
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

An Optimal Sampling Technique for Distinguishing Random S-boxes

Stankovski, Paul; Hell, Martin

Published in:
Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on

DOI:
10.1109/ISIT.2012.6284680

2012

Document Version:
Early version, also known as pre-print

Link to publication

Citation for published version (APA):
Stankovski, P., & Hell, M. (2012). An Optimal Sampling Technique for Distinguishing Random S-boxes. In P.
Viswanath (Ed.), Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on (pp. 846-850).
IEEE - Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ISIT.2012.6284680

Total number of authors:
2

Creative Commons License:
Other

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ISIT.2012.6284680
https://portal.research.lu.se/en/publications/41f77893-ea42-4ead-b830-c442319d72ba
https://doi.org/10.1109/ISIT.2012.6284680

An Optimal Sampling Technique for Distinguishing
Random S-boxes

Paul Stankovski and Martin Hell
Department of Electrical and Information Technology

Lund University, Sweden
E-mail: {paul,martin}@eit.lth.se

Abstract—The nonrandom behavior of the outputs of a ran-
dom S-box can be exploited when constructing distinguishers
for cryptographic primitives. Different methods of constructing
samples from the outputs have been used in the literature.
However, it has been unclear exactly how these methods differ
and which method is optimal. We analyze four different sampling
techniques. We prove that two of these sampling techniques
result in dependent samples. We further show one sampling
technique that is optimal in terms of error probabilities in the
resulting distinguisher. However, this sampling technique is quite
impractical as it requires very large storage. We further show
a fourth sampling technique that is much more practical, and
we prove that it is equivalent to the optimal one. We also show
an improved algorithm for calculating the associated probability
distributions that are required for the attack.

I. INTRODUCTION

Random S-boxes can appear in cryptanalysis when obser-
vations, e.g., linear sums of keystream bits in stream ciphers,
can be regarded as outputs of a large table. In this paper we
study such random S-boxes. More specifically, we study how
to perform an optimal distinguisher from the observations. A
random S-box is an a-to-b-bit mapping which can be seen
as a table containing n = 2a random entries of b bits each.
Our work is motivated by the analysis of the HC-128 stream
cipher as performed in [2], [5], but the results are applicable
to all random S-boxes. HC-128 is a stream cipher in the
eSTREAM portfolio, and is thus considered to be one of
the most promising stream ciphers today. Indeed, it is very
fast in software and it has been shown to resist cryptanalytic
attacks very well. There are no attacks (not relying on side-
channel information) that are more efficient than exhaustive
key search. The distinguishing attack given in [2] is currently
the most efficient non-generic attack, and that attack is based
on the attack given in [5]. The improvement comes from a
more efficient sampling technique, reducing the number of
keystream bits required by the distinguisher.

We analyze different sampling techniques. We show that the
sampling technique used in [5] significantly underestimates the
number of samples needed by the distinguisher as the samples
are not independent. We further prove that it is not possible to
take two independent biased samples at all, unless the S-box
is reinitialized. The optimal sampling technique is thus to take

The final publication is available at IEEE Xplore, Copyright IEEE, DOI:
10.1109/ISIT.2012.6284680. This work was sponsored in part by the Swedish
Research Council (Vetenskapsrådet) under grant 621-2006-5249.

one sample containing all information, i.e., to consider a vector
of all outputs. The problem with this vector is that, for large
vector sizes, its probability distribution is infeasible both to
compute and to store. Due to this, a shortcut was used in [2],
namely to consider only the weight of the vector. We show that
this weight probability distribution is equivalent to the optimal
probability distribution and, as a result, it is not possible to
further improve the sampling used in [2]. Finally, we give a
new algorithm for computing the vector weight distribution
that improves the one given in [2]. Our new algorithm uses
much less memory (optimal) and saves 80-85% in time.

II. PRELIMINARIES

Two outputs from an S-box of size n are equal with
probability (at least) 1

n since the same entry may have been
used twice. This simple observation can be used to construct
a distinguisher for random S-boxes.

