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Perturbative solution to susceptible-infected-susceptible epidemics on networks
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Herein we provide a closed form perturbative solution to a general M-node network susceptible-infected-
susceptible (SIS) model using the transport rates between nodes as a perturbation parameter. We separate the
dynamics into a short-time regime and a medium-to-long-time regime. We solve the short-time dynamics of
the system and provide a limit before which our explicit, analytical result of the first-order perturbation for the
medium-to-long-time regime is to be employed. These stitched calculations provide an approximation to the full
temporal dynamics for rather general initial conditions. To further corroborate our results, we solve the mean-field
equations numerically for an infectious SIS outbreak in New Zealand (NZ, Aotearoa) recomposed into 23
subpopulations where the virus is spread to different subpopulations via (documented) air traffic data, and
the country is internationally quarantined. We demonstrate that our analytical predictions compare well to the
numerical solution.

DOI: 10.1103/PhysRevE.88.032713 PACS number(s): 87.10.−e, 87.23.Cc, 05.45.−a, 82.39.Rt

I. INTRODUCTION

In mathematical epidemiology the canonical deterministic
susceptible-infected-susceptible (SIS) model is one of the
most elementary compartmental models, receiving consistent
attention (the specifics of which are given at length below)
since the seminal work of Kermack and McKendrick [1]. Put
simply, this model partitions a large, well mixed, homogeneous
population into two compartments: susceptible and infected,
where birth and death are neglected. A susceptible may become
infected upon contact with another infected with some finite
probability, and conversely an infected will recover after some
typical time, becoming once more susceptible.

The simplicity of this model and its ability to characterize
the main motifs of viral infections, where recovery does not
assure immunity (for example gonorrhea [2] or chlamydia [3]),
has allowed for extensive research. Due to the mathematical
tractability of the mean-field model, many extensions have
been applied, to include other important dynamical factors
[4–6]. Although these models have focused on deterministic
mean-field approaches as we shall show herein, there is also
a surge in converting the models over to their stochastic
counterparts [7], and analyzing different properties of the
system (for a recent example see [8]).

Recently, network theory [9] has sought to understand the
large scale realism of human mobility [10,11], and in turn
comprehend the etiology of epidemics on these systems [12].
In a similar vein, researchers have incorporated the concept
of metapopulations [13] (a population of populations where
in each, mean-field equations suffice to describe the system
dynamics) into theoretical epidemiology [14] (for interesting
recent examples see [15] and [16]).

These similar directions of spatial structure incorporation
have naturally been applied to SIS models on networks
[17–19], and metapopulations [20,21]. From these studies and
the current zeitgeist of the field, the current state of the research

*Corresponding author: lloyd.sanders@thep.lu.se

has implied two salient points: computational power is easily
accessible, and the network epidemic modeling is not readily
amenable to classical mathematical tools. In this article we
address these topics, whereby we amalgamate the SIS model
with the current impetus toward network or metapopulation
modeling through the use of perturbation theory, to quantify
the effects of human mobility on an arbitrary network. We
show that certain mathematical tools can be brought to bear
on epidemic network models yielding accurate analytical
approximations to the full temporal dynamics, which are
substantiated by the corresponding numerical simulations.

Within the following section we review the analytics of the
canonical single-node SIS model, after which we segregate
the population into an M-node network, whereupon the SIS
infection is introduced separately to each. We present a closed-
form recursive perturbative solution to the network model;
therefrom we calculate explicitly the first-order perturbation
leading to our study’s main result Eq. (17). We generalize our
result further by analytically solving the short-time dynamics
of the network given arbitrary initial conditions, Eq. (20),
and stitching these to the perturbative solution to yield a
full-time approximation to the whole network. Subsequently
we compare our result to a test case scenario using real-world
population and air traffic data. We then discuss the benefits and
limitations of the model and where this work may be applied
and built upon.

II. SIS MODEL

In this section we describe the equations which govern the
single- and M-node models and perform analytical analysis
where applicable.

