5 10 15 20

5

10

15

20
g−Dynamic reduction

Eigenm num, Full model

Ei
ge

nm
 n

um
, R

ed
uc

ed
 m

od
el

0.2

0.4

0.6

0.8

1

5 10 15 20

5

10

15

20
g−CMS

Eigenm num, Full model

Ei
ge

nm
 n

um
, R

ed
uc

ed
 m

od
el

0.2

0.4

0.6

0.8

1

5 10 15 20

5

10

15

20
g−KCMS

Eigenm num, Full model

Ei
ge

nm
 n

um
, R

ed
uc

ed
 m

od
el

0.2

0.4

0.6

0.8

1

Fig. 4. MAC values for the different model order reduction methods applied to numerical example 1.
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relatively accurate results can be obtained for all of the eigenfre-
quencies, the retaining of 1000 eigenmodes resulting in very small
errors. Use of structural elements results in relatively large errors,
although the errors are less frequency-dependent than when any
of the model order reduction methods are employed.

Fig. 10 shows the MAC values obtained with use of the reduced
models, including CMS when 10, 50, 100, 500 and 1000 eigen-
modes are retained, as well as the full model being compared with
itself. For practical reasons, only the master dofs of the reduced

models were used for evaluating the eigenmodes. In comparing
the plots, it could be noted that the MAC values of the higher eigen-
modes were improved with use of CMS when the number of eigen-
modes retained was increasing. Whereas Guyan reduction (no
eigenmodes retained) only succeeds in modelling a few of the
eigenmodes in the full model accurately, the MAC plot for CMS
when 1000 eigenmodes are retained is identical to the MAC plot

Fig. 5. The setup for the steady-state analysis in numerical example 1.
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Fig. 6. Averaged errors of the RMS values for numerical example 1, as determined with use of the original model order reduction methods.
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Table 4
Average and maximum error levels of the RMS values obtained for the reduction
methods applied to numerical Example 1.

Model Mean error (%) Maximum error (%)

Guyan reduction 37.7 276
g-Guyan reduction 8.26 35.0
Dynamic reduction 106 1120
g-dynamic reduction 7.49 54.6
IRS 6.52 39.4
g-IRS 5.70 37.5
CMS 3.26 20.9
g-CMS 3.35 27.0
ICMS 4.81 63.4
g-ICMS 4.18 33.9
KCMS 2.92 20.2
g-KCMS 3.21 27.8
IKCMS 4.96 42.6
g-IKCMS 7.67 98.1
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for the full model. The structural element model only models a few
of the eigenmodes of the full model with a high degree of accuracy.
The correlation there with results of the full model is better for the
higher frequencies, however, than is the case of Guyan reduction or
CMS when only a few eigenmodes are retained.

3.3.2. Steady-state analysis
The transmission of vibrations was studied using the same ap-

proach as in the first numerical example, shown in Fig. 5, where
the floor models were connected to the top of two wall panels,
the one a source panel and the other a receiver panel, supporting
each end of the load-bearing beams. The floor models were, in
the second numerical example, connected to a third wall panel
located at the centre of the floor models through the nodes in
the middle of the load-bearing beams. Both the displacement dofs
and rotational dofs of the wall panels were linked to the floor
models by use of Lagrange multipliers, except in the case of the
mid-span wall panel, at which only the displacement dofs were
connected. A unit point load in all three directions was applied
to the source panel, the displacements at the receiver panel being
evaluated for excitation frequencies of up to 100 Hz by use of
Eq. (42).

The averaged error of the RMS values for the reduced models,
including CMS when 10, 100 and 1000 eigenmodes are retained,
is shown in Fig. 11. The dashed black line indicates the 10% error
level. Guyan reduction was found to produce large errors for most
of the frequencies. Use of CMS in which 10 eigenmodes were re-
tained was found to produce large errors as well, whereas CMS
in which 100 eigenmodes were retained was found to be relatively
accurate for most of the frequencies. A reduced model in which
close to 1000 eigenmodes were retained was needed, however,
to obtain satisfactory results for higher frequencies. As in the
eigenvalue analysis, the structural element model was found to
produce relatively large errors, but with a lesser frequency depen-
dence than for the other methods.

