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Abstract Computed tomography (CT)-based finite element
(FE) models may improve the current osteoporosis diagnos-
tics and prediction of fracture risk by providing an estimate
for femoral strength. However, the need for a CT scan, as
opposed to the conventional use of dual-energyX-ray absorp-
tiometry (DXA) for osteoporosis diagnostics, is considered
a major obstacle. The 3D shape and bone mineral density
(BMD) distribution of a femur can be reconstructed using
a statistical shape and appearance model (SSAM) and the
DXA image of the femur. Then, the reconstructed shape
and BMD could be used to build FE models to predict
bone strength. Since high accuracy is needed in all steps
of the analysis, this study aimed at evaluating the ability
of a 3D FE model built from one 2D DXA image to pre-
dict the strains and fracture load of human femora. Three
cadaver femora were retrieved, for which experimental mea-
surements from ex vivo mechanical tests were available. FE
models were built using the SSAM-based reconstructions:
using only the SSAM-reconstructed shape, only the SSAM-
reconstructed BMD distribution, and the full SSAM-based
reconstruction (including both shape and BMD distribution).
When compared with experimental data, the SSAM-based
models predicted accurately principal strains (coefficient
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of determination >0.83, normalized root-mean-square error
<16%) and femoral strength (standard error of the estimate
1215N). These results were only slightly inferior to those
obtained with CT-based FE models, but with the consider-
able advantage of the models being built from DXA images.
In summary, the results support the feasibility of SSAM-
based models as a practical tool to introduce FE-based bone
strength estimation in the current fracture risk diagnostics.

Keywords Statistical shape model · Statistical appearance
model · Finite element · Proximal femur · Validation

1 Introduction

Fragility fractures represent a major concern in the modern
Western society, with both fracture incidence and associ-
ated economic burden continuously increasing (Burge et al.
2007). The majority of low-energy trauma fractures can be
ascribed to bone weakness due to osteoporosis (Johnell and
Kanis 2006).While pharmacological treatments can increase
the strength of osteoporotic bone and reduce the risk of
fracture (Kanis et al. 2013), the identification of the sub-
jects at high risk of fracture remains an issue. The methods
currently adopted in the clinical practice are based on the
measurement of bone mineral density (BMD) using dual-
energy X-ray absorptiometry (DXA), often complemented
by epidemiological and statistical parameters (Kanis et al.
2005; Cummings et al. 2006). These methods are limited in
their ability to accurately diagnose osteoporosis [30% false
negatives (Järvinen et al. 2005, 2014)],with the epidemiolog-
ical and statistical tools often not being general enough, due
to their ethnic specificity (Watts et al. 2009; Lekamwasam
2010; Silverman and Calderon 2010).
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Subject-specific finite element (FE) models have the
potential to improve the accuracy of fracture risk predic-
tions by providing an accurate estimate for bone strength,
together with a comprehensive and local characterization
of the mechanical response of bone under different load-
ing conditions. Although FE models can predict femoral
strength more closely, as compared to BMD based on DXA
images (Cody et al. 1999), they are still not used in the clin-
ics to predict fracture risk. One reason for this is that the
majority of the proposed FE modelling techniques is based
on computed tomography (CT) datasets. When compared
with DXA, CT has higher operational cost and provides a
higher radiation dose to the patients (Kanis 2002; Engelke
et al. 2015). Subject-specific FE models from DXA images
would overcome this issue, enabling also the possibility of
conducting clinical trials in parallel with the current diagnos-
tics. When building FE models from DXA images, the two
main approaches are: (1) construction of two-dimensional FE
models using the planar image provided by the DXA instru-
ment (Op Den Buijs and Dragomir-Daescu 2010; MacNeil
et al. 2012; Sarkalkan et al. 2014a; Yang et al. 2014; Dall’Ara
et al. 2016), and (2) use of statistical tools (most often based
on principal component analysis, PCA) to reconstruct the
3D shape and BMD distribution from a planar DXA image
and use the reconstructed information to perform a 3D FE
analysis (Langton et al. 2009; Whitmarsh et al. 2011; Väänä-
nen et al. 2015). Two-dimensional FEmodels based on DXA
may accurately predict femoral strength (Yang et al. 2014;
Dall’Ara et al. 2016), but cannot overcome the limitations
inherent to their two-dimensional nature, such as the inabil-
ity to test the bone in out-of-plane direction or to localize the
point where the fracture originates. The 3D shape and BMD
reconstruction from a 2D image using statistical tools has
the potential to overcome these issues. The accuracy in the
reconstruction of both shape and BMD has reached remark-
able levels [average shape reconstruction error 1.4mm,mean
absolute difference of the reconstructed volumetric BMD
185mg/cm3 (Väänänen et al. 2015)].

