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We consider dynamic optimization problems for systems described by differential-algebraic equations
(DAEs). Such problems are usually solved by discretizing the full DAE. We propose techniques to
symbolically eliminate many of the algebraic variables in a preprocessing step before discretization.
These techniques are inspired by the causalization and tearing techniques often used when solving DAE
initial value problems. Since sparsity is crucial for some dynamic optimization methods, we also propose
a novel approach to preserving sparsity during this procedure.

The proposed methods have been implemented in the open-source JModelica.org platform. We eval-
uate the performance of the methods on a suite of optimal control problems solved using direct colloca-
tion. We consider both computational time and probability of solving the problem in a timely manner.
We demonstrate that the proposed methods often are an order of magnitude faster than the standard way
of discretizing the full DAE, and also significantly increase probability of successful convergence.

Keywords: dynamic optimization; differential-algebraic equations; block-triangular ordering; tearing;
sparsity preservation; nonlinear programming; Modelica

AMS Subject Classification: 34A09; 49M37

1. Introduction

Dynamic optimization refers to optimization problems with differential equations as constraints.
These problems occur in many different fields and contexts, including optimal control, param-
eter and state estimation, and design optimization. Examples of applications are minimization
of material and energy consumption during setpoint transitions in power plants [39] and chem-
ical processes [52], estimating occupancy and ambient air flow in buildings [61], and optimal
experimental design for estimation of kinetic parameters in fed-batch processes [10].

There are many effective methods available for numerical solution of dynamic optimization
problems [13, 53]. Most of these are applicable not only to dynamic systems described by ex-
plicit ordinary differential equations (ODE), but also to differential-algebraic equations (DAE).
When dynamically simulating DAE systems—that is, solving initial value problems—one can
either use specialized DAE solvers [17, 33], or transform the DAE to an equivalent ODE and
then apply run-of-the-mill ODE solvers [20]. Key techniques in such transformations are block-
triangular orderings to decompose the problem and tearing to reduce the size of the equation
systems solved iteratively. While such transformation techniques are commonly applied when
simulating DAEs, the conventional approach to solving DAE-constrained optimization problems
is to discretize the full DAE [14, 15]. In this paper we consider the use of ODE transformation

∗Corresponding author. Email: fredrik.magnusson@control.lth.se



October 22, 2016 Optimization Methods & Software 2016_sym_elimv3

techniques on dynamic optimization problems. But rather than completing the transformation
all the way to an explicit ODE, we will try to find the middle ground between the full implicit
DAE and the underlying explicit ODE that maximizes computational efficiency and convergence
robustness. We build upon previous work by the authors [46] and extend it with tearing, sparsity
preservation and a thorough performance benchmark.

While these techniques can be applied in combination with any of the standard numerical
methods for solving DAE-constrained optimization problems, the performance of some methods
will be affected more than others. In this paper we focus on the use of direct collocation and how
it is affected by these transformation techniques. The effect of these techniques is also dependent
on the considered DAE. We will show the effect of symbolic transformation techniques on com-
putational speed and convergence robustness for six different large-scale benchmark problems
with different properties from various physical domains. The presented methods have been im-
plemented in JModelica.org1 [3], which is an open-source tool for analysis of dynamic systems
described by the object-oriented, equation-based modelling language Modelica [30]. Modelica
models tend to be large, sparse, and have considerably more algebraic than differential vari-
ables, making them a prime target for the considered methods. We will however show that the
presented methods hold merit also for more typical textbook DAEs.

The contributions of this paper are the adaptation of causalization and tearing techniques to
direct collocation for dynamic optimization and the development of a novel sparsity preserva-
tion technique. We also present a thorough benchmark of these techniques, showing how they
improve both computational speed and convergence robustness.

The outline of the paper is as follows. Section 2 goes through a simple and illuminating ex-
ample of how the ideas described in the paper are applied. Section 3 presents the theoretical
background of dynamic optimization and the symbolic techniques we will employ, as well as
JModelica.org and other related work. Section 4 presents how these techniques can be adapted
to symbolically eliminate variables in dynamic optimization problems while preserving spar-
sity. Section 5 compares the effects of using and not using these techniques on six benchmark
problems. Finally, Section 6 summarizes the paper and discusses potential future work.

Regarding notation, scalars and scalar-valued functions are denoted by regular italic letters x.
Vectors and vector-valued functions are denoted by bold italic letters x. The dimension of x is
denoted by nx and component k of x is denoted by xk. Matrices are denoted by bold Roman letters
A and element (i, j) of A is denoted by Ai, j. Row i and column j of A are denoted by Ai,: and
A:, j, respectively. Systems of equations f = 0 that are to be considered as being parametrized
by p and having x as unknowns are denoted by f (x; p) = 0.

2. Illustrative example

To demonstrate the ideas of the symbolic eliminations we will use, we present a simple example.
Steps that are unclear to the reader should be revisited after Section 3. Consider the DAE

ẋ + y1 + y2 − y3 = 0, (1a)

xy3 + y2 −
√

x − 2 = 0, (1b)

2y1y2y4 −
√

x = 0, (1c)
y1y4 +

√
y3 − x − y4 = 0, (1d)

y4 −
√

y5 = 0, (1e)

y2
5 − x = 0. (1f)

1http://www.jmodelica.org

2

http://www.jmodelica.org
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A structural incidence matrix for (1) is (2).

ẋ y1 y2 y3 y4 y5
(1a) 1 1 1 1 0 0
(1b) 0 0 1 1 0 0
(1c) 0 ∗ ∗ 0 ∗ 0
(1d) 0 ∗ 0 ∗ ∗ 0
(1e) 0 0 0 0 1 ∗

(1f) 0 0 0 0 0 ∗

(2)

where zeroes indicate independence, ones indicate linear dependence, and asterisks indicate
nonlinear dependence. Inspection of (1) reveals that we can eliminate y4 using (1e). That is, we
use

y4 =
√

y5 (3)

to substitute y4 with
√

y5, yielding

ẋ + y1 + y2 − y3 = 0, (4a)

xy3 + y2 −
√

x − 2 = 0, (4b)

2y1y2
√

y5 −
√

x = 0, (4c)
y1
√

y5 +
√

y3 − x −
√

y5 = 0, (4d)

y2
5 − x = 0. (4e)

Such eliminations can be identified by permuting (2) to a block-triangular matrix with blocks
along the diagonal—henceforth referred to as diagonal blocks, despite them not being diagonal
in general—of minimal size. Permuting (2) to such a form yields (5).

y5 y4 y1 y2 y3 ẋ
(1f) ∗ 0 0 0 0 0
(1e) ∗ 1 0 0 0 0
(1b) 0 0 0 1 1 0
(1c) 0 ∗ ∗ ∗ 0 0
(1d) 0 ∗ 1 0 ∗ 0
(1a) 0 0 ∗ ∗ ∗ 1

(5)

Note that some previously linear incidences have been reclassified as nonlinear and vice versa.
We are no longer interested in the linearity of incidences outside of the diagonal blocks, and
thus mark them all with asterisks. Within the diagonal blocks, we only care about linearity with
respect to the variables in the block. The incidence of the equation-variable pair ((1d), y1) that
was previously considered to be nonlinear is thus now considered to be linear. An elimination
such as (3) can be found by identifying the diagonal blocks that are scalar and linear. The only
algebraic variable that can be eliminated with this approach in this example is y4.

We can however go further in our elimination procedure by eliminating y1 and y2 from (1d)

3
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and (1b), respectively. That is, we identify

y1 =
x +
√

y5 −
√

y3
√

y5
, (6a)

y2 = 2 +
√

x − xy3, (6b)

and through substitution obtain the DAE

ẋ +
x +
√

y5 −
√

y3
√

y5
+ 2 +

√
x − xy3 − y3 = 0, (7a)

2
x +
√

y5 −
√

y3
√

y5
(2 +

√
x − xy3)

√
y5 −

√
x = 0, (7b)

y2
5 − x = 0. (7c)

The eliminations (6) can be found by tearing the 3 × 3 diagonal block. Selecting y3 as tearing
variable and (1c) as tearing residual, we get the torn incidence matrix (8).

y5 y4 y1 y2 y3 ẋ
(1f) ∗ 0 0 0 0 0
(1e) ∗ 1 0 0 0 0
(1d) 0 ∗ 1 0 ∗ 0
(1b) 0 0 0 1 1 0
(1c) 0 ∗ ∗ ∗ 0 0
(1a) 0 0 ∗ ∗ ∗ 1

(8)

The eliminations (6) are then identified as the diagonal incidences in the upper left subblock
of the torn block, which are feasible since this subblock is triangular (in this case it is even
diagonal) and linear along the diagonal. Comparing (7) with (1), we have only 2 instead of 5
algebraic variables, but the residuals are more complicated.

