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Abstract. This is the second progress report of the international project funded by the National 
Research Council of Canada called Resilience and Adaptation to Climatic Extreme Wildfires 
(RACE Wildfires). In this second phase, the research performed included two main tasks: 1) 
developments concerning the modelling of smoke and 2) development of analysis methods 
concerning validation datasets for wildfire evacuation. Visibility in smoke is a key aspect in terms 
of safe evacuation in wildfire scenarios. As valid results of evacuation modelling tools would rely 
on an accurate representation of the impact of smoke on people, physical accuracy is required. 
Therefore, the rendering of smoke needs to be physically based while still being computationally 
inexpensive so that it can be run in a multi-physics tool in real-time. This report presents an 
approach for rendering smoke with a single in-scattering term which allows for smoke and light 
interaction over multiple wavelengths. In addition, analysis methods concerning validation datasets 
for wildfire evacuation models are presented and discussed. This includes both traditional 
regression methods as well as approaches based on machine learning. 
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1. Introduction 

This report presents the second part of the interim results of the Resilience and Adaptation to 
Climatic Extreme Wildfires (RACE Wildfires) project, funded by the National Research Council 
of Canada. The project included different activities, this report being focused on the development 
of modelling tools to assess community evacuation protocols. 

The reason for initiating the project was due to the potentially severe negative impacts caused by 
wildfires spreading towards urbanized areas, which may require mass evacuations. Wildfires may 
occur in Wildland-Urban Interfaces (WUI), where structures and vegetation are integrated into a 
fire-prone environment (Mell et al., 2010). The National Research Council of Canada (NRCC) and 
the National Resources Canada (NRCan) have identified the need for research to reduce the 
impact of WUI fires. This research led to the development of a Canadian National Guide for WUI 
fires (Benichou et al., 2021). Modelling tools may be useful for WUI fire evacuation, providing 
support both during planning and real-time management (Beverly & Bothwell, 2011). Typically, 
these tools consist of various modelling layers, such as wildfire spread modelling, human response 
and movement simulations, and traffic evacuation modelling (Ronchi et al., 2019, 2020; Ronchi & 
Gwynne, 2019). 

The present interim report mainly focuses on the representation of smoke and also presents initial 
work performed on the treatment of data that can be used for the validation of wildfire evacuation 
modelling tools. The activities performed included a general review of approaches and methods 
for the representation of smoke along with the development of a new approach to smoke 
modelling in virtual reality. In addition, methods for the analysis of large wildfire evacuation data 
have been proposed including both traditional methods as well as machine learning.  

The use of virtual reality (VR) has large a potential for modelling applications, as shown by the 
wildfire evacuation model WUI-NITY (Wahlqvist et al., 2021) and its associated modelling layers 
(including wildfire and smoke) and for experimental studies, e.g., driving behaviour in smoke 
(Wetterberg et al., 2021). One aspect which is of prime interest is to enhance the received visual 
stimuli of smoke and consequently visibility. This is particularly important in the evacuation 
domain as reduced visibility may impact human response (Ronchi & Gwynne, 2019) – both in the 
routes used and the speeds that can be maintained - and the whole evacuation process (Intini et 
al., 2022). The interaction between smoke and light is a critical part of visibility but has thus far 
been simplified due to its physical complexity and thereby requirements on computer hardware. 
For example, the WUI-NITY tool which is developed with the game engine Unity is capable of 
two-way interaction between different modelling layers. Nevertheless, there is a dire need for 
further developments in order to fully being able to model the impact of smoke on evacuation.  
 

An accurate representation of fire smoke in VR would allow the collection of evacuation data 
through dedicated experiments aimed at investigating driving behaviour in smoke. For instance, it 
could allow the accurate representation of vehicle headlights during evacuation on the road, thus 
enabling the collection of data concerning headways during evacuation in wildfire scenarios. This 
is a clear research gap which has been identified in previous research in this domain (Rohaert et 
al., 2023). Such data are ultimately needed to systematically investigate the fundamental 
relationships between speed, flow and densities. Those relationships are the backbone of current 
macroscopic traffic simulations and are typically used for validation of microscopic traffic models 
(Ronchi et al., 2021). Therefore, the study of treatment and analysis of such data is a natural 
consequential step for the current project, and it is addressed in this report as well. The methods 
explored for data treatment and analysis include both traditional regression approaches as well as 
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novel methods based on machine learning (e.g., kernel ridge regression, support vector regression, 
and Gaussian process regression). 

1.1 Aim and objectives 

This work investigates developments needed in evacuation modelling tools for wildfire scenarios 
aimed at improving the accuracy of their results. 

The first objective includes a review of the core theory and modelling approaches concerning 
modelling of smoke and representing visibility conditions. This information is used as a starting 
point to develop a new approach for the representation of smoke in virtual reality. The present 
work aims to build upon the approach presented in (Wahlqvist, 2018) by applying techniques used 
in the gaming industry while focusing on physically based smoke characteristics and the specific 
application of fire safety engineering.  

The second objective includes paving the way for the collection, treatment and analysis of large 
wildfire evacuation datasets. In particular, the main focus has been on the relationship between 
three key variables: speed, flow and density, which can be available in traffic databases and can 
also be studied in Virtual Reality experiments (e.g., using driving simulators (Shibata & Sakuraba, 
2019)). Therefore, this work provides guidelines to select, treat and analyse data from real-world 
wildfire scenarios as well as virtual reality evacuation experiments. The data selection process is 
linked to some key issues, such as collection methods, measurement uncertainty, and assumptions 
adopted in the data treatment. In other words, inclusion/exclusion criteria can play a key role in 
the definition of the final dataset obtained and used for development and validation purposes. In 
addition, this work reviews different methods of obtaining the relationships between speed, flow 
and density. This expands on the discussion on common mistakes in the statistical analysis of 
movement data from (Bode & Ronchi, 2019). First, traditional statistical methods (e.g., curve 
fitting) are reviewed and analysed, for the specific case of movement dynamics. Second, the 
benefits and drawbacks of common machine learning regressions are explored (e.g., kernel ridge 
regression, support vector regression and Gaussian process regression). This work presents a 
review of existing approaches and guidelines on how to apply them to real data sets from traffic 
evacuation dynamics in case of wildfires. These datasets might vary in size, distribution, and 
homogeneity.  

1.2 Report overview 

The first chapter of this report briefly introduces the project, the overall aim and objectives of this 
part of the work and the report structure. Chapter 2 first presents the theoretical foundation 
concerning modelling fire smoke along with existing modelling approaches and then presents the 
method employed for the development of a new fire smoke sub-model in a game engine. Chapter 
3 presents a brief overview of existing approaches adopted for the treatment and analysis of data 
concerning the fundamental relationships between speed, flow and densities which are typically 
used in traffic evacuation modelling. Chapter 4 presents a general discussion on the sub-model 
developed, their possible uses and further steps needed for their full implementation in existing 
multi-physics wildfire evacuation modelling tools. 

1.3 Publication outputs  

At the time of publication of this second interim report, three publications have been published 
or submitted for publication based on the activities conducted in the project. Two publications [1] 
and [2] refer to the work performed on the development of a fire smoke sub-model and its impact 
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on evacuation. The third publication [3] refers to the treatment and analysis of traffic evacuation 
data concerning the speed, flow and density relationships. 

[1] Intini, P., Wahlqvist, J., Wetterberg, N., & Ronchi, E. (2022). Modelling the impact of wildfire 
smoke on driving speed. International Journal of Disaster Risk Reduction, 80, 103211. 

