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A B S T R A C T   

In order to ensure punctual and robust service, it is vital to have a good understanding of the current performance 
of a railway network. Several approaches to doing so exist but lack the ability to compare both service and 
station performance in a single dimension. The study presented here proposes the use of the Rasch analysis 
technique within an operational context to compare the relative dwell time performance of stations and services. 
To do so, we make use of data from commuter trains in Sweden and the UK. The results from the study suggest 
that the method can be used to study dwell times on a line level and can capture the variability in dwell times. 
Assessing the model output also shows that the approach adequately reflects the expected variability in both 
service performance and station difficulty. Comparing the model output to more commonly used indicators for 
dwell time, we find that the Rasch analysis allows us to better identify cases where planners can make adjust
ments to reduce the likelihood of dwell time delays. In addition to this, we highlight that a common assumption 
that more passengers lead to worse dwell times does not hold. Having more in-depth insights into where dwell 
time performance is troublesome can help planners to make more informed decisions which helps towards 
improving overall dwell time performance, reducing delays, and improving the attractiveness of trains as a mode 
of transport.   

Introduction 

With the increasing popularity and frequency of trains comes a 
growing pressure to make optimal use of available capacity. Capacity is 
limited in most railway networks, while there is an ambition to run more 
trains with a higher frequency at the same time. In the Netherlands, for 
example, there is the ambition to run six trains an hour on some busy 
corridors (Ministerie van Infrastructuur en Waterstaat, 2022). High land 
prices and the hefty costs of upgrading the existing infrastructure mean 
that further utilization of existing infrastructure through better opera
tion planning is key. It is vital to implement better and more robust 
timetable planning practices that include realistic and appropriate times 
for all processes that make up a timetable (Hansen, 2010; Harris et al., 
2014; Vieira et al., 2018) to accommodate the higher number of trains 
desired on the existing infrastructure. 

Broadly speaking, we can divide the timetable into two main pro
cesses: the run time of trains between stations and the dwell time of 
trains at stations. The study we present here focuses on the latter, which 

is the dwell time of trains at stations. Dwell time refers to the time 
needed for trains to halt at a station to allow passengers to alight and 
board. Dwell times and dwell time delays are relevant to study as their 
impact on the overall punctuality of railways can be strong. In their 
study on how to monitor punctuality improvements, Palmqvist and 
Kristoffersson (2022) highlight the relationship between the frequency 
of dwell time delays and the overall punctuality of trains. The authors 
state that reducing the frequency of dwell time delays is one way to 
achieve an improvement in the punctuality of railways. Dwell time de
lays also reduce the effective capacity of a railway network, as dwell 
times accumulate to a large portion of journey time (Christoforou et al., 
2020). Large variations in dwell times also reduce the robustness of train 
operations (van den Heuvel, 2016), as trains dwelling longer than 
scheduled can cause knock-on delays by occupying the platform, 
meaning that the following train cannot enter the station (Yamamura 
et al., 2012). This makes dwell time scheduling an important aspect of 
timetables since scheduling too little time can lead to delays, for the 
aforementioned reasons, whereas scheduling too much time will lead to 
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a capacity loss (Goverde, 2005). 
When making improvements in dwell time punctuality, either 

through a new scheduling regime or by making investments in the 
infrastructure, it is vital to have a deep understanding of how dwell 
times perform on a network level. This means that it is necessary to 
understand dwell times for both stations and services. A lack of infor
mation and understanding will hinder the implementation of strategies 
to improve dwell time performance (Pritchard et al., 2021). Having in- 
depth information on how dwell times perform on a network level 
makes it possible to identify whether the problem of actual dwell times 
exceeding scheduled dwell times is isolated to a small set of stations or 
services or if there is a network-wide problem. If the former is the case, 
isolated and targeted interventions will be beneficial, whereas a more 
system-wide approach would be desirable in the latter case. 

In this study, we propose a Rasch analysis-based approach to perform 
an analysis of dwell time performance on a line level, directly comparing 
the relative dwell time performance of stations and services both sepa
rately and in combination with one another. Here we use the term service 
to refer to a unique train running between its origin and destination. For 
instance, we consider two trains operating between the same origin and 
destination, but operating on different days or at different times of the 
day, as two distinct services. For our study, we make use of data 
collected for both Swedish and UK-based commuter trains and apply the 
method to both cases. It is important to emphasize that our study does 
not compare the two networks, but rather utilizes data from both net
works to better understand the applicability of a Rasch analysis-based 
approach for dwell time research. The proposed method can serve as a 
way for planners to perform a network search in order to identify sta
tions and lines that perform poorly and require attention. The raw 
outcome of the Rasch analysis does not show how to improve dwell 
times, but rather how stations and services perform relative to each 
other. We, therefore, also propose how to use the output of the Rasch 
analysis in relation to dwell time evaluation on a line level and how this 
can be used to gain a deeper understanding of dwell time performance 
within a railway network. 

The remainder of this paper is structured as follows: Section 2 pro
vides an overview of how dwell time delays arise and insight into cur
rent dwell time scheduling and analysis techniques. In Section 3, we 
describe the Rasch analysis technique along with the steps we took to 
adapt dwell time data to fit the Rasch analysis technique. Section 4 
provides an overview of our case study. In Section 5, we show the re
sults, both in terms of the applicability of the method as well as how to 
use the output from a Rasch analysis in relation to dwell time evalua
tions. The discussion and conclusion are provided in Section 6 and 
Section 7, respectively. 

Literature review 

Dwell times 

Dwell times refer to the time a train is stationary at a station and are 
measured as the difference between the arrival and departure times of a 
train (Li et al., 2014). Although we often speak of dwell time as a single 
process, it consists of several subprocesses (Buchmueller et al., 2008; 

Goverde, 2005). A schematic overview of the dwell time process is 
shown in Fig. 1. The dwell time process includes both static and dynamic 
time elements (Seriani et al., 2019). The static and dynamic time ele
ments are indicated with the different colours in Fig. 1. The static time 
elements are governed by the technical aspects of the railway system, 
these being the time it takes for the doors to open and close as well as the 
dispatching time. These elements are relatively easy to schedule, as the 
time required to complete these steps can be seen as consistent. The 
dynamic time element of dwell times consists of the time needed to 
complete the boarding and alighting process and the arrival time of a 
train, or to be more precise, the arrival punctuality. The impact of the 
arrival punctuality of a train on the duration of dwell times has been 
highlighted in the past (Coulaud et al., 2023; Kecman and Goverde, 
2015), where dwell times are longer for trains that arrive early. In fact, 
this can be attributed to trains having to wait until their departure time 
when arriving early, thus having an extended dwell time. 

The other dynamic time element, the boarding and alighting time, is 
influenced by the volume and behaviour of passengers during the 
boarding and alighting process. As passenger volumes increase, so does 
the time it takes for the boarding and alighting process to be finished. 
This is; however, not a simple linear relationship (Kuipers and 
Palmqvist, 2022), making it hard to schedule even when passenger 
volumes are known. In addition to the volume of passengers, studies 
found the spread of passengers (Oliveira et al., 2019), the ratio between 
boarding and alighting passengers (Seriani et al., 2019), and the way in 
which passengers behave during the boarding and alighting process to 
affect the time it takes for passengers to alight and board. Passengers are, 
for example, more likely to show antisocial behaviour when boarding a 
train in situations where the platforms become crowded in order to 
secure a seat (Hirsch and Thompson, 2014). This results in passengers 
starting to board before the alighting process is completed. The subse
quent friction between both alighting and boarding flows of passengers 
slows down the process (Harris, 2005), meaning more time is needed for 
its completion. 