A. Canonical single-node SIS model

The single-node SIS model considers a large, well mixed
population, of size N , in some closed environment where
death and birth are neglected. The population is divided
into two compartments: susceptible S; and infected I ; where
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N = S + I = const. Both S and I are discrete variables.
Susceptibles may become infected from contact with the
infected at a rate β, and the infected compartment of the
population will lose constituents at a rate γ . The mean-field
dynamics of each state is then described by the set of equations

∂tS(t) = − β

N
SI + γ I, (1)

∂t I (t) = β

N
SI − γ I, (2)

where initial conditions are S(t = t0) = S0 > 0, and I (t =
t0) = I0 > 0. One immediately notes that ∂t [S(t) + I (t)] = 0,
which then ensures that the total population N is constant for
all time. It is noted that in the mean-field equations above, it
is implicitly assumed that S and I are treated as continuous
variables [2].

The solution to Eq. (2), and in turn Eq. (1), as S(t) =
N − I (t), is solved in various texts (for example see [2]), so
for brevity, the solution is given (t � t0) as

I (t) = I∞
1 + V e−χ(t−t0)

, (3)

where χ = β − γ , and I∞ = χN/β is the stable or endemic
state of the infected population, and V = I∞/I0 − 1 [22]. With
respect to Eq. (3), for an epidemic to take place (i.e., some finite
fraction of the population remains infected in the long-time
limit), we require the basic reproductive ratio: R0 = β/γ to
satisfy R0 > 1 (which will be assumed henceforth).

To incorporate a spatial component to the model let us
consider an arbitrary network of subpopulations.

B. Perturbative solution to the M-node SIS model

We here further the result found in the previous section
through incorporation of an implicit spatial component, by
stratifying the large population into M subpopulations or
nodes (a realistic example is shown Fig. 1). Within each
subpopulation (which may be regarded as a community, city,
or country), the same assumptions stated in the canonical
model still hold: the population is sufficiently large, and well
mixed. One then allows for mobility between the nodes on the
network, where the fraction of persons traveling from city j to
i per unit time is given by the transport rate, ωi←j .

Upon each node, an SIS virus is introduced, where the ith
city has an infectivity rate of βi , and recovery rate γi . The
mean-field set of equations that then describe the dynamics is
given by

∂tSi(t) = − βi

Ni

SiIi + γiIi + ε

M∑
j=1

(wi←j Sj − wj←iSi), (4)

∂t Ii(t) = βi

Ni

SiIi − γiIi + ε

M∑
j=1

(wi←j Ij − wj←iIi). (5)

where we have defined ωi←i = 0. A convenient parameter
ε(=1) is introduced here to keep track of the number of times
the perturbation enters below (terms which are linear in ε are
linear in the travel rates, etc.) [24]. Summing Eqs. (4) and (5),
we find that ∂tNi = 0, provided that the total influx and outflux

FIG. 1. (Color online) Abstract representation of the New
Zealand air traffic network. Each node (23 total) is an airport which
services a region, the lighter the shade the more populated the region
(reversal of color scale for label clarity, log scale). Each link or edge
on the graph (70 total) represents a flight connection between airports:
the darker the link the more transit between those connections (log
scale) [23]. The network has a diameter of 3; with the most connected
node Auckland (AK, 19 connections), followed by Christchurch
(CH, 18 connections) and Wellington (WL, 16 connections). More
information on how this network was constructed is contained in the
Appendix; the labels are defined in Tables I and II.

for each node are equal, i.e.,

M∑
j=1

ωj←iNi =
M∑

j=1

ωi←jNj , (6)

implying the total population Ni of city i is constant for all
time. We will assume Eq. (6) to hold henceforth.

To begin the derivation of the perturbative solution, we first
assume the influx and outflux of citizens from a given city is
small (defined quantitatively later); from there we can define
a perturbative solution in terms of the travel rates, namely

Ii(t) =
∞∑

k=0

εkI
(k)
i (t) = I

(0)
i (t) +

∞∑
k=1

εkI
(k)
i (t), (7)

where I
(k)
i (t) is the kth-order contribution to the perturbative

expansion at node i; i.e., I
(1)
i contains only linear terms in the

transport rates, whereas I
(2)
i (t) contains only quadratics terms,

and so on. In Eq. (6) I
(0)
i (t) is given by Eq. (3), with replace-

ments β → βi and γ → γi (and therefore χ → χi). Explicitly

I
(0)
i (t) = I∞,i

1 + Vie−χi (t−t0)
. (8)

Similarly we can define the perturbative solution to the
number of susceptibles in city i as Si = ∑∞

k=0 εkS
(k)
i . Since

Ni = I
(0)
i + S

(0)
i , it follows that I

(k)
i = −S

(k)
i for k � 1. Using

this fact and substituting Eq. (7) into Eq. (5) and equating
factors of εk , we find for k = 0 that ∂t I