We consider an a-to-b-bit random S-box that allows `
observations before it is rerandomized. A set of ` such S-
box observations will be referred to as a chunk, and the
observations themselves are denoted s1, . . . , s`. The S-box
may be regarded as a table with n = 2a entries of b bits
each, and we will restrict ourselves to the case when b = 1,
i.e., we observe bits, but the results carry on to the general
case. The number of `-bit chunks is denoted k, and we denote
the total number of observations by N = k · `.

As noted above, it is known (see [5]) that the xor sum of
a pair of output bits is biased, and this bias stems from the
fact that the same S-box entry may have been probed for both
outputs. More specifically, for i 6= j,

Pr(si = sj) =
1

2

n− 1

n
+

1

n
=

1

2
(1+

1

n
) =

1

2
+2−(a+1), (1)

and the bias in (1) can be used to construct a distinguisher.
The main problem we study in this paper is exactly how to
construct this distinguisher when the number of S-box obser-
vations is more than two. That is, how should a cryptanalyst
use the observations to construct an optimal distinguisher?

The empirical probability distribution as defined by the
sampling is denoted P ∗. The corresponding (theoretical) prob-
ability distribution of the S-box is denoted P1 while its
uniform distribution is denoted P2. The optimal hypothesis
test is given by the Neyman-Pearson lemma, see e.g., [1].

https://doi.org/10.1109/ISIT.2012.6284680

Lemma 1 (Neyman-Pearson): Let X1, X2, . . . , Xt be iid
random variables according to P ∗. Consider the decision prob-
lem corresponding to the hypotheses P ∗ = P1 vs. P ∗ = P2.
For Q ≥ 0 define a region

At(Q) =

{
P1(x1, x2, . . . , xt)

P2(x1, x2, . . . , xt)
> Q

}
.

Let αt = P t
1(Ac

t(Q)) and βt = P t
2(At(Q)) be the error

probabilities corresponding to the decision region At. Let Bt
be any other decision region with associated error probabilities
α∗ and β∗. If α∗ ≤ α, then β∗ ≥ β.

If we want the error probabilities to be equal we set Q = 1.
In other words, we decide P ∗ = P1 if

P1(x1, . . . , xt)

P2(x1, . . . , xt)
> 1 ⇔

indep.

t∑
i=1

log
P1(xi)

P2(xi)
> 0, (2)

and P ∗ = P2 otherwise. The equivalence in (2) is valid when
the samples x1, . . . , xt are independent.

In our case, the samples xi will be constructed from the
observations sj . Note that the Neyman-Pearson lemma, which
gives the optimal distinguisher, requires that the samples xi
are independent. By sampling technique we mean how to use
the observations to build the samples used in the distinguisher.

If the samples are very easy to construct from the observa-
tions, we can say that the online computational complexity of
the attack is given by the number of terms t in the sum (2).
The offline complexity is the time needed to compute P1.

III. SAMPLING FROM A RANDOM S-BOX

We will consider the following four sampling techniques:
• All-Pairs Sampling (APS) Take all pairs of observations

(si, sj), 1 ≤ i < j ≤ ` as samples. Let P1 be the
distribution corresponding to (1), i.e., Pr(si = sj) =
1
2 (1+

1
n) and Pr(si 6= sj) =

1
2 (1−

1
n). P2 is the uniform

distribution, Pr(si = sj) = Pr(si 6= sj) =
1
2 .

• Linear-Pairs Sampling (LPS) Take the pairs of obser-
vations (si, si+1), 1 ≤ i < ` as samples and let P1 and
P2 be as for APS above.

• Vector Sampling (VS) Take the vectors (s1, s2, . . . , s`)
as samples and perform the hypothesis test with the
corresponding vector probability distributions as P1 and
P2.

• Weight Sampling (WS) Take the vector weights
‖(s1, s2, . . . , s`)‖ =

∑`
i=1 si as samples and perform

the hypothesis test with the corresponding vector weight
probability distributions as P1 and P2.