The maximum and the mean error values obtained for the fre-
quency range as a whole (without averaging) are shown in Table 6.
As can be seen, the levels of error converge when the number of re-
tained eigenmodes employed in the CMS reduction is increased.
When as many as 50 eigenmodes are included, there is a large
reduction in the error as compared with Guyan reduction, in spite
of the CMS model being only 5% larger. The convergence is slower
when a greater number of eigenmodes are retained, but as shown
in Fig. 11, at higher frequencies a greater number of eigenmodes
are required in order to obtain accurate results. It could also be
observed that including a greater number of retained eigenmodes
can result in an increase in the maximum error. Consequently,
for a given frequency, increasing the number of retained eigen-
modes does not necessarily result in a decrease in the level of error
involved.

Fig. 8. The mesh of the floor structure model in numerical example 2.

Table 5
The size and computation times, both for eigenvalue analyses and steady-state
analyses, of the reduced models analysed in connection with numerical example 2,
the analyses running on one core of an Intel Xeon W3530 CPU of 2.80 GHz, having
10 GB of RAM memory available.

Model Size (number
of dofs)

Time (s)
(eigenvalue anal.)

Time (s) (steady-
state anal.)

Full model 632820 590 220000
Structural

elements
24762 7.6 1200

Guyan
reduction

1038 3.1 410

CMS, 10 rea 1048 3.2 410
CMS, 20 rea 1058 3.2 410
CMS, 50 rea 1088 3.7 420
CMS, 100 rea 1138 5.5 440
CMS, 200 rea 1238 5.7 480
CMS, 500 rea 1538 8.5 620
CMS, 1000 rea 2038 15 970

a Retained eigenmodes.
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4. Conclusions

The objective of the analyses carried out in the present investi-
gation was to evaluate the performance of a wide range of methods

for model order reduction by comparing their accuracy and com-
putational cost when applied to detailed FE models of floor and
wall structures. In the first numerical example, it was evident that
an eigenvalue analysis of the structure in a free-free state is insuf-
ficient for analysing the performance of the different reduction
methods. A sensitivity of certain of the reduction methods to
boundary conditions was demonstrated, differing observations
being made regarding the accuracy of the methods in question in
the two analyses: the eigenvalue analysis and the steady-state
analysis. This shows the need for the reduced models to be ana-
lysed with use of realistic boundary conditions, such as in the case
of the steady-state analyses that were considered here.

As was expected, Guyan reduction delivered acceptable results
only at frequencies close to the lowest eigenfrequencies of the sys-
tem, due to the method’s static nature. Dynamic reduction was
only found to be accurate close to the frequency shift selected
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Fig. 10. MAC values for the reduction methods employed in connection with numerical example 2.
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Fig. 11. Averaged errors of RMS values obtained for the model order reduction methods used in connection with numerical example 2.

Table 6
Average and maximum errors of the RMS values obtained in connection with
numerical example 2.

Model Mean error (%) Maximum error (%)

Structural elements 34.9 61.4
Guyan reduction 113 349
CMS, 10 retained eigenmodes 33.1 114
CMS, 20 retained eigenmodes 11.5 38.4
CMS, 50 retained eigenmodes 7.75 16.3
CMS, 100 retained eigenmodes 6.88 21.4
CMS, 500 retained eigenmodes 3.86 8.92
CMS, 1000 retained eigenmodes 3.38 7.61
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and provided inaccurate results at frequencies differing to any
appreciable extent from this. Iterated improved reduction system
(IRS) provided considerably better results than the other condensa-
tion methods.

In both numerical examples, component mode synthesis by
Craig–Bampton (CMS) proved to be an effective method. The
Krylov subspace component mode synthesis (KCMS) method used
in the present study was found to be a good alternative as com-
pared with CMS, the two methods offering comparable accuracy.
Using IRS to create the improved variants of CMS and KCMS (ICMS
and IKCMS, respectively) enabled the accuracy in terms of eigen-
frequencies and eigenmodes to be improved appreciably, although
at the same time the errors in the steady-state analysis were found
to increase, indicating the improved variants to possibly be more
sensitive to the boundary conditions introduced in the analysis.

The performance of Guyan reduction and of dynamic reduction
was found to clearly be improved by use of the generalised ver-
sions of these methods. For the remaining methods, the accuracy
was only marginally affected by use of the generalised versions
and, for most of the methods, it was decreased at lower
frequencies.

The alternative approach of using structural finite elements was
found to result in relatively large errors, the computation time,
however, being significantly shorter considering the size of the
model. The structural element model can, however, be optimised
further regarding such matters as the selection of structural
element types and the connections involved.
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