Dwell time scheduling 

When scheduling a dwell time, it is important to consider setting an 
achievable dwell time, as small delays in dwell time can affect service 
capacity significantly. Delays in dwell time can result in a bunching 
effect, which is when the following train must wait outside the station 
until the preceding train leaves the platform. This also leads to passenger 
journey time delays (Krause, 2014; Ding, 2016; Wu et al., 2018). 
Although several studies have highlighted how the dwell time process is 
rather dynamic in its nature, current dwell time scheduling practices are 
still mostly based on generalized assumptions and rules of thumb 
(Christoforou et al., 2020; Palmqvist, 2019). Swedish timetable prac
tices commonly set dwell time to approximately one minute at most 
stations and two minutes when a larger volume of passengers is expected 
(Palmqvist, 2019), for example. This static approach to dwell time 
scheduling results in actual dwell times exceeding scheduled dwell times 
on a regular basis (Goverde and Hansen, 2001; Nash et al., 2006). This is 
whilst statistical models to predict the dwell time for scheduling pur
poses exist, of which regression analysis is the most commonly used 

Fig. 1. Schematic overview of the dwell time process, with the colours indicating the static and dynamic time elements making up the total dwelling process.  
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method (Yang et al., 2019). However, the practical application of such 
models is rare (Volovski et al., 2021). 

Quantifying dwell time delays 

In order to improve dwell time scheduling principles is it important 
to quantify the problem of dwell time delays, which is not a straight
forward task. Dwell time delays are relatively small in nature making 
them difficult to quantify using commonly used delay metrics. In Swe
den, for example, 80 % of the delays at stations are less than three mi
nutes (Palmqvist, 2019). This means that dwell time delays rarely 
exceed the national threshold for delays, which is set at five minutes and 
fifty-nine seconds in Sweden, and their actual impact and frequency are 
likely to remain hidden within the normal delay metrics. Several ways 
have been proposed to quantify dwell time delays more accurately. In 
their study on travel-time reliability, van Loon et al. (2011) provide 
several indicators to measure punctuality. The authors mention using 
the probability of a train arriving with a delay of more than three or nine 
minutes, measured at the final station, the average delay minutes, the 
standard deviation of the arrival and departure time, and using the 
difference between the 80th and 50th percentile of the arrival and de
parture time distribution. More specifically related to dwell times, Gysin 
(2018) mentions the use of the mean and standard deviation, and 
Christoforou et al. (2020) state using the ratio between the mean and 
95th percentile of the observed dwell times. Tortainchai (2023) uses a 
risk-based evaluation approach to evaluate the impacts of different 
amounts of dwell time delay. In addition to defining a more accurate 
metric to measure dwell time delays, distribution models have been 
widely used. Such models enable an insight into the variability of the 
different aspects of dwell times. In this case, random processes are 
established by fitting observation data with a theoretical distribution 
model, the fitted model can then be used to perform analyses regarding 
dwell time delays (Lessan et al., 2018; Yuan et al., 2010). It is worth 
noting that most of the proposed metrics assess dwell times from the 
point of view of either individual stations or individual services, whilst it 
is likely that a combined impact of stations and services can influence 
the amount of dwell time delays. 

Analysing dwell time performance within a network 

So far, we have shown how scheduling dwell time is a non-trivial task 
due to the dynamic and stochastic nature of the dwelling process, and 
how dwell time delays are often not captured in commonly used delay 
metrics. In order to improve the scheduling regime of dwell times, it is 
important to take the actual situation into account. Scheduling dwell 
times that accurately reflect the necessary time can help to improve both 
punctuality and the effective use of the available station capacity. Doing 
so requires a deeper understanding with regard to the current situation. 
It is, however, not practical or viable to measure and then schedule 
dwell time for each station and each service individually. It is, therefore, 
of more interest to identify subsets of services or stations that perform in 
a similar pattern. It allows planners to use a similar approach to dwell 
time scheduling across a subset of the stations and services within a 
network. 

Several different approaches to classifying or grouping stations can 
be found in the literature. These range from rather simplistic approaches 
where stations are grouped based on their function in a network to more 
complex clustering techniques. An example of the former is the cate
gorization used in Switzerland, where stations range from so-called 
national traffic hubs which have the highest importance to more 
regional stations (SVI, 2013). Such an approach does, however, not take 
into account the actual situation at each station as the categorization is 
merely based on the function desired and assumed by the operator. A 
different approach was proposed by Havlena et al. (2014). The re
searchers made use of a point-based scoring system to rank stations to 
determine their importance within the Czech railway network. 

A more common approach to group stations found in the literature is 
the use of clustering algorithms. Zemp et al. (2011), for example, per
formed a cluster analysis on data from the Swiss railway network with a 
special focus on both the demand and conditions at the stations. Their 
study identified seven different station classes, differing in use and 
passenger volumes. A similar approach was used by Stoilova and 
Nikolova (2017), who made use of clustering analysis to classify stations 
in Bulgaria based on the area in which the station is located and the 
characteristics of passengers. The area in which a station is located was 
also used by Reusser et al. (2008), who distinguished stations in terms of 
their connectedness with other places, also known as the node, and the 
possible activities around the stations, known as the place. Recently, 
improvements in the collection of passenger flow data through auto
matic passenger counts of fare card data have allowed consideration of 
passenger flow characteristics when analysing railway stations. Zhou 
et al. (2022), for example, clustered and classified metro stations in 
Beijing based on the criticality of the network based on ridership. 
However, these clustering techniques are not suitable for taking into 
account different types of data, for example, passenger demand and 
service performance data. 

To somewhat overcome this issue, some studies have made use of 
Data Envelopment Analysis approaches. Tortainchai et al. (2022), for 
example, studied the relative performance of stations in London based 
on the volume and ratio of boarding and alighting passengers. Another 
example is the study by Khadem Sameni et al. (2016), who determined 
the relative technical efficiency and service effectiveness of stations in 
Great Britain, taking into account the numbers of passenger entries and 
exits. However, while Data Envelopment Analyses and other data fron
tier approaches can evaluate the efficiency of each factor, they cannot 
represent interactions between different factors, which could, in the case 
of analysis of dwell time performance, include both stations and train 
services. Since dwell times vary according to both stations and services, 
both of these factors need to be considered in timetabling. There is thus a 
need for a tool that can consider both station and service performance 
simultaneously. The method proposed in this study is the use of a Rasch 
analysis technique. 

The Rasch analysis technique 

The Rasch analysis technique, initially developed by Rasch (1980), is 
a model which is often used within the domain of item response theory, 
referring to a set of statistical models that allow to model the relation
ship between item responses and a latent variable (Zheng and Rabe- 
Hesketh, 2007). It is a tool to create accurate and reliable measure
ments which can measure individual items, regardless of their charac
teristics, therefore Rasch analysis assumes a latent unidimensionality 
trait (Combrinck, 2020). Another benefit of Rasch over other classical 
measure theories is that it can predict the probability of a particular 
ability level getting a certain difficulty level (Hambleton and Cook, 
1997). The Rasch analysis technique was developed as a psychometric 
technique and has been widely used in medical and health sciences (see 
for example: (Gothwal et al., 2009; Hart and Wright, 2002; Jette et al., 
2002; Lamoureux et al., 2006; Massof and Rubin, 2001; Pearce et al., 
2011; Pesudovs et al., 2003; Prieto et al., 2003; Turano et al., 1999). For 
an example of a more in-depth overview of the use of the Rasch analysis 
technique in the domain of healthcare, we refer to the recent work done 
by Stolt et al. (2022) who identified 88 papers using the Rasch analysis 
technique in nursing research. 