(0)
i = χiI

(0)
i − βi

Ni
[I (0)

i ]2,

which is equivalent to Eq. (2), and whose solution is therefore
given by Eq. (8). For k � 1 we obtain our formal perturbation
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equations,

∂t I
(k)
i −

(
χi − 2βiI

(0)
i

Ni

)
I

(k)
i

= − βi

Ni

k−1∑
k′=1

I
(k−k′)
i I

(k′)
i +

M∑
j=1

(
ωi←j I

(k−1)
j − ωj←iI

(k−1)
i

)
,

(9)

where we have set ε = 1. Thus, we have formally converted
the nonlinear problem in Eqs. (4) and (5) into a set of
inhomogeneous, linear equations, Eq. (9), with time dependent
coefficients. The time dependence of these coefficients in
the left-hand side enters only through the known quantity
I

(0)
i (t), whereas the right-hand side depends recursively on

the previous perturbation orders.
With regard to the initial condition of the system, the time

t0, viz. Eq. (8), need not be the true initial time, but rather
some time at which �I (t)(≡[I1(t),I2(t), . . . ,IM (t)]T ) is known.
We will, in a subsequent section, utilize this freedom of choice
in t0 to improve upon the results in this section.

We proceed by expressing a formal solution to Eq. (9)
through employment of the integrating factor method.
First, we define the so-called integrating factor: exp[Bi(t)],
where Bi(t) = − ∫ t

t0
[χi − 2βiI

(0)
i (t ′)/Ni]dt ′. Then the for-

mal solution to the kth-order perturbative term is I
(k)
i (t) =

exp[−Bi(t)][
∫ t

t0
exp[Bi(t ′)]g

(k−1)
i (t ′)dt ′ + G

(k)
i ], where, from

the initial conditions I
(k)
i (t = t0) = 0, we have G

(k)
i = 0. The

function g
(k−1)
i (t) is defined as

g
(k−1)
i (t) = − βi

Ni

k−1∑
k′=1

I
(k−k′)
i I

(k′)
i

+
M∑

j=1

(
ωi←j I

(k−1)
j − ωj←iI

(k−1)
i

)
. (10)

Interestingly, we are able to calculate Bi(t) explic-
itly. Using Eq. (8), we can write Bi(t) = −χi(t − t0) +
(2βiI∞,i)/(Ni)

∫ t

t0
(1 + Vie

−χi (t ′−t0))−1dt ′. We solve this to

yield the solution Bi(t) = ln[eχi (t−t0)( 1+Vie
−χi (t−t0)

1+Vi
)2]. Using the

solution for Bi(t) and Eq. (10) and substituting this into
the formal solution given, we explicitly obtain the kth-order
perturbation, namely

I
(k)
i (t) = e−χi (t−t0)(1 + Vie

−χi (t−t0))−2

×
[ ∫ t

t0

eχi (t ′−t0)(1 + Vie
−χi (t ′−t0))2g

(k−1)
i (t ′)dt ′

]
.

(11)

With this closed form expression, we are able to calculate any
order perturbation we require, recursively. Namely, starting
from the zeroth-order solution, Eq. (8), we can insert this into
Eq. (10), the result of which is then input into Eq. (11) to find
the first-order perturbation (shown explicitly in the following
section). To find the next order, one uses the first-order result
in place of the zeroth-order solution, following the outlined
algorithm, to arrive at the second-order perturbation. This
operation may be repeated until the desired number of orders

are achieved. Then the orders are summed, viz. Eq. (7) (with
ε = 1), to gain the final solution to the infected population
contained in city i.

C. Explicit first-order perturbation

Let us now calculate the first-order perturbation term k = 1.
Then the function g

(0)
i , see Eq. (10), is explicitly g

(0)
i (t) =∑

j (ωi←j I
(0)
j − ωj←iI

(0)
i ), such that Eq. (11), using Eq. (8),

becomes

I
(1)
i = e−χi (t−t0)

(1 + Vie−χi (t−t0))2

M∑
j=1

[ωi←jQij − ωj←iQii], (12)

where

Qij = I∞,j

∫ t

t0

eχi (t ′−t0) (1 + Vie
−χi (t ′−t0))2

1 + Vje
−χj (t ′−t0) dt ′. (13)

The quantity Qij may be expressed in terms of hypergeometric
functions [25].

