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Temporal cluster-based local deep learning or signal processing-temporal 
convolutional transformer for daily runoff prediction? 
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H I G H L I G H T S  

• A novel Temporal Cluster-Based Local Deep Learning (TCLD) model was proposed. 
• Non-stationarity was addressed with signal processing-DL models. 
• Signal processing-DL techniques blending approaches were evaluated. 
• Discrete Wavelet-Temporal Convolutional Transformer (DWT-TCT) was developed.  
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A B S T R A C T   

Water scarcity poses a major obstacle to sustainable development, and precise discharge prediction plays a vital 
role in enabling effective water resource management. This study investigated improved prediction techniques 
for nonstationary time series. The study evaluated the effect of signal processing techniques and blending ap
proaches on the performance of deep learning models for daily discharge prediction. It also compared the per
formance of cluster-based local modeling with hybrid signal processing-deep learning approaches. Two robust 
deep learning methods, Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN), along with 
a powerful signal processing approach called discrete wavelet transform, were utilized for prediction of daily 
discharge. Three blending approaches were assessed: 1) decomposing both inputs and target, 2) decomposing 
only the target, and 3) decomposing only the inputs and then blending them with deep learning models. Also, a 
new hybrid deep learning based model namely discrete wavelet transform-Temporal Convolutional Transformer 
(DWT-TCT) was developed. The results showed that a single-output wavelet transform-deep learning model (3rd 
blending approach) outperformed multi-output models, demonstrating a relative enhancement of up to 56% for 
the LSTM model and 51% for the CNN model. Furthermore, temporal cluster-based local modeling displayed 
promising performance, resulting in an improvement of up to 18% in NRMSE compared to the wavelet 
transform-deep learning model, while also requiring less computational cost. The successful results of the tem
poral cluster-based local modeling approach provide a beneficial alternative to hybrid signal processing-deep 
learning models. In addition the results showed that the proposed DWT-TCT model outperformed all other 
models with NRMSE ranges from 6.8% to 16.2% in the study areas. The results have implications for hydrology 
and water resources management, as they can be used to develop more precise and effective models for pre
dicting discharge in view of nonstationarity.   

1. Introduction 

Water resources management is a critical concern in many regions, 
with water scarcity posing significant challenges for sustainable 

development. One of the most important components of water resources 
management is accurate prediction of discharge [1]. Discharge predic
tion is required for various purposes, such as flood control, hydropower 
generation, irrigation planning, and water supply management. 
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Accurate prediction of daily discharge is particularly important because 
it assists water resources managers in making informed decisions 
regarding water allocation and usage. Thus, various methods and 
models have been developed for discharge prediction, with researchers 
continually seeking new and more accurate approaches. Traditionally, 
statistical and empirical models have been used for this purpose relying 
on a stationary climate. However, in view of the increasing effects of 
climate change, these models increasingly suffer from poor accuracy due 
to their inability to capture complex nonlinear relationships between 
climatic and hydrological variables [2]. 

Artificial intelligence (AI) models have emerged in recent years as 
powerful tools for predicting discharge. Several hybrid models have 
been proposed for runoff prediction including LSTM-ALO, ANFIS-GBO, 
ELM-PSOGWO, LSSVM-IMVO, SVR-SAMOA, ANN-EMPA, and SVM- 
FFAPSO [3–7]. Ding, Zhang, Guo and Sun [8] proposed a hybrid 
EEMD-GRU-TWSVRCSSA model as an empirical mode decomposition 
with gated recurrent unit and time-weighted support vector regression 
with cat swarm optimization and Salp swarm algorithm to overcome the 
extended training time for large-scale datasets, high frequency oscil
lating, and non-stationary time series data. AI models have the capa
bility to learn from historical data and make accurate predictions by 
identifying similarities in patterns [9]. These models are capable of 
taking various variables into account, such as climate, geography, and 
land use. Deep learning methods, which are an important subset of AI 
models, have become increasingly popular in recent years. These models 
excel at recognizing complex patterns and relationships in data without 
relying on assumptions about the data distribution. Numerous studies 
have been conducted to assess how well various deep learning models 
can predict daily discharge using meteorological and hydrological data 
[10]. Deep learning models have been subject to comparisons with 
traditional models, and frequently, they surpass empirical models in 
terms of accuracy [10,11]. For example Liu, Tang, Qin, Liu, Shen, Qu 
and Zhou [10] proposed a deep neural network (DNN) model for weekly 
discharge prediction that incorporated both temporal and spatial in
formation. The model was trained using historical data from several 
gauging stations and was better than traditional statistical models in 
predicting weekly discharge. Wunsch, Liesch, Cinkus, Ravbar, Chen, 
Mazzilli, Jourde and Goldscheider [12] employed convolutional neural 
networks (CNNs) for simulating karst spring discharge and directly 
learning from spatially distributed climate input data. They demon
strated that the proposed models were highly effective in modeling karst 
spring discharge. Several other researchers [13–17] proposed deep 
learning models based on CNNs and LSTM for daily discharge predic
tion. The models were trained using meteorological and hydrological 
data from multiple stations and displayed higher accuracy compared to 
traditional models. 

Dealing with nonstationary data poses a significant challenge when it 
comes to modeling natural phenomena [18]. Nonstationarity refers to 
the fact that statistical properties of the data change over time or space. 
In hydrological applications, nonstationarity may arise due to changes 
in climate patterns or land use. In the context of modeling natural 
phenomena, such as discharge, the presence of nonstationarity adds 
complexity to the task, as it entails accounting for evolving dynamic 
patterns in the underlying processes [19]. Signal processing methods 
like wavelet transform can be useful for handling nonstationary data. 
Wavelet transform breaks down signals into various frequency bands, 
facilitating the identification of distinct components in the data that 
exhibit changes over time or space [20–23]. By combining deep learning 
algorithms with signal processing methods like wavelet transform, 
strengths of both approaches can improve prediction of typically 
nonstationary data [9,24]. Deep learning algorithms are capable of 
capturing intricate patterns and correlations in data, whereas signal 
processing techniques aid in pre-analyzing the data by extracting sig
nificant features [25]. By taking into account the nonstationarity of the 
data, this approach can lead to more accurate predictions of runoff in a 
basin [26]. 

However, a remaining issue is related to the deep learning-signal 
processing blending approach. There are various methods available to 
combine deep learning techniques with signal processing approaches. 
One way involves decomposing the input variables (such as precipita
tion, temperature, evaporation, etc.) as well as the target variable 
(discharge) data. By treating the components of runoff as targets for the 
models, a multi-output deep learning model can be developed to predict 
these components. In the second blending approach, only the target 
data, i.e., discharge is decomposed and input data remain unchanged. As 
in the previous approach, a multi-output deep learning model is devel
oped to predict discharge components. In both approaches an inverse 
wavelet transform is applied for predictions to obtain the final discharge 
values. In the latter blending method, only the input variables are 
decomposed, and the discharge values are imported to the model in their 
original form. This approach utilizes a single-output model and directly 
estimates the discharge values without predicting the individual 
components. 

Local modeling approach is another strategy to tackle challenges 
associated with nonstationarities and heterogeneities in natural time 
series. As previously mentioned, time series are often characterized by 
heterogeneities, or variations that occur over time. These heterogene
ities can pose challenges for accurate modeling and prediction. Tem
poral cluster-based local modeling of time series involves dividing the 
time series into clusters or segments based on their similarities in terms 
of patterns, trends, and other characteristics. Each cluster is then 
modeled using a local modeling technique that is specific to the data 
within that cluster. The advantage of cluster-based local modeling is that 
it allows for more accurate and robust modeling of complex time series 
by addressing heterogeneities across the data. By identifying and 
modeling different segments of the data separately, temporal cluster- 
based local modeling can account for variation in trend, seasonality, 
and other factors that may strongly influence the data over time [27]. 
There are several different approaches to perform cluster-based local 
modeling of time series data, including k-means, hierarchical clustering, 
density-based clustering, etc. In addition, a new approach called 
DWT-TCT (Discrete Wavelet Transform-Temporal Convolutional 
Transformer) was introduced as a method to predict daily runoff. The 
DWT-TCT combines the discrete wavelet transform with the Temporal 
Convolutional Transformer, providing a novel modeling approach for 
accurate runoff prediction. 

