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Abstract

By measuring brain activity, through techniques such as electroencephalography (EEG), it
is possible to decode which sound source a person is listening to, called auditory attention
decoding (AAD). This can either be done investigating the relation between speech sources
and corresponding brain responses over time, or by discriminatively estimating directions
to which auditory attention is focused. Spectral, temporal and spatial information are all
useful and each essential for understanding how the brain processes sounds in a multi-talker
scenario. Key challenges with EEG analysis are high levels of noise from various sources, as
well as utilizing methods that infer onto the processing happening in the brain. Therefore,
the work part of this thesis focuses on linear and fairly non-complex methods. This thesis
explores spectral estimation based methods and linear modelling methods and their appli-
cation to AAD. The linear correlation measure of coherence is investigated and improved
for use in EEG and AAD, showing that it can differ between attended speech and ignored
speech. The commonly applied method of common spatial patterns (CSP) within EEG-
data is employed specifically for AAD. We are able to show how different CSP algorithms
perform within the field of AAD, and that performance for CSP carries over from decod-
ing auditory attention of individuals with normal hearing compared to individuals with
hearing impairment. Independent Component Analysis-based (ICA) methods of remov-
ing noise components of EEG data are evaluated for AAD on a dataset with participants
hearing impaired. Automatic noise cleaning methods are shown to perform equally as well
as the traditional manual method on the given dataset. Finally, a phase estimation tech-
nique for transient components based on spectrogram reassignment is developed, which
can estimate phase difference of signal components in multi-channel measurements such
as EEG. Using the methods described, it is possible to draw interesting conclusions in the
field of AAD. However, future work entails further improvement and exploration of useful
methods for analysis of the system that is the hearing brain.
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Popular summary

When we are kids we are taught that the ear is the organ that does the hearing in our
body. In reality, this is not the case. Our perception of what we hear is a result of cognitive
processing in the brain. In everyday life the auditory experiences are highly varied. One
particularly straining scene is when multiple speakers are present in the same room as the
person you are trying to listen to. This can happen in meetings at work, during morning
commutes or a cocktail-party. The last example has inspired the name of the natural ability
of our auditory system to subliminally focus on a particular speaker: the cocktail party effect.

Although picking out single speakers in noisy environments can be straining, normal hear-
ing individuals are able to solve the cocktail party problem. However, for people with
deteriorating hearing and hearing aid users this ability can be heavily encumbered. Tired-
ness and wanting to disconnect is common for hearing aid users, where the user turns the
device off after being in a multiple speaker situation for too long. This is because the cock-
tail party effect does not come as naturally. Perhaps you even have experienced this with
an older relative.

This thesis aims to develop methods for looking at measurements of brain activity when
people are attending specific people in multi-speaker scenarios. With novel analysis meth-
ods it is possible to track the time and location of brain activity, in relation to the speech
heard. In addition to this, it is also possible to work out which speaker a certain person is
listening to.

The first paper of this thesis, Paper A, looks at methods for detecting connections between
the speech heard and concurrent measured brain signals. These connections are different
for attended and ignored sounds, which makes it possible to work out where a listeners
attention is targeted. Paper B tackles some of the common problems with this set-up, and
makes method improvements. Paper C utilizes spatial information of brain measurements
to work out whether listeners are attending speech coming from the left or the right of the
listener. Paper D investigates how natural sources of disturbances in brain signals, such as
eye and muscle movements, affect the tracking of auditory attention. Paper E presents ways
of extracting time lags between two different signals.

Looking forward, there are many challenges before these models can be applied to help
hearing aid users. For example, there is a further need for methods that can track how
auditory attention dynamically changes over time, as well as taking into account all the
hard-to-predict peculiarities of everyday life.
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Chapter 1

Introduction to Hearing and Auditory
Attention

Most people are taught that the ear is the organ that does the hearing in our body. In reality,
which has been known for a very long time, this is not the case. Our perception of what
we hear is a result of cognitive processing in the brain as well as combination of multiple
sensory networks. The biological process from detection of the physical sound to hearing
and understanding meaning is complicated to say the least.