In the field of transport research, the Rasch analysis technique has 
mostly been used to assess the interaction between people and the 
transport system. It is a valuable tool for measuring passenger satisfac
tion in public transport systems. The model provides a probabilistic 
framework to convert ordinal raw-score data into a linear scale by 
converting scores into logits, enhancing the understanding of latent 
traits like satisfaction to be compared on the same scale. Gallo (2011) 
developed a Rasch analysis model to evaluate passenger satisfaction in 
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public transport and utilises Analysis of Means (ANOM) to study satis
faction levels among different passenger groups, which are charac
terised based on age, profession, and sex. Cheng and Chen (2015) 
applied the Rasch analysis technique to assess the accessibility of two 
cities in Taiwan, for example, while Kim et al. (2018) used the Rasch 
analysis technique to analyse urban transit interchanges. Another 
example of the use of the Rasch analysis technique within the field of 
transportation is the study by Chan (2018), who developed an instru
ment to measure the ability of passengers with low vision and limited 
mobility to use public transport. In this research, Rasch analysis con
siders that different variables vary in difficulty and compares the diffi
culty of each item with respect to the passenger’s vision ability. 

In contrast to the common use of the Rasch analysis technique, we 
propose its use in an operational context. Rasch analysis is beneficial in 
developing new scales or modifying existing ones, offering a method to 
handle ratio or quantitative data effectively for precise measurement 
outcomes and providing linear scores, enabling straightforward com
parison of measures (Combrinck, 2020). Here, we apply a Rasch analysis 
technique to dwell time data, focusing on the distribution of dwell time 
delays for different train services at different stations within the same 
line. In this case, train services and stations are regarded as persons and 
items, respectively. We thus look at the success or failure of a train 
service to dwell within its scheduled time at a given station and compare 
this to the difficulty of all train services on the line to dwell within their 
scheduled time at said station. 

Benefits of the Rasch analysis technique 

A benefit of using the Rasch analysis technique over some of the 
methods mentioned in Section 2.4 is that it allows us to study the dwell 
time performance of train services and stations in combination with one 
another on the same linear dimension. In contrast to other approaches 
that assume different items with the same weight or difficulty, a Rasch 
analysis shows the probability that a service with a certain level of 
performance will achieve the scheduled time for specific station diffi
culty levels. This means that it is possible to not only identify prob
lematic train services or stations separately but also jointly examine 
stations at which these services perform poorly, and vice versa. This is 
rather cumbersome when using other clustering methods, as they often 
only allow clustering along a single dimension, which is either the 
relative dwell time performance of the train services or that of the 
railway stations. Being able to assess both service and station perfor
mance in a single dimension is relevant for timetabling since the allo
cation of dwell times needs to consider both train services and stations 
simultaneously. In addition, the Rasch analysis technique evaluates the 
“goodness of fit” between station performance and station difficulty, 
thus serving as a criterion for assessing the structure of responses rather 
than solely providing a statistical description of the responses (Kim 
et al., 2018). 

Furthermore, the Rasch analysis technique can account for any un
equal difficulty across the test items (Boone, 2016), or stations in our 
case, rather than directly comparing raw scores, such as the average 
dwell time at a station. As Brush and Soutar (2022) state, Rasch scores 
should work the same way across different ethnicities, demographics, or 
levels of experience. This is relevant since different station characteris
tics, such as differences in platform layout, can influence dwell times 
differently and comparing raw test scores would not account for this 
effect. 

In addition to this, the Rasch analysis allows us to go beyond a 
measure of central tendency to group stations and services in terms of 
their dwell time performance. Using a measure of central tendency, for 
example, can lead to incorrect assumptions because it does not account 
for the underlying relationship between service performance and station 
difficulty. In addition, outliers can skew the outcome of such analyses, 
leading to wrongful conclusions. While some statistical methods, such as 
an Analysis of Variance (ANOVA) or a Kruskal-Wallis test, can compare 

dwell times across multiple stations and service types, such methods still 
rely on the difference between either the mean or median. 

Contributions of this study 

While the Rasch analysis technique has been widely applied outside 
of the domain of transportation, its use within the domain of trans
portation is somewhat limited. Furthermore, most of these studies 
applied the Rasch analysis technique to study the interaction between 
people and the transport system. So far, the Rasch analysis technique 
has, to the best of our knowledge, not been used within an operational 
context. The contribution of this paper to knowledge is as follows:  

1) Showing the applicability of the Rasch analysis technique within an 
operational context with a specific focus on dwell time evaluation for 
commuter trains. 

2) Highlight how the output of a Rasch analysis can be used to inves
tigate the dwell time performance of stations and services on a line 
level. 

Data availability 

Case study description 

To study the applicability of the Rasch analysis technique for dwell 
time analyses we made use of a case study consisting of data from both 
Sweden and the UK. It should be noted that the Rasch analysis is applied 
to two datasets with different systems to test the applicability of the 
Rasch analysis technique for dwell time data. The analysis thus does not 
provide a comparison between both cases. A direct comparison between 
both systems based on the output from the Rasch analysis is not possible 
since the Rasch scores show the relative score within each system and 
not across both systems. 

For the Swedish dataset, we consider the service between Helsing
borg Central Station and Trelleborg Central Station in the southern re
gion of Scania during the morning peaks on weekdays. The data is taken 
from the 1st of January to the 31st of December 2019. The data origi
nates from the onboard system for the commuter trains on this line, 
recording the dwell time in a magnitude of seconds. Dwell times are 
scheduled to be 60 s at most stations on this line with the exception of 
two larger stations, these being Lund and Malmö central station, where 
dwell times are set at 120 s. The service runs at an hourly interval 
through the morning peak, with the exception of Monday and Friday 
during which additional train services are operated. The data included 
information on 941 train services. 

For the UK dataset, we consider the service from Shenfield to London 
Liverpool Street of London’s Elizabeth line. We also make use of the 
dwell times observed during the morning peak on weekdays. The data is 
taken from 13th May 2019 to 20th November 2019. The data included 
897 train services passing through 12 stations. Most stations in the UK 
dataset have a scheduled dwell time of 30 s, with two major stations 
having a scheduled dwell time of 60 s, these being Stratford and Ilford. 

Overview of the data 

The variable of interest for the study presented here is the dwell time 
deviation, i.e., the difference between the scheduled and actual dwell 
time. Table 1 shows some descriptive statistics for the dwell time de
viations for both the Swedish and UK data. In addition to this, a fre
quency distribution of the dwell time delays for the Swedish (left side) 
and UK data (right side) is shown in Fig. 2. In the Swedish case, we can 
observe that stations with longer scheduled dwell times are found to 
have shorter dwell time deviations on average but with a larger standard 
deviation. In the UK, this trend is reversed, where stations with short 
scheduled dwell times have shorter delays on average, with a smaller 
standard deviation. Looking at Fig. 2, we can observe that dwell time 
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delays in Sweden are relatively small, which is in line with the mean 
dwell time deviation shown in Table 2. Delays of more than 90 s (i.e., a 
minute and a half) are not common here. In the case of the UK, we can 
observe that relatively large dwell time delays are more common, 
especially for stations with a scheduled dwell time of 60 s, where the 
most common delay is found to be around 60 s (i.e., one minute). 