[2] Wahlqvist, J., Rubini, P. (2023). Real-time visualization of smoke for fire safety engineering 
applications. Symposium of the International Association for Fire Safety Science, Tsukuba, Japan. 

[3] Rohaert, A., Wahlqvist, J., Najmanova, H., Bode, N., Ronchi, E. (2023). The evaluation of data 
fitting approaches for speed/flow density relationships. Proceedings of the 11th International 
Conference on Pedestrian and Evacuation Dynamics (PED2023) Eindhoven, The Netherlands – 
June 28-30, 2023. 

 

  



9 

 

2 Development of a sub-model of fire smoke 

This section first introduces the base theory concerning the modelling of fire smoke, including 
visibility, smoke properties and phase function. This section is followed by a description of existing 
modelling approaches and a new modelling approach developed in a game engine (Unity) which 
makes use of both traditional code and shaders, e.g., code that runs on the graphics processing 
unit (GPU).  

2.1 Visibility in Smoke 

The light intensity along a path in a participating media (such as smoke) is changed due to three 
main processes (Pharr et al., 2016) (shown in Figure 1): 

• Absorption – the reduction in intensity due to the conversion of light to another form of 
energy, such as heat. 

• Emission – intensity that is added along the path from luminous particles such as fire 
embers or a flame. 

• Scattering – how light heading in one direction is scattered, or bounced, in other directions 
due to collisions with particles. This is often divided into two sub-parts; in-scattering, light 
that is added along the path, and out-scattering, light that is lost along the path. 

    

Figure 1. Main processes involved in changing the intensity of light along a path. 

As described by (Forney, 2013), the change in radiance in the direction 𝜔 at any one instant and 
wavelength may be expressed as in Equation 1. 

(𝜔 ∙ ∇)𝐶(𝑥, 𝜔) = −𝜎𝑎(𝑥)𝐶(𝑥, 𝜔)⏟        
𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛

− 𝜎𝑠(𝑥)𝐶(𝑥, 𝜔)⏟        
𝑜𝑢𝑡−𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔

+ 𝜎𝑎(𝑥)𝐶𝑒(𝑥, 𝜔)⏟        
𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛

+ 𝜎𝑠(𝑥)∫ 𝑝(𝑥, 𝜔, 𝜔′)
4𝜋

𝐶𝑖(𝑥, 𝜔′)𝑑𝜔′
⏟                    

𝑖𝑛−𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔

 

 

[Eq. 1] 

where C(𝑥, 𝜔) represents the radiance at 𝑥 along a direction 𝜔. Extinction is the total reduction 
along the path, a combination of absorption and out-scattering. A simplification can be made to 
Equation 1 by combining the absorption and out-scattering into the so-called extinction coefficient 
𝜎𝑡 (see Equation 2). 

𝜎𝑡 = 𝜎𝑎 + 𝜎𝑠 

 

[Eq. 2] 

Equation 1 can also be simplified by ignoring any in-scattering as that is an additive term (𝜎𝑠(𝑥) =
0); both these simplifications are done in Smokeview for example (Forney, 2013). The resulting 
simplified equation can be useful to evaluate visibility from smoke density using experimental data 
from (Jin, 1978), one of the seminal and mostly used works related to visibility in smoke. According 
to (Mulholland, 2002) the most useful quantity for assessing visibility in a space is the light 
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extinction coefficient, K. The intensity of light (wavelength independent, or monochromatic) 
passing a distance L through a participating media (e.g., cloud, mist, smoke) is attenuated according 
to Beer-Lambert’s (or Bouguer’s) law, as shown in Equation 3. 

𝐼

𝐼0
= 𝑒−𝐾𝐿 [Eq. 3] 

Where I0 is the initial light intensity, I is the intensity after the distance L and K is the light extinction 
coefficient. K is a product of a mass specific extinction coefficient, Km, which is fuel and wavelength 

dependent (Suo-Anttila et al., 2005), and the density of smoke particulate, 𝜌 ⋅ 𝑌𝑆 (see Equation 4). 

𝐾 = 𝐾𝑚 ⋅ 𝜌 ⋅ 𝑌𝑆 [Eq. 4] 

Where 𝜌 is the density of the hot gasses and 𝑌𝑆 is the mass fraction of soot in the hot gasses. The 
default value of Km in the widely used Fire Dynamics Simulator (FDS) is 8700 m2/kg (McGrattan 
et al., 2017) which passes these values on to Smokeview for rendering. This is based on 
(Mulholland & Croarkin, 2000) which suggests that the value for Km most flaming fuels is 8700 
m2/kg ± 1100 m2/kg at a wavelength of 633 nm (a monochronic red light). 

According to (Mulholland, 2002) the visibility through smoke can be estimated by dividing  a non-
dimensional constant C, based on the nature of the observed object through the participating 
media (smoke) and the light extinction K (see Equation 5). 

𝑆 =
𝐶

𝐾
 [Eq. 5] (5) 

The suggested values by (Mulholland, 2002) for C are 3 for light-reflecting signs and 8 for light-
emitting signs. However, (Jin, 1997) recommends a range of C between 2-4 for a light-reflecting 
sign and a range of C between 5-10 for a light-emitting sign, indicating that these values might be 
hard to determine. Recent experimental work also questioned the suggested values by Jin for higher 
values of the extinction coefficient and that the visibility constant under white smoke conditions 
is higher than what Jin suggested (Elhokayem, 2022). There are some limitations to this approach 
as visibility is treated as a property entirely based on the observed object being light emitting or 
light reflecting. To date, taking into account that it cannot be determined in a deterministic way 
how much light is actually transported to the observed object from the surroundings, making it 
especially hard to evaluate the visibility of light-reflecting objects. Another limitation is the lack of 
inclusion of any interaction between the light and the smoke besides the extinction from an 
observed surface and observer, such as in-scattering which could affect the visibility. It is also not 
possible to evaluate any wavelength-dependent properties of either the smoke or the light without 
additional data. 

Although not necessarily focused on visibility, other areas such as computer graphics have been 
active in researching rendering of participating media for four decades, going from early works 
such as (Blinn, 1982) to featuring algorithms fast enough for real-time rendering in games (Hillaire, 
2016; Kniss et al., 2002; Szirmay-Kalos et al., 2005; Tatarchuk et al., 2014; Ummenhoffer & 
Szirmay-Kalos, 2005). Worth noting however is that the use of real-time approaches often means 
sacrificing some accuracy along the way, e.g. multiple scattering and global illumination. General 
approaches are specifically used in off-line rendering, even though the advances in graphics 
hardware compute power can close the gap between real-time and off-line rendering techniques 
(Pérez et al., 1997), e.g. enabling real-time path tracing (Clarberg et al., 2022). 
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2.2 Smoke properties and phase function 

As a starting point for the review of the existing modelling approach, the work by (Bond & 
Bergstrom, 2006) is used to assemble data from different fields which describe the optical 
properties of soot which are generally the main component of fire-induced smoke. This summary 
shows both the complexity and variety of fire-induced smoke, making it clear that each application 
requires different parameters. To add to this complexity, experimental measurements and Mie 
theory (Wriedt, 2012) can be combined to present radiative properties for representative wildfire 
smoke at 550 nm (green) which showed that different combustion phases might produce 
significantly different smoke properties (Patterson & McMahon, 1984). They report a single-
scattering albedo of 0.97 during the smouldering phase while it was 0.66 during the flaming 
combustion phase. The single-scattering albedo is the ratio between the scattering coefficient and 
the extinction coefficient and can be used to roughly determine the importance of multiple-
scattering (Adamson, 1975). A value of 1.0 means that any extinction is due to out-scattering and 
that light will scatter around until it exits the participating medium. A value of zero means 
extinction is only due to absorption and light will enter and exit in the same direction, making it 
possible to completely omit any scattering effects. 