It is clear that Vector Sampling (VS) is optimal since it
preserves all information in the samples. The drawbacks are
that the distribution is very large in storage (2`) and that it is
demanding to compute. APS was applied in [4], [5]. It uses
the easily computed bias in (1) and produces many samples.
For ` observations,

(
`
2

)
samples are produced. Due to the

dependency between samples, LPS was suggested in [2] and
WS was also applied as an improvement. However, it was an
open question whether it was possible to improve over WS as

it appears that not all sample information is retained in the
vector weight samples.

The rest of the paper is organized as follows. In Sec-
tions III-A and III-B we prove that APS and LPS are faulty.
In Sections III-C and III-D we give algorithms for computing
the required distributions for VS and WS, respectively. We
also prove that VS and WS are equivalent in terms of the
performance of the resulting distinguisher. Section IV explic-
itly compares APS, LPS and WS. The paper is concluded in
Section V.

A. All-Pairs Sampling (APS)

The Neyman-Pearson lemma assumes that all samples are
independent and identically distributed. In APS sampling, all
possible bit pairs in an `-bit chunk are taken as samples,
producing in total k

(
`
2

)
samples. It is very easy to prove

that these samples are not independent. Consider a chunk
with ` = 3, where we take the samples (s1, s2), (s1, s3) and
(s2, s3). If we know the first two samples, then we also know
the last sample, i.e.,

H(S2 ⊕ S3|S1 ⊕ S2, S1 ⊕ S3) = 0,

where H(·) denotes the entropy function, ⊕ denotes xor and
S1, S2 and S3 are random variables corresponding to the three
observations. This argument is easily extended to the general
case with arbitrary `, which also serves as a direct motivation
for defining and using LPS sampling.

Even though the samples are dependent, APS is very easy
to apply. Computing and storing the P1 requires negligible
memory and can be trivially done by hand, see (1). However,
the large number of samples gives an online computational
complexity of k

(
`
2

)
= O(k`2).

B. Linear-Pairs Sampling (LPS)

In LPS sampling we take (s1, s2) as the first sample and
then only take one new sample for each new observation. This
procedure produces ` − 1 samples per chunk for a total of
k(`−1) samples. In order to show that this sampling technique
also gives dependent samples, for P1 we calculate and compare
Pr(s3 = s2|s2 = s1) and Pr(s3 = s2|s2 6= s1) to see that the
probability of pair equality in one sample depends on the pair
equality of the previous one.

We regard the S-box as a table with n entries. The first time
we read a specific entry in the table, we say that we “open” the
entry. Consider Pr(s3 = s2|s2 6= s1) first. Given that s2 6= s1,
we must have opened precisely two entries in the table, one 0
and one 1. We can now have s3 = s2 in two different ways,
by reading s3 from either an “old” entry (same as s2) or a
“new” previously unopened one. Thus, we have

Pr(s3 = s2|s2 6= s1) = 1 · 1
n
+

1

2
· n− 2

n
=

1

2
.

Calculating Pr(s3 = s2|s2 = s1) divides into two cases.
Case A: s1 and s2 were read from the same entry.
Case B: s1 and s2 were read from different entries.

The probability of case A is p = 1
n , while that of case B is

q = n−1
2n . Given case A, the probability that s3 = s2 is

a =
1

n
+
n− 1

2n
=
n+ 1

2n
.

Given case B, the probability that s3 = s2 is

b =
2

n
+
n− 2

2n
=
n+ 2

2n
.

In total we get Pr(s3 = s2|s2 = s1) =

p

p+ q
· a+ q

p+ q
· b = 1

2
(1 +

2

n+ 1
) >

1

2
,

from which we conclude that

Pr(s3 = s2|s2 6= s1) 6= Pr(s3 = s2|s2 = s1).

This proves that LPS is also erroneous in assuming indepen-
dence between samples.

One may further note that the same probabilities are valid
for any other overlapping pair, i.e., for Pr(sk = sj |sj 6= si)
and Pr(sk = sj |sj = si) for all distinct indices i, j and k.

This dependency may seem natural since the two sam-
ples are overlapping in one of the observations. Collect-
ing samples in a non-overlapping fashion according to
(s1, s2), (s3, s4), (s5, s6), and so on, may at first glance seem
better. However, by performing similar calculations we can
also prove that

Pr(s4 = s3|s2 6= s1) 6= Pr(s4 = s3|s2 = s1).