Method 

Rasch analysis technique 

In the Rasch model, shown in Eq. (1), respondents are referred to as 
persons, and the tasks they undertake are referred to as items. The model 
is used to calculate interval estimates that represent person locations (i. 
e., the ability of a person represented by θn) and item locations (i.e., the 
general item difficulty to perform tasks represented by δi) on a linear 
scale or dimension. In the simplest form of the Rasch model, the 
response to an item is the dependent variable, and the ability of a person 
and the difficulty of a test item are the independent variables (McCamey, 
2014). The relationships between observed responses and underlying 
latent traits are thus defined based on the scores for the person ability and 
item difficulty, which are obtained from the Rasch model. These esti
mates are measured in logits, which are calculated by taking the natural 

logarithms of the odds ratios of success or failure when a person at
tempts an item. This means that persons and items are assigned a score 
measured on the same scale that represents the latent variable, allowing 
much easier comparison (Cappelleri et al., 2014). In contrast to other 
item response models, the Rasch analysis can be seen as prescriptive, 
where it asks the data to fit the model rather than the model to fit the 
data (Tesio et al., 2024). The Rasch model was first developed to be used 
with dichotomous variables but was later generalised to make use of 
polytomous variables by Andrich (1978) and Masters (1982). 

ln
(

Pni(xi=k)

Pni(xi=k− 1)

)

= θn − δi − τik (1)  

Where: 

θn: The capability of service n capability to dwell within its scheduled 
dwell time. 
δi: The difficulty for all trains to dwell within their scheduled dwell 
time at station i. 
τik: Thresholds for station I for a correct or positive response to level 
k. 
Pni(xi=k): Probability of service n at station i to achieve a correct or 
positive response to the level k, i.e. to dwell within its scheduled 
dwell time. 

Implementing the Rasch model for dwell time deviations 

In the study presented here, we apply the Rasch model to analyse 
dwell time deviations. Using the Rasch analysis to study dwell time 
deviations required some additional steps compared to the more com
mon application of the Rasch analysis technique, which is to study the 
ability of people based on questionnaire data. The first step is a change 
to the definition of the parameters included in the model. The param
eters in the classical applications of the Rasch analysis are defined as 
“person ability” and “item difficulty” as shown in Eq. (1). In our case, the 
person is defined by the train services, and the item is defined by the 

Table 1 
Descriptive statistics for the dwell time deviation (in seconds) for the Swedish and UK datasets.   

Swedish data UK data  

Scheduled dwell time: 60 s (n =
13365) 

Scheduled dwell time: 120 s (n =
2020) 

Scheduled dwell time: 30 s (n =
8970) 

Scheduled dwell time: 60 s (n =
1796) 

Mean 20 s 34 s 31 s 49 s 
Standard 

deviation 
36 s 28 s 20 s 25 s 

Median 15 s 33 s 31 s 52 s  

Fig. 2. Frequency distribution of dwell time delays for Sweden (left) and the UK (right). Dwell time delays are grouped in steps of 5 s for legibility reasons. No delay 
indicates dwell time delays of 0 s or less. Frequency distributions are split based on scheduled dwell times. 

Table 2 
Labelling regime to transform continuous dwell time data to polytomous data for 
use in the Rasch analysis technique for both the Swedish and UK data.  

Swedish Data UK Data 

Adjusted dwell time deviation Label Adjusted dwell time deviation Label 

≤0 s 5 ≤0 s 5 
>1 and ≤30 s 4 >1 and ≤15 s 4 
>31 and ≤60 s 3 >16 and ≤30 s 3 
>61 and ≤90 s 2 >31 and ≤45 s 2 
>91 and ≤120 s 1 >46 and ≤60 s 1 
>120 s 0 >60 s 0  
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station. In our case, we define θn (service performance) as the ability of 
service n to dwell within its scheduled dwell time, and δi (station diffi
culty) as the difficulty for all trains to dwell within their scheduled dwell 
time at station i. Pni(xi=k) is then defined as the probability of service n at 
station i to achieve a correct or positive response to the level k, i.e., to 
dwell within its scheduled dwell time. This probability is a direct result 
of the difference between the ability of a service and the difficulty of 
stations, where the larger the ability level is compared to the difficulty, 
the larger the probability of a successful response. In our case, this 
means that the probability of a train service having a dwell time closer to 
the scheduled dwell time at a given station is thus larger for train ser
vices for which the performance is better than the difficulty of a given 
station, whereas the opposite is true for services where the performance 
is worse than the difficulty of a given station. This concept is central to 
the Rasch model. 

Data preparation 
The variable of interest for the Rasch model is the dwell time devi

ation of a service at a station, which we use as an indicator of dwell time 
performance. Eq. (2) calculates dwell time deviations, defining them as 
the difference between the scheduled and actual dwell time, which can 
have both negative and positive values. A negative deviation indicates 
that the actual dwell time is shorter than scheduled and can occur when 
a train arrives with a delay and can thus dwell shorter than scheduled. A 
dwell time delay occurs when the deviation is positive, indicating that 
the train dwelled for longer than scheduled. We make use of the dwell 
time deviation rather than the total dwell time to better show dwell time 
performance, as it is an indication of the accuracy of the scheduled dwell 
times with respect to the actual dwell times. The dwell time deviation is 
calculated using the following formula: 

Dwelltimedeviation = SD − (Tdeparture − Tarrival) (2)  

Where: 

SD : The scheduled dwell time at a given station. 
Tdeparture : The departure time of a given train at a given station. 
Tarrival : The arrival time of a given train at a given station. 

When making use of dwell time deviations as a measure of perfor
mance, it is important to correct for early arriving trains. Early arriving 
trains, indicated by having a negative arrival delay, have to dwell longer 
than scheduled whilst waiting for their scheduled departure time. This 
does not consider a dwell time delay and therefore requires correction. 
Here, we do so by following the protocol shown in Fig. 3. Omitting this 
correction can lead to an overestimation of the size and frequency of 
dwell time delays. The adjusted dwell time deviation is calculated as 

follows: 
Where: 

SD : The scheduled dwell time at a given station. 
Tdeparture : The departure time of a given train at a given station. 
Tarrival : The arrival time of a given train at a given station. 
Darrival : The arrival delay of a given train at a given station 
Ddeparture : The departure delay of a given train at a given station 

The next step of the data preparation consisted of limiting the 
number of dwell time deviations to be included in the analysis. In line 
with Pritchard et al. (2021), we limit the delay size to a maximum of 
180 s. By setting this upper limit for the dwell time deviation, we focus 
on cases that can be seen as normal deviations. Although this means that 
extreme cases are excluded, we deem those cases to be of lesser interest 
with regard to scheduling dwell times due to the rare occasion in which 
they occur. 

The final step of the data preparation consists of converting the 
continuous dwell time deviation data to polytomous data. Although 
using dwell time deviations provides a good metric to judge the dwell 
time performance of a station or service, the data cannot be directly used 
for the Rasch analysis. This is because the Rasch analysis technique re
quires polytomous data, such as responses on a Likert scale, rather than 
continuous data as input. To convert the continuous dwell time devia
tion data to polytomous data, we labelled the size of the deviation in 
either 30-second intervals (as is the case for the Swedish data) or 15-sec
ond intervals (as is the case for the data from the UK). The labels are 
shown in Table 2. The size of the buckets was chosen to reflect both 
operational and local constraints while still having sufficient granularity 
to capture the nature of dwell time deviations. We determined the latter 
of these through an iterative process, evaluating different bucket sizes 
based on model outputs and fit statistics. 

