Phosphorus driven embrittlement and atomistic crack behavior in tungsten grain boundaries: Supplementary material

S1. COMPUTATION OF AVERAGED ENERGY RELEASE RATE

The average energy release rate, G_I , is calculated by averaging the G_I^{CZ} values of five CZVEs. The G_I for all the considered STGBs with varying P impurity coverage, θ , is provided in Table S1.

Table S1. Averaged energy release rate (G_I in units of Jm²) of the $\langle 110 \rangle$ STGBs considered in the present work. Here, 'pr.dir' is short for crack propagation direction and θ stands for P impurities coverage.

GB, crack system		G_I		
$\Sigma/[pr.dir]$	$\theta=0.0\;\text{\AA}^{-2}$	$\theta = 0.02 \; \mathrm{\AA}^{-2}$	$\theta = 0.04 \; \mathrm{\AA}^{-2}$	$\theta = 0.06 \; \mathrm{\AA}^{-2}$
$\Sigma 51/[5\bar{5}\bar{1}]$	5.83	5.78	4.82	4.07
$\Sigma 3(ar{1}12)/[ar{1}1ar{1}]$	6.96	6.33	6.27	6.51
$\Sigma 17(2\bar{2}\bar{3})/[\bar{3}3\bar{4}]$	5.93	5.24	4.65	3.90
$\Sigma 17(3\bar{3}\bar{4})/[2\bar{2}3]$	5.53	5.18	4.64	4.10
$\Sigma 43/[3\bar{3}5]$	5.61	5.32	4.90	3.80
$\Sigma 3(1\bar{1}\bar{1})/[1\bar{1}2]$	5.54	5.03	4.49	3.92
$\Sigma 11/[\bar{2}2\bar{5}]$	5.84	5.36	4.34	3.55
$\Sigma 9/[1\bar{1}4]$	5.53	4.84	4.52	3.88
$\Sigma 27/[\bar{1}1\bar{5}]$	4.89	5.24	4.78	4.52
$\Sigma 19/[\bar{1}1\bar{6}]$	4.68	4.56	4.23	4.05
$\Sigma 33/[1\bar{1}\bar{8}]$	4.77	4.81	4.27	3.92

S2. CRACK GROWTH RESISTANCE (R)-CURVES FOR ALL THE STGBS

The *R*-curves for all STGBs are presented in Figures S1 and S2. *R*-curves are obtained by plotting the data of crack growth, Δa_{crack} , versus applied K_I i.e. K_I term in the LEFM anisotropic displacement fields [1–4], given by

$$u_x = K_I \sqrt{\frac{2r}{\pi}} \Re \left\{ \left[\frac{1}{(\mu_1 - \mu_2)} \right] \left[\mu_1 p_2 (\cos \theta + \mu_2 \sin \theta)^{1/2} - \mu_2 p_1 (\cos \theta + \mu_1 \sin \theta)^{1/2} \right] \right\},$$
(S1)

$$u_y = K_I \sqrt{\frac{2r}{\pi}} \Re \left\{ \left[\frac{1}{(\mu_1 - \mu_2)} \right] \left[\mu_1 q_2 (\cos \theta + \mu_2 \sin \theta)^{1/2} - \mu_2 q_1 (\cos \theta + \mu_1 \sin \theta)^{1/2} \right] \right\},$$
(S2)

where,

$$p_1 = s_{11}\mu_1^2 + s_{12} - s_{16}\mu_1 \tag{S3}$$

$$p_2 = s_{11}\mu_2^2 + s_{12} - s_{16}\mu_2, \tag{S4}$$

$$q_{1} = \frac{s_{12}\mu_{1}^{2} + s_{22} - s_{26}\mu_{1}}{\mu_{1}},$$
(64)

$$q_2 = \frac{s_{12}\mu_2^2 + s_{22} - s_{26}\mu_2}{\mu_2}.$$
 (S6)

Here, μ_1 and μ_2 are the complex solutions of the characteristic equation,

$$s_{11}\mu_j^4 - 2s_{16}\mu_j^3 + (2s_{12} + s_{66})\mu_j^2 - 2s_{26}\mu_j + s_{22} = 0.$$
 (S7)

The s_{ij} s are the compliance constants at 0 K, in the orientation of interest.

S3. COMPUTATION OF FRACTURE TOUGHNESS

Table S2. Fracture toughness (K_{IC}^{R} in units of MPa·m^{1/2}) of the $\langle 110 \rangle$ STGBs considered in the present work. Here, 'pr.dir' is short for crack propagation direction and θ stands for P impurities coverage.

1 0				
GB, crack system		K_{IC}^{R}		
$\Sigma/[pr.dir]$	$\theta = 0.0 \; \text{\AA}^{-2}$	$\theta = 0.02 \; \mathrm{\AA}^{-2}$	$\theta = 0.04 \; \mathrm{\AA}^{-2}$	$\theta = 0.06 \; \mathrm{\AA}^{-2}$
$\Sigma 51/[5ar{5}ar{1}]$	1.18	1.58	1.36	0.875
$\Sigma 3(\bar{1}12)/[\bar{1}1\bar{1}]$	1.65	1.72	1.50	1.53
$\Sigma 17(2\bar{2}\bar{3})/[\bar{3}3\bar{4}]$	1.46	1.36	1.25	1.22
$\Sigma 17(3\bar{3}\bar{4})/[2\bar{2}3]$	1.50	1.38	1.55	0.84
$\Sigma 43/[3\bar{3}5]$	1.44	1.32	1.22	0.96
$\Sigma 3(1\bar{1}\bar{1})/[1\bar{1}2]$	1.44	1.31	1.22	1.16
$\Sigma 11/[\bar{2}2\bar{5}]$	1.35	1.08	0.98	1.05
$\Sigma9/[1\overline{1}4]$	1.51	0.96	1.15	0.98
$\Sigma 27/[ar{1}1ar{5}]$	1.34	1.28	1.32	1.42
$\Sigma 19/[ar{1}1ar{6}]$	1.55	1.73	1.58	0.91
$\Sigma 33/[1\overline{1}\overline{8}]$	1.38	1.33	1.31	0.91