The corresponding calculations show that

Pr(s4 = s3|s2 6= s1) =
1

2

(
1 +

n− 2

n2

)
and

Pr(s4 = s3|s2 = s1) =
1

2

(
1 +

n2 + 3n− 2

n2(n+ 1)

)
.

This means that the probability of pair equality in one sample
depends on the previous one in this case as well. This
immediately generalizes to all non-overlapping pairs, i.e., the
same holds for Pr(sj = si|sv 6= su) and Pr(sj = si|sv = su)
for all distinct indices i, j, u and v. Since the overlapping and
non-overlapping cases are exhaustive, we can conclude that
any two samples will be dependent. An intuitive explanation
for this is that a sample leaks information about the entries in
the S-box. This information will affect the probability of the
next sample since we may read the same entries as before. We
summarize this result in Theorem 2.

Theorem 2 (Random S-box Sampling Theorem): It is not
possible to extract more than one independent sample from
a chunk s1, . . . , s` of observations from a random S-box.

The advantage of LPS over APS is that fewer samples are
used. The computational complexity of the online phase of
LPS is k(`− 1) = O(k`).

Algorithm I – Vector Distribution (vd)

Input: S-box size n, vector length `, current depth d, current
probability p, probability distribution container dist of length
2`, vector v, number of opened table entries with zeros a0,
number of opened table entries with ones a1.
Output: probability distribution dist.
Initial recursion parameters: dist zeroized,
(d, p, v, a0, a1) = (0, 1, 0, 0, 0).
if (d == `) { dist[v] += p; return; }
if (a0 > 0) vd(dist, n, `, d + 1, p · a0

n , v‖0, a0, a1); /* old 0 */

if (a1 > 0) vd(dist, n, `, d + 1, p · a1
n , v‖1, a0, a1); /* old 1 */

if (a0 + a1 < n) { /* table not exhausted */

vd(dist, n, `, d + 1, p · n−(a0+a1)
2n , v‖0, a0 + 1, a1); /* new 0 */

vd(dist, n, `, d + 1, p · n−(a0+a1)
2n , v‖1, a0, a1 + 1); /* new 1 */

}

C. Vector Sampling (VS)

In order to correctly apply the Neyman-Pearson lemma,
we need to find the probability of the complete chunk. Thus,
we collect all observations in one vector (s1, s2, . . . , s`). The
vector probability distributions P1 and P2 both have a domain
of size 2`, which determines the storage cost for handling P1

and P2 with VS.
For P2, all vectors are equally likely, resulting in identical

probability values P2(v) = 2−` for all vectors v.
The S-box vector probability distribution P1 can be calcu-

lated according to Algorithm I, which is stated recursively for
simplicity. The main idea here is simply to keep track of how
many entries in the S-box that have revealed zeros and ones,
as this information will enable us to compute the associated
probabilities at each stage.

The storage requirement for Algorithm I is precisely 2`

(probability entries), and since this amount of memory is
necessary to store the resulting probability distribution, no
other algorithm can do better in terms of memory. The time
complexity of Algorithm I is also exponential in `, at most
4` = 22`, because every call at depth d results in at most 4
calls at depth d + 1. By employing dynamic programming,
see e.g., [3], it is possible to improve this time complexity to
O(n22`) at the expense of increased storage, O(n22`), but the
running time must still necessarily be exponential in `.

For large `, i.e., when many observations are generated
before the S-box is reinitialized, the vector sampling technique
is infeasible since the distribution P1 is both too large to store
and too demanding to compute.

D. Weight Sampling (WS)

Now consider WS, for which we take vector weights
‖(s1, s2, . . . , s`)‖ =

∑`
i=1 si as samples. The corresponding

vector probability distributions P1 and P2 have domains of
size ` + 1, which is much more manageable than those for
VS.