3. Background

In this section we first present the class of DAEs and dynamic optimization problems that we
consider. We then describe the open-source tool JModelica.org and in particular how it solves
these problems. We review how ODE transformation techniques are employed when solving
DAE simulation problems, in the context of which they are often referred to as causalization.
We also describe well-established techniques for selecting pivot elements in direct, sparse linear
solvers, which we later will utilize for sparsity preservation. Finally, we discuss related work.

3.1 Differential-algebraic equations

We consider systems whose dynamics are described by an implicit DAE system. Specifically,
we consider DAE systems of the form

Φ(t, ξ̇(t), ξ(t), υ(t),u(t), p) = 0, (9)

where t is time—the sole independent variable—ξ is the differential variable, υ is the algebraic
variable, u is the control variable, and p is the parameters to be optimized. We assume that

4
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the system is balanced; that is, that the dimension of the codomain of Φ equals the sum of the
dimensions of ξ and υ.

To deal with high-index DAEs, we utilize JModelica.org’s index reduction, which is based
on the method of dummy derivatives [49] and reduces the index of the DAE to at most 1. The
method of dummy derivatives prevents the numerical drift of straightforward reduction by differ-
entiation and is applicable to a wide class of DAEs. The method however requires the selection
of state variables, which is difficult to automate. In general it is not even possible to preserve
solvability with a static choice of state variables [48], which however is out of scope for this
paper.

We thus assume that there exists a static choice of state variables x out of the differential
variables ξ that does not give rise to solvability issues, in particular implying that the local index
of the DAE [17] is constant along all feasible trajectories. The index reduction then creates an
equivalent—in the sense that there exists a bijection between the solution sets—low-index DAE

F(t, ẋ(t), x(t), y(t),u(t), p) = 0, (10)

where y is the algebraic variables, consisting of the original algebraic variables υ, those dif-
ferential variables ξ not selected as states, and the newly created dummy derivatives. We also
assume that (feasible) initial conditions x(0) = x0 are given and that F is twice continuously
differentiable with respect to all of its arguments except the first.

3.2 Dynamic optimization

The problem considered throughout the paper is to

minimize φ(t f , ξ(t f ), υ(t f ), p) +

∫ t f

0
`(t, ξ(t), υ(t),u(t)) dt, (11a)

with respect to ξ : [0, t f ]→ Rnξ , υ : [0, t f ]→ Rnυ , u : [0, t f ]→ Rnu ,

t f ∈ R, p ∈ Rnp ,

subject to Φ(t, ξ̇(t), ξ(t), υ(t),u(t), p) = 0, x(0) = x0, (11b)

L ≤ (ξ̇(t), ξ(t), υ(t),u(t), p) ≤ U, g(t, ξ̇(t), ξ(t), υ(t),u(t), p) ≤ 0, (11c)
G(ξ(t f ), υ(t f ), p) = 0, 0 ≤ t f ,L ≤ t f ≤ t f ,U , (11d)
∀t ∈ [0, t f ],

where the objective (11a) comprises the Mayer term φ and Lagrange integrand `, (11b) is the
system dynamics, (11c) is inequality constraints (where box constraints L and U are separated
from the general nonlinear equalities g), and (11d) is the terminal constraints G and nonnegative
bounds on t f . The bounds L and U can be infinite.

The problem will in general be nonconvex and we will not endeavour to find a global optimum.
We will instead rely on first-order necessary optimality conditions to find a local optimum. Just
like for F, we assume that φ, `, g, and G are twice continuously differentiable in order to apply
techniques based on Newton’s method to find a solution to first-order optimality conditions.

The methods and software framework we present in this paper can be applied on the wider
class of problems that is considered by Magnusson and Åkesson [45], which in particular in-
cludes implicit initial conditions and point constraints in the interior of the time horizon. How-
ever, (11) captures the essentials and the generalization of the presented methods to the wider
class is straightforward, and so we restrict ourselves to (11) for the sake of brevity.

We mainly consider the use of direct collocation to solve (11). The main idea of direct collo-
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cation is to discretize (11) by dividing the time horizon into a finite number of elements and then
within each element approximate the system trajectories by polynomials defined by collocation
points [14, 15, 45]. The result is a nonlinear program (NLP) whose solution approximates the
solution of (11). This approach leads to the full DAE being exposed to the NLP solver. This
is in contrast to sequential approaches based on shooting, in which the DAE (or at least parts
of it) are hidden in embedded integrator calls. The methods discussed in this paper are thus
more relevant for simultaneous approaches, such as direct collocation, where they have a major
impact on the size and structure of the NLP, whereas they often only affect the NLP function
evaluation times when using sequential approaches. Nevertheless, these methods certainly have
the potential to be beneficial also when using sequential approaches, since the DAE simulation
in shooting methods is often the computational bottleneck and a source of numerical problems.

3.3 JModelica.org

JModelica.org [3] is an open-source tool designed for analysis of models described in the acausal
modelling language Modelica [30]. Modelica [30] is a standardized language for which sev-
eral different tools exist. JModelica.org historically has a strong focus on dynamic optimization
with its support for the language extension Optimica [2] and an efficient dynamic optimization
framework [45]. Today it also has a strong support for FMI [16], allowing inter-tool exchange
of models for dynamic simulation.

While acausal modelling is convenient for the modeller, the resulting mathematical model
is often unwieldy in its raw form and requires symbolic processing before it can be simulated
efficiently using numerical methods. In Section 3.4 we review techniques that often are used
to alleviate these issues. While these techniques often are crucial for handling object-oriented,
acausal models, we will in Section 5 see that they hold merit also when applied to examples of
specialized, non-hierarchical models in the context of dynamic optimization.

The dynamic optimization framework in JModelica.org leverages the JModelica.org compiler
to first perform structural analysis and some symbolic transformations and then transfer the
resulting flattened problem to CasADi Interface [41]. The symbolic representation of CasADi
Interface—which is based on CasADi [4] for efficient computation of derivatives using algo-
rithmic differentiation—is then connected to algorithms based on direct collocation for solving
dynamic optimization problems by transcribing them into NLPs. The NLPs are then finally
solved by IPOPT [60] or WORHP [18].

It is further worth noting that while the overarching ideas of this paper are widely applica-
ble, some of the detailed algorithmic choices discussed in Section 4 have been adapted to the
dynamic optimization framework of JModelica.org, that is, the use of IPOPT, CasADi and the
collocation algorithm in JModelica.org [45].

3.4 Causalization

The process of transforming an implicit DAE

Φ(t, ξ̇(t), ξ(t), υ(t),u(t), p) = 0 (12)

to an equivalent explicit ODE

ẋ(t) = f (t, x(t),u(t), p) (13)

is called causalization [20]. We divide this procedure into the following steps.

6
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(1) Alias elimination
(2) Variability propagation
(3) Index reduction
(4) Matching
(5) Block-lower triangular ordering
(6) Tearing

Alias elimination and variability propagation are conceptually simple and serve to eliminate
algebraic variables described by trivial equations. Alias elimination identifies variables occurring
in equations of the form x ± y = 0, which are ubiquitous in object-oriented acausal modelling,
and eliminates one of them. Variability propagation identifies algebraic equations which are
independent of time, such as y = p + 1, where p is a parameter, allowing the corresponding
algebraic variables to be eliminated by solving the static equations.

Conceptually, an explicit ODE allows the computation of ẋ(t) given the current known vari-
ables t, x(t),u(t), and p. After having performed index reduction as discussed in Section 3.1,
the remaining steps of the ODE transformation problem can thus be considered equivalent to
solving the square system

F(z; t, x,u, p) = 0, (14)

where z = (ẋ, y). Note that we have now dropped the dependence on time for ẋ, x, and u, since
we with this perspective only consider them as elements of Rn rather than functions.

While solving (14) can be done in a straightforward numerical manner by applying e.g. New-
ton’s method2, such an approach may be inefficient and may also be practically challenging due
to the need of a having a sufficiently good initial guess of the solution for convergence. The idea
of causalization and this paper is to apply symbolic transformations to the problem to allow for
more efficient subsequent numerical solution.

The next step is to find a perfect matching between each scalar component of F and each
scalar component of z, meaning that each equation is matched to a single variable and vice
versa. Such a matching exists if and only if the DAE is low index. Finding perfect matchings is a
well-studied graph theoretical problem with several available efficient algorithms. JModelica.org
uses the Hopcroft-Karp [35] algorithm, which has the best known worst case performance and
often performs well in practice.

The two final steps, block-lower triangular (BLT) ordering and tearing, are discussed below.