In view of the above, this study aimed to investigate the effect of 
signal processing on the performance of deep learning models. It also 
aimed to assess and compare the performance of different blending 
approaches between deep learning and signal processing in predicting 
daily discharge. Additionally, the study evaluated the performance of 
temporal cluster-based local modeling and compared it with the results 
obtained from hybrid signal processing-deep learning models. The 
novelty of this work stems from its exploration of blending approaches 
that have not been extensively studied in the field of hydrology. Addi
tionally, this study proposes a hybrid model that combines the discrete 
wavelet transform with the temporal convolutional transformer. 
Furthermore, the study addresses a critical research gap in water re
sources management by providing insights into the development of 
more accurate and efficient models for discharge prediction, especially 
in view of the nowadays increasing nonstationarity due to climate 
change. Overall, this research significantly contributes to the advance
ment of knowledge in the field of nonstationary hydrology and has 
practical applications for sustainable water resources management. 
Furthermore, the study compares the performance and computational 
cost of temporal cluster-based local modeling and hybrid modeling ap
proaches, which are considered powerful methods for overcoming 
nonstationarities in the data. 
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2. Materials and methods 

2.1. Study area 

The study was conducted in three distinct and representative river 
basins: Kasilian, Latian Dam, and Bar-Erieh, as depicted in Fig. 1. These 
basins showcase varying physical, biological, and climatological char
acteristics. The Kasilian basin spans an area of 113 km2, while the Latian 
Dam basin covers 436 km2, and the Bar-Erieh basin encompasses 

343 km2. Bar-Erieh exhibits an average elevation of 2226 m, a precipi
tation rate of 330 mm per year, and an average slope of 11.9%. In 
contrast, the Latian Dam Basin features rugged terrain with an average 
elevation of 2830 m, an annual precipitation of 867 mm, and an average 
slope of 45.6%. The Kasilian Basin is situated within the Talar River 
Basin in northern Iran, experiencing an average annual precipitation of 
733.3 mm. It has a semi-humid and cold climate, with a minimum 
altitude of 286 m and a maximum altitude of 3289 m amsl. 

The study was conducted for the three representative river basins, 

Fig. 1. Experimental study area. A) Bar-Erieh, B) Latian Dam, and C) Kasilian Basins.  
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each characterized by distinct climatic, topographic, and physiographic 
features, aiming to enhance the generalizability of the findings. This 
approach provides a more comprehensive understanding of the perfor
mance of different modeling approaches. If consistent results are ob
tained across these diverse basins, the findings can be generalized with 
greater confidence. Consequently, the study’s conclusions are more 
likely to be applicable to other regions exhibiting similar characteristics, 
thereby increasing the validity and robustness of the research. To 
construct the input database, observations from the Iran Meteorological 
Organization and Water Resources Management Organization were 
utilized, encompassing variables such as rainfall, discharge, tempera
ture, and evaporation. In addition to these variables (Rt, Dt, Tt, Et), the 
dataset also included past values of rainfall (Rt-1, Rt-2) and discharge (Dt- 

1, Dt-2), capturing the historical conditions leading up to the present 
observations. These lagged values provide insights into preceding pat
terns of hydrological variation. Daily measurements of these variables 
were collected over a 20-year period, yielding a comprehensive dataset 
in which each entry included all the variables, facilitating a thorough 
exploration of their interrelationships. The main objective of this study 
was to predict the discharge for the following day (Dt+1). It is important 
to note that outliers are frequently encountered in datasets and do not 
necessarily indicate incorrect values. They can arise from extreme 
events or uncommon phenomena. However, it is crucial to carefully 
assess and validate outliers to ensure their legitimacy before incorpo
rating them into the analysis. In this specific study, a comprehensive 
evaluation of outliers was conducted, confirming their validity as 
genuine data points. Thus, these data were deemed reliable and were not 
excluded or disregarded. Missing values in the dataset were addressed 
through regression imputation, a technique used to estimate the missing 
values based on the relationships observed within the dataset. 

2.2. Deep learning models 

The data were first divided into testing and training sets using a 70/ 
30 ratio. Before being imported into the deep learning models, a process 
called min-max scaling was employed to rescale and transform all var
iables, ensuring that they were within the range of 0–1. This particular 
technique was applied to normalize the data and make it suitable for 
effective analysis and interpretation within the deep learning models. By 
adjusting the variable ranges, the data was prepared to be efficiently 
processed by the models, enhancing their performance and accuracy in 
making predictions. This study employed two deep learning models to 
predict daily discharge. One of the utilized models was LSTM, which 
belongs to the category of deep learning models specifically designed for 
processing sequential data. LSTMs were developed to address the chal
lenge of vanishing gradients commonly encountered when working with 
traditional recurrent neural networks and lengthy sequences of data [28, 
29]. LSTM uses memory cells with three gates, input, output, and forget, 
to control the flow of information. During training, the gate weights are 
adjusted to selectively store or retrieve important information from its 
memory cells. This allows capturing dependencies over longer periods in 
the sequential data, making it useful for predicting future states of long 
time series. To implement LSTM, layers of LSTM cells were stacked on 
top of each other. The input for each layer consists of a sequence of 
vectors representing individual time steps. The final layer’s output was 
then fed into a dense layer for regression [30]. The internal state (ht) for 
a traditional RNN is defined as [31]: 

ht = tanh(Wxt +Uht− 1 + bh) (1)  

where the input weight matrix is represented by W, the recurrent weight 
matrix by U, the bias vector by b, the current input vector by xt, and the 
last hidden cell state by ht− 1. However, LSTM includes a memory block 
comprising a cell state (ct) for storing information, along with three 
gates: forget gate (ft), input gate (it), and the output gate (ot) [32]. The 
initial step in computing the forget gate, which regulates the previous 

cell state, involves using [33]: 

ft = σ
(
Wf xt +Uf ht− 1 + bf

)
(2) 

After calculating the forget gate using the input weight matrix (Wf ), 
recurrent weight matrix (Uf ), and bias vector (bf ) with the logistic sig
moid activation function (σ), the next step involved computing a po
tential cell state (̃ct) based on the current input (xt) and the previous 
hidden state (ht− 1): 

c̃t = tanh(W̃
c
xt + Ũ

c
ht− 1 + b̃

c
) (3)  

where W
c̃
, Ũ

c
, b̃

c 
are the input weight matrix, recurrent weight matrix, 

and bias vector for the potential cell state, respectively. The Eq. (4) was 
used to calculate the input gate, which determines the information from 
the potential cell state that should be allowed to update the current cell 
state (ct). The input gate acts as a control mechanism for regulating the 
flow of information from the potential cell state to the current cell state: 

it = σ(Wixt +Uiht− 1 + bi) (4) 

Thus, the input gate (it) was calculated using the input (xt), the 
previous hidden state (ht− 1), the weight matrices (Wi and Ui), and bias 
vector (bi) associated with the input gate. The σ is a sigmoid function. 
Then, the current cell state was updated using the results of the previous 
equations: 

ct = ft ⊗ ct− 1 + it ⊗ c̃t (5)  

where ⊗ indicates element wise multiplication. The logistic sigmoid 
function is utilized to generate two vectors, ft and it , which range from 
0 to 1. If ft is close to 1, the previous information stored in the last cell 
state is retained, while it is discarded if ft is close to 0. Moreover, the 
output gate is responsible for determining which information from the 
current cell state is transmitted to the new hidden state, and it was 
calculated as: 

ft = σ(Woxt +Uoht− 1 + bo) (6)  

where Wo, Uo, bo are the input weight matrix, recurrent weight matrix 
and bias vector for the output gate, respectively. The new hidden state 
(ht) was computed by: 

ht = ot ∗ tanh(ct) (7) 

Because the cell state in LSTM networks undergoes a simple linear 
operation at each time step, it is less likely for the information to get 
stuck or change drastically, which prevents the problem of vanishing or 
exploding gradients [29]. To obtain the final predicted values, a tradi
tional dense layer is connected to the last LSTM layer at the last time 
step: 

y = Wdhn + bd (8)  

where Wd, and bd are the hidden-to-output weight matrix and the bias 
vector of the dense layer, respectively. The following algorithm was 
performed for prediction of daily discharge with LSTM:  

1. A set of memory cells and input/output gates were initialized 
with the LSTM model.  

2. The input sequence was processed, one time step at a time, 
through the LSTM layers.  

3. At each time step, the input was passed through the input gate, 
which decided which information to store in the memory cell.  

4. The current state of the memory cell was then updated based on 
the input and the previous memory state.  

5. Next, the output gate decided which information to output from 
the memory cell. 
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6. The predicted value for the current time step was generated by 
passing the output through a dense layer by regression.  

7. A loss function, (mean squared error), was used to compare the 
predicted values to the actual values.  

8. The weights of the input gate, output gate, and memory cell were 
adjusted using backpropagation with the Adam optimizer.  