In everyday life the auditory environments experiences are highly varied. One particularly
straining scene is when multiple speaker are present in the same room as the person one is
trying to listen to. This can happen in meetings at work, during morning commutes or a
cocktail-party. The last example has inspired the name of the natural ability of our auditory
system to subliminally focus on a particular speaker: the cocktail party effect [6].

Although picking out single speakers in noisy environments can be straining, normal hear-
ing individuals are able to solve the cocktail party problem. However, for people with
deteriorating hearing and hearing aid (HA) users this ability can be heavily encumbered.
To intuitively understand the problem, one can imagine a situation that most people have
been in nowadays. In an online video call meeting, it is often the case that multiple people
on different ends of the call start talking at the same time. If you try distinguishing a certain
speaker from the others, this will require a high amount of effort compared to a normal
meeting. This is due to all speakers are jumbled in the speakers of the computer, in an un-
natural way. At the end of the meeting, you can feel very tired and wanting to disconnect.
This tiredness is also quite common for HA users, were the user turns the hearing device
off after being in a multiple speaker situation for too long.

The goal of auditory attention decoding is to help individuals with this problem. By work-
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ing out which sound a HA user is focusing on, one can attenuate other disruptive sounds in
the HA, helping the wearer. This requires continuously measuring brain activity, relating
this to the sounds of which the individual hears and work out which source to enhance. To
decipher this cognitive processing, understanding the processing of sounds in the auditory
system is important.

1 The cocktail party effect

The cocktail party problem, first named by Cherry in the 1950s [6], was formalized as the
task to solve by humans to recognize what one person is saying when others are speaking
at the same time. Multiple aspects can alleviate or exacerbate the difficulty of this task. If
the attended speech is relatively soft compared to other speakers, then focusing becomes
harder. The separation is harder if speakers are similar, for example in fundamental fre-
quency, accent or talking speed. Although spatial clues and information of the sound is
useful for separating speakers, separation is not purely a result of these types of inferences.
Interestingly, although it is harder to separate speakers that share a direction to the listener,
it is still very much possible [16].

The auditory cortex is involved in the processing of sounds and speech [31]. In particular
this involvement can be measured during listening in multi-talker scenarios [24]. In the
primary auditory cortex both attended and ignored sounds can be tracked. Moving from
the primary auditory cortex, outwards to other parts of the auditory cortex, the observed
connection to sounds is reduced to attended speech alone [37]. In auditory processing
of speech in a multi-talker scenario, tracking is stronger in the left hemisphere compared
to the right [30]. This is true although there certainly is a bilateral aspect to hearing and
listening processes in the brain.

Auditory attention decoding (AAD) is the process and research field of determining which,
out of multiple concurrent speakers, a certain listener is attending. This is done by mea-
suring brain signatures in some way. Multiple analogue approaches are available for AAD.
Attention can be spatially decoded, working out the locus of attention, i.e. which direction
the person is devoting mental resources to interpret [14, 34, 7]. Attention decoding can
also focus more about the connection between measured brain responses and the content
of what is spoken in each speech source. Significant research has been made relating both
acoustic and linguistic speech features to corresponding brain responses [1, 18, 2, 9].
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2 Harder cocktail party problem for hearing impaired

For individuals with hearing impairment, the cocktail party problem is harder. Due to
partial hearing loss, the auditory pathway deteriorates in its ability of processing sounds
in noisy environments [23]. Exactly what mechanisms triggers this decline is not fully
understood. Both the ability of individuals with hearing impairment to discern sounds, as
well as the fusing of sound information binaurally can play part. Hearing loss is also in
and of itself an early indicator for both depression and dementia [19, 22], another reason
to alleviate the perceptual barriers for people with hearing impairment.

HAs help individuals in selective attention in noisy environments. However, the mech-
anisms in play can be affected. Since HAs themselves augment the listening experience
for the user, this adds a degree of freedom in estimation. The same algorithms that can
decode attention of normal hearing individuals, may fail when applied to HA users. Mea-
suring how HAs help users in cocktail party scenarios is important, as this can be used
clinically. HAs have to be fitted which means setting appropriate enchancement levels of
sounds at different frequencies. Additionally, modern HAs are employed with noise reduc-
tion schemes and different settings for different audio environments. Objective evaluation
of performance of settings and algorithms in HAs are constantly sought after to help users
in systematic ways [13].