Widmann (2003) analysed data for flaming fires and found a correlation between wavelength and 
extinction coefficient which can be useful, but unfortunately, it does not treat scattering and 
absorption separately. More recently, (Koch et al., 2021) obtained data on burning plastics and  
investigated the wavelength dependency and its effect on visibility but again focused on extinction 
rather that scattering and absorption. However, (Suo-Anttila et al., 2005) reported both wavelength 
dependency and absorption and scattering coefficients individually for three different fuels: 
suitcase, resin and Jet-A. Table 1 shows averaged data for all three fuels, and it can be seen that 
the normalized wavelength-dependent absorption and scattering ratios are different; this means 
that the wavelength dependency is stronger for scattering compared to absorption. Therefore, 
scattering and absorption need to be treated separately and not as ratios of the total extinction 
coefficient.  

Table 1. Smoke property data extracted and averaged from (Suo-Anttila et al., 2005). 

Wavelength 650 nm (red) 530 nm (green) 460 nm (blue)* 

Mass-specific scattering coefficient [m2/kg] 1800 2900 4000 

Normalized specific scattering coefficient [-] 1 1.61 2.22 

Mass-specific absorption coefficient [m2/kg] 4600 6000 7300 

Normalized mass-specific absorption [-] 1 1.30 1.59 

Mass-specific extinction coefficient [m2/kg] 6400 8900 11300 

Normalized mass-specific extinction coefficient [-] 1 1.39 1.77 

Single-scattering albedo coefficient [-] 0.28 0.33  0.35 

* Data has been extrapolated. 

The phase function describes the relative angular distribution of light intensity when scattering 
occurs at a given wavelength. As shown by (Weinert et al., 2003), different fuels can produce smoke 
with quite varied phase functions and they are generally quite complex. This creates problems from 
both an experimental point of view, as it might be hard to obtain values for all angles and 
wavelengths of interest, but it also creates issues when trying to model the complex scattering 
phase function, a problem not unique to fire and smoke. Due to this reason, some analytical phase 
functions applicable to Mie-scattering have been developed for practical use: 
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• Isotropic scattering – all light scatters equally in every direction. 

• Henyey-Greenstein phase function (Henyey & Greenstein, 1941) – a phase function that 
enables forward- or backward-scattering based on a single parameter g. 

• Schlick phase function (Blasi et al., 1993) – an approximation of the Henyey-Greenstein 
phase function created to be more computationally effective. 

Combinations of two phase-functions with different properties can be done to emulate e.g. double 
lobe scattering with both forward- and backward-scattering which might be more suitable for some 
fuels. 

2.3 Existing approaches for smoke modelling and visualization  

Wildfire predictions have been performed for decades and one of the seminal mathematical 
models (Rothermel, 1972) is still widely used today. The most prevalent computational models 
implementing the so-called Rothermel equations are FARSITE (Finney & others, 1998) and 
Prometheus (Tymstra et al., 2010) which share similar implementations. As they solve the fire 
spread on a two-dimensional plane, they can be considered quite computationally effective, and 
can thereby be used to perform simulations of wildfire spread over large areas. However, they both 
have a significant weakness as neither can do any form of smoke dispersion. More advanced 
models that are “more” physics-driven have large drawbacks in terms of computational efficiency. 
 
To predict gas dispersion and gas concentrations, many different models have been developed in 
the past decades (Blackmore et al., 1982; Siddiqui et al., 2012). These models can be classified in 
accordance with the mathematical approach in use (Assael & Kakosimos, 2010). It is possible to 
distinguish different categories with increasing complexity: 

• Gaussian models 

• Box models 

• Lagrangian particle and puff models 

• Computational fluid dynamics (CFD) models (Rodean, 1996).  
 
In the past decades, the increment in computational power has allowed the spread of the use of 
CFD models to investigate a number of indoor (Siddiqui et al., 2012) and outdoor accident 
scenarios such as railway accidents (Manca & Brambilla, 2010), gas dispersion in urban areas 
(Hanna et al., 2006; Lovreglio et al., 2016; Pontiggia et al., 2009, 2010, 2011) or rail-car releases 
(Hanna et al., 2009). These types of models have been in some instances more effective in 
representing scenarios with complex geometries, such as urban areas (Pontiggia et al., 2010). 
However, the selection of the gas dispersion model can be affected by several other factors, such 
as the scale of the problem. 
 
Smoke models are developed based on atmospheric transport and dispersion theory and chemical 
mechanisms or statistical relationships. Various types of smoke models are available to simulate 
the rise, dispersion, transport and deposition of smoke particles and gas and chemical reactions 
for generation of ozone and secondary organic carbon (Goodrick et al. 2012). Lagrangian models 
such as CALPUFF (Scire 2000), Hybrid Single-Particle Lagrangian Integrated Trajectory 
(HYSPLIT) (Draxler and Rolph 2003), FLEXPART (Stohl and Thomson 1999) and Daysmoke 
(Achtemeier et al. 2011) predict variations of individual moving smoke, which appears either as a 
collection of independent ‘puffs’ or as infinitesimal air containing a fixed mass of pollutant 
particles. Eulerian models such as the Community Multiscale Air Quality (CMAQ) model (Appel 
et al. 2017), Comprehensive Air Quality Model with Extensions (CAMx) (Ramboll Environ 2016), 
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and the ECMWF Integrated Forecasting System (IFS) (Wedi et al. 2015) predict variations of 
smoke particle and gas concentrations at spatial grid points. 
 
Smoke models such as WFDS, FIRETEC, FIRELES, FIRESTAR, WRF-SFIRE, Daysmoke, 
CAWFE (Clark et al. 2004; Coen 2013), ARPS-DEVS (Dahl et al. 2015), and MesoNH-ForeFire 
(an atmospheric and fire spread model) (Filippi et al. 2011) and dynamic plume rise models (Freitas 
et al. 2010; Grell et al. 2011) explicitly resolve the plume rise. 
 
Many CFD models and frameworks exist that are capable of simulating dispersion, e.g., 
OpenFOAM, but only a few are directly aiming at simulating specifically smoke dispersion from 
wildfires. One such model is Fire Dynamics Simulator (McGrattan et al., 2013) that has multiple 
sub-models to model wildfire spread, both physics-driven and Rothermel-driven (Rehm & 
McDermott, 2009). 
 
One of the most commonly used smoke visualizers, Smokeview (Forney, 2013), has implemented 
volume rendering by performing ray-marching over the volume containing the smoke data 
(Forney, 2013). Other work using ray-marching exists (Kang & Macdonald, 2005), though it does 
not consider light/smoke interactions other than pure light extinction. Additionally, the properties 
of the smoke are considered wavelength independent, assigning the same extinction coefficients 
to all wavelengths. As no general concept of light exists in these approaches, it can be difficult to 
accurately assess visibility as this has to be done using correlations based on experimental data (Jin, 
1978) which were done under specific light conditions. Smokeview also provides a slice rendering 
technique with the same limitations as the ray-marching approach, but similar techniques have 
been developed by both (Staubli et al., 2005) and (Carlsson et al., 2007) with the inclusion of more 
complex light models. However, the included light model in (Carlsson et al., 2007) only interacts 
with opaque surfaces, not the participating media itself, while (Staubli et al., 2005) does offer per 
vertex light extinction from the smoke itself but still relies on empirical models for visibility. 