9. During training, dropout regularization was applied to prevent 
overfitting.  

10. Steps 2–9 were repeated for multiple epochs until convergence 
was achieved. 

There are several parameters in the LSTM structure that should be 
tuned to achieve its optimum performance, i.e., the number of LSTM 
layers that determines the depth of the network, number of neurons in 
each LSTM layer that determines the capacity of the network to learn 
complex patterns, dropout rate which is a regularization technique used 
to prevent overfitting, and batch size that determines the number of 
samples used in each iteration of training and sequence length which 
determines the number of time steps used in each input sequence. 

The other model used in this study was CNN. While CNNs are widely 
used for image classification tasks, they can also be employed for 
regression problems where the goal is to predict a continuous output 
variable. A CNN model for regression problems typically has a similar 
architecture to a standard CNN, but with some modifications. One 
modification that is often made to the standard CNN architecture is to 
replace the final activation function with a linear activation function. 
This allows the network to output a continuous value rather than a 
probability distribution over classes. Another modification is to change 
the loss function used during training to a regression-specific loss 
function, such as mean squared error (MSE), which measures the dif
ference between the predicted and actual values. The rest of the network 
architecture can remain largely the same as for a classification CNN, 
including the use of convolutional and pooling layers to extract different 
features [34]. Let’s consider a scenario where we have a time series 
consisting of T data points, and our goal is to predict the next K values in 
the series. To facilitate this prediction, we represent the time series as a 
matrix X with dimensions(T − L + 1)× L, where L corresponds to the 
length of the input window or sequence. The input matrix X is fed into a 
convolutional layer with F filters of size (h× L), where h is the height of 
the filter. The output of the convolutional layer is a feature map of size 
(T − L + 1)× F, which captures local patterns in the time series. The 
convolution operation is expressed as: 

hi = activation

(

bi +
∑

j

(
Wij ∗ xj

)
)

(9)  

where hi is the ith feature map, bi is the bias term, Wij is the weight matrix 
for the ith filter and jth input channel, xj is the input channel, and acti
vation is the activation function. The feature map is then passed through 
a max pooling layer with pool size (p× 1), where p is the pooling size. 
The output of the max pooling layer is a downsampled feature map of 
size (T − L + 1)/p× F, which reduces the dimensionality of the feature 
map and makes the model more robust to small variations in the input. 
The max pooling operation is expressed as: 

yi = maxj
(
hi ∗ p+ j

)
(10)  

where yi is the ith output of the pooling layer, hi is the ith feature map, p is 
the pooling size, and j ranges over the indices of the elements in the 
pooling window. The output of the pooling layer is flattened into a one- 
dimensional vector using: 

output = flatten(input) (11)  

where input is the input feature map. The flattened feature map is then 
passed through one or more dense layers to perform classification or 
regression. The output of the dense layer is: 

y = activation

(

b+
∑

i
(Wi ∗ xi)

)

(12)  

where y is the output of the dense layer, b is the bias term, Wi is the 
weight for the ith input, xi is the ith input, and activation is the activation 
function. The following algorithm was used for predicting daily 
discharge with CNN:  

1. The input data was preprocessed by applying normalization.  
2. A CNN model was built with multiple layers of convolutional and 

pooling layers, followed by fully connected layers.  
3. The CNN model was trained using backpropagation and gradient 

descent optimization algorithms. During training, the weights of the 
model were adjusted to minimize the loss function, which in this case 
was typically a MSE loss function.  

4. The performance of the trained CNN model on a validation set was 
evaluated to tune hyperparameters such as the learning rate, number 
of filters, and kernel size.  

5. Once the model was well-tuned, predictions were made on the test 
set using the trained CNN model.  

6. The performance of the CNN algorithm was evaluated using some 
metrics. 

Parameters such as the number of convolutional layers that de
termines the depth of the network, the number of filters in each con
volutional layer that determines the capacity of the network to learn 
complex patterns, kernel size that determines the size of the sliding 
window used for convolution, stride which determines the step size of 
the sliding window used for convolution and pooling which is a down 
sampling operation used to reduce the spatial dimensions of the feature 
maps should be calibrated to attain its best performance. Therefore, the 
optimization algorithms detailed in Section 2.7 were used to fine-tune 
the structural parameters of the suggested models. 

2.3. Hybrid signal processing- deep learning models (assessing blending 
approaches) 

The training and testing datasets were decomposed using the discrete 
wavelet transform (DWT). The DWT is a signal processing technique that 
breaks down a signal into different frequency components, enabling a 
more detailed analysis of its characteristics. This transformation in
volves passing the signal through a series of filters that extract high- and 
low-pass frequency components at various scales. DWT serves as a 
powerful tool in extracting features for deep learning models by 
decomposing signals into different frequency components, which can 
subsequently be used as input features for the model. Consequently, a 
tree-like structure of coefficients is obtained, with each level repre
senting a different level of frequency detail. These coefficients can be 
further analyzed or used for reconstructing the original signal. The DWT 
offers valuable insights by capturing both high-frequency details and 
low-frequency trends in complex signals. To conduct the DWT, a wavelet 
function and a level of decomposition were selected. The chosen wavelet 
function was then employed to filter the signal using both low-pass and 
high-pass filters. This process was repeated for the low-pass filtered 
signal until the desired level of decomposition was reached. The 
resulting coefficients represent the approximation at the final level and 
detailed coefficients at each level. Eqs. 13 and 14 show the mother 
wavelet and continuous wavelet transform of a signal, respectively. 

ψj,k(x) = 2
j
2ψj,k

(
2jx − k

)
(13)  

where ψ j,k(x) is the produced form a mother wavelet ψ(x) that is 
expanded by j and translated by k. 
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cj,k =
∫ ∞

− ∞
f (x)ψ∗

j,k(x)dx (14)  

where cj,k is the approximation coeficient of the signal. The mother 
wavelet is formulated from the scaling function φ(x) as: 

φ(x) =
̅̅̅
2

√ ∑
h0(n)φ

(
2x − n

)
(15)  

ψ(x) =
̅̅̅
2

√ ∑
h1(n)φ

(
2x − n

)
(16)  

h1(n) = ( − 1)nh0(1 − n) (17)  

where φ(x) represents the scaling function of the wavelet transform, h0 
is a set of filter coefficients for the low-pass filter and h1(n) is a set of 
filter coefficients for the high-pass filter. However the discrete form of 
the wavelet transform to calculate approximation and details is as fol
lows. Let x[n] be a discrete-time signal of length N, and h[n] and g[n] be 
the analysis low-pass and high-pass filters, respectively, of length L. The 
DWT decomposes the signal into approximation coefficients cA and 

detail coefficients cD at different scales or levels. The approximation 
coefficients cA represent the low-frequency content of the signal, while 
the detail coefficients cD represent the high-frequency content of the 
signal. The DWT can be computed recursively using: 

cA(j+ 1)[k] = (cA(j) ∗ h[2k] + cD(j) ∗ g[2k])
/ ̅̅̅

2
√

(18)  

cD(j+ 1)[k] = (cA(j) ∗ g[2k+ 1] + cD(j) ∗ h[2k+ 1])
/ ̅̅̅

2
√

(19)  

where j is the current level or scale, k is the sample index, and * denotes 
the convolution operation. 

Different mother wavelets were used, and the decomposition was 
performed at various levels. Both the decomposed and original input 
data were considered as inputs for the deep learning models. In this 
study, three blending approaches that combine signal processing and 
deep learning models were tested (Fig. 2). The first approach (part A) 
involved decomposing both input data (such as rainfall (Rt), discharge 
(Dt), temperature (Tt), evaporation (Et), rainfall with time lags (Rt-1, Rt- 

2), discharge with time lags (Dt-1, Dt-2), etc.), and target data (one day 

Fig. 2. Three proposed blending approaches.  
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ahead discharge (Dt+1)) using DWT. As the target data were decomposed 
into sub-series and used as targets, the model was trained to predict the 
individual components of the target rather than the target itself. 
Consequently, a multi-output model was created, with each model 
estimating one component of the target. These estimated components 
were then combined to calculate the actual target values. In the second 
approach (part B), only the target data was decomposed using DWT. 
Once again, a multi-output model was developed, with each model 
estimating a component of the target. In the third approach (part C), 
only the input data underwent DWT decomposition. Since the target 
data remained unchanged, a single output model was sufficient for 
directly predicting the target values. 