However, to the authors’ best knowledge, no 3D FE mod-
els obtained from statistical reconstruction of a DXA image
have been confirmed to accurately predict the mechanical
behaviour of human femora, and ultimately, the bone strength
(Sarkalkan et al. 2014b; Castro-Mateos et al. 2014). Bryan
et al. (2009) used a statistical model to generate 1000 real-
istic femur anatomies and estimate their fracture risk in a
configuration resembling a postero-lateral fall. However, the
generated models used material properties from CT data,
and no direct validation could be provided, since the mod-
els were randomly generated. Whitmarsh et al. (2012) used
a statistical reconstruction of shape and BMD from DXA
images to discriminate hip fracture cases. The contribution
of the reconstructed models was restricted to the extraction
of three-dimensional anatomical shape and density parame-

ters. These were used as additional risk factors to improve
the accuracy of the discrimination. Thus, no actual FE analy-
ses of the mechanical behaviour of the reconstructed models
were performed. Grassi et al. (2014a) evaluated the ability
of PCA-based finite element models to predict the mechani-
cal behaviour of 8 human femora. A high correlation was
found between the strains predicted by the reconstructed
PCA-based models and those measured during analogous
experimental tests on the same specimens. However, the
PCA-based models were reconstructed against 3D CT data,
and no validation of femoral strengthwas provided. Thevenot
et al. (2014) proposed a specific method to construct 3D FE
models of proximal femora from a single radiograph, using
a shape template and a set of geometrical parameters that
were measured from the radiograph. The models were used
to predict femoral strength on 21 samples in a condition
resembling a fall to the side, showing a promising accu-
racy (coefficient of determination=0.64, standard error of
the estimate=543N). Thematerial properties for themodels
were estimated based on the CT-based values of the training
set bones and a homogeneity index derived from the radio-
graph. Therefore, the subject-specific BMD distribution was
not taken into account, which can be a limitation when sam-
ples with BMD significantly different from that of the seven
bones of the training set are examined. Recently, Bonaretti
et al. (2014) created statistical models of shape and appear-
ance using both an image-based approach (i.e. the result of
the reconstruction is a volumetric image) and a mesh-based
approach (i.e. a FE-ready mesh is reconstructed and used
to store the shape and appearance information in the statis-
tical model), and their strain predictions were compared to
those of FE models built from segmentation of the original
CT images. Both image-based and mesh-based approaches
predicted similar principal strains when compared to the CT-
based models, but with the mesh-based approach being more
compact (i.e. requiring less modes of variation to provide
an accurate reconstruction) and significantly less computa-
tionally intensive. The study concluded that image-based
approaches were preferred, since some severely distorted
elements were found when using the mesh-based approach.
However, element distortion canbemitigatedbyusing amesh
relaxation algorithm and by implementing a modified cost
function for bone reconstruction (Väänänen et al. 2015).

Recently, our group presented a mesh-based statistical
shape and appearance model (SSAM) to reconstruct shape
and BMD of a proximal femur from a single DXA image
(Väänänen et al. 2015), as well as a subject-specific FE mod-
elling procedure from CT scans to predict strain and strength
of human proximal femora (Grassi et al. 2016). The latter
study was validated against a set of full-field experimen-
tal measurements collected using digital image correlation
(DIC) (Grassi et al. 2014b). In the present study, subse-
quently, we aimed at evaluating the ability of a SSAM-based
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Table 1 Patient information (sex, age at death, height, weight, BMD at femoral neck, and leg side) for the three samples used in this study

Specimen ID Sex (M/F) Age (years) Height (cm) Weight (kg) Neck BMD (g/cm3) Side (L/R)

#1 M 22 186 106 1.16 L

#2 M 58 183 85 0.6 R

#3 M 58 183 112 0.89 L

FEmodel to accurately predict strains and strength in human
femora. The results were validated against experimental DIC
data and compared to the performance of analogous CT-
based FE model.

2 Material and methods

2.1 Materials

Three male cadaver human femora, harvested fresh at
Kuopio University Hospital, Finland (ethical permission
5783/2004/044/07), were used for this study. Height, weight,
sex, BMD at the femoral neck, and age at death are presented
in Table 1. None of the donors had any reported muscu-
loskeletal disease. The specimenswere scanned bothwithCT
(SomatomDefinitionAS64, SiemensAG, 0.4×0.4×0.6mm
voxel size) and with two DXA devices (Lunar Prodigy and
Lunar iDXA, GE Healthcare, pixel size 1.05× 0.60mm and
0.25× 0.3mm, respectively). For all specimens, experimen-
tal strain measurements were obtained frommechanical tests
performed up to fracture in a configuration resembling sin-
gle leg stance. The force versus displacement curves were
acquired from the loading device, while the full-field strain
distribution was acquired using DIC (Grassi et al. 2014b).