3.4.1 Block-lower triangular ordering

Consider the structural incidence matrix of the DAE, whose elements are defined by

struct Fi, j =


0 or ∗, if ∇z j Fi ≡ 0,
1 or ∗, if ∇z j Fi . 0 and ∇2

z,z j
Fi ≡ 0,

∗, otherwise,
(15)

that is, 0 denotes incidences that do not depend on unknowns, 1 denotes incidences that depend
affinely—henceforth called linearly—on unknowns, and ∗ denotes any kind of incidence. The
main step of the causalization procedure is to permute the DAE structural incidence matrix to a
BLT form. The result is that the equations and variables of the DAE have been sorted so that the

2It is dubious whether the result really can be considered to be an explicit ODE, since a closed-form expression for f has not been
found (in fact, one may not even exist). However, typical numerical ODE solvers will not be able to tell the difference as long as f
can be evaluated.

7
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DAE can be described by

F1(z1; v1) = 0, (16a)

F2(z2; v2) = 0, (16b)
...

Fm(zm; vm) = 0, (16c)

where Fi corresponds to a diagonal block (colloquially known as an algebraic loop if it is not
scalar valued), m is the number of such blocks, zi is the unknown variables of Fi, and

vi := (z1, z2, . . . , zi−1, t, x,u, p) (17)

is the known variables and unknown variables of preceding blocks. In other words, we have
found permutation matrices P and Q such that

P struct(F)Q =



F1,1 0 0 · · · 0
F2,1 F2,2 0 · · · 0
F3,1 F3,2 F3,3 · · · 0
...

...
...

. . .
...

Fm,1 Fm,2 Fm,3 · · · Fm,m


, (18)

where Fi, j := struct Fi(z j; z1, . . . , z j−1, z j+1, . . . , zi, t, x,u, p).
This form allows the sequential treatment of each diagonal block, allowing us to solve multiple

small systems rather than a single large. Furthermore, it enables specialized treatment of each
diagonal block, allowing the exploitation of equation structure that may exist within a diagonal
block but not in the full system F, such as linearity.

We are thus interested in the BLT form that has the maximal number of diagonal blocks. This
form is unique in the sense that the number of diagonal blocks and their respective sizes and the
variables and equations within a diagonal block are unique, but the ordering of diagonal blocks
and orderings of variables and equations within the blocks are in general not unique. A trivial
consequence of this form is that the diagonal blocks are irreducible.

Finding a BLT ordering that is optimal in this sense is equivalent to finding the strongly con-
nected components of the directed graph defined by the matching found in step 4 as follows.
For each matched equation-variable pair, create a vertex. For each non-zero struct Fi, j, create an
edge from the vertex corresponding to equation i to the vertex corresponding to variable j. This
will create loops on all of the vertices, which may be removed.

Tarjan’s algorithm [56] is widely regarded as the most efficient algorithm for finding the
strongly connected components of a directed graph, with linear complexity in the number of
vertices and edges. It also has the added benefit of not only identifying the strongly connected
components, but also topologically sorting them so that all edges out of a component lead to
preceding components, giving us the sought BLT ordering.

Block-triangular orderings are useful in contexts other than DAE systems, such as solving
sparse, unsymmetric linear equations [26].

3.4.2 Tearing

All that remains in the computation of ẋ is the solution of each Fi. In general this will require
iterative numerical methods. In this paper we will however not proceed down this route at this

8
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stage. We will instead only rely on symbolic techniques, without involving iterative methods, in
our computation of ẋ. Consequently, we will not go all the way to an explicit ODE. The details
of this are discussed in Section 4. An important part of this is the use of tearing [8, 25, 27, 38].
Tearing is a method for solving sparse systems of equations that lack significant structure, such
as being triangular or block diagonal, by ordering the variables and equations to get a partitioning
of the system

0 = Fi(zi; vi) =

F̄i( z̄i; ẑi, vi)
F̂i

( ẑi; z̄i, vi)

 (19)

such that the first partition F̄i is highly structured, allowing this part of the system to be solved
efficiently on its own and then utilized in the solution of the full system by block elimination.

Tearing can be done in different ways, for different applications, with different goals in mind.
In this paper we apply tearing to the diagonal blocks of the BLT form. We seek a partitioning
such that one part of the diagonal block is triangular and linear along the diagonal. That is, we
find permutations Pi and Qi so that

Pi struct
(
Fi

)
Qi =

z̄i ẑi



1
0 ∗ F̄i1

∗
. . .

1

∗ ∗ F̂i

, (20)

where z̄i is called the causalized variables, F̄i the causalized equations (due to the lower-
triangular structure), ẑi the tearing variables, and F̂i

the tearing residuals. This form is appealing
because it allows for symbolic elimination of the causalized variables in terms of the tearing
variables; that is,

z̄i =
(
F̄i)−1

(0; ẑi, vi) =: H̄i( ẑi, vi). (21)

The fact that F̄i is triangular and linear along the diagonal allows for efficient and numerically

stable computation of
(
F̄i)−1

through forward substitution. The remaining equations to be solved
for ẑi numerically, typically using Newton’s method, are given by

H̄i( ẑi) := F̂i ( ẑi; H̄( ẑi, vi), vi
)

= 0. (22)

The benefits of this approach over solving the full diagonal block (19) numerically is that (22)
has fewer variables and equations, equal to the number of tearing variables, often allowing it to
be solved more efficiently. But a perhaps more important benefit is that a sufficiently good initial
guess for convergence is only needed for ẑi, whereas solving the full system would also require
a sufficiently good guess for z̄i. For these reasons, it is desirable to find a partitioning that mini-
mizes the number of tearing variables and residuals. Unfortunately, this problem is NP-hard [8].
While in many cases it is tractable to solve the problem to optimality, it is common to instead

9



October 22, 2016 Optimization Methods & Software 2016_sym_elimv3

apply heuristics to find near-optimal partitionings. The tearing algorithm used in JModelica.org,
and in this paper, is based on the heuristics described by Meijer [50].

The use of tearing is however a double-edged sword. While the symbolic solution of (21)
and numerical solution of (22) are numerically stable, the tearing residuals (22) may be ill-
conditioned even if the full system (19) is not. Furthermore, even if the tearing residuals and
full system are well-conditioned, the numerical computation of z̄i through (21) after having
computed the solution of (22) may be numerically unstable. Another potential drawback is that
(22) is significantly more dense than (19), which may cause it to actually be more expensive
to solve if sparsity is exploited in the computations. This topic is discussed further below. In
conclusion, there is more to the choice of tearing variables and residuals than just minimizing
their number.

3.5 Pivot selection in direct, sparse linear solvers

When solving a nonlinear system of equations with Newton’s method, the symbolic elimination
of variables is computationally equivalent to a priori selection of pivot elements in the linear
equation solver in each Newton iteration. Since pivots are selected based on numerical values
to prevent numerical instability (caused by error growth due to numerical round-off), a priori
selection based entirely on structural, as opposed to numerical, information can lead to numerical
instability, as mentioned in Section 3.4.2 and discussed by Duff et al. [25].

Another potential issue of blindly eliminating variables is that the reduced system may be
more dense. As opposed to dense direct linear solvers, sparse direct linear solvers do not only
select pivots to minimize error growth, but also to minimize fill-in. The typical approach is
to select as pivot element the element that causes the least amount of estimated fill-in in the
matrix factors while also being bigger (in magnitude) than a fraction of the largest element in the
same column. The reason that only an estimate of the fill-in is used is due to the computational
intractability of computing the fill-in caused on a global level (the final matrix factors). The
most widely used estimate of fill-in is the Markowitz criterion [47]. When LU-factorizing a
(sub)matrix M, the Markowitz criterion selects as the next pivot the element Mi, j that minimizes

(nnz Mi,: − 1) · (nnz M:, j − 1), (23)

typically out of those elements satisfying

|Mi, j| ≥ u max
l
|Ml, j|, (24)

where 0 < u ≤ 1 is the pivot tolerance. Another estimate is that of local minimum fill-in, also
proposed by Markowitz [47], which is a better but more expensive estimate. Local minimum fill-
in computes the actual fill-in in each stage, whereas the Markowitz criterion estimates the fill-in
by the amount of incidences in the pivot row and column, i.e., it does not take into account that
some of the incidences already occur in the remaining equations and thus do not cause additional
fill-in. The sparsity-preservation techniques of Section 4.3 are related to these ideas.

3.6 Related work

The standard approach of discretizing the full DAE relies on fill-reducing orderings, such as
nested dissection [31], for efficient numerical linear algebra and numerical pivoting for stability.
While our proposed approach of using causalization techniques has been used in the context
of dynamic optimization before [7, 29], in this paper we consider the effects they have on the
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solution procedure. We also do not complete the causalization all the way to an explicit ODE,
but rather choose to keep some algebraic variables and implicit equations for efficiency.