For the scope of this article, let us analyze the case where we
shall assume that all infection and recovery rate parameters are
independent of the city, namely βi = βj = β and γi = γj = γ .
Explicitly evaluating Eq. (13), we find that

Qij = −I∞,j

χ

[
(Vi − Vj )2

Vj

ln

(
1 + Vje

−χ(t−t0)

1 + Vj

)

+ 1 − χ (t − t0)(2Vi − Vj ) − eχ(t−t0)

]
. (14)

This leads to the explicit first-order perturbative contribution
to Eq. (7),

I
(1)
i = e−χ(t−t0)

χ (1 + Vie−χ(t−t0))2

⎛
⎝ M∑

j=1

ωi←j I∞,j

×
[
χ (2Vi − Vj )(t − t0)

− (Vi − Vj )2

Vj

ln

(
1 + Vje

−χ(t−t0)

1 + Vj

)]

−
M∑

j=1

ωj←iI∞,iχVi(t − t0)

⎞
⎠ , (15)

where we have used Eq. (6). Equations (8) and (15), with
Ii(t) = I

(0)
i (t) + I

(1)
i (t), constitute the first-order solution to

the SIS epidemic.
If instead of zero net nodal flux, Eq. (6), we instate the more

restrictive clause of detailed balance [12], ωi←jNj = ωj←iNi ,
we have that ωi←j I∞,j = ωj←iI∞,i . Using this relation, we
can write out the first-order perturbation, Eq. (15), explicitly
as

I
(1)
i = I∞,ie

−χ(t−t0)

χ (1 + Vie−χ(t−t0))2

M∑
j=1

ωj←i(Vi − Vj )

×
[
χ (t − t0) − Vi − Vj

Vj

ln

(
1 + Vje

−χ(t−t0)

1 + Vj

)]
. (16)

Summing this with the zeroth-order solution we reap the first-
order perturbative approximation to the number of infected in
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city i at time t :

Ii(t) = I∞,i

1 + Vie−χ(t−t0)

⎛
⎝1 + e−χ(t−t0)

(1 + Vie−χ(t−t0))

×
M∑

j=1

ωj←i

χ
(Vi − Vj )

[
χ (t − t0) − Vi − Vj

Vj

× ln

(
1 + Vje

−χ(t−t0)

1 + Vj

)]⎞
⎠ + O

(
w2

i←j

)
, (17)

where

Vi = I∞,i

I0,i

− 1,

and

I∞,i = Niχ

β
.

The first-order approximation to Ii(t), namely, Eq. (17), is
valid when the perturbation due to mobility is “small.” To
quantify explicitly the validity of Eq. (17) we introduce the
approximate validity indicator:

Ci(t0) =
M∑

j=1

ωj←i

χ
|Vi − Vj |=

M∑
j=1

ωj←i

β

∣∣∣∣ Ni

I0,i

− Nj

I0,j

∣∣∣∣ . (18)

For a given system, when Ci(t0) ≈ 0 the zeroth-order solution
is valid for Ii(t); when Ci(t0) ∼ O(1) the first-order solution is
an accurate approximation to Eq. (5). For Ci(t0) 
 1, Eq. (17)
breaks down. It should be noted that Ci(t0) may be valid for
node i, but the corresponding indicator for some other node
j may not be. In this case, Eq. (17) would be reasonable still
for Ii(t), but not for Ij (t), therefore caution is advised. In
particular we point out that, besides the travel rate ωj←i (in
units of β), also the fraction of initially infected for each node
enters Eq. (18) in a nontrivial way. Equation (18) requires
that every neighboring node have a finite fraction of initially
infected for Eq. (17) to be valid. This stems from the fact that if
a node is initially uninfected, the transport of infected persons
into that node, see Eq. (5), is no longer small (compared to the
infectivity and recovery term), i.e., the base assumption of our
perturbative approach is violated, therefore Eq. (17) breaks
down. To remedy this initial condition restriction, we turn to
linearization of the short-time dynamics in the next subsection.