More physically accurate approaches for rendering smoke to evaluate visibility do exist (Rubini et 
al., 2007; Zhang, 2010), and the rendered results show great improvements compared to the 
simplified approaches mentioned previously. This approach included multiple scattering of light 
in smoke based on physical properties (Zhang & Rubini, 2011) as well as global illumination, 
rendering realistic output images which can be used to evaluate visibility. The main drawback 
however is the computational cost of these techniques, resulting in slower than real-time rendering 
making it unsuitable for interactive applications such as virtual reality evacuation experiments or 
real-time wildfire management.  

A real-time approach that incorporated single-scattering was presented by (Wahlqvist, 2018), but 
that approach had some drawbacks such as no wavelength-dependent smoke properties, as well 
as using scaling of the native image resolution to influence the performance, a technique that easily 
leads to image artefacts around sharp edges. As computational efficiency is of prime interest for 
wildfire applications, given the possible large scales under consideration, approaches that can 
utilize graphical processing units (GPU) and use efficient algorithms were explored.  
 

2.4 A new smoke modelling/visualization approach  

The model was implemented in the game engine Unity (Unity Technologies, n.d.) utilizing both 
traditional code (Unity scripts in C#) and shaders (code that run on the graphics processing unit 
(GPU)). Unity is a multipurpose game engine that supports 2D and 3D graphics, simple ways of 
adding and changing functionality of game objects and a relatively simple coding API using C#. 
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Unity has a flexible rendering pipeline which supports the use of custom vertex, fragment (pixel), 
compute and surface (unique to the Unity pipeline) shaders using Cg, a modified version of 
Microsoft's High-Level Shading Language (HLSL). Most importantly, Unity has been used for the 
development of WUI-NITY, one of the few multi-physics wildfire evacuation modelling tools 
which is available to represent such scenarios (Wahlqvist et al., 2021). 

2.4.1 Rendering of smoke 

The general approach for the rendering of smoke is based on the work presented by (Tatarchuk 
et al., 2014), later improved by Hillaire (Hill et al., 2016; Tatarchuk et al., 2015). This method uses 
froxels (frustum aligned voxels) stored as volumetric textures. For each froxel, a calculation is 
made for the extinction coefficient and the view-aligned in-scattering term from every light source. 
The froxels are then ray-marched from the camera origin to accumulate transmission values and 
in-scattering terms along the view path. The final output image then reads data from the froxel 
corresponding to the depth buffer for the current pixel and multiplies the pixel colour with the 
transmission value in the froxel and adds the accumulated in-scattering colour. This approach is 
similar to older work such as (Han et al., 2007) with the distinction of using froxels instead of 
pixels. 

The algorithm can be divided into four main parts: 

• Data injection; collection of smoke data (absorption and scattering coefficients) and 
calculation of view-aligned in-scattering term per froxel. 

• Surface light extinction; calculate the reduction of light due to extinction from all light 
sources to each surface (pixel). 

• Froxel ray-marching; calculation of camera-aligned accumulated transmission and in-
scattering terms. 

• Final image; combining normal pixel output with froxel data. 

Using similar definitions as Hillaire, Equation 6 describes a monochromatic light ray with single 
scattering as received by an observer. 

𝐿𝑖(𝑥𝑖 , 𝜔𝑖)⏟      
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
𝑙𝑖𝑔ℎ𝑡

= 𝑇𝑟(𝑥, 𝑥𝑠)⏟      
𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛
𝑎𝑙𝑜𝑛𝑔 𝑣𝑖𝑒𝑤

𝑟𝑎𝑦

𝐿(𝑥𝑠 , 𝜔𝑖)⏟      
𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑
 𝑙𝑖𝑔ℎ𝑡 𝑜𝑛 
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

+∫ 𝑇𝑟(𝑥, 𝑥𝑡)⏟      
𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛
𝑓𝑟𝑜𝑚 𝑙𝑖𝑔ℎ𝑡
𝑠𝑜𝑢𝑟𝑐𝑒

𝑠

𝑡=0

𝐿𝑠𝑐𝑎𝑡(𝑥𝑡 , 𝜔𝑖)⏟        
𝑖𝑛−𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔

𝜎𝑠(𝑥)⏟  
𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔
𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

𝑑𝑡 

 

[Eq. 6]  

where: 

𝐿(𝑥𝑠, 𝜔𝑖) = 𝑉𝑖𝑠(𝑥𝑡 , 𝐿)⏟      
𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

 𝐿(𝑥𝑡 , 𝜔𝑖)⏟      
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

 [Eq. 7] 

𝐿𝑠𝑐𝑎𝑡(𝑥𝑡 , 𝜔𝑖) = ∑ 𝑝(𝜔𝑖 , 𝐿)⏟    
𝑝ℎ𝑎𝑠𝑒

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑉𝑖𝑠(𝑥, 𝐿)⏟      
𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝐿𝑖(𝑥, 𝐿)⏟    
𝑙𝑖𝑔ℎ𝑡

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝑙𝑖𝑔ℎ𝑡𝑠

𝑖=0

 
[Eq. 8] 

𝑇𝑟(𝑥, 𝑥𝑡) = 𝑒
−∫ 𝜎𝑡

𝑠
0 (𝑥)𝑑𝑡 [Eq. 9] 

Equation 9 is discretized by converting integral terms into Riemann sums and is practically solved 
using discrete steps in space (ray-marching). The discretization is the same approach used by 
Smokeview (Forney, 2013), as shown in Equation 10. 
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𝑒−∫ 𝜎𝑡
𝑠
0 (𝑥)𝑑𝑡 ≈ 𝑒−∑ 𝜎𝑡

𝑁−1
𝑗=1 (𝑥𝑗)∆𝑡 =∏𝑒−𝜎𝑡(𝑥𝑗)∆𝑡

𝑁−1

𝑗=𝑖

 
[Eq. 10] 

Where 𝑁 is the amount of steps distance 𝑆 is divided into, and ∆𝑡 is the step length. 

The reflected light on a surface is determined by the “visibility function” and the selected surface 
model in Unity. The standard surface model in Unity is a physically based bidirectional reflectance 
distribution function (Duvenhage et al., 2013), but a built-in Lambertian model or any other user-
made surface model can also be applied. The “visibility factor” in this context is a function of 
whether a position in space is inside a shadow umbra combined with the reduction of luminance 
due to extinction along the path between a light source and surface. 

𝑉𝑖𝑠(𝑥, 𝐿) =  𝑠ℎ𝑎𝑑𝑜𝑤𝑀𝑎𝑝(𝑥, 𝐿)⏟            
𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦  𝑓𝑎𝑐𝑡𝑜𝑟

𝑇𝑟(𝑥, 𝑥𝐿)⏟      
𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛
𝑓𝑟𝑜𝑚 𝑙𝑖𝑔ℎ𝑡
𝑠𝑜𝑢𝑟𝑐𝑒

 [Eq. 11] 

 

The data injection uses frustum-aligned voxels to inject and store data. This is done to easily 
control the computing resources required regardless of the screen resolution while still maintaining 
good image quality without edge discontinuities. The froxels are created by discretizing the cut off-
pyramid between the camera near and far clip plane (the camera frustum) (see Figure 2). 
Depending on the computational resources available, the user can change the resolution to fit their 
current performance target, bearing in mind that lower resolutions will make the final rendered 
smoke lose details and might also introduce banding on surfaces. Temporal sample-upscaling can 
be used to improve image quality (Tatarchuk et al., 2015) but might introduce ghosting artefacts 
and has not been implemented in the current work.   

Injection volumes are used to pass data to the froxels. In the current implementation, these 
volumes are axis-aligned and discretised using a cartesian grid. The volumes contain the following 
data: 

• Individual cell smoke density. 