Safdarnejad et. al [55] consider the use of BLT decompositions for the purpose of more ef-
ficiently generating initial guesses to (11) by solving square problems (with fixed degrees of
freedom), and in particular identifying infeasibilities. They do however not consider BLT de-
compositions for the actual solution of (11). Fletcher [28] considers the use of block-triangular
ordering and tearing for efficient and sparsity-preserving orderings for implicit LU factorization
tailored for linear programming.

The main purpose of causalization is the efficient treatment of algebraic equations. There are
other approaches to achieving this. One technique that is common when using direct multiple
shooting is the elimination of all algebraic variables in the shooting nodes by linearizing the
consistency conditions (algebraic equations) in each iteration, which is possible for semi-explicit
index-one DAEs [23]. Another related method is the use of reduced space methods [21] which
primarily work in the null space of the NLP equality constraints, which can be beneficial when
there are few degrees of freedom, as is typically the case in dynamic optimization problems.
Since these techniques are applied to the NLP rather than the dynamic problem (11), they could
be combined with the ideas presented in this paper with potential benefits, but such possibilities
are not considered further in this paper.

Another possibility when employing direct local collocation is the use of parallelization by
exploiting the arrowhead structure of the KKT system that arises due to the temporal decoupling
of the finite elements [59]. This has great potential speedups when there are significantly more
algebraic than differential variables, a sufficiently large amount of finite elements is used, and
a large number of processor cores are available. Unlike the other approaches outlined in this
section, this approach is ill-suited to be combined with the ideas of this paper, as its efficiency
is dependent on there being a large amount of algebraic variables exposed to the collocation
discretization.

4. Symbolic elimination for dynamic optimization

In Section 3.4 we reviewed how implicit DAEs can be transformed to explicit ODEs. While
almost all of the steps were symbolic in nature, in the end we were left with the algebraic loops
Fi = 0 (which can be further symbolically reduced through the use of tearing), which in general
will require numerical iterative methods to solve. However, going all the way to an explicit ODE
is not necessary when applying direct collocation in the context of dynamic optimization, as
collocation methods are perfectly capable of dealing with low-index (and to some extent also
high-index) implicit DAEs. In this section we describe how the causalization techniques can be
applied to (11) to symbolically eliminate many of the algebraic variables.

We will describe various approaches to symbolic elimination which can be combined in differ-
ent ways, giving rise to different schemes of symbolic elimination. In Section 5 we will compare
the performance of these schemes to each other, and also to the trivial elimination scheme of not
performing any eliminations at all, which can be considered to be the standard approach when
employing direct collocation to dynamic optimization problems.

Scheme 0 Do not eliminate any algebraic variables.

4.1 Elimination in scalar, linear diagonal blocks

We start by applying the first 5 steps of the causalization procedure of Section 3.4 to the DAE in
(11b) in the standard manner, and postpone the discussion on the use of tearing. We next identify

11
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the diagonal blocks Fi of the BLT form that are both scalar and linear; that is, struct Fi = 1. The
corresponding variables zi of these blocks, which are scalar, are considered for elimination. By
elimination we mean that all occurrences of zi in (11) are substituted by

(
Fi

)−1
(0; vi) using (16).

Note that the computation of
(
Fi

)−1
in this case is just division by a single, scalar closed-form

expression3. After this elimination step, the variable zi and the equation to which it has been
matched are removed from the problem.

In a first effort, we choose to eliminate all such variables (whose matched equations are scalar
and linear with respect to the variable) that are unbounded, that is, those for which the corre-
sponding elements of L and U are −∞ and +∞, respectively. No other variables are eliminated.

Scheme 1 Eliminate those algebraic variables that are unbounded, belong to scalar diagonal
blocks, and whose incidence in the diagonal block is linear.

A consequence of eliminating bounded variables is that the linear bound is transformed into
a nonlinear inequality constraint (it is moved from the left part of (11c) to the right part). When
using IPOPT to solve the discretized version of (11), there is no obvious benefit in eliminating
bounded variables. This is because IPOPT transforms each nonlinear inequality constraint into a
nonlinear equality constraint and a variable bound, through the introduction of a slack variable.
So even if we eliminate a bounded variable, IPOPT would essentially undo the elimination,
leading to no difference in the dimension of the KKT system that is solved. But while the size
of the KKT system is unaffected, the structure is not. One situation when the change in structure
is potentially harmful is when the NLP functions are undefined if the algebraic variable bound
is not satisfied. Since IPOPT iterates always are feasible with respect to the variable bounds, but
not necessarily the nonlinear inequality constraints, eliminating bounded algebraic variables can
thus cause evaluation errors which otherwise would not have occurred. For these reasons, we do
not consider the elimination of bounded variables.

There is a problem with the approach of only eliminating unbounded variables, since in Opti-
mica, many of the variables are bounded. This is because bounds are defined by the min and max
Modelica attributes, which variables inherit from their types. For example, all variables declared
as temperatures are bounded below by 0 [K], even though these bounds will never be active at
feasible points. Because of this, we force the user to specify which variables are expected to be
actively bounded, and consider all other variables as unbounded for the purpose of elimination,
even if they have finite min and max values.

We only consider the elimination of algebraic variables, and not differential variables. While
the techniques we use to find closed-form expressions for computing algebraic variables also
can be used to find closed-form expressions for the derivatives of differential variables (which
indeed is what is done when doing full causalization to obtain an explicit ODE), finding these
expressions is not sufficient for the elimination of the derivatives of differential variables. In
order to eliminate the derivatives of differential variables, we would also have to eliminate the
corresponding differential variables, which would require the solution of differential equations.
Finding closed-form solutions to differential equations is rarely possible for the cases of interest,
so this possibility is not considered further in this paper.

There is however another potential use of the closed-form expressions for the derivatives of
the differential variables without eliminating them. All occurrences of a differential variable
derivative, except the ones in the matched diagonal block equations, can be substituted by the
closed-form expression. While this will never affect NLP size, it will affect the NLP sparsity
in a way that depends on the simultaneous discretization method. The collocation algorithm in

3In the general case, care is needed to ensure that this scalar expression is non-zero [9, 50]. However, since this is always the case
for the problems we consider in Section 5, we henceforth ignore this issue for the sake of simplicity.
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JModelica.org creates NLP variables for all differential variable derivatives. So from a sparsity
perspective it is never good to substitute the differential variable derivatives in JModelica.org.
However, another common approach to direct collocation is to eliminate the differential variable
derivatives by using the collocation equations. In this case it is not obvious whether such sub-
stitutions would be beneficial. Comparing the number of incidences from a sparsity perspective
would be easy enough, but since the closed-form expressions found via the causalization tend
to be highly nonlinear whereas the collocation equations are linear, a pure sparsity perspective
is probably too narrow to be useful. But since this is a non-issue in JModelica.org, we do not
consider this further.

While it is known that performing eliminations along the lines of Scheme 1 can be beneficial
for dynamic optimization, tools usually require such eliminations to be manually identified and
performed by the user. Such work can be tedious and, depending on the modelling language,
lead to convoluted and model code and inefficient computations. The techniques of Section 3.4
enable efficient automation of Scheme 1.

4.2 Elimination in non-scalar diagonal blocks

We next consider the elimination of variables in non-scalar diagonal blocks. If the diagonal
blocks are linear—that is, struct Fi ∈ {0, 1}n

i×ni
, where ni is the dimension of zi—a conceiv-

able approach would be to invoke a numerical factorization algorithm to solve for zi. This would
however lead to crippling inefficiencies in the current dynamic optimization framework in JMod-
elica.org4, and is thus not considered further in this paper.

Another possibility of treating linear, non-scalar blocks is symbolic factorization. While this
is readily supported by JModelica.org, experiments on the problems in Section 5.1 have shown
that symbolic QR factorization all too often leads to numerical issues caused by instability due to
the lack of numerical pivoting for practical use, and is thus not considered further in this paper.

There is however another approach that allows us to eliminate some of the variables in non-
scalar diagonal blocks, which even extends to nonlinear blocks: tearing. By tearing the diagonal
blocks as described in Section 3.4.2, we can then symbolically eliminate the causalized variables
in the torn blocks by forward substitution.