2.2 Creation of the models

The SSAM has been thoroughly described earlier (Väänänen
et al. 2015) and is only briefly summarized here. A training
set of 34 proximal femur anatomies was retrieved (Finnish
population, 13 right and 21 left, 30 men and 4 women, age
50± 16years old, age range 18–82). The samples were seg-
mented, and their average shape was calculated. A template
mesh of the average shape was generated (1.6million tetra-
hedral elements, Hypermesh 11.0, Altair Engineering, Inc.)
and morphed over the shape of each bone in the training set.
A MATLAB (The Mathworks, Inc.) re-implementation of
Bonemat_V2 (Taddei et al. 2007; Venäläinen et al. 2016) was
used to map bone density (as obtained via calibration of the
CT images using a dipotassium phosphate phantom, model
3CT, Mindways, Inc.) over each morphed mesh based on
the underlying calibrated CT values. The SSAMwas created
by performing the singular value decomposition of a matrix
containing the nodal coordinates of each morphed tetrahe-

dral mesh and the density values for each element, arranged
columnwise. The reconstruction of a femur from its 2D image
was performed by using a genetic algorithm to register the
SSAM to the 2D reference image. A digital reconstructed
radiography (DRR) was generated at each iteration round by
projecting the SSAM instance onto the coronal plane. The
cost function of the genetic algorithm was given by the sum
of three components: the sum of absolute difference of the
areal BMD between DRR and the 2D reference image, the
mesh quality of the instance (Liu and Joe 1994), and the
anatomical positioning. For each of the present samples, the
reconstruction was performed using three different 2D ref-
erence images, namely 2D projection of the CT image along
the antero-posterior plane (hereafter referred to as CTproj,
created to represent the optimum in terms of signal-to-noise
ratio), the DXA image obtained with Lunar Prodigy (lower
resolution, hereafter referred to as Prodigy), and the DXA
image obtained with Lunar iDXA (higher resolution, here-
after referred to as iDXA).

The CT-based FE modelling procedure has also been pre-
viously described in detail (Grassi et al. 2016). Briefly, the
femur geometry was retrieved through semi-automatic seg-
mentation of the CT images. The geometry was converted
to non-uniform rational B-splines and meshed (∼100k ele-
ments,Hypermeshv13.0). Inhomogeneous isotropicYoung’s
moduli were assigned using Bonemat_V3 (Taddei et al.
2007): first, the calibrated Hounsfield units were converted
to equivalent radiological density of dipotassium phosphate
using a calibration phantom (model 3CT, Mindways, Inc.).
Next, a set of empirical relationships linked the equivalent
radiological density to themodulus of elasticity (Schileo et al.
2008), and the modulus for each finite element was obtained
by numerical integration over the element volume.

The CT-based FE modelling procedure was combined
with the SSAM and the reconstruction algorithm to build
subject-specific FE models from a single DXA image. For
each sample, three different reference images were used for
reconstruction (CTproj, iDXA, and Prodigy). Three differ-
ent models were built for each of the three samples (#1, #2,
and #3), and for each of the three reference images used for
reconstruction:

1. SSAM–BMD models: these models were obtained using
the CT-based geometry (considered as the true bone
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shape) and the bone density as estimated from the SSAM-
based reconstruction of the DXA image.

2. SSAM-shape models: obtained using the estimated bone
geometry as reconstructed by registering the SSAM on
the DXA image and the bone density from calibrated CT
values (considered as the true bone density distribution).

3. SSAM-shape and BMD models: these models were
obtained using both the estimated geometry and the esti-
mated bone density as reconstructed by registering the
SSAM on the DXA image.

The rationale behind these three models was to evaluate the
individual effects of each step in the shape (SSAM-shape
models) and BMD reconstruction (SSAM–BMD models)
on the final accuracy obtained by models implement-
ing both shape and BMD as reconstructed by registering
the SSAM on the DXA image (SSAM-shape and BMD
models).

The SSAM–BMD models were created as follows: the CT-
based FE meshes used in Grassi et al. (2016) were retrieved,
and the bone density distribution was mapped based on the
reconstructed BMD obtained by registration of the SSAMon
the DXA image. Therefore, the model obtained by register-
ing the SSAM on the DXA image (hereafter referred to as
SSAM-based mesh) was first registered and then morphed to
the CT-based geometry. The BMD in the SSAM-based mesh
was presented as a three-dimensional step function accord-
ing to the element borders. Then, the BMD was captured
into the target CT-based mesh by integrating the function
over each element in the target mesh. As a result, the density
at each element was given by the average of the densities
in the SSAM-based mesh, weighted by the volume of inter-
section between the element itself with each element of the
SSAM-based mesh. Young’s moduli were retrieved from
density values using the same density–elasticity relationship
as adopted for CT-based FE models. After the mapping, a
two-step compensation process was applied, where: (1) the
modulus of elasticity of the surface elements was derived as
the maximum between the mapped value and the moduli of
the neighbouring elements that were not surface elements as
well, and (2) the allowed maximummodulus of elasticity for
themodel was set to 22GPa (Bayraktar et al. 2004), while the
minimum modulus of elasticity for the surface elements was
set to 5 GPa [assuming very thin cortex and consequently
a Young’s modulus corresponding to that of the underlying
trabecular bone (Rho et al. 1993)]. The whole registration,
warping, and density mapping procedure were implemented
in MATLAB.