• Volume mass-specific scattering coefficient per wavelength/colour (red, green, blue). 

• Volume mass-specific absorption coefficient per wavelength/colour (red, green blue). 

A compute shader calculates the current scattering and absorption coefficient per colour 
(wavelength) based on smoke density using Equation 4 for each froxel.   

 
Figure 2. Top-down image of the frustum-aligned voxels, froxels, used to inject and store data. The red rectangle 

represents an injection volume containing smoke data, the purple outline highlights a single froxel. 
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Injection of the view-aligned in-scattering is a bit more resource intensive as the arriving light 
intensity from each light source to the current froxel centre must be calculated. Normally in 
computer graphics, this is done using attenuation functions, such as the inverse square law for a 
point source. But as the amount of arriving light is affected by the smoke, so-called volumetric 
shadows, ray-marching has to be performed to calculate the extinction due to the smoke. The total 
extinction along the path is then multiplied by the attenuation factor. Once the light intensity in 
the froxel is known a phase function is used to calculate the in-scattering along the view-aligned 
ray.  In this step, the emission term, such as light from a flame, can also be injected along the path 
if desired. It will however not contribute light to all other voxels as that would require ray-marching 
each froxel against every other froxel that has an emission term which is computationally too 
expensive with current hardware. 

Once the extinction coefficients and the in-scattering are calculated and injected, a second froxel 
buffer is used to accumulate transmission and in-scattering as seen from the camera. This is simply 
done by starting from each froxel in the XY-plane closest to the camera (Unity uses a Y-up, Z-
forward coordinate system) and then march along the ray pointing from the camera origin 
accumulating transmission and in-scattering terms.  

However, an issue when calculating the in-scattering term can easily be introduced in this step 
since the accumulated transmission changes over the step length, resulting in either over- or under-
shooting the in-scattering term if using the initial or final transmission respectively. This becomes 
especially noticeable when taking long ray-marching steps. To solve this, an improvement was 
proposed (Tatarchuk et al., 2015) by integrating the in-scattered light along the step length. To get 
the corrected in-scattering contribution, Sc, Eq. 13 is used: 

𝑆𝑐 = ∫ 𝑒−𝜎𝑡𝑥𝑆𝑑𝑥

𝑑

𝑥=0

=
𝑆 − 𝑆 ⋅ 𝑒−𝜎𝑡𝑑

𝜎𝑡
 

[Eq. 12] 

Where 𝑆 is the view aligned in-scattering term of the current froxel, 𝜎𝑡 is the extinction coefficient 

of the current froxel and 𝑑 is the ray-march step length (the length of travel of the view-aligned 
ray inside the froxel). The extinction coefficient is still considered to be constant along the step 
length. 

To calculate the change in light intensity on surfaces a very similar ray-marching step to the one 
that is done for the volumetric shadows is performed. This is again done using Equation 9 to 
calculate the extinction along the path between a light source and the world position of a pixel.  
The light intensity is then simply multiplied by the extinction calculated in the ray-marching step. 

The current implementation is done while calculating regular surface shadows in the deferred 
rendering pipeline in Unity. This is done per pixel, but other approaches such as creating 
volumetric textures for each light and performing ray-marching on those textures can reduce the 
computational cost using lower resolutions of the volumetric texture (but will introduce shadow 
aliasing) 

The rendering of the final image is straightforward and only contains two operations; using the 
volumetric texture created in the froxel ray-marching step for each pixel and sampling it at the 
world position of the pixel (graphics hardware provide “free” interpolation). The following step is 
to multiply the obtained transmission value with the pixel colour and add the accumulated in-
scattering colour. As this requires depth information, transparent objects, such as glass, do not 
render correctly without extra attention. 
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2.4.2 Verification testing 

In practice any smoke dataset can be imported and displayed, but in this first application case, the 
Fire Dynamics Simulator (FDS) together with Smokeview have been used to generate the 
presented data. Visual comparisons were done against Smokeview. 

A visualization of a smoke plume in open atmosphere has been used for verification testing. This 
plume case is of interest to highlight how smoke properties, and thereby fuel sources, can have a 
large impact on how smoke is rendered.  

The verification test does not include any light sources but rather uses artificial light conditions to 
enable exact calculations of a theoretical case. However, the main focus of the presented work is 
the result of the presence of smoke and light sources, either artificial or natural, simultaneously. 
To further investigate the results of the different rendering assumptions a simple open atmosphere 
plume was simulated in FDS to generate the data using a 0.1x0.1x0.1m grid size. A directional light 
to represent the sun (assumed to emit perfectly white light) was added above and behind the smoke 
plume, and a phase function with a mainly forward-scattering lobe was used (g=0.7). The smoke 
properties (see Table 2) were then changed in a way to highlight meaningful physics. Three cases 
were selected for comparison: 

• Case 1, Smokeview assumptions: no scattering and no wavelength-dependent absorption. 

• Case 2, Smokeview assumptions with scattering: the extinction coefficient is divided into 
60% absorption and 40% scattering; a single scattering albedo close to the one found in 
(Suo-Anttila et al., 2005) at 650 nm (red). 

• Case 3, using values found in (Suo-Anttila et al., 2005): each wavelength has unique  
extinction coefficients and single scattering albedos. 

Table 2. Overview of used smoke properties for plume visualization. 

 Mass-specific scattering coefficient 
[m2/kg] 

Mass-specific absorption coefficient 
[m2/kg] 

Wavelength [nm] 
(colour) 

650 (red) 530 (green) 460 (blue) 650 (red) 530 (green) 460 (blue) 

Case 1 0 0 0 8700 8700 8700 

Case 2 3480 3480 3480 5220 5220 5220 

Case 3 1800 2900 4000 4600 6000 7300 

Case 4 (Smokeview) 0 0 0 8700 8700 8700 

 

As can be seen in Figure 3 the selected parameters outlined in Table 2 can have a large visual 
impact on the rendered smoke, and care must be taken to represent a suitable fuel, as well as 
representing fuel behaviour over time, for the application. For example, wildfires might produce 
vastly different smoke in the flaming region compared to the smouldering region, and this might 
influence evacuation-driving behaviour. To make it more clearly visible, the two cases which 
include in-scattering, an additive term, were taken with black backgrounds while the two other 
cases were taken with white backgrounds. Otherwise the smoke would completely merge with the 
background. 
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Figure 3. Comparison between different smoke characteristics using the presented work and rendering in 
Smokeview.  From left to right: case 1, case 2, case 3, Smokeview as described in Table 2. 
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3 Treatment and analysis of validation data for wildfire evacuation 
simulations 

Concerning the traffic evacuation modelling layer of a multi-physics wildfire evacuation modelling 
tool, understanding the fundamental relationships between speed, flow, and density is crucial. 
Macroscopic traffic evacuation modelling tools utilize these relationships to predict evacuation 
times (Ronchi & Gwynne, 2019) and ultimately develop effective evacuation plans and trigger 
buffers (Mitchell et al., 2023) that ensure the safe and efficient movement of people and vehicles 
from an area affected by a wildfire. Microscopic traffic evacuation models may use these 
relationships for validation purposes. 
 
Speed, flow, and density are interrelated factors that define the behaviour of traffic on the road 
network. The fundamental relationship between these three factors demonstrates that as density 
increases, flow decreases, and at a certain point, the flow reaches its maximum capacity, known as 
the capacity flow rate. Beyond this point, as density continues to increase, flow decreases sharply, 
leading to a congested flow state where the speed of the vehicles on the road decreases 
significantly. 
 