The scheduling regime in Sweden makes use of steps of 60 s, and in 
the UK, the schedule makes use of steps of 30 s. These sizes were initially 
used as bucket sizes, but it was found that using these steps resulted in 
too few labels to be used for the Rasch analysis technique. The number of 
labels typically ranges from three to six labels with more labels being 
better. Another option was to use bucket sizes of 5 s, but this resulted in 
too many labels and does not accurately reflect scheduling principles as 
changes of such magnitude cannot be made when scheduling dwell 
times. Bucket sizes of 30 and 15 s for the Swedish and UK data respec
tively, were found to both result in sufficient labels to be used for the 
Rasch analysis while still resembling actual railway scheduling practices 
in both countries. 

Where:
The scheduled dwell time at a given station.
The departure time of a given train at a given station.
The arrival time of a given train at a given station.
The arrival delay of a given train at a given station
The departure delay of a given train at a given station

Fig. 3. Flowchart of the protocol to correct the dwell time deviation based on the arrival punctuality of a train.  
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Performing the Rasch analysis 
We use the Partial Credit Model (PCM), also known as the Rating 

Scale Model, for the Rasch analysis due to the conversion of continuous 
dwell time deviation data into polytomous data (Masters, 1982). In 
order to run the Partial Credit Model, we employed the PCM function 
within the eRM package in R. This package uses conditional maximum 
likelihood estimation to find the model’s parameters for polytomous 
item responses (Mair et al., 2021). For a more in-depth discussion on the 
use of conditional maximum likelihood estimations for the Rasch anal
ysis, we refer to the work done by Mair and Hatzinger (2007). The input 
for the PCM function in the eRM package consists of a matrix with the 
rows representing the dwell time of the services and the columns rep
resenting the stations (Mair et al., 2021). An example of this is shown in 
Table 3. The continuous dwell time deviation for a given service at a 
given station was transformed into polytomous data using the labelling 
regime shown in Table 2. 

Results 

Model fit assessment 

Two metrics are used to assess the model fit. The first metric uses the 
separation and reliability scores for the person (service in our case) and 
item (station in our case). These scores are used to assess the ability of 
the model to differentiate between trains with different service ability 
levels (i.e., the ability of a service to dwell within its scheduled time at 
all stations) and stations with varying levels of difficulty (i.e., the dif
ficulty for trains to dwell within the scheduled time at that station). It is 
an acceptable level of separation to consider the minimum required to 
divide the sample into two distinct strata i.e., low, and high ability 
(Souza et al., 2018). The reliability or separation index indicates the 
consistency of ranking relative to person and item location (Cappelleri 
et al., 2014). A high reliability of persons or items means that there is a 
high probability that persons or items estimated with high measures do 
have higher measures than persons or items estimated with low mea
sures (Linacre, 1997). 

A service separation score of less than two indicates that the developed 
model may not be sensitive enough to distinguish between long and 
short dwell time deviations. A station separation score lower than three 
indicates that the sample size of services is not large enough to confirm 
the difficulty hierarchy. Service and station reliability scores of less than 
0.9 reflect that the model may not be sensitive enough to discriminate 
between the variances of the services and station difficulty, the length of 
the rating scale, and the number of categories per item (Bond and Fox, 
2007). The service reliability score is found to be 0.99, and the sepa
ration score is 9.94 in both models. These scores indicate that both 
models are sensitive enough to distinguish between high and low per
formers and that the sample is large enough to confirm the item diffi
culty hierarchy. The high service and station reliability scores of 0.99 for 
both the Swedish and UK models reflect that the wide range of stations 
includes different capability levels and that appropriate difficulty levels 
were present in the model. 

The second metric to assess model fit makes use of the Mean Square 
statistics from the model output. Fit statistics, defined by infit and outfit, 
are analysed to highlight any unexpected participant responses (Bond 
and Fox, 2007). Infit reflects the difference between observed and 

expected responses for those items that have a difficulty level near the 
person’s ability level. Outfit includes the differences for all items, irre
spective of how far away the item difficulty is from the person’s ability 
(Linacre, 2002; Tennant and Conaghan, 2007). Fit statistics are gener
ated for both items and persons. Both infit and outfit are expressed in the 
form of mean-square fit statistics (MSQ) which is the chi-square statistic 
divided by its degrees of freedom. 

The in and outfit scores are shown in Fig. 4, with the triangular 
markers indicating the data points for the stations, and the data points 
for the services are shown as dots. The metric reflects the randomness 
present in the data, with an expected value close to 1.0. Generally, mean 
square values ranging from 0.5 to 1.5 are considered acceptable. Values 
lower than 0.5 and between 1.5 and 2 are noted to not result in an 
improvement or a decline in model performance. Values larger than 2 
should be treated as troublesome (Tran et al., 2018). 

As we can see in Fig. 4, all MSQ values for the station fit are within 
the ideal bandwidth. This, however, is not the case with the service fit 
statistics. In the Swedish data, we find that 15 % of the observations for 
services have an MSQ value greater than 2. In the case of the data from 
commuter trains in the UK, this value is slightly larger, with 19 % of the 
observations having an MSQ value of more than 2. This indicates that 
not all observations for the service scores fall within the bandwidth of 
what is considered to be a good model fit. This is, however, only a small 
portion of the observations, and the overall model fit is still deemed to be 
good. A further analysis was conducted to understand the cases that fall 
outside of the desired bandwidth, but no clear pattern in these obser
vations was found. 

Person-Item maps 

The output of Rasch analysis is called a person-item map or Wright 
map, which represents each station in relation to its train dwell time. 
The map provides both person measures and item measures on the same 
linear scale so that researchers can determine how well the test items 
(stations in our case) are distributed regarding the ability level of test 
takers (trains in our case) (Boone, 2016). Fig. 5 depicts the person-item 
map for the stations and services of the Swedish commuter train and the 
person-item map for the UK is shown in Fig. 6. The person-item map 
shows the location of the service performance and station difficulty 
along the same latent dimension, in this case, the dwell time punctuality. 
The distribution of the service ability is shown in the histogram at the 
top of the figure and the station difficulty is shown on the bottom half of 
the figures where dark circles show the location of station difficulties, 
and the thresholds of adjacent categories are depicted with the open 
circles. In this case, a higher score in the histogram shown on top in
dicates a better ability of a train service to dwell close to its scheduled 
dwell time. The ability and difficulty are measured in logits, meaning 
that the scales in the person-item map are additive. Services located at a 
logit score of 0 have average ability, whereas services located on the 
right-hand side of the distribution show better ability, and vice versa for 
services on the left-hand side of the distribution. The opposite is true for 
the station difficulty scores, where a higher score indicates that a train is 
more likely to suffer a delay at that station. 

Concerning the model fit, we can observe a spread in the data points 
for both the stations and services in the person-item map for both the 
Swedish and UK models, suggesting that there were variations in dwell 

Table 3 
Example of the data matrix used as input for the Rasch analysis, with the different services on each row and the different stations in each column. Values represent the 
converted observed dwell time deviation for each service at each station.   

Station A Station B Station C Station D Station E Station F Station G 

Service 1 0 2 3 5 2 0 3 
Service 2 3 5 1 3 0 1 2 
Service 3 1 0 2 4 2 4 3 
Service 4 1 4 3 5 0 0 1  
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time performance within both that were captured by the model. The 
spread found in the data point also suggests that the bucket sizes used to 
convert the continuous data to polytomous data have a sufficient level of 
granularity to reflect the changes in dwell times in both the Swedish and 
UK models. 

Service performance scores 

The following can be noted considering the service performance 
scores derived from the Rasch analysis. As can be seen in the histograms 
at the top of both Fig. 5 and Fig. 6, most service performance scores are 
above 0, indicating an above-average ability to adhere to the scheduled 
dwell times. In both the Swedish and UK cases, there are only a few 
services on the most right-hand side of the distribution; these services 
showed the greatest ability to adhere to the scheduled dwell time. The 
same is true for the frequency of services on the most left-hand side of 

the distribution, thus indicating that only a few services perform very 
poorly. 