The SSAM-shape models were created by taking the
geometry of the SSAM-based mesh. The geometry was
meshed using Hypermesh (v14.0, Altair, Inc.), using the
same parameters adopted in Grassi et al. (2016) (element
size 1.5mm on the femoral neck, 2mm elsewhere, ∼100k

Fig. 1 Schematic of the generation of the FE models implementing
the SSAM-based shape (SSAM-shape and SSAM-shape and BMD mod-
els): the model produced by the SSAM-based reconstruction (depicted
in blue, left side) presents a shorter shaft than the actual sample, as
reconstructed by segmentation of the its CT scan (CT-based model
depicted in green, left side). In order to test the SSAM-shape-based
models while keeping the exact same boundary conditions as in the
experiments (Grassi et al. 2014a, b) and in the CT-based FE models
(Grassi et al. 2016), the most distal part of the CT-based FE model was
added to the SSAM-based FE model and connected to it using tie con-
straints (Abaqus v2016, Dassault Systèmes). The distal cut region of
the SSAM-based FE model (yellow points) was thus rigidly connected
to the cutting region of the CT-based FE model (red points)

tetrahedral elements). Themeshwas then registered to theCT
reference system, and the bone density values were assigned
based on the underlying CT values using Bonemat_V3 (Tad-
dei et al. 2007). The geometry of the SSAM-based mesh
included a smaller portion of the bone than the femoral
segment imaged with CT. In order to create SSAM-shape
models with the same length as that of the CT-based models,
the missing distal part of the shaft and the epoxy pot from
the CT-based models were connected to the model using tie
connections in Abaqus (v2016, Dassault Systèmes). These
procedures were implemented in MATLAB. An example of
the model is shown in Fig. 1.

The SSAM-shape andBMDmodelswere created by taking
the shape of the reconstructed SSAM-based models, analo-
gously to what described for the SSAM-shape models, as
well as including the bone density from the reconstructed
SSAM-based models, using the procedure described for the
SSAM–BMD models.
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2.3 Performance comparison

In order to evaluate the performance of each of the models
created, identical boundary conditions to those in the exper-
iments (Grassi et al. 2014b) and in the CT-based FE models
(Grassi et al. 2016) were applied. The ability of the models to
predict the mechanical behaviour of bone was then evaluated
both in terms of strain prediction accuracy and of ability to
predict femoral strength.

To assess the strain prediction accuracy, a force equal to
four times the body weight (BW) of the subject was applied
onto the femoral head, equally distributed among the 10most
superior nodes on the surface. The principal strain patterns
were then obtained and compared to principal strains mea-
sured experimentally with DIC. To do this, the DIC cloud
was registered over the FE model using an iterative clos-
est point algorithm. When the model had its shape retrieved
from SSAM reconstruction (SSAM-shape and SSAM-shape
& BMD models), a point-to-surface projection of the DIC
points over the FE model was performed. For each surface
element of the FE models, the smallest sphere circumscrib-
ing it was calculated. All DIC data within that sphere were
averaged, and the obtained experimental valuewas compared
to the FE element strain. A robust regression analysis with
bi-square weighting function of the major and minor princi-
pal strain magnitudes was finally performed. The coefficient
of determination, slope, intercept, normalized root- mean-
square error (NRMSE) and maximum error were reported
for each robust regression. The same accuracy parameters
obtained earlier by the CT-based FE models (Grassi et al.
2016) are also reported to allow for a comparison between
the proposed SSAM-based models and the state of the art.

The error in the shape reconstruction was also assessed.
The distance between the nodes of the SSAM-shape models
and the surface of the CT-based models was calculated. In
addition, the volumetric difference between the SSAM-shape
and CT-based models was calculated, limited to the femoral
neck region.

A robust regression analysis of the experimental versus
predicted principal strains was also performed considering
only the femoral neck region, for all models and reference
images, and the accuracy parameters are compared to those
obtained by CT-based FE models in the same anatomical
region (data retrieved and processed fromGrassi et al. 2016).