The obtainment of those fundamental relationships can be based on different sources of data. This 
includes data from real wildfire events (Rohaert et al., 2023; Ronchi et al., 2021) or dedicated 
experiments generally performed in virtual reality or driving simulators (Wetterberg et al., 2021). 
While the former presents the advantage of a higher ecological validity, the latter allows for high 
experimental control and repeatability, thus being ideal for the study of driving behaviour in 
specific conditions such as reduced visibility.  
 
In the following sections, we discuss parametric and non-parametric regression. 
 

3.1 Parametric regression 

Parametric regression is a type of regression analysis in which the relationship between the 
dependent variable and the independent variables is modelled using a pre-specified functional form 
or equation, with a fixed number of parameters. This means that the shape and form of the 
regression curve are determined by the chosen functional form and the estimated parameter values. 

In this context, the functional form refers to the speed-density relationship (the macroscopic 
model). Here, we first discuss some well-known traffic models and then discuss how to fit the 
models to evacuation data. 

3.1.1 Functions (speed-density relationships) 

Here, a set of well-known traffic models (see Equation 13 to Equation 18) have been fitted to the 
data to allow for a comparison between the different scenarios (evacuation and routine). 

Equation 13 presents the parabolic model by Greenshield (Greenshields, 1936) : 

𝑣 = 𝑣𝑓 (1 −
𝑘

𝑘𝑗
)         [Eq. 13] 

Equation 14 presents the exponential model by Underwood (Underwood, 1961): 
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𝑣 = 𝑣𝑓𝑒
(−

𝑘

𝑘𝑐
)
          [Eq. 14] 

Equation 15 presents the North-Western model by Drake et al (Drake et al., 1965): 

𝑣 = 𝑣𝑓𝑒
(−

1

2
(
𝑘

𝑘𝑐
)
2
)
         [Eq. 15] 

Equation 16 presents the bi-linear model by Daganzo (Daganzo, 1994): 

𝑣 = {

𝑣𝑓 ,                             0 ≤ 𝑘 ≤ 𝑘𝑐

𝑞𝑐 (
1

𝑘
−

1

𝑘𝑗
) , 𝑘𝑐 ≤ 𝑘 ≤ 𝑘𝑗

       [Eq. 16] 

Equation 17 presents the model by Van Aerde and Rakha (van Aerde and Rakha, 1995; Wu and 
Rakha, 2009): 

𝑘 =
1

𝑎+
𝑏

𝑣𝑓−𝑣
+𝑐 𝑣

 𝑤𝑖𝑡ℎ {

𝑎 = 𝑣𝑓(2𝑣𝑐 − 𝑣𝑓)/𝑘𝑗𝑣𝑐
2

𝑏 = 𝑣𝑓(𝑣𝑐 − 𝑣𝑓)
2
/𝑘𝑗𝑣𝑐

2

𝑐 = 1/(𝑣𝑐𝑘𝑐) − 𝑣𝑓/𝑘𝑗𝑣𝑐
2

}     [Eq. 17] 

Equation 18 presents the model by Castillo & Benítez (del Castillo and Benítez, 1995): 

𝑣 = 𝑣𝑓 (1 − 𝑒
(
𝑐

𝑣𝑓
(1−

𝑘𝑗

𝑘
))
)        [Eq. 18] 

3.1.2 Parameter optimisation 

The methodology proposed here includes a dedicated procedure for model fitting which accounts 

for the peculiarities of the data under consideration. The macroscopic models 𝑣 = 𝑓(𝑘) can be 

fitted to traffic data by minimizing the sum of squares (𝑆) of the residuals (error on the speed 
predictions). The residuals are weighted as proposed by Qu et al. (2015) (see Equation 19) to make 

sure the model fits well over the entire range of densities (Qu et al., 2015), in which all 𝑚 data 

points are ordered so that 𝑘𝑖 ≤ 𝑘𝑗 when 𝑖 <  𝑗). Without weighting, the models would typically 

fit poorly in the high-density region due to the imbalance that is often observed in traffic data. 

𝑆 = ∑ 𝑤𝑖(𝑣𝑖 − 𝑓(𝑘𝑖))
2𝑚

𝑖         [Eq. 19] 

where 

𝑤𝑖 = {

(𝑘2 − 𝑘1), 𝑖 = 1
(𝑘𝑖+1 − 𝑘𝑖−1)/2, 𝑖 = 2, 3, … ,𝑚 − 1
(𝑘𝑚 − 𝑘𝑚−1), 𝑖 = 𝑚

 

To solve this optimisation problem, we applied the Levenberg-Marquardt algorithm (Levenberg, 
1944; Marquardt, 1963). The Levenberg-Marquardt algorithm is an iterative method that combines 
the steepest descent method and the Gauss-Newton method. At each iteration, it computes a step 
direction using a combination of the gradient and the Hessian matrix, and it adjusts a damping 
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parameter to control the step size. The advantage of the algorithm is that it is efficient and robust, 
and can handle non-linear problems with a large number of parameters. 

3.1.3 Illustration of the parametric regression models 

To illustrate the regression models, we used the data that was collected from the 2019 Kincade 
wildfire evacuation and consisted of traffic detector data collected from 24 locations, totalling 
69116 data points (Rohaert et al., 2023). The data is openly available online (Rohaert et al., 2022). 

Note that higher-density traffic conditions are rare in this dataset: 98 % of all data points lie in the 
density region of 0 to 20 veh/km/lane. This demonstrates the need to weigh the residuals, as 
discussed above. 

Figure 4 shows the previously mentioned models with parameters optimised to fit the dataset. 

  

  

  

Figure 4. The parametric models, fitted to the dataset of the 2019 Kincade Fire. 

A visual inspection of the fits shows that the models by Greenshields et al., Underwood, and Drake 
et al. fit poorly. Note that these models also have only little flexibility with only two parameters. 
The models by Van Aerde and Rakha provides a better fit but is more complex with four. The 
model by Daganzo also fits well, despite only having three parameters. The same conclusion can 
be drawn more objectively from the weighted root-mean-square error, presented by Rohaert et al. 
(2023). 
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Since these predefined speed-density relationships (parametric regressions) assume a specific 
functional form, they might not accurately capture the true relationship in the data. This is most 
strikingly illustrated by the fit of the model by Greenshields et al. The results are biased estimates 
and inaccurate predictions. Nonparametric regression, on the other hand, does not assume a 
specific functional form and allows for more flexibility in modelling complex relationships. 

3.2 Non-parametric regression 

Non-parametric regression is a type of regression that does not assume a specific functional form 
for the relationship between the input variables and the output variable. Instead, it estimates the 
function directly from the data, which makes it more flexible and less prone to bias. Non-
parametric regressions allow to compare different curves and can provide better estimations of 
certain key parameters, such as the free-flow speed, the critical density or the capacity. The values 
of these parameters are hard to determine from parametric regressions. For instance, the free-flow 
speeds (fitted speed values at 0 veh/km/lane) in Figure 4 clearly depend on the ability of the 
macroscopic relationship to fit the data well in the low-density region. 

Machine learning algorithms have become increasingly important in recent years because they can 
learn from data without being explicitly programmed. In this section, we will explore some popular 
non-parametric regression algorithms. We will also discuss hyper-parameter optimization, which 
is an important process, required to improve the performance of the algorithms. 

3.2.1 Machine learning algorithms 

There are several machine learning algorithms that can be used for non-parametric regression. In 
this section, we will discuss three popular algorithms: kernel ridge regression, support vector 
regression and gaussian process regression. 