For WS we begin with P2. Every vector is equally likely
in the ideal case, so the resulting vector weight probability
distribution is combinatorially determined by

P2(w) =

(
`

w

)
2−`

Algorithm II – Weight Distribution (wd)

Input: S-box size n, vector length `, current depth d, current
probability p, probability distribution container dist of length
` + 1, weight w, number of opened table entries with zeros
a0, number of opened table entries with ones a1.
Output: probability distribution dist.
Initial recursion parameters: dist zeroized,
(d, p, w, a0, a1) = (0, 1, 0, 0, 0).
if (d == `) { dist[w] += p; return; }
if (a0 > 0) wd(dist, n, `, d + 1, p · a0

n , w, a0, a1); /* old 0 */

if (a1 > 0) wd(dist, n, `, d + 1, p · a1
n , w + 1, a0, a1); /* old 1 */

if (a0 + a1 < n) { /* table not exhausted */

wd(dist, n, `, d + 1, p · n−(a0+a1)
2n , w, a0 + 1, a1); /* new 0 */

wd(dist, n, `, d + 1, p · n−(a0+a1)
2n , w + 1, a0, a1 + 1); /* new 1 */

}

Algorithm III – Vector Probability (vp)

Input: vector probability prob (accumulated), current proba-
bility p, S-box size n, vector v (s` to s1 from MSB to LSB),
vector length t, number of opened table entries with zeros a0,
number of opened table entries with ones a1.
Output: vector probability prob.
Initial recursion parameters:
(prob, p, t, a0, a1) = (0, 1, `, 0, 0).
if (t == 0) { prob += p; return; }
if (v & 1) {/* next output bit is 1 */

if (a1 > 0) vp(prob, p · a1
n , n, v � 1, t− 1, a0, a1); /* old 1 */

if (a0 + a1 < n) /* table not exhausted */

vp(prob, p · n−(a0+a1)
2n , n, v � 1, t− 1, a0, a1 + 1); /* new 1 */

} else {/* next output bit is 0 */

if (a0 > 0) vp(prob, p · a0
n , n, v � 1, t− 1, a0, a1); /* old 0 */

if (a0 + a1 < n) /* table not exhausted */

vp(prob, p · n−(a0+a1)
2n , n, v � 1, t− 1, a0 + 1, a1); /* new 0 */

}

for all vector weights 0 ≤ w ≤ `.
P1 can be calculated according to Algorithm II, which is

just a simple modification of Algorithm I. Instead of passing
on a (partial) vector we now pass on the (accumulated) vector
weight. The algorithm is, again, stated recursively for simplic-
ity, but it can also be implemented in a dynamic programming
fashion as detailed in [2]. Upper bound formulas for memory
and computational complexity for handling vectors of size `
derived from an S-box of size n are given by n2`

2 and n2`2

4 ,
respectively.

We now explicitly prove that VS and WS are equivalent in
terms of keystream complexity of the resulting distinguisher.
We first present Algorithm III which calculates the proba-
bility of an S-box outputting a specific vector – the vector
probability. The correctness of Algorithm III follows from its
relationship to Algorithm I.

Theorem 3 (WS is optimal): WS is equivalent to VS in
terms of the Neyman-Pearson test (Lemma 1).

Proof: The proof follows if we can show that all vectors
of equal weight are equiprobable, because the probability
distributions P1 and P2 for WS can then be derived from
those of VS by grouping all probabilities for vectors of equal
weight. In such a case the Neyman-Pearson test is equal for
both sampling techniques, showing that no information is lost
when considering WS over VS.

It is sufficient to show that the vector probability is invariant
under pairwise bit flips. That is, we need to show that the
vector probability does not change if a neighboring pair of
bits in a vector are flipped from 10 to 01 (or from 01 to 10).

Let v = (s1, s2, . . . , s`) be a vector for which si = 0
and si+1 = 1 for some i, and let v′ be the corresponding
vector with s′i = 1 and s′i+1 = 0. Let vj denote the vector
(sj , sj+1, . . . , s`). We need to show that vp(p, v, a0, a1) =
vp(p, v′, a0, a1) (we omit some of the less interesting param-
eters).