To validate femoral strength prediction, a rate-dependent
materialmodel, with different strain limit values for yield and
failure, was used (Grassi et al. 2016). Thematerial model and
failure criterion are depicted in Fig. 2. The FE analyses were
conducted in displacement control with consecutive 0.05mm
increments. The sum of the reaction forces at the increment
where the first element of the model failed was calculated
to indicate the predicted femoral strength. The simulation
time was adjusted to provide a displacement rate of 15mm/s,

Fig. 2 Diagram showing the material model implemented to predict
femoral strength, as proposed first in Grassi et al. (2016). Each element
is assigned a modulus of elasticity which applies for the reference strain
rate [5000μ ε/s, consistently with the strain rate used to experimentally
obtain the density–elasticity relationships (Morgan et al. 2003) and yield
limit values (Bayraktar et al. 2004) used in this model]. The strain rate
was then constantly updated for each element during the simulation and
its modulus of elasticity according to relationship for E(ε̇) shown in
figure. Yield and failure were defined by separate thresholds for tension
and compression. When an element reached the yield state, its modulus
of elasticity was reduced to 0.55 ∗ E(ε̇), and the simulation proceeded.
The simulation was stopped when the first surface element reached the
failed state, and the applied force at that stage taken as the predicted
femoral strength

identical to the value used in the experimental mechanical
tests. The predicted and experimental femoral strength data
were compared in terms of relative error and standard error
of the estimate (SEE). Again, the accuracy of the strength
prediction achieved by CT-based FE models (Grassi et al.
2016) was presented to enable immediate comparison.

3 Results

The results of the robust regression analyses for the princi-
pal strains predicted at 4 BW are reported in Fig. 3 for the
three bones pooled of the SSAM–BMD, SSAM-shape, and
SSAM-shape and BMD models. The coefficient of determi-
nation (R2)was always greater than 0.83,while the slopewas
within ±10% from unity for all but two cases (SSAM-shape
models from Prodigy images, and SSAM-shape and BMD
models from iDXA images). The coefficient of determination
was consistently higher for the models using the CT projec-
tion for the reconstruction, followed by those using Prodigy
images.Themodels basedon theuseof iDXAimages showed
the lowest values. For comparison, the analogous robust
regression analysis for the CT-based models (Grassi et al.
2016) when the data on three bones were pooled provided
an R2 of 0.94, with a slope of 0.96 (intercept = 133μ ε),
NRMSE = 9%, with a maximum estimation error of 65%.
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Fig. 3 Prediction accuracy for themajor andminor principal strains for
SSAM–BMD (first column), SSAM-shape (second column), and SSAM-
shape and BMD (third column) models of the three bones pooled

together. From top to bottom, the accuracy results are plotted for the
models using CT projection, iDXA, and Prodigy images for the SSAM-
based reconstructions

The individual validation of the single bones demonstrated
a coefficient of determination greater than 0.79 for all cases
and a NRMSE always below 20%, as shown in Table 2 for
the SSAM–BMD, SSAM-shape, and SSAM-shape & BMD
models. The slope was generally close to unity, with a few
exceptions: the slope was underestimated by 14–26% for the
SSAM-shape and BMD models using iDXA images for the
reconstruction. On the other hand, the slope of SSAM-shape

models for bone #3 was overestimated by 22% and 23%
when using iDXA and Prodigy images for reconstruction,
respectively. The previous results of the analogous individual
validations for theCT-based FEmodels inGrassi et al. (2016)
are also reported in Table 2.

The shape reconstructions performed over CTproj evi-
denced a higher accuracy in boundary recovery than those
based on iDXA and Prodigy images (Fig. 4). Higher recon-
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Table 2 Prediction accuracy for
the major and minor principal
strains for SSAM–BMD models
of the three bones taken
individually

Bone #1 Bone #2 Bone #3

CTproj iDXA Prodigy CTproj iDXA Prodigy CTproj iDXA Prodigy

SSAM–BMD

R2 0.9 0.9 0.9 0.84 0.83 0.83 0.92 0.89 0.89

Slope 1 0.91 0.92 1.03 0.99 1.08 1.03 0.85 0.97

Intercept (με) 225 199 200 257 263 283 142 84 107

NRMSE 13% 11% 11% 19% 18% 20% 12% 12% 12%

Max error% 64% 69% 70% 89% 89% 113% 63% 58% 80%

SSAM-shape

R2 0.89 0.82 0.82 0.89 0.88 0.88 0.91 0.79 0.83

Slope 0.88 1 1.04 0.98 1.03 1.11 1.07 1.22 1.23

Intercept (με) 201 309 332 102 167 158 61 127 141

NRMSE 12% 18% 19% 13% 15% 18% 10% 13% 15%

Max error% 73% 188% 87% 125% 136% 108% 82% 134% 176%

SSAM-shape and BMD

R2 0.88 0.84 0.86 0.94 0.89 0.9 0.92 0.87 0.88

Slope 0.81 0.76 0.88 0.9 0.74 0.86 0.98 0.86 0.99

Intercept (με) 197 217 252 109 141 181 68 3 17

NRMSE 11% 14% 15% 10% 11% 13% 9% 8% 12%

Max error% 34% 37% 43% 51% 70% 61% 74% 72% 91%

CT-based (Grassi et al. 2016)