Ideally, future HAs fused with some brain monitoring system can decode the attention of
a listener and attenuate disturbing sounds. A schematic of this is shown in Figure 1.1. This
is simplification of a potential system. For example, in any real application one has to be
able to let enough of other speakers through so users can change attention naturally in a
conversion. Also, the HA needs to let through salient or potentially threatening sounds.

3 The path from sound to neuronal activity

Sound is a series of changes in sound pressure that propagate through all mediums [29].
These mechanical pressure waves travel through multiple biological structures before they
are converted into signals in the brain. These structures can be seen in the schematic of the
human ear shown in Fig. 1.2. Vibrations in air reach the outer ear and travel into the ear
canal. At the end of the ear canal, the sound waves push on the eardrum. The eardrum
separates the outer ear and the middle ear. In the middle ear lies three bones, called the
malleus, incus and stapes. The eardrum pushes on the malleus and the pressure from sound
is propagated through the bones. At the end of the stapes the concentrated pressure (due
to a very small surface area) is transferred into the cochlea.

When sound enters the fluid-filled cochlea, it enters one side of it [29]. The cochlea is
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Figure 1.1: A conceptual future hearing aid that concurrently measures brain activity as a wearer (in black) listens to an attended
speaker (in green) when a disturbing speaker (in red) is present. By analyzing the brain, the hearing aid adapts and
only lets through sound from the speaker the listener is paying attention to.

split in two by the basilar membrane, which is a tapered wall that separates two tubes that
make up the spiral-shaped cochlea. As pressure must be dispersed, sound waves move
from one side of the basilar membrane to the other. Because of the tapered structure,
different frequencies of sounds will take different paths, separating themselves along the
basilar membrane. Within the basilar membrane, these mechanical oscillations of different
frequencies are extracted and converted into electrical signals. These electrical signals are
then carried by neurons through the auditory nerve to the central auditory pathway. These
signals are frequency dependant as well as amplitude dependant of the oscillations caused
by sounds.

As the fibres of the auditory nerve leaves each left and right cochlea they enter the corre-
sponding cochlear nucleus, where they bifurcate. Roughly speaking, the nerves travel to
a range of different nuclei that make up the cochlear nuclei, before they travel to various
parts of the ascending auditory pathway. Signals reach the superior olivary complex, the
nuclei of the lateral lemniscus, the inferior colliculus and the medial geniculatae body be-
fore arriving to the auditory cortex. The auditory cortex is the most recent evolutionary
part of the auditory system and thus is important for processing of sound that is specific
to humans [29]. High-level processing of the sounds heard is done here in connection to
other parts of the brain. It is located bilaterally, at the upper sides of the temporal lobes
in areas such as the Heschl’s gyri and superior temporal gyri. The location of the auditory
cortex is shown in Fig. 1.3.

Although this is the main path leading from sound coming into our ears to us actually
hearing and listening, other paths and areas are included in the hearing process. These
areas can be connected in undefined ways or be connected to specific biological processes,
such as a connection from the inferior colliculus to the gaze control centre for reflexive eye
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Figure 1.2: Parts that make up the human ear. Taken from the website of the National Institute on Deafness and Other Com-
munication Disorders, National Institutes of Health (public domain).

movements towards sounds. Additionally, the auditory pathway is not a one way path for
sound processing. In reality, feedback loops are incorporated into the biological structures,
with descending projections back as far as the cochlea.

4 Probing brain activity with EEG

Measuring what goes on in the brain is not trivial, to say the least. Inferring neural ac-
tivity has been done in multiple different ways. Techniques such as functional magnetic
resonance imaging (fMRI) measure the blood flow in the brain. Blood flow is coupled to
neurological activity, i.e. blood flows to regions that are activated in neuro-processing. The
technique of fMRI has a high spatial resolution, but lacks temporal resolution to see fast
cortical changes. Other techniques, such as the electroencephalography (EEG) and magne-
toencephalography (MEG), measure electrical activity in the brain. Both techniques have a
significantly higher temporal accuracy. Although both techniques are measured outside the
head (or are so-called non-invasive) and MEG has better source-estimation qualities, EEG
is significantly cheaper and easier to set-up. EEG is currently seen as the only technique
that can have possible use in future HAs.