To understand differences in the service performance scores between 
services, Fig. 7 shows the scores for each operational service in both the 
Swedish and UK datasets. As expected, the services do not perform in a 
uniform manner in terms of the service performance score. In the case of 
commuter trains in Sweden, it can be observed that the median service 
performance score is relatively similar across the board, while the 
variability shows a stronger difference between services. The Rasch 
analysis hypothesizes that the average measure for all item parameters is 
fixed at zero logits, making this the comparative basis for interval scales 
(Kim et al., 2018). The median service performance score across all 
observations is 1.33 (IQR 0.79–1.56), indicating that most services run 
with good performance where the actual dwell time is close to the 
scheduled dwell time. No extreme negative values are found for the 
service performance scores in Sweden, indicating that it is not likely for 

Fig. 4. Infit and outfit Mean Square statistics scores for Rasch model based on Swedish (left) and UK (right) commuter train data. The triangular markers represent 
the station data points, while the dots represent the service data points. The colored boxes show the threshold for model fit assessment, with the green box showing 
the range in which data points are not improving or declining model performance and the red box showing the threshold for troublesome values. 

Fig. 5. Person-Item map for the Swedish commuter train data showing the service ability and station difficulty along the latent variable, this being the dwell time 
punctuality. The histogram on top shows the distribution of the service ability scores from most delayed (left) to least delayed (right). The bottom of the figure shows 
the station difficulty scores where the black dots indicate the location of the service difficulty and the thresholds of the adjacent categories are depicted with 
open circles. 
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Fig. 6. Person-Item map for the UK commuter train data showing the service ability and station difficulty along the latent variable, this being the dwell time 
punctuality. The histogram on top shows the distribution of the service ability scores from most delayed (left) to least delayed (right). The bottom of the figure shows 
the station difficulty scores where the black dots indicate the location of the service difficulty and the thresholds of the adjacent categories are depicted with 
open circles. 

Fig. 7. Boxplots showing the service performance scores obtained from the Rasch analysis for the different services in use in Sweden (left) and the UK (right). Service 
performance scores reflect the ability of a service to dwell within its scheduled time and a higher score indicates a better performance, meaning that a train is less 
likely to incur a dwell time delay. 

Fig. 8. Station difficulty scores obtained from the Rasch analysis for stations in Sweden (left) and the UK (right). Station difficulty scores reflect the likelihood of a 
service being delayed at a given station. Higher station difficulty scores indicate a greater likelihood of a train being delayed and vice versa. 
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a service to perform extremely poorly during the dwelling process. 
The services in operation in the UK show a larger spread in terms of 

their respective service performance scores. The median scores are 
found to be negative for some services, indicating a relatively poor dwell 
time for these services. This is also reflected in the overall median value 
for the service performance score across all UK data which is 0.03 (IQR 
− 1.03 – 1.31), indicating that a relatively sizable portion of services are 
likely to have a longer dwell time than what is scheduled. 

Station difficulty scores 

The station difficulty scores based on the output from the Rasch 
analysis are shown in Fig. 8. A higher difficulty score means that services 
are more likely to be delayed at that specific station, whereas a lower 
difficulty score indicates that it is less likely for services to be delayed at 
that station. Most stations in the Swedish case have a relatively high 
difficulty score, with the exception of Rydebäck, Glumslöv, Dösjebro 
and Åkarp station. This indicates that most stations are likely to be 
characterized by dwell time delays. A similar pattern is found for the 
stations in the UK, where all stations except for Maryland, Seven Kings, 
Goodmayes, and Chadwell Heath are found to have higher station dif
ficulty scores. In both cases, we thus find some stations that perform 
exceptionally well relative to the other stations, as well as stations that 
perform quite poorly in terms of dwell times. By identifying stations 
with high difficulty scores, the study offers significant information for 
focused operations. Stations that consistently show high levels of diffi
culty should be given priority for infrastructure enhancements such as 
platform redesign or the implementation of methods to regulate pas
senger flow. In addition, it may be worth considering making scheduling 
adjustments by providing more time at certain stations to accommodate 
the difficulties. 

Service-station performance 

So far, we have shown both the service performance and station 
difficulty scores from the Rasch analysis. Although this provides some 
insights into the overall dwell time performance of the two datasets 
under consideration here, the real strength of the Rasch analysis tech
nique is its ability to assess both service performance and station diffi
culty scores on a single dimension. To do so, it is necessary to calculate 
the performance of a service relative to the difficulty of a given station. 
This is done using the following equation (Tesio et al., 2024): 

P (dwell time delay) = f (θ − δ) (3)  

Where: 

θ : The service ability score. 
δ : The station difficulty score. 

This can be read as the probability P of a dwell time delay being 
observed as a function of the difference between the ability and diffi
culty (Tesio et al., 2024), in our case the service ability and station 
difficulty scores. We call this indicator the dwell time performance score. A 
train with a service score of 2 halting at a station with a difficulty score 
of 1.5 will have a dwell time performance score of 0.5 (2–1.5 = 0.5), for 
example. Where the outcome of Eq. (3) shows the probability of a dwell 
time delay (a range between 0 and 1), the difference between the service 
ability and station difficulty can take on values between – infinity to 
+infinity. The Rasch analysis, therefore, makes use of logits and Eq. (3) 
takes the following form in a Rasch analysis (Tesio et al., 2024): 

ln
(

P
1 − P

)

= θ − δ = logit (4)  

Where: 

θ : The service ability score. 
δ : The station difficulty score. 

The dwell time performance score can be interpreted as follows: a 
higher dwell time performance score indicates situations where actual 
dwell times are closer to the scheduled dwell time, whereas a lower 
dwell time performance score indicates the opposite. As Tesio et al. 
(2024) state, it is important to note that a change in logits remains 
invariant across its span and works the same as changes in degree 
centigrade or changes in kilograms. This means that a reduction from 3 
to 1 logit is similar to a reduction from 6 to 4 logit and a change in dwell 
time score from 1 to 2 is the same as a change from 3 to 4. 

The dwell time performance scores are visually represented using a 
heat map for both the Swedish and UK cases, shown in Figs. 9 and 10 
respectively. For legibility reasons, we only display aggregated values 
for the unique service scores rather than each individual service or all 
possible service scores. The presented heat maps can be used to visually 
identify hotspots for both poor and good dwell time performances along 
each line for a given service performance score. With regards to the 
dwell time performance score for the Swedish case, we can observe that 
Rydebäck and Åkarp are stations that perform well across the board and 
Chadwell Heath is the best-performing station in the UK case. Most 
dwell time performance scores are above zero at these stations, indi
cating it is more likely that services halting at those stations have a dwell 
time close to the scheduled time. We can also observe that there is no 
such thing as a station for which all services are likely to have a dwell 
time that is extremely long compared to the scheduled dwell time, given 
that all stations have at least one instance where the dwell time per
formance score is relatively high. 

It is also worth noting that the majority of the services perform 
relatively well across the entire line. Even the worst performing services, 
those with a service score of − 0.5 or lower, have a dwell time perfor
mance score of zero or higher for at least one station along the line. Note 
that the median service performance score in the UK case was found to 
be 0.03. Looking at the dwell time performance scores for a service 
performance score of 0.03, we can observe that it is expected that a train 
is more likely to incur a dwell time delay at Manor Park, and at all the 
stations between Romford and Ilford. For the Swedish dataset, the me
dian service performance score is 1.33. Again, looking at the dwell time 
performance scores for a service performance score of 1.33, we can 
observe that Landskrona, Kävlinge, Lund Gunnesbo, and Malmö Hyllie 
can be considered to be troublesome stations along the line. This 
example indicates how visually representing the dwell time performance 
scores provides insights into the performance of a service on a line level 
by being able to identify hotspots of poor dwell time performances. 