GB, crack system		K _{IC}		
$\Sigma/[pr.dir]$	$\theta = 0.0 \; \text{\AA}^{-2}$	$\theta = 0.02 \; \mathrm{\AA}^{-2}$	$\theta = 0.04 \; \mathrm{\AA}^{-2}$	$\theta = 0.06 \; \mathrm{\AA}^{-2}$
$\Sigma 51/[5\bar{5}\bar{1}]$	1.61	1.602	1.463	1.345
$\Sigma 3(\bar{1}12)/[\bar{1}1\bar{1}]$	1.76	1.68	1.67	1.70
$\Sigma 17(2\bar{2}\bar{3})/[\bar{3}3\bar{4}]$	1.62	1.53	1.44	1.32
$\Sigma17(3\bar{3}\bar{4})/[2\bar{2}3]$	1.57	1.52	1.44	1.35
$\Sigma 43/[3\bar{3}5]$	1.58	1.54	1.48	1.30
$\Sigma 3(1\bar{1}\bar{1})/[1\bar{1}2]$	1.57	1.50	1.41	1.32
$\Sigma 11/[\bar{2}2\bar{5}]$	1.58	1.54	1.39	1.26
$\Sigma9/[1\bar{1}4]$	1.57	1.47	1.42	1.31
$\Sigma 27/[\bar{1}1\bar{5}]$	1.48	1.53	1.46	1.42
$\Sigma 19/[\bar{1}1\bar{6}]$	1.44	1.42	1.37	1.34
$\Sigma 33/[1\bar{1}\bar{8}]$	1.46	1.46	1.38	1.32

Table S3. Fracture toughness (K_{IC} in units of MPa·m^{1/2}) of the $\langle 110 \rangle$ STGBs considered in the present work. Here 'pr.dir' is short for crack propagation direction and θ stands for P impurities coverage.

Fig. S1. *R*-curves for $\Sigma 51$, $\Sigma 3(\overline{1}12)$, $\Sigma 17(2\overline{2}\overline{3})$, $\Sigma 17(3\overline{3}\overline{4})$, $\Sigma 43$ and $\Sigma 3(1\overline{1}\overline{1})$ GB cracks.

Fig. S2. *R*-curves for $\Sigma 11$, $\Sigma 9$, $\Sigma 27$, $\Sigma 19$ and $\Sigma 33$ GB cracks.

Fig. S3. K_{IC}^{CZ} -values in CZVEs of $\Sigma 3(1\overline{1}\overline{1})$ GB cracks with varying impurity coverage, θ .

Fig. S4. K_{IC}^{CZ} -values in CZVEs of $\Sigma 3(\bar{1}12)$ GB cracks with varying impurity coverage, θ .

Fig. S5. K_{IC}^{CZ} -values in CZVEs of Σ 9 GB cracks with varying impurity coverage, θ .

Fig. S6. K_{IC}^{CZ} -values in CZVEs of $\Sigma 17(2\overline{2}\overline{3})$ GB cracks with varying impurity coverage, θ .

Fig. S7. K_{IC}^{CZ} -values in CZVEs of $\Sigma 17(3\overline{3}\overline{4})$ GB cracks with varying impurity coverage, θ .

Fig. S8. K_{IC}^{CZ} -values in CZVEs of Σ 19 GB cracks with varying impurity coverage, θ .

Fig. S9. K_{IC}^{CZ} -values in CZVEs of Σ 27 GB cracks with varying impurity coverage, θ .

Fig. S10. K_{IC}^{CZ} -values in CZVEs of Σ 33 GB cracks with varying impurity coverage, θ .

Fig. S11. K_{IC}^{CZ} -values in CZVEs of Σ 43 GB cracks with varying impurity coverage, θ .

Fig. S12. K_{IC}^{CZ} -values in CZVEs of Σ 51 GB cracks with varying impurity coverage, θ .

REFERENCES

- 1. G. C. Sih, P. Paris, and G. Irwin, "On cracks in rectilinearly anisotropic bodies," Int. J. Fract. Mech. **1**, 189–203 (1965).
- 2. G. Sih and H. Liebowitz, "Fracture: An Advanced Treatise," Math. Fundamentals **2**, 68–188 (1968).
- 3. K. S. Cheung and S. Yip, "A molecular-dynamics simulation of crack-tip extension: the brittle-to-ductile transition," Model. Simul. Mater. Sci. Eng. **2**, 865 (1994).
- 4. P. Hiremath, S. Melin, E. Bitzek, and P. A. T. Olsson, "Effects of interatomic potential on fracture behaviour in single-and bicrystalline tungsten," Comput. Mater. Sci. **207**, 111283 (2022).