All recursive calls to vp(p, v, a0, a1) and vp(p, v′, a0, a1)
are identical up to depth i, so it is enough to consider any
two such calls vp(p, vi, a0, a1) and vp(p, v′i, a0, a1) at depth
i. We need to show that both these calls give rise to the same
quadruple of function calls at depth i+ 2, two levels deeper.
vp(p, vi, a0, a1) splits into

vp(p · a0
n
, vi+1, a0, a1) and

vp(p · n− a0 − a1
2n

, vi+1, a0 + 1, a1)

at level i+ 1, and then into

vp(p · a0a1
n2

, vi+2, a0, a1),

vp(p · a0(n− a0 − a1)
2n2

, vi+2, a0, a1 + 1),

vp(p · (n− a0 − a1)a1
2n2

, vi+2, a0 + 1, a1) and

vp(p · (n− a0 − a1)(n− (a0 + 1)− a1)
(2n)2

, vi+2, . . .)

at level i+ 2. Similarly, vp(p, v′i, a0, a1) splits into

vp(p · a1a0
n2

, v′i+2, a0, a1),

vp(p · a1(n− a0 − a1)
2n2

, v′i+2, a0 + 1, a1),

vp(p · (n− a0 − a1)a0
2n2

, v′i+2, a0, a1 + 1) and

vp(p · (n− a0 − a1)(n− a0 − (a1 + 1))

(2n)2
, v′i+2, . . .).

Here we have vi+2 = v′i+2, so the sets of calls are identical.

A direct consequence of Theorem 3 is that, although VS
is highly impractical to use due to its exponential time- and
memory complexities, WS will provide the same result as
VS at a much lower cost, allowing much larger `-values.
The computational complexity of the distinguisher is given
by O(k).

We can also use Theorem 3 to improve the efficiency
of computing P1 with Algorithm II. This is also true for
the dynamic programming variant of the algorithm presented
in [2]. Since all vectors of equal weight are equiprobable,
we need only consider vectors of type 00 . . . 011 . . . 1. The
improved algorithm is to calculate the probabilities for all
`+1 such vectors by using a dynamic programming version of
Algorithm III. Recall that the time and memory complexities

TABLE I
A COMPARISON OF ONLINE AND OFFLINE COMPUTATIONAL AND MEMORY

COMPLEXITIES FOR A DISTINGUISHING ATTACK WHEN USING EACH
SAMPLING TECHNIQUE.

online online offline offline
comp mem comp mem

APS O(k`2) O(1) O(1) O(1)

LPS O(k`) O(1) O(1) O(1)

VS O(k) O(2`) O(n22`) O(n22`)

WS O(k) O(`) O(n2`2) O(`)

given in [2] are O(n2`2) and O(n2`), respectively, so memory
usage is limiting in practice. For the new algorithm we need
only O(min(n, `)) memory for storing intermediate probabil-
ity values and O(`) storage to hold the resulting probability
distribution. An additional improvement is to recognize that
the distribution is symmetric, so we need only compute half
of it.

While the time required is still O(n2`2), the constants are
better. Our simulations show that we save 80-85% in time, and
the memory usage is O(`), i.e., it no longer depends on the
size of the S-box. This is optimal since it equals the length of
the vector.

IV. COMPARING SAMPLING TECHNIQUES

We have shown above that both APS and LPS are erroneous
as the corresponding samples are not taken independently.
Still, both techniques are very simple to apply. The distribution
P1 is very easy to compute in each case, and checking if
(si = sj) is trivial, but the drawback is that the resulting
distinguisher will not be optimal. For optimality, WS (or VS)
must be used. This optimality comes at the cost of a larger
precomputational complexity, i.e., for computing P1. Table I
summarizes the important parameters corresponding to each
sampling technique. Note that we assume that the best dy-
namic programming variant is used to compute the probability
distributions P1 for VS and WS. The actual performance of
the attack using each of the sampling techniques has been
simulated. As VS and WS give the exact same distinguisher
performance, only WS is included in the simulations. For a
fair comparison, we assume that the number of chunks is
the same for all variants, i.e., APS and LPS are allowed
to use many more samples than WS, but all use the same
number of observations. The two plots in Fig. 1 show the
error probabilities for APS, LPS and WS when the size of the
S-box is n = 64 and the number of observations in each chunk
is ` = 20 and ` = 500, respectively. Similarly, Fig. 2 shows
the error probabilities when the size of the S-box is n = 512.