D. Short-time approximation

We utilize the prerogative in the choice of t0 in the
previous section in order to generalize Eq. (17). We do this
via approximating the short-time regime to allow for any
initial state of the system, not only that all nodes be infected
as required by the first-order perturbation result. We begin
by neglecting the quadratic term I 2

i N−1
i in Eq. (5) (as it is

generally small for short times compared to the linear term),
thereby linearizing it to

∂t Ii(t) ≈
⎛
⎝χ −

M∑
j=1

ωj←i

⎞
⎠ Ii +

M∑
j=1

ωi←j Ij . (19)

This can be written as ∂t
�I (t) ≈ (� + χ ) �I (t), where �ij =

ωi←j (for i �= j ), and �ii = −∑
j ωj←i . For the second

matrix, χ = χ I (I is the identity matrix). Through the
Baker-Campbell-Hausdorff formula, and the commutativity
of χ and �, the general solution to this set of equations is

�I (t) = exp(�t)eχt �F0, (20)

where �F0 = �I (t = 0) is the actual initial condition [26]. Note
that �F0 is different from the initial conditions used for the
first-order perturbation result, i.e., �I0 = �I (t = t0). In Eq. (20)
the zeroth-order dynamics are captured via exp(χt) �F0, and the
correction factor to the zeroth order, captured in exp(�t), due
to travel.

To find a limiting time for which Eq. (20) is valid, consider
the following: We can recast Eq. (20) as

�I (t) = eχt
∑

α

�rα exp(λαt)��α · �F0, (21)

where the subscript α labels the eigenmode of the eigen-
value (λα), to the corresponding left (��α) and right (�rα)
eigenvectors of � [27], which are normalized to ��α · �rβ =
δαβ . We can approximate these exact linear dynamics by
considering the contribution of only the leading eigenmode,
α0 = 0 with λ0 = 0 [28]. Then we have ��0 = [1,1, . . . ,1]T ,
and �r0 = N−1

tot [N1,N2, . . . ,NM ]T , where Ntot = ∑M
j=1 Nj . So,

per node, Eq. (21) simplifies to Ii(t) ≈ N−1
tot NiF

tot
0 exp(χt),

where F tot
0 = ∑M

j=1 F0,j . We wish to investigate where the
linear approximation is valid, by comparing the linear
and quadratic terms: β/NiI

2
i � χIi, or Ii � Niχβ−1 ≡

I∞,i . Using the α = 0 linear approximation for Ii (as de-
scribed above), we get that the linear approximation should
be valid for exp(χt)NiN

−1
tot F tot

0 � Niχβ−1 where the Ni

drops out, leaving us with exp(χt) � (χβ−1)/(F tot
0 /Ntot)

which we recognize as the ratio between the asymptotic
fraction of infecteds to the initial one. Thus we expect
the linear approximation to break down as this limit
saturates, i.e., at

ts = χ−1 ln
[
(χ/β)/

(
F tot

0

/
Ntot

)]
. (22)

A positive ts indicates that we need the initial linear stage,
before switching to the nonlinear dynamics in the perturbative
approximation. A negative ts , on the other hand, indicates that
we can skip the linear step, and go directly to the nonlinear
stage. Henceforth, ts will be referred to as the short-time limit.

If we are to “stitch” Eq. (20) to Eq. (17), we require that
Eq. (17), be valid, i.e., Ci(t0) ∼ O(1), where t0 shall now be
known as the stitch time. This criterion sets a soft lower bound
to the use of Eq. (20). We establish a cutoff value of the
validity indicator to be Ccut,i = Ci(t = tc) ∼ O(1). Then the
time frame for a suitable stitching is tc < t0 < ts . This stitched
approximation allows us to model the full temporal dynamics
of the network irrespective of the initial conditions.

To illustrate Eqs. (20) and (21), we construct a
simple system of two nodes, whose eigenvalues are
� and {λ1,λ2} = {0, − (ω1←2 + ω2←1)} (see [28]),
with the respective eigenvectors: �v1 = [ω1←2ω

−1
2←1,1]T

and �v2 = [−1,1]T . If we set the initial conditions
�I (t = 0) = [F0,1,0]T , then the nodal short-time evolution
is I1(t) = F0,1ω

−1
T {ω2←1 exp(χt) + ω1←2 exp([χ − ωT ]t)},

I2(t) = F0,1ω2←1ω
−1
T {exp(χt) − exp([χ − ωT ]t)}; where

ωT = ω2←1 + ω1←2.
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III. SIS EPIDEMIC IN NEW ZEALAND (AOTEAROA)

We proceed by measuring the performance of our analytical
expressions, Eqs. (17) and (20), with realistic population [29]
and air transport data [30] through a test case scenario, an SIS
epidemic in New Zealand (NZ). First, we suppose an infec-
tious virus (β = 0.15 day−1, γ = 0.10 day−1, R0 = 1.5) has
introduced itself within the Auckland region (see the Appendix
for population statistics) and assume people (and therefore the
virus), both susceptible and infected, move between nodes via
the air traffic transport network where there is no transport in-
ternationally with NZ (which one could think of as a quarantine
measure [31]). We consider two networks to illustrate the work
done herein: first, a simplified model where we recompose NZ
into two subpopulations, Auckland, and the remainder of NZ.
In the second scenario we consider the full NZ network (as
shown in Fig. 1 and described in the Appendix).