R2 0.92 0.94 0.95

Slope 0.92 0.97 1.01

Intercept (με) 144 174 79

NRMSE 10% 11% 11%

Max error% 46% 59% 83%

For each bone, the accuracy obtained using the three different 2D reference images (CT projection, iDXA,
and Prodigy) for the SSAM-based reconstruction is reported. The accuracy parameters reported by Grassi
et al. (2016) for the CT-based models were also reported in the last row to allow for an easy comparison

Fig. 4 Error in the shape reconstruction for the three different femora
(from left to right, bone #1, #2, and #3) and the different types of images
(from top to bottom, CT projection, iDXA, and Prodigy) used for the
SSAM-based reconstruction

Table 3 Relative change between the volume of the femoral neck of
the SSAM-shape models and the CT-based models (here considered as
the true value), for the three different types of 2D reference image (CT
projection, iDXA, and Prodigy)

Bone #1 (%) Bone #2 (%) Bone #3 (%)

CTproj 9 10 9

iDXA 19 13 −6

Prodigy 5 15 0.3

Positive values indicate that the SSAM-reconstructed shape is bigger

struction errors were generally localized in regions with neg-
ligible contribution to the mechanical behaviour of femora,
such as the tip of the greater trochanter. The volumetric differ-
ence at the femoral neck, calculated between theSSAM-shape
and CT-based models (Table 3), highlighted the reconstruc-
tion error in a region with crucial mechanical contribution
under the single leg stance configuration.
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Table 4 Prediction accuracy for the major and minor principal strains in the femoral neck region only for SSAM–BMD models, for the three bones
pooled and for each individual bone

3 bones pooled Bone #1 Bone #2 Bone #3

CTproj iDXA Prodigy CTproj iDXA Prodigy CTproj iDXA Prodigy CTproj iDXA Prodigy

SSAM–BMD

R2 0.81 0.77 0.76 0.83 0.83 0.83 0.76 0.73 0.74 0.88 0.83 0.81

Slope 0.84 0.76 0.83 0.90 0.87 0.84 0.77 0.77 0.91 0.86 0.69 0.80

Intercept (με) 103 80 94 245 249 235 −39 −42 −56 37 −19 −11

NRMSE 10% 11% 9% 17% 16% 15% 22% 25% 29% 14% 14% 17%

Max error% 67% 68% 71% 72% 74% 77% 98% 95% 115% 70% 66% 88%

SSAM-shape

R2 0.86 0.82 0.84 0.90 0.82 0.83 0.87 0.89 0.90 0.87 0.77 0.81

Slope 0.96 1.16 1.16 0.88 0.98 0.97 1.08 1.15 1.16 0.97 1.37 1.34

Intercept (με) 97 268 261 197 353 366 −41 82 78 44 410 337

NRMSE 8% 8% 8% 12% 20% 18% 22% 18% 18% 12% 17% 19%

Max error% 74% 70% 74% 46% 64% 90% 125% 128% 88% 73% 128% 166%

SSAM-shape and BMD

R2 0.89 0.85 0.86 0.88 0.83 0.83 0.93 0.87 0.89 0.88 0.84 0.86

Slope 0.89 0.78 0.91 0.79 0.71 0.81 0.95 0.75 0.88 0.95 0.93 1.08

Intercept (με) 163 110 154 269 245 291 27 27 67 60 51 84

NRMSE 10% 12% 12% 12% 14% 16% 13% 14% 16% 11% 10% 14%

Max error% 51% 65% 66% 41% 35% 39% 45% 66% 57% 71% 74% 91%

CT-based (Grassi et al. 2016)

R2 0.91 0.89 0.93 0.93

Slope 0.92 0.88 0.97 0.91

Intercept (με) 124 182 23 100

NRMSE 9% 13% 15% 11%

Max error% 54% 40% 59% 49%

The accuracy obtained using the three different 2D reference images (CT projection, iDXA, and Prodigy) for the SSAM-based reconstruction is
reported. The accuracy parameters reported by the CT-based FE models presented in Grassi et al. (2016) for the femoral neck region only were also
reported in the last row to allow for a direct comparison

The results of the robust regression analyses performed
considering only the femoral neck region are reported in
Table 4 for the three bones pooled as well as for the individ-
ual bones. The coefficient of determination for the individual
validations for the neck region was always greater than 0.73,
with a NRMSE below 29%, with the SSAM-shape and BMD
models providing R2 > 0.85 and NRMSE <12% for the
three bones pooled.