From the simulations we can see that both LPS and APS
are outperformed by WS. It is interesting to see that APS is
not very much worse when the same number of chunks is
considered. However, we stress again that APS uses a factor(
`
2

)
more samples than WS. This clearly shows the problem

of assuming independent samples when they are in fact very

10
0

10
2

10
4

10
−3

10
−2

10
−1

Number of chunks (k)

E
rr

o
r

P
ro

b
a

b
ili

ty

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

Number of chunks (k)

E
rr

o
r

P
ro

b
a

b
ili

ty

LPS

APS

WS

LPS

APS

WS

Fig. 1. Success probability as a function of the number of chunks k. Size
of S-box is n = 64 and ` is 20 (left) and 500 (right)

10
0

10
5

10
−3

10
−2

10
−1

Number of chunks (k)

E
rr

o
r

P
ro

b
a

b
ili

ty

10
0

10
2

10
4

10
−3

10
−2

10
−1

Number of chunks (k)

E
rr

o
r

P
ro

b
a

b
ili

ty

LPS

APS

WS

LPS

APS

WS

Fig. 2. Success probability as a function of the number of chunks k. Size
of S-box is n = 512 and ` is 20 (left) and 500 (right). Note that WS and
APS almost coincide for ` = 20.

dependent. Also, the factor
(
`
2

)
makes APS impractical for

large `.
Specifically for HC-128, each observation is a linear combi-

nation of keystream bits. In this case, the comparison assumes
an equal number of keystream bits for all sampling techniques.

Looking at Fig. 1 and Fig. 2 it seems that the performance of
APS approaches that of WS when the S-box size n increases
and when the chunk size ` decreases. Thus, for large n and
small ` their performances are practically equal, while for
small n and large `, WS clearly outperforms APS. We have
simulated many other choices of n and `, and all simulations
show this same tendency.

V. CONCLUSIONS

Four different sampling techniques for random S-box out-
puts have been considered and analyzed. We have proved that
it is not possible to take two independent samples from one
chunk of a random S-box, which implies that APS and LPS
are sub-optimal as they impose a higher error probability in
the resulting distinguisher. We have also proved that WS is
equivalent to the optimal VS, and that WS is much more prac-
tical than VS. WS is thus the preferred sampling technique.
We have also presented an improved algoritm for the offline
computation of P1 for WS.

Even though APS and LPS are not optimal, they are
very simple to apply. For large S-boxes that are frequently
rerandomized, the APS technique is very close to optimal.

REFERENCES

[1] T. Cover and J. A. Thomas. Elements of Information Theory. Wiley series
in Telecommunication. Wiley, 1991.

[2] P. Stankovski, S. Ruj, M. Hell, and T. Johansson. Improved Distinguishers
for HC-128. Designs, Codes and Cryptography, pages 1–16.
http://dx.doi.org/10.1007/s10623-011-9550-9.

[3] R. Rivest T. Cormen, C. Leiserson and C. Stein. Introduction to
Algorithms, Third Edition. MIT Press, 2009.

[4] H. Wu. A New Stream Cipher HC-256. In Fast Software Encryption
2004, volume 3017 of Lecture Notes in Computer Science, pages 226–
244. Springer-Verlag, 2004.

[5] H. Wu. The Stream Cipher HC-128. In New Stream Cipher Designs,
volume 4986 of Lecture Notes in Computer Science, pages 39–47.
Springer-Verlag, 2008.

	Introduction
	Preliminaries
	Sampling from a Random S-box
	All-Pairs Sampling (APS)
	Linear-Pairs Sampling (LPS)
	Vector Sampling (VS)
	Weight Sampling (WS)

	Comparing Sampling Techniques
	Conclusions
	References