Aiming to tackle the challenge of handling a large number of inputs, 
especially when utilizing signal processing techniques, the neighbor
hood component analysis method was employed as a reliable approach 
for feature selection. This method prioritizes the selection of crucial 
inputs that significantly contribute to enhancing the accuracy of pre
dictions. This algorithm is non-parametric and focuses on optimizing an 
objective function that calculates the average regression loss over the 
training data while leaving out one input at a time. By doing so, it de
termines the weights that help minimize this objective function, leading 
to improved predictive performance. 

2.4. Temporal cluster-based local modeling 

In addition to the hybrid models, a temporal cluster-based local 
modeling approach was proposed in this study. Temporal cluster-based 
local modeling is a technique used in time series analysis to model the 
behavior of a system over time. It involves dividing the time series into 
clusters, where each cluster includes data points that are similar in some 
way (e.g., they have similar patterns or trends). Within each cluster, a 
local model was developed to capture the behavior of the system. The 
idea behind this approach is that a single global model may not be able 
to capture all the complex dynamics and variations in a long time series. 
Instead, by dividing the time series into clusters and developing local 
models for each cluster, we can better capture the behavior of the system 
at different time periods and under different conditions. This may better 
describe properties of non-stationary time series. 

To implement temporal cluster-based local modeling, the time series 
was divided into clusters based on similarity criteria. A hierarchical 
clustering was performed to cluster the data into two clusters. Hierar
chical clustering involves constructing a dendrogram that represents the 
hierarchy of clusters in the data [35]. A dendrogram is constructed by 
iteratively merging the two closest clusters until all points belong to a 
single cluster. In time series analysis, the first step is to compute pairwise 
distance measures between each pair of time series in the dataset. One 
commonly used distance measure for time series is Dynamic Time 
Warping (DTW), which finds the optimal alignment between two time 
series based on their shapes. Once the distance matrix is computed, hi
erarchical clustering can be applied using any of the available linkage 
methods, such as average linkage, complete linkage, or ward linkage. 
Ward linkage is known to produce well-separated clusters compared to 
other linkage methods. After computing the dendrogram, it can be cut at 
a particular level to obtain a specific number of clusters. The deep 
learning local models were then developed for each cluster, which 
captures the behavior of the system within the context of that cluster 
[36]. 

2.5. Discrete wavelet transform-temporal convolutional transformer 

Finally a combined discrete wavelet transform-Temporal Convolu
tional Transformer (DWT-TCT) model was developed in this study for 
runoff prediction. TCT is a variant of the Transformer architecture 
specifically designed for processing sequential or time series data. TCT 
combines the strengths of both temporal convolutions and self-attention 
mechanisms. The TCT model consists of multiple layers, and each layer 

has two main components: temporal convolutions and self-attention. 
Temporal convolutional layers capture local patterns and de
pendencies within the input sequence [37]. They apply a set of learnable 
filters across different temporal positions, allowing the model to extract 
meaningful features. The filters were designed to extract meaningful 
features by convolving them with the input sequence. By stacking 
multiple convolutional layers, the TCT model was able to capture 
increasingly complex temporal patterns. The outputs of the convolu
tional layers were then passed to the self-attention component. 
Self-attention component enables the model to capture global de
pendencies and long-range relationships within the sequence. It attends 
to different positions in the input sequence and aggregates information 
from relevant positions to produce context-aware representations. This 
was achieved through a mechanism known as scaled dot-product 
attention. In this process, the input sequence was transformed into 
query, key, and value vectors. The attention mechanism then computed 
the attention weights by measuring the similarity between the query and 
key vectors. These weights were used to weight the value vectors, which 
were then aggregated to produce the context-aware representations. The 
attention mechanism attended to all positions in the input sequence, 
allowing the model to capture long-range dependencies effectively. 

By combining temporal convolutions and self-attention, the TCT 
model can effectively capture both local and global temporal de
pendencies, making it suitable for tasks such as time series forecasting, 
sequence classification, and anomaly detection in sequential data [38]. 
There are several key parameters in this method that need to be tuned 
during the calibration process. Firstly, the number of TCT layers de
termines the model’s depth. Increasing the number of layers allows the 
model to capture more complex temporal patterns, but it also raises the 
risk of overfitting. Secondly, the filter sizes in the temporal convolu
tional layers determine the receptive field of the model trying out 
different filter sizes helps in capturing patterns of various lengths in the 
input sequence. Another crucial parameter is the dilation rates, which 
control the spacing between filter weights in the temporal convolutional 
layers. Adjusting the dilation rates enables the model to capture patterns 
at different scales, encompassing both short and long dependencies. In 
the self-attention component, the number of attention heads determines 
the model’s ability to attend to different positions. Increasing the 
number of attention heads allows the model to capture more detailed 
dependencies, but it also increases computational complexity. The 
learning rate is also an important parameter as it affects the speed of 
model convergence during training. Tuning the learning rate is crucial 
for finding the optimal balance between convergence speed and stabil
ity. Lastly, the batch size determines the number of samples processed in 
each training iteration. Modifying the batch size can impact the model’s 
convergence speed and its ability to generalize to new data. 

2.6. Uncertainty analysis and inputs weight assessment 

The assessment also involved evaluating the uncertainty related to 
the model type selection and the input variable selection. To evaluate 
the uncertainty associated with the selection of the model type, the 
study calculated the predicted values using the same combination of 
input variables for the proposed models [39]. The R factor index was 
then used to measure this uncertainty using the following equation. 

R =
SP
SO

(20)  

where SO is the standard deviation of the observed data and SP is 
computed as follows: 

SP =
∑n

i=1
(UPi − ULPi)/n (21)  

where n is the number of observed data and Upi and Lpi are the ith values 
of the upper quartile (97.5%) and lower quartile (2.5%) of the 95 PPU 
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band, respectively. To determine the level of uncertainty related to the 
input variable selection, the predicted data were calculated for several 
combinations of input variables using a single model for each observed 
data point. Subsequently, the uncertainty associated with the input 
variable selection was measured using the R factor method mentioned 
earlier for quantifying uncertainty related to the model type selection. 

The cosine amplitude method was also used for sensitivity analysis 
and calculating the weights of inputs. It is a technique commonly used in 
sensitivity analysis to evaluate the impact of input parameter variations 
on the output of a mathematical model or simulation. It aids in evalu
ating the responsiveness of the model’s outputs to variations in partic
ular inputs. In the cosine amplitude method, input sensitivity is 
determined by varying its value within a defined range while keeping all 
other parameters constant. The variation is typically modeled using a 
cosine wave, which allows for a smooth and continuous transition be
tween different variable values [40]. By systematically varying the input 
variable and observing the corresponding changes in the model output, 
analysts can gain insights into which variables have the most significant 
influence on the output and which ones are less critical. 

2.7. Optimization algorithms 

We utilized four optimization algorithms, namely genetic algorithm 
(GA), particle swarm optimization (PSO), grey wolf optimization 
(GWO), and ant colony optimization (ACO), to optimize the structural 
parameters of the proposed models. Here are detailed explanations of 
the optimization algorithms employed in this research. GA is a meta- 
heuristic optimization method inspired by natural selection and ge
netics. It mimics the evolutionary process by selecting, crossing over, 
and mutating candidate solutions to enhance model performance. Its 
purpose is to find the best parameter configuration for models by 
exploring various combinations systematically. To optimize the struc
tural parameters of the proposed methods, the first step involved 
defining the model structure within the GA. The parameters were 
encoded into chromosomes or individuals in the GA representation. A 
Fitness Function was created to evaluate performance and minimize 
errors. The process started with a population of individuals with random 
parameters, undergoing selection, crossover, and mutation to produce 
new generations. Selection prioritized individuals based on fitness, 
while crossover and mutation introduced genetic diversity. This itera
tive process aimed to minimize errors and enhance model performance 
by refining its structure and optimizing parameters. The primary goal 
was to reduce errors, validating and improving the model’s performance 
through successive iterations. 

The PSO algorithm also employed the following steps. In this algo
rithm a population of particles is randomly initialized within the search 
space. Each particle represents a potential solution and is characterized 
by its position and velocity vectors. The fitness of each particle is eval
uated by applying the objective function of the problem being opti
mized. Each particle adjusts its position and velocity by considering its 
own best position found so far (pbest) and the best position discovered by 
any particle in the population (gbest). By iteratively adjusting particle 
positions and velocities, the algorithm explores the search space to 
locate promising regions and exploits them to converge towards optimal 
solutions [41,42]. The balance between exploration and exploitation is 
achieved through the inertia weight and social and cognitive accelera
tion factors. The algorithm iteratively repeats these steps until the 
termination condition is met. 