The first human EEG was captured 100 years ago, in 1924, by Hans Berger [15]. By placing
as many as 32, 64 or 128 electrodes on the scalp, and measuring the electrical potential of
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Figure 1.3: Location of the auditory cortex, highlighted in pink, on the surface of the brain. The anterior of the brain is to the
left, and the posterior to the right.

each electrode, one can observe a spatial map of electrical potentials at each sample during
EEG. An example of an EEG cap is shown in Figure 1.4. The sample rate is in the range
of thousands of Hz, although this usually is reduced during analogue to digital conversion.
Measuring electrical potential requires setting a reference potential, which is a disputed
question. Commonly one designates a reference electrode where no cortical activity should
be observed.

After measurement, data can either be analyzed or visualized. Commonly, EEG activity
is interpreted through its spectral signature. Activity is split into the following frequency
bands; ∼ [1, 4] Hz as delta, ∼ [4, 8] Hz as theta, ∼ [8, 12] Hz as alpha, ∼ [12, 30] Hz as
beta, ∼ [30, 64] Hz as low gamma, and ∼ [64, 128] Hz as high gamma. The EEG caps
used for measurements mentioned in this thesis have 64 channels spread out over the head
of the wearer. They can be grouped into frontal, central, parietal, and occipital, as well as
into the left (L) and right (R) hemispheres.

Although multiple limitations plague EEG analysis, perhaps the main limitation is the
poor spatial resolution. EEG cannot sense activation of individual neurons. Instead, EEG
captures the synchronized activation of thousands of individual neurons. EEG is also influ-
enced heavily by so-called pink noise 1/f-shaped in the frequency domain. Noise sources
originate from ocular activity, heart beats, line noise, channel noise in electrodes, muscles
artifacts, as well as brain activity that is not of interest to the particular study or clinical trial
[33]. These noise sources disturb measurements both spatially and temporally.

5 Research questions of AAD

Historically, either steady state analysis, waveform analysis or event-related potential anal-
ysis have been been the most common application of EEG. To fully understand the neural
response to speech in a realistic setting, one has to analyze the response of the brain to con-
tinuous stimulus. This together with the usual aspects of EEG brain function imagining
poses a plethora of challenges in the field.
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Figure 1.4: An EEG cap (to the left), and EEG electrodes (to the right).

Multiple goals are relevant in AAD. Inferring spatial and temporal location of sound/speech
processing in the brain, identifying differences between individuals with different pre-
conditions, and determining neurological processing are just some examples of research
questions of interest. These are besides the obvious goal of creating algorithms that can
decode auditory attention with the most efficacy.

In large, it is not known what happens when we listen to natural speech in multi-talker
environments. This is key to keep in mind when designing algorithms. They should enable
us to learn more about neural processing of speech. Sound processing in the brain in itself
is highly complex and include non-linear relations as well as stochastic processes. If non-
linear, complex models are applied there is a problem that due to relatively low levels of
data and high levels of noise models can be hard to fit. Additionally, if we create models
that are too hard to understand we are in some sense recreating the same problem again,
trying understand complex processing of sounds but this time it is machine processing.
Therefore, the work part of this thesis focuses on linear and fairly non-complex methods.

Since EEG results in highly noisy measurements, this is a great challenge, and extracting as
much information as possible is pertinent. There is no set procedure that is regarded as the
generally accepted path. This opens up multiple possibilities of preprocessing and handling
noise before analysis is made. Specifying the effects of different steps during preprocessing
of EEG data in specifically AAD is of high interest.
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Chapter 2

The Role of Signal Processing in
Auditory Attention Decoding

Consider recorded EEG with Nc channels, measured during an auditory attention exper-
iment, as yc(t), during Ntr trials lasting T seconds. During experiments, subjects are pre-
sented with speech from multiple speakers. Time-varying features can be extracted from
these, for instance the envelope of speech in our case. The speech feature for attended
speech is denoted x(t), but this can also be concurrent ignored speech. The measured EEG
can be decomposed as yc(t) = rc(t) + ec(t), where ec(t) is noise.