There are two issues with the choice of causalized variables by the JModelica.org compiler.
The first is that it can choose to causalize differential variable derivatives, which is useful when
the causalization goal is to get an explicit ODE. But as per the discussion in Section 4.1, we
are not interested in eliminating differential variable derivatives. Likewise, we are not interested
in eliminating (actively) bounded variables. Our approach is thus to besides using the tearing
variables and residuals selected by the compiler, we additionally add all differential variable
derivatives and bounded variables as tearing variables and their respectively matched equations
as tearing residuals. It would have been better to force the compiler to make these choices,
allowing it to potentially make better choices in choosing the remaining tearing variables and
residuals, but this has not been implemented.

Scheme 2 Eliminate those algebraic variables that are unbounded, belong to scalar diago-
nal blocks, and whose incidence in the diagonal block is linear. Also eliminate causalized, un-
bounded algebraic variables in torn, non-scalar diagonal blocks.

4The current dynamic optimization framework in JModelica.org symbolically represents the DAE using CasADi MX (Matrix eX-
pression) or SX (Scalar eXpression) [4] graphs. The embedding of numerical factorization algorithms requires the use of MX graphs.
Since representing the full DAE using MX graphs is highly inefficient in terms of computational speed, an efficient implementation
of this would require a sophisticated mixture of SX and MX graphs to represent the DAE in JModelica.org, or an extension of
CasADi’s SX graphs to allow function calls. Both of these possibilities are beyond the scope of this paper.
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4.3 Sparsity-preserving elimination

In our attempt to eliminate as many variables as possible using only symbolic techniques, we
may actually end up eliminating too many from a computational efficiency perspective. As
briefly mentioned before, elimination tends to yield more dense systems. The increased den-
sity can cause crippling slowdowns when performing sparse computations, in particular when
solving sparse linear systems (the linearized KKT system in each iteration of an NLP solver).

We thus propose to avoid some of the eliminations performed by Scheme 1 & 2, by analysing
the effect each elimination has on the DAE structural incidence matrix in a seventh step of the
causalization procedure presented in Section 3.4. We define a density measure µ of a causalized
block variable5 z̄i

j which measures how much denser the resulting NLP will become if it is elim-
inated using (21). Unfortunately, any useful measure will depend on which other eliminations
are performed. This makes it intractable to consider all possible combinations. However, due to
the causalization, we can consider the blocks and the variables within the blocks in sequence
to devise a greedy algorithm which only considers the current block. Thus, for a given block,
whether to perform the eliminations in preceding blocks has already been decided, and we only
consider the situation in which no eliminations are performed in succeeding blocks. This simpli-
fied approach is analogous to how linear solvers use the Markowitz criterion or local minimum
fill-in as discussed in Section 3.5.

We thus want to estimate how much the number of nonzero elements in the KKT system will
increase if z̄i

j is eliminated. We perform the elimination if

µ(i, j) ≤ µtol, (25)

where µtol is a user-provided tolerance. Rather than considering the sparsity of the KKT matrix,
we instead only consider the number of nonzeros in the structural incidence matrix of the DAE—
which typically is the dominant part of the KKT system in dynamic optimization—for simplicity
and computational efficiency during symbolic preprocessing. An estimative measure for this is

µ(i, j) =

−2 +
∑

α∈{ẋ,x,y,u,p}

nα∑
k=1

I(∇αk F̄ i
j) · d(αk)

 · (−1 + nnz∇z̄i
j
F
)
, (26)

where I is the indicator function (mapping zero functions to 0 and all other functions to 1), d(αk)
is the number of post-elimination dependencies of αk, and nnz∇z̄i

j
F is the number of nonzero

incidences of z̄i
j in the DAE. A recursive expression for d is

d(αk) =


1, if αk is not eliminated,∑
β∈{ẋ,x,y,u,p}

nβ∑
l=1

I(∇βl h̄αk ) · d(βl), otherwise,
(27)

where h̄z̄i
j

= H̄i
j (see (21)). Note that d(αk) not only depends on αk but also which variables

have been chosen for elimination, which changes over the course of the sparsity analysis. The
measure (26) is similar to the Markowitz criterion (23), with some differences. It considers the
whole system simultaneously rather than a single stage of Gaussian elimination, and also takes
into account that the full system not only depends on z but also v. Another difference is that the
Markowitz criterion estimates fill-in, whereas (26) estimates the increase in number of nonzeros.

5To allow uniform treatment of scalar, linear and torn diagonal blocks, we consider a scalar, linear diagonal block equation and its
corresponding variable to be causalized.
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For example, the elimination of an alias variable can cause a lot of fill-in, but will not increase
the number of nonzeros in the DAE. Thus, the value given by (23) of an alias variables is equal
to the number of incidences in the subsequent equations, whereas the value given by (26) is 0.

To demonstrate (25)–(27), consider the torn incidence (8) of the previous example with µtol =

3. The variables that are eligible for elimination are y4, y1, and y2. At the start of the procedure,
we have d(α) = 1 for all α. Since the first block F1 has no eligible variables, we move on to F2

where we find the pair ((1e), y4)—noting that F̄2
1 is the residual for (1e)—for which we compute

µ(2, 1) =

−2 +
∑

α∈{ẋ,x,y}

nα∑
k=1

I(∇αk F̄2
1) · d(αk)

 · (−1 + nnz∇z̄2
1
F
)

=

−2 +
∑

α∈{ẋ1,x1,y1,y2,y3,y4,y5}

I(∇αF̄2
1) · d(α)

 · (−1 + nnz∇y4 F
)

=

(
−2 + I(1) · d(y4) + I

(
−

1
2
√

y5

)
· d(y5)

)
· (−2 + nnz(0, 0, 2y1y2, y1 − 1, 1, 0)) ,

= (−2 + 2) · (−1 + 3) = 0 ≤ µtol = 3,

(28)

and thus proceed to eliminate y4 and compute d(y4) = 1. In the next block we find the eligible
pairs ((1d), y1) and ((1b), y2). For the first pair we compute

µ(3, 1) = (−2 + 4) · (3 − 1) = 4 > µtol, (29)

and thus do not eliminate y1. Moving on to the second and final pair, we compute

µ(3, 2) = (−2 + 3) · (3 − 1) = 2 ≤ µtol, (30)

and thus eliminate y2, for which we compute d(y2) = 2.
The measure (26) is locally suboptimal in the same sense as the Markowitz criterion: It does

not take into account that not all incidences will cause fill-in; it is a worst case estimate. To
address this, we can instead of (26) use the measure

µ(i, j) =

m∑
ı=i

nı∑
=

{
j + 1, if ı = i,
1, otherwise

I(∇z̄i
j
F ı
)

−1 +
∑

α∈{ẋ,x,y,u,p}

nα∑
k=1

(1 − I(∇αk F ı
))I(∇αk F i

j)d(αk)

 , (31)

where F i
j is element j in block i with the ordering obtained after tearing; that is,

F i
j =

F̄ i
j, if j ≤ n̄i,

F̂ i
j−n̄i
, if j > n̄i.

(32)

This measure is analogous to local minimum fill-in in the same way as (26) is analogous to (23).
As discussed in Section 3.5, Markowitz is generally regarded as the best criterion for general-

purpose pivot selection, with local minimum fill-in being a lot more computationally expensive
while usually only yielding slightly better results. However, for our purposes, we only perform
the sparsity-preservation analysis once offline. Furthermore, the difference in computation times
between using (26) and (31) is usually negligible compared to the other offline computations
(model compilation, BLT analysis, collocation discretization, algorithmic differentiation graph
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construction, and so on). So while both measures have been implemented in JModelica.org, we
will henceforth only consider the usage of (31) due to its slightly better expected performance.

The usage of sparsity preservation can be used both with and without tearing, yielding two
new families of schemes, parametrized by the density tolerance µtol.

Scheme 3µtol Eliminate those algebraic variables that are unbounded, belong to scalar diagonal
blocks, whose incidence in the diagonal block is linear, and whose density measure is smaller
than or equal to µtol.

Scheme 4µtol Eliminate those algebraic variables that are unbounded, belong to scalar diagonal
blocks, whose incidence in the diagonal block is linear, and whose density measure is smaller
than or equal to µtol. Also eliminate causalized, unbounded algebraic variables in torn, non-
scalar diagonal blocks whose density measure is smaller than or equal to µtol.

The choice of density tolerance is important. A tolerance of 0 means that we only perform
eliminations that do not increase the number of nonzeros in the other equations. A tolerance of
−∞ means that no eliminations are performed at all, and we thus preserve the original DAE.
A tolerance of ∞ means that we eliminate all causalized variables. We thus get Scheme 0 =
Scheme 3−∞ = Scheme 4−∞, Scheme 1 = Scheme 3∞, and Scheme 2 = Scheme 4∞.

The schemes to be evaluated in the next section are summarized in Table 1.

Table 1. Summary of techniques used in schemes.