Rasch output compared to common indicators of dwell time performance 

A common indicator used to assess dwell time performance is the 
historical dwell time at a station. To compare the output from the Rasch 
analysis to the historical dwell times of all stations on the selected lines, 
we plot the median dwell time deviation at each station along with the 
station difficulty score in Fig. 11. The red dots in the figure show the 
station difficulty score and the grey bars indicate the median dwell time 
deviation observed at each station. Here we can observe that the station 
difficulty score follows a similar pattern to the median observed dwell 
time deviation for some stations. However, we can also observe cases 
where the median observed dwell time is positive, indicating that the 
actual dwell times commonly exceed the scheduled dwell time whilst the 
station difficulty is relatively low, thus indicating that it is less likely for 
a service to incur a delay at these stations. 

While the pattern for the station difficulty scores thus appears to 
follow the median dwell time deviation values, there are some stations 
for which this is not the case. In the Swedish case, for example, Rydebäck 
has a relatively low difficulty score while the median dwell time devi
ation is high here. A similar observation is made for Maryland, Seven 
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Fig. 9. Heat map showing the dwell time performance scores for the Swedish case with the service ability on the y-axis and station names on the x-axis. Station 
difficulty scores are omitted from the figure for clarity reasons. Dwell time performance scores were calculated by subtracting the station difficulty scores from the 
service performance scores. A higher dwell time performance score indicates situations where actual dwell times are closer to the scheduled dwell time, whereas a 
lower dwell time performance score indicates the opposite. 

Fig. 10. Heat map showing the dwell time performance scores for the UK case with the service ability on the y-axis and station names on the x-axis. Station difficulty 
scores are omitted from the figure for clarity reasons. Dwell time performance scores were calculated by subtracting the station difficulty scores from the service 
performance scores. A higher dwell time performance score indicates situations where actual dwell times are closer to the scheduled dwell time, whereas a lower 
dwell time performance score indicates the opposite. 

Fig. 11. Station difficulty scores (red dots) and median observed dwell time deviations (grey bars) for stations in Sweden (left) and the UK (right), stations are 
ordered based on their order along the line from left to right. 
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Kings, and Goodmayes stations in the UK. One reason for this can be due 
to the Rasch analysis taking into account all observations, including the 
possibility of services being on time at these stations. This is in contrast 
to the utilization of median values, which solely relies on the 50th 
percentile of the data. Another possible explanation is that few services 
are very delayed here, inflating the median delay time, while most 
services dwell close to the scheduled dwell time, thus lowering the 
station difficulty score. 

In addition to the comparison to the median dwell time deviation, we 
compare dwell time performance scores from the Rasch analysis to the 
volume of boarding and alighting passengers. The volume of passengers 
is often used as an indicator when scheduling dwell times, where longer 
dwell times are expected when passenger volumes are higher. To un
derstand the relation between the Rasch output and passenger volumes 
we first plot the station difficulty score in relation to the average volume 
of boarding and alighting passengers at each station. The results of this 
are shown in Fig. 12 for Sweden and Fig. 13 for the stations in the UK. As 
previously mentioned, it is commonly assumed that a larger number of 
boarding and alighting passengers will lead to longer dwell times. If this 
is the case, this would be reflected in higher station difficulty scores for 
stations with higher passenger volumes. However, the results in Fig. 12 
and Fig. 13 show that stations with a higher volume of passengers do not 
necessarily have a higher station difficulty score. Furthermore, we 
observe that some stations with similar passenger volumes have 
different station difficulty scores. This is the case in both Sweden and the 
UK and indicates that there is no clear relationship between passenger 
volumes and station difficulty scores. This effect is in line with findings 
presented by Kuipers (2024) in which it is argued that higher passenger 
volumes are not necessarily the cause of dwell time delays but other 
station-specific characteristics play a more important role. Such station- 
specific characteristics could be the way passengers spread out across 
the platform, for example, or trains being more prone to late departures 
as a result of late arriving passengers, trains waiting for connections, or 
dispatching decisions. An analysis of such factors falls outside of the 
scope of the paper presented here, however. 

Fig. 14 shows the service performance score in relation to the 
average volume of boarding and alighting passengers on a service level. 
This is only plotted for the Swedish commuter train data since passenger 

volumes are only collected on a station level in the UK case. Looking at 
Fig. 14, we can observe that there is somewhat of a relationship between 
the average number of passengers and the service performance scores, as 
indicated by the labels. In this case, larger average volumes of both 
boarding and alighting passengers result in lower service performance 
scores and vice versa. The results derived from Figs. 12–14, which 
examine the correlation between dwell time performance analysed 
using Rasch analysis and passenger volume, indicate that the service 
performance scores align with the common assumption that dwell times 
are worse when passenger volumes are higher. This is in contrast to the 
station difficulty scores where a different pattern is found. 

Discussion 

This study aims to 1) show the applicability of the Rasch analysis 
technique within an operational context with a specific focus on dwell 
time evaluation for commuter trains and 2) highlight how the output of 
a Rasch analysis can be used to investigate the dwell time performance 
of stations and services on a line level. To do so, we made use of data on 
the dwell time performance of commuter trains in Sweden and the UK. 
The study presents an analysis of the output of a Rasch analysis and 
highlights its potential applications in evaluating dwell times on a line 
level. 

Applicability of the Rasch analysis technique within an operational context 

In terms of the applicability of the Rasch analysis technique within 
an operational context, our findings demonstrate that it can be a suitable 
method to study dwell time performance. The high reliability scores for 
both Swedish and UK data indicate a good model fit. The high separation 
scores indicate that the models are sensitive enough to distinguish be
tween both high and low-performing services and stations. Although the 
Mean Square statistics scores indicate that the model fit for services is 
not perfect, with 15 % and 19 % of the observations falling outside the 
desired threshold, we argue that the model fit is still sufficient given the 
small number of poorly fitting observations. Comparing both the service 
performance and station difficulty scores to more commonly used in
dicators of dwell time performance shows somewhat of a mismatch. For 

Fig. 12. Relation between station difficulty scores (y-axis) and average volume of passengers (x-axis) for stations in Sweden. The orange dots indicate the average 
volume of alighting passengers and the blue dots indicate the average volume of boarding passengers for a given station. Station difficulty scores reflect the likelihood 
of a service being delayed at a given station. Higher station difficulty scores indicate a greater likelihood of a train being delayed and vice versa. 
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example, while higher passenger volumes generally lead to lower ser
vice performance scores this correlation does not match with station 
difficulty scores. Furthermore, comparing station difficulty scores with 
median observed dwell time deviations shows that some stations have 
high dwell time deviations but low difficulty scores. One reason for this 
is that the Rasch analysis includes the full spectrum of performance 
aspects by considering the probability of multiple levels of delays for 
each service at each station, which is not the case when making use of 
the median dwell time deviation. Another possible reason for this 
mismatch could be due to a few trains having very large delays, inflating 

the median dwell times, whilst most services have a dwell time close to 
the scheduled time, which results in a lower station difficulty score. 