The EEG response is assumed to be the output of some processing of the attended speech
feature

rc(t) = f (x(t), t) (2.1)

This processing is assumed to be stationary in time, and only x(t) and yc(t) is observable.

yc(t) = rc(t) + ec(t) = f (x(t)) + ec(t) (2.2)

Our system of signals can be summarized as

Speech feature : x(t)
EEG measured, channel c : yc(t)
EEG response, channel c : rc(t)
EEG noise, channel c : ec(t)

There is no reason to believe f is a linear operator. As described in the previous chapter,
there is a large amount of different processes that connect sound heard to measurable brain
processes. However, with this being said, there are multiple examples where linear mod-
elling have been successful in describing the system in 2.2 for making meaningful inference.
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Additionally, although it may be hard to define the non linear f, one can analyze the out-
put alone to circumvent the problem. This introduces other problems instead. One has to
be careful when defining models, to not overfit towards other patterns in the EEG data,
such as artifacts from eye movement. Additionally, if one rejects to use the speech signals
at all, how does one gauge where in time EEG data is interesting and carries information?
Linear modelling can adequately provide insights of the system of interest. Presented here
are four different signal analysis methods, that explore linear aspects of signals. Two use
speech envelope information, and two only looks at EEG data.

1 Coherence

A real valued stationary random processes, x(t), and its Fourier transform X(f) is related
through

X(f) = F [x(t)] =
∫

x(t)e−i2πftdt (2.3)

The magnitude squared coherence, or simply coherence, between two signals x(t) and y(t)
is then defined

C(f) =
|Sxy(f)|2

Sxx(f)Syy(f)
(2.4)

where a cross-spectrum Sxy(f) is normalized by the two respective auto-spectra of the signals.

The common interpretation of the coherence measure is that it measures the relative lin-
earity between the two processes. If y(t) can be explained by a linear filtering of x(t),

y(t) = f(t) ∗ x(t), (2.5)

then C(f) = 1 at the frequencies where x and y have power. If there is no linear connec-
tion between the processes, coherence is zero instead. Another way of putting this is that
coherence can detect phase-locked spectral components between channel x(t) and y(t).

Estimating coherence, simply reduces to estimating the corresponding spectra of signals
included,

Ĉ(f) =
|Ŝxy(f)|2

Ŝxx(f)Ŝyy(f)
(2.6)

This however, is non-trivial. Perhaps the most common approach, using the Welch method,
utilizes averaging of multiple data segments to estimate each cross- and auto-spectrum [36].

Ŝxy(f) =
1
L

L∑
l=1

Xl(f)Yl(f)∗ =
1
L

L∑
l=1

F [xl(t)h(t)]F [yl(t)h(t)]
∗ (2.7)
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Figure 2.1: The first tenSlepian windows, for time lengths T = 1, and bandwidth W = 5.5, at a sample rate of 128.

where l = 1...L indexes the data segment used in each Fourier transform, and h(t) is a
tapering window. The auto-spectra are calculated in the corresponding similar way. The
statistics of coherence estimation using the Welch method has been thoroughly studied [36,
5, 28, 25]. As an alternative to this approach, Thomson introduced multi-taper spectrum
estimation of processes [32]. Here K different data windows hk(t) are applied to the same
data segment as

Ŝxy(f) =
K∑

k=1

αkXk(f)Yk(f)∗ =
K∑

k=1

αkF [x(t)hk(t)]F [y(t)hk(t)]
∗ (2.8)

Again, the auto-spectra are calculated in the corresponding similar way. The subestimates
are weighted byαk, which are commonly chosen as 1/K. Commonly, the windows used are
the set of Slepian functions, which maximally concentrates spectral power within a chosen
bandwidth [−W,W]. The first ten Slepian windows for W = 5.5 is shown in Figure 2.1.
The statistics of spectral estimation using the Thomson method have also been studied,
although not to the same extent as the Welch method [35].

Both the Welch method and the Thomson method increases bias induced by widening of
the bandwidth of the spectral kernel of the estimator. In this sacrifice, they gain a reduced
variance in each frequency bin, approximately by factor of the number of terms in the
estimates (L and K).