A. NZ two-node system

In the event of an outbreak given the virus parameters
mentioned above, we seek to understand how the country’s
largest city, Auckland (Tāmaki Makaurau, subscript “Auck”),
is affected and/or affects the remainder of NZ (subscript
“rem”). We divide NZ into these two subpopulations (thereby
assuming that each of these populations is well mixed). The
documented transport rates between these two nodes are
ωrem←Auck ≈ 5.5 × 10−3 day−1, and ωAuck←rem ≈ 3.2 × 10−3

day−1 [23], which are indeed small—as required by our per-
turbation assumption. We set the initial infected population to
F0,Auck = 100 and F0,rem = 0, for Auckland and the remainder
of NZ, respectively. Given these initial conditions and virus
parameters, the short-time limit is ts ≈ 200 days. We use
Eq. (20) to model the network until all nodes in the network
are infected [Ii(t) � 1, ∀i], and the validity indicator for
Auckland, CAuck � 2. At this time (t0 ≈ 130 days) we use
the state of the system as the initial condition for Eq. (17),
and model the remaining infection dynamics for both nodes.
We also compare our stitched first-order result to the stitched
zeroth-order result [using Eqs. (8) and (20)]. This scenario of
“no travel” can be likened to a situation of quarantine when all
nodes have been found to be infected. It is also a measure of
how effective the zeroth-order solution, Eq. (8), is at estimating
the time evolution of the epidemic. The stitched first-order
and the stitched zeroth-order perturbation approximations are
compared to the numerical solution �Inum(t) (calculated by
the Runge-Kutta fourth-order algorithm) in Fig. 2. We note
that, in Fig. 2, our analytical result conforms well to the
numerical result, where the absolute residuals [|j (t)|, see
Appendix, Eq. (A1)] between the first-order correction and
the zeroth-order correction are given in the inset. The zeroth-
order solution performs poorly at estimating the interim
dynamics of the epidemic, especially underestimating the
fraction of infected in Auckland.

B. Full NZ network

To assess further the scope of our perturbation result, we
reconstruct the system to include all available airports, giving
a total of 23 nodes (see Fig. 1 and the Appendix). For this
system we assume the same virus as before, with the same
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FIG. 2. (Color online) The infected fraction of the populace over
time (due to an SIS epidemic) for each node for an internationally
quarantined New Zealand, apportioned into two subpopulations:
Auckland, and the remainder of the country. One clearly notes that
in both populations, the stitched first-order perturbation, Eqs. (17)
and (20) [solid red (black) line], approximates the numerical solution
well (solid gray line), compared to the stitched zeroth-order solution,
Eqs. (8) and (20) [dashed red (black) line]. Inset: Absolute residuals
of the analytical calculations, with respect to the numerical solution.
For further explanation and auxiliary parameters see the main text.

initially infected, whom have been introduced initially to the
Auckland node (this again gives a short-time limit of ts ≈
200 days). Again, we use Eq. (20) to simulate the short-time
regime until all nodes are infected [Ii(t) � 1, ∀i], and the
validity indicator for Auckland CAuck � 2. At this time, t0 ≈
127 days, we use Eq. (17) to model the dynamics given the
current state of the system. We plot these results for Auckland
compared to the numerical solution and the stitched zeroth-
order approximation, Eqs. (8) and (20), in Fig. 3.
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FIG. 3. (Color online) Infected fraction over time for the Auck-
land and Timaru regions of an internationally quarantined NZ,
illustrated in Fig. 1. These data demonstrate the capabilities of the
stitched first-order perturbation, Eqs. (17) and (20) [solid red (black)
line], on a realistic network (23 airport nodes of NZ, see Appendix)
compared to the numerical solution (solid gray line). For further
explanation and auxiliary parameters see the main text.
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The choice of t0 here favors a good validity indicator for
Auckland. To understand the repercussion of this on other
nodes in the network, alongside the infection dynamics of
Auckland in Fig. 3, we have plotted the dynamics of Timaru (Te
Tihi-o-Maru). Timaru has the highest validity at the stitch time,
CTim ≈ 6.39. This larger validity indicator makes for a worse
approximation, as shown in Fig. 3, compared to Auckland
with respect to the numerical solution. On the other hand,
the stitched zeroth order fares more poorly given this t0. This
highlights the subtle consequences in the choice of t0.