Scheme BLT Tearing Sparsity preservation

0
1 3
2 3 3
3µtol 3 3
4µtol 3 3 3

5. Benchmark

To evaluate the various proposed schemes, we will consider six different optimal control prob-
lems. Since six problems is too small a test suite to draw any general conclusions regarding com-
putational speed, and in particular convergence robustness, we will generate a larger number of
problem instances by randomizing the initial state. We will primarily focus on local collocation,
but will in the end also briefly consider global collocation. Code for reproducing most of the
results in this section is available in [44].

5.1 Problems

The systems considered in the six problems are a car, a combined-cycle power plant (CCPP),
a double pendulum, a kinematic loop with four bars, a distillation column, and a heat recovery
steam generator (HRSG). All of the problems are encoded in Modelica and Optimica, and all of
them except the HRSG (whose model is proprietary) are available as a part of JModelica.org’s
suite of examples. This section briefly describes each problem. [43, Chapter 5] contains a more
detailed description of each problem.

5.1.1 Car

The problem is to find the time-minimal manoeuvre for a car in a 90-degree turn with a high
initial velocity, making it challenging to simply stay on the road. A single-track chassis model is
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used, where the two wheels on each axle are lumped together. This problem, and several other
similar ones, has been developed and studied by Berntorp et al. [11, 12, 46].

Unlike most of the other problems, the Modelica code for this problem is atypical in its being
flat, rather than hierarchically object-oriented, leading to it consisting of relatively few lines of
code and not very many algebraic variables and no trivial algebraic equations resulting from
component connections. It thus serves to demonstrate the effects of symbolic elimination on
more typical representations of DAEs, rather than the verbose equations that result when using
Modelica model libraries. It is also the only problem we consider that has a free time horizon.

5.1.2 CCPP

The next case considers warm startup of combined-cycle power plants (CCPP). This problem has
become highly industrially relevant during the last decade, due to an increasing need to improve
power-generation flexibility due to the unpredictable output of renewable energy sources such
as solar and wind power. The model was first developed by Casella et al. [19] but has since been
further developed. The objective is a quadratic penalty from reference values, with an important
upper bound on the turbine thermal stress.

This problem is the closest thing to a standard problem of dynamic optimization in the Mod-
elica community, having been used several times for benchmark purposes [5, 6, 40, 51, 59].

5.1.3 Double pendulum

One of the elementary examples of multibody mechanics in the Modelica Standard Li-
brary (MSL) is a damped double pendulum: Modelica.Mechanics.Examples.Elementary.
DoublePendulum. While a double pendulum is a conceptually simple fourth-order system, the
MSL model is an index-three DAE with more than a hundred variables and an algebraic loop and
is thus computationally non-trivial. This model is used to formulate the optimal control problem
of inverting the full pendulum with quadratic penalties on the states and torque.

5.1.4 Fourbar1

Another high-index example from MSL multibody mechanics is Modelica.Mechanics.
MultiBody.Examples.Loops.Fourbar1, which consists of 4 bars connected by 6 revolute
joints and a prismatic joint. This system has three large algebraic loops, one of which is nonlin-
ear. Based on this model, we consider the optimization problem to control the translation along
the prismatic joint j2 in one end of the mechanism by applying a bounded torque to the revolute
joint j1 in the other end by minimizing a quadratic cost function.

5.1.5 HRSG

The next problem concerns startup of a Heat Recovery Steam Generator (HRSG). The model
has been developed and studied as part of an industrial research project and a series of industrial
Master’s theses [1, 54, 57]. While the model is moderate in size, it contains high-fidelity mod-
elling of thermodynamic properties of media, causing high NLP function evaluation times. The
objective is a quadratic penalty on the deviation from the desired steady state, with bounds on
input rates and temperature gradients in spatially discretized walls.

The torn BLT decomposition obtained with Scheme 45 is shown in Figure 1. The BLT-ordered
incidence in Figure 1 is typical for Modelica models in that it is sparse, has a large amount of
scalar, linear diagonal blocks, and a small amount of large algebraic loops with mostly linear
incidences.
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Figure 1. Torn, sparsity-preserving BLT decomposition of HRSG model. Linear incidences are marked by green dots, and nonlinear
incidences are marked by red dots. Since we do not distinguish between linear and nonlinear incidences outside of the diagonal
blocks, such incidences are marked by black dots. Torn blocks are marked by red edges. Variables, and their respective matched
equations, that have been user-specified as actively bounded (and thus are not eliminated) are marked by orange edges. Differential
variable derivatives (which are not eliminated), and their respective matched equations, are marked by blue edges. Variable-equation
pairs along the diagonal that are not sparsity preserving—that is, do not satisfy (25)—are marked by yellow edges. The remaining
variable-equation pairs along the diagonal are the ones used for elimination, which are marked by green edges.

5.1.6 Distillation column

The final problem concerns optimal control of a binary distillation column, which separates
methanol from n-propanol and has 40 trays. The model was developed by Diehl [22] and the
Modelica implementation was based on the MATLAB implementation by Hedengren [34]. The
considered scenario is a short reflux breakdown during steady state, with the objective to steer
back to the desired steady state, using quadratic costs on the deviation of two tray tempera-
tures and input signals from the high-purity steady state. The Modelica implementation of this
scenario and model has been previously used for benchmarking dynamic optimization algo-
rithms [40, 45]. However, the model was then incorrectly implemented, leading to 125 differen-
tial variables, instead of the correct 40. We here use a correct implementation. Just like the Car
model of Section 5.1.1, this model is implemented in a flat rather than hierarchical manner.
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5.2 Benchmark setup

To generate a large test suite, we start with the solution to each of the six nominal problems
described in Section 5.1. We then randomly perturb the initial state x0 and solve the perturbed
problem using the nominal solution as initial guess. The purpose of this approach is to emulate
the setting of Model Predictive Control (MPC) [42], without actually doing MPC, which would
have had the drawback of introducing correlation between the problems solved in each sample
point.

The nominal value of each initial state variable x0,i is multiplicatively perturbed by indepen-
dently, identically, normally distributed random variables with standard deviation σ to yield the
new initial state variable x̄0,i, that is

x̄0,i = νi · x0,i, νi ∼ N(1, σ2), i = 1 . . . nx. (33)

The standard deviation σ is hand-picked for each problem to make the corresponding instances
suitably difficult. The resulting perturbed problem, henceforth referred to as an instance, may be
infeasible. To counteract this, we make sure that the initial state satisfies all the problem bounds
and path inequality constraints. To satisfy the bounds on state variables, we project x̄0,i inside its
bounds, and thus modify the first equation of (33) to

x̄0,i = max
(
min(νi · x0,i, x0,i + 0.9(xU,i − x0,i), x0,i − 0.9(x0,i − xL,i)

)
, (34)

where xU,i is the element of the bounds U that corresponds to xi.6 Projecting inside the feasible
region of general path inequality constraints and algebraic variable bounds is more difficult. To
satisfy these, we use JModelica.org’s FMI-based DAE initialization algorithm to compute the
value of ȳ0 that corresponds to x̄0 and then check if they satisfy the constraints with a safety
margin analogous to the one in (34); that is, the projected distance to the boundary should de-
crease by no more than 90%. If they do not, we discard the problem instance and generate a new
one and repeat.

We solve each instance with all schemes and use the values {5, 10, 20, 30, 40} for µtol. The
problem sizes are detailed in Table 2, where we also specify the number of elements ne and
collocation points nc used in each element. Each scheme is only allowed a certain CPU time
tmax [s] amount of time for each problem instance, after which we regard the scheme as having
failed. The time tmax has been chosen as approximately the average observed solution time of
the slowest scheme over all instances for a given problem plus 5 estimated standard deviations.
For some problems, some schemes yield identical results, as indicated in the table. For example,
Car has no algebraic loops, and so Scheme 1 and Scheme 2 are the same for this problem.

All problems—except Distillation column—are solved with JModelica.org revision [8915],
IPOPT 3.12.5, and the linear solver MA57 [36] with ordering by MeTiS [37]. The Distillation
column problem is instead solved with JModelica.org revision [9153] and IPOPT 3.12.6, in or-
der to use the correct model implementation discussed in Section 5.1.6. The acceptable NLP
tolerance in IPOPT is set equal to the NLP tolerance of 10−8. To put a focus on convergence
robustness rather than speed, the automatic scaling of MA57 is enabled and the pivot tolerance
(see (24)) is increased from 10−8 to 10−4. The IPOPT barrier parameter strategy is changed
to adaptive, to avoid the issue of selecting the initial value of the barrier parameter and also
because the authors favour this strategy. Other than the above exceptions, all the default values
of the options of all the algorithms are used.