Due to a technical problem during the mechanical test, the
femoral strength could not be validated for bone #3 (please
see Grassi et al. 2016). The SEE for the SSAM-shape and
BMD models (pooling the models from the three 2D refer-
ence images) was 1215N (Table 5). Typically, more accurate
strength estimations were obtained when using CTproj data
as the 2D reference image (SEE=1689N, against SEE
equal to 1974 and 1938N for iDXA and Prodigy data,
respectively).

4 Discussion

This study posed the main question of how accurately a 3D
FE model reconstructed from a single DXA image and a
SSAM could predict tissue strains and strength of proximal
femur. The gold standard method, CT-based 3D FE model,
was applied as a reference. To properly answer this ques-
tion, it is necessary to understand the relative contribution of
the different factors (bone shape, BMD distribution, local
reconstruction errors, etc.) to the prediction accuracy. To
this aim, three different models were built, implementing
the reconstructed bone shape only (SSAM-shapemodels), the
reconstructed BMD distribution only (SSAM–BMD models),
and the combination of these two (SSAM-shape and BMD
models).

The SSAM-shape and BMD models predicted strains with
high accuracy (R2 > 0.87, NRMSE < 12% for the three
bones pooled, Fig. 3, R2 > 0.84 and NRMSE < 15% for the
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individual bone validations, Table 2), when validated against
thousands of experimental strainmeasurements per bone col-
lected with DIC. CT-based FE models obtained a coefficient
of determination of 0.94, with a NRMSE of 9% for the same
set of samples and experimental data (Grassi et al. 2016).
Our present results on accuracy were only slightly lower.
Nevertheless, SSAM-shape and BMD models reconstructed
using iDXA significantly underestimated the strain levels
(slope of the robust linear regression=0.78). The inaccu-
racy was mostly related to bones #1 and #2 (SSAM-shape
and BMD models from iDXA, Table 2). By implement-
ing only the shape and only the BMD from the SSAM
reconstruction, we can explain how the strain underestima-
tion occurred for these two cases. When implementing only
SSAM–BMD (SSAM–BMD models from iDXA, Table 2) and
SSAM-shape (SSAM-shape models from iDXA, Table 2),
both samples exhibited a slope close to unity. However, due
to the shape reconstruction error, the volume in the femoral
neck region was overestimated by 13–19% (iDXA values,
Fig. 4; Table 3). Therefore, a correct reconstruction of the
material properties was associated with a femoral neck that
was 13–19% bigger in volume than the CT-based one, which
led to a stiffer femoral neck and ultimately underestimated
the principal strains for the iDXA cases. This reveals that
the accuracy in the shape reconstruction from SSAMmodels
should be evaluated not only in terms of the absolute point-to-
surface distance, but also in terms of the capacity to preserve
the actual volumes of the different anatomical compartments
(femoral neck first, but also femoral head, and shaft).

The accuracy of the strain prediction decreased slightly
when only the femoral neck region was considered (R2 =
0.85−0.89 for the SSAM-shape andBMDmodels of the three
bones pooled, Table 4). This result could be expected, since
femoral neck is a region where FE models typically exhibit
a lower accuracy in predicting strains (Helgason et al. 2016).
A decrease in strain prediction accuracy in the femoral neck
region was observed for the CT-based models as well (R2 =
0.91 for the three bones pooled, Table 4). When looking at
the individual validations in the femoral neck region, the
accuracy of the strain prediction for the SSAM-basedmodels
seems again to follow the accuracy of the point-to-surface
reconstruction error (Fig. 4) and of the volumetric difference
(Table 3). This trend further stresses the importance of an
accurate reconstruction of both shape and BMD distribution
in regions particularly prone to fracture, such as the femoral
neck.

The SSAM-shape and BMD models predicted femoral
strength with a SEE of 1215N and a maximum absolute rel-
ative error of 24% (Table 5). The CT-based models predicted
femoral strength with a SEE of 155N and a maximum abso-
lute relative error of 1.5% for the same set of data (Grassi
et al. 2016). The accuracy data on femoral strength (Table 5)
were scattered. Typically, femoral strength was predicted
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with high accuracy, but also some outliers with lower accu-
racy were found in the data. At least two main trends were
observed, namely (1) the models built using CTproj as 2D
reference image were more accurate than those built with
iDXAand Prodigy. This was expected, since CTproj data had
a higher signal-to-noise ratio than DXA images and repre-
sented an ideal reference image (although of no practical use,
since a CT scan is needed). The comparison of the accuracy
between CTproj and the two DXA images thus provides an
estimation of the effect of image noise on the accuracy of the
reconstruction. Interestingly, the different spatial resolution
between iDXA (pixel size 0.25×0.3mm) and Prodigy (pixel
size 1.05 × 0.6mm) was not found to affect the accuracy
of the SSAM-based models. (2) The SSAM–BMD models
had a higher SEE than the SSAM-shape models. This evi-
dence suggested that the error in the reconstruction of BMD,
and consequently of the material properties, influenced the
outcomemore than the error in the shape reconstruction.Con-
sistent to this finding, Bonaretti et al. (2014) found that the
mesh-based SSAM reconstructions (like the one used in this
study) are less accurate than the image-based SSAM recon-
structions in estimating the original bone density distribution.
This was also consequent to the fact that a strain-based crite-
rion, thus strongly dependent on the correctly estimated value
for modulus of elasticity, was adopted for the calculation of
femoral strength.