Kernel Ridge Regression (KRR) 

Kernel Ridge Regression (KRR) is a non-parametric regression method that combines Ridge 
Regression with kernel methods (Pedregosa et al., 2011). In Ridge Regression, the goal is to 

minimize the sum of squared errors between the predicted output (𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗 ) and the actual 

output 𝑦𝑖, subject to a penalty term that shrinks the magnitude of the regression coefficients 𝛽𝑗 

towards zero. The penalty term is controlled by a hyperparameter, often denoted as 𝜆 (Hoerl & 
Kennard, 1970). The optimization process is shown in Equation 20 (Hoerl & Kennard, 1970).  

min
𝛽𝑗
(∑ (𝑦𝑖 − (𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝
𝑗 ))

2
𝑁
𝑖=1 + 𝜆∑ 𝛽𝑗

2𝑝
𝑗 )     [Eq. 20] 

where 𝑦 is the output (speed), 𝑥 is the input matrix and 𝛽𝑗 are the regression coefficients. 𝑁 is the 

number of data points and 𝑝 is the number of dimensions of the input. 

In KRR, a kernel function is applied to the input features (here, the traffic density) to transform 
them into a high-dimensional space, where the linear relationship between the input features and 
output is replaced by a nonlinear relationship. This is called the kernel trick. Then, we apply Ridge 
Regression to the transformed features. The kernel function is usually a radial basis function (RBF) 
kernel, which is a popular choice due to its flexibility and ability to capture complex nonlinear 
relationships. It has an infinite dimensional feature space, which means that it can theoretically 
capture any complex relationship between data points (Pedregosa et al., 2011). 
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Here, the KRR is obtained using the KernelRidge class of the Scikit-learn library (sklearn) in Python 
(Pedregosa et al., 2011). Two hyperparameters needed to be determined: 

• alpha is a regularization parameter that controls the amount of regularization applied to the 

weights in the regression model, often referred to in the literature as 𝜆 (see Equation 20). 

A larger value of alpha corresponds to stronger regularization and a simpler model, while 

a smaller value of alpha allows the model to fit the training data more closely. 

• gamma is a scaling parameter that controls the spread of the kernel function and controls 

the range of influence of each training point on the predictions. A larger value of gamma 

corresponds to a narrower kernel and a more localized influence of each training point, 

while a smaller value of gamma results in a wider kernel and a more global influence of 

each training point. 

Support Vector Regression 

Support Vector Regression (SVR) is a type of non-parametric regression algorithm that uses the 
kernel trick, just like the KRR. The goal of SVR is to find a function that approximates the 
relationship between the input features and output variables while simultaneously minimizing the 
prediction error. In other words, the goal of SVR is to find a function that fits the data as closely 
as possible while still being generalizable to new, unseen data (Cortes & Vapnik, 1995; Müller et 
al., 1997). 

After applying the kernel trick, SVR tries to find a hyperplane that maximizes the margin between 
the data points and the hyperplane. The margin is defined as the distance between the hyperplane 
and the closest data point. The hyperplane is chosen such that it is as far away from the data points 
as possible while still classifying them correctly. The hyperplane in SVR is used to make predictions 
on new data points. The predicted output is the value of the hyperplane at the corresponding point 
in the higher-dimensional space, which is then transformed back to the original input space using 
the inverse of the kernel function. 

One key difference between SVR and KRR is that SVR tries to minimize the prediction error 
subject to a constraint on the margin, whereas KRR tries to minimize the prediction error subject 
to a constraint on the magnitude of the model parameters. Another difference is that SVR is more 
robust to outliers than KRR since the hyperplane is only influenced by the subset of the data points 
(the support vectors) that lie closest to the hyperplane. In contrast, KRR is influenced by all of the 
training data points. 

Here, the SVR is obtained using the SVR class of the Scikit-learn library (sklearn) in Python 
(Pedregosa et al., 2011). In order to obtain a non-parametric regression, the Radial Basis Function 
(RBF) kernel is used. Two hyperparameters needed to be determined: 

• C: is a regularization parameter that controls the trade-off between achieving a low training 

error and a low testing error. It determines the penalty for violating the margin of the 

support vector. A small value of C will lead to a larger number of support vectors, while a 

large value of C will lead to a smaller number of support vectors. 

• epsilon the margin of tolerance, which determines the width of the epsilon-insensitive zone 

in which no penalty is associated with errors. Any prediction error that falls within the 

margin of tolerance is considered acceptable and does not incur a penalty. 

Gaussian Process Regression 
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Gaussian Process Regression (GPR) is a probabilistic approach to regression that models the 
relationship between input and output variables as a Gaussian process. Like KRR and SVR, GPR 
uses a kernel function to define the similarity between pairs of input variables. 

The basic idea behind GPR is to model the distribution of possible functions that could fit the 
training data, rather than just finding a single best-fit function. GPR assumes that the output 
variable follows a multivariate Gaussian distribution, with a mean function that represents the 
expected output value at each input point, and a covariance function that captures the uncertainty 
in the predictions (Rasmussen & Williams, 2005). 

GPR estimates the mean and covariance functions that best fit the training data, based on a prior 
distribution over functions. This prior distribution is typically a zero-mean Gaussian process with 
a kernel function that captures assumptions about the smoothness and shape of the underlying 
function. To make predictions on new data points, GPR uses Bayes' rule to compute the posterior 
distribution over functions, given the observed data. The mean function of the posterior 
distribution represents the predicted output value at each input point, while the covariance 
function captures the uncertainty in the predictions (Rasmussen & Williams, 2005). 

3.2.2 Hyperparameter optimisation 

Hyperparameter optimization is an important aspect of non-parametric regression. In order to 
avoid overfitting, it is important to find the right balance between model complexity and 
generalization (Bode & Ronchi, 2019). Overfitting occurs when the model is too complex and fits 
the noise in the data rather than the underlying signal. Unfitting, on the other hand, occurs when 
the model is too simple and fails to capture the complexity of the underlying signal. 

Overfitting and unfitting (variance and bias) 

Overfitting and underfitting, also known as high variance and high bias, respectively, are common 
problems in machine learning regression models. Both of these issues can lead to poor regressions 
(Hastie et al., 2013). 

In the context of regression, an overfit model can result in a very low training error (i.e., the model 
predicts the training data very accurately), but a high test error (i.e., the model performs poorly on 
new data). On the other hand, an underfit model can result in a high training error and a high test 
error. To address these issues, illustrated in Figure 5, it is important to strike a balance between 
model complexity and the ability to capture the underlying patterns in the data. One approach is 
to use cross-validation. 

 
a) underfitting 
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b) adequate fitting 

 
c) overfitting 

Figure 5. An example of underfitting (a), good fitting (b) and overfitting (c) kernel ridge regressions. The under-
fitted regression fails to capture the trend of the data accurately, while the over-fitted model has incorporated noise 

of the dataset in the regression. 

Cross-validation 

Cross-validation is a widely used technique in machine learning that is used to evaluate the 
performance of a model and to select the best hyperparameters. The basic idea behind cross-
validation is to split the data into multiple subsets, or folds, and to train the model on some data 
and test it on the remaining data. This process is repeated for all possible combinations of training 
and testing sets, and the performance metrics are averaged across all folds (Hastie et al., 2013). 

The most common type of cross-validation is k-fold cross-validation, where the data is divided 
into k equal-sized folds. The model is trained on k-1 folds and tested on the remaining fold. This 
process is repeated k times, with each fold serving as the testing set once. The performance metrics 
are then averaged across all k folds to obtain an estimate of the model's performance (Hastie et al., 
2013). 