GWO algorithm, is also inspired by the social hierarchy and hunting 
behavior of grey wolves [43]. The process of GWO algorithm is as fol
lows. A population of candidate solutions, referred to as wolves, is 
randomly initialized. Each wolf represents a potential solution and is 
characterized by its position vector in the search space. The fitness of 
each wolf is evaluated by applying the objective function of the problem 
being optimized. This function quantifies the quality or performance of 
each solution. The three best wolves in the population are assigned the 

roles of alpha, beta, and delta wolves, respectively. The alpha wolf 
represents the best solution found so far, while the beta and delta wolves 
correspond to the second and third-best solutions. Then the wolves 
update their positions to explore and exploit the search space. Based on 
the hunting behavior of wolves, three key operators are employed. In the 
prey position update step, the positions of the non-alpha, non-beta, and 
non-delta wolves are adjusted to simulate the movement of a prey. This 
is achieved by updating the wolves’ positions towards the positions of 
the alpha, beta, or delta wolves. In the Alpha wolf update step, the po
sition of the alpha wolf undergoes further modifications to explore 
potentially promising areas within the search space. Finally boundary 
handling is performed to ensure that the updated positions remain 
within the predefined bounds of the problem. The algorithm iteratively 
repeats these steps until the certain termination condition is met [44]. 

Another optimization algorithm utilized in this research is ACO, 
which takes inspiration from the foraging habits of ants [45]. In ACO, 
the search process is guided by the concept of pheromone trails. Ants 
deposit pheromones along their paths, and the concentration of phero
mone on a particular path is proportional to the quality of the solution 
associated with that path. Other ants then use the pheromone trails to 
make decisions about the routes they will explore. To apply ACO for 
optimizing the structural parameters of deep learning models, we rep
resented the search space as a graph, where each node represents a 
specific configuration of architectural parameters, and the edges 
represent the connections between different configurations. The algo
rithm starts by initializing the pheromone trails on the graph. Initially, 
the pheromone concentrations are set to low values to encourage 
exploration of different paths [46]. Each ant then iteratively constructs a 
solution by probabilistically choosing the next architectural parameter 
configuration based on the pheromone trail information and potentially 
domain-specific heuristics. After the ants have constructed their solu
tions, the pheromone trails are updated. The pheromone evaporation 
process reduces the pheromone levels on all paths, simulating the decay 
of pheromones over time. This evaporation helps to prevent the algo
rithm from converging prematurely to suboptimal solutions. The ants 
also deposit pheromones on the paths they have traversed, with the 
amount of pheromone proportional to the quality of the corresponding 
solution. This pheromone reinforcement process strengthens the paths 
associated with better solutions, making them more attractive for future 
ants. The ACO algorithm continues to iterate through multiple itera
tions, allowing the ants to explore and exploit the search space. The 
search process is typically terminated after a predetermined number of 
iterations or when a stopping criterion is met [47]. 

2.8. Performance evaluation 

Assessing the performance of models is vital in order to comprehend 
how well they perform and to make comparisons between different 
modeling approaches. Various metrics were used to evaluate the per
formance of proposed models, including coefficient of determination 
(R2), root mean square error (RMSE), normalized root mean square error 
(NRMSE), and Nash-Sutcliffe (NSE). R2 measures the proportion of the 
variation in the target variable that is explained by the model. It ranges 
from 0 to 1, where a value of 1 indicates a perfect correlation between 
the observations and the model output. RMSE measures the average 
difference between the predicted values and the actual values. It is 
expressed in the same units as the target variable and provides an idea 
about the magnitude of the prediction error. NRMSE measures the 
relative performance of the model by normalizing the RMSE with 
respect to the range of the target variable. NSE measures the relative 
magnitude of the residual variance compared to the observed data 
variance. It ranges from negative infinity to 1, where a value of 1 in
dicates a perfect match between the model and the observations. The 
equations for these metrics are given as: 
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r2 =

⎛

⎜
⎜
⎝

∑n

i=1
(oi − o)(ei − e)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(oi − o)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ei − e)2

√

⎞

⎟
⎟
⎠

2

(22)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(oi − ei)2

n

√
√
√
√
√

(23)  

NRMSE =
RMSE

range of observed data
(24)  

NSE = 1 −

∑n

1
(oi − ei)2

∑n

1
(oi − oi)2

(25)  

where o denotes observed runoff and e the estimated runoff. 

3. Results and discussion 

Table 1 displays the statistical properties provided for the discharge 
data in the study regions. Table 2 presents the optimal values for the 
structural parameters of the LSTM and CNN models. The sensitivity 
analysis revealed that the CNN model exhibited the highest sensitivity to 
the number of convolutional layers and stride parameters. This means 
that variation in these parameters had a significant impact on the per
formance and behavior of the CNN model. On the other hand, the LSTM 
model demonstrated greater sensitivity to the batch size and dropout 
rate. 

Fig. 3 illustrates the results of the discrete wavelet-based decompo
sition (DWT) applied to the discharge data, as an example of data 
decomposition. In DWT, the time series was decomposed into a collec
tion of discrete basis functions or wavelets at various scales. This 
decomposition is represented by a tree-like structure, where each level 
of the tree corresponds to a distinct scale of decomposition. One of the 
benefits of wavelet-based decomposition is its ability to analyze signals 
at various scales. This is especially beneficial when dealing with intri
cate signals that may have varying frequencies and hold valuable in
formation. By breaking down the signal into various scales, it becomes 
possible to pinpoint the frequencies that are most pertinent to the phe
nomenon being studied, thereby offering valuable insights into the un
derlying processes that influence the signal. However, it is important to 

acknowledge that the choice of wavelet function and level of decom
position can influence the results of wavelet-based decomposition. 
Therefore, it is crucial to carefully select the appropriate wavelet func
tion and level of decomposition based on the characteristics of the 
signal. This ensures accurate and meaningful analysis of the signal. In 
Fig. 3, the top panel in each section demonstrates the original signal, and 
the subsequent panels show the wavelet coefficients at each level of the 
decomposition. The low-frequency components of the signal are 
captured in the first level of decomposition, while the high-frequency 
components are captured in the subsequent levels. By examining the 
patterns in the wavelet coefficients at each level, we gain insight into the 
underlying processes driving the signal and can identify any significant 
features or changes in the signal over time. In wavelet-based signal 
processing, a signal can be decomposed into two components: an 
approximation component and a detail component. The approximation 
component captures the low-frequency information in the signal, while 
the detail component captures the high-frequency information. The 
approximation component represents a coarse-grained version of the 
original signal that retains only the most important features of the 
signal. The detail component represents the fine-grained or high- 
frequency information in the signal. It is obtained by high-pass 
filtering the signal. 

Figs. 4 and 5 show the results of DWT-LSTM and DWT-CNN models 
developed based on the first blending approach. As mentioned before, 
both input and target were decomposed using DWT. In this approach 
multi-output deep learning models were developed to estimate the 
components of the discharge. The estimated components of the 
discharge were then summed up to provide the actual discharge esti
mations. The figures show a moderate performance for both models 
using this blending approach. Also, the R2 show that both models were 
precise, but the NRMSEs (22, 16, and 25 for Bar-Erieh, Latian Dam and 
Kasilian Basins, respectively, for DWT-LSTM model) showed a moderate 
performance for all three watersheds. This indicates that this approach 
was not suitable for blending DWT and deep learning. The multi-output 
structure of this approach may contribute to its challenges. Even if one of 
the outputs is estimated with high error, it can have a noticeable impact 
on the overall results. This is because the blending approach involves 
combining predictions from multiple models, allowing errors from one 
model to propagate and affect the final outcome. If one of the models is 
weak or prone to errors, it can significantly degrade the overall per
formance of the blending. Multi-output modeling adds complexity to the 
model, making it more difficult to train, interpret, and optimize. This is 
particularly true when dealing with a large number of outputs or com
plex interdependencies between them. Additionally, the computational 
cost of training and evaluating the model can increase, requiring more 
resources and time. Another limitation is the potential difficulty in 
generalizing the output of multi-output models to new data inputs. Poor 
performance on new data can restrict the practical usefulness of the 
approach. These challenges highlight the practical barriers associated 
with utilizing multi-output models, especially when working with large 
datasets or complex models. Careful consideration is necessary when 
deciding whether to employ this approach, taking into account the 
specific requirements and trade-offs involved. 