Naturally, one can also combine the two approaches to both average over multiple data seg-
ments, where multiple windows are applied to each. This can be beneficial when time series
are long, but noise levels are high or narrowband information is not of interest. Coherence
is applied in Paper A and Paper B.
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Figure 2.2: An example of TRF weights for channel Cz, extracted from multiple trials from one subject listening. Both envelopes
from concurrent attended speech and ignored speech are used to fit the TRF. One can see that the two TRFs are
different, and that attended speech results in a TRF with a higher amplitude.

2 Temporal response functions

As described in the previous chapter, linear methods have seen success within the field of
AAD. The most commonly used method of analysis is using temporal response functions
(TRFs) [1, 26, 18]. These are impulse response filters fitted between EEG and speech fea-
tures. In this work, we are limiting speech features to be speech envelopes. Estimates of
channel-wise EEG responses from speech envelopes presented to a person can be modelled
using the forward (hence the superscript f ) TRF as

r̂c(t) =
∑
τ

wf
c(τ)xa(t− τ) (2.9)

where a = att, ign, are labels corresponding to attended or ignored speech. TRFs, defined
by the weights wf

c(τ), are found by solving the regression problem

argmin
wf
c

∑
t

∥yc(t)− r̂c(t)∥2
2 + λf∥wf

c∥2
2 (2.10)

By solving 2.10 and comparing competing speech features, one can receive both temporal
and spatial information about the system. As an example, Figure 2.2 shows the channel Cz
TRF weights for attended speech and ignored speech envelopes. A clear stronger response
is found for attended speech compared to ignored speech.

One can look at the system in the opposite way, and predict the envelope of the speech as
a filtering of the EEG response using the backward TRF,

x̂a(t) =
∑
c

∑
τ

yc(t+ τ)wb
c (τ) (2.11)
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Then, this entails solving the following regression problem,

argmin
wb
c

∑
t

∥xa(t)− x̂a(t)∥2
2 + λb∥wb

c∥2
2 (2.12)

Using these models to predict the speech envelopes, one can look at the similarity of these
to the true observed attended and ignored speech. The most commonly used metric is the
Pearsons correlation metrics which gives the correlation sample-wise, but mean squared
error or reconstruction are also used [8, 3].

Previous success with TRF analysis is relevant and a basis for the use of coherence in Paper
A and Paper B. TRFs are also directly applied in Paper D to evaluate different steps of
preprocessing EEG.

3 Common spatial patterns

Extracting the spatial patterns in EEG responses, only using the class information of which
speaker a person is attending, can be solved using common spatial patterns (CSP) [14, 4].
An example of a two-class source discrimination is differentiating sources from left and
sources from right of the listener. The class of CSP-based methods usually averages out the
time aspect of data in some way.

For T samples of a C EEG channel measurement pertaining to two classes (class 1 and class
2) y1, y2 ∈ RC,T, the CSP algorithm aims to find weights w that maximise the ratio of
the variance of the two classes,

ŵ = argmax
w

∥∥wTy1
∥∥2

∥wTy2∥2 = argmax
w

wTR1w

wTR2w
(2.13)

which is solved by the generalised eigenvalue problem with matrices

R1 =
y1y

T
1

N
R2 =

y2y
T
2

N
(2.14)

which are the within-class covariance matrices normalised with N number of samples. The
eigenvectors corresponding to the M/2 largest and M/2 smallest eigenvalues gives the esti-
mates of optimal spatial filers ŵm (M filters in total). Each pair of projected vectors ŵT

my1
and ŵT

my2 can then be further analysed, for example in a classification task. Commonly
the variance of the projected output is taken and then averaged over a whole trial. Thus
the output of the transform of class trials are then z1, z2 ∈ R2M,1. Although multiple
classification methods are available, a baseline option is linear discriminant analysis (LDA).

13



One can include spectral aspects to the CSP algorithm, by filtering time series before analy-
sis, and performing CSP on each filtered time series [17]. Additionally, multiple regularized
versions of the algorithm have been explored in different fields of EEG-based neuroscience
[20, 21, 27], although there are only a few examples in the field of AAD [14, 4]. Long trials,
compared to other fields of EEG analysis pose a problem, since useful information in the
EEG data may be temporally hidden. CSP-based methods are analyzed in Paper C.