IV. DISCUSSION AND CONCLUSION

Within this article, we have derived a closed form, recursive,
perturbative solution to an SIS epidemic on an arbitrary
network, stated in Eqs. (10) and (11). We have proceeded
to explicitly calculate the first-order perturbation to the
population of infected persons in the ith city as a function
of time, to wit, Eq. (17), and then provided a quantitative
benchmark under what conditions this solution is accurate: the
validity indicator, Eq. (18).

We have generalized Eq. (17), to include the arbitrary
initial condition of the network through the linearization of the
short-time dynamics, Eq. (20). We quantified a short-time
limit, ts Eq. (22), for which Eq. (20) is valid. The results of
Eq. (20) are stitched to Eq. (17), at the stitch time, t0(<ts) (see
main text for further remarks). This gives an approximation to
the full network dynamics irrespective of initial conditions.

To verify our derived results we simulated an SIS epidemic
on an internationally quarantined New Zealand (see Fig. 1).
This comparison served a twofold objective; first the use of
documented air traffic data [32] showed that in this medium
of transport, our base assumption, that transport rates between
communities are small, is indeed reasonable and accurate as a
perturbation parameter. Second, it serves to show the extent of
use of our stitched first-order result; namely that it performs
well on a realistic, moderately sized (23 nodes) network.

The derivation makes no assumptions on the type of the
network, whether it be a real-world network, regular lattice, a
random Erdős-Rényi graph, or a scale-free network [9]. It has
also only been assumed, besides the detailed balance condition
[see Eq. (15) for an expression without this assumption], that
the population of each node is large enough such that the
mean-field nature of Eq. (3) is true. Therefore the nodes may
be seen as communities or countries, rather than only cities.
This generality is advantageous for future investigations of SIS
epidemics on complex networks or metapopulations as this
work may be used in parallel as a confidence measure. But
caution is advised. The success of the stitch approximation
on this network is due to the magnitude of the travel rates
and the diameter of the network. The NZ network has a low
diameter of 3, with reasonable travel rates, so in turn the
short-time approximation is able to “seed” every node, enough
so that CAuck(t0) ∼ O(1) while t0 < ts . One could envisage a
sparse network with a large diameter and slow travel rates,
such that Ci(t0) ∼ O(1) for ts < t0. This could then lead to
the breakdown of our calculations. So therefore it would be
of interest to understand how higher-order perturbation terms
may regularize our first-order approximation.

One of the striking benefits of the solution is that one
has an analytical expression for Ii(t) at all times and as
such naturally outperforms usual investigative methods of
numerical integration. In this way this solution can be used
to gauge parameter sets of large numerical simulations.

These calculations were built upon the assumption of large
populations, where mean-field approximations are valid. A
natural extension would be the effect of stochasticity for low
populations. This may be found through an analytic pertur-
bative solution of the associated master equation akin to that
defined for an SIR epidemic in the work of Hufnagel et al. [33].

Although the analytics have been developed under the guise
of epidemic modeling, this mathematical framework may be
conveniently adopted by other interdisciplinary fields with
population growth and metapopulation structure, for example
theoretical ecology and the concept of island colonization [34].

In conclusion, we hope the mathematical framework de-
termined herein will shift part of the academic interest of
epidemics on networks from large scale numerical simulations
back to the bedrock of analytical analysis.
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APPENDIX

Within this Appendix we offer more statistics on our analy-
sis of the epidemic on the full NZ network, and instructions on
how the network was constructed from census and air traffic
data.
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FIG. 4. (Color online) Illustrated are the residue statistics as a
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in comparison to the numerical solution (see also Fig. 3 for more
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time of stitching, the time at which the epidemic has spread to
all nodes [Ii(t) > 1, ∀i], and the validity indicator, Eq. (18), for
Auckland is CAuck � 2. The ordinate axis shows the fraction of the
total population.
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1. NZ network statistics

In the full system, Eqs. (17) and (20) model the dynamics
well for Auckland and Timaru, in comparison to Eqs. (8)
and (20) (as shown in Fig. 3), but we seek the performance over
the entire network. Due to the size of the system, we have opted
to show the residue statistics as a measure of performance over

TABLE I. North Island network of New Zealand. First column
defines which airport (with designated label used in Fig. 1) is used by
which regions, given in the second column. The third column gives
the population for each region, and the fourth is the total population
using the corresponding airport.