6The factor 0.9 in (34) is used instead of 1.0 in order to project strictly inside the interior of the bounds, which is needed to satisfy the
Linear Independence Constraint Qualification (LICQ) as the collocation algorithm in JModelica.org introduces x0 as an optimization
variable in order to treat general implicit initial equations.
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Table 2. Benchmark problems and the considered schemes for each problem, where tmax [s] is the allotted CPU time for each
instance, ny the number of non-eliminated algebraic variables, n the number of NLP variables divided by 1000, nnz J the number
of nonzero elements in the NLP constraint Jacobian divided by 1000, nnz H the number of nonzero elements in the Hessian of
the NLP Lagrangian divided by 1000.

Problem nx nu ne nc σ tmax Schemes ny n nnz J nnz H

Car 13 3 60 3 0.1 30
0 23 9.7 37.4 9.4

1, 2, 320, 330, 340, 420, 430, 440 4 6.3 30.4 10.0

35, 310, 45, 410 5 6.4 30.0 9.2

CCPP 10 1 40 4 0.3 40

0 123 23.6 73 11.6
1, 310, 320, 330, 340 3 4.3 19.7 4.2

2, 410, 420, 430, 440 2 4.1 19.3 4.2

35 6 4.7 21.3 4.2

45 5 4.6 20.1 4.2

Dbl. pend. 4 1 100 3 0.3 50

0 124 40.4 123 24
1, 310, 320, 330, 340 16 7.9 25 5

2, 420, 430, 340 2 3.7 13 5

35 17 8.2 27 5

410 3 4.0 15 5

45 5 4.6 17 5

Fourbar1 2 1 60 3 0.03 30

0 452 82.8 334 192
1, 330,340 246 45.5 215 160

2 23 5.2 50 24
320 247 45.7 216 161

310 249 46.1 217 161

35 255 47.2 220 162

440 29 6.3 63 29

430 30 6.5 63 32

420 46 9.3 88 58

410 85 16.4 127 107

45 114 21.7 142 128

HRSG 18 3 25 5 0.3 60

0 84 15.9 56 6
1, 35, 310, 320, 330, 340 56 12.4 47 6

2, 430, 440 19 7.7 42 7

420 20 7.9 41 6

410 22 8.1 39 5

45 23 8.2 39 5

Dist. col. 40 2 20 3 0.2 40

0 1083 72.1 258 96

1 291 23.8 223 153

2 85 11.2 269 238

340 294 24.0 148 75

330 296 24.1 143 68

320 298 24.2 136 62

310 305 24.6 132 57

35 331 26.2 130 53

440 90 11.5 128 83

430 93 11.7 114 66

420 97 12.0 102 55

410 108 12.6 69 38

45 138 14.4 86 33
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5.3 Results

In this section we present the results of the benchmark described in Sections 5.1 and 5.2. We
generate 1000 instances whose initial states are in the interior of the constraints for each problem.
We will use the same table headers throughout this section, with the following meanings. A
scheme is considered to have succeeded on a problem instance if it converges to within tolerance
of a solution within the maximum CPU time. A problem instance is considered valid if at least
one scheme succeeds on it. Success [1] is the ratio of success of a scheme on the valid instances.
For the instances on which all schemes succeeded, Time [s] is the average solution CPU time,
σt [s] is the sample standard deviation of the solution time, and Iter [1] is the average number of
iterations needed by a scheme.

5.3.1 Car

The results for 1000 instances of the Car problem are shown in Table 3. On 68.0% of the in-
stances, all schemes succeed. 18.6% of the instances are invalid. The most significant difference
between the schemes is that Scheme 0 is approximately 35% slower than the others and slightly
less robust. The dominant reason for failure is maximum CPU time, with some cases of conver-
gence to a point of local infeasibility. A likely reason for the high percentage of invalid instances
is that the nominal solution is close to the boundaries of feasibility, due to the high initial car
velocity. The perturbed problems can thus end up being infeasible with significant probability,
which is also why we chose the relatively small value of σ = 0.1.

Table 3. Results for Car.
Scheme Success Time σt Iter

0 89.8% 8.9 4.5 104.0
1 97.2% 6.8 4.9 94.3
35 95.2% 6.4 5.0 103.9

5.3.2 CCPP

The results for 1000 instances of the CCPP problem are shown in Table 4. On 70.1% of the in-
stances, all schemes succeed. 20.9% of the instances are invalid. We see that Scheme 0 is an order
of magnitude slower and also sometimes fails unlike the other schemes. There is little difference
between the other schemes, which is to be expected, since tearing and sparsity preservation
only makes minor changes to the problem as seen in Table 2. On almost all of the instances in
which all schemes fail, all schemes except 0 report local infeasibility. Scheme 0 only fails due to
maximum CPU time.

Table 4. Results for CCPP.
Scheme Success Time σt Iter

0 88.6% 13.6 5.3 101.9
1 100.0% 0.9 0.6 46.3
2 100.0% 0.9 0.5 46.4
35 100.0% 1.0 0.7 46.4
45 99.9% 1.0 0.6 46.5

5.3.3 Double pendulum

The results for 1000 instances of the Double pendulum problem are shown in Table 5. On 99.6%
of the instances, all schemes succeed. All instances are valid. We see that Scheme 1 reduces
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the solution time by an order of magnitude compared to Scheme 0, which is further halved by
Scheme 3. The overzealous sparsity preservation that is needed to have an impact on the number
of variables is not beneficial.

Table 5. Results for Double pendulum.

Scheme Success Time σt Iter

0 99.6% 15.5 7.0 99.9
1 100.0% 2.1 1.0 72.4
2 100.0% 0.8 0.4 58.3
35 100.0% 2.2 1.0 71.1
410 100.0% 0.9 0.4 58.7
45 100.0% 1.0 0.5 58.9

5.3.4 Fourbar1

The results for 1000 instances of the Fourbar1 problem are shown in Table 6. On 56.1% of
the instances, all schemes succeed. 34.0% of the instances are invalid. The dominant reasons
for failure are restoration failure in IPOPT and maximum CPU time. We see that Scheme 2
performs better than all the other schemes, and that despite significant density in the problem
after applying tearing, sparsity preservation actually does more harm than good. One might
have suspected this when inspecting Table 2, as Fourbar1 is the only problem where sparsity
preservation significantly increases nnz J rather than decrease it. Also, the Lagrangian Hessian
is denser for this problem than the others, which we have neglected in the sparsity preservation.

Table 6. Results for Fourbar1.
Scheme Success Time σt Iter

0 86.8% 8.9 2.4 15.6
1 87.1% 4.6 1.3 15.4
2 99.8% 1.4 0.4 15.2

320 87.1% 4.6 1.3 15.4
310 87.1% 4.6 1.3 15.4
35 86.8% 5.0 1.4 15.4
440 93.5% 1.6 0.5 15.3
430 95.2% 1.5 0.4 15.2
420 90.8% 1.7 0.5 15.4
410 85.8% 2.3 0.7 15.4
45 95.6% 3.2 0.9 15.4

5.3.5 HRSG

The results for 1000 instances of the HRSG problem are shown in Table 7. On 72.2% of the
instances, all schemes succeed. 23.1% of the instances are invalid. The dominant reasons for
failure are local infeasibility and maximum CPU time. We see that Scheme 1 only offers a slight
improvement over Scheme 0, but the use of tearing and sparsity preservation improves both
robustness and solution times.

Table 7. Results for HRSG.
Scheme Success Time σt Iter

0 96.0% 13.5 8.2 66.0
1 96.9% 11.1 7.2 68.8
2 99.3% 8.9 4.1 48.5

420 99.2% 7.7 4.4 49.8
410 99.1% 6.7 4.0 49.3
45 99.2% 6.8 4.2 49.7
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5.3.6 Distillation column

The state variable x for this problem consists entirely of molar fractions. Although x is formally
unbounded, each component lies in the interval [0, 1] by definition. For the purposes of (34), we
thus impose the bounds 0 ≤ x ≤ 1 to adhere to physics. These bounds are not enforced during the
numerical solution of the optimization problem. Scheme 0 is unable to solve a single instance of
this problem. The results for the remaining schemes for 1000 instances of the Distillation column
problem are thus shown in Table 8. On 97.2% of the instances, all remaining schemes succeed.
All of the instances are valid. On the valid instances, the sole reason for failure is maximum CPU
time. While tearing slightly improves robustness, it also slightly increases the solution time in
the absence of sparsity preservation. Sparsity preservation however greatly reduces the solution
time, especially in combination with tearing.