4 Phase Estimation of Transients

Estimating phase difference between EEG channels is generally of interest in neuroscience,
since this can be used to infer causality of processing in the brain. EEG is non-stationary,
which demonstrates the requirement for phase difference estimation of transient compo-
nents in time series. Consider signals in two different channels c and d as xc(t) and xd(t).
Spectral components of time-varying signals can be captured using the short time Fourier
transform, with a window function h(t),

Fhxc(t, f) =
∫

xc(s)h∗(s− t)e−i2πfsds (2.15)

The spectrogram and cross-spectrogram can then be defined as

Shxcxc(t, f) = Fhxc(t, f)F
h
xc(t, f)

∗ (2.16)

Shxcxd(t, f) = Fhxc(t, f)F
h
xd(t, f)

∗ (2.17)

respectively. The complex phase of the cross-spectrogram at different times and frequencies
contains the time-shift of the component in the channels xc(t) and xd(t). Multiple options
for extracting phase information from spectrograms are available, but noise-robust methods
are critical since EEG data is so heavily disturbed by noise. Phase difference estimation
between signals and spectrogram theory is used in Paper E.

5 Influence of preprocessing EEG

To mitigate the effects from the inherent limitations of EEG, the data is often preprocessed
before analysis. Although there is no fixed standardised pipeline, the processes contain most
of these steps. Bad channels are visually identified, removed and replaced by an interpo-
lation from surrounding channels. Bad trials can also be removed, if there is a significant
disturbance during the certain trial. Additionally, EEG data is highpassed filtered around
0.1−0.5 Hz. Data is also lowpass filtered and downsampled to a desired sample frequency,
usually somewhere between 64 Hz and 256 Hz. A notch filter at 50 Hz is also critical to
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apply in order to remove line noise in measurements. The role of these preprocessing steps
is steadily discussed within the field, some researchers arguing for and against the neces-
sity of each step. In particular, for event-related potential analysis of EEG, there has been
extensive identification of the effect of preprocessing steps [12, 10, 11].

In addition to the previous steps, a common preprocessing step is independent component
analysis (ICA) based artifact rejection [33]. ICA decomposes multivariate EEG into a series
of independent and non-Gaussian components. Since different artifacts are sufficiently
non-Gaussian and are generally independent from each other and from the brain activity
of interest, these are possible to split apart. When EEG channels have been projected onto
the independent components, artifacts can be identified and removed from data. Then
EEG data in original sensor space is restored through reprojection.

Nuisance of identifying artifacts in EEG

One particularly time-consuming part of preprocessing is removing EEG artifacts. This is
usually done by investigating the temporal, spectral and spatial structure of each compo-
nent [33]. Using this one can identify the signatures of certain types of artifact. Identifiable
artifacts can be grouped into muscle artifacts, eye gaze and blinks, heart beats, line noise,
channel noise. Brain activity and other hard-to-identify artifact are contained in other com-
ponents. Thus, it is very important to remove correct components, so data is not destroyed.
For the domain of AAD, there has been little to none research towards understanding the ef-
fects of errors in ICA based artifact removal. So, experienced EEG researcher and scientists
have to spend considerable amounts of time to perform these steps, in order for conclusions
drawn from data to be reliable. Paper D aims to probe the effects of preprocessing in AAD,
looking at manual and automatic alternatives of artifacts rejection in EEG.

6 Main results of research papers

Paper A: Improved coherence measure for EEG-based speech tracking in hearing
impaired listeners

Due to success of linear input-to-output methods in AAD, the measure of coherence should
be a suitable method to detect connections between speech features and EEG responses.
High amounts of measurement noise in EEG and non-linearities cause very low values of
coherence in this application, even though there is a linear connection. This paper presents
a analytical bias expression to show an inherent bias of coherence peak towards higher
frequencies, due to 1/f− shaped noise. Additionally, we present a methodological im-
provement in coherence estimation compared to previous applied coherence methods in
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the field, which increases performance. The use of improved coherence is shown advan-
tageous for decoding auditory attention of hearing impaired. Finally, an application of
coherence in evaluation of hearing conditions is also presented.