This method provides a way to estimate the model performance on unseen data and can therefore 
be used to optimise the hyperparameters. Here, a five-fold cross-validation is performed, as 
illustrated in Figure 6. The weighted sum of squared errors is used as a performance metric. 
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Figure 6. Schematic representation of the five-fold cross-validation as applied in this report. The performance 
metric is the average of the five weighted sums of squared errors (WSSE). 

To obtain the optimal parameters, we have applied a grid search. Grid search is a hyperparameter 
tuning technique that involves defining possible hyperparameter values and simply trying all 
combinations. The combination that results in the best performance is selected as the optimal one. 
Grid search is a simple and exhaustive method for hyperparameter tuning, but it can be 
computationally expensive for large hyperparameter spaces. 

3.2.3 Illustration of the non-parametric regression methods 

In this section, we first discuss the optimal hyperparameters of the methods and then demonstrate 
the obtained regressions.  

The three methods above are employed to find a regression for the evacuation traffic dynamics 
that occurred during the 2019 Kincade Fire (Rohaert et al., 2023). The data is openly accessible on 
Zenodo (Rohaert et al., 2022). 

Before fitting the regression curves, the optimal values for the hyperparameters have been 
determined. Both for KRR and for SVR, a grid search has been performed. Table 3 shows both 
the considered values and the optimal values. 

Table 3. Optimisation of the hyperparameters of KRR and SVR through a grid search 

Regression technique Hyperparameter Values in the grid search Optimal values 

KRR alpha 10-4, 10-3, 10-2, 10-1 and 100 10-3 

gamma 10-3, 10-2, 10-1, 100 and 101 10-2 

SVR C 102, 103, 104, 105 and 106 103 

epsilon 10-7, 10-6, 10-5, 10-4 and 10-3 10-5 

The GPR is obtained using the GaussianProcessRegressor of the Scikit-learn library (sklearn) in Python 
(Pedregosa et al., 2011). When using this class, the kernel parameters are optimised internally by 
maximising the maximize the log-marginal likelihood. Therefore, no grid search is required. 
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From the grid search, it can be concluded that the regression fits best when alpha equals 0.001 and 
gamma equals 0.01. The result of the regression (using the entire database and the optimal 
hyperparameters) is shown in Figure 7. 

  

  

Figure 7. Kernel Ridge Regression (upper left), Support Vector Regression (upper right), Gaussian Process 
Regression (lower left) and a comparison of the three methods (lower right) illustrated on the traffic dynamics data 

from the evacuation during the 2019 Kincade Wildfire. 

The three methods lead to very similar regressions, as shown in Figure 7. The agreement between 
the different curves could potentially be improved even further by refining the grid search for the 
hyperparameters of KRR and SVR. 

Since GPR is a probabilistic approach to regression, it can estimate the uncertainty in its 
predictions by computing the covariance function between the predicted output and the observed 
output at each input point. This covariance function can be used to construct a confidence band 
around the mean predicted output (see Figure 7). The width of the confidence band depends on 
the uncertainty of the predictions and is larger in regions where the data is sparse or noisy. 
However, GPR is considerably more computationally expensive than the other two methods. All 
regressions are performed on one computer. For this dataset, the KRR took 10.2 seconds, SVR 
took 7.7 seconds and GPR took 4 hours and 41 minutes. Note that for KRR and SVR, a cross 
validation process was required to predefine the optimal value of the hyperparameters. Also note 
that calculation time is not a perfect measure of computational cost. 
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4 Discussion 

This interim report presents two main contributions, a physically based real-time approach to 

visualize smoke and a review of data treatment concerning the relationships between speed, flow 

and density. 

Regarding smoke modelling/visualization, the benefit of the presented approach is less 

simplifications to the radiation transport equation in terms of the interaction between light and 

fire induced smoke, specifically when treating absorption and scattering as separate physical 

processes and not as one extinction process. The results demonstrate that smoke properties play 

a significant role in how light and smoke interacts. 

The implemented algorithm is flexible in terms of visual quality and thereby computational cost, 
making it suitable for several different applications with different visual requirements, including 
wildfire scenarios. By using the froxel approach the computational cost is screen resolution 
independent while avoiding visual discontinuities at hard edges like screen-based approaches often 
show. Further relatively cheap enhancements to visual quality can be made using temporal 
upscaling techniques, something intended for future work. 

In terms of validation, major work still lies ahead. More data is needed, both in terms of 
experimental smoke properties data, but also in terms of experiments involving humans and 
subjective visibility. The use of virtual reality in combination with realistic rendering of smoke will 
hopefully be one important piece in gaining more knowledge, as that enables data gathering in 
relatively safe environment.  

There are two main limitations to the presented algorithm. Firstly, only single scattering of light is 
considered; light that is not scattered along a view aligned ray is “extinct”. This is not energy 
conserving and will cause large visual discrepancies when the participating media has a high single 
scattering albedo and high optical density, such as clouds or mist. The single-scattering 
approximation can however be useful in cases with either low optical density or low single -
scattering albedo. 

Secondly, scattering of light on opaque surfaces, so called global illumination, does not occur 
except for the direct contribution towards the viewer. Again, this is not energy conserving and can 
result in under-illumination of the smoke, e.g., from a secondary bounce on the floor that would 
illuminate the smoke from below.  

Previous related work (Rubini et al., 2007; Zhang, 2010) did consider both of these phenomena. 
However, this was only possible due to the non-real-time nature of the renderer. While it is true 
that available computational resources have increased significantly since, the techniques used are 
still considered too resource intensive for real-time applications such as virtual reality where the 
target framerate is often 90 frames per second or above. Global illumination approximations 
suitable for real-time applications are in use (Kaplanyan, 2009), they are still however an active 
topic of research. The light propagation volumes used for global illumination approximation 
(Kaplanyan, 2009), which are similar to finite volume radiation methods, could also be used to 
include multiple scattering, though computational resources might limit the amount of iterations 
performed per frame and temporal accumulation might be necessary. 

Another current limit is the fact that only point, spot and directional (sun) lights are implemented. 
This is due to the fact that the light intensity from these light sources to a point in space can 
efficiently be calculated, while arbitrarily shaped area or volumetric lights are significantly more 
complex to calculate. This means that objects such as light from firebrands or flames will not 
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produce in-scattering, only extinction. This is also the reason why the current implementation 
cannot consider the flame as a light source correctly. However, this is something that could 
potentially also be solved in the future using light propagation volumes or similar techniques.  

Concerning the reported methodologies to analyse traffic evacuation data, this document provides 
an overview of two types of regression analysis, parametric and non-parametric regression. It 
explains that parametric regression requires a pre-specified functional form or equation with a 
fixed number of parameters, while non-parametric regression estimates the function directly from 
the data, making it more flexible. The document also discusses three popular machine learning 
algorithms for non-parametric regression: Kernel Ridge Regression, Support Vector Regression, 
and Gaussian Process Regression. One of the key findings is the importance of hyperparameter 
optimization in non-parametric regression to improve the performance of these algorithms. 
Overall, the document highlights the differences between these approaches and their applications 
in analysing complex data. Non-parametric regressions allow to compare different curves and can 
provide estimations of certain key parameters, such as the free-flow speed and the capacity. 

The functionality developed represents an important step as it allows the model to better represent 
a key difference between wildfires and other major incidents – the secondary impact of smoke 
upon locations remote from the fire front. The development has two elements – the representation 
of the smoke and then its impact on evacuating vehicles. The primary focus here is on the 
obscuration of the smoke on the driver, rather than addressing any other emotional or cognitive 
impacts. The inclusion of this alone may provide model estimates more sensitive to wildfire 
conditions and produce more naturalistic visualisations within virtual environments – enhancing 
the model projects and experimental/training applications.  
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