Table 8. Results for Distillation column.
Scheme 0 failed all instances.
Scheme Success Time σt Iter

1 98.8% 10.2 1.5 16.3
2 99.9% 10.7 1.0 14.3

340 99.5% 4.3 1.2 16.5
330 99.4% 4.7 0.5 16.2
320 99.4% 6.0 1.0 16.3
310 99.3% 4.1 1.1 16.3
35 99.6% 4.8 0.6 15.8
440 100.0% 3.6 0.3 14.4
430 100.0% 3.0 0.3 14.5
420 100.0% 2.6 0.2 14.4
410 99.9% 2.2 0.2 14.4
45 100.0% 3.4 0.3 14.2

5.4 Performance profiles

In Section 5.3 we saw that Scheme 1 on average outperforms Scheme 0 for each considered
problem, and that Schemes 2, 3µtol , and 4µtol usually yields further improvements. To illustrate
the aggregated results, Figure 2a shows the performance profile [24] for all schemes on the valid
portion of the 6000 problem instances. The performance ρs(τ) of a scheme s is defined as the
ratio of instances in which s solved the problem no slower than a factor τ of the fastest scheme
of that instance. In particular, ρs(1) is the ratio of instances in which s was the fastest scheme,
and ρs(∞) is the ratio of instances in which s succeeded.

Without looking too closely at the overwhelming data of Figure 2a, we can see that Scheme 0
is outperformed by Scheme 1, which is outperformed by both Scheme 2 and Scheme 3µtol , both
of which are outperformed by Scheme 4µtol . There is however no clear best value for µtol in Fig-
ure 2a, and average performance as a function of µtol is far from convex, suggesting that a larger
suite of problems than that of Section 5.1 is needed to pinpoint a suitable default value for µtol.
Suitable values however seem to lie in the range of [10, 30], and so 15 is chosen as the default
value of JModelica.org.

For a clearer comparison of the various schemes without excessive focus on µtol, we generate
a new performance profile where we only consider µtol = 30, which was the density tolerance
yielding the best robustness. The result is shown in Figure 2b, where we clearly see the average
superiority of Scheme 4 both in terms of speed and robustness, although Scheme 2 actually has
slightly better robustness. In particular, we see that Scheme 430 is an order of magnitude faster
than Scheme 0 in approximately half of the considered instances. Fourbar1 was the only problem
where sparsity preservation significantly deteriorated robustness, which leads to Scheme 2 being
the most robust scheme.
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Figure 2. Performance profiles for the valid portion of 6000 problem instances. Subfigure (a) shows all considered schemes with 5
different values of µtol. Subfigure (b) shows the same results but only for µtol = 30.

5.5 Computation times

Regarding computation times, we have so far focused on the respective solution times of the
schemes. For many applications, such as online MPC, these are the only times that matter.
For other applications, the computation time of the full toolchain is important, in which case
the proposed techniques add additional computational steps during preprocessing compared to
Scheme 0. The main parts of the offline computation times are model compilation, BLT anal-
ysis, collocation discretization, algorithmic differentiation graph construction (including first-
and second-order derivatives). The main parts of the online computation times are NLP function
evaluations and KKT matrix factorization. While Scheme 430 adds additional computation time
compared to Scheme 0 in the form of BLT analysis, it also results in a smaller DAE which may
reduce computation in subsequent offline steps, allowing the additional computation time to be
regained before we even reach the online computation.

Table 9 compares the offline and online computation times of Scheme 0 and Scheme 430 for
the six benchmark problems. The online times are the averages observed in Section 5.3. We
see that for all except one problem, Scheme 430 has a lower total time. We also see that the
offline times for Scheme 430 become significantly larger for problems with many DAE variables.
Since the implementation of Scheme 430 is just a prototype with little regard for efficient offline
computations (other than remaining in the realm of tractability), its implementation can probably
be optimized to scale better. The bottleneck for Distillation column lies in the construction of the
structural incidence matrix: Identifying the nonzero incidences and determining which of those
are linear, which thus affects all schemes except 0.

5.6 Global collocation

We have so far only evaluated the schemes when combined with local collocation. Global collo-
cation (also known as pseudospectral) methods, where a large number of collocation points and
a small number of elements are used instead of vice versa, have become increasingly popular
the last decade. We will thus also consider these methods, but only briefly for the sake of brevity
and also avoiding the inadvertent comparison between the performances of the two flavours of
collocation. One important difference between local and global collocation to keep in mind is
that the NLPs resulting from global collocation tend to be smaller, due to their potential spectral
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Table 9. Offline and online computation times [s].

Problem Scheme Offline Online Total

Car 0 2.7 8.9 11.6
430 2.7 6.8 9.5

CCPP 0 3.5 13.6 17.1
430 3.6 0.9 4.5

Double pendulum 0 7.8 15.5 23.3
430 7.1 0.8 7.9

Fourbar1 0 31.3 8.9 40.2
430 43.4 1.5 44.9

HRSG 0 10.7 13.5 24.2
430 12.5 8.9 21.4

Distillation column 0 14.7 ∞ ∞

430 119.2 3.0 122.2

(exponential) convergence rate, but also more dense, due to their global temporal coupling.
We will limit our evaluation of global collocation to the Distillation column problem. Instead

of using ne = 20 and nc = 3, we use ne = 1 and nc = 25. Just as we observed for local collocation,
Scheme 0 is unable to solve the problem. The results for the remaining schemes are shown in
Table 10. All of the instances are valid. The results are similar to those obtained with local
collocation, see Table 8. Two notable differences are that every Scheme (except 0) solves every
instance and that smaller values of µtol are preferable. This indicates that it is crucial to preserve
what little sparsity there is in an NLP resulting from global collocation. However, if the problem
dimensions allow it, it may be more efficient to combine Scheme 2 with dense rather than sparse
numerical linear algebra, which is a possibility we do not consider further in this paper.

Table 10. Results for Distillation column
with global collocation.

Scheme Success Time σt Iter

1 100.0% 9.4 1.4 9.1
2 100.0% 8.9 1.1 8.6

340 100.0% 3.1 0.5 9.1
330 100.0% 3.5 0.6 9.1
320 100.0% 2.6 0.4 9.1
310 100.0% 2.4 0.4 9.1
35 100.0% 2.7 0.4 9.1
440 100.0% 6.0 0.8 8.6
430 100.0% 3.6 0.5 8.6
420 100.0% 2.6 0.4 8.6
410 100.0% 3.8 0.5 8.6
45 100.0% 2.0 0.2 8.6

6. Conclusion

DAE-constrained optimization problems are usually solved by exposing the full DAE to a dis-
cretization method. In this paper we considered ways of preprocessing the DAE by symbolically
eliminating most of the algebraic variables using techniques based on block-triangular order-
ings, tearing, and sparsity preservation, resulting in 4 different schemes. These schemes have
been implemented in the open-source JModelica.org platform, which solves dynamic optimiza-
tion problems where the system dynamics are described using the Modelica language. We eval-
uated these schemes on 6 different optimal control problems when combined with direct local
collocation, and found that the scheme that utilizes all of the proposed techniques performed
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the best on average, often being an order of magnitude faster than the conventional scheme of
exposing the full DAE to the discretization method.

We found that a suitable value of the density tolerance µtol seems to be 15 when employing lo-
cal collocation, although it is problem dependent and more data is needed to pinpoint a suitable
default value with certainty. It also seems that smaller tolerances are preferable when there are
more collocation points per element. We observed that the proposed techniques lend themselves
well to typical Modelica models, due to the hierarchical modelling approach, but that they also
show potential for flat DAEs.

Sparsity preservation was beneficial for the problems where it made a significant difference,
excepting Fourbar1. A possible and tractable refinement of the proposed sparsity preservation
procedure that may remedy this is to not only consider the sparsity of the NLP Jacobian, but also
the Hessian of the NLP Lagrangian.

While block-triangular ordering and sparsity preservation guarantees preservation of numer-
ical stability, tearing does not. Although numerical instability due to tearing does not appear to
have been an issue for the considered problems, the authors are confident that there are industri-
ally relevant problems where JModelica.org selects numerically troublesome tearing variables
and residuals. This is a well-known drawback of tearing, which is difficult to address under typi-
cal circumstances. However, in the context of dynamic optimization a decent initial guess of the
full solution is often required in order to solve the problem. Utilizing this initial guess, it should
be tractable to design a numerical tearing algorithm which guarantees numerical stability (under
the assumption that the initial guess is sufficiently close to the solution) using techniques such
as those considered by Westerberg et al. [32, 58].

The used tearing algorithm first selects tearing variables and residuals to obtain causalized
equations that are triangular and linear along the diagonal, and then selects additional tearing
variables and residuals in order to not eliminate variables that are bounded, differential, or cause
too much fill-in. Considering all of these criteria simultaneously, rather than sequentially, would
enable fewer tearing variables and residuals to be selected.
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