Region Node
Node airport Regions of node pop. pop.

Kaitai-Kerikeri (KK) Far North 58 500 58 500
Whangarei (WR) Whangarei 80 500 80 500
Auckland (AK) Kaipara 1 19 150

Auckland city 1 486 000
Hauraki 18 750
Thames-Coromandal* 27 000
Waikato 64 300 1 615 200

Hamilton (HM) Hamilton city 1 45 600
Matamata-Piako 32 000
Waipa 46 100 2 23 700

Tauranga (TR) Tauranga city 1 15 700
Western BOP 45 800 161 500

Rotorua (RT) Rotorua 68 900
South Waikato 22 900 91 800

Whakatane (WK) Whakatane 34 500
Kawerau 6940 41 440

Gisborne (GB) Gisborne 46 600
Opotiki 8950
Wairoa 8350 63 900

Taupo (TP) Taupo 34 100
Otorohanga 9320 43 420

New Plymouth (NP) New Plymouth 73 800
Waitomo 9630
Ruapehu 13 400
Stratford 9170
Sth. Taranaki 26 900 132 900

Napier-Hastings (NH) Napier city 57 800
Hastings 75 500
Centrl Hawkesbay* 13 500 146 800

Whanganui (WG) Whanganui 43 500
Rangitikei 14 800 58 300

Palmerston Palmerston Nrth. city 82 100
Nrth. (PN)

Manawatu 30 000
Tararua 17 700
Horowhenua 30 700
Masterton* 23 500 184 000

Wellington (WL) Wellington city 200 100
Kapiti Coast 49 800
Porirua city* 52 700
Upperhutt city 41 500
Lowerhutt city 103 000
Sth. Wairarapa 9420
Carterton 7650 464 170

all nodes. We define the residue of node j as

j (t) = Ij (t) − Inum,j(t), (A1)

where Ij (t) is either the first-order solution or the zeroth-order
one. The mean residue is then ̄(t) = M−1 ∑M

j=1 j (t), and

the standard deviation is σ(t) =
√

M−1
∑

j (j − ̄)2. We

see holistically in Fig. 4 that the first-order performs better
than the zeroth-order solution, on average, for this system.

2. NZ network construction and parameters

For the case study within this article, NZ has been
recomposed into 23 nodes, each identified by the airport
which services the node. Each node is constructed through
a combination of the census data [29] and air traffic data [32].
The explicit population of each node is shown in Tables I and II.
The node is composed of census defined “regions” (numbering
66), and how each census region is billeted to which airport is
defined through the following criteria: (1) if a region has only
one airport, that airport services the region; (2) If a region has
two or more airports, the total influx or outflux of those airports
are combined to make one airport node (e.g., Kaitai-Kerikeri);
(3) if a region has no airports, and several adjacent airports,
the largest airport services that region; (4) all other situations
are made on a case by case basis and are highlighted via “*” in
Tables I and II. The travel rates between nodes are described
in Ref. [23].

TABLE II. South Island network of New Zealand. See Table I for
discussion of columns.

Region Node
Node airport Regions of node pop. pop.

Nelson (NL) Nelson city 46 200
Tasman 48 100 94 300

Westport (WS) Buller 10 100 10 100
Hokitika (HK) Westland 8960

Grey 13 900 22 860
Christchurch (CH) Christchurch city 367 700

Waimakariri 48 600
Selwyn 41 100 457 400

Timaru (TM) Timaru 44 700
Ashburton 30 100
Mackenzie 4050
Waimate 7630 86 480

Queenstown-Wanaka Queenstown 28 700
(QW) lakes

Central Otago 184 00
Southland 29 600 76 700

Blenheim (BL) Marlborough 45 600
Kaikoura 3850
Hurunui 11 300 60 750

Dunedin-Oamaru (DO) Waitaki 20 900
Dunedin city 126 000
Clutha 17 550 164 450

Invercagill (IN) Invercagill 53 000
Gore* 12 300 65 300
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