Figs. 6 and 7 display the results of the DWT-LSTM and DWT-CNN 
models based on the second blending approach. In this approach, only 
the target was decomposed using DWT, similar to the first blending 
approach, and multi-output deep learning models were developed to 
estimate the components of the target, i.e., discharge. The estimated 
components of the discharge were then summed up to calculate the 
actual discharge estimations. However, the results indicate that this 
approach produced weaker results compared to the first approach, in 
which both input and target were decomposed using DWT, and multi- 
output deep learning models were built to estimate the components of 
the target. The reason for this could be that when only the target signal is 
decomposed using DWT, there is a possibility that some crucial infor
mation present in the input signal may disappear or not be effectively 

Table 1 
Descriptive statistics provided for the discharge data in the study regions.  

Basin descriptive statistics 

Mean Min Max Standard deviation 

Bar-Erieh  0.42  0  18.1  0.84 
Latian Dam  6.88  0  54.8  7.55 
Kasilisn  0.35  0  14  0.59  

Table 2 
Optimal Values of Parameters for the LSTM and CNN Models.  

Model Parameter Optimal value 

LSTM Number of LSTM layers  2 
Number of neurons in each LSTM layer  68 
Dropout rate  0.2 
Batch size  41 
Sequence length  40 

CNN Number of convolutional layers  2 
Number of filters in each convolutional layer  28 
Kernel size  3 
Stride  2 
Pooling  4  
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Fig. 3. Wavelet based decomposition of discharge time series at 5 levels using db4. A) Bar-Erieh, B) Latian Dam, and C) Kasilian Basins.  
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Fig. 4. DWT-LSTM model with first blending approach. A) Bar-Erieh, B) Latian Dam, and C) Kasilian Basins.  
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Fig. 5. DWT-CNN model with first blending approach. A) Bar-Erieh, B) Latian Dam, and C) Kasilian Basins.  
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Fig. 6. DWT-LSTM model with second blending approach. A) Bar-Erieh, B) Latian Dam, and C) Kasilian Basins.  
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Fig. 7. DWT-CNN model with second blending approach. A) Bar-Erieh, B) Latian Dam, and C) Kasilian Basins.  
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Fig. 8. DWT-LSTM model with third blending approach. A) Bar-Erieh, B) Latian Dam, and C) Kasilian Basins.  
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Fig. 9. DWT-CNN model with third blending approach. A) Bar-Erieh, B) Latian Dam, and C) Kasilian Basins.  
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utilized, resulting in weaker model performance. Discharge estimation 
requires a good understanding of the complex relationship between the 
input data and the target signal. By decomposing both inputs and the 
target using DWT, the developed models can capture and utilize the 
interdependencies between these signals more efficiently than when 
only the target is decomposed. However, just like the first blending 
approach, this approach still has the deficiencies of multi-output 
modeling of discharge components. 

Figs. 8 and 9 show the results of the DWT-LSTM and DWT-CNN 
models based on the third blending approach. In this approach, only 
the inputs were decomposed using DWT and the discharge values were 
estimated directly. The results indicate that this blending approach 
yields improved outcomes compared to the previous two approaches, 
where targets were decomposed and multi-output modeling was 
employed. One possible reason for this improvement is that multi-output 
modeling can introduce complexity, requiring careful consideration of 
the inter-relationships between different output variables. This 
complexity can sometimes lead to errors and reduced prediction accu
racy. In contrast, by solely utilizing DWT to decompose the input data, 
the models may be better able to capture essential information without 
sacrificing detail or complexity. Estimating discharge values directly 
also eliminates the need to model the inter-relationships between 
different output variables, simplifying the model and potentially 
enhancing accuracy. Furthermore, the results demonstrate that LSTM 
outperforms CNN in discharge modeling. LSTMs are specifically 
designed to process sequential data, making them well-suited for 
modeling discharge as it represents a time-series dataset with temporal 
dependencies. In comparison, CNNs are more suitable for tasks 
involving image processing, where spatial correlations are more signif
icant. LSTMs incorporate memory units that allow them to retain in
formation from previous inputs and utilize this to make better 
predictions. This ability was especially valuable when modeling 
discharge since there might be lasting connections between input vari
ables that impact the output. This is a common characteristic of hy
drological time series. In contrast, CNNs can only learn local patterns 
within a fixed window size and lack this capability. Overall, LSTMs offer 
greater flexibility than CNNs, as they can model both short- and long- 
term dependencies, making them well-suited for discharge modeling, 
where the relationship between input variables and discharge can vary 
across different time scales. 

To compare the performance of different blending approaches, the 

percentage improvement/decline of the metrics for the third blending 
approach (the best one) compared to the second blending approach (the 
worst one) was calculated. 

Tables 3 and 4 showcase the relative improvement or decline in the 
performance of the third blending approach compared to the second 
blending approach for both the DWT-LSTM and DWT-CNN models. In 
terms of the DWT-LSTM model, improvements in R2 were observed, 
indicating that the second blending approach was outperformed by the 
third blending approach in capturing the variance of the target variable. 
Improvement ranged from 0.30% to 3.6%, signifying increased accuracy 
in modeling the discharge for different basins. Decrease in RMSE and 
NRMSE were observed for the third blending approach compared to the 
second one. These results demonstrate enhanced accuracy and reduced 
error in discharge prediction. Improvements ranged from 33.7% to 
55.9% for RMSE and 33.9–55.8% for NRMSE, highlighting the superi
ority of the third approach in terms of accuracy. Furthermore, im
provements ranging from 8.0% to 10.6% were noted for the Nash- 
Sutcliffe efficiency coefficient, indicating that the observed discharge 
trend and variability were better captured by the third blending 
approach compared to the second blending approach. Similarly, for the 
DWT-CNN model, improvements in R2 ranging from 1.4% to 3.9% were 
observed, indicating that the second blending approach was surpassed 
by the third blending approach in explaining the variance of the target 
variable. Lower RMSE and NRMSE were also observed for the third 
blending approach, suggesting improved accuracy in discharge predic
tion. Improvements ranged from 11.1% to 51.1% for RMSE and 
11.0–51.1% for NRMSE, highlighting the enhanced performance of the 
third approach compared to the second approach. The third blending 
approach showed significant improvements in capturing the observed 
discharge trend and variability, with enhancements ranging from 2.4% 
to 10.5% for the Nash-Sutcliffe efficiency coefficient. This means that 
the third blending approach was better at accurately modeling discharge 
compared to the second blending approach. Both the DWT-LSTM and 
DWT-CNN models benefited from the third blending approach, 
achieving better results in terms of R2, RMSE, NRMSE, and Nash- 
Sutcliffe efficiency coefficient. 

As mentioned before, dynamic time warping (DTW) was utilized as a 
method for clustering time series data, with the goal of identifying 
patterns that can help to separate data into distinct clusters. The results 
of using DTW to cluster the data into two groups are presented in Fig. 10, 
with cluster 1 represented by red circles and cluster 2 represented by 
blue diamonds. This method involves employing different models for 
different subsets of the data. For instance, one model can be used to 
describe the behavior of the time series during periods of high flow, 
while another model can be used for periods of low flow. This technique 
is particularly useful when the behavior of the time series varies 
significantly depending on external factors such as weather patterns or 
seasonal influence. DTW provides a convenient means of separating the 
data into high and low flow clusters, allowing for the creation of sepa
rate models for each. 

Figs. 11 and 12 demonstrate the performance of LSTM and CNN 
models using the temporal cluster-based local modeling approach to 
predict discharge. The results are comparable to the best results ach
ieved by the DWT-deep learning models. This highlights the effective
ness of the temporal local modeling approach for accurate discharge 
prediction. Furthermore, creating separate models for different clusters 
facilitate better estimations, particularly for high flows. This is a critical 
factor as accurate prediction of high flow events is essential for flood 
management and inundation prevention. The ability of the temporal 
local modeling approach to capture the inherent characteristics of 
discharge data is noteworthy. By considering the temporal dynamics of 
the data, the models can effectively capture the complex relationships 
among the inputs and predict discharge with high accuracy. Clustering 
the data into separate groups enables the development of models that 
are tailored to each cluster’s unique characteristics. This results in 
models that are better at predicting discharge, particularly during 

Table 3 
Relative improvement/decline for the third blending approach compared to the 
second blending approach for DWT-LSTM.  

Basin R2 

Improvement/ 
decline (%) 

RMSE 
Improvement/ 
decline (%) 

NRMSE 
Improvement/ 
decline (%) 

Nash- Sutcliffe 
Improvement/ 
decline (%) 

Bar- 
Erieh  

0.30  35.06  34.90  10.64 

Latian 
Dam  

3.63  55.86  55.83  8.51 

Kasilian  1.72  33.66  33.89  7.95  

Table 4 
Relative improvement/decline for the third blending approach compared to the 
second blending approach for DWT-CNN.  

Basin R2 

improvement/ 
decline (%) 

RMSE 
improvement/ 
decline (%) 

NRMSE 
improvement/ 
decline (%) 

Nash- Sutcliffe 
improvement/ 
decline (%) 

Bar- 
Erieh  

2.64  30.92  31.42  8.79 

Latian 
Dam  

3.85  51.05  51.07  10.53 

Kasilian  1.43  11.11  11.04  2.41  
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Fig. 10. Time series clustering using DTW A) Bar-Erieh, B) Latian Dam, and C) Kasilian Basins.  
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Fig. 11. Temporal Cluster-Based Local LSTM model. A) Bar-Erieh, B) Latian Dam, and C) Kasilian Basins.  
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Fig. 12. Temporal Cluster-Based Local CNN model. A) Bar-Erieh, B) Latian Dam, and C) Kasilian Basins.  
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extreme events, where accurate forecasting is critical. The clustering 
approach is beneficial for identifying patterns and trends in the data, 
which helps in understanding the factors influencing discharge at a 
particular time. Instead of creating a single global model in conjunction 
with signal processing approaches, developing separate models for each 
cluster can be computationally efficient, especially when dealing with 
large datasets. This approach helps save computational resources and 
reduces the time required for model development, validation, and 
testing. 

To compare the performance of DWT-deep learning and Temporal 
Cluster-Based Local modeling approaches, the percentage improvement 
or decline of metrics for the Temporal Cluster-Based Local model, 
compared to the DWT-LSTM model (blended by the third approach), as 
the best hybrid model, was computed. Table 5 shows the results for the 
three basins. 

For the Bar-Erieh basin, a slight deterioration in R2, RMSE, NRMSE, 
and Nash-Sutcliffe efficiency was observed when the Temporal Cluster- 
Based Local model was used compared to the DWT-LSTM model. This 
suggests that the DWT-LSTM model was slightly better in capturing the 
variance and accurately predicting discharge for this particular basin. In 
the case of Latian Dam basin, improvements in R2, RMSE, NRMSE, and 
Nash-Sutcliffe efficiency were observed with the Temporal Cluster- 
Based Local model. This indicates that the Temporal Cluster-Based 
Local model outperformed the DWT-LSTM model in terms of explain
ing the variance and achieving better accuracy in discharge prediction 
for this basin. Similarly, for the Kasilian basin, a decline in R2 was 
observed, but improvements in RMSE, NRMSE, and Nash-Sutcliffe effi
ciency were seen with the Temporal Cluster-Based Local model 
compared to the DWT-LSTM model. This implies that while the Tem
poral Cluster-Based Local model may have slightly lower performance in 
capturing the variance, it achieved better accuracy and improved the 
overall trend and variability of the observed discharge for this basin. In 
summary, the results in Table 5 demonstrate that the performance of the 
Temporal Cluster-Based Local model compared to the DWT-LSTM model 
varied across different basins. 

The results presented in Table 6 demonstrate that the model did not 
suffer from overfitting across all three basins. To ensure the model’s 
reliability, various evaluation metrics were used, showing strong per
formance and consistency between the training and test datasets. This 
suggests that the model is capable of effectively generalizing to new, 
unseen data in all three basins. In order to address potential overfitting, 
Elastic Net regularization was implemented. This technique combines 

L1 (Lasso) and L2 (Ridge) regularization methods to strike a balance 
between feature selection and feature shrinkage. Two penalty terms 
were added to the loss function during training. The L1 penalty term 
encouraged sparsity in the model by penalizing features with negligible 
or zero weights, aiding in feature selection and reducing the number of 
parameters. The L2 penalty term promoted smaller weights by penal
izing the square of the weight magnitude, preventing individual weights 
from becoming excessively large and facilitating feature shrinkage. 
Elastic Net regularization achieves a balance between sparsity and 
shrinkage by combining L1 and L2 regularization. It effectively selects 
features and prevents overfitting. The trade-off between L1 and L2 
penalties was controlled by a hyper-parameter, with higher values fa
voring sparsity and lower values favoring shrinkage. The model’s 
convergence and trapping behavior were also assessed by monitoring 
R2, RMSE, NRMSE, and Nash- Sutcliffe values at each iteration. Initially, 
the R2 and Nash- Sutcliffe values were low but gradually increased over 
time, indicating an improvement in the model’s performance. 
Conversely, the RMSE and NRMSE values were relatively high at the 
beginning but steadily decreased with each iteration, implying that the 
model’s predictions became more accurate. Upon analyzing the R2, 
RMSE, NRMSE, and Nash- Sutcliffe values at each iteration, there were 
no indications of early convergence or trapping behavior. Instead, the 
model exhibited a gradual improvement in performance, with higher R2 

values, lower RMSE and NRMSE values, and an increased Nash- Sutcliffe 
value. This indicates that the model continuously refined its predictions 
and approached a more precise representation of the relationships be
tween the variables. Table 7 illustrates the outcomes of the DWT-TCT 
model across three distinct study areas. The findings clearly demon
strate the superior performance of this model in comparison to previ
ously proposed models. Several reasons contribute to the DWT-TCT 
model’s superior performance. The TCT model leverages the power of 
temporal convolutions, which allow it to capture and model temporal 
dependencies in the data. By considering the sequential nature of the 
time series, the TCT model can effectively capture dependencies and 
intricate temporal patterns, leading to enhanced predictive perfor
mance. It also incorporates the transformer mechanism, which utilizes 
self-attention mechanisms to capture global dependencies within the 
time series data. This mechanism enables the model to effectively weigh 
the importance of different time steps, allowing it to focus on relevant 
temporal information and ignore irrelevant noise, resulting in improved 
prediction accuracy. The TCT model employs multi-head attention, 
which enables it to capture diverse patterns and dependencies at various 
resolutions. This capability allows the model to effectively extract and 
utilize both local and global temporal features, leading to a more 
comprehensive understanding of the data and improved predictive 
performance. 

Fig. 13 presents a detailed evaluation of the performance of the 
optimization algorithms on the top-performing models, namely the 
DWT-LSTM/Third blending approach, Temporal Cluster-Based Local 
LSTM, and DWT-TCT, across the three study areas. The ranking of 
optimization algorithms based on their effectiveness in enhancing model 
performance was determined to be as follows: GWO ranked highest, 
followed by GA (with very similar performance), ACO, and then PSO. 
According to the figure, both GA and GWO algorithms exhibited very 
similar performance, indicating their suitability for tuning deep learning 
model parameters effectively. They are known for their ability to strike a 
good balance between exploration and exploitation. They exhibit strong 
exploration capabilities, allowing them to efficiently search the solution 

Table 5 
Relative improvement/decline for the Temporal Cluster-Based Local compared 
to the DWT-LSTM as the best hybrid model.  

Basin R2 

improvement/ 
decline (%) 

RMSE 
improvement/ 
decline (%) 

NRMSE 
improvement/ 
decline (%) 

Nash- Sutcliffe 
improvement/ 
decline (%) 

Bar- 
Erieh  

-0.101  -7.54  -7.50  -1.07 

Latian 
Dam  

0.202  17.55  17.60  1.05 

Kasilian  -0.306  7.40  7.82  2.22  

Table 6 
Accuracy assessment metrics for Train and Test phases for temporal cluster- 
based local model.  

Basin Train/Test R2 RMSE NRMSE Nash- Sutcliffe 

Bar-Erieh Train  0.98  0.050  18.21  0.94 
Test  0.98  0.054  19.55  0.93 

Latian Dam Train  0.99  0.413  7.32  0.96 
Test  0.99  0.49  8.68  0.95 

Kasilian Train  0.99  0.055  16.80  0.93 
Test  0.98  0.062  18.93  0.90  

Table 7 
The results of DWT-TCT model for the three study areas.  