Two aspects that are important to the use of the Rasch analysis 
technique for dwell times and operational research are worth discussing 
further. The first point is the use of adjusted dwell time deviation over 
the use of the length of dwell times to study dwell time performance. In 
our case, we make use of the difference between the scheduled and 
actual dwell time to reflect dwell time performance in relation to the 
scheduled dwell time. This measure is preferred over the use of the total 
dwell time since the latter is heavily influenced by the scheduled dwell 

Fig. 13. Relation between station difficulty scores (y-axis) and average volume of passengers (x-axis) for stations in the UK. The orange dots indicate the average 
volume of alighting passengers and the blue dots indicate the average volume of boarding passengers for a given station. Station difficulty scores reflect the likelihood 
of a service being delayed at a given station. Higher station difficulty scores indicate a greater likelihood of a train being delayed and vice versa. 

Fig. 14. Service performance score in relation to the average volume of boarding (x-axis) and alighting passengers (y-axis) for Swedish commuter trains. The service 
performance score is indicated by the labels in the figure and a higher score indicates a better performance and vice versa. 
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time, where dwell times are expected to be longer when more dwell time 
is scheduled. Using the dwell time deviation, somewhat, accounts for 
this. When making use of the dwell time deviation it is, however, vital to 
ensure that this time is adjusted based on the arrival punctuality of 
trains. Trains arriving early will have a longer dwell time since it is not 
possible to depart early. Such a deviation is, however, not a delay as such 
and if this is not accounted for it can result in an overestimation of the 
number and size of dwell time delays. This is, however, specific to 
studying dwell times and might not be required in other operational 
contexts in which a Rasch analysis can be applied. 

The second aspect that is worth discussing is the necessity to convert 
the continuous dwell time deviations to polytomous data before it can be 
used in a Rasch analysis. This conversion is not needed in the more 
traditional way in which Rasch analyses are performed, given that the 
data input often consists of Likert scale-like data in such cases. This is, 
however, not the case when using operational data such as dwell times. 
In our case, we converted the continuous data to polytomous data by 
making use of different buckets for the size of the dwell time deviations. 
Different ways in which this conversion can be made, such as the use of 
standardized z-scores have been explored but resulted in worse model 
performance and insufficient spread of the data points. We, therefore, 
argue that the use of buckets is a fitting way in which this conversion 
from continuous to polytomous data can be made. The decision of the 
size of these buckets is not a trivial choice and will differ from case to 
case and needs to be based on the operational and real-world constraints 
of the specific case. In our case, we define the size of the buckets based 
on the scheduling regimes used in Sweden and the UK and the number of 
labels needed to perform a Rasch analysis. Using a Rasch analysis within 
a different case might require a finer or more coarse definition for the 
bucket sizes. 

Using the output of a Rasch analysis to study dwell times 

There are various ways to use the output of the Rasch analysis during 
the dwell time scheduling process. As Kim et al. (2018) mention, items 
on both ends of the difficulty scale are important from a policy 
perspective since items at the top of the scale should be maintained, 
while those at the bottom of the scale should be addressed. This is also 
true in our case, with the exception that stations cannot simply be 
removed. In this case, the station difficulty scores show which stations 
require the most attention to reduce overall dwell time delays and which 
stations perform well in terms of dwell times. The output of the Rasch 
analysis also allows for an analysis on a case-by-case basis (Brush and 
Soutar, 2022). In practice, this means that the output from the Rasch 
analysis could be used to study the performance of a single service or 
group of services across all stations, thereby identifying where addi
tional efforts need to be made for that specific service or group of 
services. 

The key output in terms of using the Rasch analysis to study dwell 
times is the ability to address both the service performance and station 
difficulty scores in a single dimension, an indicator that we call the dwell 
time performance score in this study. This combined score provides richer 
insights into the effectiveness of scheduled dwell times on a line level 
compared to metrics that address the deviations between the scheduled 
and actual dwell time on either a service or station level separately, 
allowing for a better indication of hotspots of poor dwell time perfor
mance. By combining both the relative performance of stations and 
services in a single dimension, it is possible to highlight which services 
are likely to incur a dwell time delay at which station, which can help 
guide efforts to improve dwell time punctuality. For example, the dwell 
time performance scores show that none of the stations included in the 
cases presented here are likely to experience delays across all services. 
Furthermore, the dwell time performance scores show that the higher 
median dwell time deviations at some stations with low station difficulty 
are likely due to a few services performing poorly. In a practical context, 
this means that efforts to understand why dwell time delays arise can be 

focused on those services in combination with the stations, rather than 
focusing on all services that halt at stations where the median dwell time 
deviation indicates a delay. Furthermore, using the dwell time perfor
mance scores, it shows that it is important to differentiate between 
services halting at stations when scheduling dwell times. 

Limitations 

Although using a Rasch analysis to study dwell times has several 
benefits over the use of measures of central tendency or the volume of 
passengers, there are some limitations. The output from the Rasch 
analysis presented here is limited to identifying which services and 
stations perform poorly in terms of dwell time, for example. While the 
method is valuable, it does not provide a cause for the respective per
formances, or the size of the delay incurred at a given moment. Identi
fying the cause of the dwell time performance of a specific service at a 
given station calls for more in-depth analyses, which fall outside of the 
scope of the study presented here, as is the case for identifying the size of 
the dwell time delays. Using the Rasch analysis does not provide a full 
analysis of dwell times on a network, but it guides planners in deter
mining where to focus their efforts on understanding delay causes. 
Another limitation of the Rasch analysis presented here is the potential 
information loss when converting the continuous dwell time data to 
polytomous data. While the bucket sizes were carefully chosen through 
an iterative process, the nuances of having continuous dwell time data 
are lost as delays of 30 and 59 s are treated the same way in the Swedish 
case, for example. This problem is less present in the UK case, where the 
buckets used are smaller, and hence nuances in the data are better 
conserved, but potential information loss is nevertheless present. 

Conclusion 

This study highlights the applicability of the Rasch analysis tech
nique within an operational context. To achieve this, continuous dwell 
time deviation data was converted into polytomous data, as required for 
the Rasch analysis technique, using buckets to label the size of the dwell 
time delay deviation. The results of the study indicate that the Rasch 
model is a suitable method to study dwell time performance and that the 
chosen bucket sizes provide sufficient spread in the data. 

The Rasch analysis output offers insights into the dwell time per
formance for Swedish and UK commuter trains on a line level, revealing 
the difference between using a Rasch model compared to commonly 
used indicators of dwell time performance. The first is that the notion 
that an increase in passenger volumes leads to longer dwell times does 
not necessarily hold on a station level, where stations with similar 
passenger volumes were found to have different station difficulty scores. 
This indicates that other aspects likely have a larger effect on dwell 
times on a station level. The effect of passenger volumes on a service 
level does indicate that an increased volume of passengers leads to worse 
performance. The major benefit of using a Rasch analysis over the more 
common way to study dwell time performance is the ability to combine 
both service performance and station difficulty in a measure we call the 
dwell time performance score. 

While the findings presented in this study are based on case studies 
and thus limited generalizability in this study area, Future research 
could include different case studies to further understand the applica
bility of the Rasch analysis technique in an operational context. Another 
approach for future studies is to predict the service performance score of 
services and compare this to the known station difficulty scores. In this 
way, it is not necessary for planners to perform a complete Rasch 
analysis for every specific case. The model fit suggests that converting 
continuous data to polytomous data allows the use of a Rasch analysis 
outside of the scope of Likert-like scale data for which it is more 
commonly used. To further understand the applicability of the Rasch 
analysis technique, future studies can focus on implementing the 
approach proposed here in different contexts. This can be done both 
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within transportation, such as the operations of a bus network, as well as 
other operational processes. 
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