This is, to our best knowledge, the first study evaluating
the ability of a FE model built from a statistical-based recon-
struction to predict strains and femoral strength of human
proximal femora anatomies against direct ex vivo measure-
ments. A validation in terms of strain prediction accuracy
was already proposed (Grassi et al. 2014a). However, the
femoral strength was not evaluated and, more importantly,
the PCA-based reconstruction was performed over the 3D
CT data (Grassi et al. 2014a). This limited the applicabil-
ity of the study to the reconstruction of synthetic anatomies
aimed at exploring the effects of anatomical variability. In
the present study, the FE models were reconstructed from
two-dimensional reference images, thus making them suit-
able for subject-specific estimation of fracture risk. Earlier,
Thevenot et al. (2014) validated their models in terms of
femoral strength and reported a SEE of 543N, a lower value
than the SEE reported in the present study (SEE=1215N,
Table 5). However, the present samples were tested in a
configuration resembling single leg stance. They were frac-
tured at an average load of 10,620N. Thevenot et al. tested
their samples in an experimental configuration resembling
a fall to the side, with a much lower fracture load [average
3188N, as extrapolated by digitalization of data from Fig-
ure 4 in Thevenot et al. (2014)]. The present higher SEE is
therefore consistent with the fracture load being three times
higher than that found by Thevenot et al. In terms of relative
error, the maximum absolute relative error in the prediction

of femoral strength was 24% in our study, whereas it was
54% in Thevenot et al. [as extrapolated by digitalization of
data from Figure 4 in Thevenot et al. (2014)].

Other studies have also proposed to use PCA-based mod-
els to predict fracture risk (Gregory et al. 2004; Schuler et al.
2010; Whitmarsh et al. 2012). However, those studies used
the reconstructed shape andBMDdistribution either to obtain
three-dimensional anatomical and densitometry measure-
ments that complemented the standard estimation of fracture
risk, or to employ the model parameters as features for the
classification. The present study, instead, used SSAM-based
models to predict femoral strength using a purely mechanis-
tic approach, analogously to how it is donewith gold standard
CT-based FE models.

The present study is limited by its small sample size, with
three proximal human femora tested. However, the accuracy
of the adopted SSAM-based method in reconstructing shape
and BMDwas previously validated using a higher number of
samples (Väänänen et al. 2015). As the present focus was on
the ability of the reconstructed models to predict strain and
femoral strength, only the samples for which full-field strain
data from ex vivo mechanical tests were available (Grassi
et al. 2014b) were used. As another limitation, the adopted
SSAMwas trained on 34 femoral anatomies (Väänänen et al.
2015). Future works should aim at creating the SSAM using
larger training sets, possibly also exploring the definition
of different training sets for different population groups as
defined by gender and ethnicity.

The combination of the current epidemiological-based
estimation of individual fracture risk could be greatly
improved by the addition of a mechanistic prediction of the
load that a bone can bear without fracturing (Viceconti et al.
2015). When aiming to manage effectively the future chal-
lenges related to known increase ofmusculoskeletal diseases,
such as osteoporosis and bone fractures, we are much lim-
itedwith the existingmedical technology. DXA is the current
clinical standard to diagnose osteoporosis andultimately esti-
mate fracture risk. Adoption of CT for this screening is not
realistic in a short-term scenario. Therefore, the current study
aimed to improve the understanding of how useful the 3D FE
models, as reconstructed from a single 2D DXA image, are
to predict femoral strength. Based on the present findings,
SSAM-based FE models provided a highly accurate repre-
sentation of the subject-specific bone mechanics in terms of
bone strains (R2 > 0.87, NRMSE < 12%). However, the
accuracy in the prediction of femoral strength was inferior
to those obtained with the state-of-the-art CT-based mod-
els (SEE=1215N, against SEE=155N for the CT-based
models). The greater error in femoral strength estimation
was mostly due to the presence of a few outliers in the
data (Table 5). The present results highlight the potential
of SSAM-based FE models to become a tool that provides
a mechanistic prediction of fracture risk in a future clinical
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scenario.While an enlargement of both the population of val-
idated specimens and the population of the SSAM training
set is advocated before implementing the proposed SSAM-
based approach in clinical trials, the present results could help
to tailor future development of SSAM-based reconstructions
with the aim to further improve their accuracy towards that
of CT-based models.
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