Basin R2 RMSE NRMSE (%) Nash- Sutcliffe 

Bar-Erieh  0.97  0.044  16.23  0.94 
Latian Dam  0.98  0.386  6.85  0.96 
Kasilian  0.98  0.046  14.21  0.94  

V. Moosavi et al.                                                                                                                                                                                                                                



Applied Soft Computing 155 (2024) 111425

22

Fig. 13. A comprehensive comparison of the performance of the proposed optimization algorithms on the best models, A) Bar-Erieh, B) Latian Dam, and C) 
Kasilian Basins. 
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Fig. 14. A comprehensive comparison of the performance of the proposed models, A) Bar-Erieh, B) Latian Dam, and C) Kasilian Basins.  
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space and discover promising regions. Additionally, they effectively 
exploit the discovered regions to refine the solutions. This balance in GA 
and GWO may have allowed them to effectively search for optimal 
structural parameters in the models, leading to better performance 
compared to PSO and ACO. Each optimization algorithm has its own 
strengths and weaknesses, and their suitability may vary depending on 
the characteristics of the problem being solved. It is possible that the 
GWO and GA algorithms are well-suited to the specific optimization 
requirements of the models being evaluated in this study, allowing them 
to outperform the other algorithms. GWO is also known for its ability to 
maintain a diverse set of solutions during the optimization process. This 
diversity helps prevent the algorithm from getting stuck in local optima 
and provides a higher chance of finding better solutions. This charac
teristic might have contributed to its ability to optimize the models’ 
performance effectively. Also GA and GWO algorithms are known for 
their ability to handle local optima. GA employs genetic operators such 
as crossover and mutation, which provide mechanisms for escaping local 
optima and exploring new regions of the search space. GWO, inspired by 
the hunting behavior of grey wolves, utilizes different update equations 
to balance exploration and exploitation, enabling it to avoid getting 
trapped in suboptimal solutions. These characteristics may allow GA and 
GWO to find better solutions in optimizing the structural parameters 
compared to the PSO and ACO algorithms. 

Fig. 14 presents a detailed analysis as a spider plot, showcasing a 
comprehensive performance comparison of the proposed models. To 
ensure consistency across metrics, the NRMSE range was standardized 
between different models, scaling it to a range from 0–1. The spider plot 
reveals that the R2 values among the models were not significantly 
different. However, the remaining metrics, such as RMSE, NRMSE, and 
Nash- Sutcliffe, demonstrated varying values, indicating diverse levels of 
accuracy across the models. In this context, similar R2 values indicate 
that the models are generally consistent in their ability to explain the 
variance in the data. However, when it comes to the other evaluation 
metrics, such as RMSE, NRMSE, and Nash- Sutcliffe, distinct disparities 
emerge. These metrics provide insights into different aspects of model 
accuracy and performance. The divergent values obtained for RMSE, 
NRMSE, and Nash- Sutcliffe across the models indicate discrepancies in 
their respective accuracies. This information becomes crucial in select
ing the most suitable model based on the specific objectives and re
quirements of the study at hand. 

The results showed that the proposed DWT-TCT model outperformed 
both local temporal cluster-based and DWT-deep learning models in 
daily runoff prediction. It may be due to some reasons. The DWT-TCT 
model combines the wavelet transform and the Temporal Convolu
tional Transformer (TCT) architecture. By incorporating the wavelet 
transform, the model can capture both the frequency information and 
temporal dependencies present in the daily runoff data. This ability to 
capture both frequency and temporal patterns can lead to improved 
prediction accuracy compared to models that focus solely on one aspect. 
The TCT component of the model also enables the capture of both global 
and local temporal dependencies. The transformer layers in the TCT 
model utilize self-attention mechanisms to capture long-range de
pendencies across the entire sequence. At the same time, the convolu
tional layers capture local dependencies and short-term patterns. This 
combination enables the model to effectively capture and utilize both 
types of temporal relationships, leading to improved prediction accu
racy. The ability to capture dependencies across the entire sequence 
helps the TCT model better understand the relationships between past 
and future runoff values, potentially leading to improved prediction 
accuracy. The convolutional layers can identify relevant and discrimi
native features at different temporal scales, enabling the model to cap
ture important characteristics of the daily runoff time series. By 
effectively extracting informative features, the TCT model may have a 
better representation of the underlying patterns in the data, leading to 
improved prediction performance. The TCT model can perform multi
scale analysis of the input data. The temporal convolutional layers with 

different kernel sizes allow the model to capture patterns at various 
temporal resolutions. This multi-scale analysis helps the TCT model 
capture and leverage information at different levels of granularity, 
potentially improving its ability to capture complex temporal patterns 
and variations in the daily runoff data. The transformer layers in the TCT 
model utilize self-attention mechanisms, allowing the model to assign 
different weights to different time steps based on their relevance for 
prediction. This attention mechanism helps the model focus on the most 
informative parts of the input sequence, giving more importance to 
relevant time steps and potentially reducing the impact of noisy or 
irrelevant data. By attending to the most relevant information, the TCT 
model can make more accurate predictions. 

Table 8 shows the R factors calculated for both model type selection 
and input variable selection. The results showed an R factor of 0.21 for 
model type selection and 0.15 for input variable selection. For model 
type selection, an R factor of 0.21 suggests that there is a moderate level 
of uncertainty associated with choosing the appropriate model type. 
This means that there are some variations or discrepancies between the 
predicted values generated by different models considered in the study. 
However, the relatively low R factor indicates that the models produced 
reasonably consistent results with a certain degree of agreement. For 
input variable selection, an R factor of 0.15 indicates a lower level of 
uncertainty regarding the choice of input variables. This implies that the 
predicted data generated by various combinations of input variables 
using a single model showed relatively little variation or inconsistency. 
The low R factor values indicate a relatively low level of uncertainty in 
the predictions, demonstrating the effectiveness and reliability of the 
chosen models and input variables. The results suggest that the selection 
of model types might have a more significant impact on reducing un
certainty in the analysis compared to selecting the input variables. It 
could imply that there might be a wider variation in predicted values 
among different model types using the same set of input variables, 
leading to the higher uncertainty. 

Fig. 15 elucidates the findings derived from the implementation of 
the cosine amplitude method, which facilitated the determination of 
weights assigned to various input variables. Akin to assigning impor
tance levels, these weights delineate the relative significance of each 
input factor in describing the output of the process at hand. To provide 
contextual clarification, the abbreviations P, T, ET, P, D, WS, and H 
denote precipitation, temperature, evapotranspiration, discharge, wind 
speed, and humidity, respectively. The inclusion of the variable index, 
denoted as t, links the respective measurements to specific points in 
time. For instance, P(t-1) signifies the precipitation value recorded for 
the day immediately preceding the reference time. Through the analysis, 
it was revealed that precipitation and discharge played the most pivotal 
role in accurately forecasting runoff. 

4. Conclusions 

This study explored different data decomposition and modeling 
methods for improving nonstationary discharge prediction, with sig
nificant implications for hydrology and water resources management, 
particularly in the context of climate change and withering stationarity. 
The performance of three different signal processing and deep learning 
blending approaches were tested for daily discharge modeling. The re
sults showed that a single output DWT-deep learning model provided 
acceptable results, while multi-output models had moderate to weak 
performance. On the other hand, the temporal local modeling approach, 
which involved clustering the data into separate groups and developing 
tailored models for each cluster, proved to be a successful approach for 

Table 8 
R Factor values calculated for model type selection and input variable selection.   

Model Type Selection Input Variable Selection 

R Factor  0.21  0.15  

V. Moosavi et al.                                                                                                                                                                                                                                



Applied Soft Computing 155 (2024) 111425

25

accurate discharge prediction. This approach can help identify patterns 
and trends within the data, making it easier to understand the under
lying factors driving discharge at a specific location. Additionally, it can 
reduce computational resources and time required for model develop
ment, validation, and testing rather than hybrid signal processing- deep 
learning models. The promising results of the temporal local modeling 
approach provide a beneficial alternative to hybrid signal processing- 
deep learning models. This approach has significant potential for 
improving the accuracy of discharge predictions and advancing our 
understanding of non-stationary hydrological processes. Moreover, the 
fusion of discrete wavelet transform and Temporal Convolutional 
Transformer yielded superior performance compared to other modeling 
approaches, making it a formidable technique for predicting runoff at a 
daily time step. It is important to note that the selection of an appro
priate modeling approach should be based on careful consideration of 
the nature of the data and the specific objectives of the study. While 
hybrid signal processing-deep learning models may offer advantages in 
certain cases, they require extensive tuning of parameters and can be 
computationally intensive. It is important to acknowledge the limita
tions of this study, including the fact that the time scale of the study was 
daily and should be tested for different time scales, such as monthly or 
seasonal. Additionally, while the temporal local modeling approach 
showed promising results, it may not be suitable for all types of data. The 
study did not consider the effects of external factors, such as land use 
changes and human activities, on discharge prediction. Therefore, future 
studies could consider incorporating these external factors into the 
modeling process to improve the accuracy of discharge prediction. 
Furthermore, the study only evaluated the performance of three deep 
learning methods, and future studies could explore the performance of 
other deep learning methods and compare them with the proposed 
models. 
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