Paper B: Coherence Expectation Minimisation and Combining Weighted Mul-
titaper Estimates

This paper presents a novel expression for the expectation of a multitaper magnitude squared
coherence estimate, for the signal model presented in this thesis. Minimisation of certain
terms in this expression is used to find multitaper weights for coherence estimation. When
weights are not equal, biases dependent spectral locations of signal power are induced. This
is mitigated by combining two coherence estimates that are differently weighted. Perfor-
mance, in terms of reduced mean squared error, is improved, giving better classification in
simple EEG examples.

Paper C: A Comparison of Common Spatial Patterns Algorithms for Auditory
Attention Decoding

The classification methods utilizing CSP are proven in EEG classification, in certain fields.
However, applications of these methods within the field of AAD have been scarse. This
paper employs and reports performance of a variety of CSP methods from other field of
EEG classification to three different AAD datasets. These datasets are from EEG of listeners
that are both normal hearing and hearing impaired, enabling us to compare performance
of CSP between the two subsets. Classification of left or right locus of attention has higher
accuracy for the dataset with normal hearing participants, while it is still possible to predict
locus of attention for individuals with hearing impairment as well.

Paper D: Effect of Independent Component Artifact Rejection on EEG-Based
Auditory Attention Decoding

Understanding the influence of EEG preprocessing is critical to make conclusions in anal-
ysis. There is a gap in the specific field of AAD in how reliable results are in relation to
the methodology used when rejecting EEG artifacts with ICA. Here, multiple automatic
labellers of artifacts are analyzed and compared to traditional manual inspection. If auto-
matic artifact rejection schemes are satisfactory, this would save a lot of time. We show
small deviations in the performance of TRF-based decoders on one investigated dataset,
although the are some extrapolated patterns. Examples of these are that omitting artifact
rejection can actually increase performance in backward modelling, and that manual artifact
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rejection was superior for frontal EEG channels compared to automatic artifact rejection
schemes.

Paper E: Robust Phase Difference Estimation of Transients in High Noise Levels

Phase difference estimation of transient signals is challenging. This is particularly useful in
EEG where differences in phase between channels contains information, that can be hard
to extract from raw time signals. The phase difference estimation method presented in
this paper is built upon previous methodology of reassignment and cross-spectrogram re-
assignment. Compared to previous methods, improvements to noise-robustness and mean
squared error are shown. The method is not restricted to specific spectrogram window
shapes. Additionally, the method does not make any assumptions regarding the envelope
shapes of components, and is tunable to different signal characteristics.
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7 Conclusions and outlook

In summary, this thesis explores multiple different ways linear models and methods can
be applied in EEG analysis in general, and in AAD in specific. Although the methods
are linear, they are in fact very capable of capturing interesting and important aspects of
EEG when performing AAD. For example, coherence detects linear connections between
speech envelopes and EEG response. CSP-based methods can differentiate left and right
locus of attention from each other, using the spectral and spatial signatures of EEG. In both
these cases, due to a very low signal-to-noise ratio in EEG data, methodological choices are
important for reliable results. The thesis presents method improvements, building towards
analysis tools of EEG that are applicable in clinical settings for hearing impaired persons.
Additionally, an evaluation of current preprocessing methodology within the field of AAD
shows comparable performance to new promising machine-based methodologies, which
could save resources in research and clinics.

Looking ahead, multiple interesting paths of research are evident. Firstly, and perhaps
most concretely, evaluation of artifact rejection schemes should be further expanded to
encompass more evaluation methods as well as more datasets. This is necessary before
any strong conclusions can be made. Additionally, one can investigate specific artifacts
and their individual effect on TRF analysis. Additionally, involving temporal aspects more
into models would be interesting. Detecting faltering attention or attention switches are
important for applying AAD methods in hearing aid technologies. The problems of these
temporal aspects can be approached in multiple ways, but this demands high standards on
signal analysis methods as well as datasets used to make evaluations and conclusions. This
sets the scene for multiple paths forward